Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[linux-2.6-block.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES      5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account         0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102         "cache",
103         "rss",
104         "rss_huge",
105         "mapped_file",
106         "dirty",
107         "writeback",
108         "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112         "pgpgin",
113         "pgpgout",
114         "pgfault",
115         "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119         "inactive_anon",
120         "active_anon",
121         "inactive_file",
122         "active_file",
123         "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET  1024
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152         struct list_head list;
153         struct eventfd_ctx *eventfd;
154 };
155
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160         /*
161          * memcg which the event belongs to.
162          */
163         struct mem_cgroup *memcg;
164         /*
165          * eventfd to signal userspace about the event.
166          */
167         struct eventfd_ctx *eventfd;
168         /*
169          * Each of these stored in a list by the cgroup.
170          */
171         struct list_head list;
172         /*
173          * register_event() callback will be used to add new userspace
174          * waiter for changes related to this event.  Use eventfd_signal()
175          * on eventfd to send notification to userspace.
176          */
177         int (*register_event)(struct mem_cgroup *memcg,
178                               struct eventfd_ctx *eventfd, const char *args);
179         /*
180          * unregister_event() callback will be called when userspace closes
181          * the eventfd or on cgroup removing.  This callback must be set,
182          * if you want provide notification functionality.
183          */
184         void (*unregister_event)(struct mem_cgroup *memcg,
185                                  struct eventfd_ctx *eventfd);
186         /*
187          * All fields below needed to unregister event when
188          * userspace closes eventfd.
189          */
190         poll_table pt;
191         wait_queue_head_t *wqh;
192         wait_queue_t wait;
193         struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON       0x1U
204 #define MOVE_FILE       0x2U
205 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209         spinlock_t        lock; /* for from, to */
210         struct mm_struct  *mm;
211         struct mem_cgroup *from;
212         struct mem_cgroup *to;
213         unsigned long flags;
214         unsigned long precharge;
215         unsigned long moved_charge;
216         unsigned long moved_swap;
217         struct task_struct *moving_task;        /* a task moving charges */
218         wait_queue_head_t waitq;                /* a waitq for other context */
219 } mc = {
220         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233         MEM_CGROUP_CHARGE_TYPE_ANON,
234         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
236         NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241         _MEM,
242         _MEMSWAP,
243         _OOM_TYPE,
244         _KMEM,
245         _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL             (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257         if (!memcg)
258                 memcg = root_mem_cgroup;
259         return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264         return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269         return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292         down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297         up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329         int nid = zone_to_nid(zone);
330         int zid = zone_idx(zone);
331
332         return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348         struct mem_cgroup *memcg;
349
350         memcg = page->mem_cgroup;
351
352         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353                 memcg = root_mem_cgroup;
354
355         return &memcg->css;
356 }
357
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373         struct mem_cgroup *memcg;
374         unsigned long ino = 0;
375
376         rcu_read_lock();
377         memcg = READ_ONCE(page->mem_cgroup);
378         while (memcg && !(memcg->css.flags & CSS_ONLINE))
379                 memcg = parent_mem_cgroup(memcg);
380         if (memcg)
381                 ino = cgroup_ino(memcg->css.cgroup);
382         rcu_read_unlock();
383         return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389         int nid = page_to_nid(page);
390         int zid = page_zonenum(page);
391
392         return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404         int nid = page_to_nid(page);
405         int zid = page_zonenum(page);
406
407         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411                                          struct mem_cgroup_tree_per_zone *mctz,
412                                          unsigned long new_usage_in_excess)
413 {
414         struct rb_node **p = &mctz->rb_root.rb_node;
415         struct rb_node *parent = NULL;
416         struct mem_cgroup_per_zone *mz_node;
417
418         if (mz->on_tree)
419                 return;
420
421         mz->usage_in_excess = new_usage_in_excess;
422         if (!mz->usage_in_excess)
423                 return;
424         while (*p) {
425                 parent = *p;
426                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427                                         tree_node);
428                 if (mz->usage_in_excess < mz_node->usage_in_excess)
429                         p = &(*p)->rb_left;
430                 /*
431                  * We can't avoid mem cgroups that are over their soft
432                  * limit by the same amount
433                  */
434                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435                         p = &(*p)->rb_right;
436         }
437         rb_link_node(&mz->tree_node, parent, p);
438         rb_insert_color(&mz->tree_node, &mctz->rb_root);
439         mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443                                          struct mem_cgroup_tree_per_zone *mctz)
444 {
445         if (!mz->on_tree)
446                 return;
447         rb_erase(&mz->tree_node, &mctz->rb_root);
448         mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452                                        struct mem_cgroup_tree_per_zone *mctz)
453 {
454         unsigned long flags;
455
456         spin_lock_irqsave(&mctz->lock, flags);
457         __mem_cgroup_remove_exceeded(mz, mctz);
458         spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463         unsigned long nr_pages = page_counter_read(&memcg->memory);
464         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465         unsigned long excess = 0;
466
467         if (nr_pages > soft_limit)
468                 excess = nr_pages - soft_limit;
469
470         return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475         unsigned long excess;
476         struct mem_cgroup_per_zone *mz;
477         struct mem_cgroup_tree_per_zone *mctz;
478
479         mctz = soft_limit_tree_from_page(page);
480         /*
481          * Necessary to update all ancestors when hierarchy is used.
482          * because their event counter is not touched.
483          */
484         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485                 mz = mem_cgroup_page_zoneinfo(memcg, page);
486                 excess = soft_limit_excess(memcg);
487                 /*
488                  * We have to update the tree if mz is on RB-tree or
489                  * mem is over its softlimit.
490                  */
491                 if (excess || mz->on_tree) {
492                         unsigned long flags;
493
494                         spin_lock_irqsave(&mctz->lock, flags);
495                         /* if on-tree, remove it */
496                         if (mz->on_tree)
497                                 __mem_cgroup_remove_exceeded(mz, mctz);
498                         /*
499                          * Insert again. mz->usage_in_excess will be updated.
500                          * If excess is 0, no tree ops.
501                          */
502                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
503                         spin_unlock_irqrestore(&mctz->lock, flags);
504                 }
505         }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510         struct mem_cgroup_tree_per_zone *mctz;
511         struct mem_cgroup_per_zone *mz;
512         int nid, zid;
513
514         for_each_node(nid) {
515                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517                         mctz = soft_limit_tree_node_zone(nid, zid);
518                         mem_cgroup_remove_exceeded(mz, mctz);
519                 }
520         }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526         struct rb_node *rightmost = NULL;
527         struct mem_cgroup_per_zone *mz;
528
529 retry:
530         mz = NULL;
531         rightmost = rb_last(&mctz->rb_root);
532         if (!rightmost)
533                 goto done;              /* Nothing to reclaim from */
534
535         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536         /*
537          * Remove the node now but someone else can add it back,
538          * we will to add it back at the end of reclaim to its correct
539          * position in the tree.
540          */
541         __mem_cgroup_remove_exceeded(mz, mctz);
542         if (!soft_limit_excess(mz->memcg) ||
543             !css_tryget_online(&mz->memcg->css))
544                 goto retry;
545 done:
546         return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552         struct mem_cgroup_per_zone *mz;
553
554         spin_lock_irq(&mctz->lock);
555         mz = __mem_cgroup_largest_soft_limit_node(mctz);
556         spin_unlock_irq(&mctz->lock);
557         return mz;
558 }
559
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584         long val = 0;
585         int cpu;
586
587         /* Per-cpu values can be negative, use a signed accumulator */
588         for_each_possible_cpu(cpu)
589                 val += per_cpu(memcg->stat->count[idx], cpu);
590         /*
591          * Summing races with updates, so val may be negative.  Avoid exposing
592          * transient negative values.
593          */
594         if (val < 0)
595                 val = 0;
596         return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600                                             enum mem_cgroup_events_index idx)
601 {
602         unsigned long val = 0;
603         int cpu;
604
605         for_each_possible_cpu(cpu)
606                 val += per_cpu(memcg->stat->events[idx], cpu);
607         return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611                                          struct page *page,
612                                          bool compound, int nr_pages)
613 {
614         /*
615          * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616          * counted as CACHE even if it's on ANON LRU.
617          */
618         if (PageAnon(page))
619                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620                                 nr_pages);
621         else
622                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623                                 nr_pages);
624
625         if (compound) {
626                 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628                                 nr_pages);
629         }
630
631         /* pagein of a big page is an event. So, ignore page size */
632         if (nr_pages > 0)
633                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634         else {
635                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636                 nr_pages = -nr_pages; /* for event */
637         }
638
639         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643                                            int nid, unsigned int lru_mask)
644 {
645         unsigned long nr = 0;
646         int zid;
647
648         VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651                 struct mem_cgroup_per_zone *mz;
652                 enum lru_list lru;
653
654                 for_each_lru(lru) {
655                         if (!(BIT(lru) & lru_mask))
656                                 continue;
657                         mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658                         nr += mz->lru_size[lru];
659                 }
660         }
661         return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665                         unsigned int lru_mask)
666 {
667         unsigned long nr = 0;
668         int nid;
669
670         for_each_node_state(nid, N_MEMORY)
671                 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672         return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676                                        enum mem_cgroup_events_target target)
677 {
678         unsigned long val, next;
679
680         val = __this_cpu_read(memcg->stat->nr_page_events);
681         next = __this_cpu_read(memcg->stat->targets[target]);
682         /* from time_after() in jiffies.h */
683         if ((long)next - (long)val < 0) {
684                 switch (target) {
685                 case MEM_CGROUP_TARGET_THRESH:
686                         next = val + THRESHOLDS_EVENTS_TARGET;
687                         break;
688                 case MEM_CGROUP_TARGET_SOFTLIMIT:
689                         next = val + SOFTLIMIT_EVENTS_TARGET;
690                         break;
691                 case MEM_CGROUP_TARGET_NUMAINFO:
692                         next = val + NUMAINFO_EVENTS_TARGET;
693                         break;
694                 default:
695                         break;
696                 }
697                 __this_cpu_write(memcg->stat->targets[target], next);
698                 return true;
699         }
700         return false;
701 }
702
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709         /* threshold event is triggered in finer grain than soft limit */
710         if (unlikely(mem_cgroup_event_ratelimit(memcg,
711                                                 MEM_CGROUP_TARGET_THRESH))) {
712                 bool do_softlimit;
713                 bool do_numainfo __maybe_unused;
714
715                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718                 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719                                                 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721                 mem_cgroup_threshold(memcg);
722                 if (unlikely(do_softlimit))
723                         mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725                 if (unlikely(do_numainfo))
726                         atomic_inc(&memcg->numainfo_events);
727 #endif
728         }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733         /*
734          * mm_update_next_owner() may clear mm->owner to NULL
735          * if it races with swapoff, page migration, etc.
736          * So this can be called with p == NULL.
737          */
738         if (unlikely(!p))
739                 return NULL;
740
741         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747         struct mem_cgroup *memcg = NULL;
748
749         rcu_read_lock();
750         do {
751                 /*
752                  * Page cache insertions can happen withou an
753                  * actual mm context, e.g. during disk probing
754                  * on boot, loopback IO, acct() writes etc.
755                  */
756                 if (unlikely(!mm))
757                         memcg = root_mem_cgroup;
758                 else {
759                         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760                         if (unlikely(!memcg))
761                                 memcg = root_mem_cgroup;
762                 }
763         } while (!css_tryget_online(&memcg->css));
764         rcu_read_unlock();
765         return memcg;
766 }
767
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786                                    struct mem_cgroup *prev,
787                                    struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789         struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790         struct cgroup_subsys_state *css = NULL;
791         struct mem_cgroup *memcg = NULL;
792         struct mem_cgroup *pos = NULL;
793
794         if (mem_cgroup_disabled())
795                 return NULL;
796
797         if (!root)
798                 root = root_mem_cgroup;
799
800         if (prev && !reclaim)
801                 pos = prev;
802
803         if (!root->use_hierarchy && root != root_mem_cgroup) {
804                 if (prev)
805                         goto out;
806                 return root;
807         }
808
809         rcu_read_lock();
810
811         if (reclaim) {
812                 struct mem_cgroup_per_zone *mz;
813
814                 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815                 iter = &mz->iter[reclaim->priority];
816
817                 if (prev && reclaim->generation != iter->generation)
818                         goto out_unlock;
819
820                 while (1) {
821                         pos = READ_ONCE(iter->position);
822                         if (!pos || css_tryget(&pos->css))
823                                 break;
824                         /*
825                          * css reference reached zero, so iter->position will
826                          * be cleared by ->css_released. However, we should not
827                          * rely on this happening soon, because ->css_released
828                          * is called from a work queue, and by busy-waiting we
829                          * might block it. So we clear iter->position right
830                          * away.
831                          */
832                         (void)cmpxchg(&iter->position, pos, NULL);
833                 }
834         }
835
836         if (pos)
837                 css = &pos->css;
838
839         for (;;) {
840                 css = css_next_descendant_pre(css, &root->css);
841                 if (!css) {
842                         /*
843                          * Reclaimers share the hierarchy walk, and a
844                          * new one might jump in right at the end of
845                          * the hierarchy - make sure they see at least
846                          * one group and restart from the beginning.
847                          */
848                         if (!prev)
849                                 continue;
850                         break;
851                 }
852
853                 /*
854                  * Verify the css and acquire a reference.  The root
855                  * is provided by the caller, so we know it's alive
856                  * and kicking, and don't take an extra reference.
857                  */
858                 memcg = mem_cgroup_from_css(css);
859
860                 if (css == &root->css)
861                         break;
862
863                 if (css_tryget(css))
864                         break;
865
866                 memcg = NULL;
867         }
868
869         if (reclaim) {
870                 /*
871                  * The position could have already been updated by a competing
872                  * thread, so check that the value hasn't changed since we read
873                  * it to avoid reclaiming from the same cgroup twice.
874                  */
875                 (void)cmpxchg(&iter->position, pos, memcg);
876
877                 if (pos)
878                         css_put(&pos->css);
879
880                 if (!memcg)
881                         iter->generation++;
882                 else if (!prev)
883                         reclaim->generation = iter->generation;
884         }
885
886 out_unlock:
887         rcu_read_unlock();
888 out:
889         if (prev && prev != root)
890                 css_put(&prev->css);
891
892         return memcg;
893 }
894
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901                            struct mem_cgroup *prev)
902 {
903         if (!root)
904                 root = root_mem_cgroup;
905         if (prev && prev != root)
906                 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911         struct mem_cgroup *memcg = dead_memcg;
912         struct mem_cgroup_reclaim_iter *iter;
913         struct mem_cgroup_per_zone *mz;
914         int nid, zid;
915         int i;
916
917         while ((memcg = parent_mem_cgroup(memcg))) {
918                 for_each_node(nid) {
919                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921                                 for (i = 0; i <= DEF_PRIORITY; i++) {
922                                         iter = &mz->iter[i];
923                                         cmpxchg(&iter->position,
924                                                 dead_memcg, NULL);
925                                 }
926                         }
927                 }
928         }
929 }
930
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)            \
937         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
938              iter != NULL;                              \
939              iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter)                       \
942         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
943              iter != NULL;                              \
944              iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956                                       struct mem_cgroup *memcg)
957 {
958         struct mem_cgroup_per_zone *mz;
959         struct lruvec *lruvec;
960
961         if (mem_cgroup_disabled()) {
962                 lruvec = &zone->lruvec;
963                 goto out;
964         }
965
966         mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967         lruvec = &mz->lruvec;
968 out:
969         /*
970          * Since a node can be onlined after the mem_cgroup was created,
971          * we have to be prepared to initialize lruvec->zone here;
972          * and if offlined then reonlined, we need to reinitialize it.
973          */
974         if (unlikely(lruvec->zone != zone))
975                 lruvec->zone = zone;
976         return lruvec;
977 }
978
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990         struct mem_cgroup_per_zone *mz;
991         struct mem_cgroup *memcg;
992         struct lruvec *lruvec;
993
994         if (mem_cgroup_disabled()) {
995                 lruvec = &zone->lruvec;
996                 goto out;
997         }
998
999         memcg = page->mem_cgroup;
1000         /*
1001          * Swapcache readahead pages are added to the LRU - and
1002          * possibly migrated - before they are charged.
1003          */
1004         if (!memcg)
1005                 memcg = root_mem_cgroup;
1006
1007         mz = mem_cgroup_page_zoneinfo(memcg, page);
1008         lruvec = &mz->lruvec;
1009 out:
1010         /*
1011          * Since a node can be onlined after the mem_cgroup was created,
1012          * we have to be prepared to initialize lruvec->zone here;
1013          * and if offlined then reonlined, we need to reinitialize it.
1014          */
1015         if (unlikely(lruvec->zone != zone))
1016                 lruvec->zone = zone;
1017         return lruvec;
1018 }
1019
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called under lru_lock, just before a page is added
1027  * to or just after a page is removed from an lru list (that ordering being
1028  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029  */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031                                 int nr_pages)
1032 {
1033         struct mem_cgroup_per_zone *mz;
1034         unsigned long *lru_size;
1035         long size;
1036         bool empty;
1037
1038         __update_lru_size(lruvec, lru, nr_pages);
1039
1040         if (mem_cgroup_disabled())
1041                 return;
1042
1043         mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044         lru_size = mz->lru_size + lru;
1045         empty = list_empty(lruvec->lists + lru);
1046
1047         if (nr_pages < 0)
1048                 *lru_size += nr_pages;
1049
1050         size = *lru_size;
1051         if (WARN_ONCE(size < 0 || empty != !size,
1052                 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053                 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054                 VM_BUG_ON(1);
1055                 *lru_size = 0;
1056         }
1057
1058         if (nr_pages > 0)
1059                 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064         struct mem_cgroup *task_memcg;
1065         struct task_struct *p;
1066         bool ret;
1067
1068         p = find_lock_task_mm(task);
1069         if (p) {
1070                 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071                 task_unlock(p);
1072         } else {
1073                 /*
1074                  * All threads may have already detached their mm's, but the oom
1075                  * killer still needs to detect if they have already been oom
1076                  * killed to prevent needlessly killing additional tasks.
1077                  */
1078                 rcu_read_lock();
1079                 task_memcg = mem_cgroup_from_task(task);
1080                 css_get(&task_memcg->css);
1081                 rcu_read_unlock();
1082         }
1083         ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084         css_put(&task_memcg->css);
1085         return ret;
1086 }
1087
1088 /**
1089  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090  * @memcg: the memory cgroup
1091  *
1092  * Returns the maximum amount of memory @mem can be charged with, in
1093  * pages.
1094  */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097         unsigned long margin = 0;
1098         unsigned long count;
1099         unsigned long limit;
1100
1101         count = page_counter_read(&memcg->memory);
1102         limit = READ_ONCE(memcg->memory.limit);
1103         if (count < limit)
1104                 margin = limit - count;
1105
1106         if (do_memsw_account()) {
1107                 count = page_counter_read(&memcg->memsw);
1108                 limit = READ_ONCE(memcg->memsw.limit);
1109                 if (count <= limit)
1110                         margin = min(margin, limit - count);
1111         }
1112
1113         return margin;
1114 }
1115
1116 /*
1117  * A routine for checking "mem" is under move_account() or not.
1118  *
1119  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120  * moving cgroups. This is for waiting at high-memory pressure
1121  * caused by "move".
1122  */
1123 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1124 {
1125         struct mem_cgroup *from;
1126         struct mem_cgroup *to;
1127         bool ret = false;
1128         /*
1129          * Unlike task_move routines, we access mc.to, mc.from not under
1130          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131          */
1132         spin_lock(&mc.lock);
1133         from = mc.from;
1134         to = mc.to;
1135         if (!from)
1136                 goto unlock;
1137
1138         ret = mem_cgroup_is_descendant(from, memcg) ||
1139                 mem_cgroup_is_descendant(to, memcg);
1140 unlock:
1141         spin_unlock(&mc.lock);
1142         return ret;
1143 }
1144
1145 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1146 {
1147         if (mc.moving_task && current != mc.moving_task) {
1148                 if (mem_cgroup_under_move(memcg)) {
1149                         DEFINE_WAIT(wait);
1150                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151                         /* moving charge context might have finished. */
1152                         if (mc.moving_task)
1153                                 schedule();
1154                         finish_wait(&mc.waitq, &wait);
1155                         return true;
1156                 }
1157         }
1158         return false;
1159 }
1160
1161 #define K(x) ((x) << (PAGE_SHIFT-10))
1162 /**
1163  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1164  * @memcg: The memory cgroup that went over limit
1165  * @p: Task that is going to be killed
1166  *
1167  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168  * enabled
1169  */
1170 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171 {
1172         struct mem_cgroup *iter;
1173         unsigned int i;
1174
1175         rcu_read_lock();
1176
1177         if (p) {
1178                 pr_info("Task in ");
1179                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180                 pr_cont(" killed as a result of limit of ");
1181         } else {
1182                 pr_info("Memory limit reached of cgroup ");
1183         }
1184
1185         pr_cont_cgroup_path(memcg->css.cgroup);
1186         pr_cont("\n");
1187
1188         rcu_read_unlock();
1189
1190         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191                 K((u64)page_counter_read(&memcg->memory)),
1192                 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193         pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194                 K((u64)page_counter_read(&memcg->memsw)),
1195                 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196         pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197                 K((u64)page_counter_read(&memcg->kmem)),
1198                 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1199
1200         for_each_mem_cgroup_tree(iter, memcg) {
1201                 pr_info("Memory cgroup stats for ");
1202                 pr_cont_cgroup_path(iter->css.cgroup);
1203                 pr_cont(":");
1204
1205                 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1206                         if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1207                                 continue;
1208                         pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1209                                 K(mem_cgroup_read_stat(iter, i)));
1210                 }
1211
1212                 for (i = 0; i < NR_LRU_LISTS; i++)
1213                         pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214                                 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215
1216                 pr_cont("\n");
1217         }
1218 }
1219
1220 /*
1221  * This function returns the number of memcg under hierarchy tree. Returns
1222  * 1(self count) if no children.
1223  */
1224 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1225 {
1226         int num = 0;
1227         struct mem_cgroup *iter;
1228
1229         for_each_mem_cgroup_tree(iter, memcg)
1230                 num++;
1231         return num;
1232 }
1233
1234 /*
1235  * Return the memory (and swap, if configured) limit for a memcg.
1236  */
1237 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1238 {
1239         unsigned long limit;
1240
1241         limit = memcg->memory.limit;
1242         if (mem_cgroup_swappiness(memcg)) {
1243                 unsigned long memsw_limit;
1244                 unsigned long swap_limit;
1245
1246                 memsw_limit = memcg->memsw.limit;
1247                 swap_limit = memcg->swap.limit;
1248                 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249                 limit = min(limit + swap_limit, memsw_limit);
1250         }
1251         return limit;
1252 }
1253
1254 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1255                                      int order)
1256 {
1257         struct oom_control oc = {
1258                 .zonelist = NULL,
1259                 .nodemask = NULL,
1260                 .gfp_mask = gfp_mask,
1261                 .order = order,
1262         };
1263         struct mem_cgroup *iter;
1264         unsigned long chosen_points = 0;
1265         unsigned long totalpages;
1266         unsigned int points = 0;
1267         struct task_struct *chosen = NULL;
1268
1269         mutex_lock(&oom_lock);
1270
1271         /*
1272          * If current has a pending SIGKILL or is exiting, then automatically
1273          * select it.  The goal is to allow it to allocate so that it may
1274          * quickly exit and free its memory.
1275          */
1276         if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1277                 mark_oom_victim(current);
1278                 try_oom_reaper(current);
1279                 goto unlock;
1280         }
1281
1282         check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1283         totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1284         for_each_mem_cgroup_tree(iter, memcg) {
1285                 struct css_task_iter it;
1286                 struct task_struct *task;
1287
1288                 css_task_iter_start(&iter->css, &it);
1289                 while ((task = css_task_iter_next(&it))) {
1290                         switch (oom_scan_process_thread(&oc, task, totalpages)) {
1291                         case OOM_SCAN_SELECT:
1292                                 if (chosen)
1293                                         put_task_struct(chosen);
1294                                 chosen = task;
1295                                 chosen_points = ULONG_MAX;
1296                                 get_task_struct(chosen);
1297                                 /* fall through */
1298                         case OOM_SCAN_CONTINUE:
1299                                 continue;
1300                         case OOM_SCAN_ABORT:
1301                                 css_task_iter_end(&it);
1302                                 mem_cgroup_iter_break(memcg, iter);
1303                                 if (chosen)
1304                                         put_task_struct(chosen);
1305                                 /* Set a dummy value to return "true". */
1306                                 chosen = (void *) 1;
1307                                 goto unlock;
1308                         case OOM_SCAN_OK:
1309                                 break;
1310                         };
1311                         points = oom_badness(task, memcg, NULL, totalpages);
1312                         if (!points || points < chosen_points)
1313                                 continue;
1314                         /* Prefer thread group leaders for display purposes */
1315                         if (points == chosen_points &&
1316                             thread_group_leader(chosen))
1317                                 continue;
1318
1319                         if (chosen)
1320                                 put_task_struct(chosen);
1321                         chosen = task;
1322                         chosen_points = points;
1323                         get_task_struct(chosen);
1324                 }
1325                 css_task_iter_end(&it);
1326         }
1327
1328         if (chosen) {
1329                 points = chosen_points * 1000 / totalpages;
1330                 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1331                                  "Memory cgroup out of memory");
1332         }
1333 unlock:
1334         mutex_unlock(&oom_lock);
1335         return chosen;
1336 }
1337
1338 #if MAX_NUMNODES > 1
1339
1340 /**
1341  * test_mem_cgroup_node_reclaimable
1342  * @memcg: the target memcg
1343  * @nid: the node ID to be checked.
1344  * @noswap : specify true here if the user wants flle only information.
1345  *
1346  * This function returns whether the specified memcg contains any
1347  * reclaimable pages on a node. Returns true if there are any reclaimable
1348  * pages in the node.
1349  */
1350 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1351                 int nid, bool noswap)
1352 {
1353         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1354                 return true;
1355         if (noswap || !total_swap_pages)
1356                 return false;
1357         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1358                 return true;
1359         return false;
1360
1361 }
1362
1363 /*
1364  * Always updating the nodemask is not very good - even if we have an empty
1365  * list or the wrong list here, we can start from some node and traverse all
1366  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1367  *
1368  */
1369 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1370 {
1371         int nid;
1372         /*
1373          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1374          * pagein/pageout changes since the last update.
1375          */
1376         if (!atomic_read(&memcg->numainfo_events))
1377                 return;
1378         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1379                 return;
1380
1381         /* make a nodemask where this memcg uses memory from */
1382         memcg->scan_nodes = node_states[N_MEMORY];
1383
1384         for_each_node_mask(nid, node_states[N_MEMORY]) {
1385
1386                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1387                         node_clear(nid, memcg->scan_nodes);
1388         }
1389
1390         atomic_set(&memcg->numainfo_events, 0);
1391         atomic_set(&memcg->numainfo_updating, 0);
1392 }
1393
1394 /*
1395  * Selecting a node where we start reclaim from. Because what we need is just
1396  * reducing usage counter, start from anywhere is O,K. Considering
1397  * memory reclaim from current node, there are pros. and cons.
1398  *
1399  * Freeing memory from current node means freeing memory from a node which
1400  * we'll use or we've used. So, it may make LRU bad. And if several threads
1401  * hit limits, it will see a contention on a node. But freeing from remote
1402  * node means more costs for memory reclaim because of memory latency.
1403  *
1404  * Now, we use round-robin. Better algorithm is welcomed.
1405  */
1406 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1407 {
1408         int node;
1409
1410         mem_cgroup_may_update_nodemask(memcg);
1411         node = memcg->last_scanned_node;
1412
1413         node = next_node_in(node, memcg->scan_nodes);
1414         /*
1415          * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1416          * last time it really checked all the LRUs due to rate limiting.
1417          * Fallback to the current node in that case for simplicity.
1418          */
1419         if (unlikely(node == MAX_NUMNODES))
1420                 node = numa_node_id();
1421
1422         memcg->last_scanned_node = node;
1423         return node;
1424 }
1425 #else
1426 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1427 {
1428         return 0;
1429 }
1430 #endif
1431
1432 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1433                                    struct zone *zone,
1434                                    gfp_t gfp_mask,
1435                                    unsigned long *total_scanned)
1436 {
1437         struct mem_cgroup *victim = NULL;
1438         int total = 0;
1439         int loop = 0;
1440         unsigned long excess;
1441         unsigned long nr_scanned;
1442         struct mem_cgroup_reclaim_cookie reclaim = {
1443                 .zone = zone,
1444                 .priority = 0,
1445         };
1446
1447         excess = soft_limit_excess(root_memcg);
1448
1449         while (1) {
1450                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1451                 if (!victim) {
1452                         loop++;
1453                         if (loop >= 2) {
1454                                 /*
1455                                  * If we have not been able to reclaim
1456                                  * anything, it might because there are
1457                                  * no reclaimable pages under this hierarchy
1458                                  */
1459                                 if (!total)
1460                                         break;
1461                                 /*
1462                                  * We want to do more targeted reclaim.
1463                                  * excess >> 2 is not to excessive so as to
1464                                  * reclaim too much, nor too less that we keep
1465                                  * coming back to reclaim from this cgroup
1466                                  */
1467                                 if (total >= (excess >> 2) ||
1468                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1469                                         break;
1470                         }
1471                         continue;
1472                 }
1473                 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1474                                                      zone, &nr_scanned);
1475                 *total_scanned += nr_scanned;
1476                 if (!soft_limit_excess(root_memcg))
1477                         break;
1478         }
1479         mem_cgroup_iter_break(root_memcg, victim);
1480         return total;
1481 }
1482
1483 #ifdef CONFIG_LOCKDEP
1484 static struct lockdep_map memcg_oom_lock_dep_map = {
1485         .name = "memcg_oom_lock",
1486 };
1487 #endif
1488
1489 static DEFINE_SPINLOCK(memcg_oom_lock);
1490
1491 /*
1492  * Check OOM-Killer is already running under our hierarchy.
1493  * If someone is running, return false.
1494  */
1495 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1496 {
1497         struct mem_cgroup *iter, *failed = NULL;
1498
1499         spin_lock(&memcg_oom_lock);
1500
1501         for_each_mem_cgroup_tree(iter, memcg) {
1502                 if (iter->oom_lock) {
1503                         /*
1504                          * this subtree of our hierarchy is already locked
1505                          * so we cannot give a lock.
1506                          */
1507                         failed = iter;
1508                         mem_cgroup_iter_break(memcg, iter);
1509                         break;
1510                 } else
1511                         iter->oom_lock = true;
1512         }
1513
1514         if (failed) {
1515                 /*
1516                  * OK, we failed to lock the whole subtree so we have
1517                  * to clean up what we set up to the failing subtree
1518                  */
1519                 for_each_mem_cgroup_tree(iter, memcg) {
1520                         if (iter == failed) {
1521                                 mem_cgroup_iter_break(memcg, iter);
1522                                 break;
1523                         }
1524                         iter->oom_lock = false;
1525                 }
1526         } else
1527                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1528
1529         spin_unlock(&memcg_oom_lock);
1530
1531         return !failed;
1532 }
1533
1534 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1535 {
1536         struct mem_cgroup *iter;
1537
1538         spin_lock(&memcg_oom_lock);
1539         mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1540         for_each_mem_cgroup_tree(iter, memcg)
1541                 iter->oom_lock = false;
1542         spin_unlock(&memcg_oom_lock);
1543 }
1544
1545 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1546 {
1547         struct mem_cgroup *iter;
1548
1549         spin_lock(&memcg_oom_lock);
1550         for_each_mem_cgroup_tree(iter, memcg)
1551                 iter->under_oom++;
1552         spin_unlock(&memcg_oom_lock);
1553 }
1554
1555 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1556 {
1557         struct mem_cgroup *iter;
1558
1559         /*
1560          * When a new child is created while the hierarchy is under oom,
1561          * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1562          */
1563         spin_lock(&memcg_oom_lock);
1564         for_each_mem_cgroup_tree(iter, memcg)
1565                 if (iter->under_oom > 0)
1566                         iter->under_oom--;
1567         spin_unlock(&memcg_oom_lock);
1568 }
1569
1570 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1571
1572 struct oom_wait_info {
1573         struct mem_cgroup *memcg;
1574         wait_queue_t    wait;
1575 };
1576
1577 static int memcg_oom_wake_function(wait_queue_t *wait,
1578         unsigned mode, int sync, void *arg)
1579 {
1580         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1581         struct mem_cgroup *oom_wait_memcg;
1582         struct oom_wait_info *oom_wait_info;
1583
1584         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1585         oom_wait_memcg = oom_wait_info->memcg;
1586
1587         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1588             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1589                 return 0;
1590         return autoremove_wake_function(wait, mode, sync, arg);
1591 }
1592
1593 static void memcg_oom_recover(struct mem_cgroup *memcg)
1594 {
1595         /*
1596          * For the following lockless ->under_oom test, the only required
1597          * guarantee is that it must see the state asserted by an OOM when
1598          * this function is called as a result of userland actions
1599          * triggered by the notification of the OOM.  This is trivially
1600          * achieved by invoking mem_cgroup_mark_under_oom() before
1601          * triggering notification.
1602          */
1603         if (memcg && memcg->under_oom)
1604                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1605 }
1606
1607 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1608 {
1609         if (!current->memcg_may_oom || current->memcg_in_oom)
1610                 return;
1611         /*
1612          * We are in the middle of the charge context here, so we
1613          * don't want to block when potentially sitting on a callstack
1614          * that holds all kinds of filesystem and mm locks.
1615          *
1616          * Also, the caller may handle a failed allocation gracefully
1617          * (like optional page cache readahead) and so an OOM killer
1618          * invocation might not even be necessary.
1619          *
1620          * That's why we don't do anything here except remember the
1621          * OOM context and then deal with it at the end of the page
1622          * fault when the stack is unwound, the locks are released,
1623          * and when we know whether the fault was overall successful.
1624          */
1625         css_get(&memcg->css);
1626         current->memcg_in_oom = memcg;
1627         current->memcg_oom_gfp_mask = mask;
1628         current->memcg_oom_order = order;
1629 }
1630
1631 /**
1632  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1633  * @handle: actually kill/wait or just clean up the OOM state
1634  *
1635  * This has to be called at the end of a page fault if the memcg OOM
1636  * handler was enabled.
1637  *
1638  * Memcg supports userspace OOM handling where failed allocations must
1639  * sleep on a waitqueue until the userspace task resolves the
1640  * situation.  Sleeping directly in the charge context with all kinds
1641  * of locks held is not a good idea, instead we remember an OOM state
1642  * in the task and mem_cgroup_oom_synchronize() has to be called at
1643  * the end of the page fault to complete the OOM handling.
1644  *
1645  * Returns %true if an ongoing memcg OOM situation was detected and
1646  * completed, %false otherwise.
1647  */
1648 bool mem_cgroup_oom_synchronize(bool handle)
1649 {
1650         struct mem_cgroup *memcg = current->memcg_in_oom;
1651         struct oom_wait_info owait;
1652         bool locked;
1653
1654         /* OOM is global, do not handle */
1655         if (!memcg)
1656                 return false;
1657
1658         if (!handle || oom_killer_disabled)
1659                 goto cleanup;
1660
1661         owait.memcg = memcg;
1662         owait.wait.flags = 0;
1663         owait.wait.func = memcg_oom_wake_function;
1664         owait.wait.private = current;
1665         INIT_LIST_HEAD(&owait.wait.task_list);
1666
1667         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1668         mem_cgroup_mark_under_oom(memcg);
1669
1670         locked = mem_cgroup_oom_trylock(memcg);
1671
1672         if (locked)
1673                 mem_cgroup_oom_notify(memcg);
1674
1675         if (locked && !memcg->oom_kill_disable) {
1676                 mem_cgroup_unmark_under_oom(memcg);
1677                 finish_wait(&memcg_oom_waitq, &owait.wait);
1678                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1679                                          current->memcg_oom_order);
1680         } else {
1681                 schedule();
1682                 mem_cgroup_unmark_under_oom(memcg);
1683                 finish_wait(&memcg_oom_waitq, &owait.wait);
1684         }
1685
1686         if (locked) {
1687                 mem_cgroup_oom_unlock(memcg);
1688                 /*
1689                  * There is no guarantee that an OOM-lock contender
1690                  * sees the wakeups triggered by the OOM kill
1691                  * uncharges.  Wake any sleepers explicitely.
1692                  */
1693                 memcg_oom_recover(memcg);
1694         }
1695 cleanup:
1696         current->memcg_in_oom = NULL;
1697         css_put(&memcg->css);
1698         return true;
1699 }
1700
1701 /**
1702  * lock_page_memcg - lock a page->mem_cgroup binding
1703  * @page: the page
1704  *
1705  * This function protects unlocked LRU pages from being moved to
1706  * another cgroup and stabilizes their page->mem_cgroup binding.
1707  */
1708 void lock_page_memcg(struct page *page)
1709 {
1710         struct mem_cgroup *memcg;
1711         unsigned long flags;
1712
1713         /*
1714          * The RCU lock is held throughout the transaction.  The fast
1715          * path can get away without acquiring the memcg->move_lock
1716          * because page moving starts with an RCU grace period.
1717          */
1718         rcu_read_lock();
1719
1720         if (mem_cgroup_disabled())
1721                 return;
1722 again:
1723         memcg = page->mem_cgroup;
1724         if (unlikely(!memcg))
1725                 return;
1726
1727         if (atomic_read(&memcg->moving_account) <= 0)
1728                 return;
1729
1730         spin_lock_irqsave(&memcg->move_lock, flags);
1731         if (memcg != page->mem_cgroup) {
1732                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1733                 goto again;
1734         }
1735
1736         /*
1737          * When charge migration first begins, we can have locked and
1738          * unlocked page stat updates happening concurrently.  Track
1739          * the task who has the lock for unlock_page_memcg().
1740          */
1741         memcg->move_lock_task = current;
1742         memcg->move_lock_flags = flags;
1743
1744         return;
1745 }
1746 EXPORT_SYMBOL(lock_page_memcg);
1747
1748 /**
1749  * unlock_page_memcg - unlock a page->mem_cgroup binding
1750  * @page: the page
1751  */
1752 void unlock_page_memcg(struct page *page)
1753 {
1754         struct mem_cgroup *memcg = page->mem_cgroup;
1755
1756         if (memcg && memcg->move_lock_task == current) {
1757                 unsigned long flags = memcg->move_lock_flags;
1758
1759                 memcg->move_lock_task = NULL;
1760                 memcg->move_lock_flags = 0;
1761
1762                 spin_unlock_irqrestore(&memcg->move_lock, flags);
1763         }
1764
1765         rcu_read_unlock();
1766 }
1767 EXPORT_SYMBOL(unlock_page_memcg);
1768
1769 /*
1770  * size of first charge trial. "32" comes from vmscan.c's magic value.
1771  * TODO: maybe necessary to use big numbers in big irons.
1772  */
1773 #define CHARGE_BATCH    32U
1774 struct memcg_stock_pcp {
1775         struct mem_cgroup *cached; /* this never be root cgroup */
1776         unsigned int nr_pages;
1777         struct work_struct work;
1778         unsigned long flags;
1779 #define FLUSHING_CACHED_CHARGE  0
1780 };
1781 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1782 static DEFINE_MUTEX(percpu_charge_mutex);
1783
1784 /**
1785  * consume_stock: Try to consume stocked charge on this cpu.
1786  * @memcg: memcg to consume from.
1787  * @nr_pages: how many pages to charge.
1788  *
1789  * The charges will only happen if @memcg matches the current cpu's memcg
1790  * stock, and at least @nr_pages are available in that stock.  Failure to
1791  * service an allocation will refill the stock.
1792  *
1793  * returns true if successful, false otherwise.
1794  */
1795 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1796 {
1797         struct memcg_stock_pcp *stock;
1798         bool ret = false;
1799
1800         if (nr_pages > CHARGE_BATCH)
1801                 return ret;
1802
1803         stock = &get_cpu_var(memcg_stock);
1804         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1805                 stock->nr_pages -= nr_pages;
1806                 ret = true;
1807         }
1808         put_cpu_var(memcg_stock);
1809         return ret;
1810 }
1811
1812 /*
1813  * Returns stocks cached in percpu and reset cached information.
1814  */
1815 static void drain_stock(struct memcg_stock_pcp *stock)
1816 {
1817         struct mem_cgroup *old = stock->cached;
1818
1819         if (stock->nr_pages) {
1820                 page_counter_uncharge(&old->memory, stock->nr_pages);
1821                 if (do_memsw_account())
1822                         page_counter_uncharge(&old->memsw, stock->nr_pages);
1823                 css_put_many(&old->css, stock->nr_pages);
1824                 stock->nr_pages = 0;
1825         }
1826         stock->cached = NULL;
1827 }
1828
1829 /*
1830  * This must be called under preempt disabled or must be called by
1831  * a thread which is pinned to local cpu.
1832  */
1833 static void drain_local_stock(struct work_struct *dummy)
1834 {
1835         struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1836         drain_stock(stock);
1837         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1838 }
1839
1840 /*
1841  * Cache charges(val) to local per_cpu area.
1842  * This will be consumed by consume_stock() function, later.
1843  */
1844 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1845 {
1846         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1847
1848         if (stock->cached != memcg) { /* reset if necessary */
1849                 drain_stock(stock);
1850                 stock->cached = memcg;
1851         }
1852         stock->nr_pages += nr_pages;
1853         put_cpu_var(memcg_stock);
1854 }
1855
1856 /*
1857  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1858  * of the hierarchy under it.
1859  */
1860 static void drain_all_stock(struct mem_cgroup *root_memcg)
1861 {
1862         int cpu, curcpu;
1863
1864         /* If someone's already draining, avoid adding running more workers. */
1865         if (!mutex_trylock(&percpu_charge_mutex))
1866                 return;
1867         /* Notify other cpus that system-wide "drain" is running */
1868         get_online_cpus();
1869         curcpu = get_cpu();
1870         for_each_online_cpu(cpu) {
1871                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1872                 struct mem_cgroup *memcg;
1873
1874                 memcg = stock->cached;
1875                 if (!memcg || !stock->nr_pages)
1876                         continue;
1877                 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1878                         continue;
1879                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1880                         if (cpu == curcpu)
1881                                 drain_local_stock(&stock->work);
1882                         else
1883                                 schedule_work_on(cpu, &stock->work);
1884                 }
1885         }
1886         put_cpu();
1887         put_online_cpus();
1888         mutex_unlock(&percpu_charge_mutex);
1889 }
1890
1891 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1892                                         unsigned long action,
1893                                         void *hcpu)
1894 {
1895         int cpu = (unsigned long)hcpu;
1896         struct memcg_stock_pcp *stock;
1897
1898         if (action == CPU_ONLINE)
1899                 return NOTIFY_OK;
1900
1901         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1902                 return NOTIFY_OK;
1903
1904         stock = &per_cpu(memcg_stock, cpu);
1905         drain_stock(stock);
1906         return NOTIFY_OK;
1907 }
1908
1909 static void reclaim_high(struct mem_cgroup *memcg,
1910                          unsigned int nr_pages,
1911                          gfp_t gfp_mask)
1912 {
1913         do {
1914                 if (page_counter_read(&memcg->memory) <= memcg->high)
1915                         continue;
1916                 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1917                 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1918         } while ((memcg = parent_mem_cgroup(memcg)));
1919 }
1920
1921 static void high_work_func(struct work_struct *work)
1922 {
1923         struct mem_cgroup *memcg;
1924
1925         memcg = container_of(work, struct mem_cgroup, high_work);
1926         reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1927 }
1928
1929 /*
1930  * Scheduled by try_charge() to be executed from the userland return path
1931  * and reclaims memory over the high limit.
1932  */
1933 void mem_cgroup_handle_over_high(void)
1934 {
1935         unsigned int nr_pages = current->memcg_nr_pages_over_high;
1936         struct mem_cgroup *memcg;
1937
1938         if (likely(!nr_pages))
1939                 return;
1940
1941         memcg = get_mem_cgroup_from_mm(current->mm);
1942         reclaim_high(memcg, nr_pages, GFP_KERNEL);
1943         css_put(&memcg->css);
1944         current->memcg_nr_pages_over_high = 0;
1945 }
1946
1947 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1948                       unsigned int nr_pages)
1949 {
1950         unsigned int batch = max(CHARGE_BATCH, nr_pages);
1951         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1952         struct mem_cgroup *mem_over_limit;
1953         struct page_counter *counter;
1954         unsigned long nr_reclaimed;
1955         bool may_swap = true;
1956         bool drained = false;
1957
1958         if (mem_cgroup_is_root(memcg))
1959                 return 0;
1960 retry:
1961         if (consume_stock(memcg, nr_pages))
1962                 return 0;
1963
1964         if (!do_memsw_account() ||
1965             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1966                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1967                         goto done_restock;
1968                 if (do_memsw_account())
1969                         page_counter_uncharge(&memcg->memsw, batch);
1970                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1971         } else {
1972                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1973                 may_swap = false;
1974         }
1975
1976         if (batch > nr_pages) {
1977                 batch = nr_pages;
1978                 goto retry;
1979         }
1980
1981         /*
1982          * Unlike in global OOM situations, memcg is not in a physical
1983          * memory shortage.  Allow dying and OOM-killed tasks to
1984          * bypass the last charges so that they can exit quickly and
1985          * free their memory.
1986          */
1987         if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1988                      fatal_signal_pending(current) ||
1989                      current->flags & PF_EXITING))
1990                 goto force;
1991
1992         if (unlikely(task_in_memcg_oom(current)))
1993                 goto nomem;
1994
1995         if (!gfpflags_allow_blocking(gfp_mask))
1996                 goto nomem;
1997
1998         mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1999
2000         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2001                                                     gfp_mask, may_swap);
2002
2003         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2004                 goto retry;
2005
2006         if (!drained) {
2007                 drain_all_stock(mem_over_limit);
2008                 drained = true;
2009                 goto retry;
2010         }
2011
2012         if (gfp_mask & __GFP_NORETRY)
2013                 goto nomem;
2014         /*
2015          * Even though the limit is exceeded at this point, reclaim
2016          * may have been able to free some pages.  Retry the charge
2017          * before killing the task.
2018          *
2019          * Only for regular pages, though: huge pages are rather
2020          * unlikely to succeed so close to the limit, and we fall back
2021          * to regular pages anyway in case of failure.
2022          */
2023         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2024                 goto retry;
2025         /*
2026          * At task move, charge accounts can be doubly counted. So, it's
2027          * better to wait until the end of task_move if something is going on.
2028          */
2029         if (mem_cgroup_wait_acct_move(mem_over_limit))
2030                 goto retry;
2031
2032         if (nr_retries--)
2033                 goto retry;
2034
2035         if (gfp_mask & __GFP_NOFAIL)
2036                 goto force;
2037
2038         if (fatal_signal_pending(current))
2039                 goto force;
2040
2041         mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2042
2043         mem_cgroup_oom(mem_over_limit, gfp_mask,
2044                        get_order(nr_pages * PAGE_SIZE));
2045 nomem:
2046         if (!(gfp_mask & __GFP_NOFAIL))
2047                 return -ENOMEM;
2048 force:
2049         /*
2050          * The allocation either can't fail or will lead to more memory
2051          * being freed very soon.  Allow memory usage go over the limit
2052          * temporarily by force charging it.
2053          */
2054         page_counter_charge(&memcg->memory, nr_pages);
2055         if (do_memsw_account())
2056                 page_counter_charge(&memcg->memsw, nr_pages);
2057         css_get_many(&memcg->css, nr_pages);
2058
2059         return 0;
2060
2061 done_restock:
2062         css_get_many(&memcg->css, batch);
2063         if (batch > nr_pages)
2064                 refill_stock(memcg, batch - nr_pages);
2065
2066         /*
2067          * If the hierarchy is above the normal consumption range, schedule
2068          * reclaim on returning to userland.  We can perform reclaim here
2069          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2070          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2071          * not recorded as it most likely matches current's and won't
2072          * change in the meantime.  As high limit is checked again before
2073          * reclaim, the cost of mismatch is negligible.
2074          */
2075         do {
2076                 if (page_counter_read(&memcg->memory) > memcg->high) {
2077                         /* Don't bother a random interrupted task */
2078                         if (in_interrupt()) {
2079                                 schedule_work(&memcg->high_work);
2080                                 break;
2081                         }
2082                         current->memcg_nr_pages_over_high += batch;
2083                         set_notify_resume(current);
2084                         break;
2085                 }
2086         } while ((memcg = parent_mem_cgroup(memcg)));
2087
2088         return 0;
2089 }
2090
2091 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2092 {
2093         if (mem_cgroup_is_root(memcg))
2094                 return;
2095
2096         page_counter_uncharge(&memcg->memory, nr_pages);
2097         if (do_memsw_account())
2098                 page_counter_uncharge(&memcg->memsw, nr_pages);
2099
2100         css_put_many(&memcg->css, nr_pages);
2101 }
2102
2103 static void lock_page_lru(struct page *page, int *isolated)
2104 {
2105         struct zone *zone = page_zone(page);
2106
2107         spin_lock_irq(&zone->lru_lock);
2108         if (PageLRU(page)) {
2109                 struct lruvec *lruvec;
2110
2111                 lruvec = mem_cgroup_page_lruvec(page, zone);
2112                 ClearPageLRU(page);
2113                 del_page_from_lru_list(page, lruvec, page_lru(page));
2114                 *isolated = 1;
2115         } else
2116                 *isolated = 0;
2117 }
2118
2119 static void unlock_page_lru(struct page *page, int isolated)
2120 {
2121         struct zone *zone = page_zone(page);
2122
2123         if (isolated) {
2124                 struct lruvec *lruvec;
2125
2126                 lruvec = mem_cgroup_page_lruvec(page, zone);
2127                 VM_BUG_ON_PAGE(PageLRU(page), page);
2128                 SetPageLRU(page);
2129                 add_page_to_lru_list(page, lruvec, page_lru(page));
2130         }
2131         spin_unlock_irq(&zone->lru_lock);
2132 }
2133
2134 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2135                           bool lrucare)
2136 {
2137         int isolated;
2138
2139         VM_BUG_ON_PAGE(page->mem_cgroup, page);
2140
2141         /*
2142          * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2143          * may already be on some other mem_cgroup's LRU.  Take care of it.
2144          */
2145         if (lrucare)
2146                 lock_page_lru(page, &isolated);
2147
2148         /*
2149          * Nobody should be changing or seriously looking at
2150          * page->mem_cgroup at this point:
2151          *
2152          * - the page is uncharged
2153          *
2154          * - the page is off-LRU
2155          *
2156          * - an anonymous fault has exclusive page access, except for
2157          *   a locked page table
2158          *
2159          * - a page cache insertion, a swapin fault, or a migration
2160          *   have the page locked
2161          */
2162         page->mem_cgroup = memcg;
2163
2164         if (lrucare)
2165                 unlock_page_lru(page, isolated);
2166 }
2167
2168 #ifndef CONFIG_SLOB
2169 static int memcg_alloc_cache_id(void)
2170 {
2171         int id, size;
2172         int err;
2173
2174         id = ida_simple_get(&memcg_cache_ida,
2175                             0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2176         if (id < 0)
2177                 return id;
2178
2179         if (id < memcg_nr_cache_ids)
2180                 return id;
2181
2182         /*
2183          * There's no space for the new id in memcg_caches arrays,
2184          * so we have to grow them.
2185          */
2186         down_write(&memcg_cache_ids_sem);
2187
2188         size = 2 * (id + 1);
2189         if (size < MEMCG_CACHES_MIN_SIZE)
2190                 size = MEMCG_CACHES_MIN_SIZE;
2191         else if (size > MEMCG_CACHES_MAX_SIZE)
2192                 size = MEMCG_CACHES_MAX_SIZE;
2193
2194         err = memcg_update_all_caches(size);
2195         if (!err)
2196                 err = memcg_update_all_list_lrus(size);
2197         if (!err)
2198                 memcg_nr_cache_ids = size;
2199
2200         up_write(&memcg_cache_ids_sem);
2201
2202         if (err) {
2203                 ida_simple_remove(&memcg_cache_ida, id);
2204                 return err;
2205         }
2206         return id;
2207 }
2208
2209 static void memcg_free_cache_id(int id)
2210 {
2211         ida_simple_remove(&memcg_cache_ida, id);
2212 }
2213
2214 struct memcg_kmem_cache_create_work {
2215         struct mem_cgroup *memcg;
2216         struct kmem_cache *cachep;
2217         struct work_struct work;
2218 };
2219
2220 static void memcg_kmem_cache_create_func(struct work_struct *w)
2221 {
2222         struct memcg_kmem_cache_create_work *cw =
2223                 container_of(w, struct memcg_kmem_cache_create_work, work);
2224         struct mem_cgroup *memcg = cw->memcg;
2225         struct kmem_cache *cachep = cw->cachep;
2226
2227         memcg_create_kmem_cache(memcg, cachep);
2228
2229         css_put(&memcg->css);
2230         kfree(cw);
2231 }
2232
2233 /*
2234  * Enqueue the creation of a per-memcg kmem_cache.
2235  */
2236 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237                                                struct kmem_cache *cachep)
2238 {
2239         struct memcg_kmem_cache_create_work *cw;
2240
2241         cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2242         if (!cw)
2243                 return;
2244
2245         css_get(&memcg->css);
2246
2247         cw->memcg = memcg;
2248         cw->cachep = cachep;
2249         INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2250
2251         schedule_work(&cw->work);
2252 }
2253
2254 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2255                                              struct kmem_cache *cachep)
2256 {
2257         /*
2258          * We need to stop accounting when we kmalloc, because if the
2259          * corresponding kmalloc cache is not yet created, the first allocation
2260          * in __memcg_schedule_kmem_cache_create will recurse.
2261          *
2262          * However, it is better to enclose the whole function. Depending on
2263          * the debugging options enabled, INIT_WORK(), for instance, can
2264          * trigger an allocation. This too, will make us recurse. Because at
2265          * this point we can't allow ourselves back into memcg_kmem_get_cache,
2266          * the safest choice is to do it like this, wrapping the whole function.
2267          */
2268         current->memcg_kmem_skip_account = 1;
2269         __memcg_schedule_kmem_cache_create(memcg, cachep);
2270         current->memcg_kmem_skip_account = 0;
2271 }
2272
2273 /*
2274  * Return the kmem_cache we're supposed to use for a slab allocation.
2275  * We try to use the current memcg's version of the cache.
2276  *
2277  * If the cache does not exist yet, if we are the first user of it,
2278  * we either create it immediately, if possible, or create it asynchronously
2279  * in a workqueue.
2280  * In the latter case, we will let the current allocation go through with
2281  * the original cache.
2282  *
2283  * Can't be called in interrupt context or from kernel threads.
2284  * This function needs to be called with rcu_read_lock() held.
2285  */
2286 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2287 {
2288         struct mem_cgroup *memcg;
2289         struct kmem_cache *memcg_cachep;
2290         int kmemcg_id;
2291
2292         VM_BUG_ON(!is_root_cache(cachep));
2293
2294         if (cachep->flags & SLAB_ACCOUNT)
2295                 gfp |= __GFP_ACCOUNT;
2296
2297         if (!(gfp & __GFP_ACCOUNT))
2298                 return cachep;
2299
2300         if (current->memcg_kmem_skip_account)
2301                 return cachep;
2302
2303         memcg = get_mem_cgroup_from_mm(current->mm);
2304         kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2305         if (kmemcg_id < 0)
2306                 goto out;
2307
2308         memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2309         if (likely(memcg_cachep))
2310                 return memcg_cachep;
2311
2312         /*
2313          * If we are in a safe context (can wait, and not in interrupt
2314          * context), we could be be predictable and return right away.
2315          * This would guarantee that the allocation being performed
2316          * already belongs in the new cache.
2317          *
2318          * However, there are some clashes that can arrive from locking.
2319          * For instance, because we acquire the slab_mutex while doing
2320          * memcg_create_kmem_cache, this means no further allocation
2321          * could happen with the slab_mutex held. So it's better to
2322          * defer everything.
2323          */
2324         memcg_schedule_kmem_cache_create(memcg, cachep);
2325 out:
2326         css_put(&memcg->css);
2327         return cachep;
2328 }
2329
2330 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2331 {
2332         if (!is_root_cache(cachep))
2333                 css_put(&cachep->memcg_params.memcg->css);
2334 }
2335
2336 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2337                               struct mem_cgroup *memcg)
2338 {
2339         unsigned int nr_pages = 1 << order;
2340         struct page_counter *counter;
2341         int ret;
2342
2343         ret = try_charge(memcg, gfp, nr_pages);
2344         if (ret)
2345                 return ret;
2346
2347         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2348             !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2349                 cancel_charge(memcg, nr_pages);
2350                 return -ENOMEM;
2351         }
2352
2353         page->mem_cgroup = memcg;
2354
2355         return 0;
2356 }
2357
2358 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2359 {
2360         struct mem_cgroup *memcg;
2361         int ret = 0;
2362
2363         memcg = get_mem_cgroup_from_mm(current->mm);
2364         if (!mem_cgroup_is_root(memcg))
2365                 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2366         css_put(&memcg->css);
2367         return ret;
2368 }
2369
2370 void __memcg_kmem_uncharge(struct page *page, int order)
2371 {
2372         struct mem_cgroup *memcg = page->mem_cgroup;
2373         unsigned int nr_pages = 1 << order;
2374
2375         if (!memcg)
2376                 return;
2377
2378         VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2379
2380         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2381                 page_counter_uncharge(&memcg->kmem, nr_pages);
2382
2383         page_counter_uncharge(&memcg->memory, nr_pages);
2384         if (do_memsw_account())
2385                 page_counter_uncharge(&memcg->memsw, nr_pages);
2386
2387         page->mem_cgroup = NULL;
2388         css_put_many(&memcg->css, nr_pages);
2389 }
2390 #endif /* !CONFIG_SLOB */
2391
2392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2393
2394 /*
2395  * Because tail pages are not marked as "used", set it. We're under
2396  * zone->lru_lock and migration entries setup in all page mappings.
2397  */
2398 void mem_cgroup_split_huge_fixup(struct page *head)
2399 {
2400         int i;
2401
2402         if (mem_cgroup_disabled())
2403                 return;
2404
2405         for (i = 1; i < HPAGE_PMD_NR; i++)
2406                 head[i].mem_cgroup = head->mem_cgroup;
2407
2408         __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2409                        HPAGE_PMD_NR);
2410 }
2411 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2412
2413 #ifdef CONFIG_MEMCG_SWAP
2414 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2415                                          bool charge)
2416 {
2417         int val = (charge) ? 1 : -1;
2418         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2419 }
2420
2421 /**
2422  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2423  * @entry: swap entry to be moved
2424  * @from:  mem_cgroup which the entry is moved from
2425  * @to:  mem_cgroup which the entry is moved to
2426  *
2427  * It succeeds only when the swap_cgroup's record for this entry is the same
2428  * as the mem_cgroup's id of @from.
2429  *
2430  * Returns 0 on success, -EINVAL on failure.
2431  *
2432  * The caller must have charged to @to, IOW, called page_counter_charge() about
2433  * both res and memsw, and called css_get().
2434  */
2435 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2436                                 struct mem_cgroup *from, struct mem_cgroup *to)
2437 {
2438         unsigned short old_id, new_id;
2439
2440         old_id = mem_cgroup_id(from);
2441         new_id = mem_cgroup_id(to);
2442
2443         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2444                 mem_cgroup_swap_statistics(from, false);
2445                 mem_cgroup_swap_statistics(to, true);
2446                 return 0;
2447         }
2448         return -EINVAL;
2449 }
2450 #else
2451 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2452                                 struct mem_cgroup *from, struct mem_cgroup *to)
2453 {
2454         return -EINVAL;
2455 }
2456 #endif
2457
2458 static DEFINE_MUTEX(memcg_limit_mutex);
2459
2460 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2461                                    unsigned long limit)
2462 {
2463         unsigned long curusage;
2464         unsigned long oldusage;
2465         bool enlarge = false;
2466         int retry_count;
2467         int ret;
2468
2469         /*
2470          * For keeping hierarchical_reclaim simple, how long we should retry
2471          * is depends on callers. We set our retry-count to be function
2472          * of # of children which we should visit in this loop.
2473          */
2474         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2475                       mem_cgroup_count_children(memcg);
2476
2477         oldusage = page_counter_read(&memcg->memory);
2478
2479         do {
2480                 if (signal_pending(current)) {
2481                         ret = -EINTR;
2482                         break;
2483                 }
2484
2485                 mutex_lock(&memcg_limit_mutex);
2486                 if (limit > memcg->memsw.limit) {
2487                         mutex_unlock(&memcg_limit_mutex);
2488                         ret = -EINVAL;
2489                         break;
2490                 }
2491                 if (limit > memcg->memory.limit)
2492                         enlarge = true;
2493                 ret = page_counter_limit(&memcg->memory, limit);
2494                 mutex_unlock(&memcg_limit_mutex);
2495
2496                 if (!ret)
2497                         break;
2498
2499                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2500
2501                 curusage = page_counter_read(&memcg->memory);
2502                 /* Usage is reduced ? */
2503                 if (curusage >= oldusage)
2504                         retry_count--;
2505                 else
2506                         oldusage = curusage;
2507         } while (retry_count);
2508
2509         if (!ret && enlarge)
2510                 memcg_oom_recover(memcg);
2511
2512         return ret;
2513 }
2514
2515 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2516                                          unsigned long limit)
2517 {
2518         unsigned long curusage;
2519         unsigned long oldusage;
2520         bool enlarge = false;
2521         int retry_count;
2522         int ret;
2523
2524         /* see mem_cgroup_resize_res_limit */
2525         retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2526                       mem_cgroup_count_children(memcg);
2527
2528         oldusage = page_counter_read(&memcg->memsw);
2529
2530         do {
2531                 if (signal_pending(current)) {
2532                         ret = -EINTR;
2533                         break;
2534                 }
2535
2536                 mutex_lock(&memcg_limit_mutex);
2537                 if (limit < memcg->memory.limit) {
2538                         mutex_unlock(&memcg_limit_mutex);
2539                         ret = -EINVAL;
2540                         break;
2541                 }
2542                 if (limit > memcg->memsw.limit)
2543                         enlarge = true;
2544                 ret = page_counter_limit(&memcg->memsw, limit);
2545                 mutex_unlock(&memcg_limit_mutex);
2546
2547                 if (!ret)
2548                         break;
2549
2550                 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2551
2552                 curusage = page_counter_read(&memcg->memsw);
2553                 /* Usage is reduced ? */
2554                 if (curusage >= oldusage)
2555                         retry_count--;
2556                 else
2557                         oldusage = curusage;
2558         } while (retry_count);
2559
2560         if (!ret && enlarge)
2561                 memcg_oom_recover(memcg);
2562
2563         return ret;
2564 }
2565
2566 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2567                                             gfp_t gfp_mask,
2568                                             unsigned long *total_scanned)
2569 {
2570         unsigned long nr_reclaimed = 0;
2571         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2572         unsigned long reclaimed;
2573         int loop = 0;
2574         struct mem_cgroup_tree_per_zone *mctz;
2575         unsigned long excess;
2576         unsigned long nr_scanned;
2577
2578         if (order > 0)
2579                 return 0;
2580
2581         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2582         /*
2583          * This loop can run a while, specially if mem_cgroup's continuously
2584          * keep exceeding their soft limit and putting the system under
2585          * pressure
2586          */
2587         do {
2588                 if (next_mz)
2589                         mz = next_mz;
2590                 else
2591                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2592                 if (!mz)
2593                         break;
2594
2595                 nr_scanned = 0;
2596                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2597                                                     gfp_mask, &nr_scanned);
2598                 nr_reclaimed += reclaimed;
2599                 *total_scanned += nr_scanned;
2600                 spin_lock_irq(&mctz->lock);
2601                 __mem_cgroup_remove_exceeded(mz, mctz);
2602
2603                 /*
2604                  * If we failed to reclaim anything from this memory cgroup
2605                  * it is time to move on to the next cgroup
2606                  */
2607                 next_mz = NULL;
2608                 if (!reclaimed)
2609                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2610
2611                 excess = soft_limit_excess(mz->memcg);
2612                 /*
2613                  * One school of thought says that we should not add
2614                  * back the node to the tree if reclaim returns 0.
2615                  * But our reclaim could return 0, simply because due
2616                  * to priority we are exposing a smaller subset of
2617                  * memory to reclaim from. Consider this as a longer
2618                  * term TODO.
2619                  */
2620                 /* If excess == 0, no tree ops */
2621                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2622                 spin_unlock_irq(&mctz->lock);
2623                 css_put(&mz->memcg->css);
2624                 loop++;
2625                 /*
2626                  * Could not reclaim anything and there are no more
2627                  * mem cgroups to try or we seem to be looping without
2628                  * reclaiming anything.
2629                  */
2630                 if (!nr_reclaimed &&
2631                         (next_mz == NULL ||
2632                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2633                         break;
2634         } while (!nr_reclaimed);
2635         if (next_mz)
2636                 css_put(&next_mz->memcg->css);
2637         return nr_reclaimed;
2638 }
2639
2640 /*
2641  * Test whether @memcg has children, dead or alive.  Note that this
2642  * function doesn't care whether @memcg has use_hierarchy enabled and
2643  * returns %true if there are child csses according to the cgroup
2644  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2645  */
2646 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2647 {
2648         bool ret;
2649
2650         rcu_read_lock();
2651         ret = css_next_child(NULL, &memcg->css);
2652         rcu_read_unlock();
2653         return ret;
2654 }
2655
2656 /*
2657  * Reclaims as many pages from the given memcg as possible.
2658  *
2659  * Caller is responsible for holding css reference for memcg.
2660  */
2661 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2662 {
2663         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2664
2665         /* we call try-to-free pages for make this cgroup empty */
2666         lru_add_drain_all();
2667         /* try to free all pages in this cgroup */
2668         while (nr_retries && page_counter_read(&memcg->memory)) {
2669                 int progress;
2670
2671                 if (signal_pending(current))
2672                         return -EINTR;
2673
2674                 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2675                                                         GFP_KERNEL, true);
2676                 if (!progress) {
2677                         nr_retries--;
2678                         /* maybe some writeback is necessary */
2679                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2680                 }
2681
2682         }
2683
2684         return 0;
2685 }
2686
2687 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2688                                             char *buf, size_t nbytes,
2689                                             loff_t off)
2690 {
2691         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2692
2693         if (mem_cgroup_is_root(memcg))
2694                 return -EINVAL;
2695         return mem_cgroup_force_empty(memcg) ?: nbytes;
2696 }
2697
2698 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2699                                      struct cftype *cft)
2700 {
2701         return mem_cgroup_from_css(css)->use_hierarchy;
2702 }
2703
2704 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2705                                       struct cftype *cft, u64 val)
2706 {
2707         int retval = 0;
2708         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2709         struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2710
2711         if (memcg->use_hierarchy == val)
2712                 return 0;
2713
2714         /*
2715          * If parent's use_hierarchy is set, we can't make any modifications
2716          * in the child subtrees. If it is unset, then the change can
2717          * occur, provided the current cgroup has no children.
2718          *
2719          * For the root cgroup, parent_mem is NULL, we allow value to be
2720          * set if there are no children.
2721          */
2722         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2723                                 (val == 1 || val == 0)) {
2724                 if (!memcg_has_children(memcg))
2725                         memcg->use_hierarchy = val;
2726                 else
2727                         retval = -EBUSY;
2728         } else
2729                 retval = -EINVAL;
2730
2731         return retval;
2732 }
2733
2734 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2735 {
2736         struct mem_cgroup *iter;
2737         int i;
2738
2739         memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2740
2741         for_each_mem_cgroup_tree(iter, memcg) {
2742                 for (i = 0; i < MEMCG_NR_STAT; i++)
2743                         stat[i] += mem_cgroup_read_stat(iter, i);
2744         }
2745 }
2746
2747 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2748 {
2749         struct mem_cgroup *iter;
2750         int i;
2751
2752         memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2753
2754         for_each_mem_cgroup_tree(iter, memcg) {
2755                 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2756                         events[i] += mem_cgroup_read_events(iter, i);
2757         }
2758 }
2759
2760 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2761 {
2762         unsigned long val = 0;
2763
2764         if (mem_cgroup_is_root(memcg)) {
2765                 struct mem_cgroup *iter;
2766
2767                 for_each_mem_cgroup_tree(iter, memcg) {
2768                         val += mem_cgroup_read_stat(iter,
2769                                         MEM_CGROUP_STAT_CACHE);
2770                         val += mem_cgroup_read_stat(iter,
2771                                         MEM_CGROUP_STAT_RSS);
2772                         if (swap)
2773                                 val += mem_cgroup_read_stat(iter,
2774                                                 MEM_CGROUP_STAT_SWAP);
2775                 }
2776         } else {
2777                 if (!swap)
2778                         val = page_counter_read(&memcg->memory);
2779                 else
2780                         val = page_counter_read(&memcg->memsw);
2781         }
2782         return val;
2783 }
2784
2785 enum {
2786         RES_USAGE,
2787         RES_LIMIT,
2788         RES_MAX_USAGE,
2789         RES_FAILCNT,
2790         RES_SOFT_LIMIT,
2791 };
2792
2793 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2794                                struct cftype *cft)
2795 {
2796         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2797         struct page_counter *counter;
2798
2799         switch (MEMFILE_TYPE(cft->private)) {
2800         case _MEM:
2801                 counter = &memcg->memory;
2802                 break;
2803         case _MEMSWAP:
2804                 counter = &memcg->memsw;
2805                 break;
2806         case _KMEM:
2807                 counter = &memcg->kmem;
2808                 break;
2809         case _TCP:
2810                 counter = &memcg->tcpmem;
2811                 break;
2812         default:
2813                 BUG();
2814         }
2815
2816         switch (MEMFILE_ATTR(cft->private)) {
2817         case RES_USAGE:
2818                 if (counter == &memcg->memory)
2819                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2820                 if (counter == &memcg->memsw)
2821                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2822                 return (u64)page_counter_read(counter) * PAGE_SIZE;
2823         case RES_LIMIT:
2824                 return (u64)counter->limit * PAGE_SIZE;
2825         case RES_MAX_USAGE:
2826                 return (u64)counter->watermark * PAGE_SIZE;
2827         case RES_FAILCNT:
2828                 return counter->failcnt;
2829         case RES_SOFT_LIMIT:
2830                 return (u64)memcg->soft_limit * PAGE_SIZE;
2831         default:
2832                 BUG();
2833         }
2834 }
2835
2836 #ifndef CONFIG_SLOB
2837 static int memcg_online_kmem(struct mem_cgroup *memcg)
2838 {
2839         int memcg_id;
2840
2841         if (cgroup_memory_nokmem)
2842                 return 0;
2843
2844         BUG_ON(memcg->kmemcg_id >= 0);
2845         BUG_ON(memcg->kmem_state);
2846
2847         memcg_id = memcg_alloc_cache_id();
2848         if (memcg_id < 0)
2849                 return memcg_id;
2850
2851         static_branch_inc(&memcg_kmem_enabled_key);
2852         /*
2853          * A memory cgroup is considered kmem-online as soon as it gets
2854          * kmemcg_id. Setting the id after enabling static branching will
2855          * guarantee no one starts accounting before all call sites are
2856          * patched.
2857          */
2858         memcg->kmemcg_id = memcg_id;
2859         memcg->kmem_state = KMEM_ONLINE;
2860
2861         return 0;
2862 }
2863
2864 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2865 {
2866         struct cgroup_subsys_state *css;
2867         struct mem_cgroup *parent, *child;
2868         int kmemcg_id;
2869
2870         if (memcg->kmem_state != KMEM_ONLINE)
2871                 return;
2872         /*
2873          * Clear the online state before clearing memcg_caches array
2874          * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2875          * guarantees that no cache will be created for this cgroup
2876          * after we are done (see memcg_create_kmem_cache()).
2877          */
2878         memcg->kmem_state = KMEM_ALLOCATED;
2879
2880         memcg_deactivate_kmem_caches(memcg);
2881
2882         kmemcg_id = memcg->kmemcg_id;
2883         BUG_ON(kmemcg_id < 0);
2884
2885         parent = parent_mem_cgroup(memcg);
2886         if (!parent)
2887                 parent = root_mem_cgroup;
2888
2889         /*
2890          * Change kmemcg_id of this cgroup and all its descendants to the
2891          * parent's id, and then move all entries from this cgroup's list_lrus
2892          * to ones of the parent. After we have finished, all list_lrus
2893          * corresponding to this cgroup are guaranteed to remain empty. The
2894          * ordering is imposed by list_lru_node->lock taken by
2895          * memcg_drain_all_list_lrus().
2896          */
2897         css_for_each_descendant_pre(css, &memcg->css) {
2898                 child = mem_cgroup_from_css(css);
2899                 BUG_ON(child->kmemcg_id != kmemcg_id);
2900                 child->kmemcg_id = parent->kmemcg_id;
2901                 if (!memcg->use_hierarchy)
2902                         break;
2903         }
2904         memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2905
2906         memcg_free_cache_id(kmemcg_id);
2907 }
2908
2909 static void memcg_free_kmem(struct mem_cgroup *memcg)
2910 {
2911         /* css_alloc() failed, offlining didn't happen */
2912         if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2913                 memcg_offline_kmem(memcg);
2914
2915         if (memcg->kmem_state == KMEM_ALLOCATED) {
2916                 memcg_destroy_kmem_caches(memcg);
2917                 static_branch_dec(&memcg_kmem_enabled_key);
2918                 WARN_ON(page_counter_read(&memcg->kmem));
2919         }
2920 }
2921 #else
2922 static int memcg_online_kmem(struct mem_cgroup *memcg)
2923 {
2924         return 0;
2925 }
2926 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2927 {
2928 }
2929 static void memcg_free_kmem(struct mem_cgroup *memcg)
2930 {
2931 }
2932 #endif /* !CONFIG_SLOB */
2933
2934 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2935                                    unsigned long limit)
2936 {
2937         int ret;
2938
2939         mutex_lock(&memcg_limit_mutex);
2940         ret = page_counter_limit(&memcg->kmem, limit);
2941         mutex_unlock(&memcg_limit_mutex);
2942         return ret;
2943 }
2944
2945 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2946 {
2947         int ret;
2948
2949         mutex_lock(&memcg_limit_mutex);
2950
2951         ret = page_counter_limit(&memcg->tcpmem, limit);
2952         if (ret)
2953                 goto out;
2954
2955         if (!memcg->tcpmem_active) {
2956                 /*
2957                  * The active flag needs to be written after the static_key
2958                  * update. This is what guarantees that the socket activation
2959                  * function is the last one to run. See sock_update_memcg() for
2960                  * details, and note that we don't mark any socket as belonging
2961                  * to this memcg until that flag is up.
2962                  *
2963                  * We need to do this, because static_keys will span multiple
2964                  * sites, but we can't control their order. If we mark a socket
2965                  * as accounted, but the accounting functions are not patched in
2966                  * yet, we'll lose accounting.
2967                  *
2968                  * We never race with the readers in sock_update_memcg(),
2969                  * because when this value change, the code to process it is not
2970                  * patched in yet.
2971                  */
2972                 static_branch_inc(&memcg_sockets_enabled_key);
2973                 memcg->tcpmem_active = true;
2974         }
2975 out:
2976         mutex_unlock(&memcg_limit_mutex);
2977         return ret;
2978 }
2979
2980 /*
2981  * The user of this function is...
2982  * RES_LIMIT.
2983  */
2984 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985                                 char *buf, size_t nbytes, loff_t off)
2986 {
2987         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988         unsigned long nr_pages;
2989         int ret;
2990
2991         buf = strstrip(buf);
2992         ret = page_counter_memparse(buf, "-1", &nr_pages);
2993         if (ret)
2994                 return ret;
2995
2996         switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997         case RES_LIMIT:
2998                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999                         ret = -EINVAL;
3000                         break;
3001                 }
3002                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003                 case _MEM:
3004                         ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005                         break;
3006                 case _MEMSWAP:
3007                         ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008                         break;
3009                 case _KMEM:
3010                         ret = memcg_update_kmem_limit(memcg, nr_pages);
3011                         break;
3012                 case _TCP:
3013                         ret = memcg_update_tcp_limit(memcg, nr_pages);
3014                         break;
3015                 }
3016                 break;
3017         case RES_SOFT_LIMIT:
3018                 memcg->soft_limit = nr_pages;
3019                 ret = 0;
3020                 break;
3021         }
3022         return ret ?: nbytes;
3023 }
3024
3025 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3026                                 size_t nbytes, loff_t off)
3027 {
3028         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029         struct page_counter *counter;
3030
3031         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3032         case _MEM:
3033                 counter = &memcg->memory;
3034                 break;
3035         case _MEMSWAP:
3036                 counter = &memcg->memsw;
3037                 break;
3038         case _KMEM:
3039                 counter = &memcg->kmem;
3040                 break;
3041         case _TCP:
3042                 counter = &memcg->tcpmem;
3043                 break;
3044         default:
3045                 BUG();
3046         }
3047
3048         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3049         case RES_MAX_USAGE:
3050                 page_counter_reset_watermark(counter);
3051                 break;
3052         case RES_FAILCNT:
3053                 counter->failcnt = 0;
3054                 break;
3055         default:
3056                 BUG();
3057         }
3058
3059         return nbytes;
3060 }
3061
3062 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3063                                         struct cftype *cft)
3064 {
3065         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3066 }
3067
3068 #ifdef CONFIG_MMU
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070                                         struct cftype *cft, u64 val)
3071 {
3072         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3073
3074         if (val & ~MOVE_MASK)
3075                 return -EINVAL;
3076
3077         /*
3078          * No kind of locking is needed in here, because ->can_attach() will
3079          * check this value once in the beginning of the process, and then carry
3080          * on with stale data. This means that changes to this value will only
3081          * affect task migrations starting after the change.
3082          */
3083         memcg->move_charge_at_immigrate = val;
3084         return 0;
3085 }
3086 #else
3087 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088                                         struct cftype *cft, u64 val)
3089 {
3090         return -ENOSYS;
3091 }
3092 #endif
3093
3094 #ifdef CONFIG_NUMA
3095 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3096 {
3097         struct numa_stat {
3098                 const char *name;
3099                 unsigned int lru_mask;
3100         };
3101
3102         static const struct numa_stat stats[] = {
3103                 { "total", LRU_ALL },
3104                 { "file", LRU_ALL_FILE },
3105                 { "anon", LRU_ALL_ANON },
3106                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3107         };
3108         const struct numa_stat *stat;
3109         int nid;
3110         unsigned long nr;
3111         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3112
3113         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114                 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3115                 seq_printf(m, "%s=%lu", stat->name, nr);
3116                 for_each_node_state(nid, N_MEMORY) {
3117                         nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3118                                                           stat->lru_mask);
3119                         seq_printf(m, " N%d=%lu", nid, nr);
3120                 }
3121                 seq_putc(m, '\n');
3122         }
3123
3124         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125                 struct mem_cgroup *iter;
3126
3127                 nr = 0;
3128                 for_each_mem_cgroup_tree(iter, memcg)
3129                         nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3130                 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3131                 for_each_node_state(nid, N_MEMORY) {
3132                         nr = 0;
3133                         for_each_mem_cgroup_tree(iter, memcg)
3134                                 nr += mem_cgroup_node_nr_lru_pages(
3135                                         iter, nid, stat->lru_mask);
3136                         seq_printf(m, " N%d=%lu", nid, nr);
3137                 }
3138                 seq_putc(m, '\n');
3139         }
3140
3141         return 0;
3142 }
3143 #endif /* CONFIG_NUMA */
3144
3145 static int memcg_stat_show(struct seq_file *m, void *v)
3146 {
3147         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148         unsigned long memory, memsw;
3149         struct mem_cgroup *mi;
3150         unsigned int i;
3151
3152         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3153                      MEM_CGROUP_STAT_NSTATS);
3154         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3155                      MEM_CGROUP_EVENTS_NSTATS);
3156         BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3157
3158         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3159                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160                         continue;
3161                 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3162                            mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3163         }
3164
3165         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3166                 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3167                            mem_cgroup_read_events(memcg, i));
3168
3169         for (i = 0; i < NR_LRU_LISTS; i++)
3170                 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3171                            mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3172
3173         /* Hierarchical information */
3174         memory = memsw = PAGE_COUNTER_MAX;
3175         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3176                 memory = min(memory, mi->memory.limit);
3177                 memsw = min(memsw, mi->memsw.limit);
3178         }
3179         seq_printf(m, "hierarchical_memory_limit %llu\n",
3180                    (u64)memory * PAGE_SIZE);
3181         if (do_memsw_account())
3182                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3183                            (u64)memsw * PAGE_SIZE);
3184
3185         for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186                 unsigned long long val = 0;
3187
3188                 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3189                         continue;
3190                 for_each_mem_cgroup_tree(mi, memcg)
3191                         val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3192                 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3193         }
3194
3195         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3196                 unsigned long long val = 0;
3197
3198                 for_each_mem_cgroup_tree(mi, memcg)
3199                         val += mem_cgroup_read_events(mi, i);
3200                 seq_printf(m, "total_%s %llu\n",
3201                            mem_cgroup_events_names[i], val);
3202         }
3203
3204         for (i = 0; i < NR_LRU_LISTS; i++) {
3205                 unsigned long long val = 0;
3206
3207                 for_each_mem_cgroup_tree(mi, memcg)
3208                         val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3209                 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3210         }
3211
3212 #ifdef CONFIG_DEBUG_VM
3213         {
3214                 int nid, zid;
3215                 struct mem_cgroup_per_zone *mz;
3216                 struct zone_reclaim_stat *rstat;
3217                 unsigned long recent_rotated[2] = {0, 0};
3218                 unsigned long recent_scanned[2] = {0, 0};
3219
3220                 for_each_online_node(nid)
3221                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3222                                 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3223                                 rstat = &mz->lruvec.reclaim_stat;
3224
3225                                 recent_rotated[0] += rstat->recent_rotated[0];
3226                                 recent_rotated[1] += rstat->recent_rotated[1];
3227                                 recent_scanned[0] += rstat->recent_scanned[0];
3228                                 recent_scanned[1] += rstat->recent_scanned[1];
3229                         }
3230                 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3231                 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3232                 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3233                 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3234         }
3235 #endif
3236
3237         return 0;
3238 }
3239
3240 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3241                                       struct cftype *cft)
3242 {
3243         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3244
3245         return mem_cgroup_swappiness(memcg);
3246 }
3247
3248 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3249                                        struct cftype *cft, u64 val)
3250 {
3251         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3252
3253         if (val > 100)
3254                 return -EINVAL;
3255
3256         if (css->parent)
3257                 memcg->swappiness = val;
3258         else
3259                 vm_swappiness = val;
3260
3261         return 0;
3262 }
3263
3264 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3265 {
3266         struct mem_cgroup_threshold_ary *t;
3267         unsigned long usage;
3268         int i;
3269
3270         rcu_read_lock();
3271         if (!swap)
3272                 t = rcu_dereference(memcg->thresholds.primary);
3273         else
3274                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3275
3276         if (!t)
3277                 goto unlock;
3278
3279         usage = mem_cgroup_usage(memcg, swap);
3280
3281         /*
3282          * current_threshold points to threshold just below or equal to usage.
3283          * If it's not true, a threshold was crossed after last
3284          * call of __mem_cgroup_threshold().
3285          */
3286         i = t->current_threshold;
3287
3288         /*
3289          * Iterate backward over array of thresholds starting from
3290          * current_threshold and check if a threshold is crossed.
3291          * If none of thresholds below usage is crossed, we read
3292          * only one element of the array here.
3293          */
3294         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3295                 eventfd_signal(t->entries[i].eventfd, 1);
3296
3297         /* i = current_threshold + 1 */
3298         i++;
3299
3300         /*
3301          * Iterate forward over array of thresholds starting from
3302          * current_threshold+1 and check if a threshold is crossed.
3303          * If none of thresholds above usage is crossed, we read
3304          * only one element of the array here.
3305          */
3306         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3307                 eventfd_signal(t->entries[i].eventfd, 1);
3308
3309         /* Update current_threshold */
3310         t->current_threshold = i - 1;
3311 unlock:
3312         rcu_read_unlock();
3313 }
3314
3315 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3316 {
3317         while (memcg) {
3318                 __mem_cgroup_threshold(memcg, false);
3319                 if (do_memsw_account())
3320                         __mem_cgroup_threshold(memcg, true);
3321
3322                 memcg = parent_mem_cgroup(memcg);
3323         }
3324 }
3325
3326 static int compare_thresholds(const void *a, const void *b)
3327 {
3328         const struct mem_cgroup_threshold *_a = a;
3329         const struct mem_cgroup_threshold *_b = b;
3330
3331         if (_a->threshold > _b->threshold)
3332                 return 1;
3333
3334         if (_a->threshold < _b->threshold)
3335                 return -1;
3336
3337         return 0;
3338 }
3339
3340 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3341 {
3342         struct mem_cgroup_eventfd_list *ev;
3343
3344         spin_lock(&memcg_oom_lock);
3345
3346         list_for_each_entry(ev, &memcg->oom_notify, list)
3347                 eventfd_signal(ev->eventfd, 1);
3348
3349         spin_unlock(&memcg_oom_lock);
3350         return 0;
3351 }
3352
3353 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3354 {
3355         struct mem_cgroup *iter;
3356
3357         for_each_mem_cgroup_tree(iter, memcg)
3358                 mem_cgroup_oom_notify_cb(iter);
3359 }
3360
3361 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3362         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3363 {
3364         struct mem_cgroup_thresholds *thresholds;
3365         struct mem_cgroup_threshold_ary *new;
3366         unsigned long threshold;
3367         unsigned long usage;
3368         int i, size, ret;
3369
3370         ret = page_counter_memparse(args, "-1", &threshold);
3371         if (ret)
3372                 return ret;
3373
3374         mutex_lock(&memcg->thresholds_lock);
3375
3376         if (type == _MEM) {
3377                 thresholds = &memcg->thresholds;
3378                 usage = mem_cgroup_usage(memcg, false);
3379         } else if (type == _MEMSWAP) {
3380                 thresholds = &memcg->memsw_thresholds;
3381                 usage = mem_cgroup_usage(memcg, true);
3382         } else
3383                 BUG();
3384
3385         /* Check if a threshold crossed before adding a new one */
3386         if (thresholds->primary)
3387                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3388
3389         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3390
3391         /* Allocate memory for new array of thresholds */
3392         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3393                         GFP_KERNEL);
3394         if (!new) {
3395                 ret = -ENOMEM;
3396                 goto unlock;
3397         }
3398         new->size = size;
3399
3400         /* Copy thresholds (if any) to new array */
3401         if (thresholds->primary) {
3402                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3403                                 sizeof(struct mem_cgroup_threshold));
3404         }
3405
3406         /* Add new threshold */
3407         new->entries[size - 1].eventfd = eventfd;
3408         new->entries[size - 1].threshold = threshold;
3409
3410         /* Sort thresholds. Registering of new threshold isn't time-critical */
3411         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3412                         compare_thresholds, NULL);
3413
3414         /* Find current threshold */
3415         new->current_threshold = -1;
3416         for (i = 0; i < size; i++) {
3417                 if (new->entries[i].threshold <= usage) {
3418                         /*
3419                          * new->current_threshold will not be used until
3420                          * rcu_assign_pointer(), so it's safe to increment
3421                          * it here.
3422                          */
3423                         ++new->current_threshold;
3424                 } else
3425                         break;
3426         }
3427
3428         /* Free old spare buffer and save old primary buffer as spare */
3429         kfree(thresholds->spare);
3430         thresholds->spare = thresholds->primary;
3431
3432         rcu_assign_pointer(thresholds->primary, new);
3433
3434         /* To be sure that nobody uses thresholds */
3435         synchronize_rcu();
3436
3437 unlock:
3438         mutex_unlock(&memcg->thresholds_lock);
3439
3440         return ret;
3441 }
3442
3443 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3444         struct eventfd_ctx *eventfd, const char *args)
3445 {
3446         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3447 }
3448
3449 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3450         struct eventfd_ctx *eventfd, const char *args)
3451 {
3452         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3453 }
3454
3455 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3456         struct eventfd_ctx *eventfd, enum res_type type)
3457 {
3458         struct mem_cgroup_thresholds *thresholds;
3459         struct mem_cgroup_threshold_ary *new;
3460         unsigned long usage;
3461         int i, j, size;
3462
3463         mutex_lock(&memcg->thresholds_lock);
3464
3465         if (type == _MEM) {
3466                 thresholds = &memcg->thresholds;
3467                 usage = mem_cgroup_usage(memcg, false);
3468         } else if (type == _MEMSWAP) {
3469                 thresholds = &memcg->memsw_thresholds;
3470                 usage = mem_cgroup_usage(memcg, true);
3471         } else
3472                 BUG();
3473
3474         if (!thresholds->primary)
3475                 goto unlock;
3476
3477         /* Check if a threshold crossed before removing */
3478         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3479
3480         /* Calculate new number of threshold */
3481         size = 0;
3482         for (i = 0; i < thresholds->primary->size; i++) {
3483                 if (thresholds->primary->entries[i].eventfd != eventfd)
3484                         size++;
3485         }
3486
3487         new = thresholds->spare;
3488
3489         /* Set thresholds array to NULL if we don't have thresholds */
3490         if (!size) {
3491                 kfree(new);
3492                 new = NULL;
3493                 goto swap_buffers;
3494         }
3495
3496         new->size = size;
3497
3498         /* Copy thresholds and find current threshold */
3499         new->current_threshold = -1;
3500         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3501                 if (thresholds->primary->entries[i].eventfd == eventfd)
3502                         continue;
3503
3504                 new->entries[j] = thresholds->primary->entries[i];
3505                 if (new->entries[j].threshold <= usage) {
3506                         /*
3507                          * new->current_threshold will not be used
3508                          * until rcu_assign_pointer(), so it's safe to increment
3509                          * it here.
3510                          */
3511                         ++new->current_threshold;
3512                 }
3513                 j++;
3514         }
3515
3516 swap_buffers:
3517         /* Swap primary and spare array */
3518         thresholds->spare = thresholds->primary;
3519
3520         rcu_assign_pointer(thresholds->primary, new);
3521
3522         /* To be sure that nobody uses thresholds */
3523         synchronize_rcu();
3524
3525         /* If all events are unregistered, free the spare array */
3526         if (!new) {
3527                 kfree(thresholds->spare);
3528                 thresholds->spare = NULL;
3529         }
3530 unlock:
3531         mutex_unlock(&memcg->thresholds_lock);
3532 }
3533
3534 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3535         struct eventfd_ctx *eventfd)
3536 {
3537         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3538 }
3539
3540 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3541         struct eventfd_ctx *eventfd)
3542 {
3543         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3544 }
3545
3546 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3547         struct eventfd_ctx *eventfd, const char *args)
3548 {
3549         struct mem_cgroup_eventfd_list *event;
3550
3551         event = kmalloc(sizeof(*event), GFP_KERNEL);
3552         if (!event)
3553                 return -ENOMEM;
3554
3555         spin_lock(&memcg_oom_lock);
3556
3557         event->eventfd = eventfd;
3558         list_add(&event->list, &memcg->oom_notify);
3559
3560         /* already in OOM ? */
3561         if (memcg->under_oom)
3562                 eventfd_signal(eventfd, 1);
3563         spin_unlock(&memcg_oom_lock);
3564
3565         return 0;
3566 }
3567
3568 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3569         struct eventfd_ctx *eventfd)
3570 {
3571         struct mem_cgroup_eventfd_list *ev, *tmp;
3572
3573         spin_lock(&memcg_oom_lock);
3574
3575         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3576                 if (ev->eventfd == eventfd) {
3577                         list_del(&ev->list);
3578                         kfree(ev);
3579                 }
3580         }
3581
3582         spin_unlock(&memcg_oom_lock);
3583 }
3584
3585 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3586 {
3587         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3588
3589         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3590         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3591         return 0;
3592 }
3593
3594 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3595         struct cftype *cft, u64 val)
3596 {
3597         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3598
3599         /* cannot set to root cgroup and only 0 and 1 are allowed */
3600         if (!css->parent || !((val == 0) || (val == 1)))
3601                 return -EINVAL;
3602
3603         memcg->oom_kill_disable = val;
3604         if (!val)
3605                 memcg_oom_recover(memcg);
3606
3607         return 0;
3608 }
3609
3610 #ifdef CONFIG_CGROUP_WRITEBACK
3611
3612 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3613 {
3614         return &memcg->cgwb_list;
3615 }
3616
3617 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3618 {
3619         return wb_domain_init(&memcg->cgwb_domain, gfp);
3620 }
3621
3622 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3623 {
3624         wb_domain_exit(&memcg->cgwb_domain);
3625 }
3626
3627 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3628 {
3629         wb_domain_size_changed(&memcg->cgwb_domain);
3630 }
3631
3632 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3633 {
3634         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3635
3636         if (!memcg->css.parent)
3637                 return NULL;
3638
3639         return &memcg->cgwb_domain;
3640 }
3641
3642 /**
3643  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3644  * @wb: bdi_writeback in question
3645  * @pfilepages: out parameter for number of file pages
3646  * @pheadroom: out parameter for number of allocatable pages according to memcg
3647  * @pdirty: out parameter for number of dirty pages
3648  * @pwriteback: out parameter for number of pages under writeback
3649  *
3650  * Determine the numbers of file, headroom, dirty, and writeback pages in
3651  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3652  * is a bit more involved.
3653  *
3654  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3655  * headroom is calculated as the lowest headroom of itself and the
3656  * ancestors.  Note that this doesn't consider the actual amount of
3657  * available memory in the system.  The caller should further cap
3658  * *@pheadroom accordingly.
3659  */
3660 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3661                          unsigned long *pheadroom, unsigned long *pdirty,
3662                          unsigned long *pwriteback)
3663 {
3664         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3665         struct mem_cgroup *parent;
3666
3667         *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3668
3669         /* this should eventually include NR_UNSTABLE_NFS */
3670         *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3671         *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3672                                                      (1 << LRU_ACTIVE_FILE));
3673         *pheadroom = PAGE_COUNTER_MAX;
3674
3675         while ((parent = parent_mem_cgroup(memcg))) {
3676                 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3677                 unsigned long used = page_counter_read(&memcg->memory);
3678
3679                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3680                 memcg = parent;
3681         }
3682 }
3683
3684 #else   /* CONFIG_CGROUP_WRITEBACK */
3685
3686 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3687 {
3688         return 0;
3689 }
3690
3691 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3692 {
3693 }
3694
3695 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3696 {
3697 }
3698
3699 #endif  /* CONFIG_CGROUP_WRITEBACK */
3700
3701 /*
3702  * DO NOT USE IN NEW FILES.
3703  *
3704  * "cgroup.event_control" implementation.
3705  *
3706  * This is way over-engineered.  It tries to support fully configurable
3707  * events for each user.  Such level of flexibility is completely
3708  * unnecessary especially in the light of the planned unified hierarchy.
3709  *
3710  * Please deprecate this and replace with something simpler if at all
3711  * possible.
3712  */
3713
3714 /*
3715  * Unregister event and free resources.
3716  *
3717  * Gets called from workqueue.
3718  */
3719 static void memcg_event_remove(struct work_struct *work)
3720 {
3721         struct mem_cgroup_event *event =
3722                 container_of(work, struct mem_cgroup_event, remove);
3723         struct mem_cgroup *memcg = event->memcg;
3724
3725         remove_wait_queue(event->wqh, &event->wait);
3726
3727         event->unregister_event(memcg, event->eventfd);
3728
3729         /* Notify userspace the event is going away. */
3730         eventfd_signal(event->eventfd, 1);
3731
3732         eventfd_ctx_put(event->eventfd);
3733         kfree(event);
3734         css_put(&memcg->css);
3735 }
3736
3737 /*
3738  * Gets called on POLLHUP on eventfd when user closes it.
3739  *
3740  * Called with wqh->lock held and interrupts disabled.
3741  */
3742 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3743                             int sync, void *key)
3744 {
3745         struct mem_cgroup_event *event =
3746                 container_of(wait, struct mem_cgroup_event, wait);
3747         struct mem_cgroup *memcg = event->memcg;
3748         unsigned long flags = (unsigned long)key;
3749
3750         if (flags & POLLHUP) {
3751                 /*
3752                  * If the event has been detached at cgroup removal, we
3753                  * can simply return knowing the other side will cleanup
3754                  * for us.
3755                  *
3756                  * We can't race against event freeing since the other
3757                  * side will require wqh->lock via remove_wait_queue(),
3758                  * which we hold.
3759                  */
3760                 spin_lock(&memcg->event_list_lock);
3761                 if (!list_empty(&event->list)) {
3762                         list_del_init(&event->list);
3763                         /*
3764                          * We are in atomic context, but cgroup_event_remove()
3765                          * may sleep, so we have to call it in workqueue.
3766                          */
3767                         schedule_work(&event->remove);
3768                 }
3769                 spin_unlock(&memcg->event_list_lock);
3770         }
3771
3772         return 0;
3773 }
3774
3775 static void memcg_event_ptable_queue_proc(struct file *file,
3776                 wait_queue_head_t *wqh, poll_table *pt)
3777 {
3778         struct mem_cgroup_event *event =
3779                 container_of(pt, struct mem_cgroup_event, pt);
3780
3781         event->wqh = wqh;
3782         add_wait_queue(wqh, &event->wait);
3783 }
3784
3785 /*
3786  * DO NOT USE IN NEW FILES.
3787  *
3788  * Parse input and register new cgroup event handler.
3789  *
3790  * Input must be in format '<event_fd> <control_fd> <args>'.
3791  * Interpretation of args is defined by control file implementation.
3792  */
3793 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3794                                          char *buf, size_t nbytes, loff_t off)
3795 {
3796         struct cgroup_subsys_state *css = of_css(of);
3797         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3798         struct mem_cgroup_event *event;
3799         struct cgroup_subsys_state *cfile_css;
3800         unsigned int efd, cfd;
3801         struct fd efile;
3802         struct fd cfile;
3803         const char *name;
3804         char *endp;
3805         int ret;
3806
3807         buf = strstrip(buf);
3808
3809         efd = simple_strtoul(buf, &endp, 10);
3810         if (*endp != ' ')
3811                 return -EINVAL;
3812         buf = endp + 1;
3813
3814         cfd = simple_strtoul(buf, &endp, 10);
3815         if ((*endp != ' ') && (*endp != '\0'))
3816                 return -EINVAL;
3817         buf = endp + 1;
3818
3819         event = kzalloc(sizeof(*event), GFP_KERNEL);
3820         if (!event)
3821                 return -ENOMEM;
3822
3823         event->memcg = memcg;
3824         INIT_LIST_HEAD(&event->list);
3825         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3826         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3827         INIT_WORK(&event->remove, memcg_event_remove);
3828
3829         efile = fdget(efd);
3830         if (!efile.file) {
3831                 ret = -EBADF;
3832                 goto out_kfree;
3833         }
3834
3835         event->eventfd = eventfd_ctx_fileget(efile.file);
3836         if (IS_ERR(event->eventfd)) {
3837                 ret = PTR_ERR(event->eventfd);
3838                 goto out_put_efile;
3839         }
3840
3841         cfile = fdget(cfd);
3842         if (!cfile.file) {
3843                 ret = -EBADF;
3844                 goto out_put_eventfd;
3845         }
3846
3847         /* the process need read permission on control file */
3848         /* AV: shouldn't we check that it's been opened for read instead? */
3849         ret = inode_permission(file_inode(cfile.file), MAY_READ);
3850         if (ret < 0)
3851                 goto out_put_cfile;
3852
3853         /*
3854          * Determine the event callbacks and set them in @event.  This used
3855          * to be done via struct cftype but cgroup core no longer knows
3856          * about these events.  The following is crude but the whole thing
3857          * is for compatibility anyway.
3858          *
3859          * DO NOT ADD NEW FILES.
3860          */
3861         name = cfile.file->f_path.dentry->d_name.name;
3862
3863         if (!strcmp(name, "memory.usage_in_bytes")) {
3864                 event->register_event = mem_cgroup_usage_register_event;
3865                 event->unregister_event = mem_cgroup_usage_unregister_event;
3866         } else if (!strcmp(name, "memory.oom_control")) {
3867                 event->register_event = mem_cgroup_oom_register_event;
3868                 event->unregister_event = mem_cgroup_oom_unregister_event;
3869         } else if (!strcmp(name, "memory.pressure_level")) {
3870                 event->register_event = vmpressure_register_event;
3871                 event->unregister_event = vmpressure_unregister_event;
3872         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3873                 event->register_event = memsw_cgroup_usage_register_event;
3874                 event->unregister_event = memsw_cgroup_usage_unregister_event;
3875         } else {
3876                 ret = -EINVAL;
3877                 goto out_put_cfile;
3878         }
3879
3880         /*
3881          * Verify @cfile should belong to @css.  Also, remaining events are
3882          * automatically removed on cgroup destruction but the removal is
3883          * asynchronous, so take an extra ref on @css.
3884          */
3885         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3886                                                &memory_cgrp_subsys);
3887         ret = -EINVAL;
3888         if (IS_ERR(cfile_css))
3889                 goto out_put_cfile;
3890         if (cfile_css != css) {
3891                 css_put(cfile_css);
3892                 goto out_put_cfile;
3893         }
3894
3895         ret = event->register_event(memcg, event->eventfd, buf);
3896         if (ret)
3897                 goto out_put_css;
3898
3899         efile.file->f_op->poll(efile.file, &event->pt);
3900
3901         spin_lock(&memcg->event_list_lock);
3902         list_add(&event->list, &memcg->event_list);
3903         spin_unlock(&memcg->event_list_lock);
3904
3905         fdput(cfile);
3906         fdput(efile);
3907
3908         return nbytes;
3909
3910 out_put_css:
3911         css_put(css);
3912 out_put_cfile:
3913         fdput(cfile);
3914 out_put_eventfd:
3915         eventfd_ctx_put(event->eventfd);
3916 out_put_efile:
3917         fdput(efile);
3918 out_kfree:
3919         kfree(event);
3920
3921         return ret;
3922 }
3923
3924 static struct cftype mem_cgroup_legacy_files[] = {
3925         {
3926                 .name = "usage_in_bytes",
3927                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3928                 .read_u64 = mem_cgroup_read_u64,
3929         },
3930         {
3931                 .name = "max_usage_in_bytes",
3932                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3933                 .write = mem_cgroup_reset,
3934                 .read_u64 = mem_cgroup_read_u64,
3935         },
3936         {
3937                 .name = "limit_in_bytes",
3938                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3939                 .write = mem_cgroup_write,
3940                 .read_u64 = mem_cgroup_read_u64,
3941         },
3942         {
3943                 .name = "soft_limit_in_bytes",
3944                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3945                 .write = mem_cgroup_write,
3946                 .read_u64 = mem_cgroup_read_u64,
3947         },
3948         {
3949                 .name = "failcnt",
3950                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3951                 .write = mem_cgroup_reset,
3952                 .read_u64 = mem_cgroup_read_u64,
3953         },
3954         {
3955                 .name = "stat",
3956                 .seq_show = memcg_stat_show,
3957         },
3958         {
3959                 .name = "force_empty",
3960                 .write = mem_cgroup_force_empty_write,
3961         },
3962         {
3963                 .name = "use_hierarchy",
3964                 .write_u64 = mem_cgroup_hierarchy_write,
3965                 .read_u64 = mem_cgroup_hierarchy_read,
3966         },
3967         {
3968                 .name = "cgroup.event_control",         /* XXX: for compat */
3969                 .write = memcg_write_event_control,
3970                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3971         },
3972         {
3973                 .name = "swappiness",
3974                 .read_u64 = mem_cgroup_swappiness_read,
3975                 .write_u64 = mem_cgroup_swappiness_write,
3976         },
3977         {
3978                 .name = "move_charge_at_immigrate",
3979                 .read_u64 = mem_cgroup_move_charge_read,
3980                 .write_u64 = mem_cgroup_move_charge_write,
3981         },
3982         {
3983                 .name = "oom_control",
3984                 .seq_show = mem_cgroup_oom_control_read,
3985                 .write_u64 = mem_cgroup_oom_control_write,
3986                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3987         },
3988         {
3989                 .name = "pressure_level",
3990         },
3991 #ifdef CONFIG_NUMA
3992         {
3993                 .name = "numa_stat",
3994                 .seq_show = memcg_numa_stat_show,
3995         },
3996 #endif
3997         {
3998                 .name = "kmem.limit_in_bytes",
3999                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4000                 .write = mem_cgroup_write,
4001                 .read_u64 = mem_cgroup_read_u64,
4002         },
4003         {
4004                 .name = "kmem.usage_in_bytes",
4005                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4006                 .read_u64 = mem_cgroup_read_u64,
4007         },
4008         {
4009                 .name = "kmem.failcnt",
4010                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4011                 .write = mem_cgroup_reset,
4012                 .read_u64 = mem_cgroup_read_u64,
4013         },
4014         {
4015                 .name = "kmem.max_usage_in_bytes",
4016                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4017                 .write = mem_cgroup_reset,
4018                 .read_u64 = mem_cgroup_read_u64,
4019         },
4020 #ifdef CONFIG_SLABINFO
4021         {
4022                 .name = "kmem.slabinfo",
4023                 .seq_start = slab_start,
4024                 .seq_next = slab_next,
4025                 .seq_stop = slab_stop,
4026                 .seq_show = memcg_slab_show,
4027         },
4028 #endif
4029         {
4030                 .name = "kmem.tcp.limit_in_bytes",
4031                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4032                 .write = mem_cgroup_write,
4033                 .read_u64 = mem_cgroup_read_u64,
4034         },
4035         {
4036                 .name = "kmem.tcp.usage_in_bytes",
4037                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4038                 .read_u64 = mem_cgroup_read_u64,
4039         },
4040         {
4041                 .name = "kmem.tcp.failcnt",
4042                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4043                 .write = mem_cgroup_reset,
4044                 .read_u64 = mem_cgroup_read_u64,
4045         },
4046         {
4047                 .name = "kmem.tcp.max_usage_in_bytes",
4048                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4049                 .write = mem_cgroup_reset,
4050                 .read_u64 = mem_cgroup_read_u64,
4051         },
4052         { },    /* terminate */
4053 };
4054
4055 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4056 {
4057         struct mem_cgroup_per_node *pn;
4058         struct mem_cgroup_per_zone *mz;
4059         int zone, tmp = node;
4060         /*
4061          * This routine is called against possible nodes.
4062          * But it's BUG to call kmalloc() against offline node.
4063          *
4064          * TODO: this routine can waste much memory for nodes which will
4065          *       never be onlined. It's better to use memory hotplug callback
4066          *       function.
4067          */
4068         if (!node_state(node, N_NORMAL_MEMORY))
4069                 tmp = -1;
4070         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4071         if (!pn)
4072                 return 1;
4073
4074         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4075                 mz = &pn->zoneinfo[zone];
4076                 lruvec_init(&mz->lruvec);
4077                 mz->usage_in_excess = 0;
4078                 mz->on_tree = false;
4079                 mz->memcg = memcg;
4080         }
4081         memcg->nodeinfo[node] = pn;
4082         return 0;
4083 }
4084
4085 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4086 {
4087         kfree(memcg->nodeinfo[node]);
4088 }
4089
4090 static void mem_cgroup_free(struct mem_cgroup *memcg)
4091 {
4092         int node;
4093
4094         memcg_wb_domain_exit(memcg);
4095         for_each_node(node)
4096                 free_mem_cgroup_per_zone_info(memcg, node);
4097         free_percpu(memcg->stat);
4098         kfree(memcg);
4099 }
4100
4101 static struct mem_cgroup *mem_cgroup_alloc(void)
4102 {
4103         struct mem_cgroup *memcg;
4104         size_t size;
4105         int node;
4106
4107         size = sizeof(struct mem_cgroup);
4108         size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4109
4110         memcg = kzalloc(size, GFP_KERNEL);
4111         if (!memcg)
4112                 return NULL;
4113
4114         memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4115         if (!memcg->stat)
4116                 goto fail;
4117
4118         for_each_node(node)
4119                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4120                         goto fail;
4121
4122         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4123                 goto fail;
4124
4125         INIT_WORK(&memcg->high_work, high_work_func);
4126         memcg->last_scanned_node = MAX_NUMNODES;
4127         INIT_LIST_HEAD(&memcg->oom_notify);
4128         mutex_init(&memcg->thresholds_lock);
4129         spin_lock_init(&memcg->move_lock);
4130         vmpressure_init(&memcg->vmpressure);
4131         INIT_LIST_HEAD(&memcg->event_list);
4132         spin_lock_init(&memcg->event_list_lock);
4133         memcg->socket_pressure = jiffies;
4134 #ifndef CONFIG_SLOB
4135         memcg->kmemcg_id = -1;
4136 #endif
4137 #ifdef CONFIG_CGROUP_WRITEBACK
4138         INIT_LIST_HEAD(&memcg->cgwb_list);
4139 #endif
4140         return memcg;
4141 fail:
4142         mem_cgroup_free(memcg);
4143         return NULL;
4144 }
4145
4146 static struct cgroup_subsys_state * __ref
4147 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4148 {
4149         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4150         struct mem_cgroup *memcg;
4151         long error = -ENOMEM;
4152
4153         memcg = mem_cgroup_alloc();
4154         if (!memcg)
4155                 return ERR_PTR(error);
4156
4157         memcg->high = PAGE_COUNTER_MAX;
4158         memcg->soft_limit = PAGE_COUNTER_MAX;
4159         if (parent) {
4160                 memcg->swappiness = mem_cgroup_swappiness(parent);
4161                 memcg->oom_kill_disable = parent->oom_kill_disable;
4162         }
4163         if (parent && parent->use_hierarchy) {
4164                 memcg->use_hierarchy = true;
4165                 page_counter_init(&memcg->memory, &parent->memory);
4166                 page_counter_init(&memcg->swap, &parent->swap);
4167                 page_counter_init(&memcg->memsw, &parent->memsw);
4168                 page_counter_init(&memcg->kmem, &parent->kmem);
4169                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4170         } else {
4171                 page_counter_init(&memcg->memory, NULL);
4172                 page_counter_init(&memcg->swap, NULL);
4173                 page_counter_init(&memcg->memsw, NULL);
4174                 page_counter_init(&memcg->kmem, NULL);
4175                 page_counter_init(&memcg->tcpmem, NULL);
4176                 /*
4177                  * Deeper hierachy with use_hierarchy == false doesn't make
4178                  * much sense so let cgroup subsystem know about this
4179                  * unfortunate state in our controller.
4180                  */
4181                 if (parent != root_mem_cgroup)
4182                         memory_cgrp_subsys.broken_hierarchy = true;
4183         }
4184
4185         /* The following stuff does not apply to the root */
4186         if (!parent) {
4187                 root_mem_cgroup = memcg;
4188                 return &memcg->css;
4189         }
4190
4191         error = memcg_online_kmem(memcg);
4192         if (error)
4193                 goto fail;
4194
4195         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4196                 static_branch_inc(&memcg_sockets_enabled_key);
4197
4198         return &memcg->css;
4199 fail:
4200         mem_cgroup_free(memcg);
4201         return NULL;
4202 }
4203
4204 static int
4205 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4206 {
4207         if (css->id > MEM_CGROUP_ID_MAX)
4208                 return -ENOSPC;
4209
4210         return 0;
4211 }
4212
4213 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4214 {
4215         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4216         struct mem_cgroup_event *event, *tmp;
4217
4218         /*
4219          * Unregister events and notify userspace.
4220          * Notify userspace about cgroup removing only after rmdir of cgroup
4221          * directory to avoid race between userspace and kernelspace.
4222          */
4223         spin_lock(&memcg->event_list_lock);
4224         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4225                 list_del_init(&event->list);
4226                 schedule_work(&event->remove);
4227         }
4228         spin_unlock(&memcg->event_list_lock);
4229
4230         memcg_offline_kmem(memcg);
4231         wb_memcg_offline(memcg);
4232 }
4233
4234 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4235 {
4236         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4237
4238         invalidate_reclaim_iterators(memcg);
4239 }
4240
4241 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4242 {
4243         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4244
4245         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4246                 static_branch_dec(&memcg_sockets_enabled_key);
4247
4248         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4249                 static_branch_dec(&memcg_sockets_enabled_key);
4250
4251         vmpressure_cleanup(&memcg->vmpressure);
4252         cancel_work_sync(&memcg->high_work);
4253         mem_cgroup_remove_from_trees(memcg);
4254         memcg_free_kmem(memcg);
4255         mem_cgroup_free(memcg);
4256 }
4257
4258 /**
4259  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4260  * @css: the target css
4261  *
4262  * Reset the states of the mem_cgroup associated with @css.  This is
4263  * invoked when the userland requests disabling on the default hierarchy
4264  * but the memcg is pinned through dependency.  The memcg should stop
4265  * applying policies and should revert to the vanilla state as it may be
4266  * made visible again.
4267  *
4268  * The current implementation only resets the essential configurations.
4269  * This needs to be expanded to cover all the visible parts.
4270  */
4271 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4272 {
4273         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4274
4275         page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4276         page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4277         page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4278         page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4279         page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4280         memcg->low = 0;
4281         memcg->high = PAGE_COUNTER_MAX;
4282         memcg->soft_limit = PAGE_COUNTER_MAX;
4283         memcg_wb_domain_size_changed(memcg);
4284 }
4285
4286 #ifdef CONFIG_MMU
4287 /* Handlers for move charge at task migration. */
4288 static int mem_cgroup_do_precharge(unsigned long count)
4289 {
4290         int ret;
4291
4292         /* Try a single bulk charge without reclaim first, kswapd may wake */
4293         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4294         if (!ret) {
4295                 mc.precharge += count;
4296                 return ret;
4297         }
4298
4299         /* Try charges one by one with reclaim */
4300         while (count--) {
4301                 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4302                 if (ret)
4303                         return ret;
4304                 mc.precharge++;
4305                 cond_resched();
4306         }
4307         return 0;
4308 }
4309
4310 /**
4311  * get_mctgt_type - get target type of moving charge
4312  * @vma: the vma the pte to be checked belongs
4313  * @addr: the address corresponding to the pte to be checked
4314  * @ptent: the pte to be checked
4315  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4316  *
4317  * Returns
4318  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4319  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4320  *     move charge. if @target is not NULL, the page is stored in target->page
4321  *     with extra refcnt got(Callers should handle it).
4322  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4323  *     target for charge migration. if @target is not NULL, the entry is stored
4324  *     in target->ent.
4325  *
4326  * Called with pte lock held.
4327  */
4328 union mc_target {
4329         struct page     *page;
4330         swp_entry_t     ent;
4331 };
4332
4333 enum mc_target_type {
4334         MC_TARGET_NONE = 0,
4335         MC_TARGET_PAGE,
4336         MC_TARGET_SWAP,
4337 };
4338
4339 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4340                                                 unsigned long addr, pte_t ptent)
4341 {
4342         struct page *page = vm_normal_page(vma, addr, ptent);
4343
4344         if (!page || !page_mapped(page))
4345                 return NULL;
4346         if (PageAnon(page)) {
4347                 if (!(mc.flags & MOVE_ANON))
4348                         return NULL;
4349         } else {
4350                 if (!(mc.flags & MOVE_FILE))
4351                         return NULL;
4352         }
4353         if (!get_page_unless_zero(page))
4354                 return NULL;
4355
4356         return page;
4357 }
4358
4359 #ifdef CONFIG_SWAP
4360 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4361                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4362 {
4363         struct page *page = NULL;
4364         swp_entry_t ent = pte_to_swp_entry(ptent);
4365
4366         if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4367                 return NULL;
4368         /*
4369          * Because lookup_swap_cache() updates some statistics counter,
4370          * we call find_get_page() with swapper_space directly.
4371          */
4372         page = find_get_page(swap_address_space(ent), ent.val);
4373         if (do_memsw_account())
4374                 entry->val = ent.val;
4375
4376         return page;
4377 }
4378 #else
4379 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4380                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4381 {
4382         return NULL;
4383 }
4384 #endif
4385
4386 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4387                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4388 {
4389         struct page *page = NULL;
4390         struct address_space *mapping;
4391         pgoff_t pgoff;
4392
4393         if (!vma->vm_file) /* anonymous vma */
4394                 return NULL;
4395         if (!(mc.flags & MOVE_FILE))
4396                 return NULL;
4397
4398         mapping = vma->vm_file->f_mapping;
4399         pgoff = linear_page_index(vma, addr);
4400
4401         /* page is moved even if it's not RSS of this task(page-faulted). */
4402 #ifdef CONFIG_SWAP
4403         /* shmem/tmpfs may report page out on swap: account for that too. */
4404         if (shmem_mapping(mapping)) {
4405                 page = find_get_entry(mapping, pgoff);
4406                 if (radix_tree_exceptional_entry(page)) {
4407                         swp_entry_t swp = radix_to_swp_entry(page);
4408                         if (do_memsw_account())
4409                                 *entry = swp;
4410                         page = find_get_page(swap_address_space(swp), swp.val);
4411                 }
4412         } else
4413                 page = find_get_page(mapping, pgoff);
4414 #else
4415         page = find_get_page(mapping, pgoff);
4416 #endif
4417         return page;
4418 }
4419
4420 /**
4421  * mem_cgroup_move_account - move account of the page
4422  * @page: the page
4423  * @nr_pages: number of regular pages (>1 for huge pages)
4424  * @from: mem_cgroup which the page is moved from.
4425  * @to: mem_cgroup which the page is moved to. @from != @to.
4426  *
4427  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4428  *
4429  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4430  * from old cgroup.
4431  */
4432 static int mem_cgroup_move_account(struct page *page,
4433                                    bool compound,
4434                                    struct mem_cgroup *from,
4435                                    struct mem_cgroup *to)
4436 {
4437         unsigned long flags;
4438         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4439         int ret;
4440         bool anon;
4441
4442         VM_BUG_ON(from == to);
4443         VM_BUG_ON_PAGE(PageLRU(page), page);
4444         VM_BUG_ON(compound && !PageTransHuge(page));
4445
4446         /*
4447          * Prevent mem_cgroup_migrate() from looking at
4448          * page->mem_cgroup of its source page while we change it.
4449          */
4450         ret = -EBUSY;
4451         if (!trylock_page(page))
4452                 goto out;
4453
4454         ret = -EINVAL;
4455         if (page->mem_cgroup != from)
4456                 goto out_unlock;
4457
4458         anon = PageAnon(page);
4459
4460         spin_lock_irqsave(&from->move_lock, flags);
4461
4462         if (!anon && page_mapped(page)) {
4463                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4464                                nr_pages);
4465                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4466                                nr_pages);
4467         }
4468
4469         /*
4470          * move_lock grabbed above and caller set from->moving_account, so
4471          * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4472          * So mapping should be stable for dirty pages.
4473          */
4474         if (!anon && PageDirty(page)) {
4475                 struct address_space *mapping = page_mapping(page);
4476
4477                 if (mapping_cap_account_dirty(mapping)) {
4478                         __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4479                                        nr_pages);
4480                         __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4481                                        nr_pages);
4482                 }
4483         }
4484
4485         if (PageWriteback(page)) {
4486                 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4487                                nr_pages);
4488                 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4489                                nr_pages);
4490         }
4491
4492         /*
4493          * It is safe to change page->mem_cgroup here because the page
4494          * is referenced, charged, and isolated - we can't race with
4495          * uncharging, charging, migration, or LRU putback.
4496          */
4497
4498         /* caller should have done css_get */
4499         page->mem_cgroup = to;
4500         spin_unlock_irqrestore(&from->move_lock, flags);
4501
4502         ret = 0;
4503
4504         local_irq_disable();
4505         mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4506         memcg_check_events(to, page);
4507         mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4508         memcg_check_events(from, page);
4509         local_irq_enable();
4510 out_unlock:
4511         unlock_page(page);
4512 out:
4513         return ret;
4514 }
4515
4516 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4517                 unsigned long addr, pte_t ptent, union mc_target *target)
4518 {
4519         struct page *page = NULL;
4520         enum mc_target_type ret = MC_TARGET_NONE;
4521         swp_entry_t ent = { .val = 0 };
4522
4523         if (pte_present(ptent))
4524                 page = mc_handle_present_pte(vma, addr, ptent);
4525         else if (is_swap_pte(ptent))
4526                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4527         else if (pte_none(ptent))
4528                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4529
4530         if (!page && !ent.val)
4531                 return ret;
4532         if (page) {
4533                 /*
4534                  * Do only loose check w/o serialization.
4535                  * mem_cgroup_move_account() checks the page is valid or
4536                  * not under LRU exclusion.
4537                  */
4538                 if (page->mem_cgroup == mc.from) {
4539                         ret = MC_TARGET_PAGE;
4540                         if (target)
4541                                 target->page = page;
4542                 }
4543                 if (!ret || !target)
4544                         put_page(page);
4545         }
4546         /* There is a swap entry and a page doesn't exist or isn't charged */
4547         if (ent.val && !ret &&
4548             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4549                 ret = MC_TARGET_SWAP;
4550                 if (target)
4551                         target->ent = ent;
4552         }
4553         return ret;
4554 }
4555
4556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4557 /*
4558  * We don't consider swapping or file mapped pages because THP does not
4559  * support them for now.
4560  * Caller should make sure that pmd_trans_huge(pmd) is true.
4561  */
4562 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4563                 unsigned long addr, pmd_t pmd, union mc_target *target)
4564 {
4565         struct page *page = NULL;
4566         enum mc_target_type ret = MC_TARGET_NONE;
4567
4568         page = pmd_page(pmd);
4569         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4570         if (!(mc.flags & MOVE_ANON))
4571                 return ret;
4572         if (page->mem_cgroup == mc.from) {
4573                 ret = MC_TARGET_PAGE;
4574                 if (target) {
4575                         get_page(page);
4576                         target->page = page;
4577                 }
4578         }
4579         return ret;
4580 }
4581 #else
4582 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4583                 unsigned long addr, pmd_t pmd, union mc_target *target)
4584 {
4585         return MC_TARGET_NONE;
4586 }
4587 #endif
4588
4589 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4590                                         unsigned long addr, unsigned long end,
4591                                         struct mm_walk *walk)
4592 {
4593         struct vm_area_struct *vma = walk->vma;
4594         pte_t *pte;
4595         spinlock_t *ptl;
4596
4597         ptl = pmd_trans_huge_lock(pmd, vma);
4598         if (ptl) {
4599                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4600                         mc.precharge += HPAGE_PMD_NR;
4601                 spin_unlock(ptl);
4602                 return 0;
4603         }
4604
4605         if (pmd_trans_unstable(pmd))
4606                 return 0;
4607         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4608         for (; addr != end; pte++, addr += PAGE_SIZE)
4609                 if (get_mctgt_type(vma, addr, *pte, NULL))
4610                         mc.precharge++; /* increment precharge temporarily */
4611         pte_unmap_unlock(pte - 1, ptl);
4612         cond_resched();
4613
4614         return 0;
4615 }
4616
4617 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4618 {
4619         unsigned long precharge;
4620
4621         struct mm_walk mem_cgroup_count_precharge_walk = {
4622                 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4623                 .mm = mm,
4624         };
4625         down_read(&mm->mmap_sem);
4626         walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4627         up_read(&mm->mmap_sem);
4628
4629         precharge = mc.precharge;
4630         mc.precharge = 0;
4631
4632         return precharge;
4633 }
4634
4635 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4636 {
4637         unsigned long precharge = mem_cgroup_count_precharge(mm);
4638
4639         VM_BUG_ON(mc.moving_task);
4640         mc.moving_task = current;
4641         return mem_cgroup_do_precharge(precharge);
4642 }
4643
4644 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4645 static void __mem_cgroup_clear_mc(void)
4646 {
4647         struct mem_cgroup *from = mc.from;
4648         struct mem_cgroup *to = mc.to;
4649
4650         /* we must uncharge all the leftover precharges from mc.to */
4651         if (mc.precharge) {
4652                 cancel_charge(mc.to, mc.precharge);
4653                 mc.precharge = 0;
4654         }
4655         /*
4656          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4657          * we must uncharge here.
4658          */
4659         if (mc.moved_charge) {
4660                 cancel_charge(mc.from, mc.moved_charge);
4661                 mc.moved_charge = 0;
4662         }
4663         /* we must fixup refcnts and charges */
4664         if (mc.moved_swap) {
4665                 /* uncharge swap account from the old cgroup */
4666                 if (!mem_cgroup_is_root(mc.from))
4667                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4668
4669                 /*
4670                  * we charged both to->memory and to->memsw, so we
4671                  * should uncharge to->memory.
4672                  */
4673                 if (!mem_cgroup_is_root(mc.to))
4674                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4675
4676                 css_put_many(&mc.from->css, mc.moved_swap);
4677
4678                 /* we've already done css_get(mc.to) */
4679                 mc.moved_swap = 0;
4680         }
4681         memcg_oom_recover(from);
4682         memcg_oom_recover(to);
4683         wake_up_all(&mc.waitq);
4684 }
4685
4686 static void mem_cgroup_clear_mc(void)
4687 {
4688         struct mm_struct *mm = mc.mm;
4689
4690         /*
4691          * we must clear moving_task before waking up waiters at the end of
4692          * task migration.
4693          */
4694         mc.moving_task = NULL;
4695         __mem_cgroup_clear_mc();
4696         spin_lock(&mc.lock);
4697         mc.from = NULL;
4698         mc.to = NULL;
4699         mc.mm = NULL;
4700         spin_unlock(&mc.lock);
4701
4702         mmput(mm);
4703 }
4704
4705 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4706 {
4707         struct cgroup_subsys_state *css;
4708         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4709         struct mem_cgroup *from;
4710         struct task_struct *leader, *p;
4711         struct mm_struct *mm;
4712         unsigned long move_flags;
4713         int ret = 0;
4714
4715         /* charge immigration isn't supported on the default hierarchy */
4716         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4717                 return 0;
4718
4719         /*
4720          * Multi-process migrations only happen on the default hierarchy
4721          * where charge immigration is not used.  Perform charge
4722          * immigration if @tset contains a leader and whine if there are
4723          * multiple.
4724          */
4725         p = NULL;
4726         cgroup_taskset_for_each_leader(leader, css, tset) {
4727                 WARN_ON_ONCE(p);
4728                 p = leader;
4729                 memcg = mem_cgroup_from_css(css);
4730         }
4731         if (!p)
4732                 return 0;
4733
4734         /*
4735          * We are now commited to this value whatever it is. Changes in this
4736          * tunable will only affect upcoming migrations, not the current one.
4737          * So we need to save it, and keep it going.
4738          */
4739         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4740         if (!move_flags)
4741                 return 0;
4742
4743         from = mem_cgroup_from_task(p);
4744
4745         VM_BUG_ON(from == memcg);
4746
4747         mm = get_task_mm(p);
4748         if (!mm)
4749                 return 0;
4750         /* We move charges only when we move a owner of the mm */
4751         if (mm->owner == p) {
4752                 VM_BUG_ON(mc.from);
4753                 VM_BUG_ON(mc.to);
4754                 VM_BUG_ON(mc.precharge);
4755                 VM_BUG_ON(mc.moved_charge);
4756                 VM_BUG_ON(mc.moved_swap);
4757
4758                 spin_lock(&mc.lock);
4759                 mc.mm = mm;
4760                 mc.from = from;
4761                 mc.to = memcg;
4762                 mc.flags = move_flags;
4763                 spin_unlock(&mc.lock);
4764                 /* We set mc.moving_task later */
4765
4766                 ret = mem_cgroup_precharge_mc(mm);
4767                 if (ret)
4768                         mem_cgroup_clear_mc();
4769         } else {
4770                 mmput(mm);
4771         }
4772         return ret;
4773 }
4774
4775 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4776 {
4777         if (mc.to)
4778                 mem_cgroup_clear_mc();
4779 }
4780
4781 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4782                                 unsigned long addr, unsigned long end,
4783                                 struct mm_walk *walk)
4784 {
4785         int ret = 0;
4786         struct vm_area_struct *vma = walk->vma;
4787         pte_t *pte;
4788         spinlock_t *ptl;
4789         enum mc_target_type target_type;
4790         union mc_target target;
4791         struct page *page;
4792
4793         ptl = pmd_trans_huge_lock(pmd, vma);
4794         if (ptl) {
4795                 if (mc.precharge < HPAGE_PMD_NR) {
4796                         spin_unlock(ptl);
4797                         return 0;
4798                 }
4799                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4800                 if (target_type == MC_TARGET_PAGE) {
4801                         page = target.page;
4802                         if (!isolate_lru_page(page)) {
4803                                 if (!mem_cgroup_move_account(page, true,
4804                                                              mc.from, mc.to)) {
4805                                         mc.precharge -= HPAGE_PMD_NR;
4806                                         mc.moved_charge += HPAGE_PMD_NR;
4807                                 }
4808                                 putback_lru_page(page);
4809                         }
4810                         put_page(page);
4811                 }
4812                 spin_unlock(ptl);
4813                 return 0;
4814         }
4815
4816         if (pmd_trans_unstable(pmd))
4817                 return 0;
4818 retry:
4819         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4820         for (; addr != end; addr += PAGE_SIZE) {
4821                 pte_t ptent = *(pte++);
4822                 swp_entry_t ent;
4823
4824                 if (!mc.precharge)
4825                         break;
4826
4827                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4828                 case MC_TARGET_PAGE:
4829                         page = target.page;
4830                         /*
4831                          * We can have a part of the split pmd here. Moving it
4832                          * can be done but it would be too convoluted so simply
4833                          * ignore such a partial THP and keep it in original
4834                          * memcg. There should be somebody mapping the head.
4835                          */
4836                         if (PageTransCompound(page))
4837                                 goto put;
4838                         if (isolate_lru_page(page))
4839                                 goto put;
4840                         if (!mem_cgroup_move_account(page, false,
4841                                                 mc.from, mc.to)) {
4842                                 mc.precharge--;
4843                                 /* we uncharge from mc.from later. */
4844                                 mc.moved_charge++;
4845                         }
4846                         putback_lru_page(page);
4847 put:                    /* get_mctgt_type() gets the page */
4848                         put_page(page);
4849                         break;
4850                 case MC_TARGET_SWAP:
4851                         ent = target.ent;
4852                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4853                                 mc.precharge--;
4854                                 /* we fixup refcnts and charges later. */
4855                                 mc.moved_swap++;
4856                         }
4857                         break;
4858                 default:
4859                         break;
4860                 }
4861         }
4862         pte_unmap_unlock(pte - 1, ptl);
4863         cond_resched();
4864
4865         if (addr != end) {
4866                 /*
4867                  * We have consumed all precharges we got in can_attach().
4868                  * We try charge one by one, but don't do any additional
4869                  * charges to mc.to if we have failed in charge once in attach()
4870                  * phase.
4871                  */
4872                 ret = mem_cgroup_do_precharge(1);
4873                 if (!ret)
4874                         goto retry;
4875         }
4876
4877         return ret;
4878 }
4879
4880 static void mem_cgroup_move_charge(void)
4881 {
4882         struct mm_walk mem_cgroup_move_charge_walk = {
4883                 .pmd_entry = mem_cgroup_move_charge_pte_range,
4884                 .mm = mc.mm,
4885         };
4886
4887         lru_add_drain_all();
4888         /*
4889          * Signal lock_page_memcg() to take the memcg's move_lock
4890          * while we're moving its pages to another memcg. Then wait
4891          * for already started RCU-only updates to finish.
4892          */
4893         atomic_inc(&mc.from->moving_account);
4894         synchronize_rcu();
4895 retry:
4896         if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4897                 /*
4898                  * Someone who are holding the mmap_sem might be waiting in
4899                  * waitq. So we cancel all extra charges, wake up all waiters,
4900                  * and retry. Because we cancel precharges, we might not be able
4901                  * to move enough charges, but moving charge is a best-effort
4902                  * feature anyway, so it wouldn't be a big problem.
4903                  */
4904                 __mem_cgroup_clear_mc();
4905                 cond_resched();
4906                 goto retry;
4907         }
4908         /*
4909          * When we have consumed all precharges and failed in doing
4910          * additional charge, the page walk just aborts.
4911          */
4912         walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4913         up_read(&mc.mm->mmap_sem);
4914         atomic_dec(&mc.from->moving_account);
4915 }
4916
4917 static void mem_cgroup_move_task(void)
4918 {
4919         if (mc.to) {
4920                 mem_cgroup_move_charge();
4921                 mem_cgroup_clear_mc();
4922         }
4923 }
4924 #else   /* !CONFIG_MMU */
4925 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4926 {
4927         return 0;
4928 }
4929 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4930 {
4931 }
4932 static void mem_cgroup_move_task(void)
4933 {
4934 }
4935 #endif
4936
4937 /*
4938  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4939  * to verify whether we're attached to the default hierarchy on each mount
4940  * attempt.
4941  */
4942 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4943 {
4944         /*
4945          * use_hierarchy is forced on the default hierarchy.  cgroup core
4946          * guarantees that @root doesn't have any children, so turning it
4947          * on for the root memcg is enough.
4948          */
4949         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4950                 root_mem_cgroup->use_hierarchy = true;
4951         else
4952                 root_mem_cgroup->use_hierarchy = false;
4953 }
4954
4955 static u64 memory_current_read(struct cgroup_subsys_state *css,
4956                                struct cftype *cft)
4957 {
4958         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4959
4960         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4961 }
4962
4963 static int memory_low_show(struct seq_file *m, void *v)
4964 {
4965         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4966         unsigned long low = READ_ONCE(memcg->low);
4967
4968         if (low == PAGE_COUNTER_MAX)
4969                 seq_puts(m, "max\n");
4970         else
4971                 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4972
4973         return 0;
4974 }
4975
4976 static ssize_t memory_low_write(struct kernfs_open_file *of,
4977                                 char *buf, size_t nbytes, loff_t off)
4978 {
4979         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4980         unsigned long low;
4981         int err;
4982
4983         buf = strstrip(buf);
4984         err = page_counter_memparse(buf, "max", &low);
4985         if (err)
4986                 return err;
4987
4988         memcg->low = low;
4989
4990         return nbytes;
4991 }
4992
4993 static int memory_high_show(struct seq_file *m, void *v)
4994 {
4995         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4996         unsigned long high = READ_ONCE(memcg->high);
4997
4998         if (high == PAGE_COUNTER_MAX)
4999                 seq_puts(m, "max\n");
5000         else
5001                 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5002
5003         return 0;
5004 }
5005
5006 static ssize_t memory_high_write(struct kernfs_open_file *of,
5007                                  char *buf, size_t nbytes, loff_t off)
5008 {
5009         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5010         unsigned long nr_pages;
5011         unsigned long high;
5012         int err;
5013
5014         buf = strstrip(buf);
5015         err = page_counter_memparse(buf, "max", &high);
5016         if (err)
5017                 return err;
5018
5019         memcg->high = high;
5020
5021         nr_pages = page_counter_read(&memcg->memory);
5022         if (nr_pages > high)
5023                 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5024                                              GFP_KERNEL, true);
5025
5026         memcg_wb_domain_size_changed(memcg);
5027         return nbytes;
5028 }
5029
5030 static int memory_max_show(struct seq_file *m, void *v)
5031 {
5032         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5033         unsigned long max = READ_ONCE(memcg->memory.limit);
5034
5035         if (max == PAGE_COUNTER_MAX)
5036                 seq_puts(m, "max\n");
5037         else
5038                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5039
5040         return 0;
5041 }
5042
5043 static ssize_t memory_max_write(struct kernfs_open_file *of,
5044                                 char *buf, size_t nbytes, loff_t off)
5045 {
5046         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5047         unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5048         bool drained = false;
5049         unsigned long max;
5050         int err;
5051
5052         buf = strstrip(buf);
5053         err = page_counter_memparse(buf, "max", &max);
5054         if (err)
5055                 return err;
5056
5057         xchg(&memcg->memory.limit, max);
5058
5059         for (;;) {
5060                 unsigned long nr_pages = page_counter_read(&memcg->memory);
5061
5062                 if (nr_pages <= max)
5063                         break;
5064
5065                 if (signal_pending(current)) {
5066                         err = -EINTR;
5067                         break;
5068                 }
5069
5070                 if (!drained) {
5071                         drain_all_stock(memcg);
5072                         drained = true;
5073                         continue;
5074                 }
5075
5076                 if (nr_reclaims) {
5077                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5078                                                           GFP_KERNEL, true))
5079                                 nr_reclaims--;
5080                         continue;
5081                 }
5082
5083                 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5084                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5085                         break;
5086         }
5087
5088         memcg_wb_domain_size_changed(memcg);
5089         return nbytes;
5090 }
5091
5092 static int memory_events_show(struct seq_file *m, void *v)
5093 {
5094         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5095
5096         seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5097         seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5098         seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5099         seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5100
5101         return 0;
5102 }
5103
5104 static int memory_stat_show(struct seq_file *m, void *v)
5105 {
5106         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5107         unsigned long stat[MEMCG_NR_STAT];
5108         unsigned long events[MEMCG_NR_EVENTS];
5109         int i;
5110
5111         /*
5112          * Provide statistics on the state of the memory subsystem as
5113          * well as cumulative event counters that show past behavior.
5114          *
5115          * This list is ordered following a combination of these gradients:
5116          * 1) generic big picture -> specifics and details
5117          * 2) reflecting userspace activity -> reflecting kernel heuristics
5118          *
5119          * Current memory state:
5120          */
5121
5122         tree_stat(memcg, stat);
5123         tree_events(memcg, events);
5124
5125         seq_printf(m, "anon %llu\n",
5126                    (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5127         seq_printf(m, "file %llu\n",
5128                    (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5129         seq_printf(m, "kernel_stack %llu\n",
5130                    (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5131         seq_printf(m, "slab %llu\n",
5132                    (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5133                          stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5134         seq_printf(m, "sock %llu\n",
5135                    (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5136
5137         seq_printf(m, "file_mapped %llu\n",
5138                    (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5139         seq_printf(m, "file_dirty %llu\n",
5140                    (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5141         seq_printf(m, "file_writeback %llu\n",
5142                    (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5143
5144         for (i = 0; i < NR_LRU_LISTS; i++) {
5145                 struct mem_cgroup *mi;
5146                 unsigned long val = 0;
5147
5148                 for_each_mem_cgroup_tree(mi, memcg)
5149                         val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5150                 seq_printf(m, "%s %llu\n",
5151                            mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5152         }
5153
5154         seq_printf(m, "slab_reclaimable %llu\n",
5155                    (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5156         seq_printf(m, "slab_unreclaimable %llu\n",
5157                    (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5158
5159         /* Accumulated memory events */
5160
5161         seq_printf(m, "pgfault %lu\n",
5162                    events[MEM_CGROUP_EVENTS_PGFAULT]);
5163         seq_printf(m, "pgmajfault %lu\n",
5164                    events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5165
5166         return 0;
5167 }
5168
5169 static struct cftype memory_files[] = {
5170         {
5171                 .name = "current",
5172                 .flags = CFTYPE_NOT_ON_ROOT,
5173                 .read_u64 = memory_current_read,
5174         },
5175         {
5176                 .name = "low",
5177                 .flags = CFTYPE_NOT_ON_ROOT,
5178                 .seq_show = memory_low_show,
5179                 .write = memory_low_write,
5180         },
5181         {
5182                 .name = "high",
5183                 .flags = CFTYPE_NOT_ON_ROOT,
5184                 .seq_show = memory_high_show,
5185                 .write = memory_high_write,
5186         },
5187         {
5188                 .name = "max",
5189                 .flags = CFTYPE_NOT_ON_ROOT,
5190                 .seq_show = memory_max_show,
5191                 .write = memory_max_write,
5192         },
5193         {
5194                 .name = "events",
5195                 .flags = CFTYPE_NOT_ON_ROOT,
5196                 .file_offset = offsetof(struct mem_cgroup, events_file),
5197                 .seq_show = memory_events_show,
5198         },
5199         {
5200                 .name = "stat",
5201                 .flags = CFTYPE_NOT_ON_ROOT,
5202                 .seq_show = memory_stat_show,
5203         },
5204         { }     /* terminate */
5205 };
5206
5207 struct cgroup_subsys memory_cgrp_subsys = {
5208         .css_alloc = mem_cgroup_css_alloc,
5209         .css_online = mem_cgroup_css_online,
5210         .css_offline = mem_cgroup_css_offline,
5211         .css_released = mem_cgroup_css_released,
5212         .css_free = mem_cgroup_css_free,
5213         .css_reset = mem_cgroup_css_reset,
5214         .can_attach = mem_cgroup_can_attach,
5215         .cancel_attach = mem_cgroup_cancel_attach,
5216         .post_attach = mem_cgroup_move_task,
5217         .bind = mem_cgroup_bind,
5218         .dfl_cftypes = memory_files,
5219         .legacy_cftypes = mem_cgroup_legacy_files,
5220         .early_init = 0,
5221 };
5222
5223 /**
5224  * mem_cgroup_low - check if memory consumption is below the normal range
5225  * @root: the highest ancestor to consider
5226  * @memcg: the memory cgroup to check
5227  *
5228  * Returns %true if memory consumption of @memcg, and that of all
5229  * configurable ancestors up to @root, is below the normal range.
5230  */
5231 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5232 {
5233         if (mem_cgroup_disabled())
5234                 return false;
5235
5236         /*
5237          * The toplevel group doesn't have a configurable range, so
5238          * it's never low when looked at directly, and it is not
5239          * considered an ancestor when assessing the hierarchy.
5240          */
5241
5242         if (memcg == root_mem_cgroup)
5243                 return false;
5244
5245         if (page_counter_read(&memcg->memory) >= memcg->low)
5246                 return false;
5247
5248         while (memcg != root) {
5249                 memcg = parent_mem_cgroup(memcg);
5250
5251                 if (memcg == root_mem_cgroup)
5252                         break;
5253
5254                 if (page_counter_read(&memcg->memory) >= memcg->low)
5255                         return false;
5256         }
5257         return true;
5258 }
5259
5260 /**
5261  * mem_cgroup_try_charge - try charging a page
5262  * @page: page to charge
5263  * @mm: mm context of the victim
5264  * @gfp_mask: reclaim mode
5265  * @memcgp: charged memcg return
5266  *
5267  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5268  * pages according to @gfp_mask if necessary.
5269  *
5270  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5271  * Otherwise, an error code is returned.
5272  *
5273  * After page->mapping has been set up, the caller must finalize the
5274  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5275  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5276  */
5277 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5278                           gfp_t gfp_mask, struct mem_cgroup **memcgp,
5279                           bool compound)
5280 {
5281         struct mem_cgroup *memcg = NULL;
5282         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5283         int ret = 0;
5284
5285         if (mem_cgroup_disabled())
5286                 goto out;
5287
5288         if (PageSwapCache(page)) {
5289                 /*
5290                  * Every swap fault against a single page tries to charge the
5291                  * page, bail as early as possible.  shmem_unuse() encounters
5292                  * already charged pages, too.  The USED bit is protected by
5293                  * the page lock, which serializes swap cache removal, which
5294                  * in turn serializes uncharging.
5295                  */
5296                 VM_BUG_ON_PAGE(!PageLocked(page), page);
5297                 if (page->mem_cgroup)
5298                         goto out;
5299
5300                 if (do_swap_account) {
5301                         swp_entry_t ent = { .val = page_private(page), };
5302                         unsigned short id = lookup_swap_cgroup_id(ent);
5303
5304                         rcu_read_lock();
5305                         memcg = mem_cgroup_from_id(id);
5306                         if (memcg && !css_tryget_online(&memcg->css))
5307                                 memcg = NULL;
5308                         rcu_read_unlock();
5309                 }
5310         }
5311
5312         if (!memcg)
5313                 memcg = get_mem_cgroup_from_mm(mm);
5314
5315         ret = try_charge(memcg, gfp_mask, nr_pages);
5316
5317         css_put(&memcg->css);
5318 out:
5319         *memcgp = memcg;
5320         return ret;
5321 }
5322
5323 /**
5324  * mem_cgroup_commit_charge - commit a page charge
5325  * @page: page to charge
5326  * @memcg: memcg to charge the page to
5327  * @lrucare: page might be on LRU already
5328  *
5329  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5330  * after page->mapping has been set up.  This must happen atomically
5331  * as part of the page instantiation, i.e. under the page table lock
5332  * for anonymous pages, under the page lock for page and swap cache.
5333  *
5334  * In addition, the page must not be on the LRU during the commit, to
5335  * prevent racing with task migration.  If it might be, use @lrucare.
5336  *
5337  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5338  */
5339 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5340                               bool lrucare, bool compound)
5341 {
5342         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5343
5344         VM_BUG_ON_PAGE(!page->mapping, page);
5345         VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5346
5347         if (mem_cgroup_disabled())
5348                 return;
5349         /*
5350          * Swap faults will attempt to charge the same page multiple
5351          * times.  But reuse_swap_page() might have removed the page
5352          * from swapcache already, so we can't check PageSwapCache().
5353          */
5354         if (!memcg)
5355                 return;
5356
5357         commit_charge(page, memcg, lrucare);
5358
5359         local_irq_disable();
5360         mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5361         memcg_check_events(memcg, page);
5362         local_irq_enable();
5363
5364         if (do_memsw_account() && PageSwapCache(page)) {
5365                 swp_entry_t entry = { .val = page_private(page) };
5366                 /*
5367                  * The swap entry might not get freed for a long time,
5368                  * let's not wait for it.  The page already received a
5369                  * memory+swap charge, drop the swap entry duplicate.
5370                  */
5371                 mem_cgroup_uncharge_swap(entry);
5372         }
5373 }
5374
5375 /**
5376  * mem_cgroup_cancel_charge - cancel a page charge
5377  * @page: page to charge
5378  * @memcg: memcg to charge the page to
5379  *
5380  * Cancel a charge transaction started by mem_cgroup_try_charge().
5381  */
5382 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5383                 bool compound)
5384 {
5385         unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5386
5387         if (mem_cgroup_disabled())
5388                 return;
5389         /*
5390          * Swap faults will attempt to charge the same page multiple
5391          * times.  But reuse_swap_page() might have removed the page
5392          * from swapcache already, so we can't check PageSwapCache().
5393          */
5394         if (!memcg)
5395                 return;
5396
5397         cancel_charge(memcg, nr_pages);
5398 }
5399
5400 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5401                            unsigned long nr_anon, unsigned long nr_file,
5402                            unsigned long nr_huge, struct page *dummy_page)
5403 {
5404         unsigned long nr_pages = nr_anon + nr_file;
5405         unsigned long flags;
5406
5407         if (!mem_cgroup_is_root(memcg)) {
5408                 page_counter_uncharge(&memcg->memory, nr_pages);
5409                 if (do_memsw_account())
5410                         page_counter_uncharge(&memcg->memsw, nr_pages);
5411                 memcg_oom_recover(memcg);
5412         }
5413
5414         local_irq_save(flags);
5415         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5416         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5417         __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5418         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5419         __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5420         memcg_check_events(memcg, dummy_page);
5421         local_irq_restore(flags);
5422
5423         if (!mem_cgroup_is_root(memcg))
5424                 css_put_many(&memcg->css, nr_pages);
5425 }
5426
5427 static void uncharge_list(struct list_head *page_list)
5428 {
5429         struct mem_cgroup *memcg = NULL;
5430         unsigned long nr_anon = 0;
5431         unsigned long nr_file = 0;
5432         unsigned long nr_huge = 0;
5433         unsigned long pgpgout = 0;
5434         struct list_head *next;
5435         struct page *page;
5436
5437         /*
5438          * Note that the list can be a single page->lru; hence the
5439          * do-while loop instead of a simple list_for_each_entry().
5440          */
5441         next = page_list->next;
5442         do {
5443                 unsigned int nr_pages = 1;
5444
5445                 page = list_entry(next, struct page, lru);
5446                 next = page->lru.next;
5447
5448                 VM_BUG_ON_PAGE(PageLRU(page), page);
5449                 VM_BUG_ON_PAGE(page_count(page), page);
5450
5451                 if (!page->mem_cgroup)
5452                         continue;
5453
5454                 /*
5455                  * Nobody should be changing or seriously looking at
5456                  * page->mem_cgroup at this point, we have fully
5457                  * exclusive access to the page.
5458                  */
5459
5460                 if (memcg != page->mem_cgroup) {
5461                         if (memcg) {
5462                                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5463                                                nr_huge, page);
5464                                 pgpgout = nr_anon = nr_file = nr_huge = 0;
5465                         }
5466                         memcg = page->mem_cgroup;
5467                 }
5468
5469                 if (PageTransHuge(page)) {
5470                         nr_pages <<= compound_order(page);
5471                         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5472                         nr_huge += nr_pages;
5473                 }
5474
5475                 if (PageAnon(page))
5476                         nr_anon += nr_pages;
5477                 else
5478                         nr_file += nr_pages;
5479
5480                 page->mem_cgroup = NULL;
5481
5482                 pgpgout++;
5483         } while (next != page_list);
5484
5485         if (memcg)
5486                 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5487                                nr_huge, page);
5488 }
5489
5490 /**
5491  * mem_cgroup_uncharge - uncharge a page
5492  * @page: page to uncharge
5493  *
5494  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5495  * mem_cgroup_commit_charge().
5496  */
5497 void mem_cgroup_uncharge(struct page *page)
5498 {
5499         if (mem_cgroup_disabled())
5500                 return;
5501
5502         /* Don't touch page->lru of any random page, pre-check: */
5503         if (!page->mem_cgroup)
5504                 return;
5505
5506         INIT_LIST_HEAD(&page->lru);
5507         uncharge_list(&page->lru);
5508 }
5509
5510 /**
5511  * mem_cgroup_uncharge_list - uncharge a list of page
5512  * @page_list: list of pages to uncharge
5513  *
5514  * Uncharge a list of pages previously charged with
5515  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5516  */
5517 void mem_cgroup_uncharge_list(struct list_head *page_list)
5518 {
5519         if (mem_cgroup_disabled())
5520                 return;
5521
5522         if (!list_empty(page_list))
5523                 uncharge_list(page_list);
5524 }
5525
5526 /**
5527  * mem_cgroup_migrate - charge a page's replacement
5528  * @oldpage: currently circulating page
5529  * @newpage: replacement page
5530  *
5531  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5532  * be uncharged upon free.
5533  *
5534  * Both pages must be locked, @newpage->mapping must be set up.
5535  */
5536 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5537 {
5538         struct mem_cgroup *memcg;
5539         unsigned int nr_pages;
5540         bool compound;
5541
5542         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5543         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5544         VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5545         VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5546                        newpage);
5547
5548         if (mem_cgroup_disabled())
5549                 return;
5550
5551         /* Page cache replacement: new page already charged? */
5552         if (newpage->mem_cgroup)
5553                 return;
5554
5555         /* Swapcache readahead pages can get replaced before being charged */
5556         memcg = oldpage->mem_cgroup;
5557         if (!memcg)
5558                 return;
5559
5560         /* Force-charge the new page. The old one will be freed soon */
5561         compound = PageTransHuge(newpage);
5562         nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5563
5564         page_counter_charge(&memcg->memory, nr_pages);
5565         if (do_memsw_account())
5566                 page_counter_charge(&memcg->memsw, nr_pages);
5567         css_get_many(&memcg->css, nr_pages);
5568
5569         commit_charge(newpage, memcg, false);
5570
5571         local_irq_disable();
5572         mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5573         memcg_check_events(memcg, newpage);
5574         local_irq_enable();
5575 }
5576
5577 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5578 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5579
5580 void sock_update_memcg(struct sock *sk)
5581 {
5582         struct mem_cgroup *memcg;
5583
5584         /* Socket cloning can throw us here with sk_cgrp already
5585          * filled. It won't however, necessarily happen from
5586          * process context. So the test for root memcg given
5587          * the current task's memcg won't help us in this case.
5588          *
5589          * Respecting the original socket's memcg is a better
5590          * decision in this case.
5591          */
5592         if (sk->sk_memcg) {
5593                 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5594                 css_get(&sk->sk_memcg->css);
5595                 return;
5596         }
5597
5598         rcu_read_lock();
5599         memcg = mem_cgroup_from_task(current);
5600         if (memcg == root_mem_cgroup)
5601                 goto out;
5602         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5603                 goto out;
5604         if (css_tryget_online(&memcg->css))
5605                 sk->sk_memcg = memcg;
5606 out:
5607         rcu_read_unlock();
5608 }
5609 EXPORT_SYMBOL(sock_update_memcg);
5610
5611 void sock_release_memcg(struct sock *sk)
5612 {
5613         WARN_ON(!sk->sk_memcg);
5614         css_put(&sk->sk_memcg->css);
5615 }
5616
5617 /**
5618  * mem_cgroup_charge_skmem - charge socket memory
5619  * @memcg: memcg to charge
5620  * @nr_pages: number of pages to charge
5621  *
5622  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5623  * @memcg's configured limit, %false if the charge had to be forced.
5624  */
5625 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5626 {
5627         gfp_t gfp_mask = GFP_KERNEL;
5628
5629         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5630                 struct page_counter *fail;
5631
5632                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5633                         memcg->tcpmem_pressure = 0;
5634                         return true;
5635                 }
5636                 page_counter_charge(&memcg->tcpmem, nr_pages);
5637                 memcg->tcpmem_pressure = 1;
5638                 return false;
5639         }
5640
5641         /* Don't block in the packet receive path */
5642         if (in_softirq())
5643                 gfp_mask = GFP_NOWAIT;
5644
5645         this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5646
5647         if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5648                 return true;
5649
5650         try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5651         return false;
5652 }
5653
5654 /**
5655  * mem_cgroup_uncharge_skmem - uncharge socket memory
5656  * @memcg - memcg to uncharge
5657  * @nr_pages - number of pages to uncharge
5658  */
5659 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5660 {
5661         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5662                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5663                 return;
5664         }
5665
5666         this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5667
5668         page_counter_uncharge(&memcg->memory, nr_pages);
5669         css_put_many(&memcg->css, nr_pages);
5670 }
5671
5672 static int __init cgroup_memory(char *s)
5673 {
5674         char *token;
5675
5676         while ((token = strsep(&s, ",")) != NULL) {
5677                 if (!*token)
5678                         continue;
5679                 if (!strcmp(token, "nosocket"))
5680                         cgroup_memory_nosocket = true;
5681                 if (!strcmp(token, "nokmem"))
5682                         cgroup_memory_nokmem = true;
5683         }
5684         return 0;
5685 }
5686 __setup("cgroup.memory=", cgroup_memory);
5687
5688 /*
5689  * subsys_initcall() for memory controller.
5690  *
5691  * Some parts like hotcpu_notifier() have to be initialized from this context
5692  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5693  * everything that doesn't depend on a specific mem_cgroup structure should
5694  * be initialized from here.
5695  */
5696 static int __init mem_cgroup_init(void)
5697 {
5698         int cpu, node;
5699
5700         hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5701
5702         for_each_possible_cpu(cpu)
5703                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5704                           drain_local_stock);
5705
5706         for_each_node(node) {
5707                 struct mem_cgroup_tree_per_node *rtpn;
5708                 int zone;
5709
5710                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5711                                     node_online(node) ? node : NUMA_NO_NODE);
5712
5713                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5714                         struct mem_cgroup_tree_per_zone *rtpz;
5715
5716                         rtpz = &rtpn->rb_tree_per_zone[zone];
5717                         rtpz->rb_root = RB_ROOT;
5718                         spin_lock_init(&rtpz->lock);
5719                 }
5720                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5721         }
5722
5723         return 0;
5724 }
5725 subsys_initcall(mem_cgroup_init);
5726
5727 #ifdef CONFIG_MEMCG_SWAP
5728 /**
5729  * mem_cgroup_swapout - transfer a memsw charge to swap
5730  * @page: page whose memsw charge to transfer
5731  * @entry: swap entry to move the charge to
5732  *
5733  * Transfer the memsw charge of @page to @entry.
5734  */
5735 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5736 {
5737         struct mem_cgroup *memcg;
5738         unsigned short oldid;
5739
5740         VM_BUG_ON_PAGE(PageLRU(page), page);
5741         VM_BUG_ON_PAGE(page_count(page), page);
5742
5743         if (!do_memsw_account())
5744                 return;
5745
5746         memcg = page->mem_cgroup;
5747
5748         /* Readahead page, never charged */
5749         if (!memcg)
5750                 return;
5751
5752         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5753         VM_BUG_ON_PAGE(oldid, page);
5754         mem_cgroup_swap_statistics(memcg, true);
5755
5756         page->mem_cgroup = NULL;
5757
5758         if (!mem_cgroup_is_root(memcg))
5759                 page_counter_uncharge(&memcg->memory, 1);
5760
5761         /*
5762          * Interrupts should be disabled here because the caller holds the
5763          * mapping->tree_lock lock which is taken with interrupts-off. It is
5764          * important here to have the interrupts disabled because it is the
5765          * only synchronisation we have for udpating the per-CPU variables.
5766          */
5767         VM_BUG_ON(!irqs_disabled());
5768         mem_cgroup_charge_statistics(memcg, page, false, -1);
5769         memcg_check_events(memcg, page);
5770 }
5771
5772 /*
5773  * mem_cgroup_try_charge_swap - try charging a swap entry
5774  * @page: page being added to swap
5775  * @entry: swap entry to charge
5776  *
5777  * Try to charge @entry to the memcg that @page belongs to.
5778  *
5779  * Returns 0 on success, -ENOMEM on failure.
5780  */
5781 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5782 {
5783         struct mem_cgroup *memcg;
5784         struct page_counter *counter;
5785         unsigned short oldid;
5786
5787         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5788                 return 0;
5789
5790         memcg = page->mem_cgroup;
5791
5792         /* Readahead page, never charged */
5793         if (!memcg)
5794                 return 0;
5795
5796         if (!mem_cgroup_is_root(memcg) &&
5797             !page_counter_try_charge(&memcg->swap, 1, &counter))
5798                 return -ENOMEM;
5799
5800         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5801         VM_BUG_ON_PAGE(oldid, page);
5802         mem_cgroup_swap_statistics(memcg, true);
5803
5804         css_get(&memcg->css);
5805         return 0;
5806 }
5807
5808 /**
5809  * mem_cgroup_uncharge_swap - uncharge a swap entry
5810  * @entry: swap entry to uncharge
5811  *
5812  * Drop the swap charge associated with @entry.
5813  */
5814 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5815 {
5816         struct mem_cgroup *memcg;
5817         unsigned short id;
5818
5819         if (!do_swap_account)
5820                 return;
5821
5822         id = swap_cgroup_record(entry, 0);
5823         rcu_read_lock();
5824         memcg = mem_cgroup_from_id(id);
5825         if (memcg) {
5826                 if (!mem_cgroup_is_root(memcg)) {
5827                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5828                                 page_counter_uncharge(&memcg->swap, 1);
5829                         else
5830                                 page_counter_uncharge(&memcg->memsw, 1);
5831                 }
5832                 mem_cgroup_swap_statistics(memcg, false);
5833                 css_put(&memcg->css);
5834         }
5835         rcu_read_unlock();
5836 }
5837
5838 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5839 {
5840         long nr_swap_pages = get_nr_swap_pages();
5841
5842         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843                 return nr_swap_pages;
5844         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5845                 nr_swap_pages = min_t(long, nr_swap_pages,
5846                                       READ_ONCE(memcg->swap.limit) -
5847                                       page_counter_read(&memcg->swap));
5848         return nr_swap_pages;
5849 }
5850
5851 bool mem_cgroup_swap_full(struct page *page)
5852 {
5853         struct mem_cgroup *memcg;
5854
5855         VM_BUG_ON_PAGE(!PageLocked(page), page);
5856
5857         if (vm_swap_full())
5858                 return true;
5859         if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5860                 return false;
5861
5862         memcg = page->mem_cgroup;
5863         if (!memcg)
5864                 return false;
5865
5866         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5867                 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5868                         return true;
5869
5870         return false;
5871 }
5872
5873 /* for remember boot option*/
5874 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5875 static int really_do_swap_account __initdata = 1;
5876 #else
5877 static int really_do_swap_account __initdata;
5878 #endif
5879
5880 static int __init enable_swap_account(char *s)
5881 {
5882         if (!strcmp(s, "1"))
5883                 really_do_swap_account = 1;
5884         else if (!strcmp(s, "0"))
5885                 really_do_swap_account = 0;
5886         return 1;
5887 }
5888 __setup("swapaccount=", enable_swap_account);
5889
5890 static u64 swap_current_read(struct cgroup_subsys_state *css,
5891                              struct cftype *cft)
5892 {
5893         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5894
5895         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5896 }
5897
5898 static int swap_max_show(struct seq_file *m, void *v)
5899 {
5900         struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5901         unsigned long max = READ_ONCE(memcg->swap.limit);
5902
5903         if (max == PAGE_COUNTER_MAX)
5904                 seq_puts(m, "max\n");
5905         else
5906                 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5907
5908         return 0;
5909 }
5910
5911 static ssize_t swap_max_write(struct kernfs_open_file *of,
5912                               char *buf, size_t nbytes, loff_t off)
5913 {
5914         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5915         unsigned long max;
5916         int err;
5917
5918         buf = strstrip(buf);
5919         err = page_counter_memparse(buf, "max", &max);
5920         if (err)
5921                 return err;
5922
5923         mutex_lock(&memcg_limit_mutex);
5924         err = page_counter_limit(&memcg->swap, max);
5925         mutex_unlock(&memcg_limit_mutex);
5926         if (err)
5927                 return err;
5928
5929         return nbytes;
5930 }
5931
5932 static struct cftype swap_files[] = {
5933         {
5934                 .name = "swap.current",
5935                 .flags = CFTYPE_NOT_ON_ROOT,
5936                 .read_u64 = swap_current_read,
5937         },
5938         {
5939                 .name = "swap.max",
5940                 .flags = CFTYPE_NOT_ON_ROOT,
5941                 .seq_show = swap_max_show,
5942                 .write = swap_max_write,
5943         },
5944         { }     /* terminate */
5945 };
5946
5947 static struct cftype memsw_cgroup_files[] = {
5948         {
5949                 .name = "memsw.usage_in_bytes",
5950                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5951                 .read_u64 = mem_cgroup_read_u64,
5952         },
5953         {
5954                 .name = "memsw.max_usage_in_bytes",
5955                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5956                 .write = mem_cgroup_reset,
5957                 .read_u64 = mem_cgroup_read_u64,
5958         },
5959         {
5960                 .name = "memsw.limit_in_bytes",
5961                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5962                 .write = mem_cgroup_write,
5963                 .read_u64 = mem_cgroup_read_u64,
5964         },
5965         {
5966                 .name = "memsw.failcnt",
5967                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5968                 .write = mem_cgroup_reset,
5969                 .read_u64 = mem_cgroup_read_u64,
5970         },
5971         { },    /* terminate */
5972 };
5973
5974 static int __init mem_cgroup_swap_init(void)
5975 {
5976         if (!mem_cgroup_disabled() && really_do_swap_account) {
5977                 do_swap_account = 1;
5978                 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5979                                                swap_files));
5980                 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5981                                                   memsw_cgroup_files));
5982         }
5983         return 0;
5984 }
5985 subsys_initcall(mem_cgroup_swap_init);
5986
5987 #endif /* CONFIG_MEMCG_SWAP */