Merge branch 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-2.6-block.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu\n",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         down_read(&OCFS2_I(inode)->ip_alloc_sem);
537
538         /* This figures out the size of the next contiguous block, and
539          * our logical offset */
540         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541                                           &contig_blocks, &ext_flags);
542         up_read(&OCFS2_I(inode)->ip_alloc_sem);
543
544         if (ret) {
545                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
546                      (unsigned long long)iblock);
547                 ret = -EIO;
548                 goto bail;
549         }
550
551         /* We should already CoW the refcounted extent in case of create. */
552         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
553
554         /* allocate blocks if no p_blkno is found, and create == 1 */
555         if (!p_blkno && create) {
556                 ret = ocfs2_inode_lock(inode, NULL, 1);
557                 if (ret < 0) {
558                         mlog_errno(ret);
559                         goto bail;
560                 }
561
562                 alloc_locked = 1;
563
564                 down_write(&OCFS2_I(inode)->ip_alloc_sem);
565
566                 /* fill hole, allocate blocks can't be larger than the size
567                  * of the hole */
568                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
569                 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
570                                 contig_blocks);
571                 if (clusters_to_alloc > contig_clusters)
572                         clusters_to_alloc = contig_clusters;
573
574                 /* allocate extent and insert them into the extent tree */
575                 ret = ocfs2_extend_allocation(inode, cpos,
576                                 clusters_to_alloc, 0);
577                 if (ret < 0) {
578                         up_write(&OCFS2_I(inode)->ip_alloc_sem);
579                         mlog_errno(ret);
580                         goto bail;
581                 }
582
583                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
584                                 &contig_blocks, &ext_flags);
585                 if (ret < 0) {
586                         up_write(&OCFS2_I(inode)->ip_alloc_sem);
587                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
588                                         (unsigned long long)iblock);
589                         ret = -EIO;
590                         goto bail;
591                 }
592                 set_buffer_new(bh_result);
593                 up_write(&OCFS2_I(inode)->ip_alloc_sem);
594         }
595
596         /*
597          * get_more_blocks() expects us to describe a hole by clearing
598          * the mapped bit on bh_result().
599          *
600          * Consider an unwritten extent as a hole.
601          */
602         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
603                 map_bh(bh_result, inode->i_sb, p_blkno);
604         else
605                 clear_buffer_mapped(bh_result);
606
607         /* make sure we don't map more than max_blocks blocks here as
608            that's all the kernel will handle at this point. */
609         if (max_blocks < contig_blocks)
610                 contig_blocks = max_blocks;
611         bh_result->b_size = contig_blocks << blocksize_bits;
612 bail:
613         if (alloc_locked)
614                 ocfs2_inode_unlock(inode, 1);
615         return ret;
616 }
617
618 /*
619  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
620  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
621  * to protect io on one node from truncation on another.
622  */
623 static int ocfs2_dio_end_io(struct kiocb *iocb,
624                              loff_t offset,
625                              ssize_t bytes,
626                              void *private)
627 {
628         struct inode *inode = file_inode(iocb->ki_filp);
629         int level;
630
631         if (bytes <= 0)
632                 return 0;
633
634         /* this io's submitter should not have unlocked this before we could */
635         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
636
637         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
638                 ocfs2_iocb_clear_unaligned_aio(iocb);
639
640                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
641         }
642
643         /* Let rw unlock to be done later to protect append direct io write */
644         if (offset + bytes <= i_size_read(inode)) {
645                 ocfs2_iocb_clear_rw_locked(iocb);
646
647                 level = ocfs2_iocb_rw_locked_level(iocb);
648                 ocfs2_rw_unlock(inode, level);
649         }
650
651         return 0;
652 }
653
654 static int ocfs2_releasepage(struct page *page, gfp_t wait)
655 {
656         if (!page_has_buffers(page))
657                 return 0;
658         return try_to_free_buffers(page);
659 }
660
661 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
662                 struct inode *inode, loff_t offset)
663 {
664         int ret = 0;
665         u32 v_cpos = 0;
666         u32 p_cpos = 0;
667         unsigned int num_clusters = 0;
668         unsigned int ext_flags = 0;
669
670         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
671         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
672                         &num_clusters, &ext_flags);
673         if (ret < 0) {
674                 mlog_errno(ret);
675                 return ret;
676         }
677
678         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
679                 return 1;
680
681         return 0;
682 }
683
684 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
685                 struct inode *inode, loff_t offset,
686                 u64 zero_len, int cluster_align)
687 {
688         u32 p_cpos = 0;
689         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
690         unsigned int num_clusters = 0;
691         unsigned int ext_flags = 0;
692         int ret = 0;
693
694         if (offset <= i_size_read(inode) || cluster_align)
695                 return 0;
696
697         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
698                         &ext_flags);
699         if (ret < 0) {
700                 mlog_errno(ret);
701                 return ret;
702         }
703
704         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
705                 u64 s = i_size_read(inode);
706                 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
707                         (do_div(s, osb->s_clustersize) >> 9);
708
709                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
710                                 zero_len >> 9, GFP_NOFS, false);
711                 if (ret < 0)
712                         mlog_errno(ret);
713         }
714
715         return ret;
716 }
717
718 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
719                 struct inode *inode, loff_t offset)
720 {
721         u64 zero_start, zero_len, total_zero_len;
722         u32 p_cpos = 0, clusters_to_add;
723         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
724         unsigned int num_clusters = 0;
725         unsigned int ext_flags = 0;
726         u32 size_div, offset_div;
727         int ret = 0;
728
729         {
730                 u64 o = offset;
731                 u64 s = i_size_read(inode);
732
733                 offset_div = do_div(o, osb->s_clustersize);
734                 size_div = do_div(s, osb->s_clustersize);
735         }
736
737         if (offset <= i_size_read(inode))
738                 return 0;
739
740         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
741                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
742         total_zero_len = offset - i_size_read(inode);
743         if (clusters_to_add)
744                 total_zero_len -= offset_div;
745
746         /* Allocate clusters to fill out holes, and this is only needed
747          * when we add more than one clusters. Otherwise the cluster will
748          * be allocated during direct IO */
749         if (clusters_to_add > 1) {
750                 ret = ocfs2_extend_allocation(inode,
751                                 OCFS2_I(inode)->ip_clusters,
752                                 clusters_to_add - 1, 0);
753                 if (ret) {
754                         mlog_errno(ret);
755                         goto out;
756                 }
757         }
758
759         while (total_zero_len) {
760                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
761                                 &ext_flags);
762                 if (ret < 0) {
763                         mlog_errno(ret);
764                         goto out;
765                 }
766
767                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
768                         size_div;
769                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
770                         size_div;
771                 zero_len = min(total_zero_len, zero_len);
772
773                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
774                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
775                                         zero_start >> 9, zero_len >> 9,
776                                         GFP_NOFS, false);
777                         if (ret < 0) {
778                                 mlog_errno(ret);
779                                 goto out;
780                         }
781                 }
782
783                 total_zero_len -= zero_len;
784                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
785
786                 /* Only at first iteration can be cluster not aligned.
787                  * So set size_div to 0 for the rest */
788                 size_div = 0;
789         }
790
791 out:
792         return ret;
793 }
794
795 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
796                 struct iov_iter *iter,
797                 loff_t offset)
798 {
799         ssize_t ret = 0;
800         ssize_t written = 0;
801         bool orphaned = false;
802         int is_overwrite = 0;
803         struct file *file = iocb->ki_filp;
804         struct inode *inode = file_inode(file)->i_mapping->host;
805         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
806         struct buffer_head *di_bh = NULL;
807         size_t count = iter->count;
808         journal_t *journal = osb->journal->j_journal;
809         u64 zero_len_head, zero_len_tail;
810         int cluster_align_head, cluster_align_tail;
811         loff_t final_size = offset + count;
812         int append_write = offset >= i_size_read(inode) ? 1 : 0;
813         unsigned int num_clusters = 0;
814         unsigned int ext_flags = 0;
815
816         {
817                 u64 o = offset;
818                 u64 s = i_size_read(inode);
819
820                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
821                 cluster_align_head = !zero_len_head;
822
823                 zero_len_tail = osb->s_clustersize -
824                         do_div(s, osb->s_clustersize);
825                 if ((offset - i_size_read(inode)) < zero_len_tail)
826                         zero_len_tail = offset - i_size_read(inode);
827                 cluster_align_tail = !zero_len_tail;
828         }
829
830         /*
831          * when final_size > inode->i_size, inode->i_size will be
832          * updated after direct write, so add the inode to orphan
833          * dir first.
834          */
835         if (final_size > i_size_read(inode)) {
836                 ret = ocfs2_add_inode_to_orphan(osb, inode);
837                 if (ret < 0) {
838                         mlog_errno(ret);
839                         goto out;
840                 }
841                 orphaned = true;
842         }
843
844         if (append_write) {
845                 ret = ocfs2_inode_lock(inode, NULL, 1);
846                 if (ret < 0) {
847                         mlog_errno(ret);
848                         goto clean_orphan;
849                 }
850
851                 /* zeroing out the previously allocated cluster tail
852                  * that but not zeroed */
853                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
854                         down_read(&OCFS2_I(inode)->ip_alloc_sem);
855                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
856                                         zero_len_tail, cluster_align_tail);
857                         up_read(&OCFS2_I(inode)->ip_alloc_sem);
858                 } else {
859                         down_write(&OCFS2_I(inode)->ip_alloc_sem);
860                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
861                                         offset);
862                         up_write(&OCFS2_I(inode)->ip_alloc_sem);
863                 }
864                 if (ret < 0) {
865                         mlog_errno(ret);
866                         ocfs2_inode_unlock(inode, 1);
867                         goto clean_orphan;
868                 }
869
870                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
871                 if (is_overwrite < 0) {
872                         mlog_errno(is_overwrite);
873                         ret = is_overwrite;
874                         ocfs2_inode_unlock(inode, 1);
875                         goto clean_orphan;
876                 }
877
878                 ocfs2_inode_unlock(inode, 1);
879         }
880
881         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
882                                        offset, ocfs2_direct_IO_get_blocks,
883                                        ocfs2_dio_end_io, NULL, 0);
884         /* overwrite aio may return -EIOCBQUEUED, and it is not an error */
885         if ((written < 0) && (written != -EIOCBQUEUED)) {
886                 loff_t i_size = i_size_read(inode);
887
888                 if (offset + count > i_size) {
889                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
890                         if (ret < 0) {
891                                 mlog_errno(ret);
892                                 goto clean_orphan;
893                         }
894
895                         if (i_size == i_size_read(inode)) {
896                                 ret = ocfs2_truncate_file(inode, di_bh,
897                                                 i_size);
898                                 if (ret < 0) {
899                                         if (ret != -ENOSPC)
900                                                 mlog_errno(ret);
901
902                                         ocfs2_inode_unlock(inode, 1);
903                                         brelse(di_bh);
904                                         di_bh = NULL;
905                                         goto clean_orphan;
906                                 }
907                         }
908
909                         ocfs2_inode_unlock(inode, 1);
910                         brelse(di_bh);
911                         di_bh = NULL;
912
913                         ret = jbd2_journal_force_commit(journal);
914                         if (ret < 0)
915                                 mlog_errno(ret);
916                 }
917         } else if (written > 0 && append_write && !is_overwrite &&
918                         !cluster_align_head) {
919                 /* zeroing out the allocated cluster head */
920                 u32 p_cpos = 0;
921                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
922
923                 ret = ocfs2_inode_lock(inode, NULL, 0);
924                 if (ret < 0) {
925                         mlog_errno(ret);
926                         goto clean_orphan;
927                 }
928
929                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
930                                 &num_clusters, &ext_flags);
931                 if (ret < 0) {
932                         mlog_errno(ret);
933                         ocfs2_inode_unlock(inode, 0);
934                         goto clean_orphan;
935                 }
936
937                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
938
939                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
940                                 (u64)p_cpos << (osb->s_clustersize_bits - 9),
941                                 zero_len_head >> 9, GFP_NOFS, false);
942                 if (ret < 0)
943                         mlog_errno(ret);
944
945                 ocfs2_inode_unlock(inode, 0);
946         }
947
948 clean_orphan:
949         if (orphaned) {
950                 int tmp_ret;
951                 int update_isize = written > 0 ? 1 : 0;
952                 loff_t end = update_isize ? offset + written : 0;
953
954                 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
955                 if (tmp_ret < 0) {
956                         ret = tmp_ret;
957                         mlog_errno(ret);
958                         goto out;
959                 }
960
961                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
962                                 update_isize, end);
963                 if (tmp_ret < 0) {
964                         ocfs2_inode_unlock(inode, 1);
965                         ret = tmp_ret;
966                         mlog_errno(ret);
967                         brelse(di_bh);
968                         goto out;
969                 }
970
971                 ocfs2_inode_unlock(inode, 1);
972                 brelse(di_bh);
973
974                 tmp_ret = jbd2_journal_force_commit(journal);
975                 if (tmp_ret < 0) {
976                         ret = tmp_ret;
977                         mlog_errno(tmp_ret);
978                 }
979         }
980
981 out:
982         if (ret >= 0)
983                 ret = written;
984         return ret;
985 }
986
987 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
988                                loff_t offset)
989 {
990         struct file *file = iocb->ki_filp;
991         struct inode *inode = file_inode(file)->i_mapping->host;
992         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
993         int full_coherency = !(osb->s_mount_opt &
994                         OCFS2_MOUNT_COHERENCY_BUFFERED);
995
996         /*
997          * Fallback to buffered I/O if we see an inode without
998          * extents.
999          */
1000         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
1001                 return 0;
1002
1003         /* Fallback to buffered I/O if we are appending and
1004          * concurrent O_DIRECT writes are allowed.
1005          */
1006         if (i_size_read(inode) <= offset && !full_coherency)
1007                 return 0;
1008
1009         if (iov_iter_rw(iter) == READ)
1010                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
1011                                             iter, offset,
1012                                             ocfs2_direct_IO_get_blocks,
1013                                             ocfs2_dio_end_io, NULL, 0);
1014         else
1015                 return ocfs2_direct_IO_write(iocb, iter, offset);
1016 }
1017
1018 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
1019                                             u32 cpos,
1020                                             unsigned int *start,
1021                                             unsigned int *end)
1022 {
1023         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
1024
1025         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
1026                 unsigned int cpp;
1027
1028                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1029
1030                 cluster_start = cpos % cpp;
1031                 cluster_start = cluster_start << osb->s_clustersize_bits;
1032
1033                 cluster_end = cluster_start + osb->s_clustersize;
1034         }
1035
1036         BUG_ON(cluster_start > PAGE_SIZE);
1037         BUG_ON(cluster_end > PAGE_SIZE);
1038
1039         if (start)
1040                 *start = cluster_start;
1041         if (end)
1042                 *end = cluster_end;
1043 }
1044
1045 /*
1046  * 'from' and 'to' are the region in the page to avoid zeroing.
1047  *
1048  * If pagesize > clustersize, this function will avoid zeroing outside
1049  * of the cluster boundary.
1050  *
1051  * from == to == 0 is code for "zero the entire cluster region"
1052  */
1053 static void ocfs2_clear_page_regions(struct page *page,
1054                                      struct ocfs2_super *osb, u32 cpos,
1055                                      unsigned from, unsigned to)
1056 {
1057         void *kaddr;
1058         unsigned int cluster_start, cluster_end;
1059
1060         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1061
1062         kaddr = kmap_atomic(page);
1063
1064         if (from || to) {
1065                 if (from > cluster_start)
1066                         memset(kaddr + cluster_start, 0, from - cluster_start);
1067                 if (to < cluster_end)
1068                         memset(kaddr + to, 0, cluster_end - to);
1069         } else {
1070                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1071         }
1072
1073         kunmap_atomic(kaddr);
1074 }
1075
1076 /*
1077  * Nonsparse file systems fully allocate before we get to the write
1078  * code. This prevents ocfs2_write() from tagging the write as an
1079  * allocating one, which means ocfs2_map_page_blocks() might try to
1080  * read-in the blocks at the tail of our file. Avoid reading them by
1081  * testing i_size against each block offset.
1082  */
1083 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1084                                  unsigned int block_start)
1085 {
1086         u64 offset = page_offset(page) + block_start;
1087
1088         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1089                 return 1;
1090
1091         if (i_size_read(inode) > offset)
1092                 return 1;
1093
1094         return 0;
1095 }
1096
1097 /*
1098  * Some of this taken from __block_write_begin(). We already have our
1099  * mapping by now though, and the entire write will be allocating or
1100  * it won't, so not much need to use BH_New.
1101  *
1102  * This will also skip zeroing, which is handled externally.
1103  */
1104 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1105                           struct inode *inode, unsigned int from,
1106                           unsigned int to, int new)
1107 {
1108         int ret = 0;
1109         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1110         unsigned int block_end, block_start;
1111         unsigned int bsize = 1 << inode->i_blkbits;
1112
1113         if (!page_has_buffers(page))
1114                 create_empty_buffers(page, bsize, 0);
1115
1116         head = page_buffers(page);
1117         for (bh = head, block_start = 0; bh != head || !block_start;
1118              bh = bh->b_this_page, block_start += bsize) {
1119                 block_end = block_start + bsize;
1120
1121                 clear_buffer_new(bh);
1122
1123                 /*
1124                  * Ignore blocks outside of our i/o range -
1125                  * they may belong to unallocated clusters.
1126                  */
1127                 if (block_start >= to || block_end <= from) {
1128                         if (PageUptodate(page))
1129                                 set_buffer_uptodate(bh);
1130                         continue;
1131                 }
1132
1133                 /*
1134                  * For an allocating write with cluster size >= page
1135                  * size, we always write the entire page.
1136                  */
1137                 if (new)
1138                         set_buffer_new(bh);
1139
1140                 if (!buffer_mapped(bh)) {
1141                         map_bh(bh, inode->i_sb, *p_blkno);
1142                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1143                 }
1144
1145                 if (PageUptodate(page)) {
1146                         if (!buffer_uptodate(bh))
1147                                 set_buffer_uptodate(bh);
1148                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1149                            !buffer_new(bh) &&
1150                            ocfs2_should_read_blk(inode, page, block_start) &&
1151                            (block_start < from || block_end > to)) {
1152                         ll_rw_block(READ, 1, &bh);
1153                         *wait_bh++=bh;
1154                 }
1155
1156                 *p_blkno = *p_blkno + 1;
1157         }
1158
1159         /*
1160          * If we issued read requests - let them complete.
1161          */
1162         while(wait_bh > wait) {
1163                 wait_on_buffer(*--wait_bh);
1164                 if (!buffer_uptodate(*wait_bh))
1165                         ret = -EIO;
1166         }
1167
1168         if (ret == 0 || !new)
1169                 return ret;
1170
1171         /*
1172          * If we get -EIO above, zero out any newly allocated blocks
1173          * to avoid exposing stale data.
1174          */
1175         bh = head;
1176         block_start = 0;
1177         do {
1178                 block_end = block_start + bsize;
1179                 if (block_end <= from)
1180                         goto next_bh;
1181                 if (block_start >= to)
1182                         break;
1183
1184                 zero_user(page, block_start, bh->b_size);
1185                 set_buffer_uptodate(bh);
1186                 mark_buffer_dirty(bh);
1187
1188 next_bh:
1189                 block_start = block_end;
1190                 bh = bh->b_this_page;
1191         } while (bh != head);
1192
1193         return ret;
1194 }
1195
1196 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1197 #define OCFS2_MAX_CTXT_PAGES    1
1198 #else
1199 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1200 #endif
1201
1202 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1203
1204 /*
1205  * Describe the state of a single cluster to be written to.
1206  */
1207 struct ocfs2_write_cluster_desc {
1208         u32             c_cpos;
1209         u32             c_phys;
1210         /*
1211          * Give this a unique field because c_phys eventually gets
1212          * filled.
1213          */
1214         unsigned        c_new;
1215         unsigned        c_unwritten;
1216         unsigned        c_needs_zero;
1217 };
1218
1219 struct ocfs2_write_ctxt {
1220         /* Logical cluster position / len of write */
1221         u32                             w_cpos;
1222         u32                             w_clen;
1223
1224         /* First cluster allocated in a nonsparse extend */
1225         u32                             w_first_new_cpos;
1226
1227         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1228
1229         /*
1230          * This is true if page_size > cluster_size.
1231          *
1232          * It triggers a set of special cases during write which might
1233          * have to deal with allocating writes to partial pages.
1234          */
1235         unsigned int                    w_large_pages;
1236
1237         /*
1238          * Pages involved in this write.
1239          *
1240          * w_target_page is the page being written to by the user.
1241          *
1242          * w_pages is an array of pages which always contains
1243          * w_target_page, and in the case of an allocating write with
1244          * page_size < cluster size, it will contain zero'd and mapped
1245          * pages adjacent to w_target_page which need to be written
1246          * out in so that future reads from that region will get
1247          * zero's.
1248          */
1249         unsigned int                    w_num_pages;
1250         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1251         struct page                     *w_target_page;
1252
1253         /*
1254          * w_target_locked is used for page_mkwrite path indicating no unlocking
1255          * against w_target_page in ocfs2_write_end_nolock.
1256          */
1257         unsigned int                    w_target_locked:1;
1258
1259         /*
1260          * ocfs2_write_end() uses this to know what the real range to
1261          * write in the target should be.
1262          */
1263         unsigned int                    w_target_from;
1264         unsigned int                    w_target_to;
1265
1266         /*
1267          * We could use journal_current_handle() but this is cleaner,
1268          * IMHO -Mark
1269          */
1270         handle_t                        *w_handle;
1271
1272         struct buffer_head              *w_di_bh;
1273
1274         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1275 };
1276
1277 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1278 {
1279         int i;
1280
1281         for(i = 0; i < num_pages; i++) {
1282                 if (pages[i]) {
1283                         unlock_page(pages[i]);
1284                         mark_page_accessed(pages[i]);
1285                         page_cache_release(pages[i]);
1286                 }
1287         }
1288 }
1289
1290 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1291 {
1292         int i;
1293
1294         /*
1295          * w_target_locked is only set to true in the page_mkwrite() case.
1296          * The intent is to allow us to lock the target page from write_begin()
1297          * to write_end(). The caller must hold a ref on w_target_page.
1298          */
1299         if (wc->w_target_locked) {
1300                 BUG_ON(!wc->w_target_page);
1301                 for (i = 0; i < wc->w_num_pages; i++) {
1302                         if (wc->w_target_page == wc->w_pages[i]) {
1303                                 wc->w_pages[i] = NULL;
1304                                 break;
1305                         }
1306                 }
1307                 mark_page_accessed(wc->w_target_page);
1308                 page_cache_release(wc->w_target_page);
1309         }
1310         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1311 }
1312
1313 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1314 {
1315         ocfs2_unlock_pages(wc);
1316         brelse(wc->w_di_bh);
1317         kfree(wc);
1318 }
1319
1320 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1321                                   struct ocfs2_super *osb, loff_t pos,
1322                                   unsigned len, struct buffer_head *di_bh)
1323 {
1324         u32 cend;
1325         struct ocfs2_write_ctxt *wc;
1326
1327         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1328         if (!wc)
1329                 return -ENOMEM;
1330
1331         wc->w_cpos = pos >> osb->s_clustersize_bits;
1332         wc->w_first_new_cpos = UINT_MAX;
1333         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1334         wc->w_clen = cend - wc->w_cpos + 1;
1335         get_bh(di_bh);
1336         wc->w_di_bh = di_bh;
1337
1338         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1339                 wc->w_large_pages = 1;
1340         else
1341                 wc->w_large_pages = 0;
1342
1343         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1344
1345         *wcp = wc;
1346
1347         return 0;
1348 }
1349
1350 /*
1351  * If a page has any new buffers, zero them out here, and mark them uptodate
1352  * and dirty so they'll be written out (in order to prevent uninitialised
1353  * block data from leaking). And clear the new bit.
1354  */
1355 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1356 {
1357         unsigned int block_start, block_end;
1358         struct buffer_head *head, *bh;
1359
1360         BUG_ON(!PageLocked(page));
1361         if (!page_has_buffers(page))
1362                 return;
1363
1364         bh = head = page_buffers(page);
1365         block_start = 0;
1366         do {
1367                 block_end = block_start + bh->b_size;
1368
1369                 if (buffer_new(bh)) {
1370                         if (block_end > from && block_start < to) {
1371                                 if (!PageUptodate(page)) {
1372                                         unsigned start, end;
1373
1374                                         start = max(from, block_start);
1375                                         end = min(to, block_end);
1376
1377                                         zero_user_segment(page, start, end);
1378                                         set_buffer_uptodate(bh);
1379                                 }
1380
1381                                 clear_buffer_new(bh);
1382                                 mark_buffer_dirty(bh);
1383                         }
1384                 }
1385
1386                 block_start = block_end;
1387                 bh = bh->b_this_page;
1388         } while (bh != head);
1389 }
1390
1391 /*
1392  * Only called when we have a failure during allocating write to write
1393  * zero's to the newly allocated region.
1394  */
1395 static void ocfs2_write_failure(struct inode *inode,
1396                                 struct ocfs2_write_ctxt *wc,
1397                                 loff_t user_pos, unsigned user_len)
1398 {
1399         int i;
1400         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1401                 to = user_pos + user_len;
1402         struct page *tmppage;
1403
1404         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1405
1406         for(i = 0; i < wc->w_num_pages; i++) {
1407                 tmppage = wc->w_pages[i];
1408
1409                 if (page_has_buffers(tmppage)) {
1410                         if (ocfs2_should_order_data(inode))
1411                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1412
1413                         block_commit_write(tmppage, from, to);
1414                 }
1415         }
1416 }
1417
1418 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1419                                         struct ocfs2_write_ctxt *wc,
1420                                         struct page *page, u32 cpos,
1421                                         loff_t user_pos, unsigned user_len,
1422                                         int new)
1423 {
1424         int ret;
1425         unsigned int map_from = 0, map_to = 0;
1426         unsigned int cluster_start, cluster_end;
1427         unsigned int user_data_from = 0, user_data_to = 0;
1428
1429         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1430                                         &cluster_start, &cluster_end);
1431
1432         /* treat the write as new if the a hole/lseek spanned across
1433          * the page boundary.
1434          */
1435         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1436                         (page_offset(page) <= user_pos));
1437
1438         if (page == wc->w_target_page) {
1439                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1440                 map_to = map_from + user_len;
1441
1442                 if (new)
1443                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1444                                                     cluster_start, cluster_end,
1445                                                     new);
1446                 else
1447                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1448                                                     map_from, map_to, new);
1449                 if (ret) {
1450                         mlog_errno(ret);
1451                         goto out;
1452                 }
1453
1454                 user_data_from = map_from;
1455                 user_data_to = map_to;
1456                 if (new) {
1457                         map_from = cluster_start;
1458                         map_to = cluster_end;
1459                 }
1460         } else {
1461                 /*
1462                  * If we haven't allocated the new page yet, we
1463                  * shouldn't be writing it out without copying user
1464                  * data. This is likely a math error from the caller.
1465                  */
1466                 BUG_ON(!new);
1467
1468                 map_from = cluster_start;
1469                 map_to = cluster_end;
1470
1471                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1472                                             cluster_start, cluster_end, new);
1473                 if (ret) {
1474                         mlog_errno(ret);
1475                         goto out;
1476                 }
1477         }
1478
1479         /*
1480          * Parts of newly allocated pages need to be zero'd.
1481          *
1482          * Above, we have also rewritten 'to' and 'from' - as far as
1483          * the rest of the function is concerned, the entire cluster
1484          * range inside of a page needs to be written.
1485          *
1486          * We can skip this if the page is up to date - it's already
1487          * been zero'd from being read in as a hole.
1488          */
1489         if (new && !PageUptodate(page))
1490                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1491                                          cpos, user_data_from, user_data_to);
1492
1493         flush_dcache_page(page);
1494
1495 out:
1496         return ret;
1497 }
1498
1499 /*
1500  * This function will only grab one clusters worth of pages.
1501  */
1502 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1503                                       struct ocfs2_write_ctxt *wc,
1504                                       u32 cpos, loff_t user_pos,
1505                                       unsigned user_len, int new,
1506                                       struct page *mmap_page)
1507 {
1508         int ret = 0, i;
1509         unsigned long start, target_index, end_index, index;
1510         struct inode *inode = mapping->host;
1511         loff_t last_byte;
1512
1513         target_index = user_pos >> PAGE_CACHE_SHIFT;
1514
1515         /*
1516          * Figure out how many pages we'll be manipulating here. For
1517          * non allocating write, we just change the one
1518          * page. Otherwise, we'll need a whole clusters worth.  If we're
1519          * writing past i_size, we only need enough pages to cover the
1520          * last page of the write.
1521          */
1522         if (new) {
1523                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1524                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1525                 /*
1526                  * We need the index *past* the last page we could possibly
1527                  * touch.  This is the page past the end of the write or
1528                  * i_size, whichever is greater.
1529                  */
1530                 last_byte = max(user_pos + user_len, i_size_read(inode));
1531                 BUG_ON(last_byte < 1);
1532                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1533                 if ((start + wc->w_num_pages) > end_index)
1534                         wc->w_num_pages = end_index - start;
1535         } else {
1536                 wc->w_num_pages = 1;
1537                 start = target_index;
1538         }
1539
1540         for(i = 0; i < wc->w_num_pages; i++) {
1541                 index = start + i;
1542
1543                 if (index == target_index && mmap_page) {
1544                         /*
1545                          * ocfs2_pagemkwrite() is a little different
1546                          * and wants us to directly use the page
1547                          * passed in.
1548                          */
1549                         lock_page(mmap_page);
1550
1551                         /* Exit and let the caller retry */
1552                         if (mmap_page->mapping != mapping) {
1553                                 WARN_ON(mmap_page->mapping);
1554                                 unlock_page(mmap_page);
1555                                 ret = -EAGAIN;
1556                                 goto out;
1557                         }
1558
1559                         page_cache_get(mmap_page);
1560                         wc->w_pages[i] = mmap_page;
1561                         wc->w_target_locked = true;
1562                 } else {
1563                         wc->w_pages[i] = find_or_create_page(mapping, index,
1564                                                              GFP_NOFS);
1565                         if (!wc->w_pages[i]) {
1566                                 ret = -ENOMEM;
1567                                 mlog_errno(ret);
1568                                 goto out;
1569                         }
1570                 }
1571                 wait_for_stable_page(wc->w_pages[i]);
1572
1573                 if (index == target_index)
1574                         wc->w_target_page = wc->w_pages[i];
1575         }
1576 out:
1577         if (ret)
1578                 wc->w_target_locked = false;
1579         return ret;
1580 }
1581
1582 /*
1583  * Prepare a single cluster for write one cluster into the file.
1584  */
1585 static int ocfs2_write_cluster(struct address_space *mapping,
1586                                u32 phys, unsigned int unwritten,
1587                                unsigned int should_zero,
1588                                struct ocfs2_alloc_context *data_ac,
1589                                struct ocfs2_alloc_context *meta_ac,
1590                                struct ocfs2_write_ctxt *wc, u32 cpos,
1591                                loff_t user_pos, unsigned user_len)
1592 {
1593         int ret, i, new;
1594         u64 v_blkno, p_blkno;
1595         struct inode *inode = mapping->host;
1596         struct ocfs2_extent_tree et;
1597
1598         new = phys == 0 ? 1 : 0;
1599         if (new) {
1600                 u32 tmp_pos;
1601
1602                 /*
1603                  * This is safe to call with the page locks - it won't take
1604                  * any additional semaphores or cluster locks.
1605                  */
1606                 tmp_pos = cpos;
1607                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1608                                            &tmp_pos, 1, 0, wc->w_di_bh,
1609                                            wc->w_handle, data_ac,
1610                                            meta_ac, NULL);
1611                 /*
1612                  * This shouldn't happen because we must have already
1613                  * calculated the correct meta data allocation required. The
1614                  * internal tree allocation code should know how to increase
1615                  * transaction credits itself.
1616                  *
1617                  * If need be, we could handle -EAGAIN for a
1618                  * RESTART_TRANS here.
1619                  */
1620                 mlog_bug_on_msg(ret == -EAGAIN,
1621                                 "Inode %llu: EAGAIN return during allocation.\n",
1622                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1623                 if (ret < 0) {
1624                         mlog_errno(ret);
1625                         goto out;
1626                 }
1627         } else if (unwritten) {
1628                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1629                                               wc->w_di_bh);
1630                 ret = ocfs2_mark_extent_written(inode, &et,
1631                                                 wc->w_handle, cpos, 1, phys,
1632                                                 meta_ac, &wc->w_dealloc);
1633                 if (ret < 0) {
1634                         mlog_errno(ret);
1635                         goto out;
1636                 }
1637         }
1638
1639         if (should_zero)
1640                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1641         else
1642                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1643
1644         /*
1645          * The only reason this should fail is due to an inability to
1646          * find the extent added.
1647          */
1648         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1649                                           NULL);
1650         if (ret < 0) {
1651                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1652                             "at logical block %llu",
1653                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1654                             (unsigned long long)v_blkno);
1655                 goto out;
1656         }
1657
1658         BUG_ON(p_blkno == 0);
1659
1660         for(i = 0; i < wc->w_num_pages; i++) {
1661                 int tmpret;
1662
1663                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1664                                                       wc->w_pages[i], cpos,
1665                                                       user_pos, user_len,
1666                                                       should_zero);
1667                 if (tmpret) {
1668                         mlog_errno(tmpret);
1669                         if (ret == 0)
1670                                 ret = tmpret;
1671                 }
1672         }
1673
1674         /*
1675          * We only have cleanup to do in case of allocating write.
1676          */
1677         if (ret && new)
1678                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1679
1680 out:
1681
1682         return ret;
1683 }
1684
1685 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1686                                        struct ocfs2_alloc_context *data_ac,
1687                                        struct ocfs2_alloc_context *meta_ac,
1688                                        struct ocfs2_write_ctxt *wc,
1689                                        loff_t pos, unsigned len)
1690 {
1691         int ret, i;
1692         loff_t cluster_off;
1693         unsigned int local_len = len;
1694         struct ocfs2_write_cluster_desc *desc;
1695         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1696
1697         for (i = 0; i < wc->w_clen; i++) {
1698                 desc = &wc->w_desc[i];
1699
1700                 /*
1701                  * We have to make sure that the total write passed in
1702                  * doesn't extend past a single cluster.
1703                  */
1704                 local_len = len;
1705                 cluster_off = pos & (osb->s_clustersize - 1);
1706                 if ((cluster_off + local_len) > osb->s_clustersize)
1707                         local_len = osb->s_clustersize - cluster_off;
1708
1709                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1710                                           desc->c_unwritten,
1711                                           desc->c_needs_zero,
1712                                           data_ac, meta_ac,
1713                                           wc, desc->c_cpos, pos, local_len);
1714                 if (ret) {
1715                         mlog_errno(ret);
1716                         goto out;
1717                 }
1718
1719                 len -= local_len;
1720                 pos += local_len;
1721         }
1722
1723         ret = 0;
1724 out:
1725         return ret;
1726 }
1727
1728 /*
1729  * ocfs2_write_end() wants to know which parts of the target page it
1730  * should complete the write on. It's easiest to compute them ahead of
1731  * time when a more complete view of the write is available.
1732  */
1733 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1734                                         struct ocfs2_write_ctxt *wc,
1735                                         loff_t pos, unsigned len, int alloc)
1736 {
1737         struct ocfs2_write_cluster_desc *desc;
1738
1739         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1740         wc->w_target_to = wc->w_target_from + len;
1741
1742         if (alloc == 0)
1743                 return;
1744
1745         /*
1746          * Allocating write - we may have different boundaries based
1747          * on page size and cluster size.
1748          *
1749          * NOTE: We can no longer compute one value from the other as
1750          * the actual write length and user provided length may be
1751          * different.
1752          */
1753
1754         if (wc->w_large_pages) {
1755                 /*
1756                  * We only care about the 1st and last cluster within
1757                  * our range and whether they should be zero'd or not. Either
1758                  * value may be extended out to the start/end of a
1759                  * newly allocated cluster.
1760                  */
1761                 desc = &wc->w_desc[0];
1762                 if (desc->c_needs_zero)
1763                         ocfs2_figure_cluster_boundaries(osb,
1764                                                         desc->c_cpos,
1765                                                         &wc->w_target_from,
1766                                                         NULL);
1767
1768                 desc = &wc->w_desc[wc->w_clen - 1];
1769                 if (desc->c_needs_zero)
1770                         ocfs2_figure_cluster_boundaries(osb,
1771                                                         desc->c_cpos,
1772                                                         NULL,
1773                                                         &wc->w_target_to);
1774         } else {
1775                 wc->w_target_from = 0;
1776                 wc->w_target_to = PAGE_CACHE_SIZE;
1777         }
1778 }
1779
1780 /*
1781  * Populate each single-cluster write descriptor in the write context
1782  * with information about the i/o to be done.
1783  *
1784  * Returns the number of clusters that will have to be allocated, as
1785  * well as a worst case estimate of the number of extent records that
1786  * would have to be created during a write to an unwritten region.
1787  */
1788 static int ocfs2_populate_write_desc(struct inode *inode,
1789                                      struct ocfs2_write_ctxt *wc,
1790                                      unsigned int *clusters_to_alloc,
1791                                      unsigned int *extents_to_split)
1792 {
1793         int ret;
1794         struct ocfs2_write_cluster_desc *desc;
1795         unsigned int num_clusters = 0;
1796         unsigned int ext_flags = 0;
1797         u32 phys = 0;
1798         int i;
1799
1800         *clusters_to_alloc = 0;
1801         *extents_to_split = 0;
1802
1803         for (i = 0; i < wc->w_clen; i++) {
1804                 desc = &wc->w_desc[i];
1805                 desc->c_cpos = wc->w_cpos + i;
1806
1807                 if (num_clusters == 0) {
1808                         /*
1809                          * Need to look up the next extent record.
1810                          */
1811                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1812                                                  &num_clusters, &ext_flags);
1813                         if (ret) {
1814                                 mlog_errno(ret);
1815                                 goto out;
1816                         }
1817
1818                         /* We should already CoW the refcountd extent. */
1819                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1820
1821                         /*
1822                          * Assume worst case - that we're writing in
1823                          * the middle of the extent.
1824                          *
1825                          * We can assume that the write proceeds from
1826                          * left to right, in which case the extent
1827                          * insert code is smart enough to coalesce the
1828                          * next splits into the previous records created.
1829                          */
1830                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1831                                 *extents_to_split = *extents_to_split + 2;
1832                 } else if (phys) {
1833                         /*
1834                          * Only increment phys if it doesn't describe
1835                          * a hole.
1836                          */
1837                         phys++;
1838                 }
1839
1840                 /*
1841                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1842                  * file that got extended.  w_first_new_cpos tells us
1843                  * where the newly allocated clusters are so we can
1844                  * zero them.
1845                  */
1846                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1847                         BUG_ON(phys == 0);
1848                         desc->c_needs_zero = 1;
1849                 }
1850
1851                 desc->c_phys = phys;
1852                 if (phys == 0) {
1853                         desc->c_new = 1;
1854                         desc->c_needs_zero = 1;
1855                         *clusters_to_alloc = *clusters_to_alloc + 1;
1856                 }
1857
1858                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1859                         desc->c_unwritten = 1;
1860                         desc->c_needs_zero = 1;
1861                 }
1862
1863                 num_clusters--;
1864         }
1865
1866         ret = 0;
1867 out:
1868         return ret;
1869 }
1870
1871 static int ocfs2_write_begin_inline(struct address_space *mapping,
1872                                     struct inode *inode,
1873                                     struct ocfs2_write_ctxt *wc)
1874 {
1875         int ret;
1876         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1877         struct page *page;
1878         handle_t *handle;
1879         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1880
1881         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1882         if (IS_ERR(handle)) {
1883                 ret = PTR_ERR(handle);
1884                 mlog_errno(ret);
1885                 goto out;
1886         }
1887
1888         page = find_or_create_page(mapping, 0, GFP_NOFS);
1889         if (!page) {
1890                 ocfs2_commit_trans(osb, handle);
1891                 ret = -ENOMEM;
1892                 mlog_errno(ret);
1893                 goto out;
1894         }
1895         /*
1896          * If we don't set w_num_pages then this page won't get unlocked
1897          * and freed on cleanup of the write context.
1898          */
1899         wc->w_pages[0] = wc->w_target_page = page;
1900         wc->w_num_pages = 1;
1901
1902         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1903                                       OCFS2_JOURNAL_ACCESS_WRITE);
1904         if (ret) {
1905                 ocfs2_commit_trans(osb, handle);
1906
1907                 mlog_errno(ret);
1908                 goto out;
1909         }
1910
1911         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1912                 ocfs2_set_inode_data_inline(inode, di);
1913
1914         if (!PageUptodate(page)) {
1915                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1916                 if (ret) {
1917                         ocfs2_commit_trans(osb, handle);
1918
1919                         goto out;
1920                 }
1921         }
1922
1923         wc->w_handle = handle;
1924 out:
1925         return ret;
1926 }
1927
1928 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1929 {
1930         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1931
1932         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1933                 return 1;
1934         return 0;
1935 }
1936
1937 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1938                                           struct inode *inode, loff_t pos,
1939                                           unsigned len, struct page *mmap_page,
1940                                           struct ocfs2_write_ctxt *wc)
1941 {
1942         int ret, written = 0;
1943         loff_t end = pos + len;
1944         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1945         struct ocfs2_dinode *di = NULL;
1946
1947         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1948                                              len, (unsigned long long)pos,
1949                                              oi->ip_dyn_features);
1950
1951         /*
1952          * Handle inodes which already have inline data 1st.
1953          */
1954         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1955                 if (mmap_page == NULL &&
1956                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1957                         goto do_inline_write;
1958
1959                 /*
1960                  * The write won't fit - we have to give this inode an
1961                  * inline extent list now.
1962                  */
1963                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1964                 if (ret)
1965                         mlog_errno(ret);
1966                 goto out;
1967         }
1968
1969         /*
1970          * Check whether the inode can accept inline data.
1971          */
1972         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1973                 return 0;
1974
1975         /*
1976          * Check whether the write can fit.
1977          */
1978         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1979         if (mmap_page ||
1980             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1981                 return 0;
1982
1983 do_inline_write:
1984         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1985         if (ret) {
1986                 mlog_errno(ret);
1987                 goto out;
1988         }
1989
1990         /*
1991          * This signals to the caller that the data can be written
1992          * inline.
1993          */
1994         written = 1;
1995 out:
1996         return written ? written : ret;
1997 }
1998
1999 /*
2000  * This function only does anything for file systems which can't
2001  * handle sparse files.
2002  *
2003  * What we want to do here is fill in any hole between the current end
2004  * of allocation and the end of our write. That way the rest of the
2005  * write path can treat it as an non-allocating write, which has no
2006  * special case code for sparse/nonsparse files.
2007  */
2008 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
2009                                         struct buffer_head *di_bh,
2010                                         loff_t pos, unsigned len,
2011                                         struct ocfs2_write_ctxt *wc)
2012 {
2013         int ret;
2014         loff_t newsize = pos + len;
2015
2016         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2017
2018         if (newsize <= i_size_read(inode))
2019                 return 0;
2020
2021         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
2022         if (ret)
2023                 mlog_errno(ret);
2024
2025         wc->w_first_new_cpos =
2026                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2027
2028         return ret;
2029 }
2030
2031 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2032                            loff_t pos)
2033 {
2034         int ret = 0;
2035
2036         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2037         if (pos > i_size_read(inode))
2038                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2039
2040         return ret;
2041 }
2042
2043 /*
2044  * Try to flush truncate logs if we can free enough clusters from it.
2045  * As for return value, "< 0" means error, "0" no space and "1" means
2046  * we have freed enough spaces and let the caller try to allocate again.
2047  */
2048 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2049                                           unsigned int needed)
2050 {
2051         tid_t target;
2052         int ret = 0;
2053         unsigned int truncated_clusters;
2054
2055         inode_lock(osb->osb_tl_inode);
2056         truncated_clusters = osb->truncated_clusters;
2057         inode_unlock(osb->osb_tl_inode);
2058
2059         /*
2060          * Check whether we can succeed in allocating if we free
2061          * the truncate log.
2062          */
2063         if (truncated_clusters < needed)
2064                 goto out;
2065
2066         ret = ocfs2_flush_truncate_log(osb);
2067         if (ret) {
2068                 mlog_errno(ret);
2069                 goto out;
2070         }
2071
2072         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2073                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2074                 ret = 1;
2075         }
2076 out:
2077         return ret;
2078 }
2079
2080 int ocfs2_write_begin_nolock(struct file *filp,
2081                              struct address_space *mapping,
2082                              loff_t pos, unsigned len, unsigned flags,
2083                              struct page **pagep, void **fsdata,
2084                              struct buffer_head *di_bh, struct page *mmap_page)
2085 {
2086         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2087         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2088         struct ocfs2_write_ctxt *wc;
2089         struct inode *inode = mapping->host;
2090         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2091         struct ocfs2_dinode *di;
2092         struct ocfs2_alloc_context *data_ac = NULL;
2093         struct ocfs2_alloc_context *meta_ac = NULL;
2094         handle_t *handle;
2095         struct ocfs2_extent_tree et;
2096         int try_free = 1, ret1;
2097
2098 try_again:
2099         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2100         if (ret) {
2101                 mlog_errno(ret);
2102                 return ret;
2103         }
2104
2105         if (ocfs2_supports_inline_data(osb)) {
2106                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2107                                                      mmap_page, wc);
2108                 if (ret == 1) {
2109                         ret = 0;
2110                         goto success;
2111                 }
2112                 if (ret < 0) {
2113                         mlog_errno(ret);
2114                         goto out;
2115                 }
2116         }
2117
2118         if (ocfs2_sparse_alloc(osb))
2119                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2120         else
2121                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2122                                                    wc);
2123         if (ret) {
2124                 mlog_errno(ret);
2125                 goto out;
2126         }
2127
2128         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2129         if (ret < 0) {
2130                 mlog_errno(ret);
2131                 goto out;
2132         } else if (ret == 1) {
2133                 clusters_need = wc->w_clen;
2134                 ret = ocfs2_refcount_cow(inode, di_bh,
2135                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2136                 if (ret) {
2137                         mlog_errno(ret);
2138                         goto out;
2139                 }
2140         }
2141
2142         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2143                                         &extents_to_split);
2144         if (ret) {
2145                 mlog_errno(ret);
2146                 goto out;
2147         }
2148         clusters_need += clusters_to_alloc;
2149
2150         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2151
2152         trace_ocfs2_write_begin_nolock(
2153                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2154                         (long long)i_size_read(inode),
2155                         le32_to_cpu(di->i_clusters),
2156                         pos, len, flags, mmap_page,
2157                         clusters_to_alloc, extents_to_split);
2158
2159         /*
2160          * We set w_target_from, w_target_to here so that
2161          * ocfs2_write_end() knows which range in the target page to
2162          * write out. An allocation requires that we write the entire
2163          * cluster range.
2164          */
2165         if (clusters_to_alloc || extents_to_split) {
2166                 /*
2167                  * XXX: We are stretching the limits of
2168                  * ocfs2_lock_allocators(). It greatly over-estimates
2169                  * the work to be done.
2170                  */
2171                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2172                                               wc->w_di_bh);
2173                 ret = ocfs2_lock_allocators(inode, &et,
2174                                             clusters_to_alloc, extents_to_split,
2175                                             &data_ac, &meta_ac);
2176                 if (ret) {
2177                         mlog_errno(ret);
2178                         goto out;
2179                 }
2180
2181                 if (data_ac)
2182                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2183
2184                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2185                                                     &di->id2.i_list);
2186
2187         }
2188
2189         /*
2190          * We have to zero sparse allocated clusters, unwritten extent clusters,
2191          * and non-sparse clusters we just extended.  For non-sparse writes,
2192          * we know zeros will only be needed in the first and/or last cluster.
2193          */
2194         if (clusters_to_alloc || extents_to_split ||
2195             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2196                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2197                 cluster_of_pages = 1;
2198         else
2199                 cluster_of_pages = 0;
2200
2201         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2202
2203         handle = ocfs2_start_trans(osb, credits);
2204         if (IS_ERR(handle)) {
2205                 ret = PTR_ERR(handle);
2206                 mlog_errno(ret);
2207                 goto out;
2208         }
2209
2210         wc->w_handle = handle;
2211
2212         if (clusters_to_alloc) {
2213                 ret = dquot_alloc_space_nodirty(inode,
2214                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2215                 if (ret)
2216                         goto out_commit;
2217         }
2218
2219         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2220                                       OCFS2_JOURNAL_ACCESS_WRITE);
2221         if (ret) {
2222                 mlog_errno(ret);
2223                 goto out_quota;
2224         }
2225
2226         /*
2227          * Fill our page array first. That way we've grabbed enough so
2228          * that we can zero and flush if we error after adding the
2229          * extent.
2230          */
2231         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2232                                          cluster_of_pages, mmap_page);
2233         if (ret && ret != -EAGAIN) {
2234                 mlog_errno(ret);
2235                 goto out_quota;
2236         }
2237
2238         /*
2239          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2240          * the target page. In this case, we exit with no error and no target
2241          * page. This will trigger the caller, page_mkwrite(), to re-try
2242          * the operation.
2243          */
2244         if (ret == -EAGAIN) {
2245                 BUG_ON(wc->w_target_page);
2246                 ret = 0;
2247                 goto out_quota;
2248         }
2249
2250         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2251                                           len);
2252         if (ret) {
2253                 mlog_errno(ret);
2254                 goto out_quota;
2255         }
2256
2257         if (data_ac)
2258                 ocfs2_free_alloc_context(data_ac);
2259         if (meta_ac)
2260                 ocfs2_free_alloc_context(meta_ac);
2261
2262 success:
2263         *pagep = wc->w_target_page;
2264         *fsdata = wc;
2265         return 0;
2266 out_quota:
2267         if (clusters_to_alloc)
2268                 dquot_free_space(inode,
2269                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2270 out_commit:
2271         ocfs2_commit_trans(osb, handle);
2272
2273 out:
2274         ocfs2_free_write_ctxt(wc);
2275
2276         if (data_ac) {
2277                 ocfs2_free_alloc_context(data_ac);
2278                 data_ac = NULL;
2279         }
2280         if (meta_ac) {
2281                 ocfs2_free_alloc_context(meta_ac);
2282                 meta_ac = NULL;
2283         }
2284
2285         if (ret == -ENOSPC && try_free) {
2286                 /*
2287                  * Try to free some truncate log so that we can have enough
2288                  * clusters to allocate.
2289                  */
2290                 try_free = 0;
2291
2292                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2293                 if (ret1 == 1)
2294                         goto try_again;
2295
2296                 if (ret1 < 0)
2297                         mlog_errno(ret1);
2298         }
2299
2300         return ret;
2301 }
2302
2303 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2304                              loff_t pos, unsigned len, unsigned flags,
2305                              struct page **pagep, void **fsdata)
2306 {
2307         int ret;
2308         struct buffer_head *di_bh = NULL;
2309         struct inode *inode = mapping->host;
2310
2311         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312         if (ret) {
2313                 mlog_errno(ret);
2314                 return ret;
2315         }
2316
2317         /*
2318          * Take alloc sem here to prevent concurrent lookups. That way
2319          * the mapping, zeroing and tree manipulation within
2320          * ocfs2_write() will be safe against ->readpage(). This
2321          * should also serve to lock out allocation from a shared
2322          * writeable region.
2323          */
2324         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2325
2326         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2327                                        fsdata, di_bh, NULL);
2328         if (ret) {
2329                 mlog_errno(ret);
2330                 goto out_fail;
2331         }
2332
2333         brelse(di_bh);
2334
2335         return 0;
2336
2337 out_fail:
2338         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2339
2340         brelse(di_bh);
2341         ocfs2_inode_unlock(inode, 1);
2342
2343         return ret;
2344 }
2345
2346 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2347                                    unsigned len, unsigned *copied,
2348                                    struct ocfs2_dinode *di,
2349                                    struct ocfs2_write_ctxt *wc)
2350 {
2351         void *kaddr;
2352
2353         if (unlikely(*copied < len)) {
2354                 if (!PageUptodate(wc->w_target_page)) {
2355                         *copied = 0;
2356                         return;
2357                 }
2358         }
2359
2360         kaddr = kmap_atomic(wc->w_target_page);
2361         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2362         kunmap_atomic(kaddr);
2363
2364         trace_ocfs2_write_end_inline(
2365              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2366              (unsigned long long)pos, *copied,
2367              le16_to_cpu(di->id2.i_data.id_count),
2368              le16_to_cpu(di->i_dyn_features));
2369 }
2370
2371 int ocfs2_write_end_nolock(struct address_space *mapping,
2372                            loff_t pos, unsigned len, unsigned copied,
2373                            struct page *page, void *fsdata)
2374 {
2375         int i, ret;
2376         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2377         struct inode *inode = mapping->host;
2378         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2379         struct ocfs2_write_ctxt *wc = fsdata;
2380         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2381         handle_t *handle = wc->w_handle;
2382         struct page *tmppage;
2383
2384         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2385                         OCFS2_JOURNAL_ACCESS_WRITE);
2386         if (ret) {
2387                 copied = ret;
2388                 mlog_errno(ret);
2389                 goto out;
2390         }
2391
2392         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2393                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2394                 goto out_write_size;
2395         }
2396
2397         if (unlikely(copied < len)) {
2398                 if (!PageUptodate(wc->w_target_page))
2399                         copied = 0;
2400
2401                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2402                                        start+len);
2403         }
2404         flush_dcache_page(wc->w_target_page);
2405
2406         for(i = 0; i < wc->w_num_pages; i++) {
2407                 tmppage = wc->w_pages[i];
2408
2409                 if (tmppage == wc->w_target_page) {
2410                         from = wc->w_target_from;
2411                         to = wc->w_target_to;
2412
2413                         BUG_ON(from > PAGE_CACHE_SIZE ||
2414                                to > PAGE_CACHE_SIZE ||
2415                                to < from);
2416                 } else {
2417                         /*
2418                          * Pages adjacent to the target (if any) imply
2419                          * a hole-filling write in which case we want
2420                          * to flush their entire range.
2421                          */
2422                         from = 0;
2423                         to = PAGE_CACHE_SIZE;
2424                 }
2425
2426                 if (page_has_buffers(tmppage)) {
2427                         if (ocfs2_should_order_data(inode))
2428                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2429                         block_commit_write(tmppage, from, to);
2430                 }
2431         }
2432
2433 out_write_size:
2434         pos += copied;
2435         if (pos > i_size_read(inode)) {
2436                 i_size_write(inode, pos);
2437                 mark_inode_dirty(inode);
2438         }
2439         inode->i_blocks = ocfs2_inode_sector_count(inode);
2440         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2441         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2442         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2443         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2444         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2445         ocfs2_journal_dirty(handle, wc->w_di_bh);
2446
2447 out:
2448         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2449          * lock, or it will cause a deadlock since journal commit threads holds
2450          * this lock and will ask for the page lock when flushing the data.
2451          * put it here to preserve the unlock order.
2452          */
2453         ocfs2_unlock_pages(wc);
2454
2455         ocfs2_commit_trans(osb, handle);
2456
2457         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2458
2459         brelse(wc->w_di_bh);
2460         kfree(wc);
2461
2462         return copied;
2463 }
2464
2465 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2466                            loff_t pos, unsigned len, unsigned copied,
2467                            struct page *page, void *fsdata)
2468 {
2469         int ret;
2470         struct inode *inode = mapping->host;
2471
2472         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2473
2474         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2475         ocfs2_inode_unlock(inode, 1);
2476
2477         return ret;
2478 }
2479
2480 const struct address_space_operations ocfs2_aops = {
2481         .readpage               = ocfs2_readpage,
2482         .readpages              = ocfs2_readpages,
2483         .writepage              = ocfs2_writepage,
2484         .write_begin            = ocfs2_write_begin,
2485         .write_end              = ocfs2_write_end,
2486         .bmap                   = ocfs2_bmap,
2487         .direct_IO              = ocfs2_direct_IO,
2488         .invalidatepage         = block_invalidatepage,
2489         .releasepage            = ocfs2_releasepage,
2490         .migratepage            = buffer_migrate_page,
2491         .is_partially_uptodate  = block_is_partially_uptodate,
2492         .error_remove_page      = generic_error_remove_page,
2493 };