sh: update defconfigs.
[linux-2.6-block.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
23
24 #include <asm/local.h>
25 #include "trace.h"
26
27 /*
28  * The ring buffer header is special. We must manually up keep it.
29  */
30 int ring_buffer_print_entry_header(struct trace_seq *s)
31 {
32         int ret;
33
34         ret = trace_seq_printf(s, "# compressed entry header\n");
35         ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
36         ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
37         ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
38         ret = trace_seq_printf(s, "\n");
39         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
40                                RINGBUF_TYPE_PADDING);
41         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42                                RINGBUF_TYPE_TIME_EXTEND);
43         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
44                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45
46         return ret;
47 }
48
49 /*
50  * The ring buffer is made up of a list of pages. A separate list of pages is
51  * allocated for each CPU. A writer may only write to a buffer that is
52  * associated with the CPU it is currently executing on.  A reader may read
53  * from any per cpu buffer.
54  *
55  * The reader is special. For each per cpu buffer, the reader has its own
56  * reader page. When a reader has read the entire reader page, this reader
57  * page is swapped with another page in the ring buffer.
58  *
59  * Now, as long as the writer is off the reader page, the reader can do what
60  * ever it wants with that page. The writer will never write to that page
61  * again (as long as it is out of the ring buffer).
62  *
63  * Here's some silly ASCII art.
64  *
65  *   +------+
66  *   |reader|          RING BUFFER
67  *   |page  |
68  *   +------+        +---+   +---+   +---+
69  *                   |   |-->|   |-->|   |
70  *                   +---+   +---+   +---+
71  *                     ^               |
72  *                     |               |
73  *                     +---------------+
74  *
75  *
76  *   +------+
77  *   |reader|          RING BUFFER
78  *   |page  |------------------v
79  *   +------+        +---+   +---+   +---+
80  *                   |   |-->|   |-->|   |
81  *                   +---+   +---+   +---+
82  *                     ^               |
83  *                     |               |
84  *                     +---------------+
85  *
86  *
87  *   +------+
88  *   |reader|          RING BUFFER
89  *   |page  |------------------v
90  *   +------+        +---+   +---+   +---+
91  *      ^            |   |-->|   |-->|   |
92  *      |            +---+   +---+   +---+
93  *      |                              |
94  *      |                              |
95  *      +------------------------------+
96  *
97  *
98  *   +------+
99  *   |buffer|          RING BUFFER
100  *   |page  |------------------v
101  *   +------+        +---+   +---+   +---+
102  *      ^            |   |   |   |-->|   |
103  *      |   New      +---+   +---+   +---+
104  *      |  Reader------^               |
105  *      |   page                       |
106  *      +------------------------------+
107  *
108  *
109  * After we make this swap, the reader can hand this page off to the splice
110  * code and be done with it. It can even allocate a new page if it needs to
111  * and swap that into the ring buffer.
112  *
113  * We will be using cmpxchg soon to make all this lockless.
114  *
115  */
116
117 /*
118  * A fast way to enable or disable all ring buffers is to
119  * call tracing_on or tracing_off. Turning off the ring buffers
120  * prevents all ring buffers from being recorded to.
121  * Turning this switch on, makes it OK to write to the
122  * ring buffer, if the ring buffer is enabled itself.
123  *
124  * There's three layers that must be on in order to write
125  * to the ring buffer.
126  *
127  * 1) This global flag must be set.
128  * 2) The ring buffer must be enabled for recording.
129  * 3) The per cpu buffer must be enabled for recording.
130  *
131  * In case of an anomaly, this global flag has a bit set that
132  * will permantly disable all ring buffers.
133  */
134
135 /*
136  * Global flag to disable all recording to ring buffers
137  *  This has two bits: ON, DISABLED
138  *
139  *  ON   DISABLED
140  * ---- ----------
141  *   0      0        : ring buffers are off
142  *   1      0        : ring buffers are on
143  *   X      1        : ring buffers are permanently disabled
144  */
145
146 enum {
147         RB_BUFFERS_ON_BIT       = 0,
148         RB_BUFFERS_DISABLED_BIT = 1,
149 };
150
151 enum {
152         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
153         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
154 };
155
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159
160 /**
161  * tracing_on - enable all tracing buffers
162  *
163  * This function enables all tracing buffers that may have been
164  * disabled with tracing_off.
165  */
166 void tracing_on(void)
167 {
168         set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 }
170 EXPORT_SYMBOL_GPL(tracing_on);
171
172 /**
173  * tracing_off - turn off all tracing buffers
174  *
175  * This function stops all tracing buffers from recording data.
176  * It does not disable any overhead the tracers themselves may
177  * be causing. This function simply causes all recording to
178  * the ring buffers to fail.
179  */
180 void tracing_off(void)
181 {
182         clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 }
184 EXPORT_SYMBOL_GPL(tracing_off);
185
186 /**
187  * tracing_off_permanent - permanently disable ring buffers
188  *
189  * This function, once called, will disable all ring buffers
190  * permanently.
191  */
192 void tracing_off_permanent(void)
193 {
194         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
195 }
196
197 /**
198  * tracing_is_on - show state of ring buffers enabled
199  */
200 int tracing_is_on(void)
201 {
202         return ring_buffer_flags == RB_BUFFERS_ON;
203 }
204 EXPORT_SYMBOL_GPL(tracing_is_on);
205
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT            4U
208 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
210
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT       0
213 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT       1
216 # define RB_ARCH_ALIGNMENT              8U
217 #endif
218
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221
222 enum {
223         RB_LEN_TIME_EXTEND = 8,
224         RB_LEN_TIME_STAMP = 16,
225 };
226
227 static inline int rb_null_event(struct ring_buffer_event *event)
228 {
229         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
230 }
231
232 static void rb_event_set_padding(struct ring_buffer_event *event)
233 {
234         /* padding has a NULL time_delta */
235         event->type_len = RINGBUF_TYPE_PADDING;
236         event->time_delta = 0;
237 }
238
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
241 {
242         unsigned length;
243
244         if (event->type_len)
245                 length = event->type_len * RB_ALIGNMENT;
246         else
247                 length = event->array[0];
248         return length + RB_EVNT_HDR_SIZE;
249 }
250
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
254 {
255         switch (event->type_len) {
256         case RINGBUF_TYPE_PADDING:
257                 if (rb_null_event(event))
258                         /* undefined */
259                         return -1;
260                 return  event->array[0] + RB_EVNT_HDR_SIZE;
261
262         case RINGBUF_TYPE_TIME_EXTEND:
263                 return RB_LEN_TIME_EXTEND;
264
265         case RINGBUF_TYPE_TIME_STAMP:
266                 return RB_LEN_TIME_STAMP;
267
268         case RINGBUF_TYPE_DATA:
269                 return rb_event_data_length(event);
270         default:
271                 BUG();
272         }
273         /* not hit */
274         return 0;
275 }
276
277 /**
278  * ring_buffer_event_length - return the length of the event
279  * @event: the event to get the length of
280  */
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
282 {
283         unsigned length = rb_event_length(event);
284         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285                 return length;
286         length -= RB_EVNT_HDR_SIZE;
287         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288                 length -= sizeof(event->array[0]);
289         return length;
290 }
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
292
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
296 {
297         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298         /* If length is in len field, then array[0] has the data */
299         if (event->type_len)
300                 return (void *)&event->array[0];
301         /* Otherwise length is in array[0] and array[1] has the data */
302         return (void *)&event->array[1];
303 }
304
305 /**
306  * ring_buffer_event_data - return the data of the event
307  * @event: the event to get the data from
308  */
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
310 {
311         return rb_event_data(event);
312 }
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
314
315 #define for_each_buffer_cpu(buffer, cpu)                \
316         for_each_cpu(cpu, buffer->cpumask)
317
318 #define TS_SHIFT        27
319 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST   (~TS_MASK)
321
322 struct buffer_data_page {
323         u64              time_stamp;    /* page time stamp */
324         local_t          commit;        /* write committed index */
325         unsigned char    data[];        /* data of buffer page */
326 };
327
328 /*
329  * Note, the buffer_page list must be first. The buffer pages
330  * are allocated in cache lines, which means that each buffer
331  * page will be at the beginning of a cache line, and thus
332  * the least significant bits will be zero. We use this to
333  * add flags in the list struct pointers, to make the ring buffer
334  * lockless.
335  */
336 struct buffer_page {
337         struct list_head list;          /* list of buffer pages */
338         local_t          write;         /* index for next write */
339         unsigned         read;          /* index for next read */
340         local_t          entries;       /* entries on this page */
341         struct buffer_data_page *page;  /* Actual data page */
342 };
343
344 /*
345  * The buffer page counters, write and entries, must be reset
346  * atomically when crossing page boundaries. To synchronize this
347  * update, two counters are inserted into the number. One is
348  * the actual counter for the write position or count on the page.
349  *
350  * The other is a counter of updaters. Before an update happens
351  * the update partition of the counter is incremented. This will
352  * allow the updater to update the counter atomically.
353  *
354  * The counter is 20 bits, and the state data is 12.
355  */
356 #define RB_WRITE_MASK           0xfffff
357 #define RB_WRITE_INTCNT         (1 << 20)
358
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361         local_set(&bpage->commit, 0);
362 }
363
364 /**
365  * ring_buffer_page_len - the size of data on the page.
366  * @page: The page to read
367  *
368  * Returns the amount of data on the page, including buffer page header.
369  */
370 size_t ring_buffer_page_len(void *page)
371 {
372         return local_read(&((struct buffer_data_page *)page)->commit)
373                 + BUF_PAGE_HDR_SIZE;
374 }
375
376 /*
377  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
378  * this issue out.
379  */
380 static void free_buffer_page(struct buffer_page *bpage)
381 {
382         free_page((unsigned long)bpage->page);
383         kfree(bpage);
384 }
385
386 /*
387  * We need to fit the time_stamp delta into 27 bits.
388  */
389 static inline int test_time_stamp(u64 delta)
390 {
391         if (delta & TS_DELTA_TEST)
392                 return 1;
393         return 0;
394 }
395
396 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
397
398 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
399 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
400
401 /* Max number of timestamps that can fit on a page */
402 #define RB_TIMESTAMPS_PER_PAGE  (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
403
404 int ring_buffer_print_page_header(struct trace_seq *s)
405 {
406         struct buffer_data_page field;
407         int ret;
408
409         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
410                                "offset:0;\tsize:%u;\tsigned:%u;\n",
411                                (unsigned int)sizeof(field.time_stamp),
412                                (unsigned int)is_signed_type(u64));
413
414         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
415                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
416                                (unsigned int)offsetof(typeof(field), commit),
417                                (unsigned int)sizeof(field.commit),
418                                (unsigned int)is_signed_type(long));
419
420         ret = trace_seq_printf(s, "\tfield: char data;\t"
421                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
422                                (unsigned int)offsetof(typeof(field), data),
423                                (unsigned int)BUF_PAGE_SIZE,
424                                (unsigned int)is_signed_type(char));
425
426         return ret;
427 }
428
429 /*
430  * head_page == tail_page && head == tail then buffer is empty.
431  */
432 struct ring_buffer_per_cpu {
433         int                             cpu;
434         struct ring_buffer              *buffer;
435         spinlock_t                      reader_lock;    /* serialize readers */
436         arch_spinlock_t                 lock;
437         struct lock_class_key           lock_key;
438         struct list_head                *pages;
439         struct buffer_page              *head_page;     /* read from head */
440         struct buffer_page              *tail_page;     /* write to tail */
441         struct buffer_page              *commit_page;   /* committed pages */
442         struct buffer_page              *reader_page;
443         local_t                         commit_overrun;
444         local_t                         overrun;
445         local_t                         entries;
446         local_t                         committing;
447         local_t                         commits;
448         unsigned long                   read;
449         u64                             write_stamp;
450         u64                             read_stamp;
451         atomic_t                        record_disabled;
452 };
453
454 struct ring_buffer {
455         unsigned                        pages;
456         unsigned                        flags;
457         int                             cpus;
458         atomic_t                        record_disabled;
459         cpumask_var_t                   cpumask;
460
461         struct lock_class_key           *reader_lock_key;
462
463         struct mutex                    mutex;
464
465         struct ring_buffer_per_cpu      **buffers;
466
467 #ifdef CONFIG_HOTPLUG_CPU
468         struct notifier_block           cpu_notify;
469 #endif
470         u64                             (*clock)(void);
471 };
472
473 struct ring_buffer_iter {
474         struct ring_buffer_per_cpu      *cpu_buffer;
475         unsigned long                   head;
476         struct buffer_page              *head_page;
477         struct buffer_page              *cache_reader_page;
478         unsigned long                   cache_read;
479         u64                             read_stamp;
480 };
481
482 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
483 #define RB_WARN_ON(b, cond)                                             \
484         ({                                                              \
485                 int _____ret = unlikely(cond);                          \
486                 if (_____ret) {                                         \
487                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
488                                 struct ring_buffer_per_cpu *__b =       \
489                                         (void *)b;                      \
490                                 atomic_inc(&__b->buffer->record_disabled); \
491                         } else                                          \
492                                 atomic_inc(&b->record_disabled);        \
493                         WARN_ON(1);                                     \
494                 }                                                       \
495                 _____ret;                                               \
496         })
497
498 /* Up this if you want to test the TIME_EXTENTS and normalization */
499 #define DEBUG_SHIFT 0
500
501 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
502 {
503         /* shift to debug/test normalization and TIME_EXTENTS */
504         return buffer->clock() << DEBUG_SHIFT;
505 }
506
507 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
508 {
509         u64 time;
510
511         preempt_disable_notrace();
512         time = rb_time_stamp(buffer);
513         preempt_enable_no_resched_notrace();
514
515         return time;
516 }
517 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
518
519 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
520                                       int cpu, u64 *ts)
521 {
522         /* Just stupid testing the normalize function and deltas */
523         *ts >>= DEBUG_SHIFT;
524 }
525 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
526
527 /*
528  * Making the ring buffer lockless makes things tricky.
529  * Although writes only happen on the CPU that they are on,
530  * and they only need to worry about interrupts. Reads can
531  * happen on any CPU.
532  *
533  * The reader page is always off the ring buffer, but when the
534  * reader finishes with a page, it needs to swap its page with
535  * a new one from the buffer. The reader needs to take from
536  * the head (writes go to the tail). But if a writer is in overwrite
537  * mode and wraps, it must push the head page forward.
538  *
539  * Here lies the problem.
540  *
541  * The reader must be careful to replace only the head page, and
542  * not another one. As described at the top of the file in the
543  * ASCII art, the reader sets its old page to point to the next
544  * page after head. It then sets the page after head to point to
545  * the old reader page. But if the writer moves the head page
546  * during this operation, the reader could end up with the tail.
547  *
548  * We use cmpxchg to help prevent this race. We also do something
549  * special with the page before head. We set the LSB to 1.
550  *
551  * When the writer must push the page forward, it will clear the
552  * bit that points to the head page, move the head, and then set
553  * the bit that points to the new head page.
554  *
555  * We also don't want an interrupt coming in and moving the head
556  * page on another writer. Thus we use the second LSB to catch
557  * that too. Thus:
558  *
559  * head->list->prev->next        bit 1          bit 0
560  *                              -------        -------
561  * Normal page                     0              0
562  * Points to head page             0              1
563  * New head page                   1              0
564  *
565  * Note we can not trust the prev pointer of the head page, because:
566  *
567  * +----+       +-----+        +-----+
568  * |    |------>|  T  |---X--->|  N  |
569  * |    |<------|     |        |     |
570  * +----+       +-----+        +-----+
571  *   ^                           ^ |
572  *   |          +-----+          | |
573  *   +----------|  R  |----------+ |
574  *              |     |<-----------+
575  *              +-----+
576  *
577  * Key:  ---X-->  HEAD flag set in pointer
578  *         T      Tail page
579  *         R      Reader page
580  *         N      Next page
581  *
582  * (see __rb_reserve_next() to see where this happens)
583  *
584  *  What the above shows is that the reader just swapped out
585  *  the reader page with a page in the buffer, but before it
586  *  could make the new header point back to the new page added
587  *  it was preempted by a writer. The writer moved forward onto
588  *  the new page added by the reader and is about to move forward
589  *  again.
590  *
591  *  You can see, it is legitimate for the previous pointer of
592  *  the head (or any page) not to point back to itself. But only
593  *  temporarially.
594  */
595
596 #define RB_PAGE_NORMAL          0UL
597 #define RB_PAGE_HEAD            1UL
598 #define RB_PAGE_UPDATE          2UL
599
600
601 #define RB_FLAG_MASK            3UL
602
603 /* PAGE_MOVED is not part of the mask */
604 #define RB_PAGE_MOVED           4UL
605
606 /*
607  * rb_list_head - remove any bit
608  */
609 static struct list_head *rb_list_head(struct list_head *list)
610 {
611         unsigned long val = (unsigned long)list;
612
613         return (struct list_head *)(val & ~RB_FLAG_MASK);
614 }
615
616 /*
617  * rb_is_head_page - test if the given page is the head page
618  *
619  * Because the reader may move the head_page pointer, we can
620  * not trust what the head page is (it may be pointing to
621  * the reader page). But if the next page is a header page,
622  * its flags will be non zero.
623  */
624 static int inline
625 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
626                 struct buffer_page *page, struct list_head *list)
627 {
628         unsigned long val;
629
630         val = (unsigned long)list->next;
631
632         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
633                 return RB_PAGE_MOVED;
634
635         return val & RB_FLAG_MASK;
636 }
637
638 /*
639  * rb_is_reader_page
640  *
641  * The unique thing about the reader page, is that, if the
642  * writer is ever on it, the previous pointer never points
643  * back to the reader page.
644  */
645 static int rb_is_reader_page(struct buffer_page *page)
646 {
647         struct list_head *list = page->list.prev;
648
649         return rb_list_head(list->next) != &page->list;
650 }
651
652 /*
653  * rb_set_list_to_head - set a list_head to be pointing to head.
654  */
655 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
656                                 struct list_head *list)
657 {
658         unsigned long *ptr;
659
660         ptr = (unsigned long *)&list->next;
661         *ptr |= RB_PAGE_HEAD;
662         *ptr &= ~RB_PAGE_UPDATE;
663 }
664
665 /*
666  * rb_head_page_activate - sets up head page
667  */
668 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
669 {
670         struct buffer_page *head;
671
672         head = cpu_buffer->head_page;
673         if (!head)
674                 return;
675
676         /*
677          * Set the previous list pointer to have the HEAD flag.
678          */
679         rb_set_list_to_head(cpu_buffer, head->list.prev);
680 }
681
682 static void rb_list_head_clear(struct list_head *list)
683 {
684         unsigned long *ptr = (unsigned long *)&list->next;
685
686         *ptr &= ~RB_FLAG_MASK;
687 }
688
689 /*
690  * rb_head_page_dactivate - clears head page ptr (for free list)
691  */
692 static void
693 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695         struct list_head *hd;
696
697         /* Go through the whole list and clear any pointers found. */
698         rb_list_head_clear(cpu_buffer->pages);
699
700         list_for_each(hd, cpu_buffer->pages)
701                 rb_list_head_clear(hd);
702 }
703
704 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
705                             struct buffer_page *head,
706                             struct buffer_page *prev,
707                             int old_flag, int new_flag)
708 {
709         struct list_head *list;
710         unsigned long val = (unsigned long)&head->list;
711         unsigned long ret;
712
713         list = &prev->list;
714
715         val &= ~RB_FLAG_MASK;
716
717         ret = cmpxchg((unsigned long *)&list->next,
718                       val | old_flag, val | new_flag);
719
720         /* check if the reader took the page */
721         if ((ret & ~RB_FLAG_MASK) != val)
722                 return RB_PAGE_MOVED;
723
724         return ret & RB_FLAG_MASK;
725 }
726
727 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
728                                    struct buffer_page *head,
729                                    struct buffer_page *prev,
730                                    int old_flag)
731 {
732         return rb_head_page_set(cpu_buffer, head, prev,
733                                 old_flag, RB_PAGE_UPDATE);
734 }
735
736 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
737                                  struct buffer_page *head,
738                                  struct buffer_page *prev,
739                                  int old_flag)
740 {
741         return rb_head_page_set(cpu_buffer, head, prev,
742                                 old_flag, RB_PAGE_HEAD);
743 }
744
745 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
746                                    struct buffer_page *head,
747                                    struct buffer_page *prev,
748                                    int old_flag)
749 {
750         return rb_head_page_set(cpu_buffer, head, prev,
751                                 old_flag, RB_PAGE_NORMAL);
752 }
753
754 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
755                                struct buffer_page **bpage)
756 {
757         struct list_head *p = rb_list_head((*bpage)->list.next);
758
759         *bpage = list_entry(p, struct buffer_page, list);
760 }
761
762 static struct buffer_page *
763 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
764 {
765         struct buffer_page *head;
766         struct buffer_page *page;
767         struct list_head *list;
768         int i;
769
770         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
771                 return NULL;
772
773         /* sanity check */
774         list = cpu_buffer->pages;
775         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
776                 return NULL;
777
778         page = head = cpu_buffer->head_page;
779         /*
780          * It is possible that the writer moves the header behind
781          * where we started, and we miss in one loop.
782          * A second loop should grab the header, but we'll do
783          * three loops just because I'm paranoid.
784          */
785         for (i = 0; i < 3; i++) {
786                 do {
787                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
788                                 cpu_buffer->head_page = page;
789                                 return page;
790                         }
791                         rb_inc_page(cpu_buffer, &page);
792                 } while (page != head);
793         }
794
795         RB_WARN_ON(cpu_buffer, 1);
796
797         return NULL;
798 }
799
800 static int rb_head_page_replace(struct buffer_page *old,
801                                 struct buffer_page *new)
802 {
803         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
804         unsigned long val;
805         unsigned long ret;
806
807         val = *ptr & ~RB_FLAG_MASK;
808         val |= RB_PAGE_HEAD;
809
810         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
811
812         return ret == val;
813 }
814
815 /*
816  * rb_tail_page_update - move the tail page forward
817  *
818  * Returns 1 if moved tail page, 0 if someone else did.
819  */
820 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
821                                struct buffer_page *tail_page,
822                                struct buffer_page *next_page)
823 {
824         struct buffer_page *old_tail;
825         unsigned long old_entries;
826         unsigned long old_write;
827         int ret = 0;
828
829         /*
830          * The tail page now needs to be moved forward.
831          *
832          * We need to reset the tail page, but without messing
833          * with possible erasing of data brought in by interrupts
834          * that have moved the tail page and are currently on it.
835          *
836          * We add a counter to the write field to denote this.
837          */
838         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
839         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
840
841         /*
842          * Just make sure we have seen our old_write and synchronize
843          * with any interrupts that come in.
844          */
845         barrier();
846
847         /*
848          * If the tail page is still the same as what we think
849          * it is, then it is up to us to update the tail
850          * pointer.
851          */
852         if (tail_page == cpu_buffer->tail_page) {
853                 /* Zero the write counter */
854                 unsigned long val = old_write & ~RB_WRITE_MASK;
855                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
856
857                 /*
858                  * This will only succeed if an interrupt did
859                  * not come in and change it. In which case, we
860                  * do not want to modify it.
861                  *
862                  * We add (void) to let the compiler know that we do not care
863                  * about the return value of these functions. We use the
864                  * cmpxchg to only update if an interrupt did not already
865                  * do it for us. If the cmpxchg fails, we don't care.
866                  */
867                 (void)local_cmpxchg(&next_page->write, old_write, val);
868                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
869
870                 /*
871                  * No need to worry about races with clearing out the commit.
872                  * it only can increment when a commit takes place. But that
873                  * only happens in the outer most nested commit.
874                  */
875                 local_set(&next_page->page->commit, 0);
876
877                 old_tail = cmpxchg(&cpu_buffer->tail_page,
878                                    tail_page, next_page);
879
880                 if (old_tail == tail_page)
881                         ret = 1;
882         }
883
884         return ret;
885 }
886
887 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
888                           struct buffer_page *bpage)
889 {
890         unsigned long val = (unsigned long)bpage;
891
892         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
893                 return 1;
894
895         return 0;
896 }
897
898 /**
899  * rb_check_list - make sure a pointer to a list has the last bits zero
900  */
901 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
902                          struct list_head *list)
903 {
904         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
905                 return 1;
906         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
907                 return 1;
908         return 0;
909 }
910
911 /**
912  * check_pages - integrity check of buffer pages
913  * @cpu_buffer: CPU buffer with pages to test
914  *
915  * As a safety measure we check to make sure the data pages have not
916  * been corrupted.
917  */
918 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
919 {
920         struct list_head *head = cpu_buffer->pages;
921         struct buffer_page *bpage, *tmp;
922
923         rb_head_page_deactivate(cpu_buffer);
924
925         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
926                 return -1;
927         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
928                 return -1;
929
930         if (rb_check_list(cpu_buffer, head))
931                 return -1;
932
933         list_for_each_entry_safe(bpage, tmp, head, list) {
934                 if (RB_WARN_ON(cpu_buffer,
935                                bpage->list.next->prev != &bpage->list))
936                         return -1;
937                 if (RB_WARN_ON(cpu_buffer,
938                                bpage->list.prev->next != &bpage->list))
939                         return -1;
940                 if (rb_check_list(cpu_buffer, &bpage->list))
941                         return -1;
942         }
943
944         rb_head_page_activate(cpu_buffer);
945
946         return 0;
947 }
948
949 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
950                              unsigned nr_pages)
951 {
952         struct buffer_page *bpage, *tmp;
953         unsigned long addr;
954         LIST_HEAD(pages);
955         unsigned i;
956
957         WARN_ON(!nr_pages);
958
959         for (i = 0; i < nr_pages; i++) {
960                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
961                                     GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
962                 if (!bpage)
963                         goto free_pages;
964
965                 rb_check_bpage(cpu_buffer, bpage);
966
967                 list_add(&bpage->list, &pages);
968
969                 addr = __get_free_page(GFP_KERNEL);
970                 if (!addr)
971                         goto free_pages;
972                 bpage->page = (void *)addr;
973                 rb_init_page(bpage->page);
974         }
975
976         /*
977          * The ring buffer page list is a circular list that does not
978          * start and end with a list head. All page list items point to
979          * other pages.
980          */
981         cpu_buffer->pages = pages.next;
982         list_del(&pages);
983
984         rb_check_pages(cpu_buffer);
985
986         return 0;
987
988  free_pages:
989         list_for_each_entry_safe(bpage, tmp, &pages, list) {
990                 list_del_init(&bpage->list);
991                 free_buffer_page(bpage);
992         }
993         return -ENOMEM;
994 }
995
996 static struct ring_buffer_per_cpu *
997 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
998 {
999         struct ring_buffer_per_cpu *cpu_buffer;
1000         struct buffer_page *bpage;
1001         unsigned long addr;
1002         int ret;
1003
1004         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1005                                   GFP_KERNEL, cpu_to_node(cpu));
1006         if (!cpu_buffer)
1007                 return NULL;
1008
1009         cpu_buffer->cpu = cpu;
1010         cpu_buffer->buffer = buffer;
1011         spin_lock_init(&cpu_buffer->reader_lock);
1012         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1013         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1014
1015         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1016                             GFP_KERNEL, cpu_to_node(cpu));
1017         if (!bpage)
1018                 goto fail_free_buffer;
1019
1020         rb_check_bpage(cpu_buffer, bpage);
1021
1022         cpu_buffer->reader_page = bpage;
1023         addr = __get_free_page(GFP_KERNEL);
1024         if (!addr)
1025                 goto fail_free_reader;
1026         bpage->page = (void *)addr;
1027         rb_init_page(bpage->page);
1028
1029         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1030
1031         ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1032         if (ret < 0)
1033                 goto fail_free_reader;
1034
1035         cpu_buffer->head_page
1036                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1037         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1038
1039         rb_head_page_activate(cpu_buffer);
1040
1041         return cpu_buffer;
1042
1043  fail_free_reader:
1044         free_buffer_page(cpu_buffer->reader_page);
1045
1046  fail_free_buffer:
1047         kfree(cpu_buffer);
1048         return NULL;
1049 }
1050
1051 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1052 {
1053         struct list_head *head = cpu_buffer->pages;
1054         struct buffer_page *bpage, *tmp;
1055
1056         free_buffer_page(cpu_buffer->reader_page);
1057
1058         rb_head_page_deactivate(cpu_buffer);
1059
1060         if (head) {
1061                 list_for_each_entry_safe(bpage, tmp, head, list) {
1062                         list_del_init(&bpage->list);
1063                         free_buffer_page(bpage);
1064                 }
1065                 bpage = list_entry(head, struct buffer_page, list);
1066                 free_buffer_page(bpage);
1067         }
1068
1069         kfree(cpu_buffer);
1070 }
1071
1072 #ifdef CONFIG_HOTPLUG_CPU
1073 static int rb_cpu_notify(struct notifier_block *self,
1074                          unsigned long action, void *hcpu);
1075 #endif
1076
1077 /**
1078  * ring_buffer_alloc - allocate a new ring_buffer
1079  * @size: the size in bytes per cpu that is needed.
1080  * @flags: attributes to set for the ring buffer.
1081  *
1082  * Currently the only flag that is available is the RB_FL_OVERWRITE
1083  * flag. This flag means that the buffer will overwrite old data
1084  * when the buffer wraps. If this flag is not set, the buffer will
1085  * drop data when the tail hits the head.
1086  */
1087 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1088                                         struct lock_class_key *key)
1089 {
1090         struct ring_buffer *buffer;
1091         int bsize;
1092         int cpu;
1093
1094         /* keep it in its own cache line */
1095         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1096                          GFP_KERNEL);
1097         if (!buffer)
1098                 return NULL;
1099
1100         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1101                 goto fail_free_buffer;
1102
1103         buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1104         buffer->flags = flags;
1105         buffer->clock = trace_clock_local;
1106         buffer->reader_lock_key = key;
1107
1108         /* need at least two pages */
1109         if (buffer->pages < 2)
1110                 buffer->pages = 2;
1111
1112         /*
1113          * In case of non-hotplug cpu, if the ring-buffer is allocated
1114          * in early initcall, it will not be notified of secondary cpus.
1115          * In that off case, we need to allocate for all possible cpus.
1116          */
1117 #ifdef CONFIG_HOTPLUG_CPU
1118         get_online_cpus();
1119         cpumask_copy(buffer->cpumask, cpu_online_mask);
1120 #else
1121         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1122 #endif
1123         buffer->cpus = nr_cpu_ids;
1124
1125         bsize = sizeof(void *) * nr_cpu_ids;
1126         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1127                                   GFP_KERNEL);
1128         if (!buffer->buffers)
1129                 goto fail_free_cpumask;
1130
1131         for_each_buffer_cpu(buffer, cpu) {
1132                 buffer->buffers[cpu] =
1133                         rb_allocate_cpu_buffer(buffer, cpu);
1134                 if (!buffer->buffers[cpu])
1135                         goto fail_free_buffers;
1136         }
1137
1138 #ifdef CONFIG_HOTPLUG_CPU
1139         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1140         buffer->cpu_notify.priority = 0;
1141         register_cpu_notifier(&buffer->cpu_notify);
1142 #endif
1143
1144         put_online_cpus();
1145         mutex_init(&buffer->mutex);
1146
1147         return buffer;
1148
1149  fail_free_buffers:
1150         for_each_buffer_cpu(buffer, cpu) {
1151                 if (buffer->buffers[cpu])
1152                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1153         }
1154         kfree(buffer->buffers);
1155
1156  fail_free_cpumask:
1157         free_cpumask_var(buffer->cpumask);
1158         put_online_cpus();
1159
1160  fail_free_buffer:
1161         kfree(buffer);
1162         return NULL;
1163 }
1164 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1165
1166 /**
1167  * ring_buffer_free - free a ring buffer.
1168  * @buffer: the buffer to free.
1169  */
1170 void
1171 ring_buffer_free(struct ring_buffer *buffer)
1172 {
1173         int cpu;
1174
1175         get_online_cpus();
1176
1177 #ifdef CONFIG_HOTPLUG_CPU
1178         unregister_cpu_notifier(&buffer->cpu_notify);
1179 #endif
1180
1181         for_each_buffer_cpu(buffer, cpu)
1182                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1183
1184         put_online_cpus();
1185
1186         kfree(buffer->buffers);
1187         free_cpumask_var(buffer->cpumask);
1188
1189         kfree(buffer);
1190 }
1191 EXPORT_SYMBOL_GPL(ring_buffer_free);
1192
1193 void ring_buffer_set_clock(struct ring_buffer *buffer,
1194                            u64 (*clock)(void))
1195 {
1196         buffer->clock = clock;
1197 }
1198
1199 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1200
1201 static void
1202 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1203 {
1204         struct buffer_page *bpage;
1205         struct list_head *p;
1206         unsigned i;
1207
1208         spin_lock_irq(&cpu_buffer->reader_lock);
1209         rb_head_page_deactivate(cpu_buffer);
1210
1211         for (i = 0; i < nr_pages; i++) {
1212                 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1213                         goto out;
1214                 p = cpu_buffer->pages->next;
1215                 bpage = list_entry(p, struct buffer_page, list);
1216                 list_del_init(&bpage->list);
1217                 free_buffer_page(bpage);
1218         }
1219         if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1220                 goto out;
1221
1222         rb_reset_cpu(cpu_buffer);
1223         rb_check_pages(cpu_buffer);
1224
1225 out:
1226         spin_unlock_irq(&cpu_buffer->reader_lock);
1227 }
1228
1229 static void
1230 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1231                 struct list_head *pages, unsigned nr_pages)
1232 {
1233         struct buffer_page *bpage;
1234         struct list_head *p;
1235         unsigned i;
1236
1237         spin_lock_irq(&cpu_buffer->reader_lock);
1238         rb_head_page_deactivate(cpu_buffer);
1239
1240         for (i = 0; i < nr_pages; i++) {
1241                 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1242                         goto out;
1243                 p = pages->next;
1244                 bpage = list_entry(p, struct buffer_page, list);
1245                 list_del_init(&bpage->list);
1246                 list_add_tail(&bpage->list, cpu_buffer->pages);
1247         }
1248         rb_reset_cpu(cpu_buffer);
1249         rb_check_pages(cpu_buffer);
1250
1251 out:
1252         spin_unlock_irq(&cpu_buffer->reader_lock);
1253 }
1254
1255 /**
1256  * ring_buffer_resize - resize the ring buffer
1257  * @buffer: the buffer to resize.
1258  * @size: the new size.
1259  *
1260  * Minimum size is 2 * BUF_PAGE_SIZE.
1261  *
1262  * Returns -1 on failure.
1263  */
1264 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1265 {
1266         struct ring_buffer_per_cpu *cpu_buffer;
1267         unsigned nr_pages, rm_pages, new_pages;
1268         struct buffer_page *bpage, *tmp;
1269         unsigned long buffer_size;
1270         unsigned long addr;
1271         LIST_HEAD(pages);
1272         int i, cpu;
1273
1274         /*
1275          * Always succeed at resizing a non-existent buffer:
1276          */
1277         if (!buffer)
1278                 return size;
1279
1280         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1281         size *= BUF_PAGE_SIZE;
1282         buffer_size = buffer->pages * BUF_PAGE_SIZE;
1283
1284         /* we need a minimum of two pages */
1285         if (size < BUF_PAGE_SIZE * 2)
1286                 size = BUF_PAGE_SIZE * 2;
1287
1288         if (size == buffer_size)
1289                 return size;
1290
1291         atomic_inc(&buffer->record_disabled);
1292
1293         /* Make sure all writers are done with this buffer. */
1294         synchronize_sched();
1295
1296         mutex_lock(&buffer->mutex);
1297         get_online_cpus();
1298
1299         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1300
1301         if (size < buffer_size) {
1302
1303                 /* easy case, just free pages */
1304                 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1305                         goto out_fail;
1306
1307                 rm_pages = buffer->pages - nr_pages;
1308
1309                 for_each_buffer_cpu(buffer, cpu) {
1310                         cpu_buffer = buffer->buffers[cpu];
1311                         rb_remove_pages(cpu_buffer, rm_pages);
1312                 }
1313                 goto out;
1314         }
1315
1316         /*
1317          * This is a bit more difficult. We only want to add pages
1318          * when we can allocate enough for all CPUs. We do this
1319          * by allocating all the pages and storing them on a local
1320          * link list. If we succeed in our allocation, then we
1321          * add these pages to the cpu_buffers. Otherwise we just free
1322          * them all and return -ENOMEM;
1323          */
1324         if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1325                 goto out_fail;
1326
1327         new_pages = nr_pages - buffer->pages;
1328
1329         for_each_buffer_cpu(buffer, cpu) {
1330                 for (i = 0; i < new_pages; i++) {
1331                         bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1332                                                   cache_line_size()),
1333                                             GFP_KERNEL, cpu_to_node(cpu));
1334                         if (!bpage)
1335                                 goto free_pages;
1336                         list_add(&bpage->list, &pages);
1337                         addr = __get_free_page(GFP_KERNEL);
1338                         if (!addr)
1339                                 goto free_pages;
1340                         bpage->page = (void *)addr;
1341                         rb_init_page(bpage->page);
1342                 }
1343         }
1344
1345         for_each_buffer_cpu(buffer, cpu) {
1346                 cpu_buffer = buffer->buffers[cpu];
1347                 rb_insert_pages(cpu_buffer, &pages, new_pages);
1348         }
1349
1350         if (RB_WARN_ON(buffer, !list_empty(&pages)))
1351                 goto out_fail;
1352
1353  out:
1354         buffer->pages = nr_pages;
1355         put_online_cpus();
1356         mutex_unlock(&buffer->mutex);
1357
1358         atomic_dec(&buffer->record_disabled);
1359
1360         return size;
1361
1362  free_pages:
1363         list_for_each_entry_safe(bpage, tmp, &pages, list) {
1364                 list_del_init(&bpage->list);
1365                 free_buffer_page(bpage);
1366         }
1367         put_online_cpus();
1368         mutex_unlock(&buffer->mutex);
1369         atomic_dec(&buffer->record_disabled);
1370         return -ENOMEM;
1371
1372         /*
1373          * Something went totally wrong, and we are too paranoid
1374          * to even clean up the mess.
1375          */
1376  out_fail:
1377         put_online_cpus();
1378         mutex_unlock(&buffer->mutex);
1379         atomic_dec(&buffer->record_disabled);
1380         return -1;
1381 }
1382 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1383
1384 static inline void *
1385 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1386 {
1387         return bpage->data + index;
1388 }
1389
1390 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1391 {
1392         return bpage->page->data + index;
1393 }
1394
1395 static inline struct ring_buffer_event *
1396 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1397 {
1398         return __rb_page_index(cpu_buffer->reader_page,
1399                                cpu_buffer->reader_page->read);
1400 }
1401
1402 static inline struct ring_buffer_event *
1403 rb_iter_head_event(struct ring_buffer_iter *iter)
1404 {
1405         return __rb_page_index(iter->head_page, iter->head);
1406 }
1407
1408 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1409 {
1410         return local_read(&bpage->write) & RB_WRITE_MASK;
1411 }
1412
1413 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1414 {
1415         return local_read(&bpage->page->commit);
1416 }
1417
1418 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1419 {
1420         return local_read(&bpage->entries) & RB_WRITE_MASK;
1421 }
1422
1423 /* Size is determined by what has been commited */
1424 static inline unsigned rb_page_size(struct buffer_page *bpage)
1425 {
1426         return rb_page_commit(bpage);
1427 }
1428
1429 static inline unsigned
1430 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1431 {
1432         return rb_page_commit(cpu_buffer->commit_page);
1433 }
1434
1435 static inline unsigned
1436 rb_event_index(struct ring_buffer_event *event)
1437 {
1438         unsigned long addr = (unsigned long)event;
1439
1440         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1441 }
1442
1443 static inline int
1444 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1445                    struct ring_buffer_event *event)
1446 {
1447         unsigned long addr = (unsigned long)event;
1448         unsigned long index;
1449
1450         index = rb_event_index(event);
1451         addr &= PAGE_MASK;
1452
1453         return cpu_buffer->commit_page->page == (void *)addr &&
1454                 rb_commit_index(cpu_buffer) == index;
1455 }
1456
1457 static void
1458 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1459 {
1460         unsigned long max_count;
1461
1462         /*
1463          * We only race with interrupts and NMIs on this CPU.
1464          * If we own the commit event, then we can commit
1465          * all others that interrupted us, since the interruptions
1466          * are in stack format (they finish before they come
1467          * back to us). This allows us to do a simple loop to
1468          * assign the commit to the tail.
1469          */
1470  again:
1471         max_count = cpu_buffer->buffer->pages * 100;
1472
1473         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1474                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1475                         return;
1476                 if (RB_WARN_ON(cpu_buffer,
1477                                rb_is_reader_page(cpu_buffer->tail_page)))
1478                         return;
1479                 local_set(&cpu_buffer->commit_page->page->commit,
1480                           rb_page_write(cpu_buffer->commit_page));
1481                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1482                 cpu_buffer->write_stamp =
1483                         cpu_buffer->commit_page->page->time_stamp;
1484                 /* add barrier to keep gcc from optimizing too much */
1485                 barrier();
1486         }
1487         while (rb_commit_index(cpu_buffer) !=
1488                rb_page_write(cpu_buffer->commit_page)) {
1489
1490                 local_set(&cpu_buffer->commit_page->page->commit,
1491                           rb_page_write(cpu_buffer->commit_page));
1492                 RB_WARN_ON(cpu_buffer,
1493                            local_read(&cpu_buffer->commit_page->page->commit) &
1494                            ~RB_WRITE_MASK);
1495                 barrier();
1496         }
1497
1498         /* again, keep gcc from optimizing */
1499         barrier();
1500
1501         /*
1502          * If an interrupt came in just after the first while loop
1503          * and pushed the tail page forward, we will be left with
1504          * a dangling commit that will never go forward.
1505          */
1506         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1507                 goto again;
1508 }
1509
1510 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1511 {
1512         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1513         cpu_buffer->reader_page->read = 0;
1514 }
1515
1516 static void rb_inc_iter(struct ring_buffer_iter *iter)
1517 {
1518         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1519
1520         /*
1521          * The iterator could be on the reader page (it starts there).
1522          * But the head could have moved, since the reader was
1523          * found. Check for this case and assign the iterator
1524          * to the head page instead of next.
1525          */
1526         if (iter->head_page == cpu_buffer->reader_page)
1527                 iter->head_page = rb_set_head_page(cpu_buffer);
1528         else
1529                 rb_inc_page(cpu_buffer, &iter->head_page);
1530
1531         iter->read_stamp = iter->head_page->page->time_stamp;
1532         iter->head = 0;
1533 }
1534
1535 /**
1536  * ring_buffer_update_event - update event type and data
1537  * @event: the even to update
1538  * @type: the type of event
1539  * @length: the size of the event field in the ring buffer
1540  *
1541  * Update the type and data fields of the event. The length
1542  * is the actual size that is written to the ring buffer,
1543  * and with this, we can determine what to place into the
1544  * data field.
1545  */
1546 static void
1547 rb_update_event(struct ring_buffer_event *event,
1548                          unsigned type, unsigned length)
1549 {
1550         event->type_len = type;
1551
1552         switch (type) {
1553
1554         case RINGBUF_TYPE_PADDING:
1555         case RINGBUF_TYPE_TIME_EXTEND:
1556         case RINGBUF_TYPE_TIME_STAMP:
1557                 break;
1558
1559         case 0:
1560                 length -= RB_EVNT_HDR_SIZE;
1561                 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1562                         event->array[0] = length;
1563                 else
1564                         event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1565                 break;
1566         default:
1567                 BUG();
1568         }
1569 }
1570
1571 /*
1572  * rb_handle_head_page - writer hit the head page
1573  *
1574  * Returns: +1 to retry page
1575  *           0 to continue
1576  *          -1 on error
1577  */
1578 static int
1579 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1580                     struct buffer_page *tail_page,
1581                     struct buffer_page *next_page)
1582 {
1583         struct buffer_page *new_head;
1584         int entries;
1585         int type;
1586         int ret;
1587
1588         entries = rb_page_entries(next_page);
1589
1590         /*
1591          * The hard part is here. We need to move the head
1592          * forward, and protect against both readers on
1593          * other CPUs and writers coming in via interrupts.
1594          */
1595         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1596                                        RB_PAGE_HEAD);
1597
1598         /*
1599          * type can be one of four:
1600          *  NORMAL - an interrupt already moved it for us
1601          *  HEAD   - we are the first to get here.
1602          *  UPDATE - we are the interrupt interrupting
1603          *           a current move.
1604          *  MOVED  - a reader on another CPU moved the next
1605          *           pointer to its reader page. Give up
1606          *           and try again.
1607          */
1608
1609         switch (type) {
1610         case RB_PAGE_HEAD:
1611                 /*
1612                  * We changed the head to UPDATE, thus
1613                  * it is our responsibility to update
1614                  * the counters.
1615                  */
1616                 local_add(entries, &cpu_buffer->overrun);
1617
1618                 /*
1619                  * The entries will be zeroed out when we move the
1620                  * tail page.
1621                  */
1622
1623                 /* still more to do */
1624                 break;
1625
1626         case RB_PAGE_UPDATE:
1627                 /*
1628                  * This is an interrupt that interrupt the
1629                  * previous update. Still more to do.
1630                  */
1631                 break;
1632         case RB_PAGE_NORMAL:
1633                 /*
1634                  * An interrupt came in before the update
1635                  * and processed this for us.
1636                  * Nothing left to do.
1637                  */
1638                 return 1;
1639         case RB_PAGE_MOVED:
1640                 /*
1641                  * The reader is on another CPU and just did
1642                  * a swap with our next_page.
1643                  * Try again.
1644                  */
1645                 return 1;
1646         default:
1647                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1648                 return -1;
1649         }
1650
1651         /*
1652          * Now that we are here, the old head pointer is
1653          * set to UPDATE. This will keep the reader from
1654          * swapping the head page with the reader page.
1655          * The reader (on another CPU) will spin till
1656          * we are finished.
1657          *
1658          * We just need to protect against interrupts
1659          * doing the job. We will set the next pointer
1660          * to HEAD. After that, we set the old pointer
1661          * to NORMAL, but only if it was HEAD before.
1662          * otherwise we are an interrupt, and only
1663          * want the outer most commit to reset it.
1664          */
1665         new_head = next_page;
1666         rb_inc_page(cpu_buffer, &new_head);
1667
1668         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1669                                     RB_PAGE_NORMAL);
1670
1671         /*
1672          * Valid returns are:
1673          *  HEAD   - an interrupt came in and already set it.
1674          *  NORMAL - One of two things:
1675          *            1) We really set it.
1676          *            2) A bunch of interrupts came in and moved
1677          *               the page forward again.
1678          */
1679         switch (ret) {
1680         case RB_PAGE_HEAD:
1681         case RB_PAGE_NORMAL:
1682                 /* OK */
1683                 break;
1684         default:
1685                 RB_WARN_ON(cpu_buffer, 1);
1686                 return -1;
1687         }
1688
1689         /*
1690          * It is possible that an interrupt came in,
1691          * set the head up, then more interrupts came in
1692          * and moved it again. When we get back here,
1693          * the page would have been set to NORMAL but we
1694          * just set it back to HEAD.
1695          *
1696          * How do you detect this? Well, if that happened
1697          * the tail page would have moved.
1698          */
1699         if (ret == RB_PAGE_NORMAL) {
1700                 /*
1701                  * If the tail had moved passed next, then we need
1702                  * to reset the pointer.
1703                  */
1704                 if (cpu_buffer->tail_page != tail_page &&
1705                     cpu_buffer->tail_page != next_page)
1706                         rb_head_page_set_normal(cpu_buffer, new_head,
1707                                                 next_page,
1708                                                 RB_PAGE_HEAD);
1709         }
1710
1711         /*
1712          * If this was the outer most commit (the one that
1713          * changed the original pointer from HEAD to UPDATE),
1714          * then it is up to us to reset it to NORMAL.
1715          */
1716         if (type == RB_PAGE_HEAD) {
1717                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1718                                               tail_page,
1719                                               RB_PAGE_UPDATE);
1720                 if (RB_WARN_ON(cpu_buffer,
1721                                ret != RB_PAGE_UPDATE))
1722                         return -1;
1723         }
1724
1725         return 0;
1726 }
1727
1728 static unsigned rb_calculate_event_length(unsigned length)
1729 {
1730         struct ring_buffer_event event; /* Used only for sizeof array */
1731
1732         /* zero length can cause confusions */
1733         if (!length)
1734                 length = 1;
1735
1736         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1737                 length += sizeof(event.array[0]);
1738
1739         length += RB_EVNT_HDR_SIZE;
1740         length = ALIGN(length, RB_ARCH_ALIGNMENT);
1741
1742         return length;
1743 }
1744
1745 static inline void
1746 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1747               struct buffer_page *tail_page,
1748               unsigned long tail, unsigned long length)
1749 {
1750         struct ring_buffer_event *event;
1751
1752         /*
1753          * Only the event that crossed the page boundary
1754          * must fill the old tail_page with padding.
1755          */
1756         if (tail >= BUF_PAGE_SIZE) {
1757                 local_sub(length, &tail_page->write);
1758                 return;
1759         }
1760
1761         event = __rb_page_index(tail_page, tail);
1762         kmemcheck_annotate_bitfield(event, bitfield);
1763
1764         /*
1765          * If this event is bigger than the minimum size, then
1766          * we need to be careful that we don't subtract the
1767          * write counter enough to allow another writer to slip
1768          * in on this page.
1769          * We put in a discarded commit instead, to make sure
1770          * that this space is not used again.
1771          *
1772          * If we are less than the minimum size, we don't need to
1773          * worry about it.
1774          */
1775         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1776                 /* No room for any events */
1777
1778                 /* Mark the rest of the page with padding */
1779                 rb_event_set_padding(event);
1780
1781                 /* Set the write back to the previous setting */
1782                 local_sub(length, &tail_page->write);
1783                 return;
1784         }
1785
1786         /* Put in a discarded event */
1787         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1788         event->type_len = RINGBUF_TYPE_PADDING;
1789         /* time delta must be non zero */
1790         event->time_delta = 1;
1791
1792         /* Set write to end of buffer */
1793         length = (tail + length) - BUF_PAGE_SIZE;
1794         local_sub(length, &tail_page->write);
1795 }
1796
1797 static struct ring_buffer_event *
1798 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1799              unsigned long length, unsigned long tail,
1800              struct buffer_page *tail_page, u64 *ts)
1801 {
1802         struct buffer_page *commit_page = cpu_buffer->commit_page;
1803         struct ring_buffer *buffer = cpu_buffer->buffer;
1804         struct buffer_page *next_page;
1805         int ret;
1806
1807         next_page = tail_page;
1808
1809         rb_inc_page(cpu_buffer, &next_page);
1810
1811         /*
1812          * If for some reason, we had an interrupt storm that made
1813          * it all the way around the buffer, bail, and warn
1814          * about it.
1815          */
1816         if (unlikely(next_page == commit_page)) {
1817                 local_inc(&cpu_buffer->commit_overrun);
1818                 goto out_reset;
1819         }
1820
1821         /*
1822          * This is where the fun begins!
1823          *
1824          * We are fighting against races between a reader that
1825          * could be on another CPU trying to swap its reader
1826          * page with the buffer head.
1827          *
1828          * We are also fighting against interrupts coming in and
1829          * moving the head or tail on us as well.
1830          *
1831          * If the next page is the head page then we have filled
1832          * the buffer, unless the commit page is still on the
1833          * reader page.
1834          */
1835         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1836
1837                 /*
1838                  * If the commit is not on the reader page, then
1839                  * move the header page.
1840                  */
1841                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1842                         /*
1843                          * If we are not in overwrite mode,
1844                          * this is easy, just stop here.
1845                          */
1846                         if (!(buffer->flags & RB_FL_OVERWRITE))
1847                                 goto out_reset;
1848
1849                         ret = rb_handle_head_page(cpu_buffer,
1850                                                   tail_page,
1851                                                   next_page);
1852                         if (ret < 0)
1853                                 goto out_reset;
1854                         if (ret)
1855                                 goto out_again;
1856                 } else {
1857                         /*
1858                          * We need to be careful here too. The
1859                          * commit page could still be on the reader
1860                          * page. We could have a small buffer, and
1861                          * have filled up the buffer with events
1862                          * from interrupts and such, and wrapped.
1863                          *
1864                          * Note, if the tail page is also the on the
1865                          * reader_page, we let it move out.
1866                          */
1867                         if (unlikely((cpu_buffer->commit_page !=
1868                                       cpu_buffer->tail_page) &&
1869                                      (cpu_buffer->commit_page ==
1870                                       cpu_buffer->reader_page))) {
1871                                 local_inc(&cpu_buffer->commit_overrun);
1872                                 goto out_reset;
1873                         }
1874                 }
1875         }
1876
1877         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1878         if (ret) {
1879                 /*
1880                  * Nested commits always have zero deltas, so
1881                  * just reread the time stamp
1882                  */
1883                 *ts = rb_time_stamp(buffer);
1884                 next_page->page->time_stamp = *ts;
1885         }
1886
1887  out_again:
1888
1889         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1890
1891         /* fail and let the caller try again */
1892         return ERR_PTR(-EAGAIN);
1893
1894  out_reset:
1895         /* reset write */
1896         rb_reset_tail(cpu_buffer, tail_page, tail, length);
1897
1898         return NULL;
1899 }
1900
1901 static struct ring_buffer_event *
1902 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1903                   unsigned type, unsigned long length, u64 *ts)
1904 {
1905         struct buffer_page *tail_page;
1906         struct ring_buffer_event *event;
1907         unsigned long tail, write;
1908
1909         tail_page = cpu_buffer->tail_page;
1910         write = local_add_return(length, &tail_page->write);
1911
1912         /* set write to only the index of the write */
1913         write &= RB_WRITE_MASK;
1914         tail = write - length;
1915
1916         /* See if we shot pass the end of this buffer page */
1917         if (write > BUF_PAGE_SIZE)
1918                 return rb_move_tail(cpu_buffer, length, tail,
1919                                     tail_page, ts);
1920
1921         /* We reserved something on the buffer */
1922
1923         event = __rb_page_index(tail_page, tail);
1924         kmemcheck_annotate_bitfield(event, bitfield);
1925         rb_update_event(event, type, length);
1926
1927         /* The passed in type is zero for DATA */
1928         if (likely(!type))
1929                 local_inc(&tail_page->entries);
1930
1931         /*
1932          * If this is the first commit on the page, then update
1933          * its timestamp.
1934          */
1935         if (!tail)
1936                 tail_page->page->time_stamp = *ts;
1937
1938         return event;
1939 }
1940
1941 static inline int
1942 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1943                   struct ring_buffer_event *event)
1944 {
1945         unsigned long new_index, old_index;
1946         struct buffer_page *bpage;
1947         unsigned long index;
1948         unsigned long addr;
1949
1950         new_index = rb_event_index(event);
1951         old_index = new_index + rb_event_length(event);
1952         addr = (unsigned long)event;
1953         addr &= PAGE_MASK;
1954
1955         bpage = cpu_buffer->tail_page;
1956
1957         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1958                 unsigned long write_mask =
1959                         local_read(&bpage->write) & ~RB_WRITE_MASK;
1960                 /*
1961                  * This is on the tail page. It is possible that
1962                  * a write could come in and move the tail page
1963                  * and write to the next page. That is fine
1964                  * because we just shorten what is on this page.
1965                  */
1966                 old_index += write_mask;
1967                 new_index += write_mask;
1968                 index = local_cmpxchg(&bpage->write, old_index, new_index);
1969                 if (index == old_index)
1970                         return 1;
1971         }
1972
1973         /* could not discard */
1974         return 0;
1975 }
1976
1977 static int
1978 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1979                   u64 *ts, u64 *delta)
1980 {
1981         struct ring_buffer_event *event;
1982         static int once;
1983         int ret;
1984
1985         if (unlikely(*delta > (1ULL << 59) && !once++)) {
1986                 printk(KERN_WARNING "Delta way too big! %llu"
1987                        " ts=%llu write stamp = %llu\n",
1988                        (unsigned long long)*delta,
1989                        (unsigned long long)*ts,
1990                        (unsigned long long)cpu_buffer->write_stamp);
1991                 WARN_ON(1);
1992         }
1993
1994         /*
1995          * The delta is too big, we to add a
1996          * new timestamp.
1997          */
1998         event = __rb_reserve_next(cpu_buffer,
1999                                   RINGBUF_TYPE_TIME_EXTEND,
2000                                   RB_LEN_TIME_EXTEND,
2001                                   ts);
2002         if (!event)
2003                 return -EBUSY;
2004
2005         if (PTR_ERR(event) == -EAGAIN)
2006                 return -EAGAIN;
2007
2008         /* Only a commited time event can update the write stamp */
2009         if (rb_event_is_commit(cpu_buffer, event)) {
2010                 /*
2011                  * If this is the first on the page, then it was
2012                  * updated with the page itself. Try to discard it
2013                  * and if we can't just make it zero.
2014                  */
2015                 if (rb_event_index(event)) {
2016                         event->time_delta = *delta & TS_MASK;
2017                         event->array[0] = *delta >> TS_SHIFT;
2018                 } else {
2019                         /* try to discard, since we do not need this */
2020                         if (!rb_try_to_discard(cpu_buffer, event)) {
2021                                 /* nope, just zero it */
2022                                 event->time_delta = 0;
2023                                 event->array[0] = 0;
2024                         }
2025                 }
2026                 cpu_buffer->write_stamp = *ts;
2027                 /* let the caller know this was the commit */
2028                 ret = 1;
2029         } else {
2030                 /* Try to discard the event */
2031                 if (!rb_try_to_discard(cpu_buffer, event)) {
2032                         /* Darn, this is just wasted space */
2033                         event->time_delta = 0;
2034                         event->array[0] = 0;
2035                 }
2036                 ret = 0;
2037         }
2038
2039         *delta = 0;
2040
2041         return ret;
2042 }
2043
2044 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2045 {
2046         local_inc(&cpu_buffer->committing);
2047         local_inc(&cpu_buffer->commits);
2048 }
2049
2050 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2051 {
2052         unsigned long commits;
2053
2054         if (RB_WARN_ON(cpu_buffer,
2055                        !local_read(&cpu_buffer->committing)))
2056                 return;
2057
2058  again:
2059         commits = local_read(&cpu_buffer->commits);
2060         /* synchronize with interrupts */
2061         barrier();
2062         if (local_read(&cpu_buffer->committing) == 1)
2063                 rb_set_commit_to_write(cpu_buffer);
2064
2065         local_dec(&cpu_buffer->committing);
2066
2067         /* synchronize with interrupts */
2068         barrier();
2069
2070         /*
2071          * Need to account for interrupts coming in between the
2072          * updating of the commit page and the clearing of the
2073          * committing counter.
2074          */
2075         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2076             !local_read(&cpu_buffer->committing)) {
2077                 local_inc(&cpu_buffer->committing);
2078                 goto again;
2079         }
2080 }
2081
2082 static struct ring_buffer_event *
2083 rb_reserve_next_event(struct ring_buffer *buffer,
2084                       struct ring_buffer_per_cpu *cpu_buffer,
2085                       unsigned long length)
2086 {
2087         struct ring_buffer_event *event;
2088         u64 ts, delta = 0;
2089         int commit = 0;
2090         int nr_loops = 0;
2091
2092         rb_start_commit(cpu_buffer);
2093
2094 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2095         /*
2096          * Due to the ability to swap a cpu buffer from a buffer
2097          * it is possible it was swapped before we committed.
2098          * (committing stops a swap). We check for it here and
2099          * if it happened, we have to fail the write.
2100          */
2101         barrier();
2102         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2103                 local_dec(&cpu_buffer->committing);
2104                 local_dec(&cpu_buffer->commits);
2105                 return NULL;
2106         }
2107 #endif
2108
2109         length = rb_calculate_event_length(length);
2110  again:
2111         /*
2112          * We allow for interrupts to reenter here and do a trace.
2113          * If one does, it will cause this original code to loop
2114          * back here. Even with heavy interrupts happening, this
2115          * should only happen a few times in a row. If this happens
2116          * 1000 times in a row, there must be either an interrupt
2117          * storm or we have something buggy.
2118          * Bail!
2119          */
2120         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2121                 goto out_fail;
2122
2123         ts = rb_time_stamp(cpu_buffer->buffer);
2124
2125         /*
2126          * Only the first commit can update the timestamp.
2127          * Yes there is a race here. If an interrupt comes in
2128          * just after the conditional and it traces too, then it
2129          * will also check the deltas. More than one timestamp may
2130          * also be made. But only the entry that did the actual
2131          * commit will be something other than zero.
2132          */
2133         if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2134                    rb_page_write(cpu_buffer->tail_page) ==
2135                    rb_commit_index(cpu_buffer))) {
2136                 u64 diff;
2137
2138                 diff = ts - cpu_buffer->write_stamp;
2139
2140                 /* make sure this diff is calculated here */
2141                 barrier();
2142
2143                 /* Did the write stamp get updated already? */
2144                 if (unlikely(ts < cpu_buffer->write_stamp))
2145                         goto get_event;
2146
2147                 delta = diff;
2148                 if (unlikely(test_time_stamp(delta))) {
2149
2150                         commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2151                         if (commit == -EBUSY)
2152                                 goto out_fail;
2153
2154                         if (commit == -EAGAIN)
2155                                 goto again;
2156
2157                         RB_WARN_ON(cpu_buffer, commit < 0);
2158                 }
2159         }
2160
2161  get_event:
2162         event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2163         if (unlikely(PTR_ERR(event) == -EAGAIN))
2164                 goto again;
2165
2166         if (!event)
2167                 goto out_fail;
2168
2169         if (!rb_event_is_commit(cpu_buffer, event))
2170                 delta = 0;
2171
2172         event->time_delta = delta;
2173
2174         return event;
2175
2176  out_fail:
2177         rb_end_commit(cpu_buffer);
2178         return NULL;
2179 }
2180
2181 #ifdef CONFIG_TRACING
2182
2183 #define TRACE_RECURSIVE_DEPTH 16
2184
2185 static int trace_recursive_lock(void)
2186 {
2187         current->trace_recursion++;
2188
2189         if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2190                 return 0;
2191
2192         /* Disable all tracing before we do anything else */
2193         tracing_off_permanent();
2194
2195         printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2196                     "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2197                     current->trace_recursion,
2198                     hardirq_count() >> HARDIRQ_SHIFT,
2199                     softirq_count() >> SOFTIRQ_SHIFT,
2200                     in_nmi());
2201
2202         WARN_ON_ONCE(1);
2203         return -1;
2204 }
2205
2206 static void trace_recursive_unlock(void)
2207 {
2208         WARN_ON_ONCE(!current->trace_recursion);
2209
2210         current->trace_recursion--;
2211 }
2212
2213 #else
2214
2215 #define trace_recursive_lock()          (0)
2216 #define trace_recursive_unlock()        do { } while (0)
2217
2218 #endif
2219
2220 static DEFINE_PER_CPU(int, rb_need_resched);
2221
2222 /**
2223  * ring_buffer_lock_reserve - reserve a part of the buffer
2224  * @buffer: the ring buffer to reserve from
2225  * @length: the length of the data to reserve (excluding event header)
2226  *
2227  * Returns a reseverd event on the ring buffer to copy directly to.
2228  * The user of this interface will need to get the body to write into
2229  * and can use the ring_buffer_event_data() interface.
2230  *
2231  * The length is the length of the data needed, not the event length
2232  * which also includes the event header.
2233  *
2234  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2235  * If NULL is returned, then nothing has been allocated or locked.
2236  */
2237 struct ring_buffer_event *
2238 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2239 {
2240         struct ring_buffer_per_cpu *cpu_buffer;
2241         struct ring_buffer_event *event;
2242         int cpu, resched;
2243
2244         if (ring_buffer_flags != RB_BUFFERS_ON)
2245                 return NULL;
2246
2247         /* If we are tracing schedule, we don't want to recurse */
2248         resched = ftrace_preempt_disable();
2249
2250         if (atomic_read(&buffer->record_disabled))
2251                 goto out_nocheck;
2252
2253         if (trace_recursive_lock())
2254                 goto out_nocheck;
2255
2256         cpu = raw_smp_processor_id();
2257
2258         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2259                 goto out;
2260
2261         cpu_buffer = buffer->buffers[cpu];
2262
2263         if (atomic_read(&cpu_buffer->record_disabled))
2264                 goto out;
2265
2266         if (length > BUF_MAX_DATA_SIZE)
2267                 goto out;
2268
2269         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2270         if (!event)
2271                 goto out;
2272
2273         /*
2274          * Need to store resched state on this cpu.
2275          * Only the first needs to.
2276          */
2277
2278         if (preempt_count() == 1)
2279                 per_cpu(rb_need_resched, cpu) = resched;
2280
2281         return event;
2282
2283  out:
2284         trace_recursive_unlock();
2285
2286  out_nocheck:
2287         ftrace_preempt_enable(resched);
2288         return NULL;
2289 }
2290 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2291
2292 static void
2293 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2294                       struct ring_buffer_event *event)
2295 {
2296         /*
2297          * The event first in the commit queue updates the
2298          * time stamp.
2299          */
2300         if (rb_event_is_commit(cpu_buffer, event))
2301                 cpu_buffer->write_stamp += event->time_delta;
2302 }
2303
2304 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2305                       struct ring_buffer_event *event)
2306 {
2307         local_inc(&cpu_buffer->entries);
2308         rb_update_write_stamp(cpu_buffer, event);
2309         rb_end_commit(cpu_buffer);
2310 }
2311
2312 /**
2313  * ring_buffer_unlock_commit - commit a reserved
2314  * @buffer: The buffer to commit to
2315  * @event: The event pointer to commit.
2316  *
2317  * This commits the data to the ring buffer, and releases any locks held.
2318  *
2319  * Must be paired with ring_buffer_lock_reserve.
2320  */
2321 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2322                               struct ring_buffer_event *event)
2323 {
2324         struct ring_buffer_per_cpu *cpu_buffer;
2325         int cpu = raw_smp_processor_id();
2326
2327         cpu_buffer = buffer->buffers[cpu];
2328
2329         rb_commit(cpu_buffer, event);
2330
2331         trace_recursive_unlock();
2332
2333         /*
2334          * Only the last preempt count needs to restore preemption.
2335          */
2336         if (preempt_count() == 1)
2337                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2338         else
2339                 preempt_enable_no_resched_notrace();
2340
2341         return 0;
2342 }
2343 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2344
2345 static inline void rb_event_discard(struct ring_buffer_event *event)
2346 {
2347         /* array[0] holds the actual length for the discarded event */
2348         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2349         event->type_len = RINGBUF_TYPE_PADDING;
2350         /* time delta must be non zero */
2351         if (!event->time_delta)
2352                 event->time_delta = 1;
2353 }
2354
2355 /*
2356  * Decrement the entries to the page that an event is on.
2357  * The event does not even need to exist, only the pointer
2358  * to the page it is on. This may only be called before the commit
2359  * takes place.
2360  */
2361 static inline void
2362 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2363                    struct ring_buffer_event *event)
2364 {
2365         unsigned long addr = (unsigned long)event;
2366         struct buffer_page *bpage = cpu_buffer->commit_page;
2367         struct buffer_page *start;
2368
2369         addr &= PAGE_MASK;
2370
2371         /* Do the likely case first */
2372         if (likely(bpage->page == (void *)addr)) {
2373                 local_dec(&bpage->entries);
2374                 return;
2375         }
2376
2377         /*
2378          * Because the commit page may be on the reader page we
2379          * start with the next page and check the end loop there.
2380          */
2381         rb_inc_page(cpu_buffer, &bpage);
2382         start = bpage;
2383         do {
2384                 if (bpage->page == (void *)addr) {
2385                         local_dec(&bpage->entries);
2386                         return;
2387                 }
2388                 rb_inc_page(cpu_buffer, &bpage);
2389         } while (bpage != start);
2390
2391         /* commit not part of this buffer?? */
2392         RB_WARN_ON(cpu_buffer, 1);
2393 }
2394
2395 /**
2396  * ring_buffer_commit_discard - discard an event that has not been committed
2397  * @buffer: the ring buffer
2398  * @event: non committed event to discard
2399  *
2400  * Sometimes an event that is in the ring buffer needs to be ignored.
2401  * This function lets the user discard an event in the ring buffer
2402  * and then that event will not be read later.
2403  *
2404  * This function only works if it is called before the the item has been
2405  * committed. It will try to free the event from the ring buffer
2406  * if another event has not been added behind it.
2407  *
2408  * If another event has been added behind it, it will set the event
2409  * up as discarded, and perform the commit.
2410  *
2411  * If this function is called, do not call ring_buffer_unlock_commit on
2412  * the event.
2413  */
2414 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2415                                 struct ring_buffer_event *event)
2416 {
2417         struct ring_buffer_per_cpu *cpu_buffer;
2418         int cpu;
2419
2420         /* The event is discarded regardless */
2421         rb_event_discard(event);
2422
2423         cpu = smp_processor_id();
2424         cpu_buffer = buffer->buffers[cpu];
2425
2426         /*
2427          * This must only be called if the event has not been
2428          * committed yet. Thus we can assume that preemption
2429          * is still disabled.
2430          */
2431         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2432
2433         rb_decrement_entry(cpu_buffer, event);
2434         if (rb_try_to_discard(cpu_buffer, event))
2435                 goto out;
2436
2437         /*
2438          * The commit is still visible by the reader, so we
2439          * must still update the timestamp.
2440          */
2441         rb_update_write_stamp(cpu_buffer, event);
2442  out:
2443         rb_end_commit(cpu_buffer);
2444
2445         trace_recursive_unlock();
2446
2447         /*
2448          * Only the last preempt count needs to restore preemption.
2449          */
2450         if (preempt_count() == 1)
2451                 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2452         else
2453                 preempt_enable_no_resched_notrace();
2454
2455 }
2456 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2457
2458 /**
2459  * ring_buffer_write - write data to the buffer without reserving
2460  * @buffer: The ring buffer to write to.
2461  * @length: The length of the data being written (excluding the event header)
2462  * @data: The data to write to the buffer.
2463  *
2464  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2465  * one function. If you already have the data to write to the buffer, it
2466  * may be easier to simply call this function.
2467  *
2468  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2469  * and not the length of the event which would hold the header.
2470  */
2471 int ring_buffer_write(struct ring_buffer *buffer,
2472                         unsigned long length,
2473                         void *data)
2474 {
2475         struct ring_buffer_per_cpu *cpu_buffer;
2476         struct ring_buffer_event *event;
2477         void *body;
2478         int ret = -EBUSY;
2479         int cpu, resched;
2480
2481         if (ring_buffer_flags != RB_BUFFERS_ON)
2482                 return -EBUSY;
2483
2484         resched = ftrace_preempt_disable();
2485
2486         if (atomic_read(&buffer->record_disabled))
2487                 goto out;
2488
2489         cpu = raw_smp_processor_id();
2490
2491         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2492                 goto out;
2493
2494         cpu_buffer = buffer->buffers[cpu];
2495
2496         if (atomic_read(&cpu_buffer->record_disabled))
2497                 goto out;
2498
2499         if (length > BUF_MAX_DATA_SIZE)
2500                 goto out;
2501
2502         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2503         if (!event)
2504                 goto out;
2505
2506         body = rb_event_data(event);
2507
2508         memcpy(body, data, length);
2509
2510         rb_commit(cpu_buffer, event);
2511
2512         ret = 0;
2513  out:
2514         ftrace_preempt_enable(resched);
2515
2516         return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(ring_buffer_write);
2519
2520 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2521 {
2522         struct buffer_page *reader = cpu_buffer->reader_page;
2523         struct buffer_page *head = rb_set_head_page(cpu_buffer);
2524         struct buffer_page *commit = cpu_buffer->commit_page;
2525
2526         /* In case of error, head will be NULL */
2527         if (unlikely(!head))
2528                 return 1;
2529
2530         return reader->read == rb_page_commit(reader) &&
2531                 (commit == reader ||
2532                  (commit == head &&
2533                   head->read == rb_page_commit(commit)));
2534 }
2535
2536 /**
2537  * ring_buffer_record_disable - stop all writes into the buffer
2538  * @buffer: The ring buffer to stop writes to.
2539  *
2540  * This prevents all writes to the buffer. Any attempt to write
2541  * to the buffer after this will fail and return NULL.
2542  *
2543  * The caller should call synchronize_sched() after this.
2544  */
2545 void ring_buffer_record_disable(struct ring_buffer *buffer)
2546 {
2547         atomic_inc(&buffer->record_disabled);
2548 }
2549 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2550
2551 /**
2552  * ring_buffer_record_enable - enable writes to the buffer
2553  * @buffer: The ring buffer to enable writes
2554  *
2555  * Note, multiple disables will need the same number of enables
2556  * to truly enable the writing (much like preempt_disable).
2557  */
2558 void ring_buffer_record_enable(struct ring_buffer *buffer)
2559 {
2560         atomic_dec(&buffer->record_disabled);
2561 }
2562 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2563
2564 /**
2565  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2566  * @buffer: The ring buffer to stop writes to.
2567  * @cpu: The CPU buffer to stop
2568  *
2569  * This prevents all writes to the buffer. Any attempt to write
2570  * to the buffer after this will fail and return NULL.
2571  *
2572  * The caller should call synchronize_sched() after this.
2573  */
2574 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2575 {
2576         struct ring_buffer_per_cpu *cpu_buffer;
2577
2578         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2579                 return;
2580
2581         cpu_buffer = buffer->buffers[cpu];
2582         atomic_inc(&cpu_buffer->record_disabled);
2583 }
2584 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2585
2586 /**
2587  * ring_buffer_record_enable_cpu - enable writes to the buffer
2588  * @buffer: The ring buffer to enable writes
2589  * @cpu: The CPU to enable.
2590  *
2591  * Note, multiple disables will need the same number of enables
2592  * to truly enable the writing (much like preempt_disable).
2593  */
2594 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2595 {
2596         struct ring_buffer_per_cpu *cpu_buffer;
2597
2598         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2599                 return;
2600
2601         cpu_buffer = buffer->buffers[cpu];
2602         atomic_dec(&cpu_buffer->record_disabled);
2603 }
2604 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2605
2606 /**
2607  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2608  * @buffer: The ring buffer
2609  * @cpu: The per CPU buffer to get the entries from.
2610  */
2611 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2612 {
2613         struct ring_buffer_per_cpu *cpu_buffer;
2614         unsigned long ret;
2615
2616         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2617                 return 0;
2618
2619         cpu_buffer = buffer->buffers[cpu];
2620         ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2621                 - cpu_buffer->read;
2622
2623         return ret;
2624 }
2625 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2626
2627 /**
2628  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2629  * @buffer: The ring buffer
2630  * @cpu: The per CPU buffer to get the number of overruns from
2631  */
2632 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2633 {
2634         struct ring_buffer_per_cpu *cpu_buffer;
2635         unsigned long ret;
2636
2637         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2638                 return 0;
2639
2640         cpu_buffer = buffer->buffers[cpu];
2641         ret = local_read(&cpu_buffer->overrun);
2642
2643         return ret;
2644 }
2645 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2646
2647 /**
2648  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2649  * @buffer: The ring buffer
2650  * @cpu: The per CPU buffer to get the number of overruns from
2651  */
2652 unsigned long
2653 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2654 {
2655         struct ring_buffer_per_cpu *cpu_buffer;
2656         unsigned long ret;
2657
2658         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2659                 return 0;
2660
2661         cpu_buffer = buffer->buffers[cpu];
2662         ret = local_read(&cpu_buffer->commit_overrun);
2663
2664         return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2667
2668 /**
2669  * ring_buffer_entries - get the number of entries in a buffer
2670  * @buffer: The ring buffer
2671  *
2672  * Returns the total number of entries in the ring buffer
2673  * (all CPU entries)
2674  */
2675 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2676 {
2677         struct ring_buffer_per_cpu *cpu_buffer;
2678         unsigned long entries = 0;
2679         int cpu;
2680
2681         /* if you care about this being correct, lock the buffer */
2682         for_each_buffer_cpu(buffer, cpu) {
2683                 cpu_buffer = buffer->buffers[cpu];
2684                 entries += (local_read(&cpu_buffer->entries) -
2685                             local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2686         }
2687
2688         return entries;
2689 }
2690 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2691
2692 /**
2693  * ring_buffer_overruns - get the number of overruns in buffer
2694  * @buffer: The ring buffer
2695  *
2696  * Returns the total number of overruns in the ring buffer
2697  * (all CPU entries)
2698  */
2699 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2700 {
2701         struct ring_buffer_per_cpu *cpu_buffer;
2702         unsigned long overruns = 0;
2703         int cpu;
2704
2705         /* if you care about this being correct, lock the buffer */
2706         for_each_buffer_cpu(buffer, cpu) {
2707                 cpu_buffer = buffer->buffers[cpu];
2708                 overruns += local_read(&cpu_buffer->overrun);
2709         }
2710
2711         return overruns;
2712 }
2713 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2714
2715 static void rb_iter_reset(struct ring_buffer_iter *iter)
2716 {
2717         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2718
2719         /* Iterator usage is expected to have record disabled */
2720         if (list_empty(&cpu_buffer->reader_page->list)) {
2721                 iter->head_page = rb_set_head_page(cpu_buffer);
2722                 if (unlikely(!iter->head_page))
2723                         return;
2724                 iter->head = iter->head_page->read;
2725         } else {
2726                 iter->head_page = cpu_buffer->reader_page;
2727                 iter->head = cpu_buffer->reader_page->read;
2728         }
2729         if (iter->head)
2730                 iter->read_stamp = cpu_buffer->read_stamp;
2731         else
2732                 iter->read_stamp = iter->head_page->page->time_stamp;
2733         iter->cache_reader_page = cpu_buffer->reader_page;
2734         iter->cache_read = cpu_buffer->read;
2735 }
2736
2737 /**
2738  * ring_buffer_iter_reset - reset an iterator
2739  * @iter: The iterator to reset
2740  *
2741  * Resets the iterator, so that it will start from the beginning
2742  * again.
2743  */
2744 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2745 {
2746         struct ring_buffer_per_cpu *cpu_buffer;
2747         unsigned long flags;
2748
2749         if (!iter)
2750                 return;
2751
2752         cpu_buffer = iter->cpu_buffer;
2753
2754         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2755         rb_iter_reset(iter);
2756         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2757 }
2758 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2759
2760 /**
2761  * ring_buffer_iter_empty - check if an iterator has no more to read
2762  * @iter: The iterator to check
2763  */
2764 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2765 {
2766         struct ring_buffer_per_cpu *cpu_buffer;
2767
2768         cpu_buffer = iter->cpu_buffer;
2769
2770         return iter->head_page == cpu_buffer->commit_page &&
2771                 iter->head == rb_commit_index(cpu_buffer);
2772 }
2773 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2774
2775 static void
2776 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2777                      struct ring_buffer_event *event)
2778 {
2779         u64 delta;
2780
2781         switch (event->type_len) {
2782         case RINGBUF_TYPE_PADDING:
2783                 return;
2784
2785         case RINGBUF_TYPE_TIME_EXTEND:
2786                 delta = event->array[0];
2787                 delta <<= TS_SHIFT;
2788                 delta += event->time_delta;
2789                 cpu_buffer->read_stamp += delta;
2790                 return;
2791
2792         case RINGBUF_TYPE_TIME_STAMP:
2793                 /* FIXME: not implemented */
2794                 return;
2795
2796         case RINGBUF_TYPE_DATA:
2797                 cpu_buffer->read_stamp += event->time_delta;
2798                 return;
2799
2800         default:
2801                 BUG();
2802         }
2803         return;
2804 }
2805
2806 static void
2807 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2808                           struct ring_buffer_event *event)
2809 {
2810         u64 delta;
2811
2812         switch (event->type_len) {
2813         case RINGBUF_TYPE_PADDING:
2814                 return;
2815
2816         case RINGBUF_TYPE_TIME_EXTEND:
2817                 delta = event->array[0];
2818                 delta <<= TS_SHIFT;
2819                 delta += event->time_delta;
2820                 iter->read_stamp += delta;
2821                 return;
2822
2823         case RINGBUF_TYPE_TIME_STAMP:
2824                 /* FIXME: not implemented */
2825                 return;
2826
2827         case RINGBUF_TYPE_DATA:
2828                 iter->read_stamp += event->time_delta;
2829                 return;
2830
2831         default:
2832                 BUG();
2833         }
2834         return;
2835 }
2836
2837 static struct buffer_page *
2838 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2839 {
2840         struct buffer_page *reader = NULL;
2841         unsigned long flags;
2842         int nr_loops = 0;
2843         int ret;
2844
2845         local_irq_save(flags);
2846         arch_spin_lock(&cpu_buffer->lock);
2847
2848  again:
2849         /*
2850          * This should normally only loop twice. But because the
2851          * start of the reader inserts an empty page, it causes
2852          * a case where we will loop three times. There should be no
2853          * reason to loop four times (that I know of).
2854          */
2855         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2856                 reader = NULL;
2857                 goto out;
2858         }
2859
2860         reader = cpu_buffer->reader_page;
2861
2862         /* If there's more to read, return this page */
2863         if (cpu_buffer->reader_page->read < rb_page_size(reader))
2864                 goto out;
2865
2866         /* Never should we have an index greater than the size */
2867         if (RB_WARN_ON(cpu_buffer,
2868                        cpu_buffer->reader_page->read > rb_page_size(reader)))
2869                 goto out;
2870
2871         /* check if we caught up to the tail */
2872         reader = NULL;
2873         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2874                 goto out;
2875
2876         /*
2877          * Reset the reader page to size zero.
2878          */
2879         local_set(&cpu_buffer->reader_page->write, 0);
2880         local_set(&cpu_buffer->reader_page->entries, 0);
2881         local_set(&cpu_buffer->reader_page->page->commit, 0);
2882
2883  spin:
2884         /*
2885          * Splice the empty reader page into the list around the head.
2886          */
2887         reader = rb_set_head_page(cpu_buffer);
2888         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2889         cpu_buffer->reader_page->list.prev = reader->list.prev;
2890
2891         /*
2892          * cpu_buffer->pages just needs to point to the buffer, it
2893          *  has no specific buffer page to point to. Lets move it out
2894          *  of our way so we don't accidently swap it.
2895          */
2896         cpu_buffer->pages = reader->list.prev;
2897
2898         /* The reader page will be pointing to the new head */
2899         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2900
2901         /*
2902          * Here's the tricky part.
2903          *
2904          * We need to move the pointer past the header page.
2905          * But we can only do that if a writer is not currently
2906          * moving it. The page before the header page has the
2907          * flag bit '1' set if it is pointing to the page we want.
2908          * but if the writer is in the process of moving it
2909          * than it will be '2' or already moved '0'.
2910          */
2911
2912         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2913
2914         /*
2915          * If we did not convert it, then we must try again.
2916          */
2917         if (!ret)
2918                 goto spin;
2919
2920         /*
2921          * Yeah! We succeeded in replacing the page.
2922          *
2923          * Now make the new head point back to the reader page.
2924          */
2925         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2926         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2927
2928         /* Finally update the reader page to the new head */
2929         cpu_buffer->reader_page = reader;
2930         rb_reset_reader_page(cpu_buffer);
2931
2932         goto again;
2933
2934  out:
2935         arch_spin_unlock(&cpu_buffer->lock);
2936         local_irq_restore(flags);
2937
2938         return reader;
2939 }
2940
2941 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2942 {
2943         struct ring_buffer_event *event;
2944         struct buffer_page *reader;
2945         unsigned length;
2946
2947         reader = rb_get_reader_page(cpu_buffer);
2948
2949         /* This function should not be called when buffer is empty */
2950         if (RB_WARN_ON(cpu_buffer, !reader))
2951                 return;
2952
2953         event = rb_reader_event(cpu_buffer);
2954
2955         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2956                 cpu_buffer->read++;
2957
2958         rb_update_read_stamp(cpu_buffer, event);
2959
2960         length = rb_event_length(event);
2961         cpu_buffer->reader_page->read += length;
2962 }
2963
2964 static void rb_advance_iter(struct ring_buffer_iter *iter)
2965 {
2966         struct ring_buffer *buffer;
2967         struct ring_buffer_per_cpu *cpu_buffer;
2968         struct ring_buffer_event *event;
2969         unsigned length;
2970
2971         cpu_buffer = iter->cpu_buffer;
2972         buffer = cpu_buffer->buffer;
2973
2974         /*
2975          * Check if we are at the end of the buffer.
2976          */
2977         if (iter->head >= rb_page_size(iter->head_page)) {
2978                 /* discarded commits can make the page empty */
2979                 if (iter->head_page == cpu_buffer->commit_page)
2980                         return;
2981                 rb_inc_iter(iter);
2982                 return;
2983         }
2984
2985         event = rb_iter_head_event(iter);
2986
2987         length = rb_event_length(event);
2988
2989         /*
2990          * This should not be called to advance the header if we are
2991          * at the tail of the buffer.
2992          */
2993         if (RB_WARN_ON(cpu_buffer,
2994                        (iter->head_page == cpu_buffer->commit_page) &&
2995                        (iter->head + length > rb_commit_index(cpu_buffer))))
2996                 return;
2997
2998         rb_update_iter_read_stamp(iter, event);
2999
3000         iter->head += length;
3001
3002         /* check for end of page padding */
3003         if ((iter->head >= rb_page_size(iter->head_page)) &&
3004             (iter->head_page != cpu_buffer->commit_page))
3005                 rb_advance_iter(iter);
3006 }
3007
3008 static struct ring_buffer_event *
3009 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3010 {
3011         struct ring_buffer_event *event;
3012         struct buffer_page *reader;
3013         int nr_loops = 0;
3014
3015  again:
3016         /*
3017          * We repeat when a timestamp is encountered. It is possible
3018          * to get multiple timestamps from an interrupt entering just
3019          * as one timestamp is about to be written, or from discarded
3020          * commits. The most that we can have is the number on a single page.
3021          */
3022         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3023                 return NULL;
3024
3025         reader = rb_get_reader_page(cpu_buffer);
3026         if (!reader)
3027                 return NULL;
3028
3029         event = rb_reader_event(cpu_buffer);
3030
3031         switch (event->type_len) {
3032         case RINGBUF_TYPE_PADDING:
3033                 if (rb_null_event(event))
3034                         RB_WARN_ON(cpu_buffer, 1);
3035                 /*
3036                  * Because the writer could be discarding every
3037                  * event it creates (which would probably be bad)
3038                  * if we were to go back to "again" then we may never
3039                  * catch up, and will trigger the warn on, or lock
3040                  * the box. Return the padding, and we will release
3041                  * the current locks, and try again.
3042                  */
3043                 return event;
3044
3045         case RINGBUF_TYPE_TIME_EXTEND:
3046                 /* Internal data, OK to advance */
3047                 rb_advance_reader(cpu_buffer);
3048                 goto again;
3049
3050         case RINGBUF_TYPE_TIME_STAMP:
3051                 /* FIXME: not implemented */
3052                 rb_advance_reader(cpu_buffer);
3053                 goto again;
3054
3055         case RINGBUF_TYPE_DATA:
3056                 if (ts) {
3057                         *ts = cpu_buffer->read_stamp + event->time_delta;
3058                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3059                                                          cpu_buffer->cpu, ts);
3060                 }
3061                 return event;
3062
3063         default:
3064                 BUG();
3065         }
3066
3067         return NULL;
3068 }
3069 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3070
3071 static struct ring_buffer_event *
3072 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3073 {
3074         struct ring_buffer *buffer;
3075         struct ring_buffer_per_cpu *cpu_buffer;
3076         struct ring_buffer_event *event;
3077         int nr_loops = 0;
3078
3079         cpu_buffer = iter->cpu_buffer;
3080         buffer = cpu_buffer->buffer;
3081
3082         /*
3083          * Check if someone performed a consuming read to
3084          * the buffer. A consuming read invalidates the iterator
3085          * and we need to reset the iterator in this case.
3086          */
3087         if (unlikely(iter->cache_read != cpu_buffer->read ||
3088                      iter->cache_reader_page != cpu_buffer->reader_page))
3089                 rb_iter_reset(iter);
3090
3091  again:
3092         if (ring_buffer_iter_empty(iter))
3093                 return NULL;
3094
3095         /*
3096          * We repeat when a timestamp is encountered.
3097          * We can get multiple timestamps by nested interrupts or also
3098          * if filtering is on (discarding commits). Since discarding
3099          * commits can be frequent we can get a lot of timestamps.
3100          * But we limit them by not adding timestamps if they begin
3101          * at the start of a page.
3102          */
3103         if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3104                 return NULL;
3105
3106         if (rb_per_cpu_empty(cpu_buffer))
3107                 return NULL;
3108
3109         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3110                 rb_inc_iter(iter);
3111                 goto again;
3112         }
3113
3114         event = rb_iter_head_event(iter);
3115
3116         switch (event->type_len) {
3117         case RINGBUF_TYPE_PADDING:
3118                 if (rb_null_event(event)) {
3119                         rb_inc_iter(iter);
3120                         goto again;
3121                 }
3122                 rb_advance_iter(iter);
3123                 return event;
3124
3125         case RINGBUF_TYPE_TIME_EXTEND:
3126                 /* Internal data, OK to advance */
3127                 rb_advance_iter(iter);
3128                 goto again;
3129
3130         case RINGBUF_TYPE_TIME_STAMP:
3131                 /* FIXME: not implemented */
3132                 rb_advance_iter(iter);
3133                 goto again;
3134
3135         case RINGBUF_TYPE_DATA:
3136                 if (ts) {
3137                         *ts = iter->read_stamp + event->time_delta;
3138                         ring_buffer_normalize_time_stamp(buffer,
3139                                                          cpu_buffer->cpu, ts);
3140                 }
3141                 return event;
3142
3143         default:
3144                 BUG();
3145         }
3146
3147         return NULL;
3148 }
3149 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3150
3151 static inline int rb_ok_to_lock(void)
3152 {
3153         /*
3154          * If an NMI die dumps out the content of the ring buffer
3155          * do not grab locks. We also permanently disable the ring
3156          * buffer too. A one time deal is all you get from reading
3157          * the ring buffer from an NMI.
3158          */
3159         if (likely(!in_nmi()))
3160                 return 1;
3161
3162         tracing_off_permanent();
3163         return 0;
3164 }
3165
3166 /**
3167  * ring_buffer_peek - peek at the next event to be read
3168  * @buffer: The ring buffer to read
3169  * @cpu: The cpu to peak at
3170  * @ts: The timestamp counter of this event.
3171  *
3172  * This will return the event that will be read next, but does
3173  * not consume the data.
3174  */
3175 struct ring_buffer_event *
3176 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3177 {
3178         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3179         struct ring_buffer_event *event;
3180         unsigned long flags;
3181         int dolock;
3182
3183         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3184                 return NULL;
3185
3186         dolock = rb_ok_to_lock();
3187  again:
3188         local_irq_save(flags);
3189         if (dolock)
3190                 spin_lock(&cpu_buffer->reader_lock);
3191         event = rb_buffer_peek(cpu_buffer, ts);
3192         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3193                 rb_advance_reader(cpu_buffer);
3194         if (dolock)
3195                 spin_unlock(&cpu_buffer->reader_lock);
3196         local_irq_restore(flags);
3197
3198         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3199                 goto again;
3200
3201         return event;
3202 }
3203
3204 /**
3205  * ring_buffer_iter_peek - peek at the next event to be read
3206  * @iter: The ring buffer iterator
3207  * @ts: The timestamp counter of this event.
3208  *
3209  * This will return the event that will be read next, but does
3210  * not increment the iterator.
3211  */
3212 struct ring_buffer_event *
3213 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3214 {
3215         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3216         struct ring_buffer_event *event;
3217         unsigned long flags;
3218
3219  again:
3220         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3221         event = rb_iter_peek(iter, ts);
3222         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3223
3224         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3225                 goto again;
3226
3227         return event;
3228 }
3229
3230 /**
3231  * ring_buffer_consume - return an event and consume it
3232  * @buffer: The ring buffer to get the next event from
3233  *
3234  * Returns the next event in the ring buffer, and that event is consumed.
3235  * Meaning, that sequential reads will keep returning a different event,
3236  * and eventually empty the ring buffer if the producer is slower.
3237  */
3238 struct ring_buffer_event *
3239 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3240 {
3241         struct ring_buffer_per_cpu *cpu_buffer;
3242         struct ring_buffer_event *event = NULL;
3243         unsigned long flags;
3244         int dolock;
3245
3246         dolock = rb_ok_to_lock();
3247
3248  again:
3249         /* might be called in atomic */
3250         preempt_disable();
3251
3252         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3253                 goto out;
3254
3255         cpu_buffer = buffer->buffers[cpu];
3256         local_irq_save(flags);
3257         if (dolock)
3258                 spin_lock(&cpu_buffer->reader_lock);
3259
3260         event = rb_buffer_peek(cpu_buffer, ts);
3261         if (event)
3262                 rb_advance_reader(cpu_buffer);
3263
3264         if (dolock)
3265                 spin_unlock(&cpu_buffer->reader_lock);
3266         local_irq_restore(flags);
3267
3268  out:
3269         preempt_enable();
3270
3271         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3272                 goto again;
3273
3274         return event;
3275 }
3276 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3277
3278 /**
3279  * ring_buffer_read_start - start a non consuming read of the buffer
3280  * @buffer: The ring buffer to read from
3281  * @cpu: The cpu buffer to iterate over
3282  *
3283  * This starts up an iteration through the buffer. It also disables
3284  * the recording to the buffer until the reading is finished.
3285  * This prevents the reading from being corrupted. This is not
3286  * a consuming read, so a producer is not expected.
3287  *
3288  * Must be paired with ring_buffer_finish.
3289  */
3290 struct ring_buffer_iter *
3291 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3292 {
3293         struct ring_buffer_per_cpu *cpu_buffer;
3294         struct ring_buffer_iter *iter;
3295         unsigned long flags;
3296
3297         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298                 return NULL;
3299
3300         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3301         if (!iter)
3302                 return NULL;
3303
3304         cpu_buffer = buffer->buffers[cpu];
3305
3306         iter->cpu_buffer = cpu_buffer;
3307
3308         atomic_inc(&cpu_buffer->record_disabled);
3309         synchronize_sched();
3310
3311         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3312         arch_spin_lock(&cpu_buffer->lock);
3313         rb_iter_reset(iter);
3314         arch_spin_unlock(&cpu_buffer->lock);
3315         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3316
3317         return iter;
3318 }
3319 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3320
3321 /**
3322  * ring_buffer_finish - finish reading the iterator of the buffer
3323  * @iter: The iterator retrieved by ring_buffer_start
3324  *
3325  * This re-enables the recording to the buffer, and frees the
3326  * iterator.
3327  */
3328 void
3329 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3330 {
3331         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3332
3333         atomic_dec(&cpu_buffer->record_disabled);
3334         kfree(iter);
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3337
3338 /**
3339  * ring_buffer_read - read the next item in the ring buffer by the iterator
3340  * @iter: The ring buffer iterator
3341  * @ts: The time stamp of the event read.
3342  *
3343  * This reads the next event in the ring buffer and increments the iterator.
3344  */
3345 struct ring_buffer_event *
3346 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3347 {
3348         struct ring_buffer_event *event;
3349         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3350         unsigned long flags;
3351
3352         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3353  again:
3354         event = rb_iter_peek(iter, ts);
3355         if (!event)
3356                 goto out;
3357
3358         if (event->type_len == RINGBUF_TYPE_PADDING)
3359                 goto again;
3360
3361         rb_advance_iter(iter);
3362  out:
3363         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3364
3365         return event;
3366 }
3367 EXPORT_SYMBOL_GPL(ring_buffer_read);
3368
3369 /**
3370  * ring_buffer_size - return the size of the ring buffer (in bytes)
3371  * @buffer: The ring buffer.
3372  */
3373 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3374 {
3375         return BUF_PAGE_SIZE * buffer->pages;
3376 }
3377 EXPORT_SYMBOL_GPL(ring_buffer_size);
3378
3379 static void
3380 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3381 {
3382         rb_head_page_deactivate(cpu_buffer);
3383
3384         cpu_buffer->head_page
3385                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3386         local_set(&cpu_buffer->head_page->write, 0);
3387         local_set(&cpu_buffer->head_page->entries, 0);
3388         local_set(&cpu_buffer->head_page->page->commit, 0);
3389
3390         cpu_buffer->head_page->read = 0;
3391
3392         cpu_buffer->tail_page = cpu_buffer->head_page;
3393         cpu_buffer->commit_page = cpu_buffer->head_page;
3394
3395         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3396         local_set(&cpu_buffer->reader_page->write, 0);
3397         local_set(&cpu_buffer->reader_page->entries, 0);
3398         local_set(&cpu_buffer->reader_page->page->commit, 0);
3399         cpu_buffer->reader_page->read = 0;
3400
3401         local_set(&cpu_buffer->commit_overrun, 0);
3402         local_set(&cpu_buffer->overrun, 0);
3403         local_set(&cpu_buffer->entries, 0);
3404         local_set(&cpu_buffer->committing, 0);
3405         local_set(&cpu_buffer->commits, 0);
3406         cpu_buffer->read = 0;
3407
3408         cpu_buffer->write_stamp = 0;
3409         cpu_buffer->read_stamp = 0;
3410
3411         rb_head_page_activate(cpu_buffer);
3412 }
3413
3414 /**
3415  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3416  * @buffer: The ring buffer to reset a per cpu buffer of
3417  * @cpu: The CPU buffer to be reset
3418  */
3419 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3420 {
3421         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3422         unsigned long flags;
3423
3424         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425                 return;
3426
3427         atomic_inc(&cpu_buffer->record_disabled);
3428
3429         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3430
3431         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3432                 goto out;
3433
3434         arch_spin_lock(&cpu_buffer->lock);
3435
3436         rb_reset_cpu(cpu_buffer);
3437
3438         arch_spin_unlock(&cpu_buffer->lock);
3439
3440  out:
3441         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3442
3443         atomic_dec(&cpu_buffer->record_disabled);
3444 }
3445 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3446
3447 /**
3448  * ring_buffer_reset - reset a ring buffer
3449  * @buffer: The ring buffer to reset all cpu buffers
3450  */
3451 void ring_buffer_reset(struct ring_buffer *buffer)
3452 {
3453         int cpu;
3454
3455         for_each_buffer_cpu(buffer, cpu)
3456                 ring_buffer_reset_cpu(buffer, cpu);
3457 }
3458 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3459
3460 /**
3461  * rind_buffer_empty - is the ring buffer empty?
3462  * @buffer: The ring buffer to test
3463  */
3464 int ring_buffer_empty(struct ring_buffer *buffer)
3465 {
3466         struct ring_buffer_per_cpu *cpu_buffer;
3467         unsigned long flags;
3468         int dolock;
3469         int cpu;
3470         int ret;
3471
3472         dolock = rb_ok_to_lock();
3473
3474         /* yes this is racy, but if you don't like the race, lock the buffer */
3475         for_each_buffer_cpu(buffer, cpu) {
3476                 cpu_buffer = buffer->buffers[cpu];
3477                 local_irq_save(flags);
3478                 if (dolock)
3479                         spin_lock(&cpu_buffer->reader_lock);
3480                 ret = rb_per_cpu_empty(cpu_buffer);
3481                 if (dolock)
3482                         spin_unlock(&cpu_buffer->reader_lock);
3483                 local_irq_restore(flags);
3484
3485                 if (!ret)
3486                         return 0;
3487         }
3488
3489         return 1;
3490 }
3491 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3492
3493 /**
3494  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3495  * @buffer: The ring buffer
3496  * @cpu: The CPU buffer to test
3497  */
3498 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3499 {
3500         struct ring_buffer_per_cpu *cpu_buffer;
3501         unsigned long flags;
3502         int dolock;
3503         int ret;
3504
3505         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3506                 return 1;
3507
3508         dolock = rb_ok_to_lock();
3509
3510         cpu_buffer = buffer->buffers[cpu];
3511         local_irq_save(flags);
3512         if (dolock)
3513                 spin_lock(&cpu_buffer->reader_lock);
3514         ret = rb_per_cpu_empty(cpu_buffer);
3515         if (dolock)
3516                 spin_unlock(&cpu_buffer->reader_lock);
3517         local_irq_restore(flags);
3518
3519         return ret;
3520 }
3521 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3522
3523 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3524 /**
3525  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3526  * @buffer_a: One buffer to swap with
3527  * @buffer_b: The other buffer to swap with
3528  *
3529  * This function is useful for tracers that want to take a "snapshot"
3530  * of a CPU buffer and has another back up buffer lying around.
3531  * it is expected that the tracer handles the cpu buffer not being
3532  * used at the moment.
3533  */
3534 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3535                          struct ring_buffer *buffer_b, int cpu)
3536 {
3537         struct ring_buffer_per_cpu *cpu_buffer_a;
3538         struct ring_buffer_per_cpu *cpu_buffer_b;
3539         int ret = -EINVAL;
3540
3541         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3542             !cpumask_test_cpu(cpu, buffer_b->cpumask))
3543                 goto out;
3544
3545         /* At least make sure the two buffers are somewhat the same */
3546         if (buffer_a->pages != buffer_b->pages)
3547                 goto out;
3548
3549         ret = -EAGAIN;
3550
3551         if (ring_buffer_flags != RB_BUFFERS_ON)
3552                 goto out;
3553
3554         if (atomic_read(&buffer_a->record_disabled))
3555                 goto out;
3556
3557         if (atomic_read(&buffer_b->record_disabled))
3558                 goto out;
3559
3560         cpu_buffer_a = buffer_a->buffers[cpu];
3561         cpu_buffer_b = buffer_b->buffers[cpu];
3562
3563         if (atomic_read(&cpu_buffer_a->record_disabled))
3564                 goto out;
3565
3566         if (atomic_read(&cpu_buffer_b->record_disabled))
3567                 goto out;
3568
3569         /*
3570          * We can't do a synchronize_sched here because this
3571          * function can be called in atomic context.
3572          * Normally this will be called from the same CPU as cpu.
3573          * If not it's up to the caller to protect this.
3574          */
3575         atomic_inc(&cpu_buffer_a->record_disabled);
3576         atomic_inc(&cpu_buffer_b->record_disabled);
3577
3578         ret = -EBUSY;
3579         if (local_read(&cpu_buffer_a->committing))
3580                 goto out_dec;
3581         if (local_read(&cpu_buffer_b->committing))
3582                 goto out_dec;
3583
3584         buffer_a->buffers[cpu] = cpu_buffer_b;
3585         buffer_b->buffers[cpu] = cpu_buffer_a;
3586
3587         cpu_buffer_b->buffer = buffer_a;
3588         cpu_buffer_a->buffer = buffer_b;
3589
3590         ret = 0;
3591
3592 out_dec:
3593         atomic_dec(&cpu_buffer_a->record_disabled);
3594         atomic_dec(&cpu_buffer_b->record_disabled);
3595 out:
3596         return ret;
3597 }
3598 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3599 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3600
3601 /**
3602  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3603  * @buffer: the buffer to allocate for.
3604  *
3605  * This function is used in conjunction with ring_buffer_read_page.
3606  * When reading a full page from the ring buffer, these functions
3607  * can be used to speed up the process. The calling function should
3608  * allocate a few pages first with this function. Then when it
3609  * needs to get pages from the ring buffer, it passes the result
3610  * of this function into ring_buffer_read_page, which will swap
3611  * the page that was allocated, with the read page of the buffer.
3612  *
3613  * Returns:
3614  *  The page allocated, or NULL on error.
3615  */
3616 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3617 {
3618         struct buffer_data_page *bpage;
3619         unsigned long addr;
3620
3621         addr = __get_free_page(GFP_KERNEL);
3622         if (!addr)
3623                 return NULL;
3624
3625         bpage = (void *)addr;
3626
3627         rb_init_page(bpage);
3628
3629         return bpage;
3630 }
3631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3632
3633 /**
3634  * ring_buffer_free_read_page - free an allocated read page
3635  * @buffer: the buffer the page was allocate for
3636  * @data: the page to free
3637  *
3638  * Free a page allocated from ring_buffer_alloc_read_page.
3639  */
3640 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3641 {
3642         free_page((unsigned long)data);
3643 }
3644 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3645
3646 /**
3647  * ring_buffer_read_page - extract a page from the ring buffer
3648  * @buffer: buffer to extract from
3649  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3650  * @len: amount to extract
3651  * @cpu: the cpu of the buffer to extract
3652  * @full: should the extraction only happen when the page is full.
3653  *
3654  * This function will pull out a page from the ring buffer and consume it.
3655  * @data_page must be the address of the variable that was returned
3656  * from ring_buffer_alloc_read_page. This is because the page might be used
3657  * to swap with a page in the ring buffer.
3658  *
3659  * for example:
3660  *      rpage = ring_buffer_alloc_read_page(buffer);
3661  *      if (!rpage)
3662  *              return error;
3663  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3664  *      if (ret >= 0)
3665  *              process_page(rpage, ret);
3666  *
3667  * When @full is set, the function will not return true unless
3668  * the writer is off the reader page.
3669  *
3670  * Note: it is up to the calling functions to handle sleeps and wakeups.
3671  *  The ring buffer can be used anywhere in the kernel and can not
3672  *  blindly call wake_up. The layer that uses the ring buffer must be
3673  *  responsible for that.
3674  *
3675  * Returns:
3676  *  >=0 if data has been transferred, returns the offset of consumed data.
3677  *  <0 if no data has been transferred.
3678  */
3679 int ring_buffer_read_page(struct ring_buffer *buffer,
3680                           void **data_page, size_t len, int cpu, int full)
3681 {
3682         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3683         struct ring_buffer_event *event;
3684         struct buffer_data_page *bpage;
3685         struct buffer_page *reader;
3686         unsigned long flags;
3687         unsigned int commit;
3688         unsigned int read;
3689         u64 save_timestamp;
3690         int ret = -1;
3691
3692         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3693                 goto out;
3694
3695         /*
3696          * If len is not big enough to hold the page header, then
3697          * we can not copy anything.
3698          */
3699         if (len <= BUF_PAGE_HDR_SIZE)
3700                 goto out;
3701
3702         len -= BUF_PAGE_HDR_SIZE;
3703
3704         if (!data_page)
3705                 goto out;
3706
3707         bpage = *data_page;
3708         if (!bpage)
3709                 goto out;
3710
3711         spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3712
3713         reader = rb_get_reader_page(cpu_buffer);
3714         if (!reader)
3715                 goto out_unlock;
3716
3717         event = rb_reader_event(cpu_buffer);
3718
3719         read = reader->read;
3720         commit = rb_page_commit(reader);
3721
3722         /*
3723          * If this page has been partially read or
3724          * if len is not big enough to read the rest of the page or
3725          * a writer is still on the page, then
3726          * we must copy the data from the page to the buffer.
3727          * Otherwise, we can simply swap the page with the one passed in.
3728          */
3729         if (read || (len < (commit - read)) ||
3730             cpu_buffer->reader_page == cpu_buffer->commit_page) {
3731                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3732                 unsigned int rpos = read;
3733                 unsigned int pos = 0;
3734                 unsigned int size;
3735
3736                 if (full)
3737                         goto out_unlock;
3738
3739                 if (len > (commit - read))
3740                         len = (commit - read);
3741
3742                 size = rb_event_length(event);
3743
3744                 if (len < size)
3745                         goto out_unlock;
3746
3747                 /* save the current timestamp, since the user will need it */
3748                 save_timestamp = cpu_buffer->read_stamp;
3749
3750                 /* Need to copy one event at a time */
3751                 do {
3752                         memcpy(bpage->data + pos, rpage->data + rpos, size);
3753
3754                         len -= size;
3755
3756                         rb_advance_reader(cpu_buffer);
3757                         rpos = reader->read;
3758                         pos += size;
3759
3760                         event = rb_reader_event(cpu_buffer);
3761                         size = rb_event_length(event);
3762                 } while (len > size);
3763
3764                 /* update bpage */
3765                 local_set(&bpage->commit, pos);
3766                 bpage->time_stamp = save_timestamp;
3767
3768                 /* we copied everything to the beginning */
3769                 read = 0;
3770         } else {
3771                 /* update the entry counter */
3772                 cpu_buffer->read += rb_page_entries(reader);
3773
3774                 /* swap the pages */
3775                 rb_init_page(bpage);
3776                 bpage = reader->page;
3777                 reader->page = *data_page;
3778                 local_set(&reader->write, 0);
3779                 local_set(&reader->entries, 0);
3780                 reader->read = 0;
3781                 *data_page = bpage;
3782         }
3783         ret = read;
3784
3785  out_unlock:
3786         spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3787
3788  out:
3789         return ret;
3790 }
3791 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3792
3793 #ifdef CONFIG_TRACING
3794 static ssize_t
3795 rb_simple_read(struct file *filp, char __user *ubuf,
3796                size_t cnt, loff_t *ppos)
3797 {
3798         unsigned long *p = filp->private_data;
3799         char buf[64];
3800         int r;
3801
3802         if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3803                 r = sprintf(buf, "permanently disabled\n");
3804         else
3805                 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3806
3807         return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3808 }
3809
3810 static ssize_t
3811 rb_simple_write(struct file *filp, const char __user *ubuf,
3812                 size_t cnt, loff_t *ppos)
3813 {
3814         unsigned long *p = filp->private_data;
3815         char buf[64];
3816         unsigned long val;
3817         int ret;
3818
3819         if (cnt >= sizeof(buf))
3820                 return -EINVAL;
3821
3822         if (copy_from_user(&buf, ubuf, cnt))
3823                 return -EFAULT;
3824
3825         buf[cnt] = 0;
3826
3827         ret = strict_strtoul(buf, 10, &val);
3828         if (ret < 0)
3829                 return ret;
3830
3831         if (val)
3832                 set_bit(RB_BUFFERS_ON_BIT, p);
3833         else
3834                 clear_bit(RB_BUFFERS_ON_BIT, p);
3835
3836         (*ppos)++;
3837
3838         return cnt;
3839 }
3840
3841 static const struct file_operations rb_simple_fops = {
3842         .open           = tracing_open_generic,
3843         .read           = rb_simple_read,
3844         .write          = rb_simple_write,
3845 };
3846
3847
3848 static __init int rb_init_debugfs(void)
3849 {
3850         struct dentry *d_tracer;
3851
3852         d_tracer = tracing_init_dentry();
3853
3854         trace_create_file("tracing_on", 0644, d_tracer,
3855                             &ring_buffer_flags, &rb_simple_fops);
3856
3857         return 0;
3858 }
3859
3860 fs_initcall(rb_init_debugfs);
3861 #endif
3862
3863 #ifdef CONFIG_HOTPLUG_CPU
3864 static int rb_cpu_notify(struct notifier_block *self,
3865                          unsigned long action, void *hcpu)
3866 {
3867         struct ring_buffer *buffer =
3868                 container_of(self, struct ring_buffer, cpu_notify);
3869         long cpu = (long)hcpu;
3870
3871         switch (action) {
3872         case CPU_UP_PREPARE:
3873         case CPU_UP_PREPARE_FROZEN:
3874                 if (cpumask_test_cpu(cpu, buffer->cpumask))
3875                         return NOTIFY_OK;
3876
3877                 buffer->buffers[cpu] =
3878                         rb_allocate_cpu_buffer(buffer, cpu);
3879                 if (!buffer->buffers[cpu]) {
3880                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3881                              cpu);
3882                         return NOTIFY_OK;
3883                 }
3884                 smp_wmb();
3885                 cpumask_set_cpu(cpu, buffer->cpumask);
3886                 break;
3887         case CPU_DOWN_PREPARE:
3888         case CPU_DOWN_PREPARE_FROZEN:
3889                 /*
3890                  * Do nothing.
3891                  *  If we were to free the buffer, then the user would
3892                  *  lose any trace that was in the buffer.
3893                  */
3894                 break;
3895         default:
3896                 break;
3897         }
3898         return NOTIFY_OK;
3899 }
3900 #endif