Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN        0
64
65 struct uprobe {
66         struct rb_node          rb_node;        /* node in the rb tree */
67         atomic_t                ref;
68         struct rw_semaphore     register_rwsem;
69         struct rw_semaphore     consumer_rwsem;
70         struct list_head        pending_list;
71         struct uprobe_consumer  *consumers;
72         struct inode            *inode;         /* Also hold a ref to inode */
73         loff_t                  offset;
74         unsigned long           flags;
75
76         /*
77          * The generic code assumes that it has two members of unknown type
78          * owned by the arch-specific code:
79          *
80          *      insn -  copy_insn() saves the original instruction here for
81          *              arch_uprobe_analyze_insn().
82          *
83          *      ixol -  potentially modified instruction to execute out of
84          *              line, copied to xol_area by xol_get_insn_slot().
85          */
86         struct arch_uprobe      arch;
87 };
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @page:     the cowed page we are replacing by kpage
148  * @kpage:    the modified page we replace page by
149  *
150  * Returns 0 on success, -EFAULT on failure.
151  */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153                                 struct page *page, struct page *kpage)
154 {
155         struct mm_struct *mm = vma->vm_mm;
156         spinlock_t *ptl;
157         pte_t *ptep;
158         int err;
159         /* For mmu_notifiers */
160         const unsigned long mmun_start = addr;
161         const unsigned long mmun_end   = addr + PAGE_SIZE;
162         struct mem_cgroup *memcg;
163
164         err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg,
165                         false);
166         if (err)
167                 return err;
168
169         /* For try_to_free_swap() and munlock_vma_page() below */
170         lock_page(page);
171
172         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
173         err = -EAGAIN;
174         ptep = page_check_address(page, mm, addr, &ptl, 0);
175         if (!ptep)
176                 goto unlock;
177
178         get_page(kpage);
179         page_add_new_anon_rmap(kpage, vma, addr, false);
180         mem_cgroup_commit_charge(kpage, memcg, false, false);
181         lru_cache_add_active_or_unevictable(kpage, vma);
182
183         if (!PageAnon(page)) {
184                 dec_mm_counter(mm, mm_counter_file(page));
185                 inc_mm_counter(mm, MM_ANONPAGES);
186         }
187
188         flush_cache_page(vma, addr, pte_pfn(*ptep));
189         ptep_clear_flush_notify(vma, addr, ptep);
190         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
191
192         page_remove_rmap(page, false);
193         if (!page_mapped(page))
194                 try_to_free_swap(page);
195         pte_unmap_unlock(ptep, ptl);
196
197         if (vma->vm_flags & VM_LOCKED)
198                 munlock_vma_page(page);
199         put_page(page);
200
201         err = 0;
202  unlock:
203         mem_cgroup_cancel_charge(kpage, memcg, false);
204         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
205         unlock_page(page);
206         return err;
207 }
208
209 /**
210  * is_swbp_insn - check if instruction is breakpoint instruction.
211  * @insn: instruction to be checked.
212  * Default implementation of is_swbp_insn
213  * Returns true if @insn is a breakpoint instruction.
214  */
215 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
216 {
217         return *insn == UPROBE_SWBP_INSN;
218 }
219
220 /**
221  * is_trap_insn - check if instruction is breakpoint instruction.
222  * @insn: instruction to be checked.
223  * Default implementation of is_trap_insn
224  * Returns true if @insn is a breakpoint instruction.
225  *
226  * This function is needed for the case where an architecture has multiple
227  * trap instructions (like powerpc).
228  */
229 bool __weak is_trap_insn(uprobe_opcode_t *insn)
230 {
231         return is_swbp_insn(insn);
232 }
233
234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
235 {
236         void *kaddr = kmap_atomic(page);
237         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
238         kunmap_atomic(kaddr);
239 }
240
241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
242 {
243         void *kaddr = kmap_atomic(page);
244         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
245         kunmap_atomic(kaddr);
246 }
247
248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
249 {
250         uprobe_opcode_t old_opcode;
251         bool is_swbp;
252
253         /*
254          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
255          * We do not check if it is any other 'trap variant' which could
256          * be conditional trap instruction such as the one powerpc supports.
257          *
258          * The logic is that we do not care if the underlying instruction
259          * is a trap variant; uprobes always wins over any other (gdb)
260          * breakpoint.
261          */
262         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
263         is_swbp = is_swbp_insn(&old_opcode);
264
265         if (is_swbp_insn(new_opcode)) {
266                 if (is_swbp)            /* register: already installed? */
267                         return 0;
268         } else {
269                 if (!is_swbp)           /* unregister: was it changed by us? */
270                         return 0;
271         }
272
273         return 1;
274 }
275
276 /*
277  * NOTE:
278  * Expect the breakpoint instruction to be the smallest size instruction for
279  * the architecture. If an arch has variable length instruction and the
280  * breakpoint instruction is not of the smallest length instruction
281  * supported by that architecture then we need to modify is_trap_at_addr and
282  * uprobe_write_opcode accordingly. This would never be a problem for archs
283  * that have fixed length instructions.
284  *
285  * uprobe_write_opcode - write the opcode at a given virtual address.
286  * @mm: the probed process address space.
287  * @vaddr: the virtual address to store the opcode.
288  * @opcode: opcode to be written at @vaddr.
289  *
290  * Called with mm->mmap_sem held for write.
291  * Return 0 (success) or a negative errno.
292  */
293 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
294                         uprobe_opcode_t opcode)
295 {
296         struct page *old_page, *new_page;
297         struct vm_area_struct *vma;
298         int ret;
299
300 retry:
301         /* Read the page with vaddr into memory */
302         ret = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
303         if (ret <= 0)
304                 return ret;
305
306         ret = verify_opcode(old_page, vaddr, &opcode);
307         if (ret <= 0)
308                 goto put_old;
309
310         ret = anon_vma_prepare(vma);
311         if (ret)
312                 goto put_old;
313
314         ret = -ENOMEM;
315         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
316         if (!new_page)
317                 goto put_old;
318
319         __SetPageUptodate(new_page);
320         copy_highpage(new_page, old_page);
321         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
322
323         ret = __replace_page(vma, vaddr, old_page, new_page);
324         put_page(new_page);
325 put_old:
326         put_page(old_page);
327
328         if (unlikely(ret == -EAGAIN))
329                 goto retry;
330         return ret;
331 }
332
333 /**
334  * set_swbp - store breakpoint at a given address.
335  * @auprobe: arch specific probepoint information.
336  * @mm: the probed process address space.
337  * @vaddr: the virtual address to insert the opcode.
338  *
339  * For mm @mm, store the breakpoint instruction at @vaddr.
340  * Return 0 (success) or a negative errno.
341  */
342 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
343 {
344         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
345 }
346
347 /**
348  * set_orig_insn - Restore the original instruction.
349  * @mm: the probed process address space.
350  * @auprobe: arch specific probepoint information.
351  * @vaddr: the virtual address to insert the opcode.
352  *
353  * For mm @mm, restore the original opcode (opcode) at @vaddr.
354  * Return 0 (success) or a negative errno.
355  */
356 int __weak
357 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
358 {
359         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
360 }
361
362 static struct uprobe *get_uprobe(struct uprobe *uprobe)
363 {
364         atomic_inc(&uprobe->ref);
365         return uprobe;
366 }
367
368 static void put_uprobe(struct uprobe *uprobe)
369 {
370         if (atomic_dec_and_test(&uprobe->ref))
371                 kfree(uprobe);
372 }
373
374 static int match_uprobe(struct uprobe *l, struct uprobe *r)
375 {
376         if (l->inode < r->inode)
377                 return -1;
378
379         if (l->inode > r->inode)
380                 return 1;
381
382         if (l->offset < r->offset)
383                 return -1;
384
385         if (l->offset > r->offset)
386                 return 1;
387
388         return 0;
389 }
390
391 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
392 {
393         struct uprobe u = { .inode = inode, .offset = offset };
394         struct rb_node *n = uprobes_tree.rb_node;
395         struct uprobe *uprobe;
396         int match;
397
398         while (n) {
399                 uprobe = rb_entry(n, struct uprobe, rb_node);
400                 match = match_uprobe(&u, uprobe);
401                 if (!match)
402                         return get_uprobe(uprobe);
403
404                 if (match < 0)
405                         n = n->rb_left;
406                 else
407                         n = n->rb_right;
408         }
409         return NULL;
410 }
411
412 /*
413  * Find a uprobe corresponding to a given inode:offset
414  * Acquires uprobes_treelock
415  */
416 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
417 {
418         struct uprobe *uprobe;
419
420         spin_lock(&uprobes_treelock);
421         uprobe = __find_uprobe(inode, offset);
422         spin_unlock(&uprobes_treelock);
423
424         return uprobe;
425 }
426
427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
428 {
429         struct rb_node **p = &uprobes_tree.rb_node;
430         struct rb_node *parent = NULL;
431         struct uprobe *u;
432         int match;
433
434         while (*p) {
435                 parent = *p;
436                 u = rb_entry(parent, struct uprobe, rb_node);
437                 match = match_uprobe(uprobe, u);
438                 if (!match)
439                         return get_uprobe(u);
440
441                 if (match < 0)
442                         p = &parent->rb_left;
443                 else
444                         p = &parent->rb_right;
445
446         }
447
448         u = NULL;
449         rb_link_node(&uprobe->rb_node, parent, p);
450         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451         /* get access + creation ref */
452         atomic_set(&uprobe->ref, 2);
453
454         return u;
455 }
456
457 /*
458  * Acquire uprobes_treelock.
459  * Matching uprobe already exists in rbtree;
460  *      increment (access refcount) and return the matching uprobe.
461  *
462  * No matching uprobe; insert the uprobe in rb_tree;
463  *      get a double refcount (access + creation) and return NULL.
464  */
465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 {
467         struct uprobe *u;
468
469         spin_lock(&uprobes_treelock);
470         u = __insert_uprobe(uprobe);
471         spin_unlock(&uprobes_treelock);
472
473         return u;
474 }
475
476 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
477 {
478         struct uprobe *uprobe, *cur_uprobe;
479
480         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
481         if (!uprobe)
482                 return NULL;
483
484         uprobe->inode = igrab(inode);
485         uprobe->offset = offset;
486         init_rwsem(&uprobe->register_rwsem);
487         init_rwsem(&uprobe->consumer_rwsem);
488
489         /* add to uprobes_tree, sorted on inode:offset */
490         cur_uprobe = insert_uprobe(uprobe);
491         /* a uprobe exists for this inode:offset combination */
492         if (cur_uprobe) {
493                 kfree(uprobe);
494                 uprobe = cur_uprobe;
495                 iput(inode);
496         }
497
498         return uprobe;
499 }
500
501 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
502 {
503         down_write(&uprobe->consumer_rwsem);
504         uc->next = uprobe->consumers;
505         uprobe->consumers = uc;
506         up_write(&uprobe->consumer_rwsem);
507 }
508
509 /*
510  * For uprobe @uprobe, delete the consumer @uc.
511  * Return true if the @uc is deleted successfully
512  * or return false.
513  */
514 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
515 {
516         struct uprobe_consumer **con;
517         bool ret = false;
518
519         down_write(&uprobe->consumer_rwsem);
520         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
521                 if (*con == uc) {
522                         *con = uc->next;
523                         ret = true;
524                         break;
525                 }
526         }
527         up_write(&uprobe->consumer_rwsem);
528
529         return ret;
530 }
531
532 static int __copy_insn(struct address_space *mapping, struct file *filp,
533                         void *insn, int nbytes, loff_t offset)
534 {
535         struct page *page;
536         /*
537          * Ensure that the page that has the original instruction is populated
538          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
539          * see uprobe_register().
540          */
541         if (mapping->a_ops->readpage)
542                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
543         else
544                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
545         if (IS_ERR(page))
546                 return PTR_ERR(page);
547
548         copy_from_page(page, offset, insn, nbytes);
549         put_page(page);
550
551         return 0;
552 }
553
554 static int copy_insn(struct uprobe *uprobe, struct file *filp)
555 {
556         struct address_space *mapping = uprobe->inode->i_mapping;
557         loff_t offs = uprobe->offset;
558         void *insn = &uprobe->arch.insn;
559         int size = sizeof(uprobe->arch.insn);
560         int len, err = -EIO;
561
562         /* Copy only available bytes, -EIO if nothing was read */
563         do {
564                 if (offs >= i_size_read(uprobe->inode))
565                         break;
566
567                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
568                 err = __copy_insn(mapping, filp, insn, len, offs);
569                 if (err)
570                         break;
571
572                 insn += len;
573                 offs += len;
574                 size -= len;
575         } while (size);
576
577         return err;
578 }
579
580 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581                                 struct mm_struct *mm, unsigned long vaddr)
582 {
583         int ret = 0;
584
585         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
586                 return ret;
587
588         /* TODO: move this into _register, until then we abuse this sem. */
589         down_write(&uprobe->consumer_rwsem);
590         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
591                 goto out;
592
593         ret = copy_insn(uprobe, file);
594         if (ret)
595                 goto out;
596
597         ret = -ENOTSUPP;
598         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
599                 goto out;
600
601         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
602         if (ret)
603                 goto out;
604
605         /* uprobe_write_opcode() assumes we don't cross page boundary */
606         BUG_ON((uprobe->offset & ~PAGE_MASK) +
607                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
608
609         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
610         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
611
612  out:
613         up_write(&uprobe->consumer_rwsem);
614
615         return ret;
616 }
617
618 static inline bool consumer_filter(struct uprobe_consumer *uc,
619                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
620 {
621         return !uc->filter || uc->filter(uc, ctx, mm);
622 }
623
624 static bool filter_chain(struct uprobe *uprobe,
625                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
626 {
627         struct uprobe_consumer *uc;
628         bool ret = false;
629
630         down_read(&uprobe->consumer_rwsem);
631         for (uc = uprobe->consumers; uc; uc = uc->next) {
632                 ret = consumer_filter(uc, ctx, mm);
633                 if (ret)
634                         break;
635         }
636         up_read(&uprobe->consumer_rwsem);
637
638         return ret;
639 }
640
641 static int
642 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
643                         struct vm_area_struct *vma, unsigned long vaddr)
644 {
645         bool first_uprobe;
646         int ret;
647
648         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
649         if (ret)
650                 return ret;
651
652         /*
653          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
654          * the task can hit this breakpoint right after __replace_page().
655          */
656         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
657         if (first_uprobe)
658                 set_bit(MMF_HAS_UPROBES, &mm->flags);
659
660         ret = set_swbp(&uprobe->arch, mm, vaddr);
661         if (!ret)
662                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
663         else if (first_uprobe)
664                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
665
666         return ret;
667 }
668
669 static int
670 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
671 {
672         set_bit(MMF_RECALC_UPROBES, &mm->flags);
673         return set_orig_insn(&uprobe->arch, mm, vaddr);
674 }
675
676 static inline bool uprobe_is_active(struct uprobe *uprobe)
677 {
678         return !RB_EMPTY_NODE(&uprobe->rb_node);
679 }
680 /*
681  * There could be threads that have already hit the breakpoint. They
682  * will recheck the current insn and restart if find_uprobe() fails.
683  * See find_active_uprobe().
684  */
685 static void delete_uprobe(struct uprobe *uprobe)
686 {
687         if (WARN_ON(!uprobe_is_active(uprobe)))
688                 return;
689
690         spin_lock(&uprobes_treelock);
691         rb_erase(&uprobe->rb_node, &uprobes_tree);
692         spin_unlock(&uprobes_treelock);
693         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
694         iput(uprobe->inode);
695         put_uprobe(uprobe);
696 }
697
698 struct map_info {
699         struct map_info *next;
700         struct mm_struct *mm;
701         unsigned long vaddr;
702 };
703
704 static inline struct map_info *free_map_info(struct map_info *info)
705 {
706         struct map_info *next = info->next;
707         kfree(info);
708         return next;
709 }
710
711 static struct map_info *
712 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
713 {
714         unsigned long pgoff = offset >> PAGE_SHIFT;
715         struct vm_area_struct *vma;
716         struct map_info *curr = NULL;
717         struct map_info *prev = NULL;
718         struct map_info *info;
719         int more = 0;
720
721  again:
722         i_mmap_lock_read(mapping);
723         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
724                 if (!valid_vma(vma, is_register))
725                         continue;
726
727                 if (!prev && !more) {
728                         /*
729                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
730                          * reclaim. This is optimistic, no harm done if it fails.
731                          */
732                         prev = kmalloc(sizeof(struct map_info),
733                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
734                         if (prev)
735                                 prev->next = NULL;
736                 }
737                 if (!prev) {
738                         more++;
739                         continue;
740                 }
741
742                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
743                         continue;
744
745                 info = prev;
746                 prev = prev->next;
747                 info->next = curr;
748                 curr = info;
749
750                 info->mm = vma->vm_mm;
751                 info->vaddr = offset_to_vaddr(vma, offset);
752         }
753         i_mmap_unlock_read(mapping);
754
755         if (!more)
756                 goto out;
757
758         prev = curr;
759         while (curr) {
760                 mmput(curr->mm);
761                 curr = curr->next;
762         }
763
764         do {
765                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
766                 if (!info) {
767                         curr = ERR_PTR(-ENOMEM);
768                         goto out;
769                 }
770                 info->next = prev;
771                 prev = info;
772         } while (--more);
773
774         goto again;
775  out:
776         while (prev)
777                 prev = free_map_info(prev);
778         return curr;
779 }
780
781 static int
782 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
783 {
784         bool is_register = !!new;
785         struct map_info *info;
786         int err = 0;
787
788         percpu_down_write(&dup_mmap_sem);
789         info = build_map_info(uprobe->inode->i_mapping,
790                                         uprobe->offset, is_register);
791         if (IS_ERR(info)) {
792                 err = PTR_ERR(info);
793                 goto out;
794         }
795
796         while (info) {
797                 struct mm_struct *mm = info->mm;
798                 struct vm_area_struct *vma;
799
800                 if (err && is_register)
801                         goto free;
802
803                 down_write(&mm->mmap_sem);
804                 vma = find_vma(mm, info->vaddr);
805                 if (!vma || !valid_vma(vma, is_register) ||
806                     file_inode(vma->vm_file) != uprobe->inode)
807                         goto unlock;
808
809                 if (vma->vm_start > info->vaddr ||
810                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
811                         goto unlock;
812
813                 if (is_register) {
814                         /* consult only the "caller", new consumer. */
815                         if (consumer_filter(new,
816                                         UPROBE_FILTER_REGISTER, mm))
817                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
818                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
819                         if (!filter_chain(uprobe,
820                                         UPROBE_FILTER_UNREGISTER, mm))
821                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
822                 }
823
824  unlock:
825                 up_write(&mm->mmap_sem);
826  free:
827                 mmput(mm);
828                 info = free_map_info(info);
829         }
830  out:
831         percpu_up_write(&dup_mmap_sem);
832         return err;
833 }
834
835 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
836 {
837         consumer_add(uprobe, uc);
838         return register_for_each_vma(uprobe, uc);
839 }
840
841 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
842 {
843         int err;
844
845         if (WARN_ON(!consumer_del(uprobe, uc)))
846                 return;
847
848         err = register_for_each_vma(uprobe, NULL);
849         /* TODO : cant unregister? schedule a worker thread */
850         if (!uprobe->consumers && !err)
851                 delete_uprobe(uprobe);
852 }
853
854 /*
855  * uprobe_register - register a probe
856  * @inode: the file in which the probe has to be placed.
857  * @offset: offset from the start of the file.
858  * @uc: information on howto handle the probe..
859  *
860  * Apart from the access refcount, uprobe_register() takes a creation
861  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
862  * inserted into the rbtree (i.e first consumer for a @inode:@offset
863  * tuple).  Creation refcount stops uprobe_unregister from freeing the
864  * @uprobe even before the register operation is complete. Creation
865  * refcount is released when the last @uc for the @uprobe
866  * unregisters.
867  *
868  * Return errno if it cannot successully install probes
869  * else return 0 (success)
870  */
871 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
872 {
873         struct uprobe *uprobe;
874         int ret;
875
876         /* Uprobe must have at least one set consumer */
877         if (!uc->handler && !uc->ret_handler)
878                 return -EINVAL;
879
880         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
881         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
882                 return -EIO;
883         /* Racy, just to catch the obvious mistakes */
884         if (offset > i_size_read(inode))
885                 return -EINVAL;
886
887  retry:
888         uprobe = alloc_uprobe(inode, offset);
889         if (!uprobe)
890                 return -ENOMEM;
891         /*
892          * We can race with uprobe_unregister()->delete_uprobe().
893          * Check uprobe_is_active() and retry if it is false.
894          */
895         down_write(&uprobe->register_rwsem);
896         ret = -EAGAIN;
897         if (likely(uprobe_is_active(uprobe))) {
898                 ret = __uprobe_register(uprobe, uc);
899                 if (ret)
900                         __uprobe_unregister(uprobe, uc);
901         }
902         up_write(&uprobe->register_rwsem);
903         put_uprobe(uprobe);
904
905         if (unlikely(ret == -EAGAIN))
906                 goto retry;
907         return ret;
908 }
909 EXPORT_SYMBOL_GPL(uprobe_register);
910
911 /*
912  * uprobe_apply - unregister a already registered probe.
913  * @inode: the file in which the probe has to be removed.
914  * @offset: offset from the start of the file.
915  * @uc: consumer which wants to add more or remove some breakpoints
916  * @add: add or remove the breakpoints
917  */
918 int uprobe_apply(struct inode *inode, loff_t offset,
919                         struct uprobe_consumer *uc, bool add)
920 {
921         struct uprobe *uprobe;
922         struct uprobe_consumer *con;
923         int ret = -ENOENT;
924
925         uprobe = find_uprobe(inode, offset);
926         if (WARN_ON(!uprobe))
927                 return ret;
928
929         down_write(&uprobe->register_rwsem);
930         for (con = uprobe->consumers; con && con != uc ; con = con->next)
931                 ;
932         if (con)
933                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
934         up_write(&uprobe->register_rwsem);
935         put_uprobe(uprobe);
936
937         return ret;
938 }
939
940 /*
941  * uprobe_unregister - unregister a already registered probe.
942  * @inode: the file in which the probe has to be removed.
943  * @offset: offset from the start of the file.
944  * @uc: identify which probe if multiple probes are colocated.
945  */
946 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
947 {
948         struct uprobe *uprobe;
949
950         uprobe = find_uprobe(inode, offset);
951         if (WARN_ON(!uprobe))
952                 return;
953
954         down_write(&uprobe->register_rwsem);
955         __uprobe_unregister(uprobe, uc);
956         up_write(&uprobe->register_rwsem);
957         put_uprobe(uprobe);
958 }
959 EXPORT_SYMBOL_GPL(uprobe_unregister);
960
961 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
962 {
963         struct vm_area_struct *vma;
964         int err = 0;
965
966         down_read(&mm->mmap_sem);
967         for (vma = mm->mmap; vma; vma = vma->vm_next) {
968                 unsigned long vaddr;
969                 loff_t offset;
970
971                 if (!valid_vma(vma, false) ||
972                     file_inode(vma->vm_file) != uprobe->inode)
973                         continue;
974
975                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
976                 if (uprobe->offset <  offset ||
977                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
978                         continue;
979
980                 vaddr = offset_to_vaddr(vma, uprobe->offset);
981                 err |= remove_breakpoint(uprobe, mm, vaddr);
982         }
983         up_read(&mm->mmap_sem);
984
985         return err;
986 }
987
988 static struct rb_node *
989 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
990 {
991         struct rb_node *n = uprobes_tree.rb_node;
992
993         while (n) {
994                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
995
996                 if (inode < u->inode) {
997                         n = n->rb_left;
998                 } else if (inode > u->inode) {
999                         n = n->rb_right;
1000                 } else {
1001                         if (max < u->offset)
1002                                 n = n->rb_left;
1003                         else if (min > u->offset)
1004                                 n = n->rb_right;
1005                         else
1006                                 break;
1007                 }
1008         }
1009
1010         return n;
1011 }
1012
1013 /*
1014  * For a given range in vma, build a list of probes that need to be inserted.
1015  */
1016 static void build_probe_list(struct inode *inode,
1017                                 struct vm_area_struct *vma,
1018                                 unsigned long start, unsigned long end,
1019                                 struct list_head *head)
1020 {
1021         loff_t min, max;
1022         struct rb_node *n, *t;
1023         struct uprobe *u;
1024
1025         INIT_LIST_HEAD(head);
1026         min = vaddr_to_offset(vma, start);
1027         max = min + (end - start) - 1;
1028
1029         spin_lock(&uprobes_treelock);
1030         n = find_node_in_range(inode, min, max);
1031         if (n) {
1032                 for (t = n; t; t = rb_prev(t)) {
1033                         u = rb_entry(t, struct uprobe, rb_node);
1034                         if (u->inode != inode || u->offset < min)
1035                                 break;
1036                         list_add(&u->pending_list, head);
1037                         get_uprobe(u);
1038                 }
1039                 for (t = n; (t = rb_next(t)); ) {
1040                         u = rb_entry(t, struct uprobe, rb_node);
1041                         if (u->inode != inode || u->offset > max)
1042                                 break;
1043                         list_add(&u->pending_list, head);
1044                         get_uprobe(u);
1045                 }
1046         }
1047         spin_unlock(&uprobes_treelock);
1048 }
1049
1050 /*
1051  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1052  *
1053  * Currently we ignore all errors and always return 0, the callers
1054  * can't handle the failure anyway.
1055  */
1056 int uprobe_mmap(struct vm_area_struct *vma)
1057 {
1058         struct list_head tmp_list;
1059         struct uprobe *uprobe, *u;
1060         struct inode *inode;
1061
1062         if (no_uprobe_events() || !valid_vma(vma, true))
1063                 return 0;
1064
1065         inode = file_inode(vma->vm_file);
1066         if (!inode)
1067                 return 0;
1068
1069         mutex_lock(uprobes_mmap_hash(inode));
1070         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1071         /*
1072          * We can race with uprobe_unregister(), this uprobe can be already
1073          * removed. But in this case filter_chain() must return false, all
1074          * consumers have gone away.
1075          */
1076         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1077                 if (!fatal_signal_pending(current) &&
1078                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1079                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1080                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1081                 }
1082                 put_uprobe(uprobe);
1083         }
1084         mutex_unlock(uprobes_mmap_hash(inode));
1085
1086         return 0;
1087 }
1088
1089 static bool
1090 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1091 {
1092         loff_t min, max;
1093         struct inode *inode;
1094         struct rb_node *n;
1095
1096         inode = file_inode(vma->vm_file);
1097
1098         min = vaddr_to_offset(vma, start);
1099         max = min + (end - start) - 1;
1100
1101         spin_lock(&uprobes_treelock);
1102         n = find_node_in_range(inode, min, max);
1103         spin_unlock(&uprobes_treelock);
1104
1105         return !!n;
1106 }
1107
1108 /*
1109  * Called in context of a munmap of a vma.
1110  */
1111 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1112 {
1113         if (no_uprobe_events() || !valid_vma(vma, false))
1114                 return;
1115
1116         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1117                 return;
1118
1119         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1120              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1121                 return;
1122
1123         if (vma_has_uprobes(vma, start, end))
1124                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1125 }
1126
1127 /* Slot allocation for XOL */
1128 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1129 {
1130         struct vm_area_struct *vma;
1131         int ret;
1132
1133         down_write(&mm->mmap_sem);
1134         if (mm->uprobes_state.xol_area) {
1135                 ret = -EALREADY;
1136                 goto fail;
1137         }
1138
1139         if (!area->vaddr) {
1140                 /* Try to map as high as possible, this is only a hint. */
1141                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1142                                                 PAGE_SIZE, 0, 0);
1143                 if (area->vaddr & ~PAGE_MASK) {
1144                         ret = area->vaddr;
1145                         goto fail;
1146                 }
1147         }
1148
1149         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1150                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1151                                 &area->xol_mapping);
1152         if (IS_ERR(vma)) {
1153                 ret = PTR_ERR(vma);
1154                 goto fail;
1155         }
1156
1157         ret = 0;
1158         smp_wmb();      /* pairs with get_xol_area() */
1159         mm->uprobes_state.xol_area = area;
1160  fail:
1161         up_write(&mm->mmap_sem);
1162
1163         return ret;
1164 }
1165
1166 static struct xol_area *__create_xol_area(unsigned long vaddr)
1167 {
1168         struct mm_struct *mm = current->mm;
1169         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1170         struct xol_area *area;
1171
1172         area = kmalloc(sizeof(*area), GFP_KERNEL);
1173         if (unlikely(!area))
1174                 goto out;
1175
1176         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1177         if (!area->bitmap)
1178                 goto free_area;
1179
1180         area->xol_mapping.name = "[uprobes]";
1181         area->xol_mapping.fault = NULL;
1182         area->xol_mapping.pages = area->pages;
1183         area->pages[0] = alloc_page(GFP_HIGHUSER);
1184         if (!area->pages[0])
1185                 goto free_bitmap;
1186         area->pages[1] = NULL;
1187
1188         area->vaddr = vaddr;
1189         init_waitqueue_head(&area->wq);
1190         /* Reserve the 1st slot for get_trampoline_vaddr() */
1191         set_bit(0, area->bitmap);
1192         atomic_set(&area->slot_count, 1);
1193         copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1194
1195         if (!xol_add_vma(mm, area))
1196                 return area;
1197
1198         __free_page(area->pages[0]);
1199  free_bitmap:
1200         kfree(area->bitmap);
1201  free_area:
1202         kfree(area);
1203  out:
1204         return NULL;
1205 }
1206
1207 /*
1208  * get_xol_area - Allocate process's xol_area if necessary.
1209  * This area will be used for storing instructions for execution out of line.
1210  *
1211  * Returns the allocated area or NULL.
1212  */
1213 static struct xol_area *get_xol_area(void)
1214 {
1215         struct mm_struct *mm = current->mm;
1216         struct xol_area *area;
1217
1218         if (!mm->uprobes_state.xol_area)
1219                 __create_xol_area(0);
1220
1221         area = mm->uprobes_state.xol_area;
1222         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1223         return area;
1224 }
1225
1226 /*
1227  * uprobe_clear_state - Free the area allocated for slots.
1228  */
1229 void uprobe_clear_state(struct mm_struct *mm)
1230 {
1231         struct xol_area *area = mm->uprobes_state.xol_area;
1232
1233         if (!area)
1234                 return;
1235
1236         put_page(area->pages[0]);
1237         kfree(area->bitmap);
1238         kfree(area);
1239 }
1240
1241 void uprobe_start_dup_mmap(void)
1242 {
1243         percpu_down_read(&dup_mmap_sem);
1244 }
1245
1246 void uprobe_end_dup_mmap(void)
1247 {
1248         percpu_up_read(&dup_mmap_sem);
1249 }
1250
1251 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1252 {
1253         newmm->uprobes_state.xol_area = NULL;
1254
1255         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1256                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1257                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1258                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1259         }
1260 }
1261
1262 /*
1263  *  - search for a free slot.
1264  */
1265 static unsigned long xol_take_insn_slot(struct xol_area *area)
1266 {
1267         unsigned long slot_addr;
1268         int slot_nr;
1269
1270         do {
1271                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1272                 if (slot_nr < UINSNS_PER_PAGE) {
1273                         if (!test_and_set_bit(slot_nr, area->bitmap))
1274                                 break;
1275
1276                         slot_nr = UINSNS_PER_PAGE;
1277                         continue;
1278                 }
1279                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1280         } while (slot_nr >= UINSNS_PER_PAGE);
1281
1282         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1283         atomic_inc(&area->slot_count);
1284
1285         return slot_addr;
1286 }
1287
1288 /*
1289  * xol_get_insn_slot - allocate a slot for xol.
1290  * Returns the allocated slot address or 0.
1291  */
1292 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1293 {
1294         struct xol_area *area;
1295         unsigned long xol_vaddr;
1296
1297         area = get_xol_area();
1298         if (!area)
1299                 return 0;
1300
1301         xol_vaddr = xol_take_insn_slot(area);
1302         if (unlikely(!xol_vaddr))
1303                 return 0;
1304
1305         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1306                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1307
1308         return xol_vaddr;
1309 }
1310
1311 /*
1312  * xol_free_insn_slot - If slot was earlier allocated by
1313  * @xol_get_insn_slot(), make the slot available for
1314  * subsequent requests.
1315  */
1316 static void xol_free_insn_slot(struct task_struct *tsk)
1317 {
1318         struct xol_area *area;
1319         unsigned long vma_end;
1320         unsigned long slot_addr;
1321
1322         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1323                 return;
1324
1325         slot_addr = tsk->utask->xol_vaddr;
1326         if (unlikely(!slot_addr))
1327                 return;
1328
1329         area = tsk->mm->uprobes_state.xol_area;
1330         vma_end = area->vaddr + PAGE_SIZE;
1331         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1332                 unsigned long offset;
1333                 int slot_nr;
1334
1335                 offset = slot_addr - area->vaddr;
1336                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1337                 if (slot_nr >= UINSNS_PER_PAGE)
1338                         return;
1339
1340                 clear_bit(slot_nr, area->bitmap);
1341                 atomic_dec(&area->slot_count);
1342                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1343                 if (waitqueue_active(&area->wq))
1344                         wake_up(&area->wq);
1345
1346                 tsk->utask->xol_vaddr = 0;
1347         }
1348 }
1349
1350 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1351                                   void *src, unsigned long len)
1352 {
1353         /* Initialize the slot */
1354         copy_to_page(page, vaddr, src, len);
1355
1356         /*
1357          * We probably need flush_icache_user_range() but it needs vma.
1358          * This should work on most of architectures by default. If
1359          * architecture needs to do something different it can define
1360          * its own version of the function.
1361          */
1362         flush_dcache_page(page);
1363 }
1364
1365 /**
1366  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1367  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1368  * instruction.
1369  * Return the address of the breakpoint instruction.
1370  */
1371 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1372 {
1373         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1374 }
1375
1376 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1377 {
1378         struct uprobe_task *utask = current->utask;
1379
1380         if (unlikely(utask && utask->active_uprobe))
1381                 return utask->vaddr;
1382
1383         return instruction_pointer(regs);
1384 }
1385
1386 static struct return_instance *free_ret_instance(struct return_instance *ri)
1387 {
1388         struct return_instance *next = ri->next;
1389         put_uprobe(ri->uprobe);
1390         kfree(ri);
1391         return next;
1392 }
1393
1394 /*
1395  * Called with no locks held.
1396  * Called in context of a exiting or a exec-ing thread.
1397  */
1398 void uprobe_free_utask(struct task_struct *t)
1399 {
1400         struct uprobe_task *utask = t->utask;
1401         struct return_instance *ri;
1402
1403         if (!utask)
1404                 return;
1405
1406         if (utask->active_uprobe)
1407                 put_uprobe(utask->active_uprobe);
1408
1409         ri = utask->return_instances;
1410         while (ri)
1411                 ri = free_ret_instance(ri);
1412
1413         xol_free_insn_slot(t);
1414         kfree(utask);
1415         t->utask = NULL;
1416 }
1417
1418 /*
1419  * Allocate a uprobe_task object for the task if if necessary.
1420  * Called when the thread hits a breakpoint.
1421  *
1422  * Returns:
1423  * - pointer to new uprobe_task on success
1424  * - NULL otherwise
1425  */
1426 static struct uprobe_task *get_utask(void)
1427 {
1428         if (!current->utask)
1429                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1430         return current->utask;
1431 }
1432
1433 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1434 {
1435         struct uprobe_task *n_utask;
1436         struct return_instance **p, *o, *n;
1437
1438         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1439         if (!n_utask)
1440                 return -ENOMEM;
1441         t->utask = n_utask;
1442
1443         p = &n_utask->return_instances;
1444         for (o = o_utask->return_instances; o; o = o->next) {
1445                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1446                 if (!n)
1447                         return -ENOMEM;
1448
1449                 *n = *o;
1450                 get_uprobe(n->uprobe);
1451                 n->next = NULL;
1452
1453                 *p = n;
1454                 p = &n->next;
1455                 n_utask->depth++;
1456         }
1457
1458         return 0;
1459 }
1460
1461 static void uprobe_warn(struct task_struct *t, const char *msg)
1462 {
1463         pr_warn("uprobe: %s:%d failed to %s\n",
1464                         current->comm, current->pid, msg);
1465 }
1466
1467 static void dup_xol_work(struct callback_head *work)
1468 {
1469         if (current->flags & PF_EXITING)
1470                 return;
1471
1472         if (!__create_xol_area(current->utask->dup_xol_addr))
1473                 uprobe_warn(current, "dup xol area");
1474 }
1475
1476 /*
1477  * Called in context of a new clone/fork from copy_process.
1478  */
1479 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1480 {
1481         struct uprobe_task *utask = current->utask;
1482         struct mm_struct *mm = current->mm;
1483         struct xol_area *area;
1484
1485         t->utask = NULL;
1486
1487         if (!utask || !utask->return_instances)
1488                 return;
1489
1490         if (mm == t->mm && !(flags & CLONE_VFORK))
1491                 return;
1492
1493         if (dup_utask(t, utask))
1494                 return uprobe_warn(t, "dup ret instances");
1495
1496         /* The task can fork() after dup_xol_work() fails */
1497         area = mm->uprobes_state.xol_area;
1498         if (!area)
1499                 return uprobe_warn(t, "dup xol area");
1500
1501         if (mm == t->mm)
1502                 return;
1503
1504         t->utask->dup_xol_addr = area->vaddr;
1505         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1506         task_work_add(t, &t->utask->dup_xol_work, true);
1507 }
1508
1509 /*
1510  * Current area->vaddr notion assume the trampoline address is always
1511  * equal area->vaddr.
1512  *
1513  * Returns -1 in case the xol_area is not allocated.
1514  */
1515 static unsigned long get_trampoline_vaddr(void)
1516 {
1517         struct xol_area *area;
1518         unsigned long trampoline_vaddr = -1;
1519
1520         area = current->mm->uprobes_state.xol_area;
1521         smp_read_barrier_depends();
1522         if (area)
1523                 trampoline_vaddr = area->vaddr;
1524
1525         return trampoline_vaddr;
1526 }
1527
1528 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1529                                         struct pt_regs *regs)
1530 {
1531         struct return_instance *ri = utask->return_instances;
1532         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1533
1534         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1535                 ri = free_ret_instance(ri);
1536                 utask->depth--;
1537         }
1538         utask->return_instances = ri;
1539 }
1540
1541 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1542 {
1543         struct return_instance *ri;
1544         struct uprobe_task *utask;
1545         unsigned long orig_ret_vaddr, trampoline_vaddr;
1546         bool chained;
1547
1548         if (!get_xol_area())
1549                 return;
1550
1551         utask = get_utask();
1552         if (!utask)
1553                 return;
1554
1555         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1556                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1557                                 " nestedness limit pid/tgid=%d/%d\n",
1558                                 current->pid, current->tgid);
1559                 return;
1560         }
1561
1562         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1563         if (!ri)
1564                 return;
1565
1566         trampoline_vaddr = get_trampoline_vaddr();
1567         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1568         if (orig_ret_vaddr == -1)
1569                 goto fail;
1570
1571         /* drop the entries invalidated by longjmp() */
1572         chained = (orig_ret_vaddr == trampoline_vaddr);
1573         cleanup_return_instances(utask, chained, regs);
1574
1575         /*
1576          * We don't want to keep trampoline address in stack, rather keep the
1577          * original return address of first caller thru all the consequent
1578          * instances. This also makes breakpoint unwrapping easier.
1579          */
1580         if (chained) {
1581                 if (!utask->return_instances) {
1582                         /*
1583                          * This situation is not possible. Likely we have an
1584                          * attack from user-space.
1585                          */
1586                         uprobe_warn(current, "handle tail call");
1587                         goto fail;
1588                 }
1589                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1590         }
1591
1592         ri->uprobe = get_uprobe(uprobe);
1593         ri->func = instruction_pointer(regs);
1594         ri->stack = user_stack_pointer(regs);
1595         ri->orig_ret_vaddr = orig_ret_vaddr;
1596         ri->chained = chained;
1597
1598         utask->depth++;
1599         ri->next = utask->return_instances;
1600         utask->return_instances = ri;
1601
1602         return;
1603  fail:
1604         kfree(ri);
1605 }
1606
1607 /* Prepare to single-step probed instruction out of line. */
1608 static int
1609 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1610 {
1611         struct uprobe_task *utask;
1612         unsigned long xol_vaddr;
1613         int err;
1614
1615         utask = get_utask();
1616         if (!utask)
1617                 return -ENOMEM;
1618
1619         xol_vaddr = xol_get_insn_slot(uprobe);
1620         if (!xol_vaddr)
1621                 return -ENOMEM;
1622
1623         utask->xol_vaddr = xol_vaddr;
1624         utask->vaddr = bp_vaddr;
1625
1626         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1627         if (unlikely(err)) {
1628                 xol_free_insn_slot(current);
1629                 return err;
1630         }
1631
1632         utask->active_uprobe = uprobe;
1633         utask->state = UTASK_SSTEP;
1634         return 0;
1635 }
1636
1637 /*
1638  * If we are singlestepping, then ensure this thread is not connected to
1639  * non-fatal signals until completion of singlestep.  When xol insn itself
1640  * triggers the signal,  restart the original insn even if the task is
1641  * already SIGKILL'ed (since coredump should report the correct ip).  This
1642  * is even more important if the task has a handler for SIGSEGV/etc, The
1643  * _same_ instruction should be repeated again after return from the signal
1644  * handler, and SSTEP can never finish in this case.
1645  */
1646 bool uprobe_deny_signal(void)
1647 {
1648         struct task_struct *t = current;
1649         struct uprobe_task *utask = t->utask;
1650
1651         if (likely(!utask || !utask->active_uprobe))
1652                 return false;
1653
1654         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1655
1656         if (signal_pending(t)) {
1657                 spin_lock_irq(&t->sighand->siglock);
1658                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1659                 spin_unlock_irq(&t->sighand->siglock);
1660
1661                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1662                         utask->state = UTASK_SSTEP_TRAPPED;
1663                         set_tsk_thread_flag(t, TIF_UPROBE);
1664                 }
1665         }
1666
1667         return true;
1668 }
1669
1670 static void mmf_recalc_uprobes(struct mm_struct *mm)
1671 {
1672         struct vm_area_struct *vma;
1673
1674         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1675                 if (!valid_vma(vma, false))
1676                         continue;
1677                 /*
1678                  * This is not strictly accurate, we can race with
1679                  * uprobe_unregister() and see the already removed
1680                  * uprobe if delete_uprobe() was not yet called.
1681                  * Or this uprobe can be filtered out.
1682                  */
1683                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1684                         return;
1685         }
1686
1687         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1688 }
1689
1690 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1691 {
1692         struct page *page;
1693         uprobe_opcode_t opcode;
1694         int result;
1695
1696         pagefault_disable();
1697         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1698                                                         sizeof(opcode));
1699         pagefault_enable();
1700
1701         if (likely(result == 0))
1702                 goto out;
1703
1704         /*
1705          * The NULL 'tsk' here ensures that any faults that occur here
1706          * will not be accounted to the task.  'mm' *is* current->mm,
1707          * but we treat this as a 'remote' access since it is
1708          * essentially a kernel access to the memory.
1709          */
1710         result = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1711         if (result < 0)
1712                 return result;
1713
1714         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1715         put_page(page);
1716  out:
1717         /* This needs to return true for any variant of the trap insn */
1718         return is_trap_insn(&opcode);
1719 }
1720
1721 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1722 {
1723         struct mm_struct *mm = current->mm;
1724         struct uprobe *uprobe = NULL;
1725         struct vm_area_struct *vma;
1726
1727         down_read(&mm->mmap_sem);
1728         vma = find_vma(mm, bp_vaddr);
1729         if (vma && vma->vm_start <= bp_vaddr) {
1730                 if (valid_vma(vma, false)) {
1731                         struct inode *inode = file_inode(vma->vm_file);
1732                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1733
1734                         uprobe = find_uprobe(inode, offset);
1735                 }
1736
1737                 if (!uprobe)
1738                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1739         } else {
1740                 *is_swbp = -EFAULT;
1741         }
1742
1743         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1744                 mmf_recalc_uprobes(mm);
1745         up_read(&mm->mmap_sem);
1746
1747         return uprobe;
1748 }
1749
1750 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1751 {
1752         struct uprobe_consumer *uc;
1753         int remove = UPROBE_HANDLER_REMOVE;
1754         bool need_prep = false; /* prepare return uprobe, when needed */
1755
1756         down_read(&uprobe->register_rwsem);
1757         for (uc = uprobe->consumers; uc; uc = uc->next) {
1758                 int rc = 0;
1759
1760                 if (uc->handler) {
1761                         rc = uc->handler(uc, regs);
1762                         WARN(rc & ~UPROBE_HANDLER_MASK,
1763                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1764                 }
1765
1766                 if (uc->ret_handler)
1767                         need_prep = true;
1768
1769                 remove &= rc;
1770         }
1771
1772         if (need_prep && !remove)
1773                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1774
1775         if (remove && uprobe->consumers) {
1776                 WARN_ON(!uprobe_is_active(uprobe));
1777                 unapply_uprobe(uprobe, current->mm);
1778         }
1779         up_read(&uprobe->register_rwsem);
1780 }
1781
1782 static void
1783 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1784 {
1785         struct uprobe *uprobe = ri->uprobe;
1786         struct uprobe_consumer *uc;
1787
1788         down_read(&uprobe->register_rwsem);
1789         for (uc = uprobe->consumers; uc; uc = uc->next) {
1790                 if (uc->ret_handler)
1791                         uc->ret_handler(uc, ri->func, regs);
1792         }
1793         up_read(&uprobe->register_rwsem);
1794 }
1795
1796 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1797 {
1798         bool chained;
1799
1800         do {
1801                 chained = ri->chained;
1802                 ri = ri->next;  /* can't be NULL if chained */
1803         } while (chained);
1804
1805         return ri;
1806 }
1807
1808 static void handle_trampoline(struct pt_regs *regs)
1809 {
1810         struct uprobe_task *utask;
1811         struct return_instance *ri, *next;
1812         bool valid;
1813
1814         utask = current->utask;
1815         if (!utask)
1816                 goto sigill;
1817
1818         ri = utask->return_instances;
1819         if (!ri)
1820                 goto sigill;
1821
1822         do {
1823                 /*
1824                  * We should throw out the frames invalidated by longjmp().
1825                  * If this chain is valid, then the next one should be alive
1826                  * or NULL; the latter case means that nobody but ri->func
1827                  * could hit this trampoline on return. TODO: sigaltstack().
1828                  */
1829                 next = find_next_ret_chain(ri);
1830                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1831
1832                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1833                 do {
1834                         if (valid)
1835                                 handle_uretprobe_chain(ri, regs);
1836                         ri = free_ret_instance(ri);
1837                         utask->depth--;
1838                 } while (ri != next);
1839         } while (!valid);
1840
1841         utask->return_instances = ri;
1842         return;
1843
1844  sigill:
1845         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1846         force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1847
1848 }
1849
1850 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1851 {
1852         return false;
1853 }
1854
1855 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1856                                         struct pt_regs *regs)
1857 {
1858         return true;
1859 }
1860
1861 /*
1862  * Run handler and ask thread to singlestep.
1863  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1864  */
1865 static void handle_swbp(struct pt_regs *regs)
1866 {
1867         struct uprobe *uprobe;
1868         unsigned long bp_vaddr;
1869         int uninitialized_var(is_swbp);
1870
1871         bp_vaddr = uprobe_get_swbp_addr(regs);
1872         if (bp_vaddr == get_trampoline_vaddr())
1873                 return handle_trampoline(regs);
1874
1875         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1876         if (!uprobe) {
1877                 if (is_swbp > 0) {
1878                         /* No matching uprobe; signal SIGTRAP. */
1879                         send_sig(SIGTRAP, current, 0);
1880                 } else {
1881                         /*
1882                          * Either we raced with uprobe_unregister() or we can't
1883                          * access this memory. The latter is only possible if
1884                          * another thread plays with our ->mm. In both cases
1885                          * we can simply restart. If this vma was unmapped we
1886                          * can pretend this insn was not executed yet and get
1887                          * the (correct) SIGSEGV after restart.
1888                          */
1889                         instruction_pointer_set(regs, bp_vaddr);
1890                 }
1891                 return;
1892         }
1893
1894         /* change it in advance for ->handler() and restart */
1895         instruction_pointer_set(regs, bp_vaddr);
1896
1897         /*
1898          * TODO: move copy_insn/etc into _register and remove this hack.
1899          * After we hit the bp, _unregister + _register can install the
1900          * new and not-yet-analyzed uprobe at the same address, restart.
1901          */
1902         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1903         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1904                 goto out;
1905
1906         /* Tracing handlers use ->utask to communicate with fetch methods */
1907         if (!get_utask())
1908                 goto out;
1909
1910         if (arch_uprobe_ignore(&uprobe->arch, regs))
1911                 goto out;
1912
1913         handler_chain(uprobe, regs);
1914
1915         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1916                 goto out;
1917
1918         if (!pre_ssout(uprobe, regs, bp_vaddr))
1919                 return;
1920
1921         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1922 out:
1923         put_uprobe(uprobe);
1924 }
1925
1926 /*
1927  * Perform required fix-ups and disable singlestep.
1928  * Allow pending signals to take effect.
1929  */
1930 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1931 {
1932         struct uprobe *uprobe;
1933         int err = 0;
1934
1935         uprobe = utask->active_uprobe;
1936         if (utask->state == UTASK_SSTEP_ACK)
1937                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1938         else if (utask->state == UTASK_SSTEP_TRAPPED)
1939                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1940         else
1941                 WARN_ON_ONCE(1);
1942
1943         put_uprobe(uprobe);
1944         utask->active_uprobe = NULL;
1945         utask->state = UTASK_RUNNING;
1946         xol_free_insn_slot(current);
1947
1948         spin_lock_irq(&current->sighand->siglock);
1949         recalc_sigpending(); /* see uprobe_deny_signal() */
1950         spin_unlock_irq(&current->sighand->siglock);
1951
1952         if (unlikely(err)) {
1953                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1954                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1955         }
1956 }
1957
1958 /*
1959  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1960  * allows the thread to return from interrupt. After that handle_swbp()
1961  * sets utask->active_uprobe.
1962  *
1963  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1964  * and allows the thread to return from interrupt.
1965  *
1966  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1967  * uprobe_notify_resume().
1968  */
1969 void uprobe_notify_resume(struct pt_regs *regs)
1970 {
1971         struct uprobe_task *utask;
1972
1973         clear_thread_flag(TIF_UPROBE);
1974
1975         utask = current->utask;
1976         if (utask && utask->active_uprobe)
1977                 handle_singlestep(utask, regs);
1978         else
1979                 handle_swbp(regs);
1980 }
1981
1982 /*
1983  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1984  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1985  */
1986 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1987 {
1988         if (!current->mm)
1989                 return 0;
1990
1991         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1992             (!current->utask || !current->utask->return_instances))
1993                 return 0;
1994
1995         set_thread_flag(TIF_UPROBE);
1996         return 1;
1997 }
1998
1999 /*
2000  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2001  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2002  */
2003 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2004 {
2005         struct uprobe_task *utask = current->utask;
2006
2007         if (!current->mm || !utask || !utask->active_uprobe)
2008                 /* task is currently not uprobed */
2009                 return 0;
2010
2011         utask->state = UTASK_SSTEP_ACK;
2012         set_thread_flag(TIF_UPROBE);
2013         return 1;
2014 }
2015
2016 static struct notifier_block uprobe_exception_nb = {
2017         .notifier_call          = arch_uprobe_exception_notify,
2018         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2019 };
2020
2021 static int __init init_uprobes(void)
2022 {
2023         int i;
2024
2025         for (i = 0; i < UPROBES_HASH_SZ; i++)
2026                 mutex_init(&uprobes_mmap_mutex[i]);
2027
2028         if (percpu_init_rwsem(&dup_mmap_sem))
2029                 return -ENOMEM;
2030
2031         return register_die_notifier(&uprobe_exception_nb);
2032 }
2033 __initcall(init_uprobes);