mmc: mmc: Fix partition switch timeout for some eMMCs
[linux-2.6-block.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mm_struct  *mm;
211         struct mem_cgroup *from;
212         struct mem_cgroup *to;
213         unsigned long flags;
214         unsigned long precharge;
215         unsigned long moved_charge;
216         unsigned long moved_swap;
217         struct task_struct *moving_task;        /* a task moving charges */
218         wait_queue_head_t waitq;                /* a waitq for other context */
219 } mc = {
220         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233         MEM_CGROUP_CHARGE_TYPE_ANON,
234         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
236         NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241         _MEM,
242         _MEMSWAP,
243         _OOM_TYPE,
244         _KMEM,
245         _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL             (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257         if (!memcg)
258                 memcg = root_mem_cgroup;
259         return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269         return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292         down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297         up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329         int nid = zone_to_nid(zone);
330         int zid = zone_idx(zone);
331
332         return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348         struct mem_cgroup *memcg;
349
350         memcg = page->mem_cgroup;
351
352         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353                 memcg = root_mem_cgroup;
354
355         return &memcg->css;
356 }
357
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373         struct mem_cgroup *memcg;
374         unsigned long ino = 0;
375
376         rcu_read_lock();
377         memcg = READ_ONCE(page->mem_cgroup);
378         while (memcg && !(memcg->css.flags & CSS_ONLINE))
379                 memcg = parent_mem_cgroup(memcg);
380         if (memcg)
381                 ino = cgroup_ino(memcg->css.cgroup);
382         rcu_read_unlock();
383         return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389         int nid = page_to_nid(page);
390         int zid = page_zonenum(page);
391
392         return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404         int nid = page_to_nid(page);
405         int zid = page_zonenum(page);
406
407         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411                                          struct mem_cgroup_tree_per_zone *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_zone *mz_node;
417
418         if (mz->on_tree)
419                 return;
420
421         mz->usage_in_excess = new_usage_in_excess;
422         if (!mz->usage_in_excess)
423                 return;
424         while (*p) {
425                 parent = *p;
426                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427                                         tree_node);
428                 if (mz->usage_in_excess < mz_node->usage_in_excess)
429                         p = &(*p)->rb_left;
430                 /*
431                  * We can't avoid mem cgroups that are over their soft
432                  * limit by the same amount
433                  */
434                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435                         p = &(*p)->rb_right;
436         }
437         rb_link_node(&mz->tree_node, parent, p);
438         rb_insert_color(&mz->tree_node, &mctz->rb_root);
439         mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443                                          struct mem_cgroup_tree_per_zone *mctz)
444 {
445         if (!mz->on_tree)
446                 return;
447         rb_erase(&mz->tree_node, &mctz->rb_root);
448         mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452                                        struct mem_cgroup_tree_per_zone *mctz)
453 {
454         unsigned long flags;
455
456         spin_lock_irqsave(&mctz->lock, flags);
457         __mem_cgroup_remove_exceeded(mz, mctz);
458         spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463         unsigned long nr_pages = page_counter_read(&memcg->memory);
464         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465         unsigned long excess = 0;
466
467         if (nr_pages > soft_limit)
468                 excess = nr_pages - soft_limit;
469
470         return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475         unsigned long excess;
476         struct mem_cgroup_per_zone *mz;
477         struct mem_cgroup_tree_per_zone *mctz;
478
479         mctz = soft_limit_tree_from_page(page);
480         /*
481          * Necessary to update all ancestors when hierarchy is used.
482          * because their event counter is not touched.
483          */
484         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485                 mz = mem_cgroup_page_zoneinfo(memcg, page);
486                 excess = soft_limit_excess(memcg);
487                 /*
488                  * We have to update the tree if mz is on RB-tree or
489                  * mem is over its softlimit.
490                  */
491                 if (excess || mz->on_tree) {
492                         unsigned long flags;
493
494                         spin_lock_irqsave(&mctz->lock, flags);
495                         /* if on-tree, remove it */
496                         if (mz->on_tree)
497                                 __mem_cgroup_remove_exceeded(mz, mctz);
498                         /*
499                          * Insert again. mz->usage_in_excess will be updated.
500                          * If excess is 0, no tree ops.
501                          */
502                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
503                         spin_unlock_irqrestore(&mctz->lock, flags);
504                 }
505         }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510         struct mem_cgroup_tree_per_zone *mctz;
511         struct mem_cgroup_per_zone *mz;
512         int nid, zid;
513
514         for_each_node(nid) {
515                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517                         mctz = soft_limit_tree_node_zone(nid, zid);
518                         mem_cgroup_remove_exceeded(mz, mctz);
519                 }
520         }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526         struct rb_node *rightmost = NULL;
527         struct mem_cgroup_per_zone *mz;
528
529 retry:
530         mz = NULL;
531         rightmost = rb_last(&mctz->rb_root);
532         if (!rightmost)
533                 goto done;              /* Nothing to reclaim from */
534
535         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536         /*
537          * Remove the node now but someone else can add it back,
538          * we will to add it back at the end of reclaim to its correct
539          * position in the tree.
540          */
541         __mem_cgroup_remove_exceeded(mz, mctz);
542         if (!soft_limit_excess(mz->memcg) ||
543             !css_tryget_online(&mz->memcg->css))
544                 goto retry;
545 done:
546         return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552         struct mem_cgroup_per_zone *mz;
553
554         spin_lock_irq(&mctz->lock);
555         mz = __mem_cgroup_largest_soft_limit_node(mctz);
556         spin_unlock_irq(&mctz->lock);
557         return mz;
558 }
559
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584         long val = 0;
585         int cpu;
586
587         /* Per-cpu values can be negative, use a signed accumulator */
588         for_each_possible_cpu(cpu)
589                 val += per_cpu(memcg->stat->count[idx], cpu);
590         /*
591          * Summing races with updates, so val may be negative.  Avoid exposing
592          * transient negative values.
593          */
594         if (val < 0)
595                 val = 0;
596         return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600                                             enum mem_cgroup_events_index idx)
601 {
602         unsigned long val = 0;
603         int cpu;
604
605         for_each_possible_cpu(cpu)
606                 val += per_cpu(memcg->stat->events[idx], cpu);
607         return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611                                          struct page *page,
612                                          bool compound, int nr_pages)
613 {
614         /*
615          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616          * counted as CACHE even if it's on ANON LRU.
617          */
618         if (PageAnon(page))
619                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620                                 nr_pages);
621         else
622                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623                                 nr_pages);
624
625         if (compound) {
626                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628                                 nr_pages);
629         }
630
631         /* pagein of a big page is an event. So, ignore page size */
632         if (nr_pages > 0)
633                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634         else {
635                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636                 nr_pages = -nr_pages; /* for event */
637         }
638
639         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643                                            int nid, unsigned int lru_mask)
644 {
645         unsigned long nr = 0;
646         int zid;
647
648         VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651                 struct mem_cgroup_per_zone *mz;
652                 enum lru_list lru;
653
654                 for_each_lru(lru) {
655                         if (!(BIT(lru) & lru_mask))
656                                 continue;
657                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658                         nr += mz->lru_size[lru];
659                 }
660         }
661         return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665                         unsigned int lru_mask)
666 {
667         unsigned long nr = 0;
668         int nid;
669
670         for_each_node_state(nid, N_MEMORY)
671                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672         return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676                                        enum mem_cgroup_events_target target)
677 {
678         unsigned long val, next;
679
680         val = __this_cpu_read(memcg->stat->nr_page_events);
681         next = __this_cpu_read(memcg->stat->targets[target]);
682         /* from time_after() in jiffies.h */
683         if ((long)next - (long)val < 0) {
684                 switch (target) {
685                 case MEM_CGROUP_TARGET_THRESH:
686                         next = val + THRESHOLDS_EVENTS_TARGET;
687                         break;
688                 case MEM_CGROUP_TARGET_SOFTLIMIT:
689                         next = val + SOFTLIMIT_EVENTS_TARGET;
690                         break;
691                 case MEM_CGROUP_TARGET_NUMAINFO:
692                         next = val + NUMAINFO_EVENTS_TARGET;
693                         break;
694                 default:
695                         break;
696                 }
697                 __this_cpu_write(memcg->stat->targets[target], next);
698                 return true;
699         }
700         return false;
701 }
702
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709         /* threshold event is triggered in finer grain than soft limit */
710         if (unlikely(mem_cgroup_event_ratelimit(memcg,
711                                                 MEM_CGROUP_TARGET_THRESH))) {
712                 bool do_softlimit;
713                 bool do_numainfo __maybe_unused;
714
715                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719                                                 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721                 mem_cgroup_threshold(memcg);
722                 if (unlikely(do_softlimit))
723                         mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725                 if (unlikely(do_numainfo))
726                         atomic_inc(&memcg->numainfo_events);
727 #endif
728         }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733         /*
734          * mm_update_next_owner() may clear mm->owner to NULL
735          * if it races with swapoff, page migration, etc.
736          * So this can be called with p == NULL.
737          */
738         if (unlikely(!p))
739                 return NULL;
740
741         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747         struct mem_cgroup *memcg = NULL;
748
749         rcu_read_lock();
750         do {
751                 /*
752                  * Page cache insertions can happen withou an
753                  * actual mm context, e.g. during disk probing
754                  * on boot, loopback IO, acct() writes etc.
755                  */
756                 if (unlikely(!mm))
757                         memcg = root_mem_cgroup;
758                 else {
759                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760                         if (unlikely(!memcg))
761                                 memcg = root_mem_cgroup;
762                 }
763         } while (!css_tryget_online(&memcg->css));
764         rcu_read_unlock();
765         return memcg;
766 }
767
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786                                    struct mem_cgroup *prev,
787                                    struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790         struct cgroup_subsys_state *css = NULL;
791         struct mem_cgroup *memcg = NULL;
792         struct mem_cgroup *pos = NULL;
793
794         if (mem_cgroup_disabled())
795                 return NULL;
796
797         if (!root)
798                 root = root_mem_cgroup;
799
800         if (prev && !reclaim)
801                 pos = prev;
802
803         if (!root->use_hierarchy && root != root_mem_cgroup) {
804                 if (prev)
805                         goto out;
806                 return root;
807         }
808
809         rcu_read_lock();
810
811         if (reclaim) {
812                 struct mem_cgroup_per_zone *mz;
813
814                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815                 iter = &mz->iter[reclaim->priority];
816
817                 if (prev && reclaim->generation != iter->generation)
818                         goto out_unlock;
819
820                 while (1) {
821                         pos = READ_ONCE(iter->position);
822                         if (!pos || css_tryget(&pos->css))
823                                 break;
824                         /*
825                          * css reference reached zero, so iter->position will
826                          * be cleared by ->css_released. However, we should not
827                          * rely on this happening soon, because ->css_released
828                          * is called from a work queue, and by busy-waiting we
829                          * might block it. So we clear iter->position right
830                          * away.
831                          */
832                         (void)cmpxchg(&iter->position, pos, NULL);
833                 }
834         }
835
836         if (pos)
837                 css = &pos->css;
838
839         for (;;) {
840                 css = css_next_descendant_pre(css, &root->css);
841                 if (!css) {
842                         /*
843                          * Reclaimers share the hierarchy walk, and a
844                          * new one might jump in right at the end of
845                          * the hierarchy - make sure they see at least
846                          * one group and restart from the beginning.
847                          */
848                         if (!prev)
849                                 continue;
850                         break;
851                 }
852
853                 /*
854                  * Verify the css and acquire a reference.  The root
855                  * is provided by the caller, so we know it's alive
856                  * and kicking, and don't take an extra reference.
857                  */
858                 memcg = mem_cgroup_from_css(css);
859
860                 if (css == &root->css)
861                         break;
862
863                 if (css_tryget(css))
864                         break;
865
866                 memcg = NULL;
867         }
868
869         if (reclaim) {
870                 /*
871                  * The position could have already been updated by a competing
872                  * thread, so check that the value hasn't changed since we read
873                  * it to avoid reclaiming from the same cgroup twice.
874                  */
875                 (void)cmpxchg(&iter->position, pos, memcg);
876
877                 if (pos)
878                         css_put(&pos->css);
879
880                 if (!memcg)
881                         iter->generation++;
882                 else if (!prev)
883                         reclaim->generation = iter->generation;
884         }
885
886 out_unlock:
887         rcu_read_unlock();
888 out:
889         if (prev && prev != root)
890                 css_put(&prev->css);
891
892         return memcg;
893 }
894
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901                            struct mem_cgroup *prev)
902 {
903         if (!root)
904                 root = root_mem_cgroup;
905         if (prev && prev != root)
906                 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911         struct mem_cgroup *memcg = dead_memcg;
912         struct mem_cgroup_reclaim_iter *iter;
913         struct mem_cgroup_per_zone *mz;
914         int nid, zid;
915         int i;
916
917         while ((memcg = parent_mem_cgroup(memcg))) {
918                 for_each_node(nid) {
919                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921                                 for (i = 0; i <= DEF_PRIORITY; i++) {
922                                         iter = &mz->iter[i];
923                                         cmpxchg(&iter->position,
924                                                 dead_memcg, NULL);
925                                 }
926                         }
927                 }
928         }
929 }
930
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)            \
937         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
938              iter != NULL;                              \
939              iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter)                       \
942         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
943              iter != NULL;                              \
944              iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956                                       struct mem_cgroup *memcg)
957 {
958         struct mem_cgroup_per_zone *mz;
959         struct lruvec *lruvec;
960
961         if (mem_cgroup_disabled()) {
962                 lruvec = &zone->lruvec;
963                 goto out;
964         }
965
966         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967         lruvec = &mz->lruvec;
968 out:
969         /*
970          * Since a node can be onlined after the mem_cgroup was created,
971          * we have to be prepared to initialize lruvec->zone here;
972          * and if offlined then reonlined, we need to reinitialize it.
973          */
974         if (unlikely(lruvec->zone != zone))
975                 lruvec->zone = zone;
976         return lruvec;
977 }
978
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990         struct mem_cgroup_per_zone *mz;
991         struct mem_cgroup *memcg;
992         struct lruvec *lruvec;
993
994         if (mem_cgroup_disabled()) {
995                 lruvec = &zone->lruvec;
996                 goto out;
997         }
998
999         memcg = page->mem_cgroup;
1000         /*
1001          * Swapcache readahead pages are added to the LRU - and
1002          * possibly migrated - before they are charged.
1003          */
1004         if (!memcg)
1005                 memcg = root_mem_cgroup;
1006
1007         mz = mem_cgroup_page_zoneinfo(memcg, page);
1008         lruvec = &mz->lruvec;
1009 out:
1010         /*
1011          * Since a node can be onlined after the mem_cgroup was created,
1012          * we have to be prepared to initialize lruvec->zone here;
1013          * and if offlined then reonlined, we need to reinitialize it.
1014          */
1015         if (unlikely(lruvec->zone != zone))
1016                 lruvec->zone = zone;
1017         return lruvec;
1018 }
1019
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called when a page is added to or removed from an
1027  * lru list.
1028  */
1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030                                 int nr_pages)
1031 {
1032         struct mem_cgroup_per_zone *mz;
1033         unsigned long *lru_size;
1034
1035         if (mem_cgroup_disabled())
1036                 return;
1037
1038         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039         lru_size = mz->lru_size + lru;
1040         *lru_size += nr_pages;
1041         VM_BUG_ON((long)(*lru_size) < 0);
1042 }
1043
1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045 {
1046         struct mem_cgroup *task_memcg;
1047         struct task_struct *p;
1048         bool ret;
1049
1050         p = find_lock_task_mm(task);
1051         if (p) {
1052                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053                 task_unlock(p);
1054         } else {
1055                 /*
1056                  * All threads may have already detached their mm's, but the oom
1057                  * killer still needs to detect if they have already been oom
1058                  * killed to prevent needlessly killing additional tasks.
1059                  */
1060                 rcu_read_lock();
1061                 task_memcg = mem_cgroup_from_task(task);
1062                 css_get(&task_memcg->css);
1063                 rcu_read_unlock();
1064         }
1065         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066         css_put(&task_memcg->css);
1067         return ret;
1068 }
1069
1070 /**
1071  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072  * @memcg: the memory cgroup
1073  *
1074  * Returns the maximum amount of memory @mem can be charged with, in
1075  * pages.
1076  */
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078 {
1079         unsigned long margin = 0;
1080         unsigned long count;
1081         unsigned long limit;
1082
1083         count = page_counter_read(&memcg->memory);
1084         limit = READ_ONCE(memcg->memory.limit);
1085         if (count < limit)
1086                 margin = limit - count;
1087
1088         if (do_memsw_account()) {
1089                 count = page_counter_read(&memcg->memsw);
1090                 limit = READ_ONCE(memcg->memsw.limit);
1091                 if (count <= limit)
1092                         margin = min(margin, limit - count);
1093         }
1094
1095         return margin;
1096 }
1097
1098 /*
1099  * A routine for checking "mem" is under move_account() or not.
1100  *
1101  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102  * moving cgroups. This is for waiting at high-memory pressure
1103  * caused by "move".
1104  */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107         struct mem_cgroup *from;
1108         struct mem_cgroup *to;
1109         bool ret = false;
1110         /*
1111          * Unlike task_move routines, we access mc.to, mc.from not under
1112          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113          */
1114         spin_lock(&mc.lock);
1115         from = mc.from;
1116         to = mc.to;
1117         if (!from)
1118                 goto unlock;
1119
1120         ret = mem_cgroup_is_descendant(from, memcg) ||
1121                 mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123         spin_unlock(&mc.lock);
1124         return ret;
1125 }
1126
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129         if (mc.moving_task && current != mc.moving_task) {
1130                 if (mem_cgroup_under_move(memcg)) {
1131                         DEFINE_WAIT(wait);
1132                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133                         /* moving charge context might have finished. */
1134                         if (mc.moving_task)
1135                                 schedule();
1136                         finish_wait(&mc.waitq, &wait);
1137                         return true;
1138                 }
1139         }
1140         return false;
1141 }
1142
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146  * @memcg: The memory cgroup that went over limit
1147  * @p: Task that is going to be killed
1148  *
1149  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150  * enabled
1151  */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154         struct mem_cgroup *iter;
1155         unsigned int i;
1156
1157         rcu_read_lock();
1158
1159         if (p) {
1160                 pr_info("Task in ");
1161                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162                 pr_cont(" killed as a result of limit of ");
1163         } else {
1164                 pr_info("Memory limit reached of cgroup ");
1165         }
1166
1167         pr_cont_cgroup_path(memcg->css.cgroup);
1168         pr_cont("\n");
1169
1170         rcu_read_unlock();
1171
1172         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173                 K((u64)page_counter_read(&memcg->memory)),
1174                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176                 K((u64)page_counter_read(&memcg->memsw)),
1177                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179                 K((u64)page_counter_read(&memcg->kmem)),
1180                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182         for_each_mem_cgroup_tree(iter, memcg) {
1183                 pr_info("Memory cgroup stats for ");
1184                 pr_cont_cgroup_path(iter->css.cgroup);
1185                 pr_cont(":");
1186
1187                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189                                 continue;
1190                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191                                 K(mem_cgroup_read_stat(iter, i)));
1192                 }
1193
1194                 for (i = 0; i < NR_LRU_LISTS; i++)
1195                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198                 pr_cont("\n");
1199         }
1200 }
1201
1202 /*
1203  * This function returns the number of memcg under hierarchy tree. Returns
1204  * 1(self count) if no children.
1205  */
1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 {
1208         int num = 0;
1209         struct mem_cgroup *iter;
1210
1211         for_each_mem_cgroup_tree(iter, memcg)
1212                 num++;
1213         return num;
1214 }
1215
1216 /*
1217  * Return the memory (and swap, if configured) limit for a memcg.
1218  */
1219 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220 {
1221         unsigned long limit;
1222
1223         limit = memcg->memory.limit;
1224         if (mem_cgroup_swappiness(memcg)) {
1225                 unsigned long memsw_limit;
1226                 unsigned long swap_limit;
1227
1228                 memsw_limit = memcg->memsw.limit;
1229                 swap_limit = memcg->swap.limit;
1230                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231                 limit = min(limit + swap_limit, memsw_limit);
1232         }
1233         return limit;
1234 }
1235
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237                                      int order)
1238 {
1239         struct oom_control oc = {
1240                 .zonelist = NULL,
1241                 .nodemask = NULL,
1242                 .gfp_mask = gfp_mask,
1243                 .order = order,
1244         };
1245         struct mem_cgroup *iter;
1246         unsigned long chosen_points = 0;
1247         unsigned long totalpages;
1248         unsigned int points = 0;
1249         struct task_struct *chosen = NULL;
1250
1251         mutex_lock(&oom_lock);
1252
1253         /*
1254          * If current has a pending SIGKILL or is exiting, then automatically
1255          * select it.  The goal is to allow it to allocate so that it may
1256          * quickly exit and free its memory.
1257          */
1258         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259                 mark_oom_victim(current);
1260                 goto unlock;
1261         }
1262
1263         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265         for_each_mem_cgroup_tree(iter, memcg) {
1266                 struct css_task_iter it;
1267                 struct task_struct *task;
1268
1269                 css_task_iter_start(&iter->css, &it);
1270                 while ((task = css_task_iter_next(&it))) {
1271                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272                         case OOM_SCAN_SELECT:
1273                                 if (chosen)
1274                                         put_task_struct(chosen);
1275                                 chosen = task;
1276                                 chosen_points = ULONG_MAX;
1277                                 get_task_struct(chosen);
1278                                 /* fall through */
1279                         case OOM_SCAN_CONTINUE:
1280                                 continue;
1281                         case OOM_SCAN_ABORT:
1282                                 css_task_iter_end(&it);
1283                                 mem_cgroup_iter_break(memcg, iter);
1284                                 if (chosen)
1285                                         put_task_struct(chosen);
1286                                 goto unlock;
1287                         case OOM_SCAN_OK:
1288                                 break;
1289                         };
1290                         points = oom_badness(task, memcg, NULL, totalpages);
1291                         if (!points || points < chosen_points)
1292                                 continue;
1293                         /* Prefer thread group leaders for display purposes */
1294                         if (points == chosen_points &&
1295                             thread_group_leader(chosen))
1296                                 continue;
1297
1298                         if (chosen)
1299                                 put_task_struct(chosen);
1300                         chosen = task;
1301                         chosen_points = points;
1302                         get_task_struct(chosen);
1303                 }
1304                 css_task_iter_end(&it);
1305         }
1306
1307         if (chosen) {
1308                 points = chosen_points * 1000 / totalpages;
1309                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310                                  "Memory cgroup out of memory");
1311         }
1312 unlock:
1313         mutex_unlock(&oom_lock);
1314         return chosen;
1315 }
1316
1317 #if MAX_NUMNODES > 1
1318
1319 /**
1320  * test_mem_cgroup_node_reclaimable
1321  * @memcg: the target memcg
1322  * @nid: the node ID to be checked.
1323  * @noswap : specify true here if the user wants flle only information.
1324  *
1325  * This function returns whether the specified memcg contains any
1326  * reclaimable pages on a node. Returns true if there are any reclaimable
1327  * pages in the node.
1328  */
1329 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330                 int nid, bool noswap)
1331 {
1332         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333                 return true;
1334         if (noswap || !total_swap_pages)
1335                 return false;
1336         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337                 return true;
1338         return false;
1339
1340 }
1341
1342 /*
1343  * Always updating the nodemask is not very good - even if we have an empty
1344  * list or the wrong list here, we can start from some node and traverse all
1345  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346  *
1347  */
1348 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349 {
1350         int nid;
1351         /*
1352          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353          * pagein/pageout changes since the last update.
1354          */
1355         if (!atomic_read(&memcg->numainfo_events))
1356                 return;
1357         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358                 return;
1359
1360         /* make a nodemask where this memcg uses memory from */
1361         memcg->scan_nodes = node_states[N_MEMORY];
1362
1363         for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366                         node_clear(nid, memcg->scan_nodes);
1367         }
1368
1369         atomic_set(&memcg->numainfo_events, 0);
1370         atomic_set(&memcg->numainfo_updating, 0);
1371 }
1372
1373 /*
1374  * Selecting a node where we start reclaim from. Because what we need is just
1375  * reducing usage counter, start from anywhere is O,K. Considering
1376  * memory reclaim from current node, there are pros. and cons.
1377  *
1378  * Freeing memory from current node means freeing memory from a node which
1379  * we'll use or we've used. So, it may make LRU bad. And if several threads
1380  * hit limits, it will see a contention on a node. But freeing from remote
1381  * node means more costs for memory reclaim because of memory latency.
1382  *
1383  * Now, we use round-robin. Better algorithm is welcomed.
1384  */
1385 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386 {
1387         int node;
1388
1389         mem_cgroup_may_update_nodemask(memcg);
1390         node = memcg->last_scanned_node;
1391
1392         node = next_node(node, memcg->scan_nodes);
1393         if (node == MAX_NUMNODES)
1394                 node = first_node(memcg->scan_nodes);
1395         /*
1396          * We call this when we hit limit, not when pages are added to LRU.
1397          * No LRU may hold pages because all pages are UNEVICTABLE or
1398          * memcg is too small and all pages are not on LRU. In that case,
1399          * we use curret node.
1400          */
1401         if (unlikely(node == MAX_NUMNODES))
1402                 node = numa_node_id();
1403
1404         memcg->last_scanned_node = node;
1405         return node;
1406 }
1407 #else
1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409 {
1410         return 0;
1411 }
1412 #endif
1413
1414 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415                                    struct zone *zone,
1416                                    gfp_t gfp_mask,
1417                                    unsigned long *total_scanned)
1418 {
1419         struct mem_cgroup *victim = NULL;
1420         int total = 0;
1421         int loop = 0;
1422         unsigned long excess;
1423         unsigned long nr_scanned;
1424         struct mem_cgroup_reclaim_cookie reclaim = {
1425                 .zone = zone,
1426                 .priority = 0,
1427         };
1428
1429         excess = soft_limit_excess(root_memcg);
1430
1431         while (1) {
1432                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433                 if (!victim) {
1434                         loop++;
1435                         if (loop >= 2) {
1436                                 /*
1437                                  * If we have not been able to reclaim
1438                                  * anything, it might because there are
1439                                  * no reclaimable pages under this hierarchy
1440                                  */
1441                                 if (!total)
1442                                         break;
1443                                 /*
1444                                  * We want to do more targeted reclaim.
1445                                  * excess >> 2 is not to excessive so as to
1446                                  * reclaim too much, nor too less that we keep
1447                                  * coming back to reclaim from this cgroup
1448                                  */
1449                                 if (total >= (excess >> 2) ||
1450                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451                                         break;
1452                         }
1453                         continue;
1454                 }
1455                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456                                                      zone, &nr_scanned);
1457                 *total_scanned += nr_scanned;
1458                 if (!soft_limit_excess(root_memcg))
1459                         break;
1460         }
1461         mem_cgroup_iter_break(root_memcg, victim);
1462         return total;
1463 }
1464
1465 #ifdef CONFIG_LOCKDEP
1466 static struct lockdep_map memcg_oom_lock_dep_map = {
1467         .name = "memcg_oom_lock",
1468 };
1469 #endif
1470
1471 static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473 /*
1474  * Check OOM-Killer is already running under our hierarchy.
1475  * If someone is running, return false.
1476  */
1477 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478 {
1479         struct mem_cgroup *iter, *failed = NULL;
1480
1481         spin_lock(&memcg_oom_lock);
1482
1483         for_each_mem_cgroup_tree(iter, memcg) {
1484                 if (iter->oom_lock) {
1485                         /*
1486                          * this subtree of our hierarchy is already locked
1487                          * so we cannot give a lock.
1488                          */
1489                         failed = iter;
1490                         mem_cgroup_iter_break(memcg, iter);
1491                         break;
1492                 } else
1493                         iter->oom_lock = true;
1494         }
1495
1496         if (failed) {
1497                 /*
1498                  * OK, we failed to lock the whole subtree so we have
1499                  * to clean up what we set up to the failing subtree
1500                  */
1501                 for_each_mem_cgroup_tree(iter, memcg) {
1502                         if (iter == failed) {
1503                                 mem_cgroup_iter_break(memcg, iter);
1504                                 break;
1505                         }
1506                         iter->oom_lock = false;
1507                 }
1508         } else
1509                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511         spin_unlock(&memcg_oom_lock);
1512
1513         return !failed;
1514 }
1515
1516 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517 {
1518         struct mem_cgroup *iter;
1519
1520         spin_lock(&memcg_oom_lock);
1521         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522         for_each_mem_cgroup_tree(iter, memcg)
1523                 iter->oom_lock = false;
1524         spin_unlock(&memcg_oom_lock);
1525 }
1526
1527 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528 {
1529         struct mem_cgroup *iter;
1530
1531         spin_lock(&memcg_oom_lock);
1532         for_each_mem_cgroup_tree(iter, memcg)
1533                 iter->under_oom++;
1534         spin_unlock(&memcg_oom_lock);
1535 }
1536
1537 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538 {
1539         struct mem_cgroup *iter;
1540
1541         /*
1542          * When a new child is created while the hierarchy is under oom,
1543          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544          */
1545         spin_lock(&memcg_oom_lock);
1546         for_each_mem_cgroup_tree(iter, memcg)
1547                 if (iter->under_oom > 0)
1548                         iter->under_oom--;
1549         spin_unlock(&memcg_oom_lock);
1550 }
1551
1552 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554 struct oom_wait_info {
1555         struct mem_cgroup *memcg;
1556         wait_queue_t    wait;
1557 };
1558
1559 static int memcg_oom_wake_function(wait_queue_t *wait,
1560         unsigned mode, int sync, void *arg)
1561 {
1562         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563         struct mem_cgroup *oom_wait_memcg;
1564         struct oom_wait_info *oom_wait_info;
1565
1566         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567         oom_wait_memcg = oom_wait_info->memcg;
1568
1569         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571                 return 0;
1572         return autoremove_wake_function(wait, mode, sync, arg);
1573 }
1574
1575 static void memcg_oom_recover(struct mem_cgroup *memcg)
1576 {
1577         /*
1578          * For the following lockless ->under_oom test, the only required
1579          * guarantee is that it must see the state asserted by an OOM when
1580          * this function is called as a result of userland actions
1581          * triggered by the notification of the OOM.  This is trivially
1582          * achieved by invoking mem_cgroup_mark_under_oom() before
1583          * triggering notification.
1584          */
1585         if (memcg && memcg->under_oom)
1586                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587 }
1588
1589 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590 {
1591         if (!current->memcg_may_oom)
1592                 return;
1593         /*
1594          * We are in the middle of the charge context here, so we
1595          * don't want to block when potentially sitting on a callstack
1596          * that holds all kinds of filesystem and mm locks.
1597          *
1598          * Also, the caller may handle a failed allocation gracefully
1599          * (like optional page cache readahead) and so an OOM killer
1600          * invocation might not even be necessary.
1601          *
1602          * That's why we don't do anything here except remember the
1603          * OOM context and then deal with it at the end of the page
1604          * fault when the stack is unwound, the locks are released,
1605          * and when we know whether the fault was overall successful.
1606          */
1607         css_get(&memcg->css);
1608         current->memcg_in_oom = memcg;
1609         current->memcg_oom_gfp_mask = mask;
1610         current->memcg_oom_order = order;
1611 }
1612
1613 /**
1614  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615  * @handle: actually kill/wait or just clean up the OOM state
1616  *
1617  * This has to be called at the end of a page fault if the memcg OOM
1618  * handler was enabled.
1619  *
1620  * Memcg supports userspace OOM handling where failed allocations must
1621  * sleep on a waitqueue until the userspace task resolves the
1622  * situation.  Sleeping directly in the charge context with all kinds
1623  * of locks held is not a good idea, instead we remember an OOM state
1624  * in the task and mem_cgroup_oom_synchronize() has to be called at
1625  * the end of the page fault to complete the OOM handling.
1626  *
1627  * Returns %true if an ongoing memcg OOM situation was detected and
1628  * completed, %false otherwise.
1629  */
1630 bool mem_cgroup_oom_synchronize(bool handle)
1631 {
1632         struct mem_cgroup *memcg = current->memcg_in_oom;
1633         struct oom_wait_info owait;
1634         bool locked;
1635
1636         /* OOM is global, do not handle */
1637         if (!memcg)
1638                 return false;
1639
1640         if (!handle || oom_killer_disabled)
1641                 goto cleanup;
1642
1643         owait.memcg = memcg;
1644         owait.wait.flags = 0;
1645         owait.wait.func = memcg_oom_wake_function;
1646         owait.wait.private = current;
1647         INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650         mem_cgroup_mark_under_oom(memcg);
1651
1652         locked = mem_cgroup_oom_trylock(memcg);
1653
1654         if (locked)
1655                 mem_cgroup_oom_notify(memcg);
1656
1657         if (locked && !memcg->oom_kill_disable) {
1658                 mem_cgroup_unmark_under_oom(memcg);
1659                 finish_wait(&memcg_oom_waitq, &owait.wait);
1660                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661                                          current->memcg_oom_order);
1662         } else {
1663                 schedule();
1664                 mem_cgroup_unmark_under_oom(memcg);
1665                 finish_wait(&memcg_oom_waitq, &owait.wait);
1666         }
1667
1668         if (locked) {
1669                 mem_cgroup_oom_unlock(memcg);
1670                 /*
1671                  * There is no guarantee that an OOM-lock contender
1672                  * sees the wakeups triggered by the OOM kill
1673                  * uncharges.  Wake any sleepers explicitely.
1674                  */
1675                 memcg_oom_recover(memcg);
1676         }
1677 cleanup:
1678         current->memcg_in_oom = NULL;
1679         css_put(&memcg->css);
1680         return true;
1681 }
1682
1683 /**
1684  * lock_page_memcg - lock a page->mem_cgroup binding
1685  * @page: the page
1686  *
1687  * This function protects unlocked LRU pages from being moved to
1688  * another cgroup and stabilizes their page->mem_cgroup binding.
1689  */
1690 void lock_page_memcg(struct page *page)
1691 {
1692         struct mem_cgroup *memcg;
1693         unsigned long flags;
1694
1695         /*
1696          * The RCU lock is held throughout the transaction.  The fast
1697          * path can get away without acquiring the memcg->move_lock
1698          * because page moving starts with an RCU grace period.
1699          */
1700         rcu_read_lock();
1701
1702         if (mem_cgroup_disabled())
1703                 return;
1704 again:
1705         memcg = page->mem_cgroup;
1706         if (unlikely(!memcg))
1707                 return;
1708
1709         if (atomic_read(&memcg->moving_account) <= 0)
1710                 return;
1711
1712         spin_lock_irqsave(&memcg->move_lock, flags);
1713         if (memcg != page->mem_cgroup) {
1714                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1715                 goto again;
1716         }
1717
1718         /*
1719          * When charge migration first begins, we can have locked and
1720          * unlocked page stat updates happening concurrently.  Track
1721          * the task who has the lock for unlock_page_memcg().
1722          */
1723         memcg->move_lock_task = current;
1724         memcg->move_lock_flags = flags;
1725
1726         return;
1727 }
1728 EXPORT_SYMBOL(lock_page_memcg);
1729
1730 /**
1731  * unlock_page_memcg - unlock a page->mem_cgroup binding
1732  * @page: the page
1733  */
1734 void unlock_page_memcg(struct page *page)
1735 {
1736         struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738         if (memcg && memcg->move_lock_task == current) {
1739                 unsigned long flags = memcg->move_lock_flags;
1740
1741                 memcg->move_lock_task = NULL;
1742                 memcg->move_lock_flags = 0;
1743
1744                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1745         }
1746
1747         rcu_read_unlock();
1748 }
1749 EXPORT_SYMBOL(unlock_page_memcg);
1750
1751 /*
1752  * size of first charge trial. "32" comes from vmscan.c's magic value.
1753  * TODO: maybe necessary to use big numbers in big irons.
1754  */
1755 #define CHARGE_BATCH    32U
1756 struct memcg_stock_pcp {
1757         struct mem_cgroup *cached; /* this never be root cgroup */
1758         unsigned int nr_pages;
1759         struct work_struct work;
1760         unsigned long flags;
1761 #define FLUSHING_CACHED_CHARGE  0
1762 };
1763 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764 static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766 /**
1767  * consume_stock: Try to consume stocked charge on this cpu.
1768  * @memcg: memcg to consume from.
1769  * @nr_pages: how many pages to charge.
1770  *
1771  * The charges will only happen if @memcg matches the current cpu's memcg
1772  * stock, and at least @nr_pages are available in that stock.  Failure to
1773  * service an allocation will refill the stock.
1774  *
1775  * returns true if successful, false otherwise.
1776  */
1777 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778 {
1779         struct memcg_stock_pcp *stock;
1780         bool ret = false;
1781
1782         if (nr_pages > CHARGE_BATCH)
1783                 return ret;
1784
1785         stock = &get_cpu_var(memcg_stock);
1786         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787                 stock->nr_pages -= nr_pages;
1788                 ret = true;
1789         }
1790         put_cpu_var(memcg_stock);
1791         return ret;
1792 }
1793
1794 /*
1795  * Returns stocks cached in percpu and reset cached information.
1796  */
1797 static void drain_stock(struct memcg_stock_pcp *stock)
1798 {
1799         struct mem_cgroup *old = stock->cached;
1800
1801         if (stock->nr_pages) {
1802                 page_counter_uncharge(&old->memory, stock->nr_pages);
1803                 if (do_memsw_account())
1804                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1805                 css_put_many(&old->css, stock->nr_pages);
1806                 stock->nr_pages = 0;
1807         }
1808         stock->cached = NULL;
1809 }
1810
1811 /*
1812  * This must be called under preempt disabled or must be called by
1813  * a thread which is pinned to local cpu.
1814  */
1815 static void drain_local_stock(struct work_struct *dummy)
1816 {
1817         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818         drain_stock(stock);
1819         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820 }
1821
1822 /*
1823  * Cache charges(val) to local per_cpu area.
1824  * This will be consumed by consume_stock() function, later.
1825  */
1826 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827 {
1828         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830         if (stock->cached != memcg) { /* reset if necessary */
1831                 drain_stock(stock);
1832                 stock->cached = memcg;
1833         }
1834         stock->nr_pages += nr_pages;
1835         put_cpu_var(memcg_stock);
1836 }
1837
1838 /*
1839  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840  * of the hierarchy under it.
1841  */
1842 static void drain_all_stock(struct mem_cgroup *root_memcg)
1843 {
1844         int cpu, curcpu;
1845
1846         /* If someone's already draining, avoid adding running more workers. */
1847         if (!mutex_trylock(&percpu_charge_mutex))
1848                 return;
1849         /* Notify other cpus that system-wide "drain" is running */
1850         get_online_cpus();
1851         curcpu = get_cpu();
1852         for_each_online_cpu(cpu) {
1853                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854                 struct mem_cgroup *memcg;
1855
1856                 memcg = stock->cached;
1857                 if (!memcg || !stock->nr_pages)
1858                         continue;
1859                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860                         continue;
1861                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862                         if (cpu == curcpu)
1863                                 drain_local_stock(&stock->work);
1864                         else
1865                                 schedule_work_on(cpu, &stock->work);
1866                 }
1867         }
1868         put_cpu();
1869         put_online_cpus();
1870         mutex_unlock(&percpu_charge_mutex);
1871 }
1872
1873 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874                                         unsigned long action,
1875                                         void *hcpu)
1876 {
1877         int cpu = (unsigned long)hcpu;
1878         struct memcg_stock_pcp *stock;
1879
1880         if (action == CPU_ONLINE)
1881                 return NOTIFY_OK;
1882
1883         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884                 return NOTIFY_OK;
1885
1886         stock = &per_cpu(memcg_stock, cpu);
1887         drain_stock(stock);
1888         return NOTIFY_OK;
1889 }
1890
1891 static void reclaim_high(struct mem_cgroup *memcg,
1892                          unsigned int nr_pages,
1893                          gfp_t gfp_mask)
1894 {
1895         do {
1896                 if (page_counter_read(&memcg->memory) <= memcg->high)
1897                         continue;
1898                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900         } while ((memcg = parent_mem_cgroup(memcg)));
1901 }
1902
1903 static void high_work_func(struct work_struct *work)
1904 {
1905         struct mem_cgroup *memcg;
1906
1907         memcg = container_of(work, struct mem_cgroup, high_work);
1908         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909 }
1910
1911 /*
1912  * Scheduled by try_charge() to be executed from the userland return path
1913  * and reclaims memory over the high limit.
1914  */
1915 void mem_cgroup_handle_over_high(void)
1916 {
1917         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918         struct mem_cgroup *memcg;
1919
1920         if (likely(!nr_pages))
1921                 return;
1922
1923         memcg = get_mem_cgroup_from_mm(current->mm);
1924         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925         css_put(&memcg->css);
1926         current->memcg_nr_pages_over_high = 0;
1927 }
1928
1929 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930                       unsigned int nr_pages)
1931 {
1932         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934         struct mem_cgroup *mem_over_limit;
1935         struct page_counter *counter;
1936         unsigned long nr_reclaimed;
1937         bool may_swap = true;
1938         bool drained = false;
1939
1940         if (mem_cgroup_is_root(memcg))
1941                 return 0;
1942 retry:
1943         if (consume_stock(memcg, nr_pages))
1944                 return 0;
1945
1946         if (!do_memsw_account() ||
1947             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949                         goto done_restock;
1950                 if (do_memsw_account())
1951                         page_counter_uncharge(&memcg->memsw, batch);
1952                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953         } else {
1954                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955                 may_swap = false;
1956         }
1957
1958         if (batch > nr_pages) {
1959                 batch = nr_pages;
1960                 goto retry;
1961         }
1962
1963         /*
1964          * Unlike in global OOM situations, memcg is not in a physical
1965          * memory shortage.  Allow dying and OOM-killed tasks to
1966          * bypass the last charges so that they can exit quickly and
1967          * free their memory.
1968          */
1969         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970                      fatal_signal_pending(current) ||
1971                      current->flags & PF_EXITING))
1972                 goto force;
1973
1974         if (unlikely(task_in_memcg_oom(current)))
1975                 goto nomem;
1976
1977         if (!gfpflags_allow_blocking(gfp_mask))
1978                 goto nomem;
1979
1980         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981
1982         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983                                                     gfp_mask, may_swap);
1984
1985         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986                 goto retry;
1987
1988         if (!drained) {
1989                 drain_all_stock(mem_over_limit);
1990                 drained = true;
1991                 goto retry;
1992         }
1993
1994         if (gfp_mask & __GFP_NORETRY)
1995                 goto nomem;
1996         /*
1997          * Even though the limit is exceeded at this point, reclaim
1998          * may have been able to free some pages.  Retry the charge
1999          * before killing the task.
2000          *
2001          * Only for regular pages, though: huge pages are rather
2002          * unlikely to succeed so close to the limit, and we fall back
2003          * to regular pages anyway in case of failure.
2004          */
2005         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006                 goto retry;
2007         /*
2008          * At task move, charge accounts can be doubly counted. So, it's
2009          * better to wait until the end of task_move if something is going on.
2010          */
2011         if (mem_cgroup_wait_acct_move(mem_over_limit))
2012                 goto retry;
2013
2014         if (nr_retries--)
2015                 goto retry;
2016
2017         if (gfp_mask & __GFP_NOFAIL)
2018                 goto force;
2019
2020         if (fatal_signal_pending(current))
2021                 goto force;
2022
2023         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024
2025         mem_cgroup_oom(mem_over_limit, gfp_mask,
2026                        get_order(nr_pages * PAGE_SIZE));
2027 nomem:
2028         if (!(gfp_mask & __GFP_NOFAIL))
2029                 return -ENOMEM;
2030 force:
2031         /*
2032          * The allocation either can't fail or will lead to more memory
2033          * being freed very soon.  Allow memory usage go over the limit
2034          * temporarily by force charging it.
2035          */
2036         page_counter_charge(&memcg->memory, nr_pages);
2037         if (do_memsw_account())
2038                 page_counter_charge(&memcg->memsw, nr_pages);
2039         css_get_many(&memcg->css, nr_pages);
2040
2041         return 0;
2042
2043 done_restock:
2044         css_get_many(&memcg->css, batch);
2045         if (batch > nr_pages)
2046                 refill_stock(memcg, batch - nr_pages);
2047
2048         /*
2049          * If the hierarchy is above the normal consumption range, schedule
2050          * reclaim on returning to userland.  We can perform reclaim here
2051          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2053          * not recorded as it most likely matches current's and won't
2054          * change in the meantime.  As high limit is checked again before
2055          * reclaim, the cost of mismatch is negligible.
2056          */
2057         do {
2058                 if (page_counter_read(&memcg->memory) > memcg->high) {
2059                         /* Don't bother a random interrupted task */
2060                         if (in_interrupt()) {
2061                                 schedule_work(&memcg->high_work);
2062                                 break;
2063                         }
2064                         current->memcg_nr_pages_over_high += batch;
2065                         set_notify_resume(current);
2066                         break;
2067                 }
2068         } while ((memcg = parent_mem_cgroup(memcg)));
2069
2070         return 0;
2071 }
2072
2073 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074 {
2075         if (mem_cgroup_is_root(memcg))
2076                 return;
2077
2078         page_counter_uncharge(&memcg->memory, nr_pages);
2079         if (do_memsw_account())
2080                 page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082         css_put_many(&memcg->css, nr_pages);
2083 }
2084
2085 static void lock_page_lru(struct page *page, int *isolated)
2086 {
2087         struct zone *zone = page_zone(page);
2088
2089         spin_lock_irq(&zone->lru_lock);
2090         if (PageLRU(page)) {
2091                 struct lruvec *lruvec;
2092
2093                 lruvec = mem_cgroup_page_lruvec(page, zone);
2094                 ClearPageLRU(page);
2095                 del_page_from_lru_list(page, lruvec, page_lru(page));
2096                 *isolated = 1;
2097         } else
2098                 *isolated = 0;
2099 }
2100
2101 static void unlock_page_lru(struct page *page, int isolated)
2102 {
2103         struct zone *zone = page_zone(page);
2104
2105         if (isolated) {
2106                 struct lruvec *lruvec;
2107
2108                 lruvec = mem_cgroup_page_lruvec(page, zone);
2109                 VM_BUG_ON_PAGE(PageLRU(page), page);
2110                 SetPageLRU(page);
2111                 add_page_to_lru_list(page, lruvec, page_lru(page));
2112         }
2113         spin_unlock_irq(&zone->lru_lock);
2114 }
2115
2116 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117                           bool lrucare)
2118 {
2119         int isolated;
2120
2121         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123         /*
2124          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125          * may already be on some other mem_cgroup's LRU.  Take care of it.
2126          */
2127         if (lrucare)
2128                 lock_page_lru(page, &isolated);
2129
2130         /*
2131          * Nobody should be changing or seriously looking at
2132          * page->mem_cgroup at this point:
2133          *
2134          * - the page is uncharged
2135          *
2136          * - the page is off-LRU
2137          *
2138          * - an anonymous fault has exclusive page access, except for
2139          *   a locked page table
2140          *
2141          * - a page cache insertion, a swapin fault, or a migration
2142          *   have the page locked
2143          */
2144         page->mem_cgroup = memcg;
2145
2146         if (lrucare)
2147                 unlock_page_lru(page, isolated);
2148 }
2149
2150 #ifndef CONFIG_SLOB
2151 static int memcg_alloc_cache_id(void)
2152 {
2153         int id, size;
2154         int err;
2155
2156         id = ida_simple_get(&memcg_cache_ida,
2157                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158         if (id < 0)
2159                 return id;
2160
2161         if (id < memcg_nr_cache_ids)
2162                 return id;
2163
2164         /*
2165          * There's no space for the new id in memcg_caches arrays,
2166          * so we have to grow them.
2167          */
2168         down_write(&memcg_cache_ids_sem);
2169
2170         size = 2 * (id + 1);
2171         if (size < MEMCG_CACHES_MIN_SIZE)
2172                 size = MEMCG_CACHES_MIN_SIZE;
2173         else if (size > MEMCG_CACHES_MAX_SIZE)
2174                 size = MEMCG_CACHES_MAX_SIZE;
2175
2176         err = memcg_update_all_caches(size);
2177         if (!err)
2178                 err = memcg_update_all_list_lrus(size);
2179         if (!err)
2180                 memcg_nr_cache_ids = size;
2181
2182         up_write(&memcg_cache_ids_sem);
2183
2184         if (err) {
2185                 ida_simple_remove(&memcg_cache_ida, id);
2186                 return err;
2187         }
2188         return id;
2189 }
2190
2191 static void memcg_free_cache_id(int id)
2192 {
2193         ida_simple_remove(&memcg_cache_ida, id);
2194 }
2195
2196 struct memcg_kmem_cache_create_work {
2197         struct mem_cgroup *memcg;
2198         struct kmem_cache *cachep;
2199         struct work_struct work;
2200 };
2201
2202 static void memcg_kmem_cache_create_func(struct work_struct *w)
2203 {
2204         struct memcg_kmem_cache_create_work *cw =
2205                 container_of(w, struct memcg_kmem_cache_create_work, work);
2206         struct mem_cgroup *memcg = cw->memcg;
2207         struct kmem_cache *cachep = cw->cachep;
2208
2209         memcg_create_kmem_cache(memcg, cachep);
2210
2211         css_put(&memcg->css);
2212         kfree(cw);
2213 }
2214
2215 /*
2216  * Enqueue the creation of a per-memcg kmem_cache.
2217  */
2218 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219                                                struct kmem_cache *cachep)
2220 {
2221         struct memcg_kmem_cache_create_work *cw;
2222
2223         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224         if (!cw)
2225                 return;
2226
2227         css_get(&memcg->css);
2228
2229         cw->memcg = memcg;
2230         cw->cachep = cachep;
2231         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233         schedule_work(&cw->work);
2234 }
2235
2236 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237                                              struct kmem_cache *cachep)
2238 {
2239         /*
2240          * We need to stop accounting when we kmalloc, because if the
2241          * corresponding kmalloc cache is not yet created, the first allocation
2242          * in __memcg_schedule_kmem_cache_create will recurse.
2243          *
2244          * However, it is better to enclose the whole function. Depending on
2245          * the debugging options enabled, INIT_WORK(), for instance, can
2246          * trigger an allocation. This too, will make us recurse. Because at
2247          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248          * the safest choice is to do it like this, wrapping the whole function.
2249          */
2250         current->memcg_kmem_skip_account = 1;
2251         __memcg_schedule_kmem_cache_create(memcg, cachep);
2252         current->memcg_kmem_skip_account = 0;
2253 }
2254
2255 /*
2256  * Return the kmem_cache we're supposed to use for a slab allocation.
2257  * We try to use the current memcg's version of the cache.
2258  *
2259  * If the cache does not exist yet, if we are the first user of it,
2260  * we either create it immediately, if possible, or create it asynchronously
2261  * in a workqueue.
2262  * In the latter case, we will let the current allocation go through with
2263  * the original cache.
2264  *
2265  * Can't be called in interrupt context or from kernel threads.
2266  * This function needs to be called with rcu_read_lock() held.
2267  */
2268 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269 {
2270         struct mem_cgroup *memcg;
2271         struct kmem_cache *memcg_cachep;
2272         int kmemcg_id;
2273
2274         VM_BUG_ON(!is_root_cache(cachep));
2275
2276         if (cachep->flags & SLAB_ACCOUNT)
2277                 gfp |= __GFP_ACCOUNT;
2278
2279         if (!(gfp & __GFP_ACCOUNT))
2280                 return cachep;
2281
2282         if (current->memcg_kmem_skip_account)
2283                 return cachep;
2284
2285         memcg = get_mem_cgroup_from_mm(current->mm);
2286         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287         if (kmemcg_id < 0)
2288                 goto out;
2289
2290         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291         if (likely(memcg_cachep))
2292                 return memcg_cachep;
2293
2294         /*
2295          * If we are in a safe context (can wait, and not in interrupt
2296          * context), we could be be predictable and return right away.
2297          * This would guarantee that the allocation being performed
2298          * already belongs in the new cache.
2299          *
2300          * However, there are some clashes that can arrive from locking.
2301          * For instance, because we acquire the slab_mutex while doing
2302          * memcg_create_kmem_cache, this means no further allocation
2303          * could happen with the slab_mutex held. So it's better to
2304          * defer everything.
2305          */
2306         memcg_schedule_kmem_cache_create(memcg, cachep);
2307 out:
2308         css_put(&memcg->css);
2309         return cachep;
2310 }
2311
2312 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313 {
2314         if (!is_root_cache(cachep))
2315                 css_put(&cachep->memcg_params.memcg->css);
2316 }
2317
2318 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319                               struct mem_cgroup *memcg)
2320 {
2321         unsigned int nr_pages = 1 << order;
2322         struct page_counter *counter;
2323         int ret;
2324
2325         ret = try_charge(memcg, gfp, nr_pages);
2326         if (ret)
2327                 return ret;
2328
2329         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331                 cancel_charge(memcg, nr_pages);
2332                 return -ENOMEM;
2333         }
2334
2335         page->mem_cgroup = memcg;
2336
2337         return 0;
2338 }
2339
2340 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341 {
2342         struct mem_cgroup *memcg;
2343         int ret = 0;
2344
2345         memcg = get_mem_cgroup_from_mm(current->mm);
2346         if (!mem_cgroup_is_root(memcg))
2347                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348         css_put(&memcg->css);
2349         return ret;
2350 }
2351
2352 void __memcg_kmem_uncharge(struct page *page, int order)
2353 {
2354         struct mem_cgroup *memcg = page->mem_cgroup;
2355         unsigned int nr_pages = 1 << order;
2356
2357         if (!memcg)
2358                 return;
2359
2360         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363                 page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365         page_counter_uncharge(&memcg->memory, nr_pages);
2366         if (do_memsw_account())
2367                 page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369         page->mem_cgroup = NULL;
2370         css_put_many(&memcg->css, nr_pages);
2371 }
2372 #endif /* !CONFIG_SLOB */
2373
2374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376 /*
2377  * Because tail pages are not marked as "used", set it. We're under
2378  * zone->lru_lock and migration entries setup in all page mappings.
2379  */
2380 void mem_cgroup_split_huge_fixup(struct page *head)
2381 {
2382         int i;
2383
2384         if (mem_cgroup_disabled())
2385                 return;
2386
2387         for (i = 1; i < HPAGE_PMD_NR; i++)
2388                 head[i].mem_cgroup = head->mem_cgroup;
2389
2390         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391                        HPAGE_PMD_NR);
2392 }
2393 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395 #ifdef CONFIG_MEMCG_SWAP
2396 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397                                          bool charge)
2398 {
2399         int val = (charge) ? 1 : -1;
2400         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401 }
2402
2403 /**
2404  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405  * @entry: swap entry to be moved
2406  * @from:  mem_cgroup which the entry is moved from
2407  * @to:  mem_cgroup which the entry is moved to
2408  *
2409  * It succeeds only when the swap_cgroup's record for this entry is the same
2410  * as the mem_cgroup's id of @from.
2411  *
2412  * Returns 0 on success, -EINVAL on failure.
2413  *
2414  * The caller must have charged to @to, IOW, called page_counter_charge() about
2415  * both res and memsw, and called css_get().
2416  */
2417 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418                                 struct mem_cgroup *from, struct mem_cgroup *to)
2419 {
2420         unsigned short old_id, new_id;
2421
2422         old_id = mem_cgroup_id(from);
2423         new_id = mem_cgroup_id(to);
2424
2425         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426                 mem_cgroup_swap_statistics(from, false);
2427                 mem_cgroup_swap_statistics(to, true);
2428                 return 0;
2429         }
2430         return -EINVAL;
2431 }
2432 #else
2433 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434                                 struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436         return -EINVAL;
2437 }
2438 #endif
2439
2440 static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443                                    unsigned long limit)
2444 {
2445         unsigned long curusage;
2446         unsigned long oldusage;
2447         bool enlarge = false;
2448         int retry_count;
2449         int ret;
2450
2451         /*
2452          * For keeping hierarchical_reclaim simple, how long we should retry
2453          * is depends on callers. We set our retry-count to be function
2454          * of # of children which we should visit in this loop.
2455          */
2456         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457                       mem_cgroup_count_children(memcg);
2458
2459         oldusage = page_counter_read(&memcg->memory);
2460
2461         do {
2462                 if (signal_pending(current)) {
2463                         ret = -EINTR;
2464                         break;
2465                 }
2466
2467                 mutex_lock(&memcg_limit_mutex);
2468                 if (limit > memcg->memsw.limit) {
2469                         mutex_unlock(&memcg_limit_mutex);
2470                         ret = -EINVAL;
2471                         break;
2472                 }
2473                 if (limit > memcg->memory.limit)
2474                         enlarge = true;
2475                 ret = page_counter_limit(&memcg->memory, limit);
2476                 mutex_unlock(&memcg_limit_mutex);
2477
2478                 if (!ret)
2479                         break;
2480
2481                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483                 curusage = page_counter_read(&memcg->memory);
2484                 /* Usage is reduced ? */
2485                 if (curusage >= oldusage)
2486                         retry_count--;
2487                 else
2488                         oldusage = curusage;
2489         } while (retry_count);
2490
2491         if (!ret && enlarge)
2492                 memcg_oom_recover(memcg);
2493
2494         return ret;
2495 }
2496
2497 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498                                          unsigned long limit)
2499 {
2500         unsigned long curusage;
2501         unsigned long oldusage;
2502         bool enlarge = false;
2503         int retry_count;
2504         int ret;
2505
2506         /* see mem_cgroup_resize_res_limit */
2507         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508                       mem_cgroup_count_children(memcg);
2509
2510         oldusage = page_counter_read(&memcg->memsw);
2511
2512         do {
2513                 if (signal_pending(current)) {
2514                         ret = -EINTR;
2515                         break;
2516                 }
2517
2518                 mutex_lock(&memcg_limit_mutex);
2519                 if (limit < memcg->memory.limit) {
2520                         mutex_unlock(&memcg_limit_mutex);
2521                         ret = -EINVAL;
2522                         break;
2523                 }
2524                 if (limit > memcg->memsw.limit)
2525                         enlarge = true;
2526                 ret = page_counter_limit(&memcg->memsw, limit);
2527                 mutex_unlock(&memcg_limit_mutex);
2528
2529                 if (!ret)
2530                         break;
2531
2532                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534                 curusage = page_counter_read(&memcg->memsw);
2535                 /* Usage is reduced ? */
2536                 if (curusage >= oldusage)
2537                         retry_count--;
2538                 else
2539                         oldusage = curusage;
2540         } while (retry_count);
2541
2542         if (!ret && enlarge)
2543                 memcg_oom_recover(memcg);
2544
2545         return ret;
2546 }
2547
2548 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549                                             gfp_t gfp_mask,
2550                                             unsigned long *total_scanned)
2551 {
2552         unsigned long nr_reclaimed = 0;
2553         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554         unsigned long reclaimed;
2555         int loop = 0;
2556         struct mem_cgroup_tree_per_zone *mctz;
2557         unsigned long excess;
2558         unsigned long nr_scanned;
2559
2560         if (order > 0)
2561                 return 0;
2562
2563         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564         /*
2565          * This loop can run a while, specially if mem_cgroup's continuously
2566          * keep exceeding their soft limit and putting the system under
2567          * pressure
2568          */
2569         do {
2570                 if (next_mz)
2571                         mz = next_mz;
2572                 else
2573                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2574                 if (!mz)
2575                         break;
2576
2577                 nr_scanned = 0;
2578                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579                                                     gfp_mask, &nr_scanned);
2580                 nr_reclaimed += reclaimed;
2581                 *total_scanned += nr_scanned;
2582                 spin_lock_irq(&mctz->lock);
2583                 __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585                 /*
2586                  * If we failed to reclaim anything from this memory cgroup
2587                  * it is time to move on to the next cgroup
2588                  */
2589                 next_mz = NULL;
2590                 if (!reclaimed)
2591                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593                 excess = soft_limit_excess(mz->memcg);
2594                 /*
2595                  * One school of thought says that we should not add
2596                  * back the node to the tree if reclaim returns 0.
2597                  * But our reclaim could return 0, simply because due
2598                  * to priority we are exposing a smaller subset of
2599                  * memory to reclaim from. Consider this as a longer
2600                  * term TODO.
2601                  */
2602                 /* If excess == 0, no tree ops */
2603                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604                 spin_unlock_irq(&mctz->lock);
2605                 css_put(&mz->memcg->css);
2606                 loop++;
2607                 /*
2608                  * Could not reclaim anything and there are no more
2609                  * mem cgroups to try or we seem to be looping without
2610                  * reclaiming anything.
2611                  */
2612                 if (!nr_reclaimed &&
2613                         (next_mz == NULL ||
2614                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615                         break;
2616         } while (!nr_reclaimed);
2617         if (next_mz)
2618                 css_put(&next_mz->memcg->css);
2619         return nr_reclaimed;
2620 }
2621
2622 /*
2623  * Test whether @memcg has children, dead or alive.  Note that this
2624  * function doesn't care whether @memcg has use_hierarchy enabled and
2625  * returns %true if there are child csses according to the cgroup
2626  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2627  */
2628 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629 {
2630         bool ret;
2631
2632         rcu_read_lock();
2633         ret = css_next_child(NULL, &memcg->css);
2634         rcu_read_unlock();
2635         return ret;
2636 }
2637
2638 /*
2639  * Reclaims as many pages from the given memcg as possible and moves
2640  * the rest to the parent.
2641  *
2642  * Caller is responsible for holding css reference for memcg.
2643  */
2644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645 {
2646         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648         /* we call try-to-free pages for make this cgroup empty */
2649         lru_add_drain_all();
2650         /* try to free all pages in this cgroup */
2651         while (nr_retries && page_counter_read(&memcg->memory)) {
2652                 int progress;
2653
2654                 if (signal_pending(current))
2655                         return -EINTR;
2656
2657                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658                                                         GFP_KERNEL, true);
2659                 if (!progress) {
2660                         nr_retries--;
2661                         /* maybe some writeback is necessary */
2662                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2663                 }
2664
2665         }
2666
2667         return 0;
2668 }
2669
2670 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671                                             char *buf, size_t nbytes,
2672                                             loff_t off)
2673 {
2674         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676         if (mem_cgroup_is_root(memcg))
2677                 return -EINVAL;
2678         return mem_cgroup_force_empty(memcg) ?: nbytes;
2679 }
2680
2681 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682                                      struct cftype *cft)
2683 {
2684         return mem_cgroup_from_css(css)->use_hierarchy;
2685 }
2686
2687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688                                       struct cftype *cft, u64 val)
2689 {
2690         int retval = 0;
2691         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694         if (memcg->use_hierarchy == val)
2695                 return 0;
2696
2697         /*
2698          * If parent's use_hierarchy is set, we can't make any modifications
2699          * in the child subtrees. If it is unset, then the change can
2700          * occur, provided the current cgroup has no children.
2701          *
2702          * For the root cgroup, parent_mem is NULL, we allow value to be
2703          * set if there are no children.
2704          */
2705         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706                                 (val == 1 || val == 0)) {
2707                 if (!memcg_has_children(memcg))
2708                         memcg->use_hierarchy = val;
2709                 else
2710                         retval = -EBUSY;
2711         } else
2712                 retval = -EINVAL;
2713
2714         return retval;
2715 }
2716
2717 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718 {
2719         struct mem_cgroup *iter;
2720         int i;
2721
2722         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724         for_each_mem_cgroup_tree(iter, memcg) {
2725                 for (i = 0; i < MEMCG_NR_STAT; i++)
2726                         stat[i] += mem_cgroup_read_stat(iter, i);
2727         }
2728 }
2729
2730 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731 {
2732         struct mem_cgroup *iter;
2733         int i;
2734
2735         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737         for_each_mem_cgroup_tree(iter, memcg) {
2738                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739                         events[i] += mem_cgroup_read_events(iter, i);
2740         }
2741 }
2742
2743 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744 {
2745         unsigned long val = 0;
2746
2747         if (mem_cgroup_is_root(memcg)) {
2748                 struct mem_cgroup *iter;
2749
2750                 for_each_mem_cgroup_tree(iter, memcg) {
2751                         val += mem_cgroup_read_stat(iter,
2752                                         MEM_CGROUP_STAT_CACHE);
2753                         val += mem_cgroup_read_stat(iter,
2754                                         MEM_CGROUP_STAT_RSS);
2755                         if (swap)
2756                                 val += mem_cgroup_read_stat(iter,
2757                                                 MEM_CGROUP_STAT_SWAP);
2758                 }
2759         } else {
2760                 if (!swap)
2761                         val = page_counter_read(&memcg->memory);
2762                 else
2763                         val = page_counter_read(&memcg->memsw);
2764         }
2765         return val;
2766 }
2767
2768 enum {
2769         RES_USAGE,
2770         RES_LIMIT,
2771         RES_MAX_USAGE,
2772         RES_FAILCNT,
2773         RES_SOFT_LIMIT,
2774 };
2775
2776 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777                                struct cftype *cft)
2778 {
2779         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780         struct page_counter *counter;
2781
2782         switch (MEMFILE_TYPE(cft->private)) {
2783         case _MEM:
2784                 counter = &memcg->memory;
2785                 break;
2786         case _MEMSWAP:
2787                 counter = &memcg->memsw;
2788                 break;
2789         case _KMEM:
2790                 counter = &memcg->kmem;
2791                 break;
2792         case _TCP:
2793                 counter = &memcg->tcpmem;
2794                 break;
2795         default:
2796                 BUG();
2797         }
2798
2799         switch (MEMFILE_ATTR(cft->private)) {
2800         case RES_USAGE:
2801                 if (counter == &memcg->memory)
2802                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803                 if (counter == &memcg->memsw)
2804                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806         case RES_LIMIT:
2807                 return (u64)counter->limit * PAGE_SIZE;
2808         case RES_MAX_USAGE:
2809                 return (u64)counter->watermark * PAGE_SIZE;
2810         case RES_FAILCNT:
2811                 return counter->failcnt;
2812         case RES_SOFT_LIMIT:
2813                 return (u64)memcg->soft_limit * PAGE_SIZE;
2814         default:
2815                 BUG();
2816         }
2817 }
2818
2819 #ifndef CONFIG_SLOB
2820 static int memcg_online_kmem(struct mem_cgroup *memcg)
2821 {
2822         int memcg_id;
2823
2824         if (cgroup_memory_nokmem)
2825                 return 0;
2826
2827         BUG_ON(memcg->kmemcg_id >= 0);
2828         BUG_ON(memcg->kmem_state);
2829
2830         memcg_id = memcg_alloc_cache_id();
2831         if (memcg_id < 0)
2832                 return memcg_id;
2833
2834         static_branch_inc(&memcg_kmem_enabled_key);
2835         /*
2836          * A memory cgroup is considered kmem-online as soon as it gets
2837          * kmemcg_id. Setting the id after enabling static branching will
2838          * guarantee no one starts accounting before all call sites are
2839          * patched.
2840          */
2841         memcg->kmemcg_id = memcg_id;
2842         memcg->kmem_state = KMEM_ONLINE;
2843
2844         return 0;
2845 }
2846
2847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848 {
2849         struct cgroup_subsys_state *css;
2850         struct mem_cgroup *parent, *child;
2851         int kmemcg_id;
2852
2853         if (memcg->kmem_state != KMEM_ONLINE)
2854                 return;
2855         /*
2856          * Clear the online state before clearing memcg_caches array
2857          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858          * guarantees that no cache will be created for this cgroup
2859          * after we are done (see memcg_create_kmem_cache()).
2860          */
2861         memcg->kmem_state = KMEM_ALLOCATED;
2862
2863         memcg_deactivate_kmem_caches(memcg);
2864
2865         kmemcg_id = memcg->kmemcg_id;
2866         BUG_ON(kmemcg_id < 0);
2867
2868         parent = parent_mem_cgroup(memcg);
2869         if (!parent)
2870                 parent = root_mem_cgroup;
2871
2872         /*
2873          * Change kmemcg_id of this cgroup and all its descendants to the
2874          * parent's id, and then move all entries from this cgroup's list_lrus
2875          * to ones of the parent. After we have finished, all list_lrus
2876          * corresponding to this cgroup are guaranteed to remain empty. The
2877          * ordering is imposed by list_lru_node->lock taken by
2878          * memcg_drain_all_list_lrus().
2879          */
2880         css_for_each_descendant_pre(css, &memcg->css) {
2881                 child = mem_cgroup_from_css(css);
2882                 BUG_ON(child->kmemcg_id != kmemcg_id);
2883                 child->kmemcg_id = parent->kmemcg_id;
2884                 if (!memcg->use_hierarchy)
2885                         break;
2886         }
2887         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889         memcg_free_cache_id(kmemcg_id);
2890 }
2891
2892 static void memcg_free_kmem(struct mem_cgroup *memcg)
2893 {
2894         /* css_alloc() failed, offlining didn't happen */
2895         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896                 memcg_offline_kmem(memcg);
2897
2898         if (memcg->kmem_state == KMEM_ALLOCATED) {
2899                 memcg_destroy_kmem_caches(memcg);
2900                 static_branch_dec(&memcg_kmem_enabled_key);
2901                 WARN_ON(page_counter_read(&memcg->kmem));
2902         }
2903 }
2904 #else
2905 static int memcg_online_kmem(struct mem_cgroup *memcg)
2906 {
2907         return 0;
2908 }
2909 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910 {
2911 }
2912 static void memcg_free_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 #endif /* !CONFIG_SLOB */
2916
2917 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918                                    unsigned long limit)
2919 {
2920         int ret;
2921
2922         mutex_lock(&memcg_limit_mutex);
2923         ret = page_counter_limit(&memcg->kmem, limit);
2924         mutex_unlock(&memcg_limit_mutex);
2925         return ret;
2926 }
2927
2928 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929 {
2930         int ret;
2931
2932         mutex_lock(&memcg_limit_mutex);
2933
2934         ret = page_counter_limit(&memcg->tcpmem, limit);
2935         if (ret)
2936                 goto out;
2937
2938         if (!memcg->tcpmem_active) {
2939                 /*
2940                  * The active flag needs to be written after the static_key
2941                  * update. This is what guarantees that the socket activation
2942                  * function is the last one to run. See sock_update_memcg() for
2943                  * details, and note that we don't mark any socket as belonging
2944                  * to this memcg until that flag is up.
2945                  *
2946                  * We need to do this, because static_keys will span multiple
2947                  * sites, but we can't control their order. If we mark a socket
2948                  * as accounted, but the accounting functions are not patched in
2949                  * yet, we'll lose accounting.
2950                  *
2951                  * We never race with the readers in sock_update_memcg(),
2952                  * because when this value change, the code to process it is not
2953                  * patched in yet.
2954                  */
2955                 static_branch_inc(&memcg_sockets_enabled_key);
2956                 memcg->tcpmem_active = true;
2957         }
2958 out:
2959         mutex_unlock(&memcg_limit_mutex);
2960         return ret;
2961 }
2962
2963 /*
2964  * The user of this function is...
2965  * RES_LIMIT.
2966  */
2967 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968                                 char *buf, size_t nbytes, loff_t off)
2969 {
2970         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971         unsigned long nr_pages;
2972         int ret;
2973
2974         buf = strstrip(buf);
2975         ret = page_counter_memparse(buf, "-1", &nr_pages);
2976         if (ret)
2977                 return ret;
2978
2979         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980         case RES_LIMIT:
2981                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982                         ret = -EINVAL;
2983                         break;
2984                 }
2985                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986                 case _MEM:
2987                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988                         break;
2989                 case _MEMSWAP:
2990                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991                         break;
2992                 case _KMEM:
2993                         ret = memcg_update_kmem_limit(memcg, nr_pages);
2994                         break;
2995                 case _TCP:
2996                         ret = memcg_update_tcp_limit(memcg, nr_pages);
2997                         break;
2998                 }
2999                 break;
3000         case RES_SOFT_LIMIT:
3001                 memcg->soft_limit = nr_pages;
3002                 ret = 0;
3003                 break;
3004         }
3005         return ret ?: nbytes;
3006 }
3007
3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009                                 size_t nbytes, loff_t off)
3010 {
3011         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012         struct page_counter *counter;
3013
3014         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015         case _MEM:
3016                 counter = &memcg->memory;
3017                 break;
3018         case _MEMSWAP:
3019                 counter = &memcg->memsw;
3020                 break;
3021         case _KMEM:
3022                 counter = &memcg->kmem;
3023                 break;
3024         case _TCP:
3025                 counter = &memcg->tcpmem;
3026                 break;
3027         default:
3028                 BUG();
3029         }
3030
3031         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032         case RES_MAX_USAGE:
3033                 page_counter_reset_watermark(counter);
3034                 break;
3035         case RES_FAILCNT:
3036                 counter->failcnt = 0;
3037                 break;
3038         default:
3039                 BUG();
3040         }
3041
3042         return nbytes;
3043 }
3044
3045 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046                                         struct cftype *cft)
3047 {
3048         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049 }
3050
3051 #ifdef CONFIG_MMU
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053                                         struct cftype *cft, u64 val)
3054 {
3055         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057         if (val & ~MOVE_MASK)
3058                 return -EINVAL;
3059
3060         /*
3061          * No kind of locking is needed in here, because ->can_attach() will
3062          * check this value once in the beginning of the process, and then carry
3063          * on with stale data. This means that changes to this value will only
3064          * affect task migrations starting after the change.
3065          */
3066         memcg->move_charge_at_immigrate = val;
3067         return 0;
3068 }
3069 #else
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071                                         struct cftype *cft, u64 val)
3072 {
3073         return -ENOSYS;
3074 }
3075 #endif
3076
3077 #ifdef CONFIG_NUMA
3078 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079 {
3080         struct numa_stat {
3081                 const char *name;
3082                 unsigned int lru_mask;
3083         };
3084
3085         static const struct numa_stat stats[] = {
3086                 { "total", LRU_ALL },
3087                 { "file", LRU_ALL_FILE },
3088                 { "anon", LRU_ALL_ANON },
3089                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090         };
3091         const struct numa_stat *stat;
3092         int nid;
3093         unsigned long nr;
3094         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098                 seq_printf(m, "%s=%lu", stat->name, nr);
3099                 for_each_node_state(nid, N_MEMORY) {
3100                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101                                                           stat->lru_mask);
3102                         seq_printf(m, " N%d=%lu", nid, nr);
3103                 }
3104                 seq_putc(m, '\n');
3105         }
3106
3107         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108                 struct mem_cgroup *iter;
3109
3110                 nr = 0;
3111                 for_each_mem_cgroup_tree(iter, memcg)
3112                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114                 for_each_node_state(nid, N_MEMORY) {
3115                         nr = 0;
3116                         for_each_mem_cgroup_tree(iter, memcg)
3117                                 nr += mem_cgroup_node_nr_lru_pages(
3118                                         iter, nid, stat->lru_mask);
3119                         seq_printf(m, " N%d=%lu", nid, nr);
3120                 }
3121                 seq_putc(m, '\n');
3122         }
3123
3124         return 0;
3125 }
3126 #endif /* CONFIG_NUMA */
3127
3128 static int memcg_stat_show(struct seq_file *m, void *v)
3129 {
3130         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131         unsigned long memory, memsw;
3132         struct mem_cgroup *mi;
3133         unsigned int i;
3134
3135         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136                      MEM_CGROUP_STAT_NSTATS);
3137         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138                      MEM_CGROUP_EVENTS_NSTATS);
3139         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143                         continue;
3144                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146         }
3147
3148         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150                            mem_cgroup_read_events(memcg, i));
3151
3152         for (i = 0; i < NR_LRU_LISTS; i++)
3153                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156         /* Hierarchical information */
3157         memory = memsw = PAGE_COUNTER_MAX;
3158         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159                 memory = min(memory, mi->memory.limit);
3160                 memsw = min(memsw, mi->memsw.limit);
3161         }
3162         seq_printf(m, "hierarchical_memory_limit %llu\n",
3163                    (u64)memory * PAGE_SIZE);
3164         if (do_memsw_account())
3165                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166                            (u64)memsw * PAGE_SIZE);
3167
3168         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169                 unsigned long long val = 0;
3170
3171                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172                         continue;
3173                 for_each_mem_cgroup_tree(mi, memcg)
3174                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176         }
3177
3178         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179                 unsigned long long val = 0;
3180
3181                 for_each_mem_cgroup_tree(mi, memcg)
3182                         val += mem_cgroup_read_events(mi, i);
3183                 seq_printf(m, "total_%s %llu\n",
3184                            mem_cgroup_events_names[i], val);
3185         }
3186
3187         for (i = 0; i < NR_LRU_LISTS; i++) {
3188                 unsigned long long val = 0;
3189
3190                 for_each_mem_cgroup_tree(mi, memcg)
3191                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193         }
3194
3195 #ifdef CONFIG_DEBUG_VM
3196         {
3197                 int nid, zid;
3198                 struct mem_cgroup_per_zone *mz;
3199                 struct zone_reclaim_stat *rstat;
3200                 unsigned long recent_rotated[2] = {0, 0};
3201                 unsigned long recent_scanned[2] = {0, 0};
3202
3203                 for_each_online_node(nid)
3204                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206                                 rstat = &mz->lruvec.reclaim_stat;
3207
3208                                 recent_rotated[0] += rstat->recent_rotated[0];
3209                                 recent_rotated[1] += rstat->recent_rotated[1];
3210                                 recent_scanned[0] += rstat->recent_scanned[0];
3211                                 recent_scanned[1] += rstat->recent_scanned[1];
3212                         }
3213                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217         }
3218 #endif
3219
3220         return 0;
3221 }
3222
3223 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224                                       struct cftype *cft)
3225 {
3226         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228         return mem_cgroup_swappiness(memcg);
3229 }
3230
3231 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232                                        struct cftype *cft, u64 val)
3233 {
3234         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236         if (val > 100)
3237                 return -EINVAL;
3238
3239         if (css->parent)
3240                 memcg->swappiness = val;
3241         else
3242                 vm_swappiness = val;
3243
3244         return 0;
3245 }
3246
3247 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248 {
3249         struct mem_cgroup_threshold_ary *t;
3250         unsigned long usage;
3251         int i;
3252
3253         rcu_read_lock();
3254         if (!swap)
3255                 t = rcu_dereference(memcg->thresholds.primary);
3256         else
3257                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259         if (!t)
3260                 goto unlock;
3261
3262         usage = mem_cgroup_usage(memcg, swap);
3263
3264         /*
3265          * current_threshold points to threshold just below or equal to usage.
3266          * If it's not true, a threshold was crossed after last
3267          * call of __mem_cgroup_threshold().
3268          */
3269         i = t->current_threshold;
3270
3271         /*
3272          * Iterate backward over array of thresholds starting from
3273          * current_threshold and check if a threshold is crossed.
3274          * If none of thresholds below usage is crossed, we read
3275          * only one element of the array here.
3276          */
3277         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278                 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280         /* i = current_threshold + 1 */
3281         i++;
3282
3283         /*
3284          * Iterate forward over array of thresholds starting from
3285          * current_threshold+1 and check if a threshold is crossed.
3286          * If none of thresholds above usage is crossed, we read
3287          * only one element of the array here.
3288          */
3289         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290                 eventfd_signal(t->entries[i].eventfd, 1);
3291
3292         /* Update current_threshold */
3293         t->current_threshold = i - 1;
3294 unlock:
3295         rcu_read_unlock();
3296 }
3297
3298 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299 {
3300         while (memcg) {
3301                 __mem_cgroup_threshold(memcg, false);
3302                 if (do_memsw_account())
3303                         __mem_cgroup_threshold(memcg, true);
3304
3305                 memcg = parent_mem_cgroup(memcg);
3306         }
3307 }
3308
3309 static int compare_thresholds(const void *a, const void *b)
3310 {
3311         const struct mem_cgroup_threshold *_a = a;
3312         const struct mem_cgroup_threshold *_b = b;
3313
3314         if (_a->threshold > _b->threshold)
3315                 return 1;
3316
3317         if (_a->threshold < _b->threshold)
3318                 return -1;
3319
3320         return 0;
3321 }
3322
3323 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324 {
3325         struct mem_cgroup_eventfd_list *ev;
3326
3327         spin_lock(&memcg_oom_lock);
3328
3329         list_for_each_entry(ev, &memcg->oom_notify, list)
3330                 eventfd_signal(ev->eventfd, 1);
3331
3332         spin_unlock(&memcg_oom_lock);
3333         return 0;
3334 }
3335
3336 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337 {
3338         struct mem_cgroup *iter;
3339
3340         for_each_mem_cgroup_tree(iter, memcg)
3341                 mem_cgroup_oom_notify_cb(iter);
3342 }
3343
3344 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346 {
3347         struct mem_cgroup_thresholds *thresholds;
3348         struct mem_cgroup_threshold_ary *new;
3349         unsigned long threshold;
3350         unsigned long usage;
3351         int i, size, ret;
3352
3353         ret = page_counter_memparse(args, "-1", &threshold);
3354         if (ret)
3355                 return ret;
3356
3357         mutex_lock(&memcg->thresholds_lock);
3358
3359         if (type == _MEM) {
3360                 thresholds = &memcg->thresholds;
3361                 usage = mem_cgroup_usage(memcg, false);
3362         } else if (type == _MEMSWAP) {
3363                 thresholds = &memcg->memsw_thresholds;
3364                 usage = mem_cgroup_usage(memcg, true);
3365         } else
3366                 BUG();
3367
3368         /* Check if a threshold crossed before adding a new one */
3369         if (thresholds->primary)
3370                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374         /* Allocate memory for new array of thresholds */
3375         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376                         GFP_KERNEL);
3377         if (!new) {
3378                 ret = -ENOMEM;
3379                 goto unlock;
3380         }
3381         new->size = size;
3382
3383         /* Copy thresholds (if any) to new array */
3384         if (thresholds->primary) {
3385                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386                                 sizeof(struct mem_cgroup_threshold));
3387         }
3388
3389         /* Add new threshold */
3390         new->entries[size - 1].eventfd = eventfd;
3391         new->entries[size - 1].threshold = threshold;
3392
3393         /* Sort thresholds. Registering of new threshold isn't time-critical */
3394         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395                         compare_thresholds, NULL);
3396
3397         /* Find current threshold */
3398         new->current_threshold = -1;
3399         for (i = 0; i < size; i++) {
3400                 if (new->entries[i].threshold <= usage) {
3401                         /*
3402                          * new->current_threshold will not be used until
3403                          * rcu_assign_pointer(), so it's safe to increment
3404                          * it here.
3405                          */
3406                         ++new->current_threshold;
3407                 } else
3408                         break;
3409         }
3410
3411         /* Free old spare buffer and save old primary buffer as spare */
3412         kfree(thresholds->spare);
3413         thresholds->spare = thresholds->primary;
3414
3415         rcu_assign_pointer(thresholds->primary, new);
3416
3417         /* To be sure that nobody uses thresholds */
3418         synchronize_rcu();
3419
3420 unlock:
3421         mutex_unlock(&memcg->thresholds_lock);
3422
3423         return ret;
3424 }
3425
3426 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427         struct eventfd_ctx *eventfd, const char *args)
3428 {
3429         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430 }
3431
3432 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433         struct eventfd_ctx *eventfd, const char *args)
3434 {
3435         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436 }
3437
3438 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439         struct eventfd_ctx *eventfd, enum res_type type)
3440 {
3441         struct mem_cgroup_thresholds *thresholds;
3442         struct mem_cgroup_threshold_ary *new;
3443         unsigned long usage;
3444         int i, j, size;
3445
3446         mutex_lock(&memcg->thresholds_lock);
3447
3448         if (type == _MEM) {
3449                 thresholds = &memcg->thresholds;
3450                 usage = mem_cgroup_usage(memcg, false);
3451         } else if (type == _MEMSWAP) {
3452                 thresholds = &memcg->memsw_thresholds;
3453                 usage = mem_cgroup_usage(memcg, true);
3454         } else
3455                 BUG();
3456
3457         if (!thresholds->primary)
3458                 goto unlock;
3459
3460         /* Check if a threshold crossed before removing */
3461         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463         /* Calculate new number of threshold */
3464         size = 0;
3465         for (i = 0; i < thresholds->primary->size; i++) {
3466                 if (thresholds->primary->entries[i].eventfd != eventfd)
3467                         size++;
3468         }
3469
3470         new = thresholds->spare;
3471
3472         /* Set thresholds array to NULL if we don't have thresholds */
3473         if (!size) {
3474                 kfree(new);
3475                 new = NULL;
3476                 goto swap_buffers;
3477         }
3478
3479         new->size = size;
3480
3481         /* Copy thresholds and find current threshold */
3482         new->current_threshold = -1;
3483         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484                 if (thresholds->primary->entries[i].eventfd == eventfd)
3485                         continue;
3486
3487                 new->entries[j] = thresholds->primary->entries[i];
3488                 if (new->entries[j].threshold <= usage) {
3489                         /*
3490                          * new->current_threshold will not be used
3491                          * until rcu_assign_pointer(), so it's safe to increment
3492                          * it here.
3493                          */
3494                         ++new->current_threshold;
3495                 }
3496                 j++;
3497         }
3498
3499 swap_buffers:
3500         /* Swap primary and spare array */
3501         thresholds->spare = thresholds->primary;
3502
3503         rcu_assign_pointer(thresholds->primary, new);
3504
3505         /* To be sure that nobody uses thresholds */
3506         synchronize_rcu();
3507
3508         /* If all events are unregistered, free the spare array */
3509         if (!new) {
3510                 kfree(thresholds->spare);
3511                 thresholds->spare = NULL;
3512         }
3513 unlock:
3514         mutex_unlock(&memcg->thresholds_lock);
3515 }
3516
3517 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518         struct eventfd_ctx *eventfd)
3519 {
3520         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521 }
3522
3523 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524         struct eventfd_ctx *eventfd)
3525 {
3526         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527 }
3528
3529 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530         struct eventfd_ctx *eventfd, const char *args)
3531 {
3532         struct mem_cgroup_eventfd_list *event;
3533
3534         event = kmalloc(sizeof(*event), GFP_KERNEL);
3535         if (!event)
3536                 return -ENOMEM;
3537
3538         spin_lock(&memcg_oom_lock);
3539
3540         event->eventfd = eventfd;
3541         list_add(&event->list, &memcg->oom_notify);
3542
3543         /* already in OOM ? */
3544         if (memcg->under_oom)
3545                 eventfd_signal(eventfd, 1);
3546         spin_unlock(&memcg_oom_lock);
3547
3548         return 0;
3549 }
3550
3551 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552         struct eventfd_ctx *eventfd)
3553 {
3554         struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556         spin_lock(&memcg_oom_lock);
3557
3558         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559                 if (ev->eventfd == eventfd) {
3560                         list_del(&ev->list);
3561                         kfree(ev);
3562                 }
3563         }
3564
3565         spin_unlock(&memcg_oom_lock);
3566 }
3567
3568 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569 {
3570         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574         return 0;
3575 }
3576
3577 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578         struct cftype *cft, u64 val)
3579 {
3580         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582         /* cannot set to root cgroup and only 0 and 1 are allowed */
3583         if (!css->parent || !((val == 0) || (val == 1)))
3584                 return -EINVAL;
3585
3586         memcg->oom_kill_disable = val;
3587         if (!val)
3588                 memcg_oom_recover(memcg);
3589
3590         return 0;
3591 }
3592
3593 #ifdef CONFIG_CGROUP_WRITEBACK
3594
3595 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596 {
3597         return &memcg->cgwb_list;
3598 }
3599
3600 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601 {
3602         return wb_domain_init(&memcg->cgwb_domain, gfp);
3603 }
3604
3605 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606 {
3607         wb_domain_exit(&memcg->cgwb_domain);
3608 }
3609
3610 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611 {
3612         wb_domain_size_changed(&memcg->cgwb_domain);
3613 }
3614
3615 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616 {
3617         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619         if (!memcg->css.parent)
3620                 return NULL;
3621
3622         return &memcg->cgwb_domain;
3623 }
3624
3625 /**
3626  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627  * @wb: bdi_writeback in question
3628  * @pfilepages: out parameter for number of file pages
3629  * @pheadroom: out parameter for number of allocatable pages according to memcg
3630  * @pdirty: out parameter for number of dirty pages
3631  * @pwriteback: out parameter for number of pages under writeback
3632  *
3633  * Determine the numbers of file, headroom, dirty, and writeback pages in
3634  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3635  * is a bit more involved.
3636  *
3637  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3638  * headroom is calculated as the lowest headroom of itself and the
3639  * ancestors.  Note that this doesn't consider the actual amount of
3640  * available memory in the system.  The caller should further cap
3641  * *@pheadroom accordingly.
3642  */
3643 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644                          unsigned long *pheadroom, unsigned long *pdirty,
3645                          unsigned long *pwriteback)
3646 {
3647         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648         struct mem_cgroup *parent;
3649
3650         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652         /* this should eventually include NR_UNSTABLE_NFS */
3653         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655                                                      (1 << LRU_ACTIVE_FILE));
3656         *pheadroom = PAGE_COUNTER_MAX;
3657
3658         while ((parent = parent_mem_cgroup(memcg))) {
3659                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660                 unsigned long used = page_counter_read(&memcg->memory);
3661
3662                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663                 memcg = parent;
3664         }
3665 }
3666
3667 #else   /* CONFIG_CGROUP_WRITEBACK */
3668
3669 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670 {
3671         return 0;
3672 }
3673
3674 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675 {
3676 }
3677
3678 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679 {
3680 }
3681
3682 #endif  /* CONFIG_CGROUP_WRITEBACK */
3683
3684 /*
3685  * DO NOT USE IN NEW FILES.
3686  *
3687  * "cgroup.event_control" implementation.
3688  *
3689  * This is way over-engineered.  It tries to support fully configurable
3690  * events for each user.  Such level of flexibility is completely
3691  * unnecessary especially in the light of the planned unified hierarchy.
3692  *
3693  * Please deprecate this and replace with something simpler if at all
3694  * possible.
3695  */
3696
3697 /*
3698  * Unregister event and free resources.
3699  *
3700  * Gets called from workqueue.
3701  */
3702 static void memcg_event_remove(struct work_struct *work)
3703 {
3704         struct mem_cgroup_event *event =
3705                 container_of(work, struct mem_cgroup_event, remove);
3706         struct mem_cgroup *memcg = event->memcg;
3707
3708         remove_wait_queue(event->wqh, &event->wait);
3709
3710         event->unregister_event(memcg, event->eventfd);
3711
3712         /* Notify userspace the event is going away. */
3713         eventfd_signal(event->eventfd, 1);
3714
3715         eventfd_ctx_put(event->eventfd);
3716         kfree(event);
3717         css_put(&memcg->css);
3718 }
3719
3720 /*
3721  * Gets called on POLLHUP on eventfd when user closes it.
3722  *
3723  * Called with wqh->lock held and interrupts disabled.
3724  */
3725 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726                             int sync, void *key)
3727 {
3728         struct mem_cgroup_event *event =
3729                 container_of(wait, struct mem_cgroup_event, wait);
3730         struct mem_cgroup *memcg = event->memcg;
3731         unsigned long flags = (unsigned long)key;
3732
3733         if (flags & POLLHUP) {
3734                 /*
3735                  * If the event has been detached at cgroup removal, we
3736                  * can simply return knowing the other side will cleanup
3737                  * for us.
3738                  *
3739                  * We can't race against event freeing since the other
3740                  * side will require wqh->lock via remove_wait_queue(),
3741                  * which we hold.
3742                  */
3743                 spin_lock(&memcg->event_list_lock);
3744                 if (!list_empty(&event->list)) {
3745                         list_del_init(&event->list);
3746                         /*
3747                          * We are in atomic context, but cgroup_event_remove()
3748                          * may sleep, so we have to call it in workqueue.
3749                          */
3750                         schedule_work(&event->remove);
3751                 }
3752                 spin_unlock(&memcg->event_list_lock);
3753         }
3754
3755         return 0;
3756 }
3757
3758 static void memcg_event_ptable_queue_proc(struct file *file,
3759                 wait_queue_head_t *wqh, poll_table *pt)
3760 {
3761         struct mem_cgroup_event *event =
3762                 container_of(pt, struct mem_cgroup_event, pt);
3763
3764         event->wqh = wqh;
3765         add_wait_queue(wqh, &event->wait);
3766 }
3767
3768 /*
3769  * DO NOT USE IN NEW FILES.
3770  *
3771  * Parse input and register new cgroup event handler.
3772  *
3773  * Input must be in format '<event_fd> <control_fd> <args>'.
3774  * Interpretation of args is defined by control file implementation.
3775  */
3776 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777                                          char *buf, size_t nbytes, loff_t off)
3778 {
3779         struct cgroup_subsys_state *css = of_css(of);
3780         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781         struct mem_cgroup_event *event;
3782         struct cgroup_subsys_state *cfile_css;
3783         unsigned int efd, cfd;
3784         struct fd efile;
3785         struct fd cfile;
3786         const char *name;
3787         char *endp;
3788         int ret;
3789
3790         buf = strstrip(buf);
3791
3792         efd = simple_strtoul(buf, &endp, 10);
3793         if (*endp != ' ')
3794                 return -EINVAL;
3795         buf = endp + 1;
3796
3797         cfd = simple_strtoul(buf, &endp, 10);
3798         if ((*endp != ' ') && (*endp != '\0'))
3799                 return -EINVAL;
3800         buf = endp + 1;
3801
3802         event = kzalloc(sizeof(*event), GFP_KERNEL);
3803         if (!event)
3804                 return -ENOMEM;
3805
3806         event->memcg = memcg;
3807         INIT_LIST_HEAD(&event->list);
3808         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810         INIT_WORK(&event->remove, memcg_event_remove);
3811
3812         efile = fdget(efd);
3813         if (!efile.file) {
3814                 ret = -EBADF;
3815                 goto out_kfree;
3816         }
3817
3818         event->eventfd = eventfd_ctx_fileget(efile.file);
3819         if (IS_ERR(event->eventfd)) {
3820                 ret = PTR_ERR(event->eventfd);
3821                 goto out_put_efile;
3822         }
3823
3824         cfile = fdget(cfd);
3825         if (!cfile.file) {
3826                 ret = -EBADF;
3827                 goto out_put_eventfd;
3828         }
3829
3830         /* the process need read permission on control file */
3831         /* AV: shouldn't we check that it's been opened for read instead? */
3832         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833         if (ret < 0)
3834                 goto out_put_cfile;
3835
3836         /*
3837          * Determine the event callbacks and set them in @event.  This used
3838          * to be done via struct cftype but cgroup core no longer knows
3839          * about these events.  The following is crude but the whole thing
3840          * is for compatibility anyway.
3841          *
3842          * DO NOT ADD NEW FILES.
3843          */
3844         name = cfile.file->f_path.dentry->d_name.name;
3845
3846         if (!strcmp(name, "memory.usage_in_bytes")) {
3847                 event->register_event = mem_cgroup_usage_register_event;
3848                 event->unregister_event = mem_cgroup_usage_unregister_event;
3849         } else if (!strcmp(name, "memory.oom_control")) {
3850                 event->register_event = mem_cgroup_oom_register_event;
3851                 event->unregister_event = mem_cgroup_oom_unregister_event;
3852         } else if (!strcmp(name, "memory.pressure_level")) {
3853                 event->register_event = vmpressure_register_event;
3854                 event->unregister_event = vmpressure_unregister_event;
3855         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856                 event->register_event = memsw_cgroup_usage_register_event;
3857                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858         } else {
3859                 ret = -EINVAL;
3860                 goto out_put_cfile;
3861         }
3862
3863         /*
3864          * Verify @cfile should belong to @css.  Also, remaining events are
3865          * automatically removed on cgroup destruction but the removal is
3866          * asynchronous, so take an extra ref on @css.
3867          */
3868         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869                                                &memory_cgrp_subsys);
3870         ret = -EINVAL;
3871         if (IS_ERR(cfile_css))
3872                 goto out_put_cfile;
3873         if (cfile_css != css) {
3874                 css_put(cfile_css);
3875                 goto out_put_cfile;
3876         }
3877
3878         ret = event->register_event(memcg, event->eventfd, buf);
3879         if (ret)
3880                 goto out_put_css;
3881
3882         efile.file->f_op->poll(efile.file, &event->pt);
3883
3884         spin_lock(&memcg->event_list_lock);
3885         list_add(&event->list, &memcg->event_list);
3886         spin_unlock(&memcg->event_list_lock);
3887
3888         fdput(cfile);
3889         fdput(efile);
3890
3891         return nbytes;
3892
3893 out_put_css:
3894         css_put(css);
3895 out_put_cfile:
3896         fdput(cfile);
3897 out_put_eventfd:
3898         eventfd_ctx_put(event->eventfd);
3899 out_put_efile:
3900         fdput(efile);
3901 out_kfree:
3902         kfree(event);
3903
3904         return ret;
3905 }
3906
3907 static struct cftype mem_cgroup_legacy_files[] = {
3908         {
3909                 .name = "usage_in_bytes",
3910                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911                 .read_u64 = mem_cgroup_read_u64,
3912         },
3913         {
3914                 .name = "max_usage_in_bytes",
3915                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916                 .write = mem_cgroup_reset,
3917                 .read_u64 = mem_cgroup_read_u64,
3918         },
3919         {
3920                 .name = "limit_in_bytes",
3921                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922                 .write = mem_cgroup_write,
3923                 .read_u64 = mem_cgroup_read_u64,
3924         },
3925         {
3926                 .name = "soft_limit_in_bytes",
3927                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928                 .write = mem_cgroup_write,
3929                 .read_u64 = mem_cgroup_read_u64,
3930         },
3931         {
3932                 .name = "failcnt",
3933                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934                 .write = mem_cgroup_reset,
3935                 .read_u64 = mem_cgroup_read_u64,
3936         },
3937         {
3938                 .name = "stat",
3939                 .seq_show = memcg_stat_show,
3940         },
3941         {
3942                 .name = "force_empty",
3943                 .write = mem_cgroup_force_empty_write,
3944         },
3945         {
3946                 .name = "use_hierarchy",
3947                 .write_u64 = mem_cgroup_hierarchy_write,
3948                 .read_u64 = mem_cgroup_hierarchy_read,
3949         },
3950         {
3951                 .name = "cgroup.event_control",         /* XXX: for compat */
3952                 .write = memcg_write_event_control,
3953                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954         },
3955         {
3956                 .name = "swappiness",
3957                 .read_u64 = mem_cgroup_swappiness_read,
3958                 .write_u64 = mem_cgroup_swappiness_write,
3959         },
3960         {
3961                 .name = "move_charge_at_immigrate",
3962                 .read_u64 = mem_cgroup_move_charge_read,
3963                 .write_u64 = mem_cgroup_move_charge_write,
3964         },
3965         {
3966                 .name = "oom_control",
3967                 .seq_show = mem_cgroup_oom_control_read,
3968                 .write_u64 = mem_cgroup_oom_control_write,
3969                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970         },
3971         {
3972                 .name = "pressure_level",
3973         },
3974 #ifdef CONFIG_NUMA
3975         {
3976                 .name = "numa_stat",
3977                 .seq_show = memcg_numa_stat_show,
3978         },
3979 #endif
3980         {
3981                 .name = "kmem.limit_in_bytes",
3982                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983                 .write = mem_cgroup_write,
3984                 .read_u64 = mem_cgroup_read_u64,
3985         },
3986         {
3987                 .name = "kmem.usage_in_bytes",
3988                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989                 .read_u64 = mem_cgroup_read_u64,
3990         },
3991         {
3992                 .name = "kmem.failcnt",
3993                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994                 .write = mem_cgroup_reset,
3995                 .read_u64 = mem_cgroup_read_u64,
3996         },
3997         {
3998                 .name = "kmem.max_usage_in_bytes",
3999                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000                 .write = mem_cgroup_reset,
4001                 .read_u64 = mem_cgroup_read_u64,
4002         },
4003 #ifdef CONFIG_SLABINFO
4004         {
4005                 .name = "kmem.slabinfo",
4006                 .seq_start = slab_start,
4007                 .seq_next = slab_next,
4008                 .seq_stop = slab_stop,
4009                 .seq_show = memcg_slab_show,
4010         },
4011 #endif
4012         {
4013                 .name = "kmem.tcp.limit_in_bytes",
4014                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015                 .write = mem_cgroup_write,
4016                 .read_u64 = mem_cgroup_read_u64,
4017         },
4018         {
4019                 .name = "kmem.tcp.usage_in_bytes",
4020                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021                 .read_u64 = mem_cgroup_read_u64,
4022         },
4023         {
4024                 .name = "kmem.tcp.failcnt",
4025                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026                 .write = mem_cgroup_reset,
4027                 .read_u64 = mem_cgroup_read_u64,
4028         },
4029         {
4030                 .name = "kmem.tcp.max_usage_in_bytes",
4031                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032                 .write = mem_cgroup_reset,
4033                 .read_u64 = mem_cgroup_read_u64,
4034         },
4035         { },    /* terminate */
4036 };
4037
4038 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039 {
4040         struct mem_cgroup_per_node *pn;
4041         struct mem_cgroup_per_zone *mz;
4042         int zone, tmp = node;
4043         /*
4044          * This routine is called against possible nodes.
4045          * But it's BUG to call kmalloc() against offline node.
4046          *
4047          * TODO: this routine can waste much memory for nodes which will
4048          *       never be onlined. It's better to use memory hotplug callback
4049          *       function.
4050          */
4051         if (!node_state(node, N_NORMAL_MEMORY))
4052                 tmp = -1;
4053         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054         if (!pn)
4055                 return 1;
4056
4057         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058                 mz = &pn->zoneinfo[zone];
4059                 lruvec_init(&mz->lruvec);
4060                 mz->usage_in_excess = 0;
4061                 mz->on_tree = false;
4062                 mz->memcg = memcg;
4063         }
4064         memcg->nodeinfo[node] = pn;
4065         return 0;
4066 }
4067
4068 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069 {
4070         kfree(memcg->nodeinfo[node]);
4071 }
4072
4073 static void mem_cgroup_free(struct mem_cgroup *memcg)
4074 {
4075         int node;
4076
4077         memcg_wb_domain_exit(memcg);
4078         for_each_node(node)
4079                 free_mem_cgroup_per_zone_info(memcg, node);
4080         free_percpu(memcg->stat);
4081         kfree(memcg);
4082 }
4083
4084 static struct mem_cgroup *mem_cgroup_alloc(void)
4085 {
4086         struct mem_cgroup *memcg;
4087         size_t size;
4088         int node;
4089
4090         size = sizeof(struct mem_cgroup);
4091         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093         memcg = kzalloc(size, GFP_KERNEL);
4094         if (!memcg)
4095                 return NULL;
4096
4097         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098         if (!memcg->stat)
4099                 goto fail;
4100
4101         for_each_node(node)
4102                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103                         goto fail;
4104
4105         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106                 goto fail;
4107
4108         INIT_WORK(&memcg->high_work, high_work_func);
4109         memcg->last_scanned_node = MAX_NUMNODES;
4110         INIT_LIST_HEAD(&memcg->oom_notify);
4111         mutex_init(&memcg->thresholds_lock);
4112         spin_lock_init(&memcg->move_lock);
4113         vmpressure_init(&memcg->vmpressure);
4114         INIT_LIST_HEAD(&memcg->event_list);
4115         spin_lock_init(&memcg->event_list_lock);
4116         memcg->socket_pressure = jiffies;
4117 #ifndef CONFIG_SLOB
4118         memcg->kmemcg_id = -1;
4119 #endif
4120 #ifdef CONFIG_CGROUP_WRITEBACK
4121         INIT_LIST_HEAD(&memcg->cgwb_list);
4122 #endif
4123         return memcg;
4124 fail:
4125         mem_cgroup_free(memcg);
4126         return NULL;
4127 }
4128
4129 static struct cgroup_subsys_state * __ref
4130 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131 {
4132         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133         struct mem_cgroup *memcg;
4134         long error = -ENOMEM;
4135
4136         memcg = mem_cgroup_alloc();
4137         if (!memcg)
4138                 return ERR_PTR(error);
4139
4140         memcg->high = PAGE_COUNTER_MAX;
4141         memcg->soft_limit = PAGE_COUNTER_MAX;
4142         if (parent) {
4143                 memcg->swappiness = mem_cgroup_swappiness(parent);
4144                 memcg->oom_kill_disable = parent->oom_kill_disable;
4145         }
4146         if (parent && parent->use_hierarchy) {
4147                 memcg->use_hierarchy = true;
4148                 page_counter_init(&memcg->memory, &parent->memory);
4149                 page_counter_init(&memcg->swap, &parent->swap);
4150                 page_counter_init(&memcg->memsw, &parent->memsw);
4151                 page_counter_init(&memcg->kmem, &parent->kmem);
4152                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153         } else {
4154                 page_counter_init(&memcg->memory, NULL);
4155                 page_counter_init(&memcg->swap, NULL);
4156                 page_counter_init(&memcg->memsw, NULL);
4157                 page_counter_init(&memcg->kmem, NULL);
4158                 page_counter_init(&memcg->tcpmem, NULL);
4159                 /*
4160                  * Deeper hierachy with use_hierarchy == false doesn't make
4161                  * much sense so let cgroup subsystem know about this
4162                  * unfortunate state in our controller.
4163                  */
4164                 if (parent != root_mem_cgroup)
4165                         memory_cgrp_subsys.broken_hierarchy = true;
4166         }
4167
4168         /* The following stuff does not apply to the root */
4169         if (!parent) {
4170                 root_mem_cgroup = memcg;
4171                 return &memcg->css;
4172         }
4173
4174         error = memcg_online_kmem(memcg);
4175         if (error)
4176                 goto fail;
4177
4178         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179                 static_branch_inc(&memcg_sockets_enabled_key);
4180
4181         return &memcg->css;
4182 fail:
4183         mem_cgroup_free(memcg);
4184         return NULL;
4185 }
4186
4187 static int
4188 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189 {
4190         if (css->id > MEM_CGROUP_ID_MAX)
4191                 return -ENOSPC;
4192
4193         return 0;
4194 }
4195
4196 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197 {
4198         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199         struct mem_cgroup_event *event, *tmp;
4200
4201         /*
4202          * Unregister events and notify userspace.
4203          * Notify userspace about cgroup removing only after rmdir of cgroup
4204          * directory to avoid race between userspace and kernelspace.
4205          */
4206         spin_lock(&memcg->event_list_lock);
4207         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208                 list_del_init(&event->list);
4209                 schedule_work(&event->remove);
4210         }
4211         spin_unlock(&memcg->event_list_lock);
4212
4213         memcg_offline_kmem(memcg);
4214         wb_memcg_offline(memcg);
4215 }
4216
4217 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218 {
4219         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221         invalidate_reclaim_iterators(memcg);
4222 }
4223
4224 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225 {
4226         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229                 static_branch_dec(&memcg_sockets_enabled_key);
4230
4231         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232                 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234         vmpressure_cleanup(&memcg->vmpressure);
4235         cancel_work_sync(&memcg->high_work);
4236         mem_cgroup_remove_from_trees(memcg);
4237         memcg_free_kmem(memcg);
4238         mem_cgroup_free(memcg);
4239 }
4240
4241 /**
4242  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243  * @css: the target css
4244  *
4245  * Reset the states of the mem_cgroup associated with @css.  This is
4246  * invoked when the userland requests disabling on the default hierarchy
4247  * but the memcg is pinned through dependency.  The memcg should stop
4248  * applying policies and should revert to the vanilla state as it may be
4249  * made visible again.
4250  *
4251  * The current implementation only resets the essential configurations.
4252  * This needs to be expanded to cover all the visible parts.
4253  */
4254 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255 {
4256         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263         memcg->low = 0;
4264         memcg->high = PAGE_COUNTER_MAX;
4265         memcg->soft_limit = PAGE_COUNTER_MAX;
4266         memcg_wb_domain_size_changed(memcg);
4267 }
4268
4269 #ifdef CONFIG_MMU
4270 /* Handlers for move charge at task migration. */
4271 static int mem_cgroup_do_precharge(unsigned long count)
4272 {
4273         int ret;
4274
4275         /* Try a single bulk charge without reclaim first, kswapd may wake */
4276         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277         if (!ret) {
4278                 mc.precharge += count;
4279                 return ret;
4280         }
4281
4282         /* Try charges one by one with reclaim */
4283         while (count--) {
4284                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285                 if (ret)
4286                         return ret;
4287                 mc.precharge++;
4288                 cond_resched();
4289         }
4290         return 0;
4291 }
4292
4293 /**
4294  * get_mctgt_type - get target type of moving charge
4295  * @vma: the vma the pte to be checked belongs
4296  * @addr: the address corresponding to the pte to be checked
4297  * @ptent: the pte to be checked
4298  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299  *
4300  * Returns
4301  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303  *     move charge. if @target is not NULL, the page is stored in target->page
4304  *     with extra refcnt got(Callers should handle it).
4305  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306  *     target for charge migration. if @target is not NULL, the entry is stored
4307  *     in target->ent.
4308  *
4309  * Called with pte lock held.
4310  */
4311 union mc_target {
4312         struct page     *page;
4313         swp_entry_t     ent;
4314 };
4315
4316 enum mc_target_type {
4317         MC_TARGET_NONE = 0,
4318         MC_TARGET_PAGE,
4319         MC_TARGET_SWAP,
4320 };
4321
4322 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323                                                 unsigned long addr, pte_t ptent)
4324 {
4325         struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327         if (!page || !page_mapped(page))
4328                 return NULL;
4329         if (PageAnon(page)) {
4330                 if (!(mc.flags & MOVE_ANON))
4331                         return NULL;
4332         } else {
4333                 if (!(mc.flags & MOVE_FILE))
4334                         return NULL;
4335         }
4336         if (!get_page_unless_zero(page))
4337                 return NULL;
4338
4339         return page;
4340 }
4341
4342 #ifdef CONFIG_SWAP
4343 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345 {
4346         struct page *page = NULL;
4347         swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350                 return NULL;
4351         /*
4352          * Because lookup_swap_cache() updates some statistics counter,
4353          * we call find_get_page() with swapper_space directly.
4354          */
4355         page = find_get_page(swap_address_space(ent), ent.val);
4356         if (do_memsw_account())
4357                 entry->val = ent.val;
4358
4359         return page;
4360 }
4361 #else
4362 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364 {
4365         return NULL;
4366 }
4367 #endif
4368
4369 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371 {
4372         struct page *page = NULL;
4373         struct address_space *mapping;
4374         pgoff_t pgoff;
4375
4376         if (!vma->vm_file) /* anonymous vma */
4377                 return NULL;
4378         if (!(mc.flags & MOVE_FILE))
4379                 return NULL;
4380
4381         mapping = vma->vm_file->f_mapping;
4382         pgoff = linear_page_index(vma, addr);
4383
4384         /* page is moved even if it's not RSS of this task(page-faulted). */
4385 #ifdef CONFIG_SWAP
4386         /* shmem/tmpfs may report page out on swap: account for that too. */
4387         if (shmem_mapping(mapping)) {
4388                 page = find_get_entry(mapping, pgoff);
4389                 if (radix_tree_exceptional_entry(page)) {
4390                         swp_entry_t swp = radix_to_swp_entry(page);
4391                         if (do_memsw_account())
4392                                 *entry = swp;
4393                         page = find_get_page(swap_address_space(swp), swp.val);
4394                 }
4395         } else
4396                 page = find_get_page(mapping, pgoff);
4397 #else
4398         page = find_get_page(mapping, pgoff);
4399 #endif
4400         return page;
4401 }
4402
4403 /**
4404  * mem_cgroup_move_account - move account of the page
4405  * @page: the page
4406  * @nr_pages: number of regular pages (>1 for huge pages)
4407  * @from: mem_cgroup which the page is moved from.
4408  * @to: mem_cgroup which the page is moved to. @from != @to.
4409  *
4410  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411  *
4412  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413  * from old cgroup.
4414  */
4415 static int mem_cgroup_move_account(struct page *page,
4416                                    bool compound,
4417                                    struct mem_cgroup *from,
4418                                    struct mem_cgroup *to)
4419 {
4420         unsigned long flags;
4421         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422         int ret;
4423         bool anon;
4424
4425         VM_BUG_ON(from == to);
4426         VM_BUG_ON_PAGE(PageLRU(page), page);
4427         VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429         /*
4430          * Prevent mem_cgroup_migrate() from looking at
4431          * page->mem_cgroup of its source page while we change it.
4432          */
4433         ret = -EBUSY;
4434         if (!trylock_page(page))
4435                 goto out;
4436
4437         ret = -EINVAL;
4438         if (page->mem_cgroup != from)
4439                 goto out_unlock;
4440
4441         anon = PageAnon(page);
4442
4443         spin_lock_irqsave(&from->move_lock, flags);
4444
4445         if (!anon && page_mapped(page)) {
4446                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447                                nr_pages);
4448                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449                                nr_pages);
4450         }
4451
4452         /*
4453          * move_lock grabbed above and caller set from->moving_account, so
4454          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455          * So mapping should be stable for dirty pages.
4456          */
4457         if (!anon && PageDirty(page)) {
4458                 struct address_space *mapping = page_mapping(page);
4459
4460                 if (mapping_cap_account_dirty(mapping)) {
4461                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462                                        nr_pages);
4463                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464                                        nr_pages);
4465                 }
4466         }
4467
4468         if (PageWriteback(page)) {
4469                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470                                nr_pages);
4471                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472                                nr_pages);
4473         }
4474
4475         /*
4476          * It is safe to change page->mem_cgroup here because the page
4477          * is referenced, charged, and isolated - we can't race with
4478          * uncharging, charging, migration, or LRU putback.
4479          */
4480
4481         /* caller should have done css_get */
4482         page->mem_cgroup = to;
4483         spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485         ret = 0;
4486
4487         local_irq_disable();
4488         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489         memcg_check_events(to, page);
4490         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491         memcg_check_events(from, page);
4492         local_irq_enable();
4493 out_unlock:
4494         unlock_page(page);
4495 out:
4496         return ret;
4497 }
4498
4499 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500                 unsigned long addr, pte_t ptent, union mc_target *target)
4501 {
4502         struct page *page = NULL;
4503         enum mc_target_type ret = MC_TARGET_NONE;
4504         swp_entry_t ent = { .val = 0 };
4505
4506         if (pte_present(ptent))
4507                 page = mc_handle_present_pte(vma, addr, ptent);
4508         else if (is_swap_pte(ptent))
4509                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510         else if (pte_none(ptent))
4511                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513         if (!page && !ent.val)
4514                 return ret;
4515         if (page) {
4516                 /*
4517                  * Do only loose check w/o serialization.
4518                  * mem_cgroup_move_account() checks the page is valid or
4519                  * not under LRU exclusion.
4520                  */
4521                 if (page->mem_cgroup == mc.from) {
4522                         ret = MC_TARGET_PAGE;
4523                         if (target)
4524                                 target->page = page;
4525                 }
4526                 if (!ret || !target)
4527                         put_page(page);
4528         }
4529         /* There is a swap entry and a page doesn't exist or isn't charged */
4530         if (ent.val && !ret &&
4531             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532                 ret = MC_TARGET_SWAP;
4533                 if (target)
4534                         target->ent = ent;
4535         }
4536         return ret;
4537 }
4538
4539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540 /*
4541  * We don't consider swapping or file mapped pages because THP does not
4542  * support them for now.
4543  * Caller should make sure that pmd_trans_huge(pmd) is true.
4544  */
4545 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546                 unsigned long addr, pmd_t pmd, union mc_target *target)
4547 {
4548         struct page *page = NULL;
4549         enum mc_target_type ret = MC_TARGET_NONE;
4550
4551         page = pmd_page(pmd);
4552         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553         if (!(mc.flags & MOVE_ANON))
4554                 return ret;
4555         if (page->mem_cgroup == mc.from) {
4556                 ret = MC_TARGET_PAGE;
4557                 if (target) {
4558                         get_page(page);
4559                         target->page = page;
4560                 }
4561         }
4562         return ret;
4563 }
4564 #else
4565 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566                 unsigned long addr, pmd_t pmd, union mc_target *target)
4567 {
4568         return MC_TARGET_NONE;
4569 }
4570 #endif
4571
4572 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573                                         unsigned long addr, unsigned long end,
4574                                         struct mm_walk *walk)
4575 {
4576         struct vm_area_struct *vma = walk->vma;
4577         pte_t *pte;
4578         spinlock_t *ptl;
4579
4580         ptl = pmd_trans_huge_lock(pmd, vma);
4581         if (ptl) {
4582                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583                         mc.precharge += HPAGE_PMD_NR;
4584                 spin_unlock(ptl);
4585                 return 0;
4586         }
4587
4588         if (pmd_trans_unstable(pmd))
4589                 return 0;
4590         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591         for (; addr != end; pte++, addr += PAGE_SIZE)
4592                 if (get_mctgt_type(vma, addr, *pte, NULL))
4593                         mc.precharge++; /* increment precharge temporarily */
4594         pte_unmap_unlock(pte - 1, ptl);
4595         cond_resched();
4596
4597         return 0;
4598 }
4599
4600 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601 {
4602         unsigned long precharge;
4603
4604         struct mm_walk mem_cgroup_count_precharge_walk = {
4605                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606                 .mm = mm,
4607         };
4608         down_read(&mm->mmap_sem);
4609         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610         up_read(&mm->mmap_sem);
4611
4612         precharge = mc.precharge;
4613         mc.precharge = 0;
4614
4615         return precharge;
4616 }
4617
4618 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619 {
4620         unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622         VM_BUG_ON(mc.moving_task);
4623         mc.moving_task = current;
4624         return mem_cgroup_do_precharge(precharge);
4625 }
4626
4627 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628 static void __mem_cgroup_clear_mc(void)
4629 {
4630         struct mem_cgroup *from = mc.from;
4631         struct mem_cgroup *to = mc.to;
4632
4633         /* we must uncharge all the leftover precharges from mc.to */
4634         if (mc.precharge) {
4635                 cancel_charge(mc.to, mc.precharge);
4636                 mc.precharge = 0;
4637         }
4638         /*
4639          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640          * we must uncharge here.
4641          */
4642         if (mc.moved_charge) {
4643                 cancel_charge(mc.from, mc.moved_charge);
4644                 mc.moved_charge = 0;
4645         }
4646         /* we must fixup refcnts and charges */
4647         if (mc.moved_swap) {
4648                 /* uncharge swap account from the old cgroup */
4649                 if (!mem_cgroup_is_root(mc.from))
4650                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652                 /*
4653                  * we charged both to->memory and to->memsw, so we
4654                  * should uncharge to->memory.
4655                  */
4656                 if (!mem_cgroup_is_root(mc.to))
4657                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659                 css_put_many(&mc.from->css, mc.moved_swap);
4660
4661                 /* we've already done css_get(mc.to) */
4662                 mc.moved_swap = 0;
4663         }
4664         memcg_oom_recover(from);
4665         memcg_oom_recover(to);
4666         wake_up_all(&mc.waitq);
4667 }
4668
4669 static void mem_cgroup_clear_mc(void)
4670 {
4671         struct mm_struct *mm = mc.mm;
4672
4673         /*
4674          * we must clear moving_task before waking up waiters at the end of
4675          * task migration.
4676          */
4677         mc.moving_task = NULL;
4678         __mem_cgroup_clear_mc();
4679         spin_lock(&mc.lock);
4680         mc.from = NULL;
4681         mc.to = NULL;
4682         mc.mm = NULL;
4683         spin_unlock(&mc.lock);
4684
4685         mmput(mm);
4686 }
4687
4688 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689 {
4690         struct cgroup_subsys_state *css;
4691         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692         struct mem_cgroup *from;
4693         struct task_struct *leader, *p;
4694         struct mm_struct *mm;
4695         unsigned long move_flags;
4696         int ret = 0;
4697
4698         /* charge immigration isn't supported on the default hierarchy */
4699         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700                 return 0;
4701
4702         /*
4703          * Multi-process migrations only happen on the default hierarchy
4704          * where charge immigration is not used.  Perform charge
4705          * immigration if @tset contains a leader and whine if there are
4706          * multiple.
4707          */
4708         p = NULL;
4709         cgroup_taskset_for_each_leader(leader, css, tset) {
4710                 WARN_ON_ONCE(p);
4711                 p = leader;
4712                 memcg = mem_cgroup_from_css(css);
4713         }
4714         if (!p)
4715                 return 0;
4716
4717         /*
4718          * We are now commited to this value whatever it is. Changes in this
4719          * tunable will only affect upcoming migrations, not the current one.
4720          * So we need to save it, and keep it going.
4721          */
4722         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723         if (!move_flags)
4724                 return 0;
4725
4726         from = mem_cgroup_from_task(p);
4727
4728         VM_BUG_ON(from == memcg);
4729
4730         mm = get_task_mm(p);
4731         if (!mm)
4732                 return 0;
4733         /* We move charges only when we move a owner of the mm */
4734         if (mm->owner == p) {
4735                 VM_BUG_ON(mc.from);
4736                 VM_BUG_ON(mc.to);
4737                 VM_BUG_ON(mc.precharge);
4738                 VM_BUG_ON(mc.moved_charge);
4739                 VM_BUG_ON(mc.moved_swap);
4740
4741                 spin_lock(&mc.lock);
4742                 mc.mm = mm;
4743                 mc.from = from;
4744                 mc.to = memcg;
4745                 mc.flags = move_flags;
4746                 spin_unlock(&mc.lock);
4747                 /* We set mc.moving_task later */
4748
4749                 ret = mem_cgroup_precharge_mc(mm);
4750                 if (ret)
4751                         mem_cgroup_clear_mc();
4752         } else {
4753                 mmput(mm);
4754         }
4755         return ret;
4756 }
4757
4758 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759 {
4760         if (mc.to)
4761                 mem_cgroup_clear_mc();
4762 }
4763
4764 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765                                 unsigned long addr, unsigned long end,
4766                                 struct mm_walk *walk)
4767 {
4768         int ret = 0;
4769         struct vm_area_struct *vma = walk->vma;
4770         pte_t *pte;
4771         spinlock_t *ptl;
4772         enum mc_target_type target_type;
4773         union mc_target target;
4774         struct page *page;
4775
4776         ptl = pmd_trans_huge_lock(pmd, vma);
4777         if (ptl) {
4778                 if (mc.precharge < HPAGE_PMD_NR) {
4779                         spin_unlock(ptl);
4780                         return 0;
4781                 }
4782                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783                 if (target_type == MC_TARGET_PAGE) {
4784                         page = target.page;
4785                         if (!isolate_lru_page(page)) {
4786                                 if (!mem_cgroup_move_account(page, true,
4787                                                              mc.from, mc.to)) {
4788                                         mc.precharge -= HPAGE_PMD_NR;
4789                                         mc.moved_charge += HPAGE_PMD_NR;
4790                                 }
4791                                 putback_lru_page(page);
4792                         }
4793                         put_page(page);
4794                 }
4795                 spin_unlock(ptl);
4796                 return 0;
4797         }
4798
4799         if (pmd_trans_unstable(pmd))
4800                 return 0;
4801 retry:
4802         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803         for (; addr != end; addr += PAGE_SIZE) {
4804                 pte_t ptent = *(pte++);
4805                 swp_entry_t ent;
4806
4807                 if (!mc.precharge)
4808                         break;
4809
4810                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811                 case MC_TARGET_PAGE:
4812                         page = target.page;
4813                         /*
4814                          * We can have a part of the split pmd here. Moving it
4815                          * can be done but it would be too convoluted so simply
4816                          * ignore such a partial THP and keep it in original
4817                          * memcg. There should be somebody mapping the head.
4818                          */
4819                         if (PageTransCompound(page))
4820                                 goto put;
4821                         if (isolate_lru_page(page))
4822                                 goto put;
4823                         if (!mem_cgroup_move_account(page, false,
4824                                                 mc.from, mc.to)) {
4825                                 mc.precharge--;
4826                                 /* we uncharge from mc.from later. */
4827                                 mc.moved_charge++;
4828                         }
4829                         putback_lru_page(page);
4830 put:                    /* get_mctgt_type() gets the page */
4831                         put_page(page);
4832                         break;
4833                 case MC_TARGET_SWAP:
4834                         ent = target.ent;
4835                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836                                 mc.precharge--;
4837                                 /* we fixup refcnts and charges later. */
4838                                 mc.moved_swap++;
4839                         }
4840                         break;
4841                 default:
4842                         break;
4843                 }
4844         }
4845         pte_unmap_unlock(pte - 1, ptl);
4846         cond_resched();
4847
4848         if (addr != end) {
4849                 /*
4850                  * We have consumed all precharges we got in can_attach().
4851                  * We try charge one by one, but don't do any additional
4852                  * charges to mc.to if we have failed in charge once in attach()
4853                  * phase.
4854                  */
4855                 ret = mem_cgroup_do_precharge(1);
4856                 if (!ret)
4857                         goto retry;
4858         }
4859
4860         return ret;
4861 }
4862
4863 static void mem_cgroup_move_charge(void)
4864 {
4865         struct mm_walk mem_cgroup_move_charge_walk = {
4866                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4867                 .mm = mc.mm,
4868         };
4869
4870         lru_add_drain_all();
4871         /*
4872          * Signal lock_page_memcg() to take the memcg's move_lock
4873          * while we're moving its pages to another memcg. Then wait
4874          * for already started RCU-only updates to finish.
4875          */
4876         atomic_inc(&mc.from->moving_account);
4877         synchronize_rcu();
4878 retry:
4879         if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880                 /*
4881                  * Someone who are holding the mmap_sem might be waiting in
4882                  * waitq. So we cancel all extra charges, wake up all waiters,
4883                  * and retry. Because we cancel precharges, we might not be able
4884                  * to move enough charges, but moving charge is a best-effort
4885                  * feature anyway, so it wouldn't be a big problem.
4886                  */
4887                 __mem_cgroup_clear_mc();
4888                 cond_resched();
4889                 goto retry;
4890         }
4891         /*
4892          * When we have consumed all precharges and failed in doing
4893          * additional charge, the page walk just aborts.
4894          */
4895         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896         up_read(&mc.mm->mmap_sem);
4897         atomic_dec(&mc.from->moving_account);
4898 }
4899
4900 static void mem_cgroup_move_task(void)
4901 {
4902         if (mc.to) {
4903                 mem_cgroup_move_charge();
4904                 mem_cgroup_clear_mc();
4905         }
4906 }
4907 #else   /* !CONFIG_MMU */
4908 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909 {
4910         return 0;
4911 }
4912 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913 {
4914 }
4915 static void mem_cgroup_move_task(void)
4916 {
4917 }
4918 #endif
4919
4920 /*
4921  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922  * to verify whether we're attached to the default hierarchy on each mount
4923  * attempt.
4924  */
4925 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926 {
4927         /*
4928          * use_hierarchy is forced on the default hierarchy.  cgroup core
4929          * guarantees that @root doesn't have any children, so turning it
4930          * on for the root memcg is enough.
4931          */
4932         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933                 root_mem_cgroup->use_hierarchy = true;
4934         else
4935                 root_mem_cgroup->use_hierarchy = false;
4936 }
4937
4938 static u64 memory_current_read(struct cgroup_subsys_state *css,
4939                                struct cftype *cft)
4940 {
4941         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944 }
4945
4946 static int memory_low_show(struct seq_file *m, void *v)
4947 {
4948         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949         unsigned long low = READ_ONCE(memcg->low);
4950
4951         if (low == PAGE_COUNTER_MAX)
4952                 seq_puts(m, "max\n");
4953         else
4954                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956         return 0;
4957 }
4958
4959 static ssize_t memory_low_write(struct kernfs_open_file *of,
4960                                 char *buf, size_t nbytes, loff_t off)
4961 {
4962         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963         unsigned long low;
4964         int err;
4965
4966         buf = strstrip(buf);
4967         err = page_counter_memparse(buf, "max", &low);
4968         if (err)
4969                 return err;
4970
4971         memcg->low = low;
4972
4973         return nbytes;
4974 }
4975
4976 static int memory_high_show(struct seq_file *m, void *v)
4977 {
4978         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979         unsigned long high = READ_ONCE(memcg->high);
4980
4981         if (high == PAGE_COUNTER_MAX)
4982                 seq_puts(m, "max\n");
4983         else
4984                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986         return 0;
4987 }
4988
4989 static ssize_t memory_high_write(struct kernfs_open_file *of,
4990                                  char *buf, size_t nbytes, loff_t off)
4991 {
4992         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993         unsigned long nr_pages;
4994         unsigned long high;
4995         int err;
4996
4997         buf = strstrip(buf);
4998         err = page_counter_memparse(buf, "max", &high);
4999         if (err)
5000                 return err;
5001
5002         memcg->high = high;
5003
5004         nr_pages = page_counter_read(&memcg->memory);
5005         if (nr_pages > high)
5006                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007                                              GFP_KERNEL, true);
5008
5009         memcg_wb_domain_size_changed(memcg);
5010         return nbytes;
5011 }
5012
5013 static int memory_max_show(struct seq_file *m, void *v)
5014 {
5015         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016         unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018         if (max == PAGE_COUNTER_MAX)
5019                 seq_puts(m, "max\n");
5020         else
5021                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023         return 0;
5024 }
5025
5026 static ssize_t memory_max_write(struct kernfs_open_file *of,
5027                                 char *buf, size_t nbytes, loff_t off)
5028 {
5029         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031         bool drained = false;
5032         unsigned long max;
5033         int err;
5034
5035         buf = strstrip(buf);
5036         err = page_counter_memparse(buf, "max", &max);
5037         if (err)
5038                 return err;
5039
5040         xchg(&memcg->memory.limit, max);
5041
5042         for (;;) {
5043                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045                 if (nr_pages <= max)
5046                         break;
5047
5048                 if (signal_pending(current)) {
5049                         err = -EINTR;
5050                         break;
5051                 }
5052
5053                 if (!drained) {
5054                         drain_all_stock(memcg);
5055                         drained = true;
5056                         continue;
5057                 }
5058
5059                 if (nr_reclaims) {
5060                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061                                                           GFP_KERNEL, true))
5062                                 nr_reclaims--;
5063                         continue;
5064                 }
5065
5066                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068                         break;
5069         }
5070
5071         memcg_wb_domain_size_changed(memcg);
5072         return nbytes;
5073 }
5074
5075 static int memory_events_show(struct seq_file *m, void *v)
5076 {
5077         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084         return 0;
5085 }
5086
5087 static int memory_stat_show(struct seq_file *m, void *v)
5088 {
5089         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090         unsigned long stat[MEMCG_NR_STAT];
5091         unsigned long events[MEMCG_NR_EVENTS];
5092         int i;
5093
5094         /*
5095          * Provide statistics on the state of the memory subsystem as
5096          * well as cumulative event counters that show past behavior.
5097          *
5098          * This list is ordered following a combination of these gradients:
5099          * 1) generic big picture -> specifics and details
5100          * 2) reflecting userspace activity -> reflecting kernel heuristics
5101          *
5102          * Current memory state:
5103          */
5104
5105         tree_stat(memcg, stat);
5106         tree_events(memcg, events);
5107
5108         seq_printf(m, "anon %llu\n",
5109                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110         seq_printf(m, "file %llu\n",
5111                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112         seq_printf(m, "kernel_stack %llu\n",
5113                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114         seq_printf(m, "slab %llu\n",
5115                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117         seq_printf(m, "sock %llu\n",
5118                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120         seq_printf(m, "file_mapped %llu\n",
5121                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122         seq_printf(m, "file_dirty %llu\n",
5123                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124         seq_printf(m, "file_writeback %llu\n",
5125                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127         for (i = 0; i < NR_LRU_LISTS; i++) {
5128                 struct mem_cgroup *mi;
5129                 unsigned long val = 0;
5130
5131                 for_each_mem_cgroup_tree(mi, memcg)
5132                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133                 seq_printf(m, "%s %llu\n",
5134                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135         }
5136
5137         seq_printf(m, "slab_reclaimable %llu\n",
5138                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139         seq_printf(m, "slab_unreclaimable %llu\n",
5140                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142         /* Accumulated memory events */
5143
5144         seq_printf(m, "pgfault %lu\n",
5145                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5146         seq_printf(m, "pgmajfault %lu\n",
5147                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149         return 0;
5150 }
5151
5152 static struct cftype memory_files[] = {
5153         {
5154                 .name = "current",
5155                 .flags = CFTYPE_NOT_ON_ROOT,
5156                 .read_u64 = memory_current_read,
5157         },
5158         {
5159                 .name = "low",
5160                 .flags = CFTYPE_NOT_ON_ROOT,
5161                 .seq_show = memory_low_show,
5162                 .write = memory_low_write,
5163         },
5164         {
5165                 .name = "high",
5166                 .flags = CFTYPE_NOT_ON_ROOT,
5167                 .seq_show = memory_high_show,
5168                 .write = memory_high_write,
5169         },
5170         {
5171                 .name = "max",
5172                 .flags = CFTYPE_NOT_ON_ROOT,
5173                 .seq_show = memory_max_show,
5174                 .write = memory_max_write,
5175         },
5176         {
5177                 .name = "events",
5178                 .flags = CFTYPE_NOT_ON_ROOT,
5179                 .file_offset = offsetof(struct mem_cgroup, events_file),
5180                 .seq_show = memory_events_show,
5181         },
5182         {
5183                 .name = "stat",
5184                 .flags = CFTYPE_NOT_ON_ROOT,
5185                 .seq_show = memory_stat_show,
5186         },
5187         { }     /* terminate */
5188 };
5189
5190 struct cgroup_subsys memory_cgrp_subsys = {
5191         .css_alloc = mem_cgroup_css_alloc,
5192         .css_online = mem_cgroup_css_online,
5193         .css_offline = mem_cgroup_css_offline,
5194         .css_released = mem_cgroup_css_released,
5195         .css_free = mem_cgroup_css_free,
5196         .css_reset = mem_cgroup_css_reset,
5197         .can_attach = mem_cgroup_can_attach,
5198         .cancel_attach = mem_cgroup_cancel_attach,
5199         .post_attach = mem_cgroup_move_task,
5200         .bind = mem_cgroup_bind,
5201         .dfl_cftypes = memory_files,
5202         .legacy_cftypes = mem_cgroup_legacy_files,
5203         .early_init = 0,
5204 };
5205
5206 /**
5207  * mem_cgroup_low - check if memory consumption is below the normal range
5208  * @root: the highest ancestor to consider
5209  * @memcg: the memory cgroup to check
5210  *
5211  * Returns %true if memory consumption of @memcg, and that of all
5212  * configurable ancestors up to @root, is below the normal range.
5213  */
5214 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215 {
5216         if (mem_cgroup_disabled())
5217                 return false;
5218
5219         /*
5220          * The toplevel group doesn't have a configurable range, so
5221          * it's never low when looked at directly, and it is not
5222          * considered an ancestor when assessing the hierarchy.
5223          */
5224
5225         if (memcg == root_mem_cgroup)
5226                 return false;
5227
5228         if (page_counter_read(&memcg->memory) >= memcg->low)
5229                 return false;
5230
5231         while (memcg != root) {
5232                 memcg = parent_mem_cgroup(memcg);
5233
5234                 if (memcg == root_mem_cgroup)
5235                         break;
5236
5237                 if (page_counter_read(&memcg->memory) >= memcg->low)
5238                         return false;
5239         }
5240         return true;
5241 }
5242
5243 /**
5244  * mem_cgroup_try_charge - try charging a page
5245  * @page: page to charge
5246  * @mm: mm context of the victim
5247  * @gfp_mask: reclaim mode
5248  * @memcgp: charged memcg return
5249  *
5250  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251  * pages according to @gfp_mask if necessary.
5252  *
5253  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254  * Otherwise, an error code is returned.
5255  *
5256  * After page->mapping has been set up, the caller must finalize the
5257  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5258  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259  */
5260 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262                           bool compound)
5263 {
5264         struct mem_cgroup *memcg = NULL;
5265         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266         int ret = 0;
5267
5268         if (mem_cgroup_disabled())
5269                 goto out;
5270
5271         if (PageSwapCache(page)) {
5272                 /*
5273                  * Every swap fault against a single page tries to charge the
5274                  * page, bail as early as possible.  shmem_unuse() encounters
5275                  * already charged pages, too.  The USED bit is protected by
5276                  * the page lock, which serializes swap cache removal, which
5277                  * in turn serializes uncharging.
5278                  */
5279                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5280                 if (page->mem_cgroup)
5281                         goto out;
5282
5283                 if (do_swap_account) {
5284                         swp_entry_t ent = { .val = page_private(page), };
5285                         unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287                         rcu_read_lock();
5288                         memcg = mem_cgroup_from_id(id);
5289                         if (memcg && !css_tryget_online(&memcg->css))
5290                                 memcg = NULL;
5291                         rcu_read_unlock();
5292                 }
5293         }
5294
5295         if (!memcg)
5296                 memcg = get_mem_cgroup_from_mm(mm);
5297
5298         ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300         css_put(&memcg->css);
5301 out:
5302         *memcgp = memcg;
5303         return ret;
5304 }
5305
5306 /**
5307  * mem_cgroup_commit_charge - commit a page charge
5308  * @page: page to charge
5309  * @memcg: memcg to charge the page to
5310  * @lrucare: page might be on LRU already
5311  *
5312  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313  * after page->mapping has been set up.  This must happen atomically
5314  * as part of the page instantiation, i.e. under the page table lock
5315  * for anonymous pages, under the page lock for page and swap cache.
5316  *
5317  * In addition, the page must not be on the LRU during the commit, to
5318  * prevent racing with task migration.  If it might be, use @lrucare.
5319  *
5320  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321  */
5322 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323                               bool lrucare, bool compound)
5324 {
5325         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327         VM_BUG_ON_PAGE(!page->mapping, page);
5328         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330         if (mem_cgroup_disabled())
5331                 return;
5332         /*
5333          * Swap faults will attempt to charge the same page multiple
5334          * times.  But reuse_swap_page() might have removed the page
5335          * from swapcache already, so we can't check PageSwapCache().
5336          */
5337         if (!memcg)
5338                 return;
5339
5340         commit_charge(page, memcg, lrucare);
5341
5342         local_irq_disable();
5343         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344         memcg_check_events(memcg, page);
5345         local_irq_enable();
5346
5347         if (do_memsw_account() && PageSwapCache(page)) {
5348                 swp_entry_t entry = { .val = page_private(page) };
5349                 /*
5350                  * The swap entry might not get freed for a long time,
5351                  * let's not wait for it.  The page already received a
5352                  * memory+swap charge, drop the swap entry duplicate.
5353                  */
5354                 mem_cgroup_uncharge_swap(entry);
5355         }
5356 }
5357
5358 /**
5359  * mem_cgroup_cancel_charge - cancel a page charge
5360  * @page: page to charge
5361  * @memcg: memcg to charge the page to
5362  *
5363  * Cancel a charge transaction started by mem_cgroup_try_charge().
5364  */
5365 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366                 bool compound)
5367 {
5368         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370         if (mem_cgroup_disabled())
5371                 return;
5372         /*
5373          * Swap faults will attempt to charge the same page multiple
5374          * times.  But reuse_swap_page() might have removed the page
5375          * from swapcache already, so we can't check PageSwapCache().
5376          */
5377         if (!memcg)
5378                 return;
5379
5380         cancel_charge(memcg, nr_pages);
5381 }
5382
5383 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384                            unsigned long nr_anon, unsigned long nr_file,
5385                            unsigned long nr_huge, struct page *dummy_page)
5386 {
5387         unsigned long nr_pages = nr_anon + nr_file;
5388         unsigned long flags;
5389
5390         if (!mem_cgroup_is_root(memcg)) {
5391                 page_counter_uncharge(&memcg->memory, nr_pages);
5392                 if (do_memsw_account())
5393                         page_counter_uncharge(&memcg->memsw, nr_pages);
5394                 memcg_oom_recover(memcg);
5395         }
5396
5397         local_irq_save(flags);
5398         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403         memcg_check_events(memcg, dummy_page);
5404         local_irq_restore(flags);
5405
5406         if (!mem_cgroup_is_root(memcg))
5407                 css_put_many(&memcg->css, nr_pages);
5408 }
5409
5410 static void uncharge_list(struct list_head *page_list)
5411 {
5412         struct mem_cgroup *memcg = NULL;
5413         unsigned long nr_anon = 0;
5414         unsigned long nr_file = 0;
5415         unsigned long nr_huge = 0;
5416         unsigned long pgpgout = 0;
5417         struct list_head *next;
5418         struct page *page;
5419
5420         /*
5421          * Note that the list can be a single page->lru; hence the
5422          * do-while loop instead of a simple list_for_each_entry().
5423          */
5424         next = page_list->next;
5425         do {
5426                 unsigned int nr_pages = 1;
5427
5428                 page = list_entry(next, struct page, lru);
5429                 next = page->lru.next;
5430
5431                 VM_BUG_ON_PAGE(PageLRU(page), page);
5432                 VM_BUG_ON_PAGE(page_count(page), page);
5433
5434                 if (!page->mem_cgroup)
5435                         continue;
5436
5437                 /*
5438                  * Nobody should be changing or seriously looking at
5439                  * page->mem_cgroup at this point, we have fully
5440                  * exclusive access to the page.
5441                  */
5442
5443                 if (memcg != page->mem_cgroup) {
5444                         if (memcg) {
5445                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446                                                nr_huge, page);
5447                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5448                         }
5449                         memcg = page->mem_cgroup;
5450                 }
5451
5452                 if (PageTransHuge(page)) {
5453                         nr_pages <<= compound_order(page);
5454                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455                         nr_huge += nr_pages;
5456                 }
5457
5458                 if (PageAnon(page))
5459                         nr_anon += nr_pages;
5460                 else
5461                         nr_file += nr_pages;
5462
5463                 page->mem_cgroup = NULL;
5464
5465                 pgpgout++;
5466         } while (next != page_list);
5467
5468         if (memcg)
5469                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470                                nr_huge, page);
5471 }
5472
5473 /**
5474  * mem_cgroup_uncharge - uncharge a page
5475  * @page: page to uncharge
5476  *
5477  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478  * mem_cgroup_commit_charge().
5479  */
5480 void mem_cgroup_uncharge(struct page *page)
5481 {
5482         if (mem_cgroup_disabled())
5483                 return;
5484
5485         /* Don't touch page->lru of any random page, pre-check: */
5486         if (!page->mem_cgroup)
5487                 return;
5488
5489         INIT_LIST_HEAD(&page->lru);
5490         uncharge_list(&page->lru);
5491 }
5492
5493 /**
5494  * mem_cgroup_uncharge_list - uncharge a list of page
5495  * @page_list: list of pages to uncharge
5496  *
5497  * Uncharge a list of pages previously charged with
5498  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499  */
5500 void mem_cgroup_uncharge_list(struct list_head *page_list)
5501 {
5502         if (mem_cgroup_disabled())
5503                 return;
5504
5505         if (!list_empty(page_list))
5506                 uncharge_list(page_list);
5507 }
5508
5509 /**
5510  * mem_cgroup_migrate - charge a page's replacement
5511  * @oldpage: currently circulating page
5512  * @newpage: replacement page
5513  *
5514  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515  * be uncharged upon free.
5516  *
5517  * Both pages must be locked, @newpage->mapping must be set up.
5518  */
5519 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520 {
5521         struct mem_cgroup *memcg;
5522         unsigned int nr_pages;
5523         bool compound;
5524
5525         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529                        newpage);
5530
5531         if (mem_cgroup_disabled())
5532                 return;
5533
5534         /* Page cache replacement: new page already charged? */
5535         if (newpage->mem_cgroup)
5536                 return;
5537
5538         /* Swapcache readahead pages can get replaced before being charged */
5539         memcg = oldpage->mem_cgroup;
5540         if (!memcg)
5541                 return;
5542
5543         /* Force-charge the new page. The old one will be freed soon */
5544         compound = PageTransHuge(newpage);
5545         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547         page_counter_charge(&memcg->memory, nr_pages);
5548         if (do_memsw_account())
5549                 page_counter_charge(&memcg->memsw, nr_pages);
5550         css_get_many(&memcg->css, nr_pages);
5551
5552         commit_charge(newpage, memcg, false);
5553
5554         local_irq_disable();
5555         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556         memcg_check_events(memcg, newpage);
5557         local_irq_enable();
5558 }
5559
5560 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563 void sock_update_memcg(struct sock *sk)
5564 {
5565         struct mem_cgroup *memcg;
5566
5567         /* Socket cloning can throw us here with sk_cgrp already
5568          * filled. It won't however, necessarily happen from
5569          * process context. So the test for root memcg given
5570          * the current task's memcg won't help us in this case.
5571          *
5572          * Respecting the original socket's memcg is a better
5573          * decision in this case.
5574          */
5575         if (sk->sk_memcg) {
5576                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577                 css_get(&sk->sk_memcg->css);
5578                 return;
5579         }
5580
5581         rcu_read_lock();
5582         memcg = mem_cgroup_from_task(current);
5583         if (memcg == root_mem_cgroup)
5584                 goto out;
5585         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586                 goto out;
5587         if (css_tryget_online(&memcg->css))
5588                 sk->sk_memcg = memcg;
5589 out:
5590         rcu_read_unlock();
5591 }
5592 EXPORT_SYMBOL(sock_update_memcg);
5593
5594 void sock_release_memcg(struct sock *sk)
5595 {
5596         WARN_ON(!sk->sk_memcg);
5597         css_put(&sk->sk_memcg->css);
5598 }
5599
5600 /**
5601  * mem_cgroup_charge_skmem - charge socket memory
5602  * @memcg: memcg to charge
5603  * @nr_pages: number of pages to charge
5604  *
5605  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606  * @memcg's configured limit, %false if the charge had to be forced.
5607  */
5608 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609 {
5610         gfp_t gfp_mask = GFP_KERNEL;
5611
5612         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613                 struct page_counter *fail;
5614
5615                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616                         memcg->tcpmem_pressure = 0;
5617                         return true;
5618                 }
5619                 page_counter_charge(&memcg->tcpmem, nr_pages);
5620                 memcg->tcpmem_pressure = 1;
5621                 return false;
5622         }
5623
5624         /* Don't block in the packet receive path */
5625         if (in_softirq())
5626                 gfp_mask = GFP_NOWAIT;
5627
5628         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631                 return true;
5632
5633         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634         return false;
5635 }
5636
5637 /**
5638  * mem_cgroup_uncharge_skmem - uncharge socket memory
5639  * @memcg - memcg to uncharge
5640  * @nr_pages - number of pages to uncharge
5641  */
5642 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643 {
5644         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646                 return;
5647         }
5648
5649         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651         page_counter_uncharge(&memcg->memory, nr_pages);
5652         css_put_many(&memcg->css, nr_pages);
5653 }
5654
5655 static int __init cgroup_memory(char *s)
5656 {
5657         char *token;
5658
5659         while ((token = strsep(&s, ",")) != NULL) {
5660                 if (!*token)
5661                         continue;
5662                 if (!strcmp(token, "nosocket"))
5663                         cgroup_memory_nosocket = true;
5664                 if (!strcmp(token, "nokmem"))
5665                         cgroup_memory_nokmem = true;
5666         }
5667         return 0;
5668 }
5669 __setup("cgroup.memory=", cgroup_memory);
5670
5671 /*
5672  * subsys_initcall() for memory controller.
5673  *
5674  * Some parts like hotcpu_notifier() have to be initialized from this context
5675  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676  * everything that doesn't depend on a specific mem_cgroup structure should
5677  * be initialized from here.
5678  */
5679 static int __init mem_cgroup_init(void)
5680 {
5681         int cpu, node;
5682
5683         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685         for_each_possible_cpu(cpu)
5686                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687                           drain_local_stock);
5688
5689         for_each_node(node) {
5690                 struct mem_cgroup_tree_per_node *rtpn;
5691                 int zone;
5692
5693                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694                                     node_online(node) ? node : NUMA_NO_NODE);
5695
5696                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697                         struct mem_cgroup_tree_per_zone *rtpz;
5698
5699                         rtpz = &rtpn->rb_tree_per_zone[zone];
5700                         rtpz->rb_root = RB_ROOT;
5701                         spin_lock_init(&rtpz->lock);
5702                 }
5703                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704         }
5705
5706         return 0;
5707 }
5708 subsys_initcall(mem_cgroup_init);
5709
5710 #ifdef CONFIG_MEMCG_SWAP
5711 /**
5712  * mem_cgroup_swapout - transfer a memsw charge to swap
5713  * @page: page whose memsw charge to transfer
5714  * @entry: swap entry to move the charge to
5715  *
5716  * Transfer the memsw charge of @page to @entry.
5717  */
5718 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719 {
5720         struct mem_cgroup *memcg;
5721         unsigned short oldid;
5722
5723         VM_BUG_ON_PAGE(PageLRU(page), page);
5724         VM_BUG_ON_PAGE(page_count(page), page);
5725
5726         if (!do_memsw_account())
5727                 return;
5728
5729         memcg = page->mem_cgroup;
5730
5731         /* Readahead page, never charged */
5732         if (!memcg)
5733                 return;
5734
5735         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736         VM_BUG_ON_PAGE(oldid, page);
5737         mem_cgroup_swap_statistics(memcg, true);
5738
5739         page->mem_cgroup = NULL;
5740
5741         if (!mem_cgroup_is_root(memcg))
5742                 page_counter_uncharge(&memcg->memory, 1);
5743
5744         /*
5745          * Interrupts should be disabled here because the caller holds the
5746          * mapping->tree_lock lock which is taken with interrupts-off. It is
5747          * important here to have the interrupts disabled because it is the
5748          * only synchronisation we have for udpating the per-CPU variables.
5749          */
5750         VM_BUG_ON(!irqs_disabled());
5751         mem_cgroup_charge_statistics(memcg, page, false, -1);
5752         memcg_check_events(memcg, page);
5753 }
5754
5755 /*
5756  * mem_cgroup_try_charge_swap - try charging a swap entry
5757  * @page: page being added to swap
5758  * @entry: swap entry to charge
5759  *
5760  * Try to charge @entry to the memcg that @page belongs to.
5761  *
5762  * Returns 0 on success, -ENOMEM on failure.
5763  */
5764 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765 {
5766         struct mem_cgroup *memcg;
5767         struct page_counter *counter;
5768         unsigned short oldid;
5769
5770         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771                 return 0;
5772
5773         memcg = page->mem_cgroup;
5774
5775         /* Readahead page, never charged */
5776         if (!memcg)
5777                 return 0;
5778
5779         if (!mem_cgroup_is_root(memcg) &&
5780             !page_counter_try_charge(&memcg->swap, 1, &counter))
5781                 return -ENOMEM;
5782
5783         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784         VM_BUG_ON_PAGE(oldid, page);
5785         mem_cgroup_swap_statistics(memcg, true);
5786
5787         css_get(&memcg->css);
5788         return 0;
5789 }
5790
5791 /**
5792  * mem_cgroup_uncharge_swap - uncharge a swap entry
5793  * @entry: swap entry to uncharge
5794  *
5795  * Drop the swap charge associated with @entry.
5796  */
5797 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798 {
5799         struct mem_cgroup *memcg;
5800         unsigned short id;
5801
5802         if (!do_swap_account)
5803                 return;
5804
5805         id = swap_cgroup_record(entry, 0);
5806         rcu_read_lock();
5807         memcg = mem_cgroup_from_id(id);
5808         if (memcg) {
5809                 if (!mem_cgroup_is_root(memcg)) {
5810                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811                                 page_counter_uncharge(&memcg->swap, 1);
5812                         else
5813                                 page_counter_uncharge(&memcg->memsw, 1);
5814                 }
5815                 mem_cgroup_swap_statistics(memcg, false);
5816                 css_put(&memcg->css);
5817         }
5818         rcu_read_unlock();
5819 }
5820
5821 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822 {
5823         long nr_swap_pages = get_nr_swap_pages();
5824
5825         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826                 return nr_swap_pages;
5827         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828                 nr_swap_pages = min_t(long, nr_swap_pages,
5829                                       READ_ONCE(memcg->swap.limit) -
5830                                       page_counter_read(&memcg->swap));
5831         return nr_swap_pages;
5832 }
5833
5834 bool mem_cgroup_swap_full(struct page *page)
5835 {
5836         struct mem_cgroup *memcg;
5837
5838         VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840         if (vm_swap_full())
5841                 return true;
5842         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843                 return false;
5844
5845         memcg = page->mem_cgroup;
5846         if (!memcg)
5847                 return false;
5848
5849         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851                         return true;
5852
5853         return false;
5854 }
5855
5856 /* for remember boot option*/
5857 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5858 static int really_do_swap_account __initdata = 1;
5859 #else
5860 static int really_do_swap_account __initdata;
5861 #endif
5862
5863 static int __init enable_swap_account(char *s)
5864 {
5865         if (!strcmp(s, "1"))
5866                 really_do_swap_account = 1;
5867         else if (!strcmp(s, "0"))
5868                 really_do_swap_account = 0;
5869         return 1;
5870 }
5871 __setup("swapaccount=", enable_swap_account);
5872
5873 static u64 swap_current_read(struct cgroup_subsys_state *css,
5874                              struct cftype *cft)
5875 {
5876         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879 }
5880
5881 static int swap_max_show(struct seq_file *m, void *v)
5882 {
5883         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884         unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886         if (max == PAGE_COUNTER_MAX)
5887                 seq_puts(m, "max\n");
5888         else
5889                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891         return 0;
5892 }
5893
5894 static ssize_t swap_max_write(struct kernfs_open_file *of,
5895                               char *buf, size_t nbytes, loff_t off)
5896 {
5897         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898         unsigned long max;
5899         int err;
5900
5901         buf = strstrip(buf);
5902         err = page_counter_memparse(buf, "max", &max);
5903         if (err)
5904                 return err;
5905
5906         mutex_lock(&memcg_limit_mutex);
5907         err = page_counter_limit(&memcg->swap, max);
5908         mutex_unlock(&memcg_limit_mutex);
5909         if (err)
5910                 return err;
5911
5912         return nbytes;
5913 }
5914
5915 static struct cftype swap_files[] = {
5916         {
5917                 .name = "swap.current",
5918                 .flags = CFTYPE_NOT_ON_ROOT,
5919                 .read_u64 = swap_current_read,
5920         },
5921         {
5922                 .name = "swap.max",
5923                 .flags = CFTYPE_NOT_ON_ROOT,
5924                 .seq_show = swap_max_show,
5925                 .write = swap_max_write,
5926         },
5927         { }     /* terminate */
5928 };
5929
5930 static struct cftype memsw_cgroup_files[] = {
5931         {
5932                 .name = "memsw.usage_in_bytes",
5933                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934                 .read_u64 = mem_cgroup_read_u64,
5935         },
5936         {
5937                 .name = "memsw.max_usage_in_bytes",
5938                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939                 .write = mem_cgroup_reset,
5940                 .read_u64 = mem_cgroup_read_u64,
5941         },
5942         {
5943                 .name = "memsw.limit_in_bytes",
5944                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945                 .write = mem_cgroup_write,
5946                 .read_u64 = mem_cgroup_read_u64,
5947         },
5948         {
5949                 .name = "memsw.failcnt",
5950                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951                 .write = mem_cgroup_reset,
5952                 .read_u64 = mem_cgroup_read_u64,
5953         },
5954         { },    /* terminate */
5955 };
5956
5957 static int __init mem_cgroup_swap_init(void)
5958 {
5959         if (!mem_cgroup_disabled() && really_do_swap_account) {
5960                 do_swap_account = 1;
5961                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962                                                swap_files));
5963                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964                                                   memsw_cgroup_files));
5965         }
5966         return 0;
5967 }
5968 subsys_initcall(mem_cgroup_swap_init);
5969
5970 #endif /* CONFIG_MEMCG_SWAP */