blk-mq: clear q->mq_ops if init fail
[linux-2.6-block.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39         SCAN_FAIL,
40         SCAN_SUCCEED,
41         SCAN_PMD_NULL,
42         SCAN_EXCEED_NONE_PTE,
43         SCAN_PTE_NON_PRESENT,
44         SCAN_PAGE_RO,
45         SCAN_NO_REFERENCED_PAGE,
46         SCAN_PAGE_NULL,
47         SCAN_SCAN_ABORT,
48         SCAN_PAGE_COUNT,
49         SCAN_PAGE_LRU,
50         SCAN_PAGE_LOCK,
51         SCAN_PAGE_ANON,
52         SCAN_PAGE_COMPOUND,
53         SCAN_ANY_PROCESS,
54         SCAN_VMA_NULL,
55         SCAN_VMA_CHECK,
56         SCAN_ADDRESS_RANGE,
57         SCAN_SWAP_CACHE_PAGE,
58         SCAN_DEL_PAGE_LRU,
59         SCAN_ALLOC_HUGE_PAGE_FAIL,
60         SCAN_CGROUP_CHARGE_FAIL
61 };
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65
66 /*
67  * By default transparent hugepage support is disabled in order that avoid
68  * to risk increase the memory footprint of applications without a guaranteed
69  * benefit. When transparent hugepage support is enabled, is for all mappings,
70  * and khugepaged scans all mappings.
71  * Defrag is invoked by khugepaged hugepage allocations and by page faults
72  * for all hugepage allocations.
73  */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
82         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97  * default collapse hugepages if there is at least one pte mapped like
98  * it would have happened if the vma was large enough during page
99  * fault.
100  */
101 static unsigned int khugepaged_max_ptes_none __read_mostly;
102
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111
112 /**
113  * struct mm_slot - hash lookup from mm to mm_slot
114  * @hash: hash collision list
115  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116  * @mm: the mm that this information is valid for
117  */
118 struct mm_slot {
119         struct hlist_node hash;
120         struct list_head mm_node;
121         struct mm_struct *mm;
122 };
123
124 /**
125  * struct khugepaged_scan - cursor for scanning
126  * @mm_head: the head of the mm list to scan
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  *
130  * There is only the one khugepaged_scan instance of this cursor structure.
131  */
132 struct khugepaged_scan {
133         struct list_head mm_head;
134         struct mm_slot *mm_slot;
135         unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140
141 static struct shrinker deferred_split_shrinker;
142
143 static void set_recommended_min_free_kbytes(void)
144 {
145         struct zone *zone;
146         int nr_zones = 0;
147         unsigned long recommended_min;
148
149         for_each_populated_zone(zone)
150                 nr_zones++;
151
152         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153         recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155         /*
156          * Make sure that on average at least two pageblocks are almost free
157          * of another type, one for a migratetype to fall back to and a
158          * second to avoid subsequent fallbacks of other types There are 3
159          * MIGRATE_TYPES we care about.
160          */
161         recommended_min += pageblock_nr_pages * nr_zones *
162                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164         /* don't ever allow to reserve more than 5% of the lowmem */
165         recommended_min = min(recommended_min,
166                               (unsigned long) nr_free_buffer_pages() / 20);
167         recommended_min <<= (PAGE_SHIFT-10);
168
169         if (recommended_min > min_free_kbytes) {
170                 if (user_min_free_kbytes >= 0)
171                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
172                                 min_free_kbytes, recommended_min);
173
174                 min_free_kbytes = recommended_min;
175         }
176         setup_per_zone_wmarks();
177 }
178
179 static int start_stop_khugepaged(void)
180 {
181         int err = 0;
182         if (khugepaged_enabled()) {
183                 if (!khugepaged_thread)
184                         khugepaged_thread = kthread_run(khugepaged, NULL,
185                                                         "khugepaged");
186                 if (IS_ERR(khugepaged_thread)) {
187                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
188                         err = PTR_ERR(khugepaged_thread);
189                         khugepaged_thread = NULL;
190                         goto fail;
191                 }
192
193                 if (!list_empty(&khugepaged_scan.mm_head))
194                         wake_up_interruptible(&khugepaged_wait);
195
196                 set_recommended_min_free_kbytes();
197         } else if (khugepaged_thread) {
198                 kthread_stop(khugepaged_thread);
199                 khugepaged_thread = NULL;
200         }
201 fail:
202         return err;
203 }
204
205 static atomic_t huge_zero_refcount;
206 struct page *huge_zero_page __read_mostly;
207
208 struct page *get_huge_zero_page(void)
209 {
210         struct page *zero_page;
211 retry:
212         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
213                 return READ_ONCE(huge_zero_page);
214
215         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
216                         HPAGE_PMD_ORDER);
217         if (!zero_page) {
218                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
219                 return NULL;
220         }
221         count_vm_event(THP_ZERO_PAGE_ALLOC);
222         preempt_disable();
223         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
224                 preempt_enable();
225                 __free_pages(zero_page, compound_order(zero_page));
226                 goto retry;
227         }
228
229         /* We take additional reference here. It will be put back by shrinker */
230         atomic_set(&huge_zero_refcount, 2);
231         preempt_enable();
232         return READ_ONCE(huge_zero_page);
233 }
234
235 void put_huge_zero_page(void)
236 {
237         /*
238          * Counter should never go to zero here. Only shrinker can put
239          * last reference.
240          */
241         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
242 }
243
244 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
245                                         struct shrink_control *sc)
246 {
247         /* we can free zero page only if last reference remains */
248         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
249 }
250
251 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
252                                        struct shrink_control *sc)
253 {
254         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
255                 struct page *zero_page = xchg(&huge_zero_page, NULL);
256                 BUG_ON(zero_page == NULL);
257                 __free_pages(zero_page, compound_order(zero_page));
258                 return HPAGE_PMD_NR;
259         }
260
261         return 0;
262 }
263
264 static struct shrinker huge_zero_page_shrinker = {
265         .count_objects = shrink_huge_zero_page_count,
266         .scan_objects = shrink_huge_zero_page_scan,
267         .seeks = DEFAULT_SEEKS,
268 };
269
270 #ifdef CONFIG_SYSFS
271
272 static ssize_t triple_flag_store(struct kobject *kobj,
273                                  struct kobj_attribute *attr,
274                                  const char *buf, size_t count,
275                                  enum transparent_hugepage_flag enabled,
276                                  enum transparent_hugepage_flag deferred,
277                                  enum transparent_hugepage_flag req_madv)
278 {
279         if (!memcmp("defer", buf,
280                     min(sizeof("defer")-1, count))) {
281                 if (enabled == deferred)
282                         return -EINVAL;
283                 clear_bit(enabled, &transparent_hugepage_flags);
284                 clear_bit(req_madv, &transparent_hugepage_flags);
285                 set_bit(deferred, &transparent_hugepage_flags);
286         } else if (!memcmp("always", buf,
287                     min(sizeof("always")-1, count))) {
288                 clear_bit(deferred, &transparent_hugepage_flags);
289                 clear_bit(req_madv, &transparent_hugepage_flags);
290                 set_bit(enabled, &transparent_hugepage_flags);
291         } else if (!memcmp("madvise", buf,
292                            min(sizeof("madvise")-1, count))) {
293                 clear_bit(enabled, &transparent_hugepage_flags);
294                 clear_bit(deferred, &transparent_hugepage_flags);
295                 set_bit(req_madv, &transparent_hugepage_flags);
296         } else if (!memcmp("never", buf,
297                            min(sizeof("never")-1, count))) {
298                 clear_bit(enabled, &transparent_hugepage_flags);
299                 clear_bit(req_madv, &transparent_hugepage_flags);
300                 clear_bit(deferred, &transparent_hugepage_flags);
301         } else
302                 return -EINVAL;
303
304         return count;
305 }
306
307 static ssize_t enabled_show(struct kobject *kobj,
308                             struct kobj_attribute *attr, char *buf)
309 {
310         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
311                 return sprintf(buf, "[always] madvise never\n");
312         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
313                 return sprintf(buf, "always [madvise] never\n");
314         else
315                 return sprintf(buf, "always madvise [never]\n");
316 }
317
318 static ssize_t enabled_store(struct kobject *kobj,
319                              struct kobj_attribute *attr,
320                              const char *buf, size_t count)
321 {
322         ssize_t ret;
323
324         ret = triple_flag_store(kobj, attr, buf, count,
325                                 TRANSPARENT_HUGEPAGE_FLAG,
326                                 TRANSPARENT_HUGEPAGE_FLAG,
327                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
328
329         if (ret > 0) {
330                 int err;
331
332                 mutex_lock(&khugepaged_mutex);
333                 err = start_stop_khugepaged();
334                 mutex_unlock(&khugepaged_mutex);
335
336                 if (err)
337                         ret = err;
338         }
339
340         return ret;
341 }
342 static struct kobj_attribute enabled_attr =
343         __ATTR(enabled, 0644, enabled_show, enabled_store);
344
345 static ssize_t single_flag_show(struct kobject *kobj,
346                                 struct kobj_attribute *attr, char *buf,
347                                 enum transparent_hugepage_flag flag)
348 {
349         return sprintf(buf, "%d\n",
350                        !!test_bit(flag, &transparent_hugepage_flags));
351 }
352
353 static ssize_t single_flag_store(struct kobject *kobj,
354                                  struct kobj_attribute *attr,
355                                  const char *buf, size_t count,
356                                  enum transparent_hugepage_flag flag)
357 {
358         unsigned long value;
359         int ret;
360
361         ret = kstrtoul(buf, 10, &value);
362         if (ret < 0)
363                 return ret;
364         if (value > 1)
365                 return -EINVAL;
366
367         if (value)
368                 set_bit(flag, &transparent_hugepage_flags);
369         else
370                 clear_bit(flag, &transparent_hugepage_flags);
371
372         return count;
373 }
374
375 /*
376  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
377  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
378  * memory just to allocate one more hugepage.
379  */
380 static ssize_t defrag_show(struct kobject *kobj,
381                            struct kobj_attribute *attr, char *buf)
382 {
383         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
384                 return sprintf(buf, "[always] defer madvise never\n");
385         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
386                 return sprintf(buf, "always [defer] madvise never\n");
387         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
388                 return sprintf(buf, "always defer [madvise] never\n");
389         else
390                 return sprintf(buf, "always defer madvise [never]\n");
391
392 }
393 static ssize_t defrag_store(struct kobject *kobj,
394                             struct kobj_attribute *attr,
395                             const char *buf, size_t count)
396 {
397         return triple_flag_store(kobj, attr, buf, count,
398                                  TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
399                                  TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
400                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
401 }
402 static struct kobj_attribute defrag_attr =
403         __ATTR(defrag, 0644, defrag_show, defrag_store);
404
405 static ssize_t use_zero_page_show(struct kobject *kobj,
406                 struct kobj_attribute *attr, char *buf)
407 {
408         return single_flag_show(kobj, attr, buf,
409                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
410 }
411 static ssize_t use_zero_page_store(struct kobject *kobj,
412                 struct kobj_attribute *attr, const char *buf, size_t count)
413 {
414         return single_flag_store(kobj, attr, buf, count,
415                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
416 }
417 static struct kobj_attribute use_zero_page_attr =
418         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
419 #ifdef CONFIG_DEBUG_VM
420 static ssize_t debug_cow_show(struct kobject *kobj,
421                                 struct kobj_attribute *attr, char *buf)
422 {
423         return single_flag_show(kobj, attr, buf,
424                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
425 }
426 static ssize_t debug_cow_store(struct kobject *kobj,
427                                struct kobj_attribute *attr,
428                                const char *buf, size_t count)
429 {
430         return single_flag_store(kobj, attr, buf, count,
431                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
432 }
433 static struct kobj_attribute debug_cow_attr =
434         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
435 #endif /* CONFIG_DEBUG_VM */
436
437 static struct attribute *hugepage_attr[] = {
438         &enabled_attr.attr,
439         &defrag_attr.attr,
440         &use_zero_page_attr.attr,
441 #ifdef CONFIG_DEBUG_VM
442         &debug_cow_attr.attr,
443 #endif
444         NULL,
445 };
446
447 static struct attribute_group hugepage_attr_group = {
448         .attrs = hugepage_attr,
449 };
450
451 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
452                                          struct kobj_attribute *attr,
453                                          char *buf)
454 {
455         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
456 }
457
458 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
459                                           struct kobj_attribute *attr,
460                                           const char *buf, size_t count)
461 {
462         unsigned long msecs;
463         int err;
464
465         err = kstrtoul(buf, 10, &msecs);
466         if (err || msecs > UINT_MAX)
467                 return -EINVAL;
468
469         khugepaged_scan_sleep_millisecs = msecs;
470         wake_up_interruptible(&khugepaged_wait);
471
472         return count;
473 }
474 static struct kobj_attribute scan_sleep_millisecs_attr =
475         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
476                scan_sleep_millisecs_store);
477
478 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
479                                           struct kobj_attribute *attr,
480                                           char *buf)
481 {
482         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
483 }
484
485 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
486                                            struct kobj_attribute *attr,
487                                            const char *buf, size_t count)
488 {
489         unsigned long msecs;
490         int err;
491
492         err = kstrtoul(buf, 10, &msecs);
493         if (err || msecs > UINT_MAX)
494                 return -EINVAL;
495
496         khugepaged_alloc_sleep_millisecs = msecs;
497         wake_up_interruptible(&khugepaged_wait);
498
499         return count;
500 }
501 static struct kobj_attribute alloc_sleep_millisecs_attr =
502         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
503                alloc_sleep_millisecs_store);
504
505 static ssize_t pages_to_scan_show(struct kobject *kobj,
506                                   struct kobj_attribute *attr,
507                                   char *buf)
508 {
509         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
510 }
511 static ssize_t pages_to_scan_store(struct kobject *kobj,
512                                    struct kobj_attribute *attr,
513                                    const char *buf, size_t count)
514 {
515         int err;
516         unsigned long pages;
517
518         err = kstrtoul(buf, 10, &pages);
519         if (err || !pages || pages > UINT_MAX)
520                 return -EINVAL;
521
522         khugepaged_pages_to_scan = pages;
523
524         return count;
525 }
526 static struct kobj_attribute pages_to_scan_attr =
527         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
528                pages_to_scan_store);
529
530 static ssize_t pages_collapsed_show(struct kobject *kobj,
531                                     struct kobj_attribute *attr,
532                                     char *buf)
533 {
534         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
535 }
536 static struct kobj_attribute pages_collapsed_attr =
537         __ATTR_RO(pages_collapsed);
538
539 static ssize_t full_scans_show(struct kobject *kobj,
540                                struct kobj_attribute *attr,
541                                char *buf)
542 {
543         return sprintf(buf, "%u\n", khugepaged_full_scans);
544 }
545 static struct kobj_attribute full_scans_attr =
546         __ATTR_RO(full_scans);
547
548 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
549                                       struct kobj_attribute *attr, char *buf)
550 {
551         return single_flag_show(kobj, attr, buf,
552                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
553 }
554 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
555                                        struct kobj_attribute *attr,
556                                        const char *buf, size_t count)
557 {
558         return single_flag_store(kobj, attr, buf, count,
559                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
560 }
561 static struct kobj_attribute khugepaged_defrag_attr =
562         __ATTR(defrag, 0644, khugepaged_defrag_show,
563                khugepaged_defrag_store);
564
565 /*
566  * max_ptes_none controls if khugepaged should collapse hugepages over
567  * any unmapped ptes in turn potentially increasing the memory
568  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
569  * reduce the available free memory in the system as it
570  * runs. Increasing max_ptes_none will instead potentially reduce the
571  * free memory in the system during the khugepaged scan.
572  */
573 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
574                                              struct kobj_attribute *attr,
575                                              char *buf)
576 {
577         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
578 }
579 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
580                                               struct kobj_attribute *attr,
581                                               const char *buf, size_t count)
582 {
583         int err;
584         unsigned long max_ptes_none;
585
586         err = kstrtoul(buf, 10, &max_ptes_none);
587         if (err || max_ptes_none > HPAGE_PMD_NR-1)
588                 return -EINVAL;
589
590         khugepaged_max_ptes_none = max_ptes_none;
591
592         return count;
593 }
594 static struct kobj_attribute khugepaged_max_ptes_none_attr =
595         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
596                khugepaged_max_ptes_none_store);
597
598 static struct attribute *khugepaged_attr[] = {
599         &khugepaged_defrag_attr.attr,
600         &khugepaged_max_ptes_none_attr.attr,
601         &pages_to_scan_attr.attr,
602         &pages_collapsed_attr.attr,
603         &full_scans_attr.attr,
604         &scan_sleep_millisecs_attr.attr,
605         &alloc_sleep_millisecs_attr.attr,
606         NULL,
607 };
608
609 static struct attribute_group khugepaged_attr_group = {
610         .attrs = khugepaged_attr,
611         .name = "khugepaged",
612 };
613
614 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
615 {
616         int err;
617
618         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
619         if (unlikely(!*hugepage_kobj)) {
620                 pr_err("failed to create transparent hugepage kobject\n");
621                 return -ENOMEM;
622         }
623
624         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
625         if (err) {
626                 pr_err("failed to register transparent hugepage group\n");
627                 goto delete_obj;
628         }
629
630         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
631         if (err) {
632                 pr_err("failed to register transparent hugepage group\n");
633                 goto remove_hp_group;
634         }
635
636         return 0;
637
638 remove_hp_group:
639         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
640 delete_obj:
641         kobject_put(*hugepage_kobj);
642         return err;
643 }
644
645 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
646 {
647         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
648         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
649         kobject_put(hugepage_kobj);
650 }
651 #else
652 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
653 {
654         return 0;
655 }
656
657 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
658 {
659 }
660 #endif /* CONFIG_SYSFS */
661
662 static int __init hugepage_init(void)
663 {
664         int err;
665         struct kobject *hugepage_kobj;
666
667         if (!has_transparent_hugepage()) {
668                 transparent_hugepage_flags = 0;
669                 return -EINVAL;
670         }
671
672         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
673         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
674         /*
675          * hugepages can't be allocated by the buddy allocator
676          */
677         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
678         /*
679          * we use page->mapping and page->index in second tail page
680          * as list_head: assuming THP order >= 2
681          */
682         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
683
684         err = hugepage_init_sysfs(&hugepage_kobj);
685         if (err)
686                 goto err_sysfs;
687
688         err = khugepaged_slab_init();
689         if (err)
690                 goto err_slab;
691
692         err = register_shrinker(&huge_zero_page_shrinker);
693         if (err)
694                 goto err_hzp_shrinker;
695         err = register_shrinker(&deferred_split_shrinker);
696         if (err)
697                 goto err_split_shrinker;
698
699         /*
700          * By default disable transparent hugepages on smaller systems,
701          * where the extra memory used could hurt more than TLB overhead
702          * is likely to save.  The admin can still enable it through /sys.
703          */
704         if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
705                 transparent_hugepage_flags = 0;
706                 return 0;
707         }
708
709         err = start_stop_khugepaged();
710         if (err)
711                 goto err_khugepaged;
712
713         return 0;
714 err_khugepaged:
715         unregister_shrinker(&deferred_split_shrinker);
716 err_split_shrinker:
717         unregister_shrinker(&huge_zero_page_shrinker);
718 err_hzp_shrinker:
719         khugepaged_slab_exit();
720 err_slab:
721         hugepage_exit_sysfs(hugepage_kobj);
722 err_sysfs:
723         return err;
724 }
725 subsys_initcall(hugepage_init);
726
727 static int __init setup_transparent_hugepage(char *str)
728 {
729         int ret = 0;
730         if (!str)
731                 goto out;
732         if (!strcmp(str, "always")) {
733                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
734                         &transparent_hugepage_flags);
735                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
736                           &transparent_hugepage_flags);
737                 ret = 1;
738         } else if (!strcmp(str, "madvise")) {
739                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
740                           &transparent_hugepage_flags);
741                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
742                         &transparent_hugepage_flags);
743                 ret = 1;
744         } else if (!strcmp(str, "never")) {
745                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
746                           &transparent_hugepage_flags);
747                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
748                           &transparent_hugepage_flags);
749                 ret = 1;
750         }
751 out:
752         if (!ret)
753                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
754         return ret;
755 }
756 __setup("transparent_hugepage=", setup_transparent_hugepage);
757
758 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
759 {
760         if (likely(vma->vm_flags & VM_WRITE))
761                 pmd = pmd_mkwrite(pmd);
762         return pmd;
763 }
764
765 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
766 {
767         pmd_t entry;
768         entry = mk_pmd(page, prot);
769         entry = pmd_mkhuge(entry);
770         return entry;
771 }
772
773 static inline struct list_head *page_deferred_list(struct page *page)
774 {
775         /*
776          * ->lru in the tail pages is occupied by compound_head.
777          * Let's use ->mapping + ->index in the second tail page as list_head.
778          */
779         return (struct list_head *)&page[2].mapping;
780 }
781
782 void prep_transhuge_page(struct page *page)
783 {
784         /*
785          * we use page->mapping and page->indexlru in second tail page
786          * as list_head: assuming THP order >= 2
787          */
788
789         INIT_LIST_HEAD(page_deferred_list(page));
790         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
791 }
792
793 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
794                                         struct vm_area_struct *vma,
795                                         unsigned long address, pmd_t *pmd,
796                                         struct page *page, gfp_t gfp,
797                                         unsigned int flags)
798 {
799         struct mem_cgroup *memcg;
800         pgtable_t pgtable;
801         spinlock_t *ptl;
802         unsigned long haddr = address & HPAGE_PMD_MASK;
803
804         VM_BUG_ON_PAGE(!PageCompound(page), page);
805
806         if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
807                 put_page(page);
808                 count_vm_event(THP_FAULT_FALLBACK);
809                 return VM_FAULT_FALLBACK;
810         }
811
812         pgtable = pte_alloc_one(mm, haddr);
813         if (unlikely(!pgtable)) {
814                 mem_cgroup_cancel_charge(page, memcg, true);
815                 put_page(page);
816                 return VM_FAULT_OOM;
817         }
818
819         clear_huge_page(page, haddr, HPAGE_PMD_NR);
820         /*
821          * The memory barrier inside __SetPageUptodate makes sure that
822          * clear_huge_page writes become visible before the set_pmd_at()
823          * write.
824          */
825         __SetPageUptodate(page);
826
827         ptl = pmd_lock(mm, pmd);
828         if (unlikely(!pmd_none(*pmd))) {
829                 spin_unlock(ptl);
830                 mem_cgroup_cancel_charge(page, memcg, true);
831                 put_page(page);
832                 pte_free(mm, pgtable);
833         } else {
834                 pmd_t entry;
835
836                 /* Deliver the page fault to userland */
837                 if (userfaultfd_missing(vma)) {
838                         int ret;
839
840                         spin_unlock(ptl);
841                         mem_cgroup_cancel_charge(page, memcg, true);
842                         put_page(page);
843                         pte_free(mm, pgtable);
844                         ret = handle_userfault(vma, address, flags,
845                                                VM_UFFD_MISSING);
846                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847                         return ret;
848                 }
849
850                 entry = mk_huge_pmd(page, vma->vm_page_prot);
851                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
852                 page_add_new_anon_rmap(page, vma, haddr, true);
853                 mem_cgroup_commit_charge(page, memcg, false, true);
854                 lru_cache_add_active_or_unevictable(page, vma);
855                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
856                 set_pmd_at(mm, haddr, pmd, entry);
857                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
858                 atomic_long_inc(&mm->nr_ptes);
859                 spin_unlock(ptl);
860                 count_vm_event(THP_FAULT_ALLOC);
861         }
862
863         return 0;
864 }
865
866 /*
867  * If THP is set to always then directly reclaim/compact as necessary
868  * If set to defer then do no reclaim and defer to khugepaged
869  * If set to madvise and the VMA is flagged then directly reclaim/compact
870  */
871 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
872 {
873         gfp_t reclaim_flags = 0;
874
875         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
876             (vma->vm_flags & VM_HUGEPAGE))
877                 reclaim_flags = __GFP_DIRECT_RECLAIM;
878         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
879                 reclaim_flags = __GFP_KSWAPD_RECLAIM;
880         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
881                 reclaim_flags = __GFP_DIRECT_RECLAIM;
882
883         return GFP_TRANSHUGE | reclaim_flags;
884 }
885
886 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
887 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
888 {
889         return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
890 }
891
892 /* Caller must hold page table lock. */
893 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
894                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
895                 struct page *zero_page)
896 {
897         pmd_t entry;
898         if (!pmd_none(*pmd))
899                 return false;
900         entry = mk_pmd(zero_page, vma->vm_page_prot);
901         entry = pmd_mkhuge(entry);
902         if (pgtable)
903                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
904         set_pmd_at(mm, haddr, pmd, entry);
905         atomic_long_inc(&mm->nr_ptes);
906         return true;
907 }
908
909 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
910                                unsigned long address, pmd_t *pmd,
911                                unsigned int flags)
912 {
913         gfp_t gfp;
914         struct page *page;
915         unsigned long haddr = address & HPAGE_PMD_MASK;
916
917         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
918                 return VM_FAULT_FALLBACK;
919         if (unlikely(anon_vma_prepare(vma)))
920                 return VM_FAULT_OOM;
921         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
922                 return VM_FAULT_OOM;
923         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
924                         transparent_hugepage_use_zero_page()) {
925                 spinlock_t *ptl;
926                 pgtable_t pgtable;
927                 struct page *zero_page;
928                 bool set;
929                 int ret;
930                 pgtable = pte_alloc_one(mm, haddr);
931                 if (unlikely(!pgtable))
932                         return VM_FAULT_OOM;
933                 zero_page = get_huge_zero_page();
934                 if (unlikely(!zero_page)) {
935                         pte_free(mm, pgtable);
936                         count_vm_event(THP_FAULT_FALLBACK);
937                         return VM_FAULT_FALLBACK;
938                 }
939                 ptl = pmd_lock(mm, pmd);
940                 ret = 0;
941                 set = false;
942                 if (pmd_none(*pmd)) {
943                         if (userfaultfd_missing(vma)) {
944                                 spin_unlock(ptl);
945                                 ret = handle_userfault(vma, address, flags,
946                                                        VM_UFFD_MISSING);
947                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
948                         } else {
949                                 set_huge_zero_page(pgtable, mm, vma,
950                                                    haddr, pmd,
951                                                    zero_page);
952                                 spin_unlock(ptl);
953                                 set = true;
954                         }
955                 } else
956                         spin_unlock(ptl);
957                 if (!set) {
958                         pte_free(mm, pgtable);
959                         put_huge_zero_page();
960                 }
961                 return ret;
962         }
963         gfp = alloc_hugepage_direct_gfpmask(vma);
964         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
965         if (unlikely(!page)) {
966                 count_vm_event(THP_FAULT_FALLBACK);
967                 return VM_FAULT_FALLBACK;
968         }
969         prep_transhuge_page(page);
970         return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
971                                             flags);
972 }
973
974 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
975                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
976 {
977         struct mm_struct *mm = vma->vm_mm;
978         pmd_t entry;
979         spinlock_t *ptl;
980
981         ptl = pmd_lock(mm, pmd);
982         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
983         if (pfn_t_devmap(pfn))
984                 entry = pmd_mkdevmap(entry);
985         if (write) {
986                 entry = pmd_mkyoung(pmd_mkdirty(entry));
987                 entry = maybe_pmd_mkwrite(entry, vma);
988         }
989         set_pmd_at(mm, addr, pmd, entry);
990         update_mmu_cache_pmd(vma, addr, pmd);
991         spin_unlock(ptl);
992 }
993
994 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
995                         pmd_t *pmd, pfn_t pfn, bool write)
996 {
997         pgprot_t pgprot = vma->vm_page_prot;
998         /*
999          * If we had pmd_special, we could avoid all these restrictions,
1000          * but we need to be consistent with PTEs and architectures that
1001          * can't support a 'special' bit.
1002          */
1003         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005                                                 (VM_PFNMAP|VM_MIXEDMAP));
1006         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007         BUG_ON(!pfn_t_devmap(pfn));
1008
1009         if (addr < vma->vm_start || addr >= vma->vm_end)
1010                 return VM_FAULT_SIGBUS;
1011         if (track_pfn_insert(vma, &pgprot, pfn))
1012                 return VM_FAULT_SIGBUS;
1013         insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014         return VM_FAULT_NOPAGE;
1015 }
1016
1017 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1018                 pmd_t *pmd)
1019 {
1020         pmd_t _pmd;
1021
1022         /*
1023          * We should set the dirty bit only for FOLL_WRITE but for now
1024          * the dirty bit in the pmd is meaningless.  And if the dirty
1025          * bit will become meaningful and we'll only set it with
1026          * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1027          * set the young bit, instead of the current set_pmd_at.
1028          */
1029         _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1030         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031                                 pmd, _pmd,  1))
1032                 update_mmu_cache_pmd(vma, addr, pmd);
1033 }
1034
1035 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036                 pmd_t *pmd, int flags)
1037 {
1038         unsigned long pfn = pmd_pfn(*pmd);
1039         struct mm_struct *mm = vma->vm_mm;
1040         struct dev_pagemap *pgmap;
1041         struct page *page;
1042
1043         assert_spin_locked(pmd_lockptr(mm, pmd));
1044
1045         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046                 return NULL;
1047
1048         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049                 /* pass */;
1050         else
1051                 return NULL;
1052
1053         if (flags & FOLL_TOUCH)
1054                 touch_pmd(vma, addr, pmd);
1055
1056         /*
1057          * device mapped pages can only be returned if the
1058          * caller will manage the page reference count.
1059          */
1060         if (!(flags & FOLL_GET))
1061                 return ERR_PTR(-EEXIST);
1062
1063         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064         pgmap = get_dev_pagemap(pfn, NULL);
1065         if (!pgmap)
1066                 return ERR_PTR(-EFAULT);
1067         page = pfn_to_page(pfn);
1068         get_page(page);
1069         put_dev_pagemap(pgmap);
1070
1071         return page;
1072 }
1073
1074 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1075                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1076                   struct vm_area_struct *vma)
1077 {
1078         spinlock_t *dst_ptl, *src_ptl;
1079         struct page *src_page;
1080         pmd_t pmd;
1081         pgtable_t pgtable = NULL;
1082         int ret;
1083
1084         if (!vma_is_dax(vma)) {
1085                 ret = -ENOMEM;
1086                 pgtable = pte_alloc_one(dst_mm, addr);
1087                 if (unlikely(!pgtable))
1088                         goto out;
1089         }
1090
1091         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1092         src_ptl = pmd_lockptr(src_mm, src_pmd);
1093         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1094
1095         ret = -EAGAIN;
1096         pmd = *src_pmd;
1097         if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1098                 pte_free(dst_mm, pgtable);
1099                 goto out_unlock;
1100         }
1101         /*
1102          * When page table lock is held, the huge zero pmd should not be
1103          * under splitting since we don't split the page itself, only pmd to
1104          * a page table.
1105          */
1106         if (is_huge_zero_pmd(pmd)) {
1107                 struct page *zero_page;
1108                 /*
1109                  * get_huge_zero_page() will never allocate a new page here,
1110                  * since we already have a zero page to copy. It just takes a
1111                  * reference.
1112                  */
1113                 zero_page = get_huge_zero_page();
1114                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1115                                 zero_page);
1116                 ret = 0;
1117                 goto out_unlock;
1118         }
1119
1120         if (!vma_is_dax(vma)) {
1121                 /* thp accounting separate from pmd_devmap accounting */
1122                 src_page = pmd_page(pmd);
1123                 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1124                 get_page(src_page);
1125                 page_dup_rmap(src_page, true);
1126                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1127                 atomic_long_inc(&dst_mm->nr_ptes);
1128                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1129         }
1130
1131         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1132         pmd = pmd_mkold(pmd_wrprotect(pmd));
1133         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1134
1135         ret = 0;
1136 out_unlock:
1137         spin_unlock(src_ptl);
1138         spin_unlock(dst_ptl);
1139 out:
1140         return ret;
1141 }
1142
1143 void huge_pmd_set_accessed(struct mm_struct *mm,
1144                            struct vm_area_struct *vma,
1145                            unsigned long address,
1146                            pmd_t *pmd, pmd_t orig_pmd,
1147                            int dirty)
1148 {
1149         spinlock_t *ptl;
1150         pmd_t entry;
1151         unsigned long haddr;
1152
1153         ptl = pmd_lock(mm, pmd);
1154         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1155                 goto unlock;
1156
1157         entry = pmd_mkyoung(orig_pmd);
1158         haddr = address & HPAGE_PMD_MASK;
1159         if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1160                 update_mmu_cache_pmd(vma, address, pmd);
1161
1162 unlock:
1163         spin_unlock(ptl);
1164 }
1165
1166 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1167                                         struct vm_area_struct *vma,
1168                                         unsigned long address,
1169                                         pmd_t *pmd, pmd_t orig_pmd,
1170                                         struct page *page,
1171                                         unsigned long haddr)
1172 {
1173         struct mem_cgroup *memcg;
1174         spinlock_t *ptl;
1175         pgtable_t pgtable;
1176         pmd_t _pmd;
1177         int ret = 0, i;
1178         struct page **pages;
1179         unsigned long mmun_start;       /* For mmu_notifiers */
1180         unsigned long mmun_end;         /* For mmu_notifiers */
1181
1182         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1183                         GFP_KERNEL);
1184         if (unlikely(!pages)) {
1185                 ret |= VM_FAULT_OOM;
1186                 goto out;
1187         }
1188
1189         for (i = 0; i < HPAGE_PMD_NR; i++) {
1190                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1191                                                __GFP_OTHER_NODE,
1192                                                vma, address, page_to_nid(page));
1193                 if (unlikely(!pages[i] ||
1194                              mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1195                                                    &memcg, false))) {
1196                         if (pages[i])
1197                                 put_page(pages[i]);
1198                         while (--i >= 0) {
1199                                 memcg = (void *)page_private(pages[i]);
1200                                 set_page_private(pages[i], 0);
1201                                 mem_cgroup_cancel_charge(pages[i], memcg,
1202                                                 false);
1203                                 put_page(pages[i]);
1204                         }
1205                         kfree(pages);
1206                         ret |= VM_FAULT_OOM;
1207                         goto out;
1208                 }
1209                 set_page_private(pages[i], (unsigned long)memcg);
1210         }
1211
1212         for (i = 0; i < HPAGE_PMD_NR; i++) {
1213                 copy_user_highpage(pages[i], page + i,
1214                                    haddr + PAGE_SIZE * i, vma);
1215                 __SetPageUptodate(pages[i]);
1216                 cond_resched();
1217         }
1218
1219         mmun_start = haddr;
1220         mmun_end   = haddr + HPAGE_PMD_SIZE;
1221         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1222
1223         ptl = pmd_lock(mm, pmd);
1224         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1225                 goto out_free_pages;
1226         VM_BUG_ON_PAGE(!PageHead(page), page);
1227
1228         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1229         /* leave pmd empty until pte is filled */
1230
1231         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1232         pmd_populate(mm, &_pmd, pgtable);
1233
1234         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1235                 pte_t *pte, entry;
1236                 entry = mk_pte(pages[i], vma->vm_page_prot);
1237                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1238                 memcg = (void *)page_private(pages[i]);
1239                 set_page_private(pages[i], 0);
1240                 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1241                 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1242                 lru_cache_add_active_or_unevictable(pages[i], vma);
1243                 pte = pte_offset_map(&_pmd, haddr);
1244                 VM_BUG_ON(!pte_none(*pte));
1245                 set_pte_at(mm, haddr, pte, entry);
1246                 pte_unmap(pte);
1247         }
1248         kfree(pages);
1249
1250         smp_wmb(); /* make pte visible before pmd */
1251         pmd_populate(mm, pmd, pgtable);
1252         page_remove_rmap(page, true);
1253         spin_unlock(ptl);
1254
1255         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1256
1257         ret |= VM_FAULT_WRITE;
1258         put_page(page);
1259
1260 out:
1261         return ret;
1262
1263 out_free_pages:
1264         spin_unlock(ptl);
1265         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1266         for (i = 0; i < HPAGE_PMD_NR; i++) {
1267                 memcg = (void *)page_private(pages[i]);
1268                 set_page_private(pages[i], 0);
1269                 mem_cgroup_cancel_charge(pages[i], memcg, false);
1270                 put_page(pages[i]);
1271         }
1272         kfree(pages);
1273         goto out;
1274 }
1275
1276 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1278 {
1279         spinlock_t *ptl;
1280         int ret = 0;
1281         struct page *page = NULL, *new_page;
1282         struct mem_cgroup *memcg;
1283         unsigned long haddr;
1284         unsigned long mmun_start;       /* For mmu_notifiers */
1285         unsigned long mmun_end;         /* For mmu_notifiers */
1286         gfp_t huge_gfp;                 /* for allocation and charge */
1287
1288         ptl = pmd_lockptr(mm, pmd);
1289         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290         haddr = address & HPAGE_PMD_MASK;
1291         if (is_huge_zero_pmd(orig_pmd))
1292                 goto alloc;
1293         spin_lock(ptl);
1294         if (unlikely(!pmd_same(*pmd, orig_pmd)))
1295                 goto out_unlock;
1296
1297         page = pmd_page(orig_pmd);
1298         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1299         /*
1300          * We can only reuse the page if nobody else maps the huge page or it's
1301          * part.
1302          */
1303         if (page_trans_huge_mapcount(page, NULL) == 1) {
1304                 pmd_t entry;
1305                 entry = pmd_mkyoung(orig_pmd);
1306                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1308                         update_mmu_cache_pmd(vma, address, pmd);
1309                 ret |= VM_FAULT_WRITE;
1310                 goto out_unlock;
1311         }
1312         get_page(page);
1313         spin_unlock(ptl);
1314 alloc:
1315         if (transparent_hugepage_enabled(vma) &&
1316             !transparent_hugepage_debug_cow()) {
1317                 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1318                 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1319         } else
1320                 new_page = NULL;
1321
1322         if (likely(new_page)) {
1323                 prep_transhuge_page(new_page);
1324         } else {
1325                 if (!page) {
1326                         split_huge_pmd(vma, pmd, address);
1327                         ret |= VM_FAULT_FALLBACK;
1328                 } else {
1329                         ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1330                                         pmd, orig_pmd, page, haddr);
1331                         if (ret & VM_FAULT_OOM) {
1332                                 split_huge_pmd(vma, pmd, address);
1333                                 ret |= VM_FAULT_FALLBACK;
1334                         }
1335                         put_page(page);
1336                 }
1337                 count_vm_event(THP_FAULT_FALLBACK);
1338                 goto out;
1339         }
1340
1341         if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1342                                            true))) {
1343                 put_page(new_page);
1344                 if (page) {
1345                         split_huge_pmd(vma, pmd, address);
1346                         put_page(page);
1347                 } else
1348                         split_huge_pmd(vma, pmd, address);
1349                 ret |= VM_FAULT_FALLBACK;
1350                 count_vm_event(THP_FAULT_FALLBACK);
1351                 goto out;
1352         }
1353
1354         count_vm_event(THP_FAULT_ALLOC);
1355
1356         if (!page)
1357                 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1358         else
1359                 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1360         __SetPageUptodate(new_page);
1361
1362         mmun_start = haddr;
1363         mmun_end   = haddr + HPAGE_PMD_SIZE;
1364         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1365
1366         spin_lock(ptl);
1367         if (page)
1368                 put_page(page);
1369         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1370                 spin_unlock(ptl);
1371                 mem_cgroup_cancel_charge(new_page, memcg, true);
1372                 put_page(new_page);
1373                 goto out_mn;
1374         } else {
1375                 pmd_t entry;
1376                 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1377                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378                 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1379                 page_add_new_anon_rmap(new_page, vma, haddr, true);
1380                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1381                 lru_cache_add_active_or_unevictable(new_page, vma);
1382                 set_pmd_at(mm, haddr, pmd, entry);
1383                 update_mmu_cache_pmd(vma, address, pmd);
1384                 if (!page) {
1385                         add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1386                         put_huge_zero_page();
1387                 } else {
1388                         VM_BUG_ON_PAGE(!PageHead(page), page);
1389                         page_remove_rmap(page, true);
1390                         put_page(page);
1391                 }
1392                 ret |= VM_FAULT_WRITE;
1393         }
1394         spin_unlock(ptl);
1395 out_mn:
1396         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1397 out:
1398         return ret;
1399 out_unlock:
1400         spin_unlock(ptl);
1401         return ret;
1402 }
1403
1404 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1405                                    unsigned long addr,
1406                                    pmd_t *pmd,
1407                                    unsigned int flags)
1408 {
1409         struct mm_struct *mm = vma->vm_mm;
1410         struct page *page = NULL;
1411
1412         assert_spin_locked(pmd_lockptr(mm, pmd));
1413
1414         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1415                 goto out;
1416
1417         /* Avoid dumping huge zero page */
1418         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419                 return ERR_PTR(-EFAULT);
1420
1421         /* Full NUMA hinting faults to serialise migration in fault paths */
1422         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1423                 goto out;
1424
1425         page = pmd_page(*pmd);
1426         VM_BUG_ON_PAGE(!PageHead(page), page);
1427         if (flags & FOLL_TOUCH)
1428                 touch_pmd(vma, addr, pmd);
1429         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430                 /*
1431                  * We don't mlock() pte-mapped THPs. This way we can avoid
1432                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1433                  *
1434                  * In most cases the pmd is the only mapping of the page as we
1435                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1436                  * writable private mappings in populate_vma_page_range().
1437                  *
1438                  * The only scenario when we have the page shared here is if we
1439                  * mlocking read-only mapping shared over fork(). We skip
1440                  * mlocking such pages.
1441                  */
1442                 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1443                                 page->mapping && trylock_page(page)) {
1444                         lru_add_drain();
1445                         if (page->mapping)
1446                                 mlock_vma_page(page);
1447                         unlock_page(page);
1448                 }
1449         }
1450         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1451         VM_BUG_ON_PAGE(!PageCompound(page), page);
1452         if (flags & FOLL_GET)
1453                 get_page(page);
1454
1455 out:
1456         return page;
1457 }
1458
1459 /* NUMA hinting page fault entry point for trans huge pmds */
1460 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1461                                 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1462 {
1463         spinlock_t *ptl;
1464         struct anon_vma *anon_vma = NULL;
1465         struct page *page;
1466         unsigned long haddr = addr & HPAGE_PMD_MASK;
1467         int page_nid = -1, this_nid = numa_node_id();
1468         int target_nid, last_cpupid = -1;
1469         bool page_locked;
1470         bool migrated = false;
1471         bool was_writable;
1472         int flags = 0;
1473
1474         /* A PROT_NONE fault should not end up here */
1475         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1476
1477         ptl = pmd_lock(mm, pmdp);
1478         if (unlikely(!pmd_same(pmd, *pmdp)))
1479                 goto out_unlock;
1480
1481         /*
1482          * If there are potential migrations, wait for completion and retry
1483          * without disrupting NUMA hinting information. Do not relock and
1484          * check_same as the page may no longer be mapped.
1485          */
1486         if (unlikely(pmd_trans_migrating(*pmdp))) {
1487                 page = pmd_page(*pmdp);
1488                 spin_unlock(ptl);
1489                 wait_on_page_locked(page);
1490                 goto out;
1491         }
1492
1493         page = pmd_page(pmd);
1494         BUG_ON(is_huge_zero_page(page));
1495         page_nid = page_to_nid(page);
1496         last_cpupid = page_cpupid_last(page);
1497         count_vm_numa_event(NUMA_HINT_FAULTS);
1498         if (page_nid == this_nid) {
1499                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1500                 flags |= TNF_FAULT_LOCAL;
1501         }
1502
1503         /* See similar comment in do_numa_page for explanation */
1504         if (!(vma->vm_flags & VM_WRITE))
1505                 flags |= TNF_NO_GROUP;
1506
1507         /*
1508          * Acquire the page lock to serialise THP migrations but avoid dropping
1509          * page_table_lock if at all possible
1510          */
1511         page_locked = trylock_page(page);
1512         target_nid = mpol_misplaced(page, vma, haddr);
1513         if (target_nid == -1) {
1514                 /* If the page was locked, there are no parallel migrations */
1515                 if (page_locked)
1516                         goto clear_pmdnuma;
1517         }
1518
1519         /* Migration could have started since the pmd_trans_migrating check */
1520         if (!page_locked) {
1521                 spin_unlock(ptl);
1522                 wait_on_page_locked(page);
1523                 page_nid = -1;
1524                 goto out;
1525         }
1526
1527         /*
1528          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1529          * to serialises splits
1530          */
1531         get_page(page);
1532         spin_unlock(ptl);
1533         anon_vma = page_lock_anon_vma_read(page);
1534
1535         /* Confirm the PMD did not change while page_table_lock was released */
1536         spin_lock(ptl);
1537         if (unlikely(!pmd_same(pmd, *pmdp))) {
1538                 unlock_page(page);
1539                 put_page(page);
1540                 page_nid = -1;
1541                 goto out_unlock;
1542         }
1543
1544         /* Bail if we fail to protect against THP splits for any reason */
1545         if (unlikely(!anon_vma)) {
1546                 put_page(page);
1547                 page_nid = -1;
1548                 goto clear_pmdnuma;
1549         }
1550
1551         /*
1552          * Migrate the THP to the requested node, returns with page unlocked
1553          * and access rights restored.
1554          */
1555         spin_unlock(ptl);
1556         migrated = migrate_misplaced_transhuge_page(mm, vma,
1557                                 pmdp, pmd, addr, page, target_nid);
1558         if (migrated) {
1559                 flags |= TNF_MIGRATED;
1560                 page_nid = target_nid;
1561         } else
1562                 flags |= TNF_MIGRATE_FAIL;
1563
1564         goto out;
1565 clear_pmdnuma:
1566         BUG_ON(!PageLocked(page));
1567         was_writable = pmd_write(pmd);
1568         pmd = pmd_modify(pmd, vma->vm_page_prot);
1569         pmd = pmd_mkyoung(pmd);
1570         if (was_writable)
1571                 pmd = pmd_mkwrite(pmd);
1572         set_pmd_at(mm, haddr, pmdp, pmd);
1573         update_mmu_cache_pmd(vma, addr, pmdp);
1574         unlock_page(page);
1575 out_unlock:
1576         spin_unlock(ptl);
1577
1578 out:
1579         if (anon_vma)
1580                 page_unlock_anon_vma_read(anon_vma);
1581
1582         if (page_nid != -1)
1583                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1584
1585         return 0;
1586 }
1587
1588 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1589                 pmd_t *pmd, unsigned long addr, unsigned long next)
1590
1591 {
1592         spinlock_t *ptl;
1593         pmd_t orig_pmd;
1594         struct page *page;
1595         struct mm_struct *mm = tlb->mm;
1596         int ret = 0;
1597
1598         ptl = pmd_trans_huge_lock(pmd, vma);
1599         if (!ptl)
1600                 goto out_unlocked;
1601
1602         orig_pmd = *pmd;
1603         if (is_huge_zero_pmd(orig_pmd)) {
1604                 ret = 1;
1605                 goto out;
1606         }
1607
1608         page = pmd_page(orig_pmd);
1609         /*
1610          * If other processes are mapping this page, we couldn't discard
1611          * the page unless they all do MADV_FREE so let's skip the page.
1612          */
1613         if (page_mapcount(page) != 1)
1614                 goto out;
1615
1616         if (!trylock_page(page))
1617                 goto out;
1618
1619         /*
1620          * If user want to discard part-pages of THP, split it so MADV_FREE
1621          * will deactivate only them.
1622          */
1623         if (next - addr != HPAGE_PMD_SIZE) {
1624                 get_page(page);
1625                 spin_unlock(ptl);
1626                 if (split_huge_page(page)) {
1627                         put_page(page);
1628                         unlock_page(page);
1629                         goto out_unlocked;
1630                 }
1631                 put_page(page);
1632                 unlock_page(page);
1633                 ret = 1;
1634                 goto out_unlocked;
1635         }
1636
1637         if (PageDirty(page))
1638                 ClearPageDirty(page);
1639         unlock_page(page);
1640
1641         if (PageActive(page))
1642                 deactivate_page(page);
1643
1644         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645                 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1646                         tlb->fullmm);
1647                 orig_pmd = pmd_mkold(orig_pmd);
1648                 orig_pmd = pmd_mkclean(orig_pmd);
1649
1650                 set_pmd_at(mm, addr, pmd, orig_pmd);
1651                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652         }
1653         ret = 1;
1654 out:
1655         spin_unlock(ptl);
1656 out_unlocked:
1657         return ret;
1658 }
1659
1660 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1661                  pmd_t *pmd, unsigned long addr)
1662 {
1663         pmd_t orig_pmd;
1664         spinlock_t *ptl;
1665
1666         ptl = __pmd_trans_huge_lock(pmd, vma);
1667         if (!ptl)
1668                 return 0;
1669         /*
1670          * For architectures like ppc64 we look at deposited pgtable
1671          * when calling pmdp_huge_get_and_clear. So do the
1672          * pgtable_trans_huge_withdraw after finishing pmdp related
1673          * operations.
1674          */
1675         orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1676                         tlb->fullmm);
1677         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1678         if (vma_is_dax(vma)) {
1679                 spin_unlock(ptl);
1680                 if (is_huge_zero_pmd(orig_pmd))
1681                         tlb_remove_page(tlb, pmd_page(orig_pmd));
1682         } else if (is_huge_zero_pmd(orig_pmd)) {
1683                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1684                 atomic_long_dec(&tlb->mm->nr_ptes);
1685                 spin_unlock(ptl);
1686                 tlb_remove_page(tlb, pmd_page(orig_pmd));
1687         } else {
1688                 struct page *page = pmd_page(orig_pmd);
1689                 page_remove_rmap(page, true);
1690                 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692                 VM_BUG_ON_PAGE(!PageHead(page), page);
1693                 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1694                 atomic_long_dec(&tlb->mm->nr_ptes);
1695                 spin_unlock(ptl);
1696                 tlb_remove_page(tlb, page);
1697         }
1698         return 1;
1699 }
1700
1701 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1702                   unsigned long old_addr,
1703                   unsigned long new_addr, unsigned long old_end,
1704                   pmd_t *old_pmd, pmd_t *new_pmd)
1705 {
1706         spinlock_t *old_ptl, *new_ptl;
1707         pmd_t pmd;
1708
1709         struct mm_struct *mm = vma->vm_mm;
1710
1711         if ((old_addr & ~HPAGE_PMD_MASK) ||
1712             (new_addr & ~HPAGE_PMD_MASK) ||
1713             old_end - old_addr < HPAGE_PMD_SIZE ||
1714             (new_vma->vm_flags & VM_NOHUGEPAGE))
1715                 return false;
1716
1717         /*
1718          * The destination pmd shouldn't be established, free_pgtables()
1719          * should have release it.
1720          */
1721         if (WARN_ON(!pmd_none(*new_pmd))) {
1722                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1723                 return false;
1724         }
1725
1726         /*
1727          * We don't have to worry about the ordering of src and dst
1728          * ptlocks because exclusive mmap_sem prevents deadlock.
1729          */
1730         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1731         if (old_ptl) {
1732                 new_ptl = pmd_lockptr(mm, new_pmd);
1733                 if (new_ptl != old_ptl)
1734                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1735                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1736                 VM_BUG_ON(!pmd_none(*new_pmd));
1737
1738                 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1739                                 vma_is_anonymous(vma)) {
1740                         pgtable_t pgtable;
1741                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1742                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1743                 }
1744                 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1745                 if (new_ptl != old_ptl)
1746                         spin_unlock(new_ptl);
1747                 spin_unlock(old_ptl);
1748                 return true;
1749         }
1750         return false;
1751 }
1752
1753 /*
1754  * Returns
1755  *  - 0 if PMD could not be locked
1756  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1757  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1758  */
1759 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1760                 unsigned long addr, pgprot_t newprot, int prot_numa)
1761 {
1762         struct mm_struct *mm = vma->vm_mm;
1763         spinlock_t *ptl;
1764         int ret = 0;
1765
1766         ptl = __pmd_trans_huge_lock(pmd, vma);
1767         if (ptl) {
1768                 pmd_t entry;
1769                 bool preserve_write = prot_numa && pmd_write(*pmd);
1770                 ret = 1;
1771
1772                 /*
1773                  * Avoid trapping faults against the zero page. The read-only
1774                  * data is likely to be read-cached on the local CPU and
1775                  * local/remote hits to the zero page are not interesting.
1776                  */
1777                 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1778                         spin_unlock(ptl);
1779                         return ret;
1780                 }
1781
1782                 if (!prot_numa || !pmd_protnone(*pmd)) {
1783                         entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1784                         entry = pmd_modify(entry, newprot);
1785                         if (preserve_write)
1786                                 entry = pmd_mkwrite(entry);
1787                         ret = HPAGE_PMD_NR;
1788                         set_pmd_at(mm, addr, pmd, entry);
1789                         BUG_ON(!preserve_write && pmd_write(entry));
1790                 }
1791                 spin_unlock(ptl);
1792         }
1793
1794         return ret;
1795 }
1796
1797 /*
1798  * Returns true if a given pmd maps a thp, false otherwise.
1799  *
1800  * Note that if it returns true, this routine returns without unlocking page
1801  * table lock. So callers must unlock it.
1802  */
1803 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1804 {
1805         spinlock_t *ptl;
1806         ptl = pmd_lock(vma->vm_mm, pmd);
1807         if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1808                 return ptl;
1809         spin_unlock(ptl);
1810         return NULL;
1811 }
1812
1813 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1814
1815 int hugepage_madvise(struct vm_area_struct *vma,
1816                      unsigned long *vm_flags, int advice)
1817 {
1818         switch (advice) {
1819         case MADV_HUGEPAGE:
1820 #ifdef CONFIG_S390
1821                 /*
1822                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1823                  * can't handle this properly after s390_enable_sie, so we simply
1824                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
1825                  */
1826                 if (mm_has_pgste(vma->vm_mm))
1827                         return 0;
1828 #endif
1829                 /*
1830                  * Be somewhat over-protective like KSM for now!
1831                  */
1832                 if (*vm_flags & VM_NO_THP)
1833                         return -EINVAL;
1834                 *vm_flags &= ~VM_NOHUGEPAGE;
1835                 *vm_flags |= VM_HUGEPAGE;
1836                 /*
1837                  * If the vma become good for khugepaged to scan,
1838                  * register it here without waiting a page fault that
1839                  * may not happen any time soon.
1840                  */
1841                 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1842                         return -ENOMEM;
1843                 break;
1844         case MADV_NOHUGEPAGE:
1845                 /*
1846                  * Be somewhat over-protective like KSM for now!
1847                  */
1848                 if (*vm_flags & VM_NO_THP)
1849                         return -EINVAL;
1850                 *vm_flags &= ~VM_HUGEPAGE;
1851                 *vm_flags |= VM_NOHUGEPAGE;
1852                 /*
1853                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1854                  * this vma even if we leave the mm registered in khugepaged if
1855                  * it got registered before VM_NOHUGEPAGE was set.
1856                  */
1857                 break;
1858         }
1859
1860         return 0;
1861 }
1862
1863 static int __init khugepaged_slab_init(void)
1864 {
1865         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1866                                           sizeof(struct mm_slot),
1867                                           __alignof__(struct mm_slot), 0, NULL);
1868         if (!mm_slot_cache)
1869                 return -ENOMEM;
1870
1871         return 0;
1872 }
1873
1874 static void __init khugepaged_slab_exit(void)
1875 {
1876         kmem_cache_destroy(mm_slot_cache);
1877 }
1878
1879 static inline struct mm_slot *alloc_mm_slot(void)
1880 {
1881         if (!mm_slot_cache)     /* initialization failed */
1882                 return NULL;
1883         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1884 }
1885
1886 static inline void free_mm_slot(struct mm_slot *mm_slot)
1887 {
1888         kmem_cache_free(mm_slot_cache, mm_slot);
1889 }
1890
1891 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1892 {
1893         struct mm_slot *mm_slot;
1894
1895         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1896                 if (mm == mm_slot->mm)
1897                         return mm_slot;
1898
1899         return NULL;
1900 }
1901
1902 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1903                                     struct mm_slot *mm_slot)
1904 {
1905         mm_slot->mm = mm;
1906         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1907 }
1908
1909 static inline int khugepaged_test_exit(struct mm_struct *mm)
1910 {
1911         return atomic_read(&mm->mm_users) == 0;
1912 }
1913
1914 int __khugepaged_enter(struct mm_struct *mm)
1915 {
1916         struct mm_slot *mm_slot;
1917         int wakeup;
1918
1919         mm_slot = alloc_mm_slot();
1920         if (!mm_slot)
1921                 return -ENOMEM;
1922
1923         /* __khugepaged_exit() must not run from under us */
1924         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1925         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1926                 free_mm_slot(mm_slot);
1927                 return 0;
1928         }
1929
1930         spin_lock(&khugepaged_mm_lock);
1931         insert_to_mm_slots_hash(mm, mm_slot);
1932         /*
1933          * Insert just behind the scanning cursor, to let the area settle
1934          * down a little.
1935          */
1936         wakeup = list_empty(&khugepaged_scan.mm_head);
1937         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1938         spin_unlock(&khugepaged_mm_lock);
1939
1940         atomic_inc(&mm->mm_count);
1941         if (wakeup)
1942                 wake_up_interruptible(&khugepaged_wait);
1943
1944         return 0;
1945 }
1946
1947 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1948                                unsigned long vm_flags)
1949 {
1950         unsigned long hstart, hend;
1951         if (!vma->anon_vma)
1952                 /*
1953                  * Not yet faulted in so we will register later in the
1954                  * page fault if needed.
1955                  */
1956                 return 0;
1957         if (vma->vm_ops || (vm_flags & VM_NO_THP))
1958                 /* khugepaged not yet working on file or special mappings */
1959                 return 0;
1960         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1961         hend = vma->vm_end & HPAGE_PMD_MASK;
1962         if (hstart < hend)
1963                 return khugepaged_enter(vma, vm_flags);
1964         return 0;
1965 }
1966
1967 void __khugepaged_exit(struct mm_struct *mm)
1968 {
1969         struct mm_slot *mm_slot;
1970         int free = 0;
1971
1972         spin_lock(&khugepaged_mm_lock);
1973         mm_slot = get_mm_slot(mm);
1974         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1975                 hash_del(&mm_slot->hash);
1976                 list_del(&mm_slot->mm_node);
1977                 free = 1;
1978         }
1979         spin_unlock(&khugepaged_mm_lock);
1980
1981         if (free) {
1982                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1983                 free_mm_slot(mm_slot);
1984                 mmdrop(mm);
1985         } else if (mm_slot) {
1986                 /*
1987                  * This is required to serialize against
1988                  * khugepaged_test_exit() (which is guaranteed to run
1989                  * under mmap sem read mode). Stop here (after we
1990                  * return all pagetables will be destroyed) until
1991                  * khugepaged has finished working on the pagetables
1992                  * under the mmap_sem.
1993                  */
1994                 down_write(&mm->mmap_sem);
1995                 up_write(&mm->mmap_sem);
1996         }
1997 }
1998
1999 static void release_pte_page(struct page *page)
2000 {
2001         /* 0 stands for page_is_file_cache(page) == false */
2002         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2003         unlock_page(page);
2004         putback_lru_page(page);
2005 }
2006
2007 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2008 {
2009         while (--_pte >= pte) {
2010                 pte_t pteval = *_pte;
2011                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2012                         release_pte_page(pte_page(pteval));
2013         }
2014 }
2015
2016 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2017                                         unsigned long address,
2018                                         pte_t *pte)
2019 {
2020         struct page *page = NULL;
2021         pte_t *_pte;
2022         int none_or_zero = 0, result = 0;
2023         bool referenced = false, writable = false;
2024
2025         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2026              _pte++, address += PAGE_SIZE) {
2027                 pte_t pteval = *_pte;
2028                 if (pte_none(pteval) || (pte_present(pteval) &&
2029                                 is_zero_pfn(pte_pfn(pteval)))) {
2030                         if (!userfaultfd_armed(vma) &&
2031                             ++none_or_zero <= khugepaged_max_ptes_none) {
2032                                 continue;
2033                         } else {
2034                                 result = SCAN_EXCEED_NONE_PTE;
2035                                 goto out;
2036                         }
2037                 }
2038                 if (!pte_present(pteval)) {
2039                         result = SCAN_PTE_NON_PRESENT;
2040                         goto out;
2041                 }
2042                 page = vm_normal_page(vma, address, pteval);
2043                 if (unlikely(!page)) {
2044                         result = SCAN_PAGE_NULL;
2045                         goto out;
2046                 }
2047
2048                 VM_BUG_ON_PAGE(PageCompound(page), page);
2049                 VM_BUG_ON_PAGE(!PageAnon(page), page);
2050                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2051
2052                 /*
2053                  * We can do it before isolate_lru_page because the
2054                  * page can't be freed from under us. NOTE: PG_lock
2055                  * is needed to serialize against split_huge_page
2056                  * when invoked from the VM.
2057                  */
2058                 if (!trylock_page(page)) {
2059                         result = SCAN_PAGE_LOCK;
2060                         goto out;
2061                 }
2062
2063                 /*
2064                  * cannot use mapcount: can't collapse if there's a gup pin.
2065                  * The page must only be referenced by the scanned process
2066                  * and page swap cache.
2067                  */
2068                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2069                         unlock_page(page);
2070                         result = SCAN_PAGE_COUNT;
2071                         goto out;
2072                 }
2073                 if (pte_write(pteval)) {
2074                         writable = true;
2075                 } else {
2076                         if (PageSwapCache(page) &&
2077                             !reuse_swap_page(page, NULL)) {
2078                                 unlock_page(page);
2079                                 result = SCAN_SWAP_CACHE_PAGE;
2080                                 goto out;
2081                         }
2082                         /*
2083                          * Page is not in the swap cache. It can be collapsed
2084                          * into a THP.
2085                          */
2086                 }
2087
2088                 /*
2089                  * Isolate the page to avoid collapsing an hugepage
2090                  * currently in use by the VM.
2091                  */
2092                 if (isolate_lru_page(page)) {
2093                         unlock_page(page);
2094                         result = SCAN_DEL_PAGE_LRU;
2095                         goto out;
2096                 }
2097                 /* 0 stands for page_is_file_cache(page) == false */
2098                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2099                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2100                 VM_BUG_ON_PAGE(PageLRU(page), page);
2101
2102                 /* If there is no mapped pte young don't collapse the page */
2103                 if (pte_young(pteval) ||
2104                     page_is_young(page) || PageReferenced(page) ||
2105                     mmu_notifier_test_young(vma->vm_mm, address))
2106                         referenced = true;
2107         }
2108         if (likely(writable)) {
2109                 if (likely(referenced)) {
2110                         result = SCAN_SUCCEED;
2111                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2112                                                             referenced, writable, result);
2113                         return 1;
2114                 }
2115         } else {
2116                 result = SCAN_PAGE_RO;
2117         }
2118
2119 out:
2120         release_pte_pages(pte, _pte);
2121         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2122                                             referenced, writable, result);
2123         return 0;
2124 }
2125
2126 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2127                                       struct vm_area_struct *vma,
2128                                       unsigned long address,
2129                                       spinlock_t *ptl)
2130 {
2131         pte_t *_pte;
2132         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2133                 pte_t pteval = *_pte;
2134                 struct page *src_page;
2135
2136                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2137                         clear_user_highpage(page, address);
2138                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2139                         if (is_zero_pfn(pte_pfn(pteval))) {
2140                                 /*
2141                                  * ptl mostly unnecessary.
2142                                  */
2143                                 spin_lock(ptl);
2144                                 /*
2145                                  * paravirt calls inside pte_clear here are
2146                                  * superfluous.
2147                                  */
2148                                 pte_clear(vma->vm_mm, address, _pte);
2149                                 spin_unlock(ptl);
2150                         }
2151                 } else {
2152                         src_page = pte_page(pteval);
2153                         copy_user_highpage(page, src_page, address, vma);
2154                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2155                         release_pte_page(src_page);
2156                         /*
2157                          * ptl mostly unnecessary, but preempt has to
2158                          * be disabled to update the per-cpu stats
2159                          * inside page_remove_rmap().
2160                          */
2161                         spin_lock(ptl);
2162                         /*
2163                          * paravirt calls inside pte_clear here are
2164                          * superfluous.
2165                          */
2166                         pte_clear(vma->vm_mm, address, _pte);
2167                         page_remove_rmap(src_page, false);
2168                         spin_unlock(ptl);
2169                         free_page_and_swap_cache(src_page);
2170                 }
2171
2172                 address += PAGE_SIZE;
2173                 page++;
2174         }
2175 }
2176
2177 static void khugepaged_alloc_sleep(void)
2178 {
2179         DEFINE_WAIT(wait);
2180
2181         add_wait_queue(&khugepaged_wait, &wait);
2182         freezable_schedule_timeout_interruptible(
2183                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2184         remove_wait_queue(&khugepaged_wait, &wait);
2185 }
2186
2187 static int khugepaged_node_load[MAX_NUMNODES];
2188
2189 static bool khugepaged_scan_abort(int nid)
2190 {
2191         int i;
2192
2193         /*
2194          * If zone_reclaim_mode is disabled, then no extra effort is made to
2195          * allocate memory locally.
2196          */
2197         if (!zone_reclaim_mode)
2198                 return false;
2199
2200         /* If there is a count for this node already, it must be acceptable */
2201         if (khugepaged_node_load[nid])
2202                 return false;
2203
2204         for (i = 0; i < MAX_NUMNODES; i++) {
2205                 if (!khugepaged_node_load[i])
2206                         continue;
2207                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2208                         return true;
2209         }
2210         return false;
2211 }
2212
2213 #ifdef CONFIG_NUMA
2214 static int khugepaged_find_target_node(void)
2215 {
2216         static int last_khugepaged_target_node = NUMA_NO_NODE;
2217         int nid, target_node = 0, max_value = 0;
2218
2219         /* find first node with max normal pages hit */
2220         for (nid = 0; nid < MAX_NUMNODES; nid++)
2221                 if (khugepaged_node_load[nid] > max_value) {
2222                         max_value = khugepaged_node_load[nid];
2223                         target_node = nid;
2224                 }
2225
2226         /* do some balance if several nodes have the same hit record */
2227         if (target_node <= last_khugepaged_target_node)
2228                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2229                                 nid++)
2230                         if (max_value == khugepaged_node_load[nid]) {
2231                                 target_node = nid;
2232                                 break;
2233                         }
2234
2235         last_khugepaged_target_node = target_node;
2236         return target_node;
2237 }
2238
2239 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2240 {
2241         if (IS_ERR(*hpage)) {
2242                 if (!*wait)
2243                         return false;
2244
2245                 *wait = false;
2246                 *hpage = NULL;
2247                 khugepaged_alloc_sleep();
2248         } else if (*hpage) {
2249                 put_page(*hpage);
2250                 *hpage = NULL;
2251         }
2252
2253         return true;
2254 }
2255
2256 static struct page *
2257 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2258                        unsigned long address, int node)
2259 {
2260         VM_BUG_ON_PAGE(*hpage, *hpage);
2261
2262         /*
2263          * Before allocating the hugepage, release the mmap_sem read lock.
2264          * The allocation can take potentially a long time if it involves
2265          * sync compaction, and we do not need to hold the mmap_sem during
2266          * that. We will recheck the vma after taking it again in write mode.
2267          */
2268         up_read(&mm->mmap_sem);
2269
2270         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2271         if (unlikely(!*hpage)) {
2272                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2273                 *hpage = ERR_PTR(-ENOMEM);
2274                 return NULL;
2275         }
2276
2277         prep_transhuge_page(*hpage);
2278         count_vm_event(THP_COLLAPSE_ALLOC);
2279         return *hpage;
2280 }
2281 #else
2282 static int khugepaged_find_target_node(void)
2283 {
2284         return 0;
2285 }
2286
2287 static inline struct page *alloc_khugepaged_hugepage(void)
2288 {
2289         struct page *page;
2290
2291         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2292                            HPAGE_PMD_ORDER);
2293         if (page)
2294                 prep_transhuge_page(page);
2295         return page;
2296 }
2297
2298 static struct page *khugepaged_alloc_hugepage(bool *wait)
2299 {
2300         struct page *hpage;
2301
2302         do {
2303                 hpage = alloc_khugepaged_hugepage();
2304                 if (!hpage) {
2305                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2306                         if (!*wait)
2307                                 return NULL;
2308
2309                         *wait = false;
2310                         khugepaged_alloc_sleep();
2311                 } else
2312                         count_vm_event(THP_COLLAPSE_ALLOC);
2313         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2314
2315         return hpage;
2316 }
2317
2318 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2319 {
2320         if (!*hpage)
2321                 *hpage = khugepaged_alloc_hugepage(wait);
2322
2323         if (unlikely(!*hpage))
2324                 return false;
2325
2326         return true;
2327 }
2328
2329 static struct page *
2330 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2331                        unsigned long address, int node)
2332 {
2333         up_read(&mm->mmap_sem);
2334         VM_BUG_ON(!*hpage);
2335
2336         return  *hpage;
2337 }
2338 #endif
2339
2340 static bool hugepage_vma_check(struct vm_area_struct *vma)
2341 {
2342         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2343             (vma->vm_flags & VM_NOHUGEPAGE))
2344                 return false;
2345         if (!vma->anon_vma || vma->vm_ops)
2346                 return false;
2347         if (is_vma_temporary_stack(vma))
2348                 return false;
2349         return !(vma->vm_flags & VM_NO_THP);
2350 }
2351
2352 static void collapse_huge_page(struct mm_struct *mm,
2353                                    unsigned long address,
2354                                    struct page **hpage,
2355                                    struct vm_area_struct *vma,
2356                                    int node)
2357 {
2358         pmd_t *pmd, _pmd;
2359         pte_t *pte;
2360         pgtable_t pgtable;
2361         struct page *new_page;
2362         spinlock_t *pmd_ptl, *pte_ptl;
2363         int isolated = 0, result = 0;
2364         unsigned long hstart, hend;
2365         struct mem_cgroup *memcg;
2366         unsigned long mmun_start;       /* For mmu_notifiers */
2367         unsigned long mmun_end;         /* For mmu_notifiers */
2368         gfp_t gfp;
2369
2370         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2371
2372         /* Only allocate from the target node */
2373         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2374
2375         /* release the mmap_sem read lock. */
2376         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2377         if (!new_page) {
2378                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2379                 goto out_nolock;
2380         }
2381
2382         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2383                 result = SCAN_CGROUP_CHARGE_FAIL;
2384                 goto out_nolock;
2385         }
2386
2387         /*
2388          * Prevent all access to pagetables with the exception of
2389          * gup_fast later hanlded by the ptep_clear_flush and the VM
2390          * handled by the anon_vma lock + PG_lock.
2391          */
2392         down_write(&mm->mmap_sem);
2393         if (unlikely(khugepaged_test_exit(mm))) {
2394                 result = SCAN_ANY_PROCESS;
2395                 goto out;
2396         }
2397
2398         vma = find_vma(mm, address);
2399         if (!vma) {
2400                 result = SCAN_VMA_NULL;
2401                 goto out;
2402         }
2403         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2404         hend = vma->vm_end & HPAGE_PMD_MASK;
2405         if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2406                 result = SCAN_ADDRESS_RANGE;
2407                 goto out;
2408         }
2409         if (!hugepage_vma_check(vma)) {
2410                 result = SCAN_VMA_CHECK;
2411                 goto out;
2412         }
2413         pmd = mm_find_pmd(mm, address);
2414         if (!pmd) {
2415                 result = SCAN_PMD_NULL;
2416                 goto out;
2417         }
2418
2419         anon_vma_lock_write(vma->anon_vma);
2420
2421         pte = pte_offset_map(pmd, address);
2422         pte_ptl = pte_lockptr(mm, pmd);
2423
2424         mmun_start = address;
2425         mmun_end   = address + HPAGE_PMD_SIZE;
2426         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2427         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2428         /*
2429          * After this gup_fast can't run anymore. This also removes
2430          * any huge TLB entry from the CPU so we won't allow
2431          * huge and small TLB entries for the same virtual address
2432          * to avoid the risk of CPU bugs in that area.
2433          */
2434         _pmd = pmdp_collapse_flush(vma, address, pmd);
2435         spin_unlock(pmd_ptl);
2436         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2437
2438         spin_lock(pte_ptl);
2439         isolated = __collapse_huge_page_isolate(vma, address, pte);
2440         spin_unlock(pte_ptl);
2441
2442         if (unlikely(!isolated)) {
2443                 pte_unmap(pte);
2444                 spin_lock(pmd_ptl);
2445                 BUG_ON(!pmd_none(*pmd));
2446                 /*
2447                  * We can only use set_pmd_at when establishing
2448                  * hugepmds and never for establishing regular pmds that
2449                  * points to regular pagetables. Use pmd_populate for that
2450                  */
2451                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2452                 spin_unlock(pmd_ptl);
2453                 anon_vma_unlock_write(vma->anon_vma);
2454                 result = SCAN_FAIL;
2455                 goto out;
2456         }
2457
2458         /*
2459          * All pages are isolated and locked so anon_vma rmap
2460          * can't run anymore.
2461          */
2462         anon_vma_unlock_write(vma->anon_vma);
2463
2464         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2465         pte_unmap(pte);
2466         __SetPageUptodate(new_page);
2467         pgtable = pmd_pgtable(_pmd);
2468
2469         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2470         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2471
2472         /*
2473          * spin_lock() below is not the equivalent of smp_wmb(), so
2474          * this is needed to avoid the copy_huge_page writes to become
2475          * visible after the set_pmd_at() write.
2476          */
2477         smp_wmb();
2478
2479         spin_lock(pmd_ptl);
2480         BUG_ON(!pmd_none(*pmd));
2481         page_add_new_anon_rmap(new_page, vma, address, true);
2482         mem_cgroup_commit_charge(new_page, memcg, false, true);
2483         lru_cache_add_active_or_unevictable(new_page, vma);
2484         pgtable_trans_huge_deposit(mm, pmd, pgtable);
2485         set_pmd_at(mm, address, pmd, _pmd);
2486         update_mmu_cache_pmd(vma, address, pmd);
2487         spin_unlock(pmd_ptl);
2488
2489         *hpage = NULL;
2490
2491         khugepaged_pages_collapsed++;
2492         result = SCAN_SUCCEED;
2493 out_up_write:
2494         up_write(&mm->mmap_sem);
2495         trace_mm_collapse_huge_page(mm, isolated, result);
2496         return;
2497
2498 out_nolock:
2499         trace_mm_collapse_huge_page(mm, isolated, result);
2500         return;
2501 out:
2502         mem_cgroup_cancel_charge(new_page, memcg, true);
2503         goto out_up_write;
2504 }
2505
2506 static int khugepaged_scan_pmd(struct mm_struct *mm,
2507                                struct vm_area_struct *vma,
2508                                unsigned long address,
2509                                struct page **hpage)
2510 {
2511         pmd_t *pmd;
2512         pte_t *pte, *_pte;
2513         int ret = 0, none_or_zero = 0, result = 0;
2514         struct page *page = NULL;
2515         unsigned long _address;
2516         spinlock_t *ptl;
2517         int node = NUMA_NO_NODE;
2518         bool writable = false, referenced = false;
2519
2520         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2521
2522         pmd = mm_find_pmd(mm, address);
2523         if (!pmd) {
2524                 result = SCAN_PMD_NULL;
2525                 goto out;
2526         }
2527
2528         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2529         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2530         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2531              _pte++, _address += PAGE_SIZE) {
2532                 pte_t pteval = *_pte;
2533                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2534                         if (!userfaultfd_armed(vma) &&
2535                             ++none_or_zero <= khugepaged_max_ptes_none) {
2536                                 continue;
2537                         } else {
2538                                 result = SCAN_EXCEED_NONE_PTE;
2539                                 goto out_unmap;
2540                         }
2541                 }
2542                 if (!pte_present(pteval)) {
2543                         result = SCAN_PTE_NON_PRESENT;
2544                         goto out_unmap;
2545                 }
2546                 if (pte_write(pteval))
2547                         writable = true;
2548
2549                 page = vm_normal_page(vma, _address, pteval);
2550                 if (unlikely(!page)) {
2551                         result = SCAN_PAGE_NULL;
2552                         goto out_unmap;
2553                 }
2554
2555                 /* TODO: teach khugepaged to collapse THP mapped with pte */
2556                 if (PageCompound(page)) {
2557                         result = SCAN_PAGE_COMPOUND;
2558                         goto out_unmap;
2559                 }
2560
2561                 /*
2562                  * Record which node the original page is from and save this
2563                  * information to khugepaged_node_load[].
2564                  * Khupaged will allocate hugepage from the node has the max
2565                  * hit record.
2566                  */
2567                 node = page_to_nid(page);
2568                 if (khugepaged_scan_abort(node)) {
2569                         result = SCAN_SCAN_ABORT;
2570                         goto out_unmap;
2571                 }
2572                 khugepaged_node_load[node]++;
2573                 if (!PageLRU(page)) {
2574                         result = SCAN_PAGE_LRU;
2575                         goto out_unmap;
2576                 }
2577                 if (PageLocked(page)) {
2578                         result = SCAN_PAGE_LOCK;
2579                         goto out_unmap;
2580                 }
2581                 if (!PageAnon(page)) {
2582                         result = SCAN_PAGE_ANON;
2583                         goto out_unmap;
2584                 }
2585
2586                 /*
2587                  * cannot use mapcount: can't collapse if there's a gup pin.
2588                  * The page must only be referenced by the scanned process
2589                  * and page swap cache.
2590                  */
2591                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2592                         result = SCAN_PAGE_COUNT;
2593                         goto out_unmap;
2594                 }
2595                 if (pte_young(pteval) ||
2596                     page_is_young(page) || PageReferenced(page) ||
2597                     mmu_notifier_test_young(vma->vm_mm, address))
2598                         referenced = true;
2599         }
2600         if (writable) {
2601                 if (referenced) {
2602                         result = SCAN_SUCCEED;
2603                         ret = 1;
2604                 } else {
2605                         result = SCAN_NO_REFERENCED_PAGE;
2606                 }
2607         } else {
2608                 result = SCAN_PAGE_RO;
2609         }
2610 out_unmap:
2611         pte_unmap_unlock(pte, ptl);
2612         if (ret) {
2613                 node = khugepaged_find_target_node();
2614                 /* collapse_huge_page will return with the mmap_sem released */
2615                 collapse_huge_page(mm, address, hpage, vma, node);
2616         }
2617 out:
2618         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2619                                      none_or_zero, result);
2620         return ret;
2621 }
2622
2623 static void collect_mm_slot(struct mm_slot *mm_slot)
2624 {
2625         struct mm_struct *mm = mm_slot->mm;
2626
2627         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2628
2629         if (khugepaged_test_exit(mm)) {
2630                 /* free mm_slot */
2631                 hash_del(&mm_slot->hash);
2632                 list_del(&mm_slot->mm_node);
2633
2634                 /*
2635                  * Not strictly needed because the mm exited already.
2636                  *
2637                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2638                  */
2639
2640                 /* khugepaged_mm_lock actually not necessary for the below */
2641                 free_mm_slot(mm_slot);
2642                 mmdrop(mm);
2643         }
2644 }
2645
2646 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2647                                             struct page **hpage)
2648         __releases(&khugepaged_mm_lock)
2649         __acquires(&khugepaged_mm_lock)
2650 {
2651         struct mm_slot *mm_slot;
2652         struct mm_struct *mm;
2653         struct vm_area_struct *vma;
2654         int progress = 0;
2655
2656         VM_BUG_ON(!pages);
2657         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2658
2659         if (khugepaged_scan.mm_slot)
2660                 mm_slot = khugepaged_scan.mm_slot;
2661         else {
2662                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2663                                      struct mm_slot, mm_node);
2664                 khugepaged_scan.address = 0;
2665                 khugepaged_scan.mm_slot = mm_slot;
2666         }
2667         spin_unlock(&khugepaged_mm_lock);
2668
2669         mm = mm_slot->mm;
2670         down_read(&mm->mmap_sem);
2671         if (unlikely(khugepaged_test_exit(mm)))
2672                 vma = NULL;
2673         else
2674                 vma = find_vma(mm, khugepaged_scan.address);
2675
2676         progress++;
2677         for (; vma; vma = vma->vm_next) {
2678                 unsigned long hstart, hend;
2679
2680                 cond_resched();
2681                 if (unlikely(khugepaged_test_exit(mm))) {
2682                         progress++;
2683                         break;
2684                 }
2685                 if (!hugepage_vma_check(vma)) {
2686 skip:
2687                         progress++;
2688                         continue;
2689                 }
2690                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2691                 hend = vma->vm_end & HPAGE_PMD_MASK;
2692                 if (hstart >= hend)
2693                         goto skip;
2694                 if (khugepaged_scan.address > hend)
2695                         goto skip;
2696                 if (khugepaged_scan.address < hstart)
2697                         khugepaged_scan.address = hstart;
2698                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2699
2700                 while (khugepaged_scan.address < hend) {
2701                         int ret;
2702                         cond_resched();
2703                         if (unlikely(khugepaged_test_exit(mm)))
2704                                 goto breakouterloop;
2705
2706                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2707                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2708                                   hend);
2709                         ret = khugepaged_scan_pmd(mm, vma,
2710                                                   khugepaged_scan.address,
2711                                                   hpage);
2712                         /* move to next address */
2713                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2714                         progress += HPAGE_PMD_NR;
2715                         if (ret)
2716                                 /* we released mmap_sem so break loop */
2717                                 goto breakouterloop_mmap_sem;
2718                         if (progress >= pages)
2719                                 goto breakouterloop;
2720                 }
2721         }
2722 breakouterloop:
2723         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2724 breakouterloop_mmap_sem:
2725
2726         spin_lock(&khugepaged_mm_lock);
2727         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2728         /*
2729          * Release the current mm_slot if this mm is about to die, or
2730          * if we scanned all vmas of this mm.
2731          */
2732         if (khugepaged_test_exit(mm) || !vma) {
2733                 /*
2734                  * Make sure that if mm_users is reaching zero while
2735                  * khugepaged runs here, khugepaged_exit will find
2736                  * mm_slot not pointing to the exiting mm.
2737                  */
2738                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2739                         khugepaged_scan.mm_slot = list_entry(
2740                                 mm_slot->mm_node.next,
2741                                 struct mm_slot, mm_node);
2742                         khugepaged_scan.address = 0;
2743                 } else {
2744                         khugepaged_scan.mm_slot = NULL;
2745                         khugepaged_full_scans++;
2746                 }
2747
2748                 collect_mm_slot(mm_slot);
2749         }
2750
2751         return progress;
2752 }
2753
2754 static int khugepaged_has_work(void)
2755 {
2756         return !list_empty(&khugepaged_scan.mm_head) &&
2757                 khugepaged_enabled();
2758 }
2759
2760 static int khugepaged_wait_event(void)
2761 {
2762         return !list_empty(&khugepaged_scan.mm_head) ||
2763                 kthread_should_stop();
2764 }
2765
2766 static void khugepaged_do_scan(void)
2767 {
2768         struct page *hpage = NULL;
2769         unsigned int progress = 0, pass_through_head = 0;
2770         unsigned int pages = khugepaged_pages_to_scan;
2771         bool wait = true;
2772
2773         barrier(); /* write khugepaged_pages_to_scan to local stack */
2774
2775         while (progress < pages) {
2776                 if (!khugepaged_prealloc_page(&hpage, &wait))
2777                         break;
2778
2779                 cond_resched();
2780
2781                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2782                         break;
2783
2784                 spin_lock(&khugepaged_mm_lock);
2785                 if (!khugepaged_scan.mm_slot)
2786                         pass_through_head++;
2787                 if (khugepaged_has_work() &&
2788                     pass_through_head < 2)
2789                         progress += khugepaged_scan_mm_slot(pages - progress,
2790                                                             &hpage);
2791                 else
2792                         progress = pages;
2793                 spin_unlock(&khugepaged_mm_lock);
2794         }
2795
2796         if (!IS_ERR_OR_NULL(hpage))
2797                 put_page(hpage);
2798 }
2799
2800 static void khugepaged_wait_work(void)
2801 {
2802         if (khugepaged_has_work()) {
2803                 if (!khugepaged_scan_sleep_millisecs)
2804                         return;
2805
2806                 wait_event_freezable_timeout(khugepaged_wait,
2807                                              kthread_should_stop(),
2808                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2809                 return;
2810         }
2811
2812         if (khugepaged_enabled())
2813                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2814 }
2815
2816 static int khugepaged(void *none)
2817 {
2818         struct mm_slot *mm_slot;
2819
2820         set_freezable();
2821         set_user_nice(current, MAX_NICE);
2822
2823         while (!kthread_should_stop()) {
2824                 khugepaged_do_scan();
2825                 khugepaged_wait_work();
2826         }
2827
2828         spin_lock(&khugepaged_mm_lock);
2829         mm_slot = khugepaged_scan.mm_slot;
2830         khugepaged_scan.mm_slot = NULL;
2831         if (mm_slot)
2832                 collect_mm_slot(mm_slot);
2833         spin_unlock(&khugepaged_mm_lock);
2834         return 0;
2835 }
2836
2837 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2838                 unsigned long haddr, pmd_t *pmd)
2839 {
2840         struct mm_struct *mm = vma->vm_mm;
2841         pgtable_t pgtable;
2842         pmd_t _pmd;
2843         int i;
2844
2845         /* leave pmd empty until pte is filled */
2846         pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2847
2848         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2849         pmd_populate(mm, &_pmd, pgtable);
2850
2851         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2852                 pte_t *pte, entry;
2853                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2854                 entry = pte_mkspecial(entry);
2855                 pte = pte_offset_map(&_pmd, haddr);
2856                 VM_BUG_ON(!pte_none(*pte));
2857                 set_pte_at(mm, haddr, pte, entry);
2858                 pte_unmap(pte);
2859         }
2860         smp_wmb(); /* make pte visible before pmd */
2861         pmd_populate(mm, pmd, pgtable);
2862         put_huge_zero_page();
2863 }
2864
2865 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2866                 unsigned long haddr, bool freeze)
2867 {
2868         struct mm_struct *mm = vma->vm_mm;
2869         struct page *page;
2870         pgtable_t pgtable;
2871         pmd_t _pmd;
2872         bool young, write, dirty;
2873         unsigned long addr;
2874         int i;
2875
2876         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2877         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2878         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2879         VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2880
2881         count_vm_event(THP_SPLIT_PMD);
2882
2883         if (vma_is_dax(vma)) {
2884                 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2885                 if (is_huge_zero_pmd(_pmd))
2886                         put_huge_zero_page();
2887                 return;
2888         } else if (is_huge_zero_pmd(*pmd)) {
2889                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2890         }
2891
2892         page = pmd_page(*pmd);
2893         VM_BUG_ON_PAGE(!page_count(page), page);
2894         page_ref_add(page, HPAGE_PMD_NR - 1);
2895         write = pmd_write(*pmd);
2896         young = pmd_young(*pmd);
2897         dirty = pmd_dirty(*pmd);
2898
2899         pmdp_huge_split_prepare(vma, haddr, pmd);
2900         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2901         pmd_populate(mm, &_pmd, pgtable);
2902
2903         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2904                 pte_t entry, *pte;
2905                 /*
2906                  * Note that NUMA hinting access restrictions are not
2907                  * transferred to avoid any possibility of altering
2908                  * permissions across VMAs.
2909                  */
2910                 if (freeze) {
2911                         swp_entry_t swp_entry;
2912                         swp_entry = make_migration_entry(page + i, write);
2913                         entry = swp_entry_to_pte(swp_entry);
2914                 } else {
2915                         entry = mk_pte(page + i, vma->vm_page_prot);
2916                         entry = maybe_mkwrite(entry, vma);
2917                         if (!write)
2918                                 entry = pte_wrprotect(entry);
2919                         if (!young)
2920                                 entry = pte_mkold(entry);
2921                 }
2922                 if (dirty)
2923                         SetPageDirty(page + i);
2924                 pte = pte_offset_map(&_pmd, addr);
2925                 BUG_ON(!pte_none(*pte));
2926                 set_pte_at(mm, addr, pte, entry);
2927                 atomic_inc(&page[i]._mapcount);
2928                 pte_unmap(pte);
2929         }
2930
2931         /*
2932          * Set PG_double_map before dropping compound_mapcount to avoid
2933          * false-negative page_mapped().
2934          */
2935         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2936                 for (i = 0; i < HPAGE_PMD_NR; i++)
2937                         atomic_inc(&page[i]._mapcount);
2938         }
2939
2940         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2941                 /* Last compound_mapcount is gone. */
2942                 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2943                 if (TestClearPageDoubleMap(page)) {
2944                         /* No need in mapcount reference anymore */
2945                         for (i = 0; i < HPAGE_PMD_NR; i++)
2946                                 atomic_dec(&page[i]._mapcount);
2947                 }
2948         }
2949
2950         smp_wmb(); /* make pte visible before pmd */
2951         /*
2952          * Up to this point the pmd is present and huge and userland has the
2953          * whole access to the hugepage during the split (which happens in
2954          * place). If we overwrite the pmd with the not-huge version pointing
2955          * to the pte here (which of course we could if all CPUs were bug
2956          * free), userland could trigger a small page size TLB miss on the
2957          * small sized TLB while the hugepage TLB entry is still established in
2958          * the huge TLB. Some CPU doesn't like that.
2959          * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2960          * 383 on page 93. Intel should be safe but is also warns that it's
2961          * only safe if the permission and cache attributes of the two entries
2962          * loaded in the two TLB is identical (which should be the case here).
2963          * But it is generally safer to never allow small and huge TLB entries
2964          * for the same virtual address to be loaded simultaneously. So instead
2965          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2966          * current pmd notpresent (atomically because here the pmd_trans_huge
2967          * and pmd_trans_splitting must remain set at all times on the pmd
2968          * until the split is complete for this pmd), then we flush the SMP TLB
2969          * and finally we write the non-huge version of the pmd entry with
2970          * pmd_populate.
2971          */
2972         pmdp_invalidate(vma, haddr, pmd);
2973         pmd_populate(mm, pmd, pgtable);
2974
2975         if (freeze) {
2976                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2977                         page_remove_rmap(page + i, false);
2978                         put_page(page + i);
2979                 }
2980         }
2981 }
2982
2983 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2984                 unsigned long address, bool freeze)
2985 {
2986         spinlock_t *ptl;
2987         struct mm_struct *mm = vma->vm_mm;
2988         unsigned long haddr = address & HPAGE_PMD_MASK;
2989
2990         mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2991         ptl = pmd_lock(mm, pmd);
2992         if (pmd_trans_huge(*pmd)) {
2993                 struct page *page = pmd_page(*pmd);
2994                 if (PageMlocked(page))
2995                         clear_page_mlock(page);
2996         } else if (!pmd_devmap(*pmd))
2997                 goto out;
2998         __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2999 out:
3000         spin_unlock(ptl);
3001         mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3002 }
3003
3004 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3005                 bool freeze, struct page *page)
3006 {
3007         pgd_t *pgd;
3008         pud_t *pud;
3009         pmd_t *pmd;
3010
3011         pgd = pgd_offset(vma->vm_mm, address);
3012         if (!pgd_present(*pgd))
3013                 return;
3014
3015         pud = pud_offset(pgd, address);
3016         if (!pud_present(*pud))
3017                 return;
3018
3019         pmd = pmd_offset(pud, address);
3020         if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3021                 return;
3022
3023         /*
3024          * If caller asks to setup a migration entries, we need a page to check
3025          * pmd against. Otherwise we can end up replacing wrong page.
3026          */
3027         VM_BUG_ON(freeze && !page);
3028         if (page && page != pmd_page(*pmd))
3029                 return;
3030
3031         /*
3032          * Caller holds the mmap_sem write mode, so a huge pmd cannot
3033          * materialize from under us.
3034          */
3035         __split_huge_pmd(vma, pmd, address, freeze);
3036 }
3037
3038 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3039                              unsigned long start,
3040                              unsigned long end,
3041                              long adjust_next)
3042 {
3043         /*
3044          * If the new start address isn't hpage aligned and it could
3045          * previously contain an hugepage: check if we need to split
3046          * an huge pmd.
3047          */
3048         if (start & ~HPAGE_PMD_MASK &&
3049             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3050             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3051                 split_huge_pmd_address(vma, start, false, NULL);
3052
3053         /*
3054          * If the new end address isn't hpage aligned and it could
3055          * previously contain an hugepage: check if we need to split
3056          * an huge pmd.
3057          */
3058         if (end & ~HPAGE_PMD_MASK &&
3059             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3060             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3061                 split_huge_pmd_address(vma, end, false, NULL);
3062
3063         /*
3064          * If we're also updating the vma->vm_next->vm_start, if the new
3065          * vm_next->vm_start isn't page aligned and it could previously
3066          * contain an hugepage: check if we need to split an huge pmd.
3067          */
3068         if (adjust_next > 0) {
3069                 struct vm_area_struct *next = vma->vm_next;
3070                 unsigned long nstart = next->vm_start;
3071                 nstart += adjust_next << PAGE_SHIFT;
3072                 if (nstart & ~HPAGE_PMD_MASK &&
3073                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3074                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3075                         split_huge_pmd_address(next, nstart, false, NULL);
3076         }
3077 }
3078
3079 static void freeze_page(struct page *page)
3080 {
3081         enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3082                 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3083         int i, ret;
3084
3085         VM_BUG_ON_PAGE(!PageHead(page), page);
3086
3087         /* We only need TTU_SPLIT_HUGE_PMD once */
3088         ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3089         for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3090                 /* Cut short if the page is unmapped */
3091                 if (page_count(page) == 1)
3092                         return;
3093
3094                 ret = try_to_unmap(page + i, ttu_flags);
3095         }
3096         VM_BUG_ON(ret);
3097 }
3098
3099 static void unfreeze_page(struct page *page)
3100 {
3101         int i;
3102
3103         for (i = 0; i < HPAGE_PMD_NR; i++)
3104                 remove_migration_ptes(page + i, page + i, true);
3105 }
3106
3107 static void __split_huge_page_tail(struct page *head, int tail,
3108                 struct lruvec *lruvec, struct list_head *list)
3109 {
3110         struct page *page_tail = head + tail;
3111
3112         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3113         VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3114
3115         /*
3116          * tail_page->_count is zero and not changing from under us. But
3117          * get_page_unless_zero() may be running from under us on the
3118          * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3119          * would then run atomic_set() concurrently with
3120          * get_page_unless_zero(), and atomic_set() is implemented in C not
3121          * using locked ops. spin_unlock on x86 sometime uses locked ops
3122          * because of PPro errata 66, 92, so unless somebody can guarantee
3123          * atomic_set() here would be safe on all archs (and not only on x86),
3124          * it's safer to use atomic_inc().
3125          */
3126         page_ref_inc(page_tail);
3127
3128         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3129         page_tail->flags |= (head->flags &
3130                         ((1L << PG_referenced) |
3131                          (1L << PG_swapbacked) |
3132                          (1L << PG_mlocked) |
3133                          (1L << PG_uptodate) |
3134                          (1L << PG_active) |
3135                          (1L << PG_locked) |
3136                          (1L << PG_unevictable) |
3137                          (1L << PG_dirty)));
3138
3139         /*
3140          * After clearing PageTail the gup refcount can be released.
3141          * Page flags also must be visible before we make the page non-compound.
3142          */
3143         smp_wmb();
3144
3145         clear_compound_head(page_tail);
3146
3147         if (page_is_young(head))
3148                 set_page_young(page_tail);
3149         if (page_is_idle(head))
3150                 set_page_idle(page_tail);
3151
3152         /* ->mapping in first tail page is compound_mapcount */
3153         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3154                         page_tail);
3155         page_tail->mapping = head->mapping;
3156
3157         page_tail->index = head->index + tail;
3158         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3159         lru_add_page_tail(head, page_tail, lruvec, list);
3160 }
3161
3162 static void __split_huge_page(struct page *page, struct list_head *list)
3163 {
3164         struct page *head = compound_head(page);
3165         struct zone *zone = page_zone(head);
3166         struct lruvec *lruvec;
3167         int i;
3168
3169         /* prevent PageLRU to go away from under us, and freeze lru stats */
3170         spin_lock_irq(&zone->lru_lock);
3171         lruvec = mem_cgroup_page_lruvec(head, zone);
3172
3173         /* complete memcg works before add pages to LRU */
3174         mem_cgroup_split_huge_fixup(head);
3175
3176         for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3177                 __split_huge_page_tail(head, i, lruvec, list);
3178
3179         ClearPageCompound(head);
3180         spin_unlock_irq(&zone->lru_lock);
3181
3182         unfreeze_page(head);
3183
3184         for (i = 0; i < HPAGE_PMD_NR; i++) {
3185                 struct page *subpage = head + i;
3186                 if (subpage == page)
3187                         continue;
3188                 unlock_page(subpage);
3189
3190                 /*
3191                  * Subpages may be freed if there wasn't any mapping
3192                  * like if add_to_swap() is running on a lru page that
3193                  * had its mapping zapped. And freeing these pages
3194                  * requires taking the lru_lock so we do the put_page
3195                  * of the tail pages after the split is complete.
3196                  */
3197                 put_page(subpage);
3198         }
3199 }
3200
3201 int total_mapcount(struct page *page)
3202 {
3203         int i, ret;
3204
3205         VM_BUG_ON_PAGE(PageTail(page), page);
3206
3207         if (likely(!PageCompound(page)))
3208                 return atomic_read(&page->_mapcount) + 1;
3209
3210         ret = compound_mapcount(page);
3211         if (PageHuge(page))
3212                 return ret;
3213         for (i = 0; i < HPAGE_PMD_NR; i++)
3214                 ret += atomic_read(&page[i]._mapcount) + 1;
3215         if (PageDoubleMap(page))
3216                 ret -= HPAGE_PMD_NR;
3217         return ret;
3218 }
3219
3220 /*
3221  * This calculates accurately how many mappings a transparent hugepage
3222  * has (unlike page_mapcount() which isn't fully accurate). This full
3223  * accuracy is primarily needed to know if copy-on-write faults can
3224  * reuse the page and change the mapping to read-write instead of
3225  * copying them. At the same time this returns the total_mapcount too.
3226  *
3227  * The function returns the highest mapcount any one of the subpages
3228  * has. If the return value is one, even if different processes are
3229  * mapping different subpages of the transparent hugepage, they can
3230  * all reuse it, because each process is reusing a different subpage.
3231  *
3232  * The total_mapcount is instead counting all virtual mappings of the
3233  * subpages. If the total_mapcount is equal to "one", it tells the
3234  * caller all mappings belong to the same "mm" and in turn the
3235  * anon_vma of the transparent hugepage can become the vma->anon_vma
3236  * local one as no other process may be mapping any of the subpages.
3237  *
3238  * It would be more accurate to replace page_mapcount() with
3239  * page_trans_huge_mapcount(), however we only use
3240  * page_trans_huge_mapcount() in the copy-on-write faults where we
3241  * need full accuracy to avoid breaking page pinning, because
3242  * page_trans_huge_mapcount() is slower than page_mapcount().
3243  */
3244 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3245 {
3246         int i, ret, _total_mapcount, mapcount;
3247
3248         /* hugetlbfs shouldn't call it */
3249         VM_BUG_ON_PAGE(PageHuge(page), page);
3250
3251         if (likely(!PageTransCompound(page))) {
3252                 mapcount = atomic_read(&page->_mapcount) + 1;
3253                 if (total_mapcount)
3254                         *total_mapcount = mapcount;
3255                 return mapcount;
3256         }
3257
3258         page = compound_head(page);
3259
3260         _total_mapcount = ret = 0;
3261         for (i = 0; i < HPAGE_PMD_NR; i++) {
3262                 mapcount = atomic_read(&page[i]._mapcount) + 1;
3263                 ret = max(ret, mapcount);
3264                 _total_mapcount += mapcount;
3265         }
3266         if (PageDoubleMap(page)) {
3267                 ret -= 1;
3268                 _total_mapcount -= HPAGE_PMD_NR;
3269         }
3270         mapcount = compound_mapcount(page);
3271         ret += mapcount;
3272         _total_mapcount += mapcount;
3273         if (total_mapcount)
3274                 *total_mapcount = _total_mapcount;
3275         return ret;
3276 }
3277
3278 /*
3279  * This function splits huge page into normal pages. @page can point to any
3280  * subpage of huge page to split. Split doesn't change the position of @page.
3281  *
3282  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3283  * The huge page must be locked.
3284  *
3285  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3286  *
3287  * Both head page and tail pages will inherit mapping, flags, and so on from
3288  * the hugepage.
3289  *
3290  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3291  * they are not mapped.
3292  *
3293  * Returns 0 if the hugepage is split successfully.
3294  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3295  * us.
3296  */
3297 int split_huge_page_to_list(struct page *page, struct list_head *list)
3298 {
3299         struct page *head = compound_head(page);
3300         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3301         struct anon_vma *anon_vma;
3302         int count, mapcount, ret;
3303         bool mlocked;
3304         unsigned long flags;
3305
3306         VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3307         VM_BUG_ON_PAGE(!PageAnon(page), page);
3308         VM_BUG_ON_PAGE(!PageLocked(page), page);
3309         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3310         VM_BUG_ON_PAGE(!PageCompound(page), page);
3311
3312         /*
3313          * The caller does not necessarily hold an mmap_sem that would prevent
3314          * the anon_vma disappearing so we first we take a reference to it
3315          * and then lock the anon_vma for write. This is similar to
3316          * page_lock_anon_vma_read except the write lock is taken to serialise
3317          * against parallel split or collapse operations.
3318          */
3319         anon_vma = page_get_anon_vma(head);
3320         if (!anon_vma) {
3321                 ret = -EBUSY;
3322                 goto out;
3323         }
3324         anon_vma_lock_write(anon_vma);
3325
3326         /*
3327          * Racy check if we can split the page, before freeze_page() will
3328          * split PMDs
3329          */
3330         if (total_mapcount(head) != page_count(head) - 1) {
3331                 ret = -EBUSY;
3332                 goto out_unlock;
3333         }
3334
3335         mlocked = PageMlocked(page);
3336         freeze_page(head);
3337         VM_BUG_ON_PAGE(compound_mapcount(head), head);
3338
3339         /* Make sure the page is not on per-CPU pagevec as it takes pin */
3340         if (mlocked)
3341                 lru_add_drain();
3342
3343         /* Prevent deferred_split_scan() touching ->_count */
3344         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3345         count = page_count(head);
3346         mapcount = total_mapcount(head);
3347         if (!mapcount && count == 1) {
3348                 if (!list_empty(page_deferred_list(head))) {
3349                         pgdata->split_queue_len--;
3350                         list_del(page_deferred_list(head));
3351                 }
3352                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3353                 __split_huge_page(page, list);
3354                 ret = 0;
3355         } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3356                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3357                 pr_alert("total_mapcount: %u, page_count(): %u\n",
3358                                 mapcount, count);
3359                 if (PageTail(page))
3360                         dump_page(head, NULL);
3361                 dump_page(page, "total_mapcount(head) > 0");
3362                 BUG();
3363         } else {
3364                 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3365                 unfreeze_page(head);
3366                 ret = -EBUSY;
3367         }
3368
3369 out_unlock:
3370         anon_vma_unlock_write(anon_vma);
3371         put_anon_vma(anon_vma);
3372 out:
3373         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3374         return ret;
3375 }
3376
3377 void free_transhuge_page(struct page *page)
3378 {
3379         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3380         unsigned long flags;
3381
3382         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3383         if (!list_empty(page_deferred_list(page))) {
3384                 pgdata->split_queue_len--;
3385                 list_del(page_deferred_list(page));
3386         }
3387         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3388         free_compound_page(page);
3389 }
3390
3391 void deferred_split_huge_page(struct page *page)
3392 {
3393         struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3394         unsigned long flags;
3395
3396         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3397
3398         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3399         if (list_empty(page_deferred_list(page))) {
3400                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3401                 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3402                 pgdata->split_queue_len++;
3403         }
3404         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3405 }
3406
3407 static unsigned long deferred_split_count(struct shrinker *shrink,
3408                 struct shrink_control *sc)
3409 {
3410         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3411         return ACCESS_ONCE(pgdata->split_queue_len);
3412 }
3413
3414 static unsigned long deferred_split_scan(struct shrinker *shrink,
3415                 struct shrink_control *sc)
3416 {
3417         struct pglist_data *pgdata = NODE_DATA(sc->nid);
3418         unsigned long flags;
3419         LIST_HEAD(list), *pos, *next;
3420         struct page *page;
3421         int split = 0;
3422
3423         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3424         /* Take pin on all head pages to avoid freeing them under us */
3425         list_for_each_safe(pos, next, &pgdata->split_queue) {
3426                 page = list_entry((void *)pos, struct page, mapping);
3427                 page = compound_head(page);
3428                 if (get_page_unless_zero(page)) {
3429                         list_move(page_deferred_list(page), &list);
3430                 } else {
3431                         /* We lost race with put_compound_page() */
3432                         list_del_init(page_deferred_list(page));
3433                         pgdata->split_queue_len--;
3434                 }
3435                 if (!--sc->nr_to_scan)
3436                         break;
3437         }
3438         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3439
3440         list_for_each_safe(pos, next, &list) {
3441                 page = list_entry((void *)pos, struct page, mapping);
3442                 lock_page(page);
3443                 /* split_huge_page() removes page from list on success */
3444                 if (!split_huge_page(page))
3445                         split++;
3446                 unlock_page(page);
3447                 put_page(page);
3448         }
3449
3450         spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3451         list_splice_tail(&list, &pgdata->split_queue);
3452         spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3453
3454         /*
3455          * Stop shrinker if we didn't split any page, but the queue is empty.
3456          * This can happen if pages were freed under us.
3457          */
3458         if (!split && list_empty(&pgdata->split_queue))
3459                 return SHRINK_STOP;
3460         return split;
3461 }
3462
3463 static struct shrinker deferred_split_shrinker = {
3464         .count_objects = deferred_split_count,
3465         .scan_objects = deferred_split_scan,
3466         .seeks = DEFAULT_SEEKS,
3467         .flags = SHRINKER_NUMA_AWARE,
3468 };
3469
3470 #ifdef CONFIG_DEBUG_FS
3471 static int split_huge_pages_set(void *data, u64 val)
3472 {
3473         struct zone *zone;
3474         struct page *page;
3475         unsigned long pfn, max_zone_pfn;
3476         unsigned long total = 0, split = 0;
3477
3478         if (val != 1)
3479                 return -EINVAL;
3480
3481         for_each_populated_zone(zone) {
3482                 max_zone_pfn = zone_end_pfn(zone);
3483                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3484                         if (!pfn_valid(pfn))
3485                                 continue;
3486
3487                         page = pfn_to_page(pfn);
3488                         if (!get_page_unless_zero(page))
3489                                 continue;
3490
3491                         if (zone != page_zone(page))
3492                                 goto next;
3493
3494                         if (!PageHead(page) || !PageAnon(page) ||
3495                                         PageHuge(page))
3496                                 goto next;
3497
3498                         total++;
3499                         lock_page(page);
3500                         if (!split_huge_page(page))
3501                                 split++;
3502                         unlock_page(page);
3503 next:
3504                         put_page(page);
3505                 }
3506         }
3507
3508         pr_info("%lu of %lu THP split\n", split, total);
3509
3510         return 0;
3511 }
3512 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3513                 "%llu\n");
3514
3515 static int __init split_huge_pages_debugfs(void)
3516 {
3517         void *ret;
3518
3519         ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3520                         &split_huge_pages_fops);
3521         if (!ret)
3522                 pr_warn("Failed to create split_huge_pages in debugfs");
3523         return 0;
3524 }
3525 late_initcall(split_huge_pages_debugfs);
3526 #endif