Merge branch 'for-4.6-ns' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[linux-2.6-block.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66
67 #include <asm/io.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/tlb.h>
72 #include <asm/tlbflush.h>
73 #include <asm/pgtable.h>
74
75 #include "internal.h"
76
77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #endif
80
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
85
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
89
90 /*
91  * A number of key systems in x86 including ioremap() rely on the assumption
92  * that high_memory defines the upper bound on direct map memory, then end
93  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
94  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95  * and ZONE_HIGHMEM.
96  */
97 void * high_memory;
98
99 EXPORT_SYMBOL(high_memory);
100
101 /*
102  * Randomize the address space (stacks, mmaps, brk, etc.).
103  *
104  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105  *   as ancient (libc5 based) binaries can segfault. )
106  */
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
109                                         1;
110 #else
111                                         2;
112 #endif
113
114 static int __init disable_randmaps(char *s)
115 {
116         randomize_va_space = 0;
117         return 1;
118 }
119 __setup("norandmaps", disable_randmaps);
120
121 unsigned long zero_pfn __read_mostly;
122 unsigned long highest_memmap_pfn __read_mostly;
123
124 EXPORT_SYMBOL(zero_pfn);
125
126 /*
127  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128  */
129 static int __init init_zero_pfn(void)
130 {
131         zero_pfn = page_to_pfn(ZERO_PAGE(0));
132         return 0;
133 }
134 core_initcall(init_zero_pfn);
135
136
137 #if defined(SPLIT_RSS_COUNTING)
138
139 void sync_mm_rss(struct mm_struct *mm)
140 {
141         int i;
142
143         for (i = 0; i < NR_MM_COUNTERS; i++) {
144                 if (current->rss_stat.count[i]) {
145                         add_mm_counter(mm, i, current->rss_stat.count[i]);
146                         current->rss_stat.count[i] = 0;
147                 }
148         }
149         current->rss_stat.events = 0;
150 }
151
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 {
154         struct task_struct *task = current;
155
156         if (likely(task->mm == mm))
157                 task->rss_stat.count[member] += val;
158         else
159                 add_mm_counter(mm, member, val);
160 }
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH  (64)
166 static void check_sync_rss_stat(struct task_struct *task)
167 {
168         if (unlikely(task != current))
169                 return;
170         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171                 sync_mm_rss(task->mm);
172 }
173 #else /* SPLIT_RSS_COUNTING */
174
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178 static void check_sync_rss_stat(struct task_struct *task)
179 {
180 }
181
182 #endif /* SPLIT_RSS_COUNTING */
183
184 #ifdef HAVE_GENERIC_MMU_GATHER
185
186 static bool tlb_next_batch(struct mmu_gather *tlb)
187 {
188         struct mmu_gather_batch *batch;
189
190         batch = tlb->active;
191         if (batch->next) {
192                 tlb->active = batch->next;
193                 return true;
194         }
195
196         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197                 return false;
198
199         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200         if (!batch)
201                 return false;
202
203         tlb->batch_count++;
204         batch->next = NULL;
205         batch->nr   = 0;
206         batch->max  = MAX_GATHER_BATCH;
207
208         tlb->active->next = batch;
209         tlb->active = batch;
210
211         return true;
212 }
213
214 /* tlb_gather_mmu
215  *      Called to initialize an (on-stack) mmu_gather structure for page-table
216  *      tear-down from @mm. The @fullmm argument is used when @mm is without
217  *      users and we're going to destroy the full address space (exit/execve).
218  */
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 {
221         tlb->mm = mm;
222
223         /* Is it from 0 to ~0? */
224         tlb->fullmm     = !(start | (end+1));
225         tlb->need_flush_all = 0;
226         tlb->local.next = NULL;
227         tlb->local.nr   = 0;
228         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229         tlb->active     = &tlb->local;
230         tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233         tlb->batch = NULL;
234 #endif
235
236         __tlb_reset_range(tlb);
237 }
238
239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240 {
241         if (!tlb->end)
242                 return;
243
244         tlb_flush(tlb);
245         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247         tlb_table_flush(tlb);
248 #endif
249         __tlb_reset_range(tlb);
250 }
251
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254         struct mmu_gather_batch *batch;
255
256         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257                 free_pages_and_swap_cache(batch->pages, batch->nr);
258                 batch->nr = 0;
259         }
260         tlb->active = &tlb->local;
261 }
262
263 void tlb_flush_mmu(struct mmu_gather *tlb)
264 {
265         tlb_flush_mmu_tlbonly(tlb);
266         tlb_flush_mmu_free(tlb);
267 }
268
269 /* tlb_finish_mmu
270  *      Called at the end of the shootdown operation to free up any resources
271  *      that were required.
272  */
273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274 {
275         struct mmu_gather_batch *batch, *next;
276
277         tlb_flush_mmu(tlb);
278
279         /* keep the page table cache within bounds */
280         check_pgt_cache();
281
282         for (batch = tlb->local.next; batch; batch = next) {
283                 next = batch->next;
284                 free_pages((unsigned long)batch, 0);
285         }
286         tlb->local.next = NULL;
287 }
288
289 /* __tlb_remove_page
290  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291  *      handling the additional races in SMP caused by other CPUs caching valid
292  *      mappings in their TLBs. Returns the number of free page slots left.
293  *      When out of page slots we must call tlb_flush_mmu().
294  */
295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296 {
297         struct mmu_gather_batch *batch;
298
299         VM_BUG_ON(!tlb->end);
300
301         batch = tlb->active;
302         batch->pages[batch->nr++] = page;
303         if (batch->nr == batch->max) {
304                 if (!tlb_next_batch(tlb))
305                         return 0;
306                 batch = tlb->active;
307         }
308         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309
310         return batch->max - batch->nr;
311 }
312
313 #endif /* HAVE_GENERIC_MMU_GATHER */
314
315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316
317 /*
318  * See the comment near struct mmu_table_batch.
319  */
320
321 static void tlb_remove_table_smp_sync(void *arg)
322 {
323         /* Simply deliver the interrupt */
324 }
325
326 static void tlb_remove_table_one(void *table)
327 {
328         /*
329          * This isn't an RCU grace period and hence the page-tables cannot be
330          * assumed to be actually RCU-freed.
331          *
332          * It is however sufficient for software page-table walkers that rely on
333          * IRQ disabling. See the comment near struct mmu_table_batch.
334          */
335         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336         __tlb_remove_table(table);
337 }
338
339 static void tlb_remove_table_rcu(struct rcu_head *head)
340 {
341         struct mmu_table_batch *batch;
342         int i;
343
344         batch = container_of(head, struct mmu_table_batch, rcu);
345
346         for (i = 0; i < batch->nr; i++)
347                 __tlb_remove_table(batch->tables[i]);
348
349         free_page((unsigned long)batch);
350 }
351
352 void tlb_table_flush(struct mmu_gather *tlb)
353 {
354         struct mmu_table_batch **batch = &tlb->batch;
355
356         if (*batch) {
357                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358                 *batch = NULL;
359         }
360 }
361
362 void tlb_remove_table(struct mmu_gather *tlb, void *table)
363 {
364         struct mmu_table_batch **batch = &tlb->batch;
365
366         /*
367          * When there's less then two users of this mm there cannot be a
368          * concurrent page-table walk.
369          */
370         if (atomic_read(&tlb->mm->mm_users) < 2) {
371                 __tlb_remove_table(table);
372                 return;
373         }
374
375         if (*batch == NULL) {
376                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377                 if (*batch == NULL) {
378                         tlb_remove_table_one(table);
379                         return;
380                 }
381                 (*batch)->nr = 0;
382         }
383         (*batch)->tables[(*batch)->nr++] = table;
384         if ((*batch)->nr == MAX_TABLE_BATCH)
385                 tlb_table_flush(tlb);
386 }
387
388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389
390 /*
391  * Note: this doesn't free the actual pages themselves. That
392  * has been handled earlier when unmapping all the memory regions.
393  */
394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395                            unsigned long addr)
396 {
397         pgtable_t token = pmd_pgtable(*pmd);
398         pmd_clear(pmd);
399         pte_free_tlb(tlb, token, addr);
400         atomic_long_dec(&tlb->mm->nr_ptes);
401 }
402
403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404                                 unsigned long addr, unsigned long end,
405                                 unsigned long floor, unsigned long ceiling)
406 {
407         pmd_t *pmd;
408         unsigned long next;
409         unsigned long start;
410
411         start = addr;
412         pmd = pmd_offset(pud, addr);
413         do {
414                 next = pmd_addr_end(addr, end);
415                 if (pmd_none_or_clear_bad(pmd))
416                         continue;
417                 free_pte_range(tlb, pmd, addr);
418         } while (pmd++, addr = next, addr != end);
419
420         start &= PUD_MASK;
421         if (start < floor)
422                 return;
423         if (ceiling) {
424                 ceiling &= PUD_MASK;
425                 if (!ceiling)
426                         return;
427         }
428         if (end - 1 > ceiling - 1)
429                 return;
430
431         pmd = pmd_offset(pud, start);
432         pud_clear(pud);
433         pmd_free_tlb(tlb, pmd, start);
434         mm_dec_nr_pmds(tlb->mm);
435 }
436
437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438                                 unsigned long addr, unsigned long end,
439                                 unsigned long floor, unsigned long ceiling)
440 {
441         pud_t *pud;
442         unsigned long next;
443         unsigned long start;
444
445         start = addr;
446         pud = pud_offset(pgd, addr);
447         do {
448                 next = pud_addr_end(addr, end);
449                 if (pud_none_or_clear_bad(pud))
450                         continue;
451                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452         } while (pud++, addr = next, addr != end);
453
454         start &= PGDIR_MASK;
455         if (start < floor)
456                 return;
457         if (ceiling) {
458                 ceiling &= PGDIR_MASK;
459                 if (!ceiling)
460                         return;
461         }
462         if (end - 1 > ceiling - 1)
463                 return;
464
465         pud = pud_offset(pgd, start);
466         pgd_clear(pgd);
467         pud_free_tlb(tlb, pud, start);
468 }
469
470 /*
471  * This function frees user-level page tables of a process.
472  */
473 void free_pgd_range(struct mmu_gather *tlb,
474                         unsigned long addr, unsigned long end,
475                         unsigned long floor, unsigned long ceiling)
476 {
477         pgd_t *pgd;
478         unsigned long next;
479
480         /*
481          * The next few lines have given us lots of grief...
482          *
483          * Why are we testing PMD* at this top level?  Because often
484          * there will be no work to do at all, and we'd prefer not to
485          * go all the way down to the bottom just to discover that.
486          *
487          * Why all these "- 1"s?  Because 0 represents both the bottom
488          * of the address space and the top of it (using -1 for the
489          * top wouldn't help much: the masks would do the wrong thing).
490          * The rule is that addr 0 and floor 0 refer to the bottom of
491          * the address space, but end 0 and ceiling 0 refer to the top
492          * Comparisons need to use "end - 1" and "ceiling - 1" (though
493          * that end 0 case should be mythical).
494          *
495          * Wherever addr is brought up or ceiling brought down, we must
496          * be careful to reject "the opposite 0" before it confuses the
497          * subsequent tests.  But what about where end is brought down
498          * by PMD_SIZE below? no, end can't go down to 0 there.
499          *
500          * Whereas we round start (addr) and ceiling down, by different
501          * masks at different levels, in order to test whether a table
502          * now has no other vmas using it, so can be freed, we don't
503          * bother to round floor or end up - the tests don't need that.
504          */
505
506         addr &= PMD_MASK;
507         if (addr < floor) {
508                 addr += PMD_SIZE;
509                 if (!addr)
510                         return;
511         }
512         if (ceiling) {
513                 ceiling &= PMD_MASK;
514                 if (!ceiling)
515                         return;
516         }
517         if (end - 1 > ceiling - 1)
518                 end -= PMD_SIZE;
519         if (addr > end - 1)
520                 return;
521
522         pgd = pgd_offset(tlb->mm, addr);
523         do {
524                 next = pgd_addr_end(addr, end);
525                 if (pgd_none_or_clear_bad(pgd))
526                         continue;
527                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528         } while (pgd++, addr = next, addr != end);
529 }
530
531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532                 unsigned long floor, unsigned long ceiling)
533 {
534         while (vma) {
535                 struct vm_area_struct *next = vma->vm_next;
536                 unsigned long addr = vma->vm_start;
537
538                 /*
539                  * Hide vma from rmap and truncate_pagecache before freeing
540                  * pgtables
541                  */
542                 unlink_anon_vmas(vma);
543                 unlink_file_vma(vma);
544
545                 if (is_vm_hugetlb_page(vma)) {
546                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547                                 floor, next? next->vm_start: ceiling);
548                 } else {
549                         /*
550                          * Optimization: gather nearby vmas into one call down
551                          */
552                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553                                && !is_vm_hugetlb_page(next)) {
554                                 vma = next;
555                                 next = vma->vm_next;
556                                 unlink_anon_vmas(vma);
557                                 unlink_file_vma(vma);
558                         }
559                         free_pgd_range(tlb, addr, vma->vm_end,
560                                 floor, next? next->vm_start: ceiling);
561                 }
562                 vma = next;
563         }
564 }
565
566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
567 {
568         spinlock_t *ptl;
569         pgtable_t new = pte_alloc_one(mm, address);
570         if (!new)
571                 return -ENOMEM;
572
573         /*
574          * Ensure all pte setup (eg. pte page lock and page clearing) are
575          * visible before the pte is made visible to other CPUs by being
576          * put into page tables.
577          *
578          * The other side of the story is the pointer chasing in the page
579          * table walking code (when walking the page table without locking;
580          * ie. most of the time). Fortunately, these data accesses consist
581          * of a chain of data-dependent loads, meaning most CPUs (alpha
582          * being the notable exception) will already guarantee loads are
583          * seen in-order. See the alpha page table accessors for the
584          * smp_read_barrier_depends() barriers in page table walking code.
585          */
586         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
588         ptl = pmd_lock(mm, pmd);
589         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
590                 atomic_long_inc(&mm->nr_ptes);
591                 pmd_populate(mm, pmd, new);
592                 new = NULL;
593         }
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         return 0;
598 }
599
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603         if (!new)
604                 return -ENOMEM;
605
606         smp_wmb(); /* See comment in __pte_alloc */
607
608         spin_lock(&init_mm.page_table_lock);
609         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
610                 pmd_populate_kernel(&init_mm, pmd, new);
611                 new = NULL;
612         }
613         spin_unlock(&init_mm.page_table_lock);
614         if (new)
615                 pte_free_kernel(&init_mm, new);
616         return 0;
617 }
618
619 static inline void init_rss_vec(int *rss)
620 {
621         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626         int i;
627
628         if (current->mm == mm)
629                 sync_mm_rss(mm);
630         for (i = 0; i < NR_MM_COUNTERS; i++)
631                 if (rss[i])
632                         add_mm_counter(mm, i, rss[i]);
633 }
634
635 /*
636  * This function is called to print an error when a bad pte
637  * is found. For example, we might have a PFN-mapped pte in
638  * a region that doesn't allow it.
639  *
640  * The calling function must still handle the error.
641  */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643                           pte_t pte, struct page *page)
644 {
645         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646         pud_t *pud = pud_offset(pgd, addr);
647         pmd_t *pmd = pmd_offset(pud, addr);
648         struct address_space *mapping;
649         pgoff_t index;
650         static unsigned long resume;
651         static unsigned long nr_shown;
652         static unsigned long nr_unshown;
653
654         /*
655          * Allow a burst of 60 reports, then keep quiet for that minute;
656          * or allow a steady drip of one report per second.
657          */
658         if (nr_shown == 60) {
659                 if (time_before(jiffies, resume)) {
660                         nr_unshown++;
661                         return;
662                 }
663                 if (nr_unshown) {
664                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665                                  nr_unshown);
666                         nr_unshown = 0;
667                 }
668                 nr_shown = 0;
669         }
670         if (nr_shown++ == 0)
671                 resume = jiffies + 60 * HZ;
672
673         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674         index = linear_page_index(vma, addr);
675
676         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
677                  current->comm,
678                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
679         if (page)
680                 dump_page(page, "bad pte");
681         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683         /*
684          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685          */
686         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687                  vma->vm_file,
688                  vma->vm_ops ? vma->vm_ops->fault : NULL,
689                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690                  mapping ? mapping->a_ops->readpage : NULL);
691         dump_stack();
692         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693 }
694
695 /*
696  * vm_normal_page -- This function gets the "struct page" associated with a pte.
697  *
698  * "Special" mappings do not wish to be associated with a "struct page" (either
699  * it doesn't exist, or it exists but they don't want to touch it). In this
700  * case, NULL is returned here. "Normal" mappings do have a struct page.
701  *
702  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703  * pte bit, in which case this function is trivial. Secondly, an architecture
704  * may not have a spare pte bit, which requires a more complicated scheme,
705  * described below.
706  *
707  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708  * special mapping (even if there are underlying and valid "struct pages").
709  * COWed pages of a VM_PFNMAP are always normal.
710  *
711  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714  * mapping will always honor the rule
715  *
716  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717  *
718  * And for normal mappings this is false.
719  *
720  * This restricts such mappings to be a linear translation from virtual address
721  * to pfn. To get around this restriction, we allow arbitrary mappings so long
722  * as the vma is not a COW mapping; in that case, we know that all ptes are
723  * special (because none can have been COWed).
724  *
725  *
726  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727  *
728  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729  * page" backing, however the difference is that _all_ pages with a struct
730  * page (that is, those where pfn_valid is true) are refcounted and considered
731  * normal pages by the VM. The disadvantage is that pages are refcounted
732  * (which can be slower and simply not an option for some PFNMAP users). The
733  * advantage is that we don't have to follow the strict linearity rule of
734  * PFNMAP mappings in order to support COWable mappings.
735  *
736  */
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743                                 pte_t pte)
744 {
745         unsigned long pfn = pte_pfn(pte);
746
747         if (HAVE_PTE_SPECIAL) {
748                 if (likely(!pte_special(pte)))
749                         goto check_pfn;
750                 if (vma->vm_ops && vma->vm_ops->find_special_page)
751                         return vma->vm_ops->find_special_page(vma, addr);
752                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753                         return NULL;
754                 if (!is_zero_pfn(pfn))
755                         print_bad_pte(vma, addr, pte, NULL);
756                 return NULL;
757         }
758
759         /* !HAVE_PTE_SPECIAL case follows: */
760
761         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762                 if (vma->vm_flags & VM_MIXEDMAP) {
763                         if (!pfn_valid(pfn))
764                                 return NULL;
765                         goto out;
766                 } else {
767                         unsigned long off;
768                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
769                         if (pfn == vma->vm_pgoff + off)
770                                 return NULL;
771                         if (!is_cow_mapping(vma->vm_flags))
772                                 return NULL;
773                 }
774         }
775
776         if (is_zero_pfn(pfn))
777                 return NULL;
778 check_pfn:
779         if (unlikely(pfn > highest_memmap_pfn)) {
780                 print_bad_pte(vma, addr, pte, NULL);
781                 return NULL;
782         }
783
784         /*
785          * NOTE! We still have PageReserved() pages in the page tables.
786          * eg. VDSO mappings can cause them to exist.
787          */
788 out:
789         return pfn_to_page(pfn);
790 }
791
792 /*
793  * copy one vm_area from one task to the other. Assumes the page tables
794  * already present in the new task to be cleared in the whole range
795  * covered by this vma.
796  */
797
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801                 unsigned long addr, int *rss)
802 {
803         unsigned long vm_flags = vma->vm_flags;
804         pte_t pte = *src_pte;
805         struct page *page;
806
807         /* pte contains position in swap or file, so copy. */
808         if (unlikely(!pte_present(pte))) {
809                 swp_entry_t entry = pte_to_swp_entry(pte);
810
811                 if (likely(!non_swap_entry(entry))) {
812                         if (swap_duplicate(entry) < 0)
813                                 return entry.val;
814
815                         /* make sure dst_mm is on swapoff's mmlist. */
816                         if (unlikely(list_empty(&dst_mm->mmlist))) {
817                                 spin_lock(&mmlist_lock);
818                                 if (list_empty(&dst_mm->mmlist))
819                                         list_add(&dst_mm->mmlist,
820                                                         &src_mm->mmlist);
821                                 spin_unlock(&mmlist_lock);
822                         }
823                         rss[MM_SWAPENTS]++;
824                 } else if (is_migration_entry(entry)) {
825                         page = migration_entry_to_page(entry);
826
827                         rss[mm_counter(page)]++;
828
829                         if (is_write_migration_entry(entry) &&
830                                         is_cow_mapping(vm_flags)) {
831                                 /*
832                                  * COW mappings require pages in both
833                                  * parent and child to be set to read.
834                                  */
835                                 make_migration_entry_read(&entry);
836                                 pte = swp_entry_to_pte(entry);
837                                 if (pte_swp_soft_dirty(*src_pte))
838                                         pte = pte_swp_mksoft_dirty(pte);
839                                 set_pte_at(src_mm, addr, src_pte, pte);
840                         }
841                 }
842                 goto out_set_pte;
843         }
844
845         /*
846          * If it's a COW mapping, write protect it both
847          * in the parent and the child
848          */
849         if (is_cow_mapping(vm_flags)) {
850                 ptep_set_wrprotect(src_mm, addr, src_pte);
851                 pte = pte_wrprotect(pte);
852         }
853
854         /*
855          * If it's a shared mapping, mark it clean in
856          * the child
857          */
858         if (vm_flags & VM_SHARED)
859                 pte = pte_mkclean(pte);
860         pte = pte_mkold(pte);
861
862         page = vm_normal_page(vma, addr, pte);
863         if (page) {
864                 get_page(page);
865                 page_dup_rmap(page, false);
866                 rss[mm_counter(page)]++;
867         }
868
869 out_set_pte:
870         set_pte_at(dst_mm, addr, dst_pte, pte);
871         return 0;
872 }
873
874 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
876                    unsigned long addr, unsigned long end)
877 {
878         pte_t *orig_src_pte, *orig_dst_pte;
879         pte_t *src_pte, *dst_pte;
880         spinlock_t *src_ptl, *dst_ptl;
881         int progress = 0;
882         int rss[NR_MM_COUNTERS];
883         swp_entry_t entry = (swp_entry_t){0};
884
885 again:
886         init_rss_vec(rss);
887
888         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
889         if (!dst_pte)
890                 return -ENOMEM;
891         src_pte = pte_offset_map(src_pmd, addr);
892         src_ptl = pte_lockptr(src_mm, src_pmd);
893         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
894         orig_src_pte = src_pte;
895         orig_dst_pte = dst_pte;
896         arch_enter_lazy_mmu_mode();
897
898         do {
899                 /*
900                  * We are holding two locks at this point - either of them
901                  * could generate latencies in another task on another CPU.
902                  */
903                 if (progress >= 32) {
904                         progress = 0;
905                         if (need_resched() ||
906                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
907                                 break;
908                 }
909                 if (pte_none(*src_pte)) {
910                         progress++;
911                         continue;
912                 }
913                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
914                                                         vma, addr, rss);
915                 if (entry.val)
916                         break;
917                 progress += 8;
918         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
919
920         arch_leave_lazy_mmu_mode();
921         spin_unlock(src_ptl);
922         pte_unmap(orig_src_pte);
923         add_mm_rss_vec(dst_mm, rss);
924         pte_unmap_unlock(orig_dst_pte, dst_ptl);
925         cond_resched();
926
927         if (entry.val) {
928                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
929                         return -ENOMEM;
930                 progress = 0;
931         }
932         if (addr != end)
933                 goto again;
934         return 0;
935 }
936
937 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
939                 unsigned long addr, unsigned long end)
940 {
941         pmd_t *src_pmd, *dst_pmd;
942         unsigned long next;
943
944         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
945         if (!dst_pmd)
946                 return -ENOMEM;
947         src_pmd = pmd_offset(src_pud, addr);
948         do {
949                 next = pmd_addr_end(addr, end);
950                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
951                         int err;
952                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
953                         err = copy_huge_pmd(dst_mm, src_mm,
954                                             dst_pmd, src_pmd, addr, vma);
955                         if (err == -ENOMEM)
956                                 return -ENOMEM;
957                         if (!err)
958                                 continue;
959                         /* fall through */
960                 }
961                 if (pmd_none_or_clear_bad(src_pmd))
962                         continue;
963                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
964                                                 vma, addr, next))
965                         return -ENOMEM;
966         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
967         return 0;
968 }
969
970 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
972                 unsigned long addr, unsigned long end)
973 {
974         pud_t *src_pud, *dst_pud;
975         unsigned long next;
976
977         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
978         if (!dst_pud)
979                 return -ENOMEM;
980         src_pud = pud_offset(src_pgd, addr);
981         do {
982                 next = pud_addr_end(addr, end);
983                 if (pud_none_or_clear_bad(src_pud))
984                         continue;
985                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
986                                                 vma, addr, next))
987                         return -ENOMEM;
988         } while (dst_pud++, src_pud++, addr = next, addr != end);
989         return 0;
990 }
991
992 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993                 struct vm_area_struct *vma)
994 {
995         pgd_t *src_pgd, *dst_pgd;
996         unsigned long next;
997         unsigned long addr = vma->vm_start;
998         unsigned long end = vma->vm_end;
999         unsigned long mmun_start;       /* For mmu_notifiers */
1000         unsigned long mmun_end;         /* For mmu_notifiers */
1001         bool is_cow;
1002         int ret;
1003
1004         /*
1005          * Don't copy ptes where a page fault will fill them correctly.
1006          * Fork becomes much lighter when there are big shared or private
1007          * readonly mappings. The tradeoff is that copy_page_range is more
1008          * efficient than faulting.
1009          */
1010         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1011                         !vma->anon_vma)
1012                 return 0;
1013
1014         if (is_vm_hugetlb_page(vma))
1015                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1016
1017         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1018                 /*
1019                  * We do not free on error cases below as remove_vma
1020                  * gets called on error from higher level routine
1021                  */
1022                 ret = track_pfn_copy(vma);
1023                 if (ret)
1024                         return ret;
1025         }
1026
1027         /*
1028          * We need to invalidate the secondary MMU mappings only when
1029          * there could be a permission downgrade on the ptes of the
1030          * parent mm. And a permission downgrade will only happen if
1031          * is_cow_mapping() returns true.
1032          */
1033         is_cow = is_cow_mapping(vma->vm_flags);
1034         mmun_start = addr;
1035         mmun_end   = end;
1036         if (is_cow)
1037                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1038                                                     mmun_end);
1039
1040         ret = 0;
1041         dst_pgd = pgd_offset(dst_mm, addr);
1042         src_pgd = pgd_offset(src_mm, addr);
1043         do {
1044                 next = pgd_addr_end(addr, end);
1045                 if (pgd_none_or_clear_bad(src_pgd))
1046                         continue;
1047                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1048                                             vma, addr, next))) {
1049                         ret = -ENOMEM;
1050                         break;
1051                 }
1052         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1053
1054         if (is_cow)
1055                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1056         return ret;
1057 }
1058
1059 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1060                                 struct vm_area_struct *vma, pmd_t *pmd,
1061                                 unsigned long addr, unsigned long end,
1062                                 struct zap_details *details)
1063 {
1064         struct mm_struct *mm = tlb->mm;
1065         int force_flush = 0;
1066         int rss[NR_MM_COUNTERS];
1067         spinlock_t *ptl;
1068         pte_t *start_pte;
1069         pte_t *pte;
1070         swp_entry_t entry;
1071
1072 again:
1073         init_rss_vec(rss);
1074         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1075         pte = start_pte;
1076         arch_enter_lazy_mmu_mode();
1077         do {
1078                 pte_t ptent = *pte;
1079                 if (pte_none(ptent)) {
1080                         continue;
1081                 }
1082
1083                 if (pte_present(ptent)) {
1084                         struct page *page;
1085
1086                         page = vm_normal_page(vma, addr, ptent);
1087                         if (unlikely(details) && page) {
1088                                 /*
1089                                  * unmap_shared_mapping_pages() wants to
1090                                  * invalidate cache without truncating:
1091                                  * unmap shared but keep private pages.
1092                                  */
1093                                 if (details->check_mapping &&
1094                                     details->check_mapping != page->mapping)
1095                                         continue;
1096                         }
1097                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1098                                                         tlb->fullmm);
1099                         tlb_remove_tlb_entry(tlb, pte, addr);
1100                         if (unlikely(!page))
1101                                 continue;
1102
1103                         if (!PageAnon(page)) {
1104                                 if (pte_dirty(ptent)) {
1105                                         force_flush = 1;
1106                                         set_page_dirty(page);
1107                                 }
1108                                 if (pte_young(ptent) &&
1109                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1110                                         mark_page_accessed(page);
1111                         }
1112                         rss[mm_counter(page)]--;
1113                         page_remove_rmap(page, false);
1114                         if (unlikely(page_mapcount(page) < 0))
1115                                 print_bad_pte(vma, addr, ptent, page);
1116                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1117                                 force_flush = 1;
1118                                 addr += PAGE_SIZE;
1119                                 break;
1120                         }
1121                         continue;
1122                 }
1123                 /* If details->check_mapping, we leave swap entries. */
1124                 if (unlikely(details))
1125                         continue;
1126
1127                 entry = pte_to_swp_entry(ptent);
1128                 if (!non_swap_entry(entry))
1129                         rss[MM_SWAPENTS]--;
1130                 else if (is_migration_entry(entry)) {
1131                         struct page *page;
1132
1133                         page = migration_entry_to_page(entry);
1134                         rss[mm_counter(page)]--;
1135                 }
1136                 if (unlikely(!free_swap_and_cache(entry)))
1137                         print_bad_pte(vma, addr, ptent, NULL);
1138                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139         } while (pte++, addr += PAGE_SIZE, addr != end);
1140
1141         add_mm_rss_vec(mm, rss);
1142         arch_leave_lazy_mmu_mode();
1143
1144         /* Do the actual TLB flush before dropping ptl */
1145         if (force_flush)
1146                 tlb_flush_mmu_tlbonly(tlb);
1147         pte_unmap_unlock(start_pte, ptl);
1148
1149         /*
1150          * If we forced a TLB flush (either due to running out of
1151          * batch buffers or because we needed to flush dirty TLB
1152          * entries before releasing the ptl), free the batched
1153          * memory too. Restart if we didn't do everything.
1154          */
1155         if (force_flush) {
1156                 force_flush = 0;
1157                 tlb_flush_mmu_free(tlb);
1158
1159                 if (addr != end)
1160                         goto again;
1161         }
1162
1163         return addr;
1164 }
1165
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167                                 struct vm_area_struct *vma, pud_t *pud,
1168                                 unsigned long addr, unsigned long end,
1169                                 struct zap_details *details)
1170 {
1171         pmd_t *pmd;
1172         unsigned long next;
1173
1174         pmd = pmd_offset(pud, addr);
1175         do {
1176                 next = pmd_addr_end(addr, end);
1177                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178                         if (next - addr != HPAGE_PMD_SIZE) {
1179 #ifdef CONFIG_DEBUG_VM
1180                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1181                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1182                                                 __func__, addr, end,
1183                                                 vma->vm_start,
1184                                                 vma->vm_end);
1185                                         BUG();
1186                                 }
1187 #endif
1188                                 split_huge_pmd(vma, pmd, addr);
1189                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1190                                 goto next;
1191                         /* fall through */
1192                 }
1193                 /*
1194                  * Here there can be other concurrent MADV_DONTNEED or
1195                  * trans huge page faults running, and if the pmd is
1196                  * none or trans huge it can change under us. This is
1197                  * because MADV_DONTNEED holds the mmap_sem in read
1198                  * mode.
1199                  */
1200                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1201                         goto next;
1202                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1203 next:
1204                 cond_resched();
1205         } while (pmd++, addr = next, addr != end);
1206
1207         return addr;
1208 }
1209
1210 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1211                                 struct vm_area_struct *vma, pgd_t *pgd,
1212                                 unsigned long addr, unsigned long end,
1213                                 struct zap_details *details)
1214 {
1215         pud_t *pud;
1216         unsigned long next;
1217
1218         pud = pud_offset(pgd, addr);
1219         do {
1220                 next = pud_addr_end(addr, end);
1221                 if (pud_none_or_clear_bad(pud))
1222                         continue;
1223                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1224         } while (pud++, addr = next, addr != end);
1225
1226         return addr;
1227 }
1228
1229 static void unmap_page_range(struct mmu_gather *tlb,
1230                              struct vm_area_struct *vma,
1231                              unsigned long addr, unsigned long end,
1232                              struct zap_details *details)
1233 {
1234         pgd_t *pgd;
1235         unsigned long next;
1236
1237         if (details && !details->check_mapping)
1238                 details = NULL;
1239
1240         BUG_ON(addr >= end);
1241         tlb_start_vma(tlb, vma);
1242         pgd = pgd_offset(vma->vm_mm, addr);
1243         do {
1244                 next = pgd_addr_end(addr, end);
1245                 if (pgd_none_or_clear_bad(pgd))
1246                         continue;
1247                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1248         } while (pgd++, addr = next, addr != end);
1249         tlb_end_vma(tlb, vma);
1250 }
1251
1252
1253 static void unmap_single_vma(struct mmu_gather *tlb,
1254                 struct vm_area_struct *vma, unsigned long start_addr,
1255                 unsigned long end_addr,
1256                 struct zap_details *details)
1257 {
1258         unsigned long start = max(vma->vm_start, start_addr);
1259         unsigned long end;
1260
1261         if (start >= vma->vm_end)
1262                 return;
1263         end = min(vma->vm_end, end_addr);
1264         if (end <= vma->vm_start)
1265                 return;
1266
1267         if (vma->vm_file)
1268                 uprobe_munmap(vma, start, end);
1269
1270         if (unlikely(vma->vm_flags & VM_PFNMAP))
1271                 untrack_pfn(vma, 0, 0);
1272
1273         if (start != end) {
1274                 if (unlikely(is_vm_hugetlb_page(vma))) {
1275                         /*
1276                          * It is undesirable to test vma->vm_file as it
1277                          * should be non-null for valid hugetlb area.
1278                          * However, vm_file will be NULL in the error
1279                          * cleanup path of mmap_region. When
1280                          * hugetlbfs ->mmap method fails,
1281                          * mmap_region() nullifies vma->vm_file
1282                          * before calling this function to clean up.
1283                          * Since no pte has actually been setup, it is
1284                          * safe to do nothing in this case.
1285                          */
1286                         if (vma->vm_file) {
1287                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1288                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1289                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1290                         }
1291                 } else
1292                         unmap_page_range(tlb, vma, start, end, details);
1293         }
1294 }
1295
1296 /**
1297  * unmap_vmas - unmap a range of memory covered by a list of vma's
1298  * @tlb: address of the caller's struct mmu_gather
1299  * @vma: the starting vma
1300  * @start_addr: virtual address at which to start unmapping
1301  * @end_addr: virtual address at which to end unmapping
1302  *
1303  * Unmap all pages in the vma list.
1304  *
1305  * Only addresses between `start' and `end' will be unmapped.
1306  *
1307  * The VMA list must be sorted in ascending virtual address order.
1308  *
1309  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1310  * range after unmap_vmas() returns.  So the only responsibility here is to
1311  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1312  * drops the lock and schedules.
1313  */
1314 void unmap_vmas(struct mmu_gather *tlb,
1315                 struct vm_area_struct *vma, unsigned long start_addr,
1316                 unsigned long end_addr)
1317 {
1318         struct mm_struct *mm = vma->vm_mm;
1319
1320         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1321         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1322                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1323         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1324 }
1325
1326 /**
1327  * zap_page_range - remove user pages in a given range
1328  * @vma: vm_area_struct holding the applicable pages
1329  * @start: starting address of pages to zap
1330  * @size: number of bytes to zap
1331  * @details: details of shared cache invalidation
1332  *
1333  * Caller must protect the VMA list
1334  */
1335 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1336                 unsigned long size, struct zap_details *details)
1337 {
1338         struct mm_struct *mm = vma->vm_mm;
1339         struct mmu_gather tlb;
1340         unsigned long end = start + size;
1341
1342         lru_add_drain();
1343         tlb_gather_mmu(&tlb, mm, start, end);
1344         update_hiwater_rss(mm);
1345         mmu_notifier_invalidate_range_start(mm, start, end);
1346         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1347                 unmap_single_vma(&tlb, vma, start, end, details);
1348         mmu_notifier_invalidate_range_end(mm, start, end);
1349         tlb_finish_mmu(&tlb, start, end);
1350 }
1351
1352 /**
1353  * zap_page_range_single - remove user pages in a given range
1354  * @vma: vm_area_struct holding the applicable pages
1355  * @address: starting address of pages to zap
1356  * @size: number of bytes to zap
1357  * @details: details of shared cache invalidation
1358  *
1359  * The range must fit into one VMA.
1360  */
1361 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1362                 unsigned long size, struct zap_details *details)
1363 {
1364         struct mm_struct *mm = vma->vm_mm;
1365         struct mmu_gather tlb;
1366         unsigned long end = address + size;
1367
1368         lru_add_drain();
1369         tlb_gather_mmu(&tlb, mm, address, end);
1370         update_hiwater_rss(mm);
1371         mmu_notifier_invalidate_range_start(mm, address, end);
1372         unmap_single_vma(&tlb, vma, address, end, details);
1373         mmu_notifier_invalidate_range_end(mm, address, end);
1374         tlb_finish_mmu(&tlb, address, end);
1375 }
1376
1377 /**
1378  * zap_vma_ptes - remove ptes mapping the vma
1379  * @vma: vm_area_struct holding ptes to be zapped
1380  * @address: starting address of pages to zap
1381  * @size: number of bytes to zap
1382  *
1383  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1384  *
1385  * The entire address range must be fully contained within the vma.
1386  *
1387  * Returns 0 if successful.
1388  */
1389 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1390                 unsigned long size)
1391 {
1392         if (address < vma->vm_start || address + size > vma->vm_end ||
1393                         !(vma->vm_flags & VM_PFNMAP))
1394                 return -1;
1395         zap_page_range_single(vma, address, size, NULL);
1396         return 0;
1397 }
1398 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1399
1400 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1401                         spinlock_t **ptl)
1402 {
1403         pgd_t * pgd = pgd_offset(mm, addr);
1404         pud_t * pud = pud_alloc(mm, pgd, addr);
1405         if (pud) {
1406                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1407                 if (pmd) {
1408                         VM_BUG_ON(pmd_trans_huge(*pmd));
1409                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1410                 }
1411         }
1412         return NULL;
1413 }
1414
1415 /*
1416  * This is the old fallback for page remapping.
1417  *
1418  * For historical reasons, it only allows reserved pages. Only
1419  * old drivers should use this, and they needed to mark their
1420  * pages reserved for the old functions anyway.
1421  */
1422 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423                         struct page *page, pgprot_t prot)
1424 {
1425         struct mm_struct *mm = vma->vm_mm;
1426         int retval;
1427         pte_t *pte;
1428         spinlock_t *ptl;
1429
1430         retval = -EINVAL;
1431         if (PageAnon(page))
1432                 goto out;
1433         retval = -ENOMEM;
1434         flush_dcache_page(page);
1435         pte = get_locked_pte(mm, addr, &ptl);
1436         if (!pte)
1437                 goto out;
1438         retval = -EBUSY;
1439         if (!pte_none(*pte))
1440                 goto out_unlock;
1441
1442         /* Ok, finally just insert the thing.. */
1443         get_page(page);
1444         inc_mm_counter_fast(mm, mm_counter_file(page));
1445         page_add_file_rmap(page);
1446         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448         retval = 0;
1449         pte_unmap_unlock(pte, ptl);
1450         return retval;
1451 out_unlock:
1452         pte_unmap_unlock(pte, ptl);
1453 out:
1454         return retval;
1455 }
1456
1457 /**
1458  * vm_insert_page - insert single page into user vma
1459  * @vma: user vma to map to
1460  * @addr: target user address of this page
1461  * @page: source kernel page
1462  *
1463  * This allows drivers to insert individual pages they've allocated
1464  * into a user vma.
1465  *
1466  * The page has to be a nice clean _individual_ kernel allocation.
1467  * If you allocate a compound page, you need to have marked it as
1468  * such (__GFP_COMP), or manually just split the page up yourself
1469  * (see split_page()).
1470  *
1471  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1472  * took an arbitrary page protection parameter. This doesn't allow
1473  * that. Your vma protection will have to be set up correctly, which
1474  * means that if you want a shared writable mapping, you'd better
1475  * ask for a shared writable mapping!
1476  *
1477  * The page does not need to be reserved.
1478  *
1479  * Usually this function is called from f_op->mmap() handler
1480  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1481  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1482  * function from other places, for example from page-fault handler.
1483  */
1484 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485                         struct page *page)
1486 {
1487         if (addr < vma->vm_start || addr >= vma->vm_end)
1488                 return -EFAULT;
1489         if (!page_count(page))
1490                 return -EINVAL;
1491         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1494                 vma->vm_flags |= VM_MIXEDMAP;
1495         }
1496         return insert_page(vma, addr, page, vma->vm_page_prot);
1497 }
1498 EXPORT_SYMBOL(vm_insert_page);
1499
1500 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1501                         pfn_t pfn, pgprot_t prot)
1502 {
1503         struct mm_struct *mm = vma->vm_mm;
1504         int retval;
1505         pte_t *pte, entry;
1506         spinlock_t *ptl;
1507
1508         retval = -ENOMEM;
1509         pte = get_locked_pte(mm, addr, &ptl);
1510         if (!pte)
1511                 goto out;
1512         retval = -EBUSY;
1513         if (!pte_none(*pte))
1514                 goto out_unlock;
1515
1516         /* Ok, finally just insert the thing.. */
1517         if (pfn_t_devmap(pfn))
1518                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1519         else
1520                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1521         set_pte_at(mm, addr, pte, entry);
1522         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1523
1524         retval = 0;
1525 out_unlock:
1526         pte_unmap_unlock(pte, ptl);
1527 out:
1528         return retval;
1529 }
1530
1531 /**
1532  * vm_insert_pfn - insert single pfn into user vma
1533  * @vma: user vma to map to
1534  * @addr: target user address of this page
1535  * @pfn: source kernel pfn
1536  *
1537  * Similar to vm_insert_page, this allows drivers to insert individual pages
1538  * they've allocated into a user vma. Same comments apply.
1539  *
1540  * This function should only be called from a vm_ops->fault handler, and
1541  * in that case the handler should return NULL.
1542  *
1543  * vma cannot be a COW mapping.
1544  *
1545  * As this is called only for pages that do not currently exist, we
1546  * do not need to flush old virtual caches or the TLB.
1547  */
1548 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1549                         unsigned long pfn)
1550 {
1551         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1552 }
1553 EXPORT_SYMBOL(vm_insert_pfn);
1554
1555 /**
1556  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1557  * @vma: user vma to map to
1558  * @addr: target user address of this page
1559  * @pfn: source kernel pfn
1560  * @pgprot: pgprot flags for the inserted page
1561  *
1562  * This is exactly like vm_insert_pfn, except that it allows drivers to
1563  * to override pgprot on a per-page basis.
1564  *
1565  * This only makes sense for IO mappings, and it makes no sense for
1566  * cow mappings.  In general, using multiple vmas is preferable;
1567  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1568  * impractical.
1569  */
1570 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1571                         unsigned long pfn, pgprot_t pgprot)
1572 {
1573         int ret;
1574         /*
1575          * Technically, architectures with pte_special can avoid all these
1576          * restrictions (same for remap_pfn_range).  However we would like
1577          * consistency in testing and feature parity among all, so we should
1578          * try to keep these invariants in place for everybody.
1579          */
1580         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1581         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1582                                                 (VM_PFNMAP|VM_MIXEDMAP));
1583         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1584         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1585
1586         if (addr < vma->vm_start || addr >= vma->vm_end)
1587                 return -EFAULT;
1588         if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1589                 return -EINVAL;
1590
1591         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1592
1593         return ret;
1594 }
1595 EXPORT_SYMBOL(vm_insert_pfn_prot);
1596
1597 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1598                         pfn_t pfn)
1599 {
1600         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1601
1602         if (addr < vma->vm_start || addr >= vma->vm_end)
1603                 return -EFAULT;
1604
1605         /*
1606          * If we don't have pte special, then we have to use the pfn_valid()
1607          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1608          * refcount the page if pfn_valid is true (hence insert_page rather
1609          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1610          * without pte special, it would there be refcounted as a normal page.
1611          */
1612         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1613                 struct page *page;
1614
1615                 /*
1616                  * At this point we are committed to insert_page()
1617                  * regardless of whether the caller specified flags that
1618                  * result in pfn_t_has_page() == false.
1619                  */
1620                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1621                 return insert_page(vma, addr, page, vma->vm_page_prot);
1622         }
1623         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1624 }
1625 EXPORT_SYMBOL(vm_insert_mixed);
1626
1627 /*
1628  * maps a range of physical memory into the requested pages. the old
1629  * mappings are removed. any references to nonexistent pages results
1630  * in null mappings (currently treated as "copy-on-access")
1631  */
1632 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1633                         unsigned long addr, unsigned long end,
1634                         unsigned long pfn, pgprot_t prot)
1635 {
1636         pte_t *pte;
1637         spinlock_t *ptl;
1638
1639         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1640         if (!pte)
1641                 return -ENOMEM;
1642         arch_enter_lazy_mmu_mode();
1643         do {
1644                 BUG_ON(!pte_none(*pte));
1645                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1646                 pfn++;
1647         } while (pte++, addr += PAGE_SIZE, addr != end);
1648         arch_leave_lazy_mmu_mode();
1649         pte_unmap_unlock(pte - 1, ptl);
1650         return 0;
1651 }
1652
1653 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1654                         unsigned long addr, unsigned long end,
1655                         unsigned long pfn, pgprot_t prot)
1656 {
1657         pmd_t *pmd;
1658         unsigned long next;
1659
1660         pfn -= addr >> PAGE_SHIFT;
1661         pmd = pmd_alloc(mm, pud, addr);
1662         if (!pmd)
1663                 return -ENOMEM;
1664         VM_BUG_ON(pmd_trans_huge(*pmd));
1665         do {
1666                 next = pmd_addr_end(addr, end);
1667                 if (remap_pte_range(mm, pmd, addr, next,
1668                                 pfn + (addr >> PAGE_SHIFT), prot))
1669                         return -ENOMEM;
1670         } while (pmd++, addr = next, addr != end);
1671         return 0;
1672 }
1673
1674 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1675                         unsigned long addr, unsigned long end,
1676                         unsigned long pfn, pgprot_t prot)
1677 {
1678         pud_t *pud;
1679         unsigned long next;
1680
1681         pfn -= addr >> PAGE_SHIFT;
1682         pud = pud_alloc(mm, pgd, addr);
1683         if (!pud)
1684                 return -ENOMEM;
1685         do {
1686                 next = pud_addr_end(addr, end);
1687                 if (remap_pmd_range(mm, pud, addr, next,
1688                                 pfn + (addr >> PAGE_SHIFT), prot))
1689                         return -ENOMEM;
1690         } while (pud++, addr = next, addr != end);
1691         return 0;
1692 }
1693
1694 /**
1695  * remap_pfn_range - remap kernel memory to userspace
1696  * @vma: user vma to map to
1697  * @addr: target user address to start at
1698  * @pfn: physical address of kernel memory
1699  * @size: size of map area
1700  * @prot: page protection flags for this mapping
1701  *
1702  *  Note: this is only safe if the mm semaphore is held when called.
1703  */
1704 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1705                     unsigned long pfn, unsigned long size, pgprot_t prot)
1706 {
1707         pgd_t *pgd;
1708         unsigned long next;
1709         unsigned long end = addr + PAGE_ALIGN(size);
1710         struct mm_struct *mm = vma->vm_mm;
1711         int err;
1712
1713         /*
1714          * Physically remapped pages are special. Tell the
1715          * rest of the world about it:
1716          *   VM_IO tells people not to look at these pages
1717          *      (accesses can have side effects).
1718          *   VM_PFNMAP tells the core MM that the base pages are just
1719          *      raw PFN mappings, and do not have a "struct page" associated
1720          *      with them.
1721          *   VM_DONTEXPAND
1722          *      Disable vma merging and expanding with mremap().
1723          *   VM_DONTDUMP
1724          *      Omit vma from core dump, even when VM_IO turned off.
1725          *
1726          * There's a horrible special case to handle copy-on-write
1727          * behaviour that some programs depend on. We mark the "original"
1728          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1729          * See vm_normal_page() for details.
1730          */
1731         if (is_cow_mapping(vma->vm_flags)) {
1732                 if (addr != vma->vm_start || end != vma->vm_end)
1733                         return -EINVAL;
1734                 vma->vm_pgoff = pfn;
1735         }
1736
1737         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1738         if (err)
1739                 return -EINVAL;
1740
1741         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1742
1743         BUG_ON(addr >= end);
1744         pfn -= addr >> PAGE_SHIFT;
1745         pgd = pgd_offset(mm, addr);
1746         flush_cache_range(vma, addr, end);
1747         do {
1748                 next = pgd_addr_end(addr, end);
1749                 err = remap_pud_range(mm, pgd, addr, next,
1750                                 pfn + (addr >> PAGE_SHIFT), prot);
1751                 if (err)
1752                         break;
1753         } while (pgd++, addr = next, addr != end);
1754
1755         if (err)
1756                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1757
1758         return err;
1759 }
1760 EXPORT_SYMBOL(remap_pfn_range);
1761
1762 /**
1763  * vm_iomap_memory - remap memory to userspace
1764  * @vma: user vma to map to
1765  * @start: start of area
1766  * @len: size of area
1767  *
1768  * This is a simplified io_remap_pfn_range() for common driver use. The
1769  * driver just needs to give us the physical memory range to be mapped,
1770  * we'll figure out the rest from the vma information.
1771  *
1772  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1773  * whatever write-combining details or similar.
1774  */
1775 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1776 {
1777         unsigned long vm_len, pfn, pages;
1778
1779         /* Check that the physical memory area passed in looks valid */
1780         if (start + len < start)
1781                 return -EINVAL;
1782         /*
1783          * You *really* shouldn't map things that aren't page-aligned,
1784          * but we've historically allowed it because IO memory might
1785          * just have smaller alignment.
1786          */
1787         len += start & ~PAGE_MASK;
1788         pfn = start >> PAGE_SHIFT;
1789         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1790         if (pfn + pages < pfn)
1791                 return -EINVAL;
1792
1793         /* We start the mapping 'vm_pgoff' pages into the area */
1794         if (vma->vm_pgoff > pages)
1795                 return -EINVAL;
1796         pfn += vma->vm_pgoff;
1797         pages -= vma->vm_pgoff;
1798
1799         /* Can we fit all of the mapping? */
1800         vm_len = vma->vm_end - vma->vm_start;
1801         if (vm_len >> PAGE_SHIFT > pages)
1802                 return -EINVAL;
1803
1804         /* Ok, let it rip */
1805         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1806 }
1807 EXPORT_SYMBOL(vm_iomap_memory);
1808
1809 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1810                                      unsigned long addr, unsigned long end,
1811                                      pte_fn_t fn, void *data)
1812 {
1813         pte_t *pte;
1814         int err;
1815         pgtable_t token;
1816         spinlock_t *uninitialized_var(ptl);
1817
1818         pte = (mm == &init_mm) ?
1819                 pte_alloc_kernel(pmd, addr) :
1820                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1821         if (!pte)
1822                 return -ENOMEM;
1823
1824         BUG_ON(pmd_huge(*pmd));
1825
1826         arch_enter_lazy_mmu_mode();
1827
1828         token = pmd_pgtable(*pmd);
1829
1830         do {
1831                 err = fn(pte++, token, addr, data);
1832                 if (err)
1833                         break;
1834         } while (addr += PAGE_SIZE, addr != end);
1835
1836         arch_leave_lazy_mmu_mode();
1837
1838         if (mm != &init_mm)
1839                 pte_unmap_unlock(pte-1, ptl);
1840         return err;
1841 }
1842
1843 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1844                                      unsigned long addr, unsigned long end,
1845                                      pte_fn_t fn, void *data)
1846 {
1847         pmd_t *pmd;
1848         unsigned long next;
1849         int err;
1850
1851         BUG_ON(pud_huge(*pud));
1852
1853         pmd = pmd_alloc(mm, pud, addr);
1854         if (!pmd)
1855                 return -ENOMEM;
1856         do {
1857                 next = pmd_addr_end(addr, end);
1858                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1859                 if (err)
1860                         break;
1861         } while (pmd++, addr = next, addr != end);
1862         return err;
1863 }
1864
1865 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1866                                      unsigned long addr, unsigned long end,
1867                                      pte_fn_t fn, void *data)
1868 {
1869         pud_t *pud;
1870         unsigned long next;
1871         int err;
1872
1873         pud = pud_alloc(mm, pgd, addr);
1874         if (!pud)
1875                 return -ENOMEM;
1876         do {
1877                 next = pud_addr_end(addr, end);
1878                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1879                 if (err)
1880                         break;
1881         } while (pud++, addr = next, addr != end);
1882         return err;
1883 }
1884
1885 /*
1886  * Scan a region of virtual memory, filling in page tables as necessary
1887  * and calling a provided function on each leaf page table.
1888  */
1889 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1890                         unsigned long size, pte_fn_t fn, void *data)
1891 {
1892         pgd_t *pgd;
1893         unsigned long next;
1894         unsigned long end = addr + size;
1895         int err;
1896
1897         if (WARN_ON(addr >= end))
1898                 return -EINVAL;
1899
1900         pgd = pgd_offset(mm, addr);
1901         do {
1902                 next = pgd_addr_end(addr, end);
1903                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1904                 if (err)
1905                         break;
1906         } while (pgd++, addr = next, addr != end);
1907
1908         return err;
1909 }
1910 EXPORT_SYMBOL_GPL(apply_to_page_range);
1911
1912 /*
1913  * handle_pte_fault chooses page fault handler according to an entry which was
1914  * read non-atomically.  Before making any commitment, on those architectures
1915  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1916  * parts, do_swap_page must check under lock before unmapping the pte and
1917  * proceeding (but do_wp_page is only called after already making such a check;
1918  * and do_anonymous_page can safely check later on).
1919  */
1920 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1921                                 pte_t *page_table, pte_t orig_pte)
1922 {
1923         int same = 1;
1924 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1925         if (sizeof(pte_t) > sizeof(unsigned long)) {
1926                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1927                 spin_lock(ptl);
1928                 same = pte_same(*page_table, orig_pte);
1929                 spin_unlock(ptl);
1930         }
1931 #endif
1932         pte_unmap(page_table);
1933         return same;
1934 }
1935
1936 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1937 {
1938         debug_dma_assert_idle(src);
1939
1940         /*
1941          * If the source page was a PFN mapping, we don't have
1942          * a "struct page" for it. We do a best-effort copy by
1943          * just copying from the original user address. If that
1944          * fails, we just zero-fill it. Live with it.
1945          */
1946         if (unlikely(!src)) {
1947                 void *kaddr = kmap_atomic(dst);
1948                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1949
1950                 /*
1951                  * This really shouldn't fail, because the page is there
1952                  * in the page tables. But it might just be unreadable,
1953                  * in which case we just give up and fill the result with
1954                  * zeroes.
1955                  */
1956                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1957                         clear_page(kaddr);
1958                 kunmap_atomic(kaddr);
1959                 flush_dcache_page(dst);
1960         } else
1961                 copy_user_highpage(dst, src, va, vma);
1962 }
1963
1964 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1965 {
1966         struct file *vm_file = vma->vm_file;
1967
1968         if (vm_file)
1969                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1970
1971         /*
1972          * Special mappings (e.g. VDSO) do not have any file so fake
1973          * a default GFP_KERNEL for them.
1974          */
1975         return GFP_KERNEL;
1976 }
1977
1978 /*
1979  * Notify the address space that the page is about to become writable so that
1980  * it can prohibit this or wait for the page to get into an appropriate state.
1981  *
1982  * We do this without the lock held, so that it can sleep if it needs to.
1983  */
1984 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1985                unsigned long address)
1986 {
1987         struct vm_fault vmf;
1988         int ret;
1989
1990         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1991         vmf.pgoff = page->index;
1992         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1993         vmf.gfp_mask = __get_fault_gfp_mask(vma);
1994         vmf.page = page;
1995         vmf.cow_page = NULL;
1996
1997         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1998         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1999                 return ret;
2000         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2001                 lock_page(page);
2002                 if (!page->mapping) {
2003                         unlock_page(page);
2004                         return 0; /* retry */
2005                 }
2006                 ret |= VM_FAULT_LOCKED;
2007         } else
2008                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2009         return ret;
2010 }
2011
2012 /*
2013  * Handle write page faults for pages that can be reused in the current vma
2014  *
2015  * This can happen either due to the mapping being with the VM_SHARED flag,
2016  * or due to us being the last reference standing to the page. In either
2017  * case, all we need to do here is to mark the page as writable and update
2018  * any related book-keeping.
2019  */
2020 static inline int wp_page_reuse(struct mm_struct *mm,
2021                         struct vm_area_struct *vma, unsigned long address,
2022                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2023                         struct page *page, int page_mkwrite,
2024                         int dirty_shared)
2025         __releases(ptl)
2026 {
2027         pte_t entry;
2028         /*
2029          * Clear the pages cpupid information as the existing
2030          * information potentially belongs to a now completely
2031          * unrelated process.
2032          */
2033         if (page)
2034                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2035
2036         flush_cache_page(vma, address, pte_pfn(orig_pte));
2037         entry = pte_mkyoung(orig_pte);
2038         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2039         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2040                 update_mmu_cache(vma, address, page_table);
2041         pte_unmap_unlock(page_table, ptl);
2042
2043         if (dirty_shared) {
2044                 struct address_space *mapping;
2045                 int dirtied;
2046
2047                 if (!page_mkwrite)
2048                         lock_page(page);
2049
2050                 dirtied = set_page_dirty(page);
2051                 VM_BUG_ON_PAGE(PageAnon(page), page);
2052                 mapping = page->mapping;
2053                 unlock_page(page);
2054                 page_cache_release(page);
2055
2056                 if ((dirtied || page_mkwrite) && mapping) {
2057                         /*
2058                          * Some device drivers do not set page.mapping
2059                          * but still dirty their pages
2060                          */
2061                         balance_dirty_pages_ratelimited(mapping);
2062                 }
2063
2064                 if (!page_mkwrite)
2065                         file_update_time(vma->vm_file);
2066         }
2067
2068         return VM_FAULT_WRITE;
2069 }
2070
2071 /*
2072  * Handle the case of a page which we actually need to copy to a new page.
2073  *
2074  * Called with mmap_sem locked and the old page referenced, but
2075  * without the ptl held.
2076  *
2077  * High level logic flow:
2078  *
2079  * - Allocate a page, copy the content of the old page to the new one.
2080  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2081  * - Take the PTL. If the pte changed, bail out and release the allocated page
2082  * - If the pte is still the way we remember it, update the page table and all
2083  *   relevant references. This includes dropping the reference the page-table
2084  *   held to the old page, as well as updating the rmap.
2085  * - In any case, unlock the PTL and drop the reference we took to the old page.
2086  */
2087 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2088                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2089                         pte_t orig_pte, struct page *old_page)
2090 {
2091         struct page *new_page = NULL;
2092         spinlock_t *ptl = NULL;
2093         pte_t entry;
2094         int page_copied = 0;
2095         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2096         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2097         struct mem_cgroup *memcg;
2098
2099         if (unlikely(anon_vma_prepare(vma)))
2100                 goto oom;
2101
2102         if (is_zero_pfn(pte_pfn(orig_pte))) {
2103                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2104                 if (!new_page)
2105                         goto oom;
2106         } else {
2107                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2108                 if (!new_page)
2109                         goto oom;
2110                 cow_user_page(new_page, old_page, address, vma);
2111         }
2112
2113         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2114                 goto oom_free_new;
2115
2116         __SetPageUptodate(new_page);
2117
2118         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2119
2120         /*
2121          * Re-check the pte - we dropped the lock
2122          */
2123         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2124         if (likely(pte_same(*page_table, orig_pte))) {
2125                 if (old_page) {
2126                         if (!PageAnon(old_page)) {
2127                                 dec_mm_counter_fast(mm,
2128                                                 mm_counter_file(old_page));
2129                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2130                         }
2131                 } else {
2132                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2133                 }
2134                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2135                 entry = mk_pte(new_page, vma->vm_page_prot);
2136                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2137                 /*
2138                  * Clear the pte entry and flush it first, before updating the
2139                  * pte with the new entry. This will avoid a race condition
2140                  * seen in the presence of one thread doing SMC and another
2141                  * thread doing COW.
2142                  */
2143                 ptep_clear_flush_notify(vma, address, page_table);
2144                 page_add_new_anon_rmap(new_page, vma, address, false);
2145                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2146                 lru_cache_add_active_or_unevictable(new_page, vma);
2147                 /*
2148                  * We call the notify macro here because, when using secondary
2149                  * mmu page tables (such as kvm shadow page tables), we want the
2150                  * new page to be mapped directly into the secondary page table.
2151                  */
2152                 set_pte_at_notify(mm, address, page_table, entry);
2153                 update_mmu_cache(vma, address, page_table);
2154                 if (old_page) {
2155                         /*
2156                          * Only after switching the pte to the new page may
2157                          * we remove the mapcount here. Otherwise another
2158                          * process may come and find the rmap count decremented
2159                          * before the pte is switched to the new page, and
2160                          * "reuse" the old page writing into it while our pte
2161                          * here still points into it and can be read by other
2162                          * threads.
2163                          *
2164                          * The critical issue is to order this
2165                          * page_remove_rmap with the ptp_clear_flush above.
2166                          * Those stores are ordered by (if nothing else,)
2167                          * the barrier present in the atomic_add_negative
2168                          * in page_remove_rmap.
2169                          *
2170                          * Then the TLB flush in ptep_clear_flush ensures that
2171                          * no process can access the old page before the
2172                          * decremented mapcount is visible. And the old page
2173                          * cannot be reused until after the decremented
2174                          * mapcount is visible. So transitively, TLBs to
2175                          * old page will be flushed before it can be reused.
2176                          */
2177                         page_remove_rmap(old_page, false);
2178                 }
2179
2180                 /* Free the old page.. */
2181                 new_page = old_page;
2182                 page_copied = 1;
2183         } else {
2184                 mem_cgroup_cancel_charge(new_page, memcg, false);
2185         }
2186
2187         if (new_page)
2188                 page_cache_release(new_page);
2189
2190         pte_unmap_unlock(page_table, ptl);
2191         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2192         if (old_page) {
2193                 /*
2194                  * Don't let another task, with possibly unlocked vma,
2195                  * keep the mlocked page.
2196                  */
2197                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2198                         lock_page(old_page);    /* LRU manipulation */
2199                         if (PageMlocked(old_page))
2200                                 munlock_vma_page(old_page);
2201                         unlock_page(old_page);
2202                 }
2203                 page_cache_release(old_page);
2204         }
2205         return page_copied ? VM_FAULT_WRITE : 0;
2206 oom_free_new:
2207         page_cache_release(new_page);
2208 oom:
2209         if (old_page)
2210                 page_cache_release(old_page);
2211         return VM_FAULT_OOM;
2212 }
2213
2214 /*
2215  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2216  * mapping
2217  */
2218 static int wp_pfn_shared(struct mm_struct *mm,
2219                         struct vm_area_struct *vma, unsigned long address,
2220                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2221                         pmd_t *pmd)
2222 {
2223         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2224                 struct vm_fault vmf = {
2225                         .page = NULL,
2226                         .pgoff = linear_page_index(vma, address),
2227                         .virtual_address = (void __user *)(address & PAGE_MASK),
2228                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2229                 };
2230                 int ret;
2231
2232                 pte_unmap_unlock(page_table, ptl);
2233                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2234                 if (ret & VM_FAULT_ERROR)
2235                         return ret;
2236                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2237                 /*
2238                  * We might have raced with another page fault while we
2239                  * released the pte_offset_map_lock.
2240                  */
2241                 if (!pte_same(*page_table, orig_pte)) {
2242                         pte_unmap_unlock(page_table, ptl);
2243                         return 0;
2244                 }
2245         }
2246         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2247                              NULL, 0, 0);
2248 }
2249
2250 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2251                           unsigned long address, pte_t *page_table,
2252                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2253                           struct page *old_page)
2254         __releases(ptl)
2255 {
2256         int page_mkwrite = 0;
2257
2258         page_cache_get(old_page);
2259
2260         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2261                 int tmp;
2262
2263                 pte_unmap_unlock(page_table, ptl);
2264                 tmp = do_page_mkwrite(vma, old_page, address);
2265                 if (unlikely(!tmp || (tmp &
2266                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2267                         page_cache_release(old_page);
2268                         return tmp;
2269                 }
2270                 /*
2271                  * Since we dropped the lock we need to revalidate
2272                  * the PTE as someone else may have changed it.  If
2273                  * they did, we just return, as we can count on the
2274                  * MMU to tell us if they didn't also make it writable.
2275                  */
2276                 page_table = pte_offset_map_lock(mm, pmd, address,
2277                                                  &ptl);
2278                 if (!pte_same(*page_table, orig_pte)) {
2279                         unlock_page(old_page);
2280                         pte_unmap_unlock(page_table, ptl);
2281                         page_cache_release(old_page);
2282                         return 0;
2283                 }
2284                 page_mkwrite = 1;
2285         }
2286
2287         return wp_page_reuse(mm, vma, address, page_table, ptl,
2288                              orig_pte, old_page, page_mkwrite, 1);
2289 }
2290
2291 /*
2292  * This routine handles present pages, when users try to write
2293  * to a shared page. It is done by copying the page to a new address
2294  * and decrementing the shared-page counter for the old page.
2295  *
2296  * Note that this routine assumes that the protection checks have been
2297  * done by the caller (the low-level page fault routine in most cases).
2298  * Thus we can safely just mark it writable once we've done any necessary
2299  * COW.
2300  *
2301  * We also mark the page dirty at this point even though the page will
2302  * change only once the write actually happens. This avoids a few races,
2303  * and potentially makes it more efficient.
2304  *
2305  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2306  * but allow concurrent faults), with pte both mapped and locked.
2307  * We return with mmap_sem still held, but pte unmapped and unlocked.
2308  */
2309 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2310                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2311                 spinlock_t *ptl, pte_t orig_pte)
2312         __releases(ptl)
2313 {
2314         struct page *old_page;
2315
2316         old_page = vm_normal_page(vma, address, orig_pte);
2317         if (!old_page) {
2318                 /*
2319                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2320                  * VM_PFNMAP VMA.
2321                  *
2322                  * We should not cow pages in a shared writeable mapping.
2323                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2324                  */
2325                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2326                                      (VM_WRITE|VM_SHARED))
2327                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2328                                              orig_pte, pmd);
2329
2330                 pte_unmap_unlock(page_table, ptl);
2331                 return wp_page_copy(mm, vma, address, page_table, pmd,
2332                                     orig_pte, old_page);
2333         }
2334
2335         /*
2336          * Take out anonymous pages first, anonymous shared vmas are
2337          * not dirty accountable.
2338          */
2339         if (PageAnon(old_page) && !PageKsm(old_page)) {
2340                 if (!trylock_page(old_page)) {
2341                         page_cache_get(old_page);
2342                         pte_unmap_unlock(page_table, ptl);
2343                         lock_page(old_page);
2344                         page_table = pte_offset_map_lock(mm, pmd, address,
2345                                                          &ptl);
2346                         if (!pte_same(*page_table, orig_pte)) {
2347                                 unlock_page(old_page);
2348                                 pte_unmap_unlock(page_table, ptl);
2349                                 page_cache_release(old_page);
2350                                 return 0;
2351                         }
2352                         page_cache_release(old_page);
2353                 }
2354                 if (reuse_swap_page(old_page)) {
2355                         /*
2356                          * The page is all ours.  Move it to our anon_vma so
2357                          * the rmap code will not search our parent or siblings.
2358                          * Protected against the rmap code by the page lock.
2359                          */
2360                         page_move_anon_rmap(old_page, vma, address);
2361                         unlock_page(old_page);
2362                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2363                                              orig_pte, old_page, 0, 0);
2364                 }
2365                 unlock_page(old_page);
2366         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2367                                         (VM_WRITE|VM_SHARED))) {
2368                 return wp_page_shared(mm, vma, address, page_table, pmd,
2369                                       ptl, orig_pte, old_page);
2370         }
2371
2372         /*
2373          * Ok, we need to copy. Oh, well..
2374          */
2375         page_cache_get(old_page);
2376
2377         pte_unmap_unlock(page_table, ptl);
2378         return wp_page_copy(mm, vma, address, page_table, pmd,
2379                             orig_pte, old_page);
2380 }
2381
2382 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2383                 unsigned long start_addr, unsigned long end_addr,
2384                 struct zap_details *details)
2385 {
2386         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2387 }
2388
2389 static inline void unmap_mapping_range_tree(struct rb_root *root,
2390                                             struct zap_details *details)
2391 {
2392         struct vm_area_struct *vma;
2393         pgoff_t vba, vea, zba, zea;
2394
2395         vma_interval_tree_foreach(vma, root,
2396                         details->first_index, details->last_index) {
2397
2398                 vba = vma->vm_pgoff;
2399                 vea = vba + vma_pages(vma) - 1;
2400                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2401                 zba = details->first_index;
2402                 if (zba < vba)
2403                         zba = vba;
2404                 zea = details->last_index;
2405                 if (zea > vea)
2406                         zea = vea;
2407
2408                 unmap_mapping_range_vma(vma,
2409                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2410                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2411                                 details);
2412         }
2413 }
2414
2415 /**
2416  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2417  * address_space corresponding to the specified page range in the underlying
2418  * file.
2419  *
2420  * @mapping: the address space containing mmaps to be unmapped.
2421  * @holebegin: byte in first page to unmap, relative to the start of
2422  * the underlying file.  This will be rounded down to a PAGE_SIZE
2423  * boundary.  Note that this is different from truncate_pagecache(), which
2424  * must keep the partial page.  In contrast, we must get rid of
2425  * partial pages.
2426  * @holelen: size of prospective hole in bytes.  This will be rounded
2427  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2428  * end of the file.
2429  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2430  * but 0 when invalidating pagecache, don't throw away private data.
2431  */
2432 void unmap_mapping_range(struct address_space *mapping,
2433                 loff_t const holebegin, loff_t const holelen, int even_cows)
2434 {
2435         struct zap_details details;
2436         pgoff_t hba = holebegin >> PAGE_SHIFT;
2437         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2438
2439         /* Check for overflow. */
2440         if (sizeof(holelen) > sizeof(hlen)) {
2441                 long long holeend =
2442                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2443                 if (holeend & ~(long long)ULONG_MAX)
2444                         hlen = ULONG_MAX - hba + 1;
2445         }
2446
2447         details.check_mapping = even_cows? NULL: mapping;
2448         details.first_index = hba;
2449         details.last_index = hba + hlen - 1;
2450         if (details.last_index < details.first_index)
2451                 details.last_index = ULONG_MAX;
2452
2453
2454         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2455         i_mmap_lock_write(mapping);
2456         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2457                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2458         i_mmap_unlock_write(mapping);
2459 }
2460 EXPORT_SYMBOL(unmap_mapping_range);
2461
2462 /*
2463  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2464  * but allow concurrent faults), and pte mapped but not yet locked.
2465  * We return with pte unmapped and unlocked.
2466  *
2467  * We return with the mmap_sem locked or unlocked in the same cases
2468  * as does filemap_fault().
2469  */
2470 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2471                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2472                 unsigned int flags, pte_t orig_pte)
2473 {
2474         spinlock_t *ptl;
2475         struct page *page, *swapcache;
2476         struct mem_cgroup *memcg;
2477         swp_entry_t entry;
2478         pte_t pte;
2479         int locked;
2480         int exclusive = 0;
2481         int ret = 0;
2482
2483         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2484                 goto out;
2485
2486         entry = pte_to_swp_entry(orig_pte);
2487         if (unlikely(non_swap_entry(entry))) {
2488                 if (is_migration_entry(entry)) {
2489                         migration_entry_wait(mm, pmd, address);
2490                 } else if (is_hwpoison_entry(entry)) {
2491                         ret = VM_FAULT_HWPOISON;
2492                 } else {
2493                         print_bad_pte(vma, address, orig_pte, NULL);
2494                         ret = VM_FAULT_SIGBUS;
2495                 }
2496                 goto out;
2497         }
2498         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2499         page = lookup_swap_cache(entry);
2500         if (!page) {
2501                 page = swapin_readahead(entry,
2502                                         GFP_HIGHUSER_MOVABLE, vma, address);
2503                 if (!page) {
2504                         /*
2505                          * Back out if somebody else faulted in this pte
2506                          * while we released the pte lock.
2507                          */
2508                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2509                         if (likely(pte_same(*page_table, orig_pte)))
2510                                 ret = VM_FAULT_OOM;
2511                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2512                         goto unlock;
2513                 }
2514
2515                 /* Had to read the page from swap area: Major fault */
2516                 ret = VM_FAULT_MAJOR;
2517                 count_vm_event(PGMAJFAULT);
2518                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2519         } else if (PageHWPoison(page)) {
2520                 /*
2521                  * hwpoisoned dirty swapcache pages are kept for killing
2522                  * owner processes (which may be unknown at hwpoison time)
2523                  */
2524                 ret = VM_FAULT_HWPOISON;
2525                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2526                 swapcache = page;
2527                 goto out_release;
2528         }
2529
2530         swapcache = page;
2531         locked = lock_page_or_retry(page, mm, flags);
2532
2533         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2534         if (!locked) {
2535                 ret |= VM_FAULT_RETRY;
2536                 goto out_release;
2537         }
2538
2539         /*
2540          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2541          * release the swapcache from under us.  The page pin, and pte_same
2542          * test below, are not enough to exclude that.  Even if it is still
2543          * swapcache, we need to check that the page's swap has not changed.
2544          */
2545         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2546                 goto out_page;
2547
2548         page = ksm_might_need_to_copy(page, vma, address);
2549         if (unlikely(!page)) {
2550                 ret = VM_FAULT_OOM;
2551                 page = swapcache;
2552                 goto out_page;
2553         }
2554
2555         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2556                 ret = VM_FAULT_OOM;
2557                 goto out_page;
2558         }
2559
2560         /*
2561          * Back out if somebody else already faulted in this pte.
2562          */
2563         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2564         if (unlikely(!pte_same(*page_table, orig_pte)))
2565                 goto out_nomap;
2566
2567         if (unlikely(!PageUptodate(page))) {
2568                 ret = VM_FAULT_SIGBUS;
2569                 goto out_nomap;
2570         }
2571
2572         /*
2573          * The page isn't present yet, go ahead with the fault.
2574          *
2575          * Be careful about the sequence of operations here.
2576          * To get its accounting right, reuse_swap_page() must be called
2577          * while the page is counted on swap but not yet in mapcount i.e.
2578          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2579          * must be called after the swap_free(), or it will never succeed.
2580          */
2581
2582         inc_mm_counter_fast(mm, MM_ANONPAGES);
2583         dec_mm_counter_fast(mm, MM_SWAPENTS);
2584         pte = mk_pte(page, vma->vm_page_prot);
2585         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2586                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2587                 flags &= ~FAULT_FLAG_WRITE;
2588                 ret |= VM_FAULT_WRITE;
2589                 exclusive = RMAP_EXCLUSIVE;
2590         }
2591         flush_icache_page(vma, page);
2592         if (pte_swp_soft_dirty(orig_pte))
2593                 pte = pte_mksoft_dirty(pte);
2594         set_pte_at(mm, address, page_table, pte);
2595         if (page == swapcache) {
2596                 do_page_add_anon_rmap(page, vma, address, exclusive);
2597                 mem_cgroup_commit_charge(page, memcg, true, false);
2598         } else { /* ksm created a completely new copy */
2599                 page_add_new_anon_rmap(page, vma, address, false);
2600                 mem_cgroup_commit_charge(page, memcg, false, false);
2601                 lru_cache_add_active_or_unevictable(page, vma);
2602         }
2603
2604         swap_free(entry);
2605         if (mem_cgroup_swap_full(page) ||
2606             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2607                 try_to_free_swap(page);
2608         unlock_page(page);
2609         if (page != swapcache) {
2610                 /*
2611                  * Hold the lock to avoid the swap entry to be reused
2612                  * until we take the PT lock for the pte_same() check
2613                  * (to avoid false positives from pte_same). For
2614                  * further safety release the lock after the swap_free
2615                  * so that the swap count won't change under a
2616                  * parallel locked swapcache.
2617                  */
2618                 unlock_page(swapcache);
2619                 page_cache_release(swapcache);
2620         }
2621
2622         if (flags & FAULT_FLAG_WRITE) {
2623                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2624                 if (ret & VM_FAULT_ERROR)
2625                         ret &= VM_FAULT_ERROR;
2626                 goto out;
2627         }
2628
2629         /* No need to invalidate - it was non-present before */
2630         update_mmu_cache(vma, address, page_table);
2631 unlock:
2632         pte_unmap_unlock(page_table, ptl);
2633 out:
2634         return ret;
2635 out_nomap:
2636         mem_cgroup_cancel_charge(page, memcg, false);
2637         pte_unmap_unlock(page_table, ptl);
2638 out_page:
2639         unlock_page(page);
2640 out_release:
2641         page_cache_release(page);
2642         if (page != swapcache) {
2643                 unlock_page(swapcache);
2644                 page_cache_release(swapcache);
2645         }
2646         return ret;
2647 }
2648
2649 /*
2650  * This is like a special single-page "expand_{down|up}wards()",
2651  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2652  * doesn't hit another vma.
2653  */
2654 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2655 {
2656         address &= PAGE_MASK;
2657         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2658                 struct vm_area_struct *prev = vma->vm_prev;
2659
2660                 /*
2661                  * Is there a mapping abutting this one below?
2662                  *
2663                  * That's only ok if it's the same stack mapping
2664                  * that has gotten split..
2665                  */
2666                 if (prev && prev->vm_end == address)
2667                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2668
2669                 return expand_downwards(vma, address - PAGE_SIZE);
2670         }
2671         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2672                 struct vm_area_struct *next = vma->vm_next;
2673
2674                 /* As VM_GROWSDOWN but s/below/above/ */
2675                 if (next && next->vm_start == address + PAGE_SIZE)
2676                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2677
2678                 return expand_upwards(vma, address + PAGE_SIZE);
2679         }
2680         return 0;
2681 }
2682
2683 /*
2684  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2685  * but allow concurrent faults), and pte mapped but not yet locked.
2686  * We return with mmap_sem still held, but pte unmapped and unlocked.
2687  */
2688 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2689                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2690                 unsigned int flags)
2691 {
2692         struct mem_cgroup *memcg;
2693         struct page *page;
2694         spinlock_t *ptl;
2695         pte_t entry;
2696
2697         pte_unmap(page_table);
2698
2699         /* File mapping without ->vm_ops ? */
2700         if (vma->vm_flags & VM_SHARED)
2701                 return VM_FAULT_SIGBUS;
2702
2703         /* Check if we need to add a guard page to the stack */
2704         if (check_stack_guard_page(vma, address) < 0)
2705                 return VM_FAULT_SIGSEGV;
2706
2707         /* Use the zero-page for reads */
2708         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2709                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2710                                                 vma->vm_page_prot));
2711                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2712                 if (!pte_none(*page_table))
2713                         goto unlock;
2714                 /* Deliver the page fault to userland, check inside PT lock */
2715                 if (userfaultfd_missing(vma)) {
2716                         pte_unmap_unlock(page_table, ptl);
2717                         return handle_userfault(vma, address, flags,
2718                                                 VM_UFFD_MISSING);
2719                 }
2720                 goto setpte;
2721         }
2722
2723         /* Allocate our own private page. */
2724         if (unlikely(anon_vma_prepare(vma)))
2725                 goto oom;
2726         page = alloc_zeroed_user_highpage_movable(vma, address);
2727         if (!page)
2728                 goto oom;
2729
2730         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2731                 goto oom_free_page;
2732
2733         /*
2734          * The memory barrier inside __SetPageUptodate makes sure that
2735          * preceeding stores to the page contents become visible before
2736          * the set_pte_at() write.
2737          */
2738         __SetPageUptodate(page);
2739
2740         entry = mk_pte(page, vma->vm_page_prot);
2741         if (vma->vm_flags & VM_WRITE)
2742                 entry = pte_mkwrite(pte_mkdirty(entry));
2743
2744         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2745         if (!pte_none(*page_table))
2746                 goto release;
2747
2748         /* Deliver the page fault to userland, check inside PT lock */
2749         if (userfaultfd_missing(vma)) {
2750                 pte_unmap_unlock(page_table, ptl);
2751                 mem_cgroup_cancel_charge(page, memcg, false);
2752                 page_cache_release(page);
2753                 return handle_userfault(vma, address, flags,
2754                                         VM_UFFD_MISSING);
2755         }
2756
2757         inc_mm_counter_fast(mm, MM_ANONPAGES);
2758         page_add_new_anon_rmap(page, vma, address, false);
2759         mem_cgroup_commit_charge(page, memcg, false, false);
2760         lru_cache_add_active_or_unevictable(page, vma);
2761 setpte:
2762         set_pte_at(mm, address, page_table, entry);
2763
2764         /* No need to invalidate - it was non-present before */
2765         update_mmu_cache(vma, address, page_table);
2766 unlock:
2767         pte_unmap_unlock(page_table, ptl);
2768         return 0;
2769 release:
2770         mem_cgroup_cancel_charge(page, memcg, false);
2771         page_cache_release(page);
2772         goto unlock;
2773 oom_free_page:
2774         page_cache_release(page);
2775 oom:
2776         return VM_FAULT_OOM;
2777 }
2778
2779 /*
2780  * The mmap_sem must have been held on entry, and may have been
2781  * released depending on flags and vma->vm_ops->fault() return value.
2782  * See filemap_fault() and __lock_page_retry().
2783  */
2784 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2785                         pgoff_t pgoff, unsigned int flags,
2786                         struct page *cow_page, struct page **page)
2787 {
2788         struct vm_fault vmf;
2789         int ret;
2790
2791         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2792         vmf.pgoff = pgoff;
2793         vmf.flags = flags;
2794         vmf.page = NULL;
2795         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2796         vmf.cow_page = cow_page;
2797
2798         ret = vma->vm_ops->fault(vma, &vmf);
2799         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2800                 return ret;
2801         if (!vmf.page)
2802                 goto out;
2803
2804         if (unlikely(PageHWPoison(vmf.page))) {
2805                 if (ret & VM_FAULT_LOCKED)
2806                         unlock_page(vmf.page);
2807                 page_cache_release(vmf.page);
2808                 return VM_FAULT_HWPOISON;
2809         }
2810
2811         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2812                 lock_page(vmf.page);
2813         else
2814                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2815
2816  out:
2817         *page = vmf.page;
2818         return ret;
2819 }
2820
2821 /**
2822  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2823  *
2824  * @vma: virtual memory area
2825  * @address: user virtual address
2826  * @page: page to map
2827  * @pte: pointer to target page table entry
2828  * @write: true, if new entry is writable
2829  * @anon: true, if it's anonymous page
2830  *
2831  * Caller must hold page table lock relevant for @pte.
2832  *
2833  * Target users are page handler itself and implementations of
2834  * vm_ops->map_pages.
2835  */
2836 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2837                 struct page *page, pte_t *pte, bool write, bool anon)
2838 {
2839         pte_t entry;
2840
2841         flush_icache_page(vma, page);
2842         entry = mk_pte(page, vma->vm_page_prot);
2843         if (write)
2844                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2845         if (anon) {
2846                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2847                 page_add_new_anon_rmap(page, vma, address, false);
2848         } else {
2849                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2850                 page_add_file_rmap(page);
2851         }
2852         set_pte_at(vma->vm_mm, address, pte, entry);
2853
2854         /* no need to invalidate: a not-present page won't be cached */
2855         update_mmu_cache(vma, address, pte);
2856 }
2857
2858 static unsigned long fault_around_bytes __read_mostly =
2859         rounddown_pow_of_two(65536);
2860
2861 #ifdef CONFIG_DEBUG_FS
2862 static int fault_around_bytes_get(void *data, u64 *val)
2863 {
2864         *val = fault_around_bytes;
2865         return 0;
2866 }
2867
2868 /*
2869  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2870  * rounded down to nearest page order. It's what do_fault_around() expects to
2871  * see.
2872  */
2873 static int fault_around_bytes_set(void *data, u64 val)
2874 {
2875         if (val / PAGE_SIZE > PTRS_PER_PTE)
2876                 return -EINVAL;
2877         if (val > PAGE_SIZE)
2878                 fault_around_bytes = rounddown_pow_of_two(val);
2879         else
2880                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2881         return 0;
2882 }
2883 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2884                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2885
2886 static int __init fault_around_debugfs(void)
2887 {
2888         void *ret;
2889
2890         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2891                         &fault_around_bytes_fops);
2892         if (!ret)
2893                 pr_warn("Failed to create fault_around_bytes in debugfs");
2894         return 0;
2895 }
2896 late_initcall(fault_around_debugfs);
2897 #endif
2898
2899 /*
2900  * do_fault_around() tries to map few pages around the fault address. The hope
2901  * is that the pages will be needed soon and this will lower the number of
2902  * faults to handle.
2903  *
2904  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2905  * not ready to be mapped: not up-to-date, locked, etc.
2906  *
2907  * This function is called with the page table lock taken. In the split ptlock
2908  * case the page table lock only protects only those entries which belong to
2909  * the page table corresponding to the fault address.
2910  *
2911  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2912  * only once.
2913  *
2914  * fault_around_pages() defines how many pages we'll try to map.
2915  * do_fault_around() expects it to return a power of two less than or equal to
2916  * PTRS_PER_PTE.
2917  *
2918  * The virtual address of the area that we map is naturally aligned to the
2919  * fault_around_pages() value (and therefore to page order).  This way it's
2920  * easier to guarantee that we don't cross page table boundaries.
2921  */
2922 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2923                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2924 {
2925         unsigned long start_addr, nr_pages, mask;
2926         pgoff_t max_pgoff;
2927         struct vm_fault vmf;
2928         int off;
2929
2930         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2931         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2932
2933         start_addr = max(address & mask, vma->vm_start);
2934         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2935         pte -= off;
2936         pgoff -= off;
2937
2938         /*
2939          *  max_pgoff is either end of page table or end of vma
2940          *  or fault_around_pages() from pgoff, depending what is nearest.
2941          */
2942         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2943                 PTRS_PER_PTE - 1;
2944         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2945                         pgoff + nr_pages - 1);
2946
2947         /* Check if it makes any sense to call ->map_pages */
2948         while (!pte_none(*pte)) {
2949                 if (++pgoff > max_pgoff)
2950                         return;
2951                 start_addr += PAGE_SIZE;
2952                 if (start_addr >= vma->vm_end)
2953                         return;
2954                 pte++;
2955         }
2956
2957         vmf.virtual_address = (void __user *) start_addr;
2958         vmf.pte = pte;
2959         vmf.pgoff = pgoff;
2960         vmf.max_pgoff = max_pgoff;
2961         vmf.flags = flags;
2962         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2963         vma->vm_ops->map_pages(vma, &vmf);
2964 }
2965
2966 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2967                 unsigned long address, pmd_t *pmd,
2968                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2969 {
2970         struct page *fault_page;
2971         spinlock_t *ptl;
2972         pte_t *pte;
2973         int ret = 0;
2974
2975         /*
2976          * Let's call ->map_pages() first and use ->fault() as fallback
2977          * if page by the offset is not ready to be mapped (cold cache or
2978          * something).
2979          */
2980         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2981                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2982                 do_fault_around(vma, address, pte, pgoff, flags);
2983                 if (!pte_same(*pte, orig_pte))
2984                         goto unlock_out;
2985                 pte_unmap_unlock(pte, ptl);
2986         }
2987
2988         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2989         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2990                 return ret;
2991
2992         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2993         if (unlikely(!pte_same(*pte, orig_pte))) {
2994                 pte_unmap_unlock(pte, ptl);
2995                 unlock_page(fault_page);
2996                 page_cache_release(fault_page);
2997                 return ret;
2998         }
2999         do_set_pte(vma, address, fault_page, pte, false, false);
3000         unlock_page(fault_page);
3001 unlock_out:
3002         pte_unmap_unlock(pte, ptl);
3003         return ret;
3004 }
3005
3006 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3007                 unsigned long address, pmd_t *pmd,
3008                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3009 {
3010         struct page *fault_page, *new_page;
3011         struct mem_cgroup *memcg;
3012         spinlock_t *ptl;
3013         pte_t *pte;
3014         int ret;
3015
3016         if (unlikely(anon_vma_prepare(vma)))
3017                 return VM_FAULT_OOM;
3018
3019         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3020         if (!new_page)
3021                 return VM_FAULT_OOM;
3022
3023         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3024                 page_cache_release(new_page);
3025                 return VM_FAULT_OOM;
3026         }
3027
3028         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3029         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3030                 goto uncharge_out;
3031
3032         if (fault_page)
3033                 copy_user_highpage(new_page, fault_page, address, vma);
3034         __SetPageUptodate(new_page);
3035
3036         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3037         if (unlikely(!pte_same(*pte, orig_pte))) {
3038                 pte_unmap_unlock(pte, ptl);
3039                 if (fault_page) {
3040                         unlock_page(fault_page);
3041                         page_cache_release(fault_page);
3042                 } else {
3043                         /*
3044                          * The fault handler has no page to lock, so it holds
3045                          * i_mmap_lock for read to protect against truncate.
3046                          */
3047                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3048                 }
3049                 goto uncharge_out;
3050         }
3051         do_set_pte(vma, address, new_page, pte, true, true);
3052         mem_cgroup_commit_charge(new_page, memcg, false, false);
3053         lru_cache_add_active_or_unevictable(new_page, vma);
3054         pte_unmap_unlock(pte, ptl);
3055         if (fault_page) {
3056                 unlock_page(fault_page);
3057                 page_cache_release(fault_page);
3058         } else {
3059                 /*
3060                  * The fault handler has no page to lock, so it holds
3061                  * i_mmap_lock for read to protect against truncate.
3062                  */
3063                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3064         }
3065         return ret;
3066 uncharge_out:
3067         mem_cgroup_cancel_charge(new_page, memcg, false);
3068         page_cache_release(new_page);
3069         return ret;
3070 }
3071
3072 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3073                 unsigned long address, pmd_t *pmd,
3074                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3075 {
3076         struct page *fault_page;
3077         struct address_space *mapping;
3078         spinlock_t *ptl;
3079         pte_t *pte;
3080         int dirtied = 0;
3081         int ret, tmp;
3082
3083         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3084         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3085                 return ret;
3086
3087         /*
3088          * Check if the backing address space wants to know that the page is
3089          * about to become writable
3090          */
3091         if (vma->vm_ops->page_mkwrite) {
3092                 unlock_page(fault_page);
3093                 tmp = do_page_mkwrite(vma, fault_page, address);
3094                 if (unlikely(!tmp ||
3095                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3096                         page_cache_release(fault_page);
3097                         return tmp;
3098                 }
3099         }
3100
3101         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3102         if (unlikely(!pte_same(*pte, orig_pte))) {
3103                 pte_unmap_unlock(pte, ptl);
3104                 unlock_page(fault_page);
3105                 page_cache_release(fault_page);
3106                 return ret;
3107         }
3108         do_set_pte(vma, address, fault_page, pte, true, false);
3109         pte_unmap_unlock(pte, ptl);
3110
3111         if (set_page_dirty(fault_page))
3112                 dirtied = 1;
3113         /*
3114          * Take a local copy of the address_space - page.mapping may be zeroed
3115          * by truncate after unlock_page().   The address_space itself remains
3116          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3117          * release semantics to prevent the compiler from undoing this copying.
3118          */
3119         mapping = page_rmapping(fault_page);
3120         unlock_page(fault_page);
3121         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3122                 /*
3123                  * Some device drivers do not set page.mapping but still
3124                  * dirty their pages
3125                  */
3126                 balance_dirty_pages_ratelimited(mapping);
3127         }
3128
3129         if (!vma->vm_ops->page_mkwrite)
3130                 file_update_time(vma->vm_file);
3131
3132         return ret;
3133 }
3134
3135 /*
3136  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3137  * but allow concurrent faults).
3138  * The mmap_sem may have been released depending on flags and our
3139  * return value.  See filemap_fault() and __lock_page_or_retry().
3140  */
3141 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3142                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3143                 unsigned int flags, pte_t orig_pte)
3144 {
3145         pgoff_t pgoff = linear_page_index(vma, address);
3146
3147         pte_unmap(page_table);
3148         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3149         if (!vma->vm_ops->fault)
3150                 return VM_FAULT_SIGBUS;
3151         if (!(flags & FAULT_FLAG_WRITE))
3152                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3153                                 orig_pte);
3154         if (!(vma->vm_flags & VM_SHARED))
3155                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3156                                 orig_pte);
3157         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3158 }
3159
3160 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3161                                 unsigned long addr, int page_nid,
3162                                 int *flags)
3163 {
3164         get_page(page);
3165
3166         count_vm_numa_event(NUMA_HINT_FAULTS);
3167         if (page_nid == numa_node_id()) {
3168                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3169                 *flags |= TNF_FAULT_LOCAL;
3170         }
3171
3172         return mpol_misplaced(page, vma, addr);
3173 }
3174
3175 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3176                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3177 {
3178         struct page *page = NULL;
3179         spinlock_t *ptl;
3180         int page_nid = -1;
3181         int last_cpupid;
3182         int target_nid;
3183         bool migrated = false;
3184         bool was_writable = pte_write(pte);
3185         int flags = 0;
3186
3187         /* A PROT_NONE fault should not end up here */
3188         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3189
3190         /*
3191         * The "pte" at this point cannot be used safely without
3192         * validation through pte_unmap_same(). It's of NUMA type but
3193         * the pfn may be screwed if the read is non atomic.
3194         *
3195         * We can safely just do a "set_pte_at()", because the old
3196         * page table entry is not accessible, so there would be no
3197         * concurrent hardware modifications to the PTE.
3198         */
3199         ptl = pte_lockptr(mm, pmd);
3200         spin_lock(ptl);
3201         if (unlikely(!pte_same(*ptep, pte))) {
3202                 pte_unmap_unlock(ptep, ptl);
3203                 goto out;
3204         }
3205
3206         /* Make it present again */
3207         pte = pte_modify(pte, vma->vm_page_prot);
3208         pte = pte_mkyoung(pte);
3209         if (was_writable)
3210                 pte = pte_mkwrite(pte);
3211         set_pte_at(mm, addr, ptep, pte);
3212         update_mmu_cache(vma, addr, ptep);
3213
3214         page = vm_normal_page(vma, addr, pte);
3215         if (!page) {
3216                 pte_unmap_unlock(ptep, ptl);
3217                 return 0;
3218         }
3219
3220         /* TODO: handle PTE-mapped THP */
3221         if (PageCompound(page)) {
3222                 pte_unmap_unlock(ptep, ptl);
3223                 return 0;
3224         }
3225
3226         /*
3227          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3228          * much anyway since they can be in shared cache state. This misses
3229          * the case where a mapping is writable but the process never writes
3230          * to it but pte_write gets cleared during protection updates and
3231          * pte_dirty has unpredictable behaviour between PTE scan updates,
3232          * background writeback, dirty balancing and application behaviour.
3233          */
3234         if (!(vma->vm_flags & VM_WRITE))
3235                 flags |= TNF_NO_GROUP;
3236
3237         /*
3238          * Flag if the page is shared between multiple address spaces. This
3239          * is later used when determining whether to group tasks together
3240          */
3241         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3242                 flags |= TNF_SHARED;
3243
3244         last_cpupid = page_cpupid_last(page);
3245         page_nid = page_to_nid(page);
3246         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3247         pte_unmap_unlock(ptep, ptl);
3248         if (target_nid == -1) {
3249                 put_page(page);
3250                 goto out;
3251         }
3252
3253         /* Migrate to the requested node */
3254         migrated = migrate_misplaced_page(page, vma, target_nid);
3255         if (migrated) {
3256                 page_nid = target_nid;
3257                 flags |= TNF_MIGRATED;
3258         } else
3259                 flags |= TNF_MIGRATE_FAIL;
3260
3261 out:
3262         if (page_nid != -1)
3263                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3264         return 0;
3265 }
3266
3267 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3268                         unsigned long address, pmd_t *pmd, unsigned int flags)
3269 {
3270         if (vma_is_anonymous(vma))
3271                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3272         if (vma->vm_ops->pmd_fault)
3273                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3274         return VM_FAULT_FALLBACK;
3275 }
3276
3277 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3278                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3279                         unsigned int flags)
3280 {
3281         if (vma_is_anonymous(vma))
3282                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3283         if (vma->vm_ops->pmd_fault)
3284                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3285         return VM_FAULT_FALLBACK;
3286 }
3287
3288 /*
3289  * These routines also need to handle stuff like marking pages dirty
3290  * and/or accessed for architectures that don't do it in hardware (most
3291  * RISC architectures).  The early dirtying is also good on the i386.
3292  *
3293  * There is also a hook called "update_mmu_cache()" that architectures
3294  * with external mmu caches can use to update those (ie the Sparc or
3295  * PowerPC hashed page tables that act as extended TLBs).
3296  *
3297  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3298  * but allow concurrent faults), and pte mapped but not yet locked.
3299  * We return with pte unmapped and unlocked.
3300  *
3301  * The mmap_sem may have been released depending on flags and our
3302  * return value.  See filemap_fault() and __lock_page_or_retry().
3303  */
3304 static int handle_pte_fault(struct mm_struct *mm,
3305                      struct vm_area_struct *vma, unsigned long address,
3306                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3307 {
3308         pte_t entry;
3309         spinlock_t *ptl;
3310
3311         /*
3312          * some architectures can have larger ptes than wordsize,
3313          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3314          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3315          * The code below just needs a consistent view for the ifs and
3316          * we later double check anyway with the ptl lock held. So here
3317          * a barrier will do.
3318          */
3319         entry = *pte;
3320         barrier();
3321         if (!pte_present(entry)) {
3322                 if (pte_none(entry)) {
3323                         if (vma_is_anonymous(vma))
3324                                 return do_anonymous_page(mm, vma, address,
3325                                                          pte, pmd, flags);
3326                         else
3327                                 return do_fault(mm, vma, address, pte, pmd,
3328                                                 flags, entry);
3329                 }
3330                 return do_swap_page(mm, vma, address,
3331                                         pte, pmd, flags, entry);
3332         }
3333
3334         if (pte_protnone(entry))
3335                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3336
3337         ptl = pte_lockptr(mm, pmd);
3338         spin_lock(ptl);
3339         if (unlikely(!pte_same(*pte, entry)))
3340                 goto unlock;
3341         if (flags & FAULT_FLAG_WRITE) {
3342                 if (!pte_write(entry))
3343                         return do_wp_page(mm, vma, address,
3344                                         pte, pmd, ptl, entry);
3345                 entry = pte_mkdirty(entry);
3346         }
3347         entry = pte_mkyoung(entry);
3348         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3349                 update_mmu_cache(vma, address, pte);
3350         } else {
3351                 /*
3352                  * This is needed only for protection faults but the arch code
3353                  * is not yet telling us if this is a protection fault or not.
3354                  * This still avoids useless tlb flushes for .text page faults
3355                  * with threads.
3356                  */
3357                 if (flags & FAULT_FLAG_WRITE)
3358                         flush_tlb_fix_spurious_fault(vma, address);
3359         }
3360 unlock:
3361         pte_unmap_unlock(pte, ptl);
3362         return 0;
3363 }
3364
3365 /*
3366  * By the time we get here, we already hold the mm semaphore
3367  *
3368  * The mmap_sem may have been released depending on flags and our
3369  * return value.  See filemap_fault() and __lock_page_or_retry().
3370  */
3371 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3372                              unsigned long address, unsigned int flags)
3373 {
3374         pgd_t *pgd;
3375         pud_t *pud;
3376         pmd_t *pmd;
3377         pte_t *pte;
3378
3379         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3380                                             flags & FAULT_FLAG_INSTRUCTION,
3381                                             flags & FAULT_FLAG_REMOTE))
3382                 return VM_FAULT_SIGSEGV;
3383
3384         if (unlikely(is_vm_hugetlb_page(vma)))
3385                 return hugetlb_fault(mm, vma, address, flags);
3386
3387         pgd = pgd_offset(mm, address);
3388         pud = pud_alloc(mm, pgd, address);
3389         if (!pud)
3390                 return VM_FAULT_OOM;
3391         pmd = pmd_alloc(mm, pud, address);
3392         if (!pmd)
3393                 return VM_FAULT_OOM;
3394         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3395                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3396                 if (!(ret & VM_FAULT_FALLBACK))
3397                         return ret;
3398         } else {
3399                 pmd_t orig_pmd = *pmd;
3400                 int ret;
3401
3402                 barrier();
3403                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3404                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3405
3406                         if (pmd_protnone(orig_pmd))
3407                                 return do_huge_pmd_numa_page(mm, vma, address,
3408                                                              orig_pmd, pmd);
3409
3410                         if (dirty && !pmd_write(orig_pmd)) {
3411                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3412                                                         orig_pmd, flags);
3413                                 if (!(ret & VM_FAULT_FALLBACK))
3414                                         return ret;
3415                         } else {
3416                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3417                                                       orig_pmd, dirty);
3418                                 return 0;
3419                         }
3420                 }
3421         }
3422
3423         /*
3424          * Use pte_alloc() instead of pte_alloc_map, because we can't
3425          * run pte_offset_map on the pmd, if an huge pmd could
3426          * materialize from under us from a different thread.
3427          */
3428         if (unlikely(pte_alloc(mm, pmd, address)))
3429                 return VM_FAULT_OOM;
3430         /*
3431          * If a huge pmd materialized under us just retry later.  Use
3432          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3433          * didn't become pmd_trans_huge under us and then back to pmd_none, as
3434          * a result of MADV_DONTNEED running immediately after a huge pmd fault
3435          * in a different thread of this mm, in turn leading to a misleading
3436          * pmd_trans_huge() retval.  All we have to ensure is that it is a
3437          * regular pmd that we can walk with pte_offset_map() and we can do that
3438          * through an atomic read in C, which is what pmd_trans_unstable()
3439          * provides.
3440          */
3441         if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3442                 return 0;
3443         /*
3444          * A regular pmd is established and it can't morph into a huge pmd
3445          * from under us anymore at this point because we hold the mmap_sem
3446          * read mode and khugepaged takes it in write mode. So now it's
3447          * safe to run pte_offset_map().
3448          */
3449         pte = pte_offset_map(pmd, address);
3450
3451         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3452 }
3453
3454 /*
3455  * By the time we get here, we already hold the mm semaphore
3456  *
3457  * The mmap_sem may have been released depending on flags and our
3458  * return value.  See filemap_fault() and __lock_page_or_retry().
3459  */
3460 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3461                     unsigned long address, unsigned int flags)
3462 {
3463         int ret;
3464
3465         __set_current_state(TASK_RUNNING);
3466
3467         count_vm_event(PGFAULT);
3468         mem_cgroup_count_vm_event(mm, PGFAULT);
3469
3470         /* do counter updates before entering really critical section. */
3471         check_sync_rss_stat(current);
3472
3473         /*
3474          * Enable the memcg OOM handling for faults triggered in user
3475          * space.  Kernel faults are handled more gracefully.
3476          */
3477         if (flags & FAULT_FLAG_USER)
3478                 mem_cgroup_oom_enable();
3479
3480         ret = __handle_mm_fault(mm, vma, address, flags);
3481
3482         if (flags & FAULT_FLAG_USER) {
3483                 mem_cgroup_oom_disable();
3484                 /*
3485                  * The task may have entered a memcg OOM situation but
3486                  * if the allocation error was handled gracefully (no
3487                  * VM_FAULT_OOM), there is no need to kill anything.
3488                  * Just clean up the OOM state peacefully.
3489                  */
3490                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3491                         mem_cgroup_oom_synchronize(false);
3492         }
3493
3494         return ret;
3495 }
3496 EXPORT_SYMBOL_GPL(handle_mm_fault);
3497
3498 #ifndef __PAGETABLE_PUD_FOLDED
3499 /*
3500  * Allocate page upper directory.
3501  * We've already handled the fast-path in-line.
3502  */
3503 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3504 {
3505         pud_t *new = pud_alloc_one(mm, address);
3506         if (!new)
3507                 return -ENOMEM;
3508
3509         smp_wmb(); /* See comment in __pte_alloc */
3510
3511         spin_lock(&mm->page_table_lock);
3512         if (pgd_present(*pgd))          /* Another has populated it */
3513                 pud_free(mm, new);
3514         else
3515                 pgd_populate(mm, pgd, new);
3516         spin_unlock(&mm->page_table_lock);
3517         return 0;
3518 }
3519 #endif /* __PAGETABLE_PUD_FOLDED */
3520
3521 #ifndef __PAGETABLE_PMD_FOLDED
3522 /*
3523  * Allocate page middle directory.
3524  * We've already handled the fast-path in-line.
3525  */
3526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3527 {
3528         pmd_t *new = pmd_alloc_one(mm, address);
3529         if (!new)
3530                 return -ENOMEM;
3531
3532         smp_wmb(); /* See comment in __pte_alloc */
3533
3534         spin_lock(&mm->page_table_lock);
3535 #ifndef __ARCH_HAS_4LEVEL_HACK
3536         if (!pud_present(*pud)) {
3537                 mm_inc_nr_pmds(mm);
3538                 pud_populate(mm, pud, new);
3539         } else  /* Another has populated it */
3540                 pmd_free(mm, new);
3541 #else
3542         if (!pgd_present(*pud)) {
3543                 mm_inc_nr_pmds(mm);
3544                 pgd_populate(mm, pud, new);
3545         } else /* Another has populated it */
3546                 pmd_free(mm, new);
3547 #endif /* __ARCH_HAS_4LEVEL_HACK */
3548         spin_unlock(&mm->page_table_lock);
3549         return 0;
3550 }
3551 #endif /* __PAGETABLE_PMD_FOLDED */
3552
3553 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3554                 pte_t **ptepp, spinlock_t **ptlp)
3555 {
3556         pgd_t *pgd;
3557         pud_t *pud;
3558         pmd_t *pmd;
3559         pte_t *ptep;
3560
3561         pgd = pgd_offset(mm, address);
3562         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3563                 goto out;
3564
3565         pud = pud_offset(pgd, address);
3566         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3567                 goto out;
3568
3569         pmd = pmd_offset(pud, address);
3570         VM_BUG_ON(pmd_trans_huge(*pmd));
3571         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3572                 goto out;
3573
3574         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3575         if (pmd_huge(*pmd))
3576                 goto out;
3577
3578         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3579         if (!ptep)
3580                 goto out;
3581         if (!pte_present(*ptep))
3582                 goto unlock;
3583         *ptepp = ptep;
3584         return 0;
3585 unlock:
3586         pte_unmap_unlock(ptep, *ptlp);
3587 out:
3588         return -EINVAL;
3589 }
3590
3591 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3592                              pte_t **ptepp, spinlock_t **ptlp)
3593 {
3594         int res;
3595
3596         /* (void) is needed to make gcc happy */
3597         (void) __cond_lock(*ptlp,
3598                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3599         return res;
3600 }
3601
3602 /**
3603  * follow_pfn - look up PFN at a user virtual address
3604  * @vma: memory mapping
3605  * @address: user virtual address
3606  * @pfn: location to store found PFN
3607  *
3608  * Only IO mappings and raw PFN mappings are allowed.
3609  *
3610  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3611  */
3612 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3613         unsigned long *pfn)
3614 {
3615         int ret = -EINVAL;
3616         spinlock_t *ptl;
3617         pte_t *ptep;
3618
3619         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3620                 return ret;
3621
3622         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3623         if (ret)
3624                 return ret;
3625         *pfn = pte_pfn(*ptep);
3626         pte_unmap_unlock(ptep, ptl);
3627         return 0;
3628 }
3629 EXPORT_SYMBOL(follow_pfn);
3630
3631 #ifdef CONFIG_HAVE_IOREMAP_PROT
3632 int follow_phys(struct vm_area_struct *vma,
3633                 unsigned long address, unsigned int flags,
3634                 unsigned long *prot, resource_size_t *phys)
3635 {
3636         int ret = -EINVAL;
3637         pte_t *ptep, pte;
3638         spinlock_t *ptl;
3639
3640         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3641                 goto out;
3642
3643         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3644                 goto out;
3645         pte = *ptep;
3646
3647         if ((flags & FOLL_WRITE) && !pte_write(pte))
3648                 goto unlock;
3649
3650         *prot = pgprot_val(pte_pgprot(pte));
3651         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3652
3653         ret = 0;
3654 unlock:
3655         pte_unmap_unlock(ptep, ptl);
3656 out:
3657         return ret;
3658 }
3659
3660 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3661                         void *buf, int len, int write)
3662 {
3663         resource_size_t phys_addr;
3664         unsigned long prot = 0;
3665         void __iomem *maddr;
3666         int offset = addr & (PAGE_SIZE-1);
3667
3668         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3669                 return -EINVAL;
3670
3671         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3672         if (write)
3673                 memcpy_toio(maddr + offset, buf, len);
3674         else
3675                 memcpy_fromio(buf, maddr + offset, len);
3676         iounmap(maddr);
3677
3678         return len;
3679 }
3680 EXPORT_SYMBOL_GPL(generic_access_phys);
3681 #endif
3682
3683 /*
3684  * Access another process' address space as given in mm.  If non-NULL, use the
3685  * given task for page fault accounting.
3686  */
3687 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3688                 unsigned long addr, void *buf, int len, int write)
3689 {
3690         struct vm_area_struct *vma;
3691         void *old_buf = buf;
3692
3693         down_read(&mm->mmap_sem);
3694         /* ignore errors, just check how much was successfully transferred */
3695         while (len) {
3696                 int bytes, ret, offset;
3697                 void *maddr;
3698                 struct page *page = NULL;
3699
3700                 ret = get_user_pages_remote(tsk, mm, addr, 1,
3701                                 write, 1, &page, &vma);
3702                 if (ret <= 0) {
3703 #ifndef CONFIG_HAVE_IOREMAP_PROT
3704                         break;
3705 #else
3706                         /*
3707                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3708                          * we can access using slightly different code.
3709                          */
3710                         vma = find_vma(mm, addr);
3711                         if (!vma || vma->vm_start > addr)
3712                                 break;
3713                         if (vma->vm_ops && vma->vm_ops->access)
3714                                 ret = vma->vm_ops->access(vma, addr, buf,
3715                                                           len, write);
3716                         if (ret <= 0)
3717                                 break;
3718                         bytes = ret;
3719 #endif
3720                 } else {
3721                         bytes = len;
3722                         offset = addr & (PAGE_SIZE-1);
3723                         if (bytes > PAGE_SIZE-offset)
3724                                 bytes = PAGE_SIZE-offset;
3725
3726                         maddr = kmap(page);
3727                         if (write) {
3728                                 copy_to_user_page(vma, page, addr,
3729                                                   maddr + offset, buf, bytes);
3730                                 set_page_dirty_lock(page);
3731                         } else {
3732                                 copy_from_user_page(vma, page, addr,
3733                                                     buf, maddr + offset, bytes);
3734                         }
3735                         kunmap(page);
3736                         page_cache_release(page);
3737                 }
3738                 len -= bytes;
3739                 buf += bytes;
3740                 addr += bytes;
3741         }
3742         up_read(&mm->mmap_sem);
3743
3744         return buf - old_buf;
3745 }
3746
3747 /**
3748  * access_remote_vm - access another process' address space
3749  * @mm:         the mm_struct of the target address space
3750  * @addr:       start address to access
3751  * @buf:        source or destination buffer
3752  * @len:        number of bytes to transfer
3753  * @write:      whether the access is a write
3754  *
3755  * The caller must hold a reference on @mm.
3756  */
3757 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3758                 void *buf, int len, int write)
3759 {
3760         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3761 }
3762
3763 /*
3764  * Access another process' address space.
3765  * Source/target buffer must be kernel space,
3766  * Do not walk the page table directly, use get_user_pages
3767  */
3768 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3769                 void *buf, int len, int write)
3770 {
3771         struct mm_struct *mm;
3772         int ret;
3773
3774         mm = get_task_mm(tsk);
3775         if (!mm)
3776                 return 0;
3777
3778         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3779         mmput(mm);
3780
3781         return ret;
3782 }
3783
3784 /*
3785  * Print the name of a VMA.
3786  */
3787 void print_vma_addr(char *prefix, unsigned long ip)
3788 {
3789         struct mm_struct *mm = current->mm;
3790         struct vm_area_struct *vma;
3791
3792         /*
3793          * Do not print if we are in atomic
3794          * contexts (in exception stacks, etc.):
3795          */
3796         if (preempt_count())
3797                 return;
3798
3799         down_read(&mm->mmap_sem);
3800         vma = find_vma(mm, ip);
3801         if (vma && vma->vm_file) {
3802                 struct file *f = vma->vm_file;
3803                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3804                 if (buf) {
3805                         char *p;
3806
3807                         p = file_path(f, buf, PAGE_SIZE);
3808                         if (IS_ERR(p))
3809                                 p = "?";
3810                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3811                                         vma->vm_start,
3812                                         vma->vm_end - vma->vm_start);
3813                         free_page((unsigned long)buf);
3814                 }
3815         }
3816         up_read(&mm->mmap_sem);
3817 }
3818
3819 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3820 void __might_fault(const char *file, int line)
3821 {
3822         /*
3823          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3824          * holding the mmap_sem, this is safe because kernel memory doesn't
3825          * get paged out, therefore we'll never actually fault, and the
3826          * below annotations will generate false positives.
3827          */
3828         if (segment_eq(get_fs(), KERNEL_DS))
3829                 return;
3830         if (pagefault_disabled())
3831                 return;
3832         __might_sleep(file, line, 0);
3833 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3834         if (current->mm)
3835                 might_lock_read(&current->mm->mmap_sem);
3836 #endif
3837 }
3838 EXPORT_SYMBOL(__might_fault);
3839 #endif
3840
3841 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3842 static void clear_gigantic_page(struct page *page,
3843                                 unsigned long addr,
3844                                 unsigned int pages_per_huge_page)
3845 {
3846         int i;
3847         struct page *p = page;
3848
3849         might_sleep();
3850         for (i = 0; i < pages_per_huge_page;
3851              i++, p = mem_map_next(p, page, i)) {
3852                 cond_resched();
3853                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3854         }
3855 }
3856 void clear_huge_page(struct page *page,
3857                      unsigned long addr, unsigned int pages_per_huge_page)
3858 {
3859         int i;
3860
3861         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3862                 clear_gigantic_page(page, addr, pages_per_huge_page);
3863                 return;
3864         }
3865
3866         might_sleep();
3867         for (i = 0; i < pages_per_huge_page; i++) {
3868                 cond_resched();
3869                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3870         }
3871 }
3872
3873 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3874                                     unsigned long addr,
3875                                     struct vm_area_struct *vma,
3876                                     unsigned int pages_per_huge_page)
3877 {
3878         int i;
3879         struct page *dst_base = dst;
3880         struct page *src_base = src;
3881
3882         for (i = 0; i < pages_per_huge_page; ) {
3883                 cond_resched();
3884                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3885
3886                 i++;
3887                 dst = mem_map_next(dst, dst_base, i);
3888                 src = mem_map_next(src, src_base, i);
3889         }
3890 }
3891
3892 void copy_user_huge_page(struct page *dst, struct page *src,
3893                          unsigned long addr, struct vm_area_struct *vma,
3894                          unsigned int pages_per_huge_page)
3895 {
3896         int i;
3897
3898         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3899                 copy_user_gigantic_page(dst, src, addr, vma,
3900                                         pages_per_huge_page);
3901                 return;
3902         }
3903
3904         might_sleep();
3905         for (i = 0; i < pages_per_huge_page; i++) {
3906                 cond_resched();
3907                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3908         }
3909 }
3910 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3911
3912 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3913
3914 static struct kmem_cache *page_ptl_cachep;
3915
3916 void __init ptlock_cache_init(void)
3917 {
3918         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3919                         SLAB_PANIC, NULL);
3920 }
3921
3922 bool ptlock_alloc(struct page *page)
3923 {
3924         spinlock_t *ptl;
3925
3926         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3927         if (!ptl)
3928                 return false;
3929         page->ptl = ptl;
3930         return true;
3931 }
3932
3933 void ptlock_free(struct page *page)
3934 {
3935         kmem_cache_free(page_ptl_cachep, page->ptl);
3936 }
3937 #endif