ocfs2: fix disk file size and memory file size mismatch
[linux-2.6-block.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu\n",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 static int ocfs2_releasepage(struct page *page, gfp_t wait)
503 {
504         if (!page_has_buffers(page))
505                 return 0;
506         return try_to_free_buffers(page);
507 }
508
509 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
510                                             u32 cpos,
511                                             unsigned int *start,
512                                             unsigned int *end)
513 {
514         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
515
516         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
517                 unsigned int cpp;
518
519                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
520
521                 cluster_start = cpos % cpp;
522                 cluster_start = cluster_start << osb->s_clustersize_bits;
523
524                 cluster_end = cluster_start + osb->s_clustersize;
525         }
526
527         BUG_ON(cluster_start > PAGE_SIZE);
528         BUG_ON(cluster_end > PAGE_SIZE);
529
530         if (start)
531                 *start = cluster_start;
532         if (end)
533                 *end = cluster_end;
534 }
535
536 /*
537  * 'from' and 'to' are the region in the page to avoid zeroing.
538  *
539  * If pagesize > clustersize, this function will avoid zeroing outside
540  * of the cluster boundary.
541  *
542  * from == to == 0 is code for "zero the entire cluster region"
543  */
544 static void ocfs2_clear_page_regions(struct page *page,
545                                      struct ocfs2_super *osb, u32 cpos,
546                                      unsigned from, unsigned to)
547 {
548         void *kaddr;
549         unsigned int cluster_start, cluster_end;
550
551         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
552
553         kaddr = kmap_atomic(page);
554
555         if (from || to) {
556                 if (from > cluster_start)
557                         memset(kaddr + cluster_start, 0, from - cluster_start);
558                 if (to < cluster_end)
559                         memset(kaddr + to, 0, cluster_end - to);
560         } else {
561                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
562         }
563
564         kunmap_atomic(kaddr);
565 }
566
567 /*
568  * Nonsparse file systems fully allocate before we get to the write
569  * code. This prevents ocfs2_write() from tagging the write as an
570  * allocating one, which means ocfs2_map_page_blocks() might try to
571  * read-in the blocks at the tail of our file. Avoid reading them by
572  * testing i_size against each block offset.
573  */
574 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
575                                  unsigned int block_start)
576 {
577         u64 offset = page_offset(page) + block_start;
578
579         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
580                 return 1;
581
582         if (i_size_read(inode) > offset)
583                 return 1;
584
585         return 0;
586 }
587
588 /*
589  * Some of this taken from __block_write_begin(). We already have our
590  * mapping by now though, and the entire write will be allocating or
591  * it won't, so not much need to use BH_New.
592  *
593  * This will also skip zeroing, which is handled externally.
594  */
595 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
596                           struct inode *inode, unsigned int from,
597                           unsigned int to, int new)
598 {
599         int ret = 0;
600         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
601         unsigned int block_end, block_start;
602         unsigned int bsize = 1 << inode->i_blkbits;
603
604         if (!page_has_buffers(page))
605                 create_empty_buffers(page, bsize, 0);
606
607         head = page_buffers(page);
608         for (bh = head, block_start = 0; bh != head || !block_start;
609              bh = bh->b_this_page, block_start += bsize) {
610                 block_end = block_start + bsize;
611
612                 clear_buffer_new(bh);
613
614                 /*
615                  * Ignore blocks outside of our i/o range -
616                  * they may belong to unallocated clusters.
617                  */
618                 if (block_start >= to || block_end <= from) {
619                         if (PageUptodate(page))
620                                 set_buffer_uptodate(bh);
621                         continue;
622                 }
623
624                 /*
625                  * For an allocating write with cluster size >= page
626                  * size, we always write the entire page.
627                  */
628                 if (new)
629                         set_buffer_new(bh);
630
631                 if (!buffer_mapped(bh)) {
632                         map_bh(bh, inode->i_sb, *p_blkno);
633                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
634                 }
635
636                 if (PageUptodate(page)) {
637                         if (!buffer_uptodate(bh))
638                                 set_buffer_uptodate(bh);
639                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
640                            !buffer_new(bh) &&
641                            ocfs2_should_read_blk(inode, page, block_start) &&
642                            (block_start < from || block_end > to)) {
643                         ll_rw_block(READ, 1, &bh);
644                         *wait_bh++=bh;
645                 }
646
647                 *p_blkno = *p_blkno + 1;
648         }
649
650         /*
651          * If we issued read requests - let them complete.
652          */
653         while(wait_bh > wait) {
654                 wait_on_buffer(*--wait_bh);
655                 if (!buffer_uptodate(*wait_bh))
656                         ret = -EIO;
657         }
658
659         if (ret == 0 || !new)
660                 return ret;
661
662         /*
663          * If we get -EIO above, zero out any newly allocated blocks
664          * to avoid exposing stale data.
665          */
666         bh = head;
667         block_start = 0;
668         do {
669                 block_end = block_start + bsize;
670                 if (block_end <= from)
671                         goto next_bh;
672                 if (block_start >= to)
673                         break;
674
675                 zero_user(page, block_start, bh->b_size);
676                 set_buffer_uptodate(bh);
677                 mark_buffer_dirty(bh);
678
679 next_bh:
680                 block_start = block_end;
681                 bh = bh->b_this_page;
682         } while (bh != head);
683
684         return ret;
685 }
686
687 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
688 #define OCFS2_MAX_CTXT_PAGES    1
689 #else
690 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
691 #endif
692
693 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
694
695 struct ocfs2_unwritten_extent {
696         struct list_head        ue_node;
697         struct list_head        ue_ip_node;
698         u32                     ue_cpos;
699         u32                     ue_phys;
700 };
701
702 /*
703  * Describe the state of a single cluster to be written to.
704  */
705 struct ocfs2_write_cluster_desc {
706         u32             c_cpos;
707         u32             c_phys;
708         /*
709          * Give this a unique field because c_phys eventually gets
710          * filled.
711          */
712         unsigned        c_new;
713         unsigned        c_clear_unwritten;
714         unsigned        c_needs_zero;
715 };
716
717 struct ocfs2_write_ctxt {
718         /* Logical cluster position / len of write */
719         u32                             w_cpos;
720         u32                             w_clen;
721
722         /* First cluster allocated in a nonsparse extend */
723         u32                             w_first_new_cpos;
724
725         /* Type of caller. Must be one of buffer, mmap, direct.  */
726         ocfs2_write_type_t              w_type;
727
728         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
729
730         /*
731          * This is true if page_size > cluster_size.
732          *
733          * It triggers a set of special cases during write which might
734          * have to deal with allocating writes to partial pages.
735          */
736         unsigned int                    w_large_pages;
737
738         /*
739          * Pages involved in this write.
740          *
741          * w_target_page is the page being written to by the user.
742          *
743          * w_pages is an array of pages which always contains
744          * w_target_page, and in the case of an allocating write with
745          * page_size < cluster size, it will contain zero'd and mapped
746          * pages adjacent to w_target_page which need to be written
747          * out in so that future reads from that region will get
748          * zero's.
749          */
750         unsigned int                    w_num_pages;
751         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
752         struct page                     *w_target_page;
753
754         /*
755          * w_target_locked is used for page_mkwrite path indicating no unlocking
756          * against w_target_page in ocfs2_write_end_nolock.
757          */
758         unsigned int                    w_target_locked:1;
759
760         /*
761          * ocfs2_write_end() uses this to know what the real range to
762          * write in the target should be.
763          */
764         unsigned int                    w_target_from;
765         unsigned int                    w_target_to;
766
767         /*
768          * We could use journal_current_handle() but this is cleaner,
769          * IMHO -Mark
770          */
771         handle_t                        *w_handle;
772
773         struct buffer_head              *w_di_bh;
774
775         struct ocfs2_cached_dealloc_ctxt w_dealloc;
776
777         struct list_head                w_unwritten_list;
778 };
779
780 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
781 {
782         int i;
783
784         for(i = 0; i < num_pages; i++) {
785                 if (pages[i]) {
786                         unlock_page(pages[i]);
787                         mark_page_accessed(pages[i]);
788                         page_cache_release(pages[i]);
789                 }
790         }
791 }
792
793 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
794 {
795         int i;
796
797         /*
798          * w_target_locked is only set to true in the page_mkwrite() case.
799          * The intent is to allow us to lock the target page from write_begin()
800          * to write_end(). The caller must hold a ref on w_target_page.
801          */
802         if (wc->w_target_locked) {
803                 BUG_ON(!wc->w_target_page);
804                 for (i = 0; i < wc->w_num_pages; i++) {
805                         if (wc->w_target_page == wc->w_pages[i]) {
806                                 wc->w_pages[i] = NULL;
807                                 break;
808                         }
809                 }
810                 mark_page_accessed(wc->w_target_page);
811                 page_cache_release(wc->w_target_page);
812         }
813         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
814 }
815
816 static void ocfs2_free_unwritten_list(struct inode *inode,
817                                  struct list_head *head)
818 {
819         struct ocfs2_inode_info *oi = OCFS2_I(inode);
820         struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
821
822         list_for_each_entry_safe(ue, tmp, head, ue_node) {
823                 list_del(&ue->ue_node);
824                 spin_lock(&oi->ip_lock);
825                 list_del(&ue->ue_ip_node);
826                 spin_unlock(&oi->ip_lock);
827                 kfree(ue);
828         }
829 }
830
831 static void ocfs2_free_write_ctxt(struct inode *inode,
832                                   struct ocfs2_write_ctxt *wc)
833 {
834         ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
835         ocfs2_unlock_pages(wc);
836         brelse(wc->w_di_bh);
837         kfree(wc);
838 }
839
840 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
841                                   struct ocfs2_super *osb, loff_t pos,
842                                   unsigned len, ocfs2_write_type_t type,
843                                   struct buffer_head *di_bh)
844 {
845         u32 cend;
846         struct ocfs2_write_ctxt *wc;
847
848         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
849         if (!wc)
850                 return -ENOMEM;
851
852         wc->w_cpos = pos >> osb->s_clustersize_bits;
853         wc->w_first_new_cpos = UINT_MAX;
854         cend = (pos + len - 1) >> osb->s_clustersize_bits;
855         wc->w_clen = cend - wc->w_cpos + 1;
856         get_bh(di_bh);
857         wc->w_di_bh = di_bh;
858         wc->w_type = type;
859
860         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
861                 wc->w_large_pages = 1;
862         else
863                 wc->w_large_pages = 0;
864
865         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
866         INIT_LIST_HEAD(&wc->w_unwritten_list);
867
868         *wcp = wc;
869
870         return 0;
871 }
872
873 /*
874  * If a page has any new buffers, zero them out here, and mark them uptodate
875  * and dirty so they'll be written out (in order to prevent uninitialised
876  * block data from leaking). And clear the new bit.
877  */
878 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
879 {
880         unsigned int block_start, block_end;
881         struct buffer_head *head, *bh;
882
883         BUG_ON(!PageLocked(page));
884         if (!page_has_buffers(page))
885                 return;
886
887         bh = head = page_buffers(page);
888         block_start = 0;
889         do {
890                 block_end = block_start + bh->b_size;
891
892                 if (buffer_new(bh)) {
893                         if (block_end > from && block_start < to) {
894                                 if (!PageUptodate(page)) {
895                                         unsigned start, end;
896
897                                         start = max(from, block_start);
898                                         end = min(to, block_end);
899
900                                         zero_user_segment(page, start, end);
901                                         set_buffer_uptodate(bh);
902                                 }
903
904                                 clear_buffer_new(bh);
905                                 mark_buffer_dirty(bh);
906                         }
907                 }
908
909                 block_start = block_end;
910                 bh = bh->b_this_page;
911         } while (bh != head);
912 }
913
914 /*
915  * Only called when we have a failure during allocating write to write
916  * zero's to the newly allocated region.
917  */
918 static void ocfs2_write_failure(struct inode *inode,
919                                 struct ocfs2_write_ctxt *wc,
920                                 loff_t user_pos, unsigned user_len)
921 {
922         int i;
923         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
924                 to = user_pos + user_len;
925         struct page *tmppage;
926
927         if (wc->w_target_page)
928                 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
929
930         for(i = 0; i < wc->w_num_pages; i++) {
931                 tmppage = wc->w_pages[i];
932
933                 if (tmppage && page_has_buffers(tmppage)) {
934                         if (ocfs2_should_order_data(inode))
935                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
936
937                         block_commit_write(tmppage, from, to);
938                 }
939         }
940 }
941
942 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
943                                         struct ocfs2_write_ctxt *wc,
944                                         struct page *page, u32 cpos,
945                                         loff_t user_pos, unsigned user_len,
946                                         int new)
947 {
948         int ret;
949         unsigned int map_from = 0, map_to = 0;
950         unsigned int cluster_start, cluster_end;
951         unsigned int user_data_from = 0, user_data_to = 0;
952
953         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
954                                         &cluster_start, &cluster_end);
955
956         /* treat the write as new if the a hole/lseek spanned across
957          * the page boundary.
958          */
959         new = new | ((i_size_read(inode) <= page_offset(page)) &&
960                         (page_offset(page) <= user_pos));
961
962         if (page == wc->w_target_page) {
963                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
964                 map_to = map_from + user_len;
965
966                 if (new)
967                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968                                                     cluster_start, cluster_end,
969                                                     new);
970                 else
971                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
972                                                     map_from, map_to, new);
973                 if (ret) {
974                         mlog_errno(ret);
975                         goto out;
976                 }
977
978                 user_data_from = map_from;
979                 user_data_to = map_to;
980                 if (new) {
981                         map_from = cluster_start;
982                         map_to = cluster_end;
983                 }
984         } else {
985                 /*
986                  * If we haven't allocated the new page yet, we
987                  * shouldn't be writing it out without copying user
988                  * data. This is likely a math error from the caller.
989                  */
990                 BUG_ON(!new);
991
992                 map_from = cluster_start;
993                 map_to = cluster_end;
994
995                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
996                                             cluster_start, cluster_end, new);
997                 if (ret) {
998                         mlog_errno(ret);
999                         goto out;
1000                 }
1001         }
1002
1003         /*
1004          * Parts of newly allocated pages need to be zero'd.
1005          *
1006          * Above, we have also rewritten 'to' and 'from' - as far as
1007          * the rest of the function is concerned, the entire cluster
1008          * range inside of a page needs to be written.
1009          *
1010          * We can skip this if the page is up to date - it's already
1011          * been zero'd from being read in as a hole.
1012          */
1013         if (new && !PageUptodate(page))
1014                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1015                                          cpos, user_data_from, user_data_to);
1016
1017         flush_dcache_page(page);
1018
1019 out:
1020         return ret;
1021 }
1022
1023 /*
1024  * This function will only grab one clusters worth of pages.
1025  */
1026 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027                                       struct ocfs2_write_ctxt *wc,
1028                                       u32 cpos, loff_t user_pos,
1029                                       unsigned user_len, int new,
1030                                       struct page *mmap_page)
1031 {
1032         int ret = 0, i;
1033         unsigned long start, target_index, end_index, index;
1034         struct inode *inode = mapping->host;
1035         loff_t last_byte;
1036
1037         target_index = user_pos >> PAGE_CACHE_SHIFT;
1038
1039         /*
1040          * Figure out how many pages we'll be manipulating here. For
1041          * non allocating write, we just change the one
1042          * page. Otherwise, we'll need a whole clusters worth.  If we're
1043          * writing past i_size, we only need enough pages to cover the
1044          * last page of the write.
1045          */
1046         if (new) {
1047                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1049                 /*
1050                  * We need the index *past* the last page we could possibly
1051                  * touch.  This is the page past the end of the write or
1052                  * i_size, whichever is greater.
1053                  */
1054                 last_byte = max(user_pos + user_len, i_size_read(inode));
1055                 BUG_ON(last_byte < 1);
1056                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1057                 if ((start + wc->w_num_pages) > end_index)
1058                         wc->w_num_pages = end_index - start;
1059         } else {
1060                 wc->w_num_pages = 1;
1061                 start = target_index;
1062         }
1063         end_index = (user_pos + user_len - 1) >> PAGE_CACHE_SHIFT;
1064
1065         for(i = 0; i < wc->w_num_pages; i++) {
1066                 index = start + i;
1067
1068                 if (index >= target_index && index <= end_index &&
1069                     wc->w_type == OCFS2_WRITE_MMAP) {
1070                         /*
1071                          * ocfs2_pagemkwrite() is a little different
1072                          * and wants us to directly use the page
1073                          * passed in.
1074                          */
1075                         lock_page(mmap_page);
1076
1077                         /* Exit and let the caller retry */
1078                         if (mmap_page->mapping != mapping) {
1079                                 WARN_ON(mmap_page->mapping);
1080                                 unlock_page(mmap_page);
1081                                 ret = -EAGAIN;
1082                                 goto out;
1083                         }
1084
1085                         page_cache_get(mmap_page);
1086                         wc->w_pages[i] = mmap_page;
1087                         wc->w_target_locked = true;
1088                 } else if (index >= target_index && index <= end_index &&
1089                            wc->w_type == OCFS2_WRITE_DIRECT) {
1090                         /* Direct write has no mapping page. */
1091                         wc->w_pages[i] = NULL;
1092                         continue;
1093                 } else {
1094                         wc->w_pages[i] = find_or_create_page(mapping, index,
1095                                                              GFP_NOFS);
1096                         if (!wc->w_pages[i]) {
1097                                 ret = -ENOMEM;
1098                                 mlog_errno(ret);
1099                                 goto out;
1100                         }
1101                 }
1102                 wait_for_stable_page(wc->w_pages[i]);
1103
1104                 if (index == target_index)
1105                         wc->w_target_page = wc->w_pages[i];
1106         }
1107 out:
1108         if (ret)
1109                 wc->w_target_locked = false;
1110         return ret;
1111 }
1112
1113 /*
1114  * Prepare a single cluster for write one cluster into the file.
1115  */
1116 static int ocfs2_write_cluster(struct address_space *mapping,
1117                                u32 *phys, unsigned int new,
1118                                unsigned int clear_unwritten,
1119                                unsigned int should_zero,
1120                                struct ocfs2_alloc_context *data_ac,
1121                                struct ocfs2_alloc_context *meta_ac,
1122                                struct ocfs2_write_ctxt *wc, u32 cpos,
1123                                loff_t user_pos, unsigned user_len)
1124 {
1125         int ret, i;
1126         u64 p_blkno;
1127         struct inode *inode = mapping->host;
1128         struct ocfs2_extent_tree et;
1129         int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1130
1131         if (new) {
1132                 u32 tmp_pos;
1133
1134                 /*
1135                  * This is safe to call with the page locks - it won't take
1136                  * any additional semaphores or cluster locks.
1137                  */
1138                 tmp_pos = cpos;
1139                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1140                                            &tmp_pos, 1, !clear_unwritten,
1141                                            wc->w_di_bh, wc->w_handle,
1142                                            data_ac, meta_ac, NULL);
1143                 /*
1144                  * This shouldn't happen because we must have already
1145                  * calculated the correct meta data allocation required. The
1146                  * internal tree allocation code should know how to increase
1147                  * transaction credits itself.
1148                  *
1149                  * If need be, we could handle -EAGAIN for a
1150                  * RESTART_TRANS here.
1151                  */
1152                 mlog_bug_on_msg(ret == -EAGAIN,
1153                                 "Inode %llu: EAGAIN return during allocation.\n",
1154                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1155                 if (ret < 0) {
1156                         mlog_errno(ret);
1157                         goto out;
1158                 }
1159         } else if (clear_unwritten) {
1160                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161                                               wc->w_di_bh);
1162                 ret = ocfs2_mark_extent_written(inode, &et,
1163                                                 wc->w_handle, cpos, 1, *phys,
1164                                                 meta_ac, &wc->w_dealloc);
1165                 if (ret < 0) {
1166                         mlog_errno(ret);
1167                         goto out;
1168                 }
1169         }
1170
1171         /*
1172          * The only reason this should fail is due to an inability to
1173          * find the extent added.
1174          */
1175         ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1176         if (ret < 0) {
1177                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1178                             "at logical cluster %u",
1179                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1180                 goto out;
1181         }
1182
1183         BUG_ON(*phys == 0);
1184
1185         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186         if (!should_zero)
1187                 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1188
1189         for(i = 0; i < wc->w_num_pages; i++) {
1190                 int tmpret;
1191
1192                 /* This is the direct io target page. */
1193                 if (wc->w_pages[i] == NULL) {
1194                         p_blkno++;
1195                         continue;
1196                 }
1197
1198                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199                                                       wc->w_pages[i], cpos,
1200                                                       user_pos, user_len,
1201                                                       should_zero);
1202                 if (tmpret) {
1203                         mlog_errno(tmpret);
1204                         if (ret == 0)
1205                                 ret = tmpret;
1206                 }
1207         }
1208
1209         /*
1210          * We only have cleanup to do in case of allocating write.
1211          */
1212         if (ret && new)
1213                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1214
1215 out:
1216
1217         return ret;
1218 }
1219
1220 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221                                        struct ocfs2_alloc_context *data_ac,
1222                                        struct ocfs2_alloc_context *meta_ac,
1223                                        struct ocfs2_write_ctxt *wc,
1224                                        loff_t pos, unsigned len)
1225 {
1226         int ret, i;
1227         loff_t cluster_off;
1228         unsigned int local_len = len;
1229         struct ocfs2_write_cluster_desc *desc;
1230         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1231
1232         for (i = 0; i < wc->w_clen; i++) {
1233                 desc = &wc->w_desc[i];
1234
1235                 /*
1236                  * We have to make sure that the total write passed in
1237                  * doesn't extend past a single cluster.
1238                  */
1239                 local_len = len;
1240                 cluster_off = pos & (osb->s_clustersize - 1);
1241                 if ((cluster_off + local_len) > osb->s_clustersize)
1242                         local_len = osb->s_clustersize - cluster_off;
1243
1244                 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1245                                           desc->c_new,
1246                                           desc->c_clear_unwritten,
1247                                           desc->c_needs_zero,
1248                                           data_ac, meta_ac,
1249                                           wc, desc->c_cpos, pos, local_len);
1250                 if (ret) {
1251                         mlog_errno(ret);
1252                         goto out;
1253                 }
1254
1255                 len -= local_len;
1256                 pos += local_len;
1257         }
1258
1259         ret = 0;
1260 out:
1261         return ret;
1262 }
1263
1264 /*
1265  * ocfs2_write_end() wants to know which parts of the target page it
1266  * should complete the write on. It's easiest to compute them ahead of
1267  * time when a more complete view of the write is available.
1268  */
1269 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270                                         struct ocfs2_write_ctxt *wc,
1271                                         loff_t pos, unsigned len, int alloc)
1272 {
1273         struct ocfs2_write_cluster_desc *desc;
1274
1275         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1276         wc->w_target_to = wc->w_target_from + len;
1277
1278         if (alloc == 0)
1279                 return;
1280
1281         /*
1282          * Allocating write - we may have different boundaries based
1283          * on page size and cluster size.
1284          *
1285          * NOTE: We can no longer compute one value from the other as
1286          * the actual write length and user provided length may be
1287          * different.
1288          */
1289
1290         if (wc->w_large_pages) {
1291                 /*
1292                  * We only care about the 1st and last cluster within
1293                  * our range and whether they should be zero'd or not. Either
1294                  * value may be extended out to the start/end of a
1295                  * newly allocated cluster.
1296                  */
1297                 desc = &wc->w_desc[0];
1298                 if (desc->c_needs_zero)
1299                         ocfs2_figure_cluster_boundaries(osb,
1300                                                         desc->c_cpos,
1301                                                         &wc->w_target_from,
1302                                                         NULL);
1303
1304                 desc = &wc->w_desc[wc->w_clen - 1];
1305                 if (desc->c_needs_zero)
1306                         ocfs2_figure_cluster_boundaries(osb,
1307                                                         desc->c_cpos,
1308                                                         NULL,
1309                                                         &wc->w_target_to);
1310         } else {
1311                 wc->w_target_from = 0;
1312                 wc->w_target_to = PAGE_CACHE_SIZE;
1313         }
1314 }
1315
1316 /*
1317  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319  * by the direct io procedure.
1320  * If this is a new extent that allocated by direct io, we should mark it in
1321  * the ip_unwritten_list.
1322  */
1323 static int ocfs2_unwritten_check(struct inode *inode,
1324                                  struct ocfs2_write_ctxt *wc,
1325                                  struct ocfs2_write_cluster_desc *desc)
1326 {
1327         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1328         struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1329         int ret = 0;
1330
1331         if (!desc->c_needs_zero)
1332                 return 0;
1333
1334 retry:
1335         spin_lock(&oi->ip_lock);
1336         /* Needs not to zero no metter buffer or direct. The one who is zero
1337          * the cluster is doing zero. And he will clear unwritten after all
1338          * cluster io finished. */
1339         list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340                 if (desc->c_cpos == ue->ue_cpos) {
1341                         BUG_ON(desc->c_new);
1342                         desc->c_needs_zero = 0;
1343                         desc->c_clear_unwritten = 0;
1344                         goto unlock;
1345                 }
1346         }
1347
1348         if (wc->w_type != OCFS2_WRITE_DIRECT)
1349                 goto unlock;
1350
1351         if (new == NULL) {
1352                 spin_unlock(&oi->ip_lock);
1353                 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354                              GFP_NOFS);
1355                 if (new == NULL) {
1356                         ret = -ENOMEM;
1357                         goto out;
1358                 }
1359                 goto retry;
1360         }
1361         /* This direct write will doing zero. */
1362         new->ue_cpos = desc->c_cpos;
1363         new->ue_phys = desc->c_phys;
1364         desc->c_clear_unwritten = 0;
1365         list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366         list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1367         new = NULL;
1368 unlock:
1369         spin_unlock(&oi->ip_lock);
1370 out:
1371         if (new)
1372                 kfree(new);
1373         return ret;
1374 }
1375
1376 /*
1377  * Populate each single-cluster write descriptor in the write context
1378  * with information about the i/o to be done.
1379  *
1380  * Returns the number of clusters that will have to be allocated, as
1381  * well as a worst case estimate of the number of extent records that
1382  * would have to be created during a write to an unwritten region.
1383  */
1384 static int ocfs2_populate_write_desc(struct inode *inode,
1385                                      struct ocfs2_write_ctxt *wc,
1386                                      unsigned int *clusters_to_alloc,
1387                                      unsigned int *extents_to_split)
1388 {
1389         int ret;
1390         struct ocfs2_write_cluster_desc *desc;
1391         unsigned int num_clusters = 0;
1392         unsigned int ext_flags = 0;
1393         u32 phys = 0;
1394         int i;
1395
1396         *clusters_to_alloc = 0;
1397         *extents_to_split = 0;
1398
1399         for (i = 0; i < wc->w_clen; i++) {
1400                 desc = &wc->w_desc[i];
1401                 desc->c_cpos = wc->w_cpos + i;
1402
1403                 if (num_clusters == 0) {
1404                         /*
1405                          * Need to look up the next extent record.
1406                          */
1407                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1408                                                  &num_clusters, &ext_flags);
1409                         if (ret) {
1410                                 mlog_errno(ret);
1411                                 goto out;
1412                         }
1413
1414                         /* We should already CoW the refcountd extent. */
1415                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416
1417                         /*
1418                          * Assume worst case - that we're writing in
1419                          * the middle of the extent.
1420                          *
1421                          * We can assume that the write proceeds from
1422                          * left to right, in which case the extent
1423                          * insert code is smart enough to coalesce the
1424                          * next splits into the previous records created.
1425                          */
1426                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427                                 *extents_to_split = *extents_to_split + 2;
1428                 } else if (phys) {
1429                         /*
1430                          * Only increment phys if it doesn't describe
1431                          * a hole.
1432                          */
1433                         phys++;
1434                 }
1435
1436                 /*
1437                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438                  * file that got extended.  w_first_new_cpos tells us
1439                  * where the newly allocated clusters are so we can
1440                  * zero them.
1441                  */
1442                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1443                         BUG_ON(phys == 0);
1444                         desc->c_needs_zero = 1;
1445                 }
1446
1447                 desc->c_phys = phys;
1448                 if (phys == 0) {
1449                         desc->c_new = 1;
1450                         desc->c_needs_zero = 1;
1451                         desc->c_clear_unwritten = 1;
1452                         *clusters_to_alloc = *clusters_to_alloc + 1;
1453                 }
1454
1455                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1456                         desc->c_clear_unwritten = 1;
1457                         desc->c_needs_zero = 1;
1458                 }
1459
1460                 ret = ocfs2_unwritten_check(inode, wc, desc);
1461                 if (ret) {
1462                         mlog_errno(ret);
1463                         goto out;
1464                 }
1465
1466                 num_clusters--;
1467         }
1468
1469         ret = 0;
1470 out:
1471         return ret;
1472 }
1473
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475                                     struct inode *inode,
1476                                     struct ocfs2_write_ctxt *wc)
1477 {
1478         int ret;
1479         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480         struct page *page;
1481         handle_t *handle;
1482         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485         if (IS_ERR(handle)) {
1486                 ret = PTR_ERR(handle);
1487                 mlog_errno(ret);
1488                 goto out;
1489         }
1490
1491         page = find_or_create_page(mapping, 0, GFP_NOFS);
1492         if (!page) {
1493                 ocfs2_commit_trans(osb, handle);
1494                 ret = -ENOMEM;
1495                 mlog_errno(ret);
1496                 goto out;
1497         }
1498         /*
1499          * If we don't set w_num_pages then this page won't get unlocked
1500          * and freed on cleanup of the write context.
1501          */
1502         wc->w_pages[0] = wc->w_target_page = page;
1503         wc->w_num_pages = 1;
1504
1505         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506                                       OCFS2_JOURNAL_ACCESS_WRITE);
1507         if (ret) {
1508                 ocfs2_commit_trans(osb, handle);
1509
1510                 mlog_errno(ret);
1511                 goto out;
1512         }
1513
1514         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515                 ocfs2_set_inode_data_inline(inode, di);
1516
1517         if (!PageUptodate(page)) {
1518                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519                 if (ret) {
1520                         ocfs2_commit_trans(osb, handle);
1521
1522                         goto out;
1523                 }
1524         }
1525
1526         wc->w_handle = handle;
1527 out:
1528         return ret;
1529 }
1530
1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532 {
1533         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
1535         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536                 return 1;
1537         return 0;
1538 }
1539
1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541                                           struct inode *inode, loff_t pos,
1542                                           unsigned len, struct page *mmap_page,
1543                                           struct ocfs2_write_ctxt *wc)
1544 {
1545         int ret, written = 0;
1546         loff_t end = pos + len;
1547         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548         struct ocfs2_dinode *di = NULL;
1549
1550         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551                                              len, (unsigned long long)pos,
1552                                              oi->ip_dyn_features);
1553
1554         /*
1555          * Handle inodes which already have inline data 1st.
1556          */
1557         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558                 if (mmap_page == NULL &&
1559                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560                         goto do_inline_write;
1561
1562                 /*
1563                  * The write won't fit - we have to give this inode an
1564                  * inline extent list now.
1565                  */
1566                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567                 if (ret)
1568                         mlog_errno(ret);
1569                 goto out;
1570         }
1571
1572         /*
1573          * Check whether the inode can accept inline data.
1574          */
1575         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576                 return 0;
1577
1578         /*
1579          * Check whether the write can fit.
1580          */
1581         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582         if (mmap_page ||
1583             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584                 return 0;
1585
1586 do_inline_write:
1587         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588         if (ret) {
1589                 mlog_errno(ret);
1590                 goto out;
1591         }
1592
1593         /*
1594          * This signals to the caller that the data can be written
1595          * inline.
1596          */
1597         written = 1;
1598 out:
1599         return written ? written : ret;
1600 }
1601
1602 /*
1603  * This function only does anything for file systems which can't
1604  * handle sparse files.
1605  *
1606  * What we want to do here is fill in any hole between the current end
1607  * of allocation and the end of our write. That way the rest of the
1608  * write path can treat it as an non-allocating write, which has no
1609  * special case code for sparse/nonsparse files.
1610  */
1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612                                         struct buffer_head *di_bh,
1613                                         loff_t pos, unsigned len,
1614                                         struct ocfs2_write_ctxt *wc)
1615 {
1616         int ret;
1617         loff_t newsize = pos + len;
1618
1619         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620
1621         if (newsize <= i_size_read(inode))
1622                 return 0;
1623
1624         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625         if (ret)
1626                 mlog_errno(ret);
1627
1628         /* There is no wc if this is call from direct. */
1629         if (wc)
1630                 wc->w_first_new_cpos =
1631                         ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1632
1633         return ret;
1634 }
1635
1636 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637                            loff_t pos)
1638 {
1639         int ret = 0;
1640
1641         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642         if (pos > i_size_read(inode))
1643                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1644
1645         return ret;
1646 }
1647
1648 /*
1649  * Try to flush truncate logs if we can free enough clusters from it.
1650  * As for return value, "< 0" means error, "0" no space and "1" means
1651  * we have freed enough spaces and let the caller try to allocate again.
1652  */
1653 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1654                                           unsigned int needed)
1655 {
1656         tid_t target;
1657         int ret = 0;
1658         unsigned int truncated_clusters;
1659
1660         inode_lock(osb->osb_tl_inode);
1661         truncated_clusters = osb->truncated_clusters;
1662         inode_unlock(osb->osb_tl_inode);
1663
1664         /*
1665          * Check whether we can succeed in allocating if we free
1666          * the truncate log.
1667          */
1668         if (truncated_clusters < needed)
1669                 goto out;
1670
1671         ret = ocfs2_flush_truncate_log(osb);
1672         if (ret) {
1673                 mlog_errno(ret);
1674                 goto out;
1675         }
1676
1677         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1678                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1679                 ret = 1;
1680         }
1681 out:
1682         return ret;
1683 }
1684
1685 int ocfs2_write_begin_nolock(struct address_space *mapping,
1686                              loff_t pos, unsigned len, ocfs2_write_type_t type,
1687                              struct page **pagep, void **fsdata,
1688                              struct buffer_head *di_bh, struct page *mmap_page)
1689 {
1690         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1691         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1692         struct ocfs2_write_ctxt *wc;
1693         struct inode *inode = mapping->host;
1694         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1695         struct ocfs2_dinode *di;
1696         struct ocfs2_alloc_context *data_ac = NULL;
1697         struct ocfs2_alloc_context *meta_ac = NULL;
1698         handle_t *handle;
1699         struct ocfs2_extent_tree et;
1700         int try_free = 1, ret1;
1701
1702 try_again:
1703         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1704         if (ret) {
1705                 mlog_errno(ret);
1706                 return ret;
1707         }
1708
1709         if (ocfs2_supports_inline_data(osb)) {
1710                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1711                                                      mmap_page, wc);
1712                 if (ret == 1) {
1713                         ret = 0;
1714                         goto success;
1715                 }
1716                 if (ret < 0) {
1717                         mlog_errno(ret);
1718                         goto out;
1719                 }
1720         }
1721
1722         /* Direct io change i_size late, should not zero tail here. */
1723         if (type != OCFS2_WRITE_DIRECT) {
1724                 if (ocfs2_sparse_alloc(osb))
1725                         ret = ocfs2_zero_tail(inode, di_bh, pos);
1726                 else
1727                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1728                                                            len, wc);
1729                 if (ret) {
1730                         mlog_errno(ret);
1731                         goto out;
1732                 }
1733         }
1734
1735         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1736         if (ret < 0) {
1737                 mlog_errno(ret);
1738                 goto out;
1739         } else if (ret == 1) {
1740                 clusters_need = wc->w_clen;
1741                 ret = ocfs2_refcount_cow(inode, di_bh,
1742                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1743                 if (ret) {
1744                         mlog_errno(ret);
1745                         goto out;
1746                 }
1747         }
1748
1749         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1750                                         &extents_to_split);
1751         if (ret) {
1752                 mlog_errno(ret);
1753                 goto out;
1754         }
1755         clusters_need += clusters_to_alloc;
1756
1757         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1758
1759         trace_ocfs2_write_begin_nolock(
1760                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1761                         (long long)i_size_read(inode),
1762                         le32_to_cpu(di->i_clusters),
1763                         pos, len, type, mmap_page,
1764                         clusters_to_alloc, extents_to_split);
1765
1766         /*
1767          * We set w_target_from, w_target_to here so that
1768          * ocfs2_write_end() knows which range in the target page to
1769          * write out. An allocation requires that we write the entire
1770          * cluster range.
1771          */
1772         if (clusters_to_alloc || extents_to_split) {
1773                 /*
1774                  * XXX: We are stretching the limits of
1775                  * ocfs2_lock_allocators(). It greatly over-estimates
1776                  * the work to be done.
1777                  */
1778                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1779                                               wc->w_di_bh);
1780                 ret = ocfs2_lock_allocators(inode, &et,
1781                                             clusters_to_alloc, extents_to_split,
1782                                             &data_ac, &meta_ac);
1783                 if (ret) {
1784                         mlog_errno(ret);
1785                         goto out;
1786                 }
1787
1788                 if (data_ac)
1789                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1790
1791                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1792                                                     &di->id2.i_list);
1793         } else if (type == OCFS2_WRITE_DIRECT)
1794                 /* direct write needs not to start trans if no extents alloc. */
1795                 goto success;
1796
1797         /*
1798          * We have to zero sparse allocated clusters, unwritten extent clusters,
1799          * and non-sparse clusters we just extended.  For non-sparse writes,
1800          * we know zeros will only be needed in the first and/or last cluster.
1801          */
1802         if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1803                            wc->w_desc[wc->w_clen - 1].c_needs_zero))
1804                 cluster_of_pages = 1;
1805         else
1806                 cluster_of_pages = 0;
1807
1808         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1809
1810         handle = ocfs2_start_trans(osb, credits);
1811         if (IS_ERR(handle)) {
1812                 ret = PTR_ERR(handle);
1813                 mlog_errno(ret);
1814                 goto out;
1815         }
1816
1817         wc->w_handle = handle;
1818
1819         if (clusters_to_alloc) {
1820                 ret = dquot_alloc_space_nodirty(inode,
1821                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822                 if (ret)
1823                         goto out_commit;
1824         }
1825
1826         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1827                                       OCFS2_JOURNAL_ACCESS_WRITE);
1828         if (ret) {
1829                 mlog_errno(ret);
1830                 goto out_quota;
1831         }
1832
1833         /*
1834          * Fill our page array first. That way we've grabbed enough so
1835          * that we can zero and flush if we error after adding the
1836          * extent.
1837          */
1838         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1839                                          cluster_of_pages, mmap_page);
1840         if (ret && ret != -EAGAIN) {
1841                 mlog_errno(ret);
1842                 goto out_quota;
1843         }
1844
1845         /*
1846          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1847          * the target page. In this case, we exit with no error and no target
1848          * page. This will trigger the caller, page_mkwrite(), to re-try
1849          * the operation.
1850          */
1851         if (ret == -EAGAIN) {
1852                 BUG_ON(wc->w_target_page);
1853                 ret = 0;
1854                 goto out_quota;
1855         }
1856
1857         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1858                                           len);
1859         if (ret) {
1860                 mlog_errno(ret);
1861                 goto out_quota;
1862         }
1863
1864         if (data_ac)
1865                 ocfs2_free_alloc_context(data_ac);
1866         if (meta_ac)
1867                 ocfs2_free_alloc_context(meta_ac);
1868
1869 success:
1870         if (pagep)
1871                 *pagep = wc->w_target_page;
1872         *fsdata = wc;
1873         return 0;
1874 out_quota:
1875         if (clusters_to_alloc)
1876                 dquot_free_space(inode,
1877                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1878 out_commit:
1879         ocfs2_commit_trans(osb, handle);
1880
1881 out:
1882         ocfs2_free_write_ctxt(inode, wc);
1883
1884         if (data_ac) {
1885                 ocfs2_free_alloc_context(data_ac);
1886                 data_ac = NULL;
1887         }
1888         if (meta_ac) {
1889                 ocfs2_free_alloc_context(meta_ac);
1890                 meta_ac = NULL;
1891         }
1892
1893         if (ret == -ENOSPC && try_free) {
1894                 /*
1895                  * Try to free some truncate log so that we can have enough
1896                  * clusters to allocate.
1897                  */
1898                 try_free = 0;
1899
1900                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1901                 if (ret1 == 1)
1902                         goto try_again;
1903
1904                 if (ret1 < 0)
1905                         mlog_errno(ret1);
1906         }
1907
1908         return ret;
1909 }
1910
1911 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1912                              loff_t pos, unsigned len, unsigned flags,
1913                              struct page **pagep, void **fsdata)
1914 {
1915         int ret;
1916         struct buffer_head *di_bh = NULL;
1917         struct inode *inode = mapping->host;
1918
1919         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1920         if (ret) {
1921                 mlog_errno(ret);
1922                 return ret;
1923         }
1924
1925         /*
1926          * Take alloc sem here to prevent concurrent lookups. That way
1927          * the mapping, zeroing and tree manipulation within
1928          * ocfs2_write() will be safe against ->readpage(). This
1929          * should also serve to lock out allocation from a shared
1930          * writeable region.
1931          */
1932         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1933
1934         ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1935                                        pagep, fsdata, di_bh, NULL);
1936         if (ret) {
1937                 mlog_errno(ret);
1938                 goto out_fail;
1939         }
1940
1941         brelse(di_bh);
1942
1943         return 0;
1944
1945 out_fail:
1946         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1947
1948         brelse(di_bh);
1949         ocfs2_inode_unlock(inode, 1);
1950
1951         return ret;
1952 }
1953
1954 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1955                                    unsigned len, unsigned *copied,
1956                                    struct ocfs2_dinode *di,
1957                                    struct ocfs2_write_ctxt *wc)
1958 {
1959         void *kaddr;
1960
1961         if (unlikely(*copied < len)) {
1962                 if (!PageUptodate(wc->w_target_page)) {
1963                         *copied = 0;
1964                         return;
1965                 }
1966         }
1967
1968         kaddr = kmap_atomic(wc->w_target_page);
1969         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1970         kunmap_atomic(kaddr);
1971
1972         trace_ocfs2_write_end_inline(
1973              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1974              (unsigned long long)pos, *copied,
1975              le16_to_cpu(di->id2.i_data.id_count),
1976              le16_to_cpu(di->i_dyn_features));
1977 }
1978
1979 int ocfs2_write_end_nolock(struct address_space *mapping,
1980                            loff_t pos, unsigned len, unsigned copied,
1981                            struct page *page, void *fsdata)
1982 {
1983         int i, ret;
1984         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1985         struct inode *inode = mapping->host;
1986         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1987         struct ocfs2_write_ctxt *wc = fsdata;
1988         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1989         handle_t *handle = wc->w_handle;
1990         struct page *tmppage;
1991
1992         BUG_ON(!list_empty(&wc->w_unwritten_list));
1993
1994         if (handle) {
1995                 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1996                                 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1997                 if (ret) {
1998                         copied = ret;
1999                         mlog_errno(ret);
2000                         goto out;
2001                 }
2002         }
2003
2004         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006                 goto out_write_size;
2007         }
2008
2009         if (unlikely(copied < len) && wc->w_target_page) {
2010                 if (!PageUptodate(wc->w_target_page))
2011                         copied = 0;
2012
2013                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014                                        start+len);
2015         }
2016         if (wc->w_target_page)
2017                 flush_dcache_page(wc->w_target_page);
2018
2019         for(i = 0; i < wc->w_num_pages; i++) {
2020                 tmppage = wc->w_pages[i];
2021
2022                 /* This is the direct io target page. */
2023                 if (tmppage == NULL)
2024                         continue;
2025
2026                 if (tmppage == wc->w_target_page) {
2027                         from = wc->w_target_from;
2028                         to = wc->w_target_to;
2029
2030                         BUG_ON(from > PAGE_CACHE_SIZE ||
2031                                to > PAGE_CACHE_SIZE ||
2032                                to < from);
2033                 } else {
2034                         /*
2035                          * Pages adjacent to the target (if any) imply
2036                          * a hole-filling write in which case we want
2037                          * to flush their entire range.
2038                          */
2039                         from = 0;
2040                         to = PAGE_CACHE_SIZE;
2041                 }
2042
2043                 if (page_has_buffers(tmppage)) {
2044                         if (handle && ocfs2_should_order_data(inode))
2045                                 ocfs2_jbd2_file_inode(handle, inode);
2046                         block_commit_write(tmppage, from, to);
2047                 }
2048         }
2049
2050 out_write_size:
2051         /* Direct io do not update i_size here. */
2052         if (wc->w_type != OCFS2_WRITE_DIRECT) {
2053                 pos += copied;
2054                 if (pos > i_size_read(inode)) {
2055                         i_size_write(inode, pos);
2056                         mark_inode_dirty(inode);
2057                 }
2058                 inode->i_blocks = ocfs2_inode_sector_count(inode);
2059                 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2060                 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2061                 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2062                 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2063                 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2064         }
2065         if (handle)
2066                 ocfs2_journal_dirty(handle, wc->w_di_bh);
2067
2068 out:
2069         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2070          * lock, or it will cause a deadlock since journal commit threads holds
2071          * this lock and will ask for the page lock when flushing the data.
2072          * put it here to preserve the unlock order.
2073          */
2074         ocfs2_unlock_pages(wc);
2075
2076         if (handle)
2077                 ocfs2_commit_trans(osb, handle);
2078
2079         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2080
2081         brelse(wc->w_di_bh);
2082         kfree(wc);
2083
2084         return copied;
2085 }
2086
2087 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2088                            loff_t pos, unsigned len, unsigned copied,
2089                            struct page *page, void *fsdata)
2090 {
2091         int ret;
2092         struct inode *inode = mapping->host;
2093
2094         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2095
2096         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2097         ocfs2_inode_unlock(inode, 1);
2098
2099         return ret;
2100 }
2101
2102 struct ocfs2_dio_write_ctxt {
2103         struct list_head        dw_zero_list;
2104         unsigned                dw_zero_count;
2105         int                     dw_orphaned;
2106         pid_t                   dw_writer_pid;
2107 };
2108
2109 static struct ocfs2_dio_write_ctxt *
2110 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2111 {
2112         struct ocfs2_dio_write_ctxt *dwc = NULL;
2113
2114         if (bh->b_private)
2115                 return bh->b_private;
2116
2117         dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2118         if (dwc == NULL)
2119                 return NULL;
2120         INIT_LIST_HEAD(&dwc->dw_zero_list);
2121         dwc->dw_zero_count = 0;
2122         dwc->dw_orphaned = 0;
2123         dwc->dw_writer_pid = task_pid_nr(current);
2124         bh->b_private = dwc;
2125         *alloc = 1;
2126
2127         return dwc;
2128 }
2129
2130 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2131                                      struct ocfs2_dio_write_ctxt *dwc)
2132 {
2133         ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2134         kfree(dwc);
2135 }
2136
2137 /*
2138  * TODO: Make this into a generic get_blocks function.
2139  *
2140  * From do_direct_io in direct-io.c:
2141  *  "So what we do is to permit the ->get_blocks function to populate
2142  *   bh.b_size with the size of IO which is permitted at this offset and
2143  *   this i_blkbits."
2144  *
2145  * This function is called directly from get_more_blocks in direct-io.c.
2146  *
2147  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2148  *                                      fs_count, map_bh, dio->rw == WRITE);
2149  */
2150 static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
2151                                struct buffer_head *bh_result, int create)
2152 {
2153         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2154         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2155         struct ocfs2_write_ctxt *wc;
2156         struct ocfs2_write_cluster_desc *desc = NULL;
2157         struct ocfs2_dio_write_ctxt *dwc = NULL;
2158         struct buffer_head *di_bh = NULL;
2159         u64 p_blkno;
2160         loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2161         unsigned len, total_len = bh_result->b_size;
2162         int ret = 0, first_get_block = 0;
2163
2164         len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2165         len = min(total_len, len);
2166
2167         mlog(0, "get block of %lu at %llu:%u req %u\n",
2168                         inode->i_ino, pos, len, total_len);
2169
2170         /*
2171          * Because we need to change file size in ocfs2_dio_end_io_write(), or
2172          * we may need to add it to orphan dir. So can not fall to fast path
2173          * while file size will be changed.
2174          */
2175         if (pos + total_len <= i_size_read(inode)) {
2176                 down_read(&oi->ip_alloc_sem);
2177                 /* This is the fast path for re-write. */
2178                 ret = ocfs2_get_block(inode, iblock, bh_result, create);
2179
2180                 up_read(&oi->ip_alloc_sem);
2181
2182                 if (buffer_mapped(bh_result) &&
2183                     !buffer_new(bh_result) &&
2184                     ret == 0)
2185                         goto out;
2186
2187                 /* Clear state set by ocfs2_get_block. */
2188                 bh_result->b_state = 0;
2189         }
2190
2191         dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2192         if (unlikely(dwc == NULL)) {
2193                 ret = -ENOMEM;
2194                 mlog_errno(ret);
2195                 goto out;
2196         }
2197
2198         if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2199             ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2200             !dwc->dw_orphaned) {
2201                 /*
2202                  * when we are going to alloc extents beyond file size, add the
2203                  * inode to orphan dir, so we can recall those spaces when
2204                  * system crashed during write.
2205                  */
2206                 ret = ocfs2_add_inode_to_orphan(osb, inode);
2207                 if (ret < 0) {
2208                         mlog_errno(ret);
2209                         goto out;
2210                 }
2211                 dwc->dw_orphaned = 1;
2212         }
2213
2214         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2215         if (ret) {
2216                 mlog_errno(ret);
2217                 goto out;
2218         }
2219
2220         down_write(&oi->ip_alloc_sem);
2221
2222         if (first_get_block) {
2223                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2224                         ret = ocfs2_zero_tail(inode, di_bh, pos);
2225                 else
2226                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2227                                                            total_len, NULL);
2228                 if (ret < 0) {
2229                         mlog_errno(ret);
2230                         goto unlock;
2231                 }
2232         }
2233
2234         ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2235                                        OCFS2_WRITE_DIRECT, NULL,
2236                                        (void **)&wc, di_bh, NULL);
2237         if (ret) {
2238                 mlog_errno(ret);
2239                 goto unlock;
2240         }
2241
2242         desc = &wc->w_desc[0];
2243
2244         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2245         BUG_ON(p_blkno == 0);
2246         p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2247
2248         map_bh(bh_result, inode->i_sb, p_blkno);
2249         bh_result->b_size = len;
2250         if (desc->c_needs_zero)
2251                 set_buffer_new(bh_result);
2252
2253         /* May sleep in end_io. It should not happen in a irq context. So defer
2254          * it to dio work queue. */
2255         set_buffer_defer_completion(bh_result);
2256
2257         if (!list_empty(&wc->w_unwritten_list)) {
2258                 struct ocfs2_unwritten_extent *ue = NULL;
2259
2260                 ue = list_first_entry(&wc->w_unwritten_list,
2261                                       struct ocfs2_unwritten_extent,
2262                                       ue_node);
2263                 BUG_ON(ue->ue_cpos != desc->c_cpos);
2264                 /* The physical address may be 0, fill it. */
2265                 ue->ue_phys = desc->c_phys;
2266
2267                 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2268                 dwc->dw_zero_count++;
2269         }
2270
2271         ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, NULL, wc);
2272         BUG_ON(ret != len);
2273         ret = 0;
2274 unlock:
2275         up_write(&oi->ip_alloc_sem);
2276         ocfs2_inode_unlock(inode, 1);
2277         brelse(di_bh);
2278 out:
2279         if (ret < 0)
2280                 ret = -EIO;
2281         return ret;
2282 }
2283
2284 static void ocfs2_dio_end_io_write(struct inode *inode,
2285                                    struct ocfs2_dio_write_ctxt *dwc,
2286                                    loff_t offset,
2287                                    ssize_t bytes)
2288 {
2289         struct ocfs2_cached_dealloc_ctxt dealloc;
2290         struct ocfs2_extent_tree et;
2291         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2292         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2293         struct ocfs2_unwritten_extent *ue = NULL;
2294         struct buffer_head *di_bh = NULL;
2295         struct ocfs2_dinode *di;
2296         struct ocfs2_alloc_context *data_ac = NULL;
2297         struct ocfs2_alloc_context *meta_ac = NULL;
2298         handle_t *handle = NULL;
2299         loff_t end = offset + bytes;
2300         int ret = 0, credits = 0, locked = 0;
2301
2302         ocfs2_init_dealloc_ctxt(&dealloc);
2303
2304         /* We do clear unwritten, delete orphan, change i_size here. If neither
2305          * of these happen, we can skip all this. */
2306         if (list_empty(&dwc->dw_zero_list) &&
2307             end <= i_size_read(inode) &&
2308             !dwc->dw_orphaned)
2309                 goto out;
2310
2311         /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2312          * are in that context. */
2313         if (dwc->dw_writer_pid != task_pid_nr(current)) {
2314                 mutex_lock(&inode->i_mutex);
2315                 locked = 1;
2316         }
2317
2318         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2319         if (ret < 0) {
2320                 mlog_errno(ret);
2321                 goto out;
2322         }
2323
2324         down_write(&oi->ip_alloc_sem);
2325
2326         /* Delete orphan before acquire i_mutex. */
2327         if (dwc->dw_orphaned) {
2328                 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2329
2330                 end = end > i_size_read(inode) ? end : 0;
2331
2332                 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2333                                 !!end, end);
2334                 if (ret < 0)
2335                         mlog_errno(ret);
2336         }
2337
2338         di = (struct ocfs2_dinode *)di_bh;
2339
2340         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2341
2342         ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2343                                     &data_ac, &meta_ac);
2344
2345         credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2346
2347         handle = ocfs2_start_trans(osb, credits);
2348         if (IS_ERR(handle)) {
2349                 ret = PTR_ERR(handle);
2350                 mlog_errno(ret);
2351                 goto unlock;
2352         }
2353         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2354                                       OCFS2_JOURNAL_ACCESS_WRITE);
2355         if (ret) {
2356                 mlog_errno(ret);
2357                 goto commit;
2358         }
2359
2360         list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2361                 ret = ocfs2_mark_extent_written(inode, &et, handle,
2362                                                 ue->ue_cpos, 1,
2363                                                 ue->ue_phys,
2364                                                 meta_ac, &dealloc);
2365                 if (ret < 0) {
2366                         mlog_errno(ret);
2367                         break;
2368                 }
2369         }
2370
2371         if (end > i_size_read(inode)) {
2372                 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2373                 if (ret < 0)
2374                         mlog_errno(ret);
2375         }
2376 commit:
2377         ocfs2_commit_trans(osb, handle);
2378 unlock:
2379         up_write(&oi->ip_alloc_sem);
2380         ocfs2_inode_unlock(inode, 1);
2381         brelse(di_bh);
2382 out:
2383         ocfs2_run_deallocs(osb, &dealloc);
2384         if (locked)
2385                 mutex_unlock(&inode->i_mutex);
2386         ocfs2_dio_free_write_ctx(inode, dwc);
2387         if (data_ac)
2388                 ocfs2_free_alloc_context(data_ac);
2389         if (meta_ac)
2390                 ocfs2_free_alloc_context(meta_ac);
2391 }
2392
2393 /*
2394  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2395  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2396  * to protect io on one node from truncation on another.
2397  */
2398 static int ocfs2_dio_end_io(struct kiocb *iocb,
2399                             loff_t offset,
2400                             ssize_t bytes,
2401                             void *private)
2402 {
2403         struct inode *inode = file_inode(iocb->ki_filp);
2404         int level;
2405
2406         if (bytes <= 0)
2407                 return 0;
2408
2409         /* this io's submitter should not have unlocked this before we could */
2410         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2411
2412         if (private)
2413                 ocfs2_dio_end_io_write(inode, private, offset, bytes);
2414
2415         ocfs2_iocb_clear_rw_locked(iocb);
2416
2417         level = ocfs2_iocb_rw_locked_level(iocb);
2418         ocfs2_rw_unlock(inode, level);
2419         return 0;
2420 }
2421
2422 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
2423                                loff_t offset)
2424 {
2425         struct file *file = iocb->ki_filp;
2426         struct inode *inode = file_inode(file)->i_mapping->host;
2427         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2428         loff_t end = offset + iter->count;
2429         get_block_t *get_block;
2430
2431         /*
2432          * Fallback to buffered I/O if we see an inode without
2433          * extents.
2434          */
2435         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2436                 return 0;
2437
2438         /* Fallback to buffered I/O if we do not support append dio. */
2439         if (end > i_size_read(inode) && !ocfs2_supports_append_dio(osb))
2440                 return 0;
2441
2442         if (iov_iter_rw(iter) == READ)
2443                 get_block = ocfs2_get_block;
2444         else
2445                 get_block = ocfs2_dio_get_block;
2446
2447         return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2448                                     iter, offset, get_block,
2449                                     ocfs2_dio_end_io, NULL, 0);
2450 }
2451
2452 const struct address_space_operations ocfs2_aops = {
2453         .readpage               = ocfs2_readpage,
2454         .readpages              = ocfs2_readpages,
2455         .writepage              = ocfs2_writepage,
2456         .write_begin            = ocfs2_write_begin,
2457         .write_end              = ocfs2_write_end,
2458         .bmap                   = ocfs2_bmap,
2459         .direct_IO              = ocfs2_direct_IO,
2460         .invalidatepage         = block_invalidatepage,
2461         .releasepage            = ocfs2_releasepage,
2462         .migratepage            = buffer_migrate_page,
2463         .is_partially_uptodate  = block_is_partially_uptodate,
2464         .error_remove_page      = generic_error_remove_page,
2465 };