iw_cxgb4: gracefully handle unknown CQE status errors
[linux-2.6-block.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0, contig_clusters = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
564                                 contig_blocks);
565                 if (clusters_to_alloc > contig_clusters)
566                         clusters_to_alloc = contig_clusters;
567
568                 /* allocate extent and insert them into the extent tree */
569                 ret = ocfs2_extend_allocation(inode, cpos,
570                                 clusters_to_alloc, 0);
571                 if (ret < 0) {
572                         mlog_errno(ret);
573                         goto bail;
574                 }
575
576                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577                                 &contig_blocks, &ext_flags);
578                 if (ret < 0) {
579                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580                                         (unsigned long long)iblock);
581                         ret = -EIO;
582                         goto bail;
583                 }
584         }
585
586         /*
587          * get_more_blocks() expects us to describe a hole by clearing
588          * the mapped bit on bh_result().
589          *
590          * Consider an unwritten extent as a hole.
591          */
592         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
593                 map_bh(bh_result, inode->i_sb, p_blkno);
594         else
595                 clear_buffer_mapped(bh_result);
596
597         /* make sure we don't map more than max_blocks blocks here as
598            that's all the kernel will handle at this point. */
599         if (max_blocks < contig_blocks)
600                 contig_blocks = max_blocks;
601         bh_result->b_size = contig_blocks << blocksize_bits;
602 bail:
603         if (alloc_locked)
604                 ocfs2_inode_unlock(inode, 1);
605         return ret;
606 }
607
608 /*
609  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
610  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
611  * to protect io on one node from truncation on another.
612  */
613 static void ocfs2_dio_end_io(struct kiocb *iocb,
614                              loff_t offset,
615                              ssize_t bytes,
616                              void *private)
617 {
618         struct inode *inode = file_inode(iocb->ki_filp);
619         int level;
620
621         /* this io's submitter should not have unlocked this before we could */
622         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
623
624         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625                 ocfs2_iocb_clear_unaligned_aio(iocb);
626
627                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
628         }
629
630         ocfs2_iocb_clear_rw_locked(iocb);
631
632         level = ocfs2_iocb_rw_locked_level(iocb);
633         ocfs2_rw_unlock(inode, level);
634 }
635
636 static int ocfs2_releasepage(struct page *page, gfp_t wait)
637 {
638         if (!page_has_buffers(page))
639                 return 0;
640         return try_to_free_buffers(page);
641 }
642
643 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644                 struct inode *inode, loff_t offset)
645 {
646         int ret = 0;
647         u32 v_cpos = 0;
648         u32 p_cpos = 0;
649         unsigned int num_clusters = 0;
650         unsigned int ext_flags = 0;
651
652         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654                         &num_clusters, &ext_flags);
655         if (ret < 0) {
656                 mlog_errno(ret);
657                 return ret;
658         }
659
660         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661                 return 1;
662
663         return 0;
664 }
665
666 static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
667                 struct inode *inode, loff_t offset,
668                 u64 zero_len, int cluster_align)
669 {
670         u32 p_cpos = 0;
671         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
672         unsigned int num_clusters = 0;
673         unsigned int ext_flags = 0;
674         int ret = 0;
675
676         if (offset <= i_size_read(inode) || cluster_align)
677                 return 0;
678
679         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
680                         &ext_flags);
681         if (ret < 0) {
682                 mlog_errno(ret);
683                 return ret;
684         }
685
686         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
687                 u64 s = i_size_read(inode);
688                 sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
689                         (do_div(s, osb->s_clustersize) >> 9);
690
691                 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
692                                 zero_len >> 9, GFP_NOFS, false);
693                 if (ret < 0)
694                         mlog_errno(ret);
695         }
696
697         return ret;
698 }
699
700 static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
701                 struct inode *inode, loff_t offset)
702 {
703         u64 zero_start, zero_len, total_zero_len;
704         u32 p_cpos = 0, clusters_to_add;
705         u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
706         unsigned int num_clusters = 0;
707         unsigned int ext_flags = 0;
708         u32 size_div, offset_div;
709         int ret = 0;
710
711         {
712                 u64 o = offset;
713                 u64 s = i_size_read(inode);
714
715                 offset_div = do_div(o, osb->s_clustersize);
716                 size_div = do_div(s, osb->s_clustersize);
717         }
718
719         if (offset <= i_size_read(inode))
720                 return 0;
721
722         clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
723                 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
724         total_zero_len = offset - i_size_read(inode);
725         if (clusters_to_add)
726                 total_zero_len -= offset_div;
727
728         /* Allocate clusters to fill out holes, and this is only needed
729          * when we add more than one clusters. Otherwise the cluster will
730          * be allocated during direct IO */
731         if (clusters_to_add > 1) {
732                 ret = ocfs2_extend_allocation(inode,
733                                 OCFS2_I(inode)->ip_clusters,
734                                 clusters_to_add - 1, 0);
735                 if (ret) {
736                         mlog_errno(ret);
737                         goto out;
738                 }
739         }
740
741         while (total_zero_len) {
742                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
743                                 &ext_flags);
744                 if (ret < 0) {
745                         mlog_errno(ret);
746                         goto out;
747                 }
748
749                 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
750                         size_div;
751                 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
752                         size_div;
753                 zero_len = min(total_zero_len, zero_len);
754
755                 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
756                         ret = blkdev_issue_zeroout(osb->sb->s_bdev,
757                                         zero_start >> 9, zero_len >> 9,
758                                         GFP_NOFS, false);
759                         if (ret < 0) {
760                                 mlog_errno(ret);
761                                 goto out;
762                         }
763                 }
764
765                 total_zero_len -= zero_len;
766                 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
767
768                 /* Only at first iteration can be cluster not aligned.
769                  * So set size_div to 0 for the rest */
770                 size_div = 0;
771         }
772
773 out:
774         return ret;
775 }
776
777 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
778                 struct iov_iter *iter,
779                 loff_t offset)
780 {
781         ssize_t ret = 0;
782         ssize_t written = 0;
783         bool orphaned = false;
784         int is_overwrite = 0;
785         struct file *file = iocb->ki_filp;
786         struct inode *inode = file_inode(file)->i_mapping->host;
787         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
788         struct buffer_head *di_bh = NULL;
789         size_t count = iter->count;
790         journal_t *journal = osb->journal->j_journal;
791         u64 zero_len_head, zero_len_tail;
792         int cluster_align_head, cluster_align_tail;
793         loff_t final_size = offset + count;
794         int append_write = offset >= i_size_read(inode) ? 1 : 0;
795         unsigned int num_clusters = 0;
796         unsigned int ext_flags = 0;
797
798         {
799                 u64 o = offset;
800                 u64 s = i_size_read(inode);
801
802                 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
803                 cluster_align_head = !zero_len_head;
804
805                 zero_len_tail = osb->s_clustersize -
806                         do_div(s, osb->s_clustersize);
807                 if ((offset - i_size_read(inode)) < zero_len_tail)
808                         zero_len_tail = offset - i_size_read(inode);
809                 cluster_align_tail = !zero_len_tail;
810         }
811
812         /*
813          * when final_size > inode->i_size, inode->i_size will be
814          * updated after direct write, so add the inode to orphan
815          * dir first.
816          */
817         if (final_size > i_size_read(inode)) {
818                 ret = ocfs2_add_inode_to_orphan(osb, inode);
819                 if (ret < 0) {
820                         mlog_errno(ret);
821                         goto out;
822                 }
823                 orphaned = true;
824         }
825
826         if (append_write) {
827                 ret = ocfs2_inode_lock(inode, NULL, 1);
828                 if (ret < 0) {
829                         mlog_errno(ret);
830                         goto clean_orphan;
831                 }
832
833                 /* zeroing out the previously allocated cluster tail
834                  * that but not zeroed */
835                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
836                         ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
837                                         zero_len_tail, cluster_align_tail);
838                 else
839                         ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
840                                         offset);
841                 if (ret < 0) {
842                         mlog_errno(ret);
843                         ocfs2_inode_unlock(inode, 1);
844                         goto clean_orphan;
845                 }
846
847                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
848                 if (is_overwrite < 0) {
849                         mlog_errno(is_overwrite);
850                         ocfs2_inode_unlock(inode, 1);
851                         goto clean_orphan;
852                 }
853
854                 ocfs2_inode_unlock(inode, 1);
855         }
856
857         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
858                                        offset, ocfs2_direct_IO_get_blocks,
859                                        ocfs2_dio_end_io, NULL, 0);
860         if (unlikely(written < 0)) {
861                 loff_t i_size = i_size_read(inode);
862
863                 if (offset + count > i_size) {
864                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
865                         if (ret < 0) {
866                                 mlog_errno(ret);
867                                 goto clean_orphan;
868                         }
869
870                         if (i_size == i_size_read(inode)) {
871                                 ret = ocfs2_truncate_file(inode, di_bh,
872                                                 i_size);
873                                 if (ret < 0) {
874                                         if (ret != -ENOSPC)
875                                                 mlog_errno(ret);
876
877                                         ocfs2_inode_unlock(inode, 1);
878                                         brelse(di_bh);
879                                         goto clean_orphan;
880                                 }
881                         }
882
883                         ocfs2_inode_unlock(inode, 1);
884                         brelse(di_bh);
885
886                         ret = jbd2_journal_force_commit(journal);
887                         if (ret < 0)
888                                 mlog_errno(ret);
889                 }
890         } else if (written > 0 && append_write && !is_overwrite &&
891                         !cluster_align_head) {
892                 /* zeroing out the allocated cluster head */
893                 u32 p_cpos = 0;
894                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
895
896                 ret = ocfs2_inode_lock(inode, NULL, 0);
897                 if (ret < 0) {
898                         mlog_errno(ret);
899                         goto clean_orphan;
900                 }
901
902                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
903                                 &num_clusters, &ext_flags);
904                 if (ret < 0) {
905                         mlog_errno(ret);
906                         ocfs2_inode_unlock(inode, 0);
907                         goto clean_orphan;
908                 }
909
910                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
911
912                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
913                                 p_cpos << (osb->s_clustersize_bits - 9),
914                                 zero_len_head >> 9, GFP_NOFS, false);
915                 if (ret < 0)
916                         mlog_errno(ret);
917
918                 ocfs2_inode_unlock(inode, 0);
919         }
920
921 clean_orphan:
922         if (orphaned) {
923                 int tmp_ret;
924                 int update_isize = written > 0 ? 1 : 0;
925                 loff_t end = update_isize ? offset + written : 0;
926
927                 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
928                 if (tmp_ret < 0) {
929                         ret = tmp_ret;
930                         mlog_errno(ret);
931                         goto out;
932                 }
933
934                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
935                                 update_isize, end);
936                 if (tmp_ret < 0) {
937                         ret = tmp_ret;
938                         mlog_errno(ret);
939                         goto out;
940                 }
941
942                 ocfs2_inode_unlock(inode, 1);
943
944                 tmp_ret = jbd2_journal_force_commit(journal);
945                 if (tmp_ret < 0) {
946                         ret = tmp_ret;
947                         mlog_errno(tmp_ret);
948                 }
949         }
950
951 out:
952         if (ret >= 0)
953                 ret = written;
954         return ret;
955 }
956
957 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
958                                loff_t offset)
959 {
960         struct file *file = iocb->ki_filp;
961         struct inode *inode = file_inode(file)->i_mapping->host;
962         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
963         int full_coherency = !(osb->s_mount_opt &
964                         OCFS2_MOUNT_COHERENCY_BUFFERED);
965
966         /*
967          * Fallback to buffered I/O if we see an inode without
968          * extents.
969          */
970         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
971                 return 0;
972
973         /* Fallback to buffered I/O if we are appending and
974          * concurrent O_DIRECT writes are allowed.
975          */
976         if (i_size_read(inode) <= offset && !full_coherency)
977                 return 0;
978
979         if (iov_iter_rw(iter) == READ)
980                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
981                                             iter, offset,
982                                             ocfs2_direct_IO_get_blocks,
983                                             ocfs2_dio_end_io, NULL, 0);
984         else
985                 return ocfs2_direct_IO_write(iocb, iter, offset);
986 }
987
988 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
989                                             u32 cpos,
990                                             unsigned int *start,
991                                             unsigned int *end)
992 {
993         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
994
995         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
996                 unsigned int cpp;
997
998                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
999
1000                 cluster_start = cpos % cpp;
1001                 cluster_start = cluster_start << osb->s_clustersize_bits;
1002
1003                 cluster_end = cluster_start + osb->s_clustersize;
1004         }
1005
1006         BUG_ON(cluster_start > PAGE_SIZE);
1007         BUG_ON(cluster_end > PAGE_SIZE);
1008
1009         if (start)
1010                 *start = cluster_start;
1011         if (end)
1012                 *end = cluster_end;
1013 }
1014
1015 /*
1016  * 'from' and 'to' are the region in the page to avoid zeroing.
1017  *
1018  * If pagesize > clustersize, this function will avoid zeroing outside
1019  * of the cluster boundary.
1020  *
1021  * from == to == 0 is code for "zero the entire cluster region"
1022  */
1023 static void ocfs2_clear_page_regions(struct page *page,
1024                                      struct ocfs2_super *osb, u32 cpos,
1025                                      unsigned from, unsigned to)
1026 {
1027         void *kaddr;
1028         unsigned int cluster_start, cluster_end;
1029
1030         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1031
1032         kaddr = kmap_atomic(page);
1033
1034         if (from || to) {
1035                 if (from > cluster_start)
1036                         memset(kaddr + cluster_start, 0, from - cluster_start);
1037                 if (to < cluster_end)
1038                         memset(kaddr + to, 0, cluster_end - to);
1039         } else {
1040                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1041         }
1042
1043         kunmap_atomic(kaddr);
1044 }
1045
1046 /*
1047  * Nonsparse file systems fully allocate before we get to the write
1048  * code. This prevents ocfs2_write() from tagging the write as an
1049  * allocating one, which means ocfs2_map_page_blocks() might try to
1050  * read-in the blocks at the tail of our file. Avoid reading them by
1051  * testing i_size against each block offset.
1052  */
1053 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1054                                  unsigned int block_start)
1055 {
1056         u64 offset = page_offset(page) + block_start;
1057
1058         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1059                 return 1;
1060
1061         if (i_size_read(inode) > offset)
1062                 return 1;
1063
1064         return 0;
1065 }
1066
1067 /*
1068  * Some of this taken from __block_write_begin(). We already have our
1069  * mapping by now though, and the entire write will be allocating or
1070  * it won't, so not much need to use BH_New.
1071  *
1072  * This will also skip zeroing, which is handled externally.
1073  */
1074 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1075                           struct inode *inode, unsigned int from,
1076                           unsigned int to, int new)
1077 {
1078         int ret = 0;
1079         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1080         unsigned int block_end, block_start;
1081         unsigned int bsize = 1 << inode->i_blkbits;
1082
1083         if (!page_has_buffers(page))
1084                 create_empty_buffers(page, bsize, 0);
1085
1086         head = page_buffers(page);
1087         for (bh = head, block_start = 0; bh != head || !block_start;
1088              bh = bh->b_this_page, block_start += bsize) {
1089                 block_end = block_start + bsize;
1090
1091                 clear_buffer_new(bh);
1092
1093                 /*
1094                  * Ignore blocks outside of our i/o range -
1095                  * they may belong to unallocated clusters.
1096                  */
1097                 if (block_start >= to || block_end <= from) {
1098                         if (PageUptodate(page))
1099                                 set_buffer_uptodate(bh);
1100                         continue;
1101                 }
1102
1103                 /*
1104                  * For an allocating write with cluster size >= page
1105                  * size, we always write the entire page.
1106                  */
1107                 if (new)
1108                         set_buffer_new(bh);
1109
1110                 if (!buffer_mapped(bh)) {
1111                         map_bh(bh, inode->i_sb, *p_blkno);
1112                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1113                 }
1114
1115                 if (PageUptodate(page)) {
1116                         if (!buffer_uptodate(bh))
1117                                 set_buffer_uptodate(bh);
1118                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1119                            !buffer_new(bh) &&
1120                            ocfs2_should_read_blk(inode, page, block_start) &&
1121                            (block_start < from || block_end > to)) {
1122                         ll_rw_block(READ, 1, &bh);
1123                         *wait_bh++=bh;
1124                 }
1125
1126                 *p_blkno = *p_blkno + 1;
1127         }
1128
1129         /*
1130          * If we issued read requests - let them complete.
1131          */
1132         while(wait_bh > wait) {
1133                 wait_on_buffer(*--wait_bh);
1134                 if (!buffer_uptodate(*wait_bh))
1135                         ret = -EIO;
1136         }
1137
1138         if (ret == 0 || !new)
1139                 return ret;
1140
1141         /*
1142          * If we get -EIO above, zero out any newly allocated blocks
1143          * to avoid exposing stale data.
1144          */
1145         bh = head;
1146         block_start = 0;
1147         do {
1148                 block_end = block_start + bsize;
1149                 if (block_end <= from)
1150                         goto next_bh;
1151                 if (block_start >= to)
1152                         break;
1153
1154                 zero_user(page, block_start, bh->b_size);
1155                 set_buffer_uptodate(bh);
1156                 mark_buffer_dirty(bh);
1157
1158 next_bh:
1159                 block_start = block_end;
1160                 bh = bh->b_this_page;
1161         } while (bh != head);
1162
1163         return ret;
1164 }
1165
1166 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1167 #define OCFS2_MAX_CTXT_PAGES    1
1168 #else
1169 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1170 #endif
1171
1172 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1173
1174 /*
1175  * Describe the state of a single cluster to be written to.
1176  */
1177 struct ocfs2_write_cluster_desc {
1178         u32             c_cpos;
1179         u32             c_phys;
1180         /*
1181          * Give this a unique field because c_phys eventually gets
1182          * filled.
1183          */
1184         unsigned        c_new;
1185         unsigned        c_unwritten;
1186         unsigned        c_needs_zero;
1187 };
1188
1189 struct ocfs2_write_ctxt {
1190         /* Logical cluster position / len of write */
1191         u32                             w_cpos;
1192         u32                             w_clen;
1193
1194         /* First cluster allocated in a nonsparse extend */
1195         u32                             w_first_new_cpos;
1196
1197         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1198
1199         /*
1200          * This is true if page_size > cluster_size.
1201          *
1202          * It triggers a set of special cases during write which might
1203          * have to deal with allocating writes to partial pages.
1204          */
1205         unsigned int                    w_large_pages;
1206
1207         /*
1208          * Pages involved in this write.
1209          *
1210          * w_target_page is the page being written to by the user.
1211          *
1212          * w_pages is an array of pages which always contains
1213          * w_target_page, and in the case of an allocating write with
1214          * page_size < cluster size, it will contain zero'd and mapped
1215          * pages adjacent to w_target_page which need to be written
1216          * out in so that future reads from that region will get
1217          * zero's.
1218          */
1219         unsigned int                    w_num_pages;
1220         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1221         struct page                     *w_target_page;
1222
1223         /*
1224          * w_target_locked is used for page_mkwrite path indicating no unlocking
1225          * against w_target_page in ocfs2_write_end_nolock.
1226          */
1227         unsigned int                    w_target_locked:1;
1228
1229         /*
1230          * ocfs2_write_end() uses this to know what the real range to
1231          * write in the target should be.
1232          */
1233         unsigned int                    w_target_from;
1234         unsigned int                    w_target_to;
1235
1236         /*
1237          * We could use journal_current_handle() but this is cleaner,
1238          * IMHO -Mark
1239          */
1240         handle_t                        *w_handle;
1241
1242         struct buffer_head              *w_di_bh;
1243
1244         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1245 };
1246
1247 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1248 {
1249         int i;
1250
1251         for(i = 0; i < num_pages; i++) {
1252                 if (pages[i]) {
1253                         unlock_page(pages[i]);
1254                         mark_page_accessed(pages[i]);
1255                         page_cache_release(pages[i]);
1256                 }
1257         }
1258 }
1259
1260 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1261 {
1262         int i;
1263
1264         /*
1265          * w_target_locked is only set to true in the page_mkwrite() case.
1266          * The intent is to allow us to lock the target page from write_begin()
1267          * to write_end(). The caller must hold a ref on w_target_page.
1268          */
1269         if (wc->w_target_locked) {
1270                 BUG_ON(!wc->w_target_page);
1271                 for (i = 0; i < wc->w_num_pages; i++) {
1272                         if (wc->w_target_page == wc->w_pages[i]) {
1273                                 wc->w_pages[i] = NULL;
1274                                 break;
1275                         }
1276                 }
1277                 mark_page_accessed(wc->w_target_page);
1278                 page_cache_release(wc->w_target_page);
1279         }
1280         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1281 }
1282
1283 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1284 {
1285         ocfs2_unlock_pages(wc);
1286         brelse(wc->w_di_bh);
1287         kfree(wc);
1288 }
1289
1290 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1291                                   struct ocfs2_super *osb, loff_t pos,
1292                                   unsigned len, struct buffer_head *di_bh)
1293 {
1294         u32 cend;
1295         struct ocfs2_write_ctxt *wc;
1296
1297         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1298         if (!wc)
1299                 return -ENOMEM;
1300
1301         wc->w_cpos = pos >> osb->s_clustersize_bits;
1302         wc->w_first_new_cpos = UINT_MAX;
1303         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1304         wc->w_clen = cend - wc->w_cpos + 1;
1305         get_bh(di_bh);
1306         wc->w_di_bh = di_bh;
1307
1308         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1309                 wc->w_large_pages = 1;
1310         else
1311                 wc->w_large_pages = 0;
1312
1313         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1314
1315         *wcp = wc;
1316
1317         return 0;
1318 }
1319
1320 /*
1321  * If a page has any new buffers, zero them out here, and mark them uptodate
1322  * and dirty so they'll be written out (in order to prevent uninitialised
1323  * block data from leaking). And clear the new bit.
1324  */
1325 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1326 {
1327         unsigned int block_start, block_end;
1328         struct buffer_head *head, *bh;
1329
1330         BUG_ON(!PageLocked(page));
1331         if (!page_has_buffers(page))
1332                 return;
1333
1334         bh = head = page_buffers(page);
1335         block_start = 0;
1336         do {
1337                 block_end = block_start + bh->b_size;
1338
1339                 if (buffer_new(bh)) {
1340                         if (block_end > from && block_start < to) {
1341                                 if (!PageUptodate(page)) {
1342                                         unsigned start, end;
1343
1344                                         start = max(from, block_start);
1345                                         end = min(to, block_end);
1346
1347                                         zero_user_segment(page, start, end);
1348                                         set_buffer_uptodate(bh);
1349                                 }
1350
1351                                 clear_buffer_new(bh);
1352                                 mark_buffer_dirty(bh);
1353                         }
1354                 }
1355
1356                 block_start = block_end;
1357                 bh = bh->b_this_page;
1358         } while (bh != head);
1359 }
1360
1361 /*
1362  * Only called when we have a failure during allocating write to write
1363  * zero's to the newly allocated region.
1364  */
1365 static void ocfs2_write_failure(struct inode *inode,
1366                                 struct ocfs2_write_ctxt *wc,
1367                                 loff_t user_pos, unsigned user_len)
1368 {
1369         int i;
1370         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1371                 to = user_pos + user_len;
1372         struct page *tmppage;
1373
1374         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1375
1376         for(i = 0; i < wc->w_num_pages; i++) {
1377                 tmppage = wc->w_pages[i];
1378
1379                 if (page_has_buffers(tmppage)) {
1380                         if (ocfs2_should_order_data(inode))
1381                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1382
1383                         block_commit_write(tmppage, from, to);
1384                 }
1385         }
1386 }
1387
1388 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1389                                         struct ocfs2_write_ctxt *wc,
1390                                         struct page *page, u32 cpos,
1391                                         loff_t user_pos, unsigned user_len,
1392                                         int new)
1393 {
1394         int ret;
1395         unsigned int map_from = 0, map_to = 0;
1396         unsigned int cluster_start, cluster_end;
1397         unsigned int user_data_from = 0, user_data_to = 0;
1398
1399         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1400                                         &cluster_start, &cluster_end);
1401
1402         /* treat the write as new if the a hole/lseek spanned across
1403          * the page boundary.
1404          */
1405         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1406                         (page_offset(page) <= user_pos));
1407
1408         if (page == wc->w_target_page) {
1409                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1410                 map_to = map_from + user_len;
1411
1412                 if (new)
1413                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1414                                                     cluster_start, cluster_end,
1415                                                     new);
1416                 else
1417                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1418                                                     map_from, map_to, new);
1419                 if (ret) {
1420                         mlog_errno(ret);
1421                         goto out;
1422                 }
1423
1424                 user_data_from = map_from;
1425                 user_data_to = map_to;
1426                 if (new) {
1427                         map_from = cluster_start;
1428                         map_to = cluster_end;
1429                 }
1430         } else {
1431                 /*
1432                  * If we haven't allocated the new page yet, we
1433                  * shouldn't be writing it out without copying user
1434                  * data. This is likely a math error from the caller.
1435                  */
1436                 BUG_ON(!new);
1437
1438                 map_from = cluster_start;
1439                 map_to = cluster_end;
1440
1441                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1442                                             cluster_start, cluster_end, new);
1443                 if (ret) {
1444                         mlog_errno(ret);
1445                         goto out;
1446                 }
1447         }
1448
1449         /*
1450          * Parts of newly allocated pages need to be zero'd.
1451          *
1452          * Above, we have also rewritten 'to' and 'from' - as far as
1453          * the rest of the function is concerned, the entire cluster
1454          * range inside of a page needs to be written.
1455          *
1456          * We can skip this if the page is up to date - it's already
1457          * been zero'd from being read in as a hole.
1458          */
1459         if (new && !PageUptodate(page))
1460                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1461                                          cpos, user_data_from, user_data_to);
1462
1463         flush_dcache_page(page);
1464
1465 out:
1466         return ret;
1467 }
1468
1469 /*
1470  * This function will only grab one clusters worth of pages.
1471  */
1472 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1473                                       struct ocfs2_write_ctxt *wc,
1474                                       u32 cpos, loff_t user_pos,
1475                                       unsigned user_len, int new,
1476                                       struct page *mmap_page)
1477 {
1478         int ret = 0, i;
1479         unsigned long start, target_index, end_index, index;
1480         struct inode *inode = mapping->host;
1481         loff_t last_byte;
1482
1483         target_index = user_pos >> PAGE_CACHE_SHIFT;
1484
1485         /*
1486          * Figure out how many pages we'll be manipulating here. For
1487          * non allocating write, we just change the one
1488          * page. Otherwise, we'll need a whole clusters worth.  If we're
1489          * writing past i_size, we only need enough pages to cover the
1490          * last page of the write.
1491          */
1492         if (new) {
1493                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1494                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1495                 /*
1496                  * We need the index *past* the last page we could possibly
1497                  * touch.  This is the page past the end of the write or
1498                  * i_size, whichever is greater.
1499                  */
1500                 last_byte = max(user_pos + user_len, i_size_read(inode));
1501                 BUG_ON(last_byte < 1);
1502                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1503                 if ((start + wc->w_num_pages) > end_index)
1504                         wc->w_num_pages = end_index - start;
1505         } else {
1506                 wc->w_num_pages = 1;
1507                 start = target_index;
1508         }
1509
1510         for(i = 0; i < wc->w_num_pages; i++) {
1511                 index = start + i;
1512
1513                 if (index == target_index && mmap_page) {
1514                         /*
1515                          * ocfs2_pagemkwrite() is a little different
1516                          * and wants us to directly use the page
1517                          * passed in.
1518                          */
1519                         lock_page(mmap_page);
1520
1521                         /* Exit and let the caller retry */
1522                         if (mmap_page->mapping != mapping) {
1523                                 WARN_ON(mmap_page->mapping);
1524                                 unlock_page(mmap_page);
1525                                 ret = -EAGAIN;
1526                                 goto out;
1527                         }
1528
1529                         page_cache_get(mmap_page);
1530                         wc->w_pages[i] = mmap_page;
1531                         wc->w_target_locked = true;
1532                 } else {
1533                         wc->w_pages[i] = find_or_create_page(mapping, index,
1534                                                              GFP_NOFS);
1535                         if (!wc->w_pages[i]) {
1536                                 ret = -ENOMEM;
1537                                 mlog_errno(ret);
1538                                 goto out;
1539                         }
1540                 }
1541                 wait_for_stable_page(wc->w_pages[i]);
1542
1543                 if (index == target_index)
1544                         wc->w_target_page = wc->w_pages[i];
1545         }
1546 out:
1547         if (ret)
1548                 wc->w_target_locked = false;
1549         return ret;
1550 }
1551
1552 /*
1553  * Prepare a single cluster for write one cluster into the file.
1554  */
1555 static int ocfs2_write_cluster(struct address_space *mapping,
1556                                u32 phys, unsigned int unwritten,
1557                                unsigned int should_zero,
1558                                struct ocfs2_alloc_context *data_ac,
1559                                struct ocfs2_alloc_context *meta_ac,
1560                                struct ocfs2_write_ctxt *wc, u32 cpos,
1561                                loff_t user_pos, unsigned user_len)
1562 {
1563         int ret, i, new;
1564         u64 v_blkno, p_blkno;
1565         struct inode *inode = mapping->host;
1566         struct ocfs2_extent_tree et;
1567
1568         new = phys == 0 ? 1 : 0;
1569         if (new) {
1570                 u32 tmp_pos;
1571
1572                 /*
1573                  * This is safe to call with the page locks - it won't take
1574                  * any additional semaphores or cluster locks.
1575                  */
1576                 tmp_pos = cpos;
1577                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1578                                            &tmp_pos, 1, 0, wc->w_di_bh,
1579                                            wc->w_handle, data_ac,
1580                                            meta_ac, NULL);
1581                 /*
1582                  * This shouldn't happen because we must have already
1583                  * calculated the correct meta data allocation required. The
1584                  * internal tree allocation code should know how to increase
1585                  * transaction credits itself.
1586                  *
1587                  * If need be, we could handle -EAGAIN for a
1588                  * RESTART_TRANS here.
1589                  */
1590                 mlog_bug_on_msg(ret == -EAGAIN,
1591                                 "Inode %llu: EAGAIN return during allocation.\n",
1592                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1593                 if (ret < 0) {
1594                         mlog_errno(ret);
1595                         goto out;
1596                 }
1597         } else if (unwritten) {
1598                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1599                                               wc->w_di_bh);
1600                 ret = ocfs2_mark_extent_written(inode, &et,
1601                                                 wc->w_handle, cpos, 1, phys,
1602                                                 meta_ac, &wc->w_dealloc);
1603                 if (ret < 0) {
1604                         mlog_errno(ret);
1605                         goto out;
1606                 }
1607         }
1608
1609         if (should_zero)
1610                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1611         else
1612                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1613
1614         /*
1615          * The only reason this should fail is due to an inability to
1616          * find the extent added.
1617          */
1618         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1619                                           NULL);
1620         if (ret < 0) {
1621                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1622                             "at logical block %llu",
1623                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1624                             (unsigned long long)v_blkno);
1625                 goto out;
1626         }
1627
1628         BUG_ON(p_blkno == 0);
1629
1630         for(i = 0; i < wc->w_num_pages; i++) {
1631                 int tmpret;
1632
1633                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1634                                                       wc->w_pages[i], cpos,
1635                                                       user_pos, user_len,
1636                                                       should_zero);
1637                 if (tmpret) {
1638                         mlog_errno(tmpret);
1639                         if (ret == 0)
1640                                 ret = tmpret;
1641                 }
1642         }
1643
1644         /*
1645          * We only have cleanup to do in case of allocating write.
1646          */
1647         if (ret && new)
1648                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1649
1650 out:
1651
1652         return ret;
1653 }
1654
1655 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1656                                        struct ocfs2_alloc_context *data_ac,
1657                                        struct ocfs2_alloc_context *meta_ac,
1658                                        struct ocfs2_write_ctxt *wc,
1659                                        loff_t pos, unsigned len)
1660 {
1661         int ret, i;
1662         loff_t cluster_off;
1663         unsigned int local_len = len;
1664         struct ocfs2_write_cluster_desc *desc;
1665         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1666
1667         for (i = 0; i < wc->w_clen; i++) {
1668                 desc = &wc->w_desc[i];
1669
1670                 /*
1671                  * We have to make sure that the total write passed in
1672                  * doesn't extend past a single cluster.
1673                  */
1674                 local_len = len;
1675                 cluster_off = pos & (osb->s_clustersize - 1);
1676                 if ((cluster_off + local_len) > osb->s_clustersize)
1677                         local_len = osb->s_clustersize - cluster_off;
1678
1679                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1680                                           desc->c_unwritten,
1681                                           desc->c_needs_zero,
1682                                           data_ac, meta_ac,
1683                                           wc, desc->c_cpos, pos, local_len);
1684                 if (ret) {
1685                         mlog_errno(ret);
1686                         goto out;
1687                 }
1688
1689                 len -= local_len;
1690                 pos += local_len;
1691         }
1692
1693         ret = 0;
1694 out:
1695         return ret;
1696 }
1697
1698 /*
1699  * ocfs2_write_end() wants to know which parts of the target page it
1700  * should complete the write on. It's easiest to compute them ahead of
1701  * time when a more complete view of the write is available.
1702  */
1703 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1704                                         struct ocfs2_write_ctxt *wc,
1705                                         loff_t pos, unsigned len, int alloc)
1706 {
1707         struct ocfs2_write_cluster_desc *desc;
1708
1709         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1710         wc->w_target_to = wc->w_target_from + len;
1711
1712         if (alloc == 0)
1713                 return;
1714
1715         /*
1716          * Allocating write - we may have different boundaries based
1717          * on page size and cluster size.
1718          *
1719          * NOTE: We can no longer compute one value from the other as
1720          * the actual write length and user provided length may be
1721          * different.
1722          */
1723
1724         if (wc->w_large_pages) {
1725                 /*
1726                  * We only care about the 1st and last cluster within
1727                  * our range and whether they should be zero'd or not. Either
1728                  * value may be extended out to the start/end of a
1729                  * newly allocated cluster.
1730                  */
1731                 desc = &wc->w_desc[0];
1732                 if (desc->c_needs_zero)
1733                         ocfs2_figure_cluster_boundaries(osb,
1734                                                         desc->c_cpos,
1735                                                         &wc->w_target_from,
1736                                                         NULL);
1737
1738                 desc = &wc->w_desc[wc->w_clen - 1];
1739                 if (desc->c_needs_zero)
1740                         ocfs2_figure_cluster_boundaries(osb,
1741                                                         desc->c_cpos,
1742                                                         NULL,
1743                                                         &wc->w_target_to);
1744         } else {
1745                 wc->w_target_from = 0;
1746                 wc->w_target_to = PAGE_CACHE_SIZE;
1747         }
1748 }
1749
1750 /*
1751  * Populate each single-cluster write descriptor in the write context
1752  * with information about the i/o to be done.
1753  *
1754  * Returns the number of clusters that will have to be allocated, as
1755  * well as a worst case estimate of the number of extent records that
1756  * would have to be created during a write to an unwritten region.
1757  */
1758 static int ocfs2_populate_write_desc(struct inode *inode,
1759                                      struct ocfs2_write_ctxt *wc,
1760                                      unsigned int *clusters_to_alloc,
1761                                      unsigned int *extents_to_split)
1762 {
1763         int ret;
1764         struct ocfs2_write_cluster_desc *desc;
1765         unsigned int num_clusters = 0;
1766         unsigned int ext_flags = 0;
1767         u32 phys = 0;
1768         int i;
1769
1770         *clusters_to_alloc = 0;
1771         *extents_to_split = 0;
1772
1773         for (i = 0; i < wc->w_clen; i++) {
1774                 desc = &wc->w_desc[i];
1775                 desc->c_cpos = wc->w_cpos + i;
1776
1777                 if (num_clusters == 0) {
1778                         /*
1779                          * Need to look up the next extent record.
1780                          */
1781                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1782                                                  &num_clusters, &ext_flags);
1783                         if (ret) {
1784                                 mlog_errno(ret);
1785                                 goto out;
1786                         }
1787
1788                         /* We should already CoW the refcountd extent. */
1789                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1790
1791                         /*
1792                          * Assume worst case - that we're writing in
1793                          * the middle of the extent.
1794                          *
1795                          * We can assume that the write proceeds from
1796                          * left to right, in which case the extent
1797                          * insert code is smart enough to coalesce the
1798                          * next splits into the previous records created.
1799                          */
1800                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1801                                 *extents_to_split = *extents_to_split + 2;
1802                 } else if (phys) {
1803                         /*
1804                          * Only increment phys if it doesn't describe
1805                          * a hole.
1806                          */
1807                         phys++;
1808                 }
1809
1810                 /*
1811                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1812                  * file that got extended.  w_first_new_cpos tells us
1813                  * where the newly allocated clusters are so we can
1814                  * zero them.
1815                  */
1816                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1817                         BUG_ON(phys == 0);
1818                         desc->c_needs_zero = 1;
1819                 }
1820
1821                 desc->c_phys = phys;
1822                 if (phys == 0) {
1823                         desc->c_new = 1;
1824                         desc->c_needs_zero = 1;
1825                         *clusters_to_alloc = *clusters_to_alloc + 1;
1826                 }
1827
1828                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1829                         desc->c_unwritten = 1;
1830                         desc->c_needs_zero = 1;
1831                 }
1832
1833                 num_clusters--;
1834         }
1835
1836         ret = 0;
1837 out:
1838         return ret;
1839 }
1840
1841 static int ocfs2_write_begin_inline(struct address_space *mapping,
1842                                     struct inode *inode,
1843                                     struct ocfs2_write_ctxt *wc)
1844 {
1845         int ret;
1846         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1847         struct page *page;
1848         handle_t *handle;
1849         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1850
1851         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1852         if (IS_ERR(handle)) {
1853                 ret = PTR_ERR(handle);
1854                 mlog_errno(ret);
1855                 goto out;
1856         }
1857
1858         page = find_or_create_page(mapping, 0, GFP_NOFS);
1859         if (!page) {
1860                 ocfs2_commit_trans(osb, handle);
1861                 ret = -ENOMEM;
1862                 mlog_errno(ret);
1863                 goto out;
1864         }
1865         /*
1866          * If we don't set w_num_pages then this page won't get unlocked
1867          * and freed on cleanup of the write context.
1868          */
1869         wc->w_pages[0] = wc->w_target_page = page;
1870         wc->w_num_pages = 1;
1871
1872         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1873                                       OCFS2_JOURNAL_ACCESS_WRITE);
1874         if (ret) {
1875                 ocfs2_commit_trans(osb, handle);
1876
1877                 mlog_errno(ret);
1878                 goto out;
1879         }
1880
1881         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1882                 ocfs2_set_inode_data_inline(inode, di);
1883
1884         if (!PageUptodate(page)) {
1885                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1886                 if (ret) {
1887                         ocfs2_commit_trans(osb, handle);
1888
1889                         goto out;
1890                 }
1891         }
1892
1893         wc->w_handle = handle;
1894 out:
1895         return ret;
1896 }
1897
1898 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1899 {
1900         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1901
1902         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1903                 return 1;
1904         return 0;
1905 }
1906
1907 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1908                                           struct inode *inode, loff_t pos,
1909                                           unsigned len, struct page *mmap_page,
1910                                           struct ocfs2_write_ctxt *wc)
1911 {
1912         int ret, written = 0;
1913         loff_t end = pos + len;
1914         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1915         struct ocfs2_dinode *di = NULL;
1916
1917         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1918                                              len, (unsigned long long)pos,
1919                                              oi->ip_dyn_features);
1920
1921         /*
1922          * Handle inodes which already have inline data 1st.
1923          */
1924         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1925                 if (mmap_page == NULL &&
1926                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1927                         goto do_inline_write;
1928
1929                 /*
1930                  * The write won't fit - we have to give this inode an
1931                  * inline extent list now.
1932                  */
1933                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1934                 if (ret)
1935                         mlog_errno(ret);
1936                 goto out;
1937         }
1938
1939         /*
1940          * Check whether the inode can accept inline data.
1941          */
1942         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1943                 return 0;
1944
1945         /*
1946          * Check whether the write can fit.
1947          */
1948         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1949         if (mmap_page ||
1950             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1951                 return 0;
1952
1953 do_inline_write:
1954         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1955         if (ret) {
1956                 mlog_errno(ret);
1957                 goto out;
1958         }
1959
1960         /*
1961          * This signals to the caller that the data can be written
1962          * inline.
1963          */
1964         written = 1;
1965 out:
1966         return written ? written : ret;
1967 }
1968
1969 /*
1970  * This function only does anything for file systems which can't
1971  * handle sparse files.
1972  *
1973  * What we want to do here is fill in any hole between the current end
1974  * of allocation and the end of our write. That way the rest of the
1975  * write path can treat it as an non-allocating write, which has no
1976  * special case code for sparse/nonsparse files.
1977  */
1978 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1979                                         struct buffer_head *di_bh,
1980                                         loff_t pos, unsigned len,
1981                                         struct ocfs2_write_ctxt *wc)
1982 {
1983         int ret;
1984         loff_t newsize = pos + len;
1985
1986         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1987
1988         if (newsize <= i_size_read(inode))
1989                 return 0;
1990
1991         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1992         if (ret)
1993                 mlog_errno(ret);
1994
1995         wc->w_first_new_cpos =
1996                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1997
1998         return ret;
1999 }
2000
2001 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2002                            loff_t pos)
2003 {
2004         int ret = 0;
2005
2006         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2007         if (pos > i_size_read(inode))
2008                 ret = ocfs2_zero_extend(inode, di_bh, pos);
2009
2010         return ret;
2011 }
2012
2013 /*
2014  * Try to flush truncate logs if we can free enough clusters from it.
2015  * As for return value, "< 0" means error, "0" no space and "1" means
2016  * we have freed enough spaces and let the caller try to allocate again.
2017  */
2018 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2019                                           unsigned int needed)
2020 {
2021         tid_t target;
2022         int ret = 0;
2023         unsigned int truncated_clusters;
2024
2025         mutex_lock(&osb->osb_tl_inode->i_mutex);
2026         truncated_clusters = osb->truncated_clusters;
2027         mutex_unlock(&osb->osb_tl_inode->i_mutex);
2028
2029         /*
2030          * Check whether we can succeed in allocating if we free
2031          * the truncate log.
2032          */
2033         if (truncated_clusters < needed)
2034                 goto out;
2035
2036         ret = ocfs2_flush_truncate_log(osb);
2037         if (ret) {
2038                 mlog_errno(ret);
2039                 goto out;
2040         }
2041
2042         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2043                 jbd2_log_wait_commit(osb->journal->j_journal, target);
2044                 ret = 1;
2045         }
2046 out:
2047         return ret;
2048 }
2049
2050 int ocfs2_write_begin_nolock(struct file *filp,
2051                              struct address_space *mapping,
2052                              loff_t pos, unsigned len, unsigned flags,
2053                              struct page **pagep, void **fsdata,
2054                              struct buffer_head *di_bh, struct page *mmap_page)
2055 {
2056         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2057         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2058         struct ocfs2_write_ctxt *wc;
2059         struct inode *inode = mapping->host;
2060         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2061         struct ocfs2_dinode *di;
2062         struct ocfs2_alloc_context *data_ac = NULL;
2063         struct ocfs2_alloc_context *meta_ac = NULL;
2064         handle_t *handle;
2065         struct ocfs2_extent_tree et;
2066         int try_free = 1, ret1;
2067
2068 try_again:
2069         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2070         if (ret) {
2071                 mlog_errno(ret);
2072                 return ret;
2073         }
2074
2075         if (ocfs2_supports_inline_data(osb)) {
2076                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2077                                                      mmap_page, wc);
2078                 if (ret == 1) {
2079                         ret = 0;
2080                         goto success;
2081                 }
2082                 if (ret < 0) {
2083                         mlog_errno(ret);
2084                         goto out;
2085                 }
2086         }
2087
2088         if (ocfs2_sparse_alloc(osb))
2089                 ret = ocfs2_zero_tail(inode, di_bh, pos);
2090         else
2091                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2092                                                    wc);
2093         if (ret) {
2094                 mlog_errno(ret);
2095                 goto out;
2096         }
2097
2098         ret = ocfs2_check_range_for_refcount(inode, pos, len);
2099         if (ret < 0) {
2100                 mlog_errno(ret);
2101                 goto out;
2102         } else if (ret == 1) {
2103                 clusters_need = wc->w_clen;
2104                 ret = ocfs2_refcount_cow(inode, di_bh,
2105                                          wc->w_cpos, wc->w_clen, UINT_MAX);
2106                 if (ret) {
2107                         mlog_errno(ret);
2108                         goto out;
2109                 }
2110         }
2111
2112         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2113                                         &extents_to_split);
2114         if (ret) {
2115                 mlog_errno(ret);
2116                 goto out;
2117         }
2118         clusters_need += clusters_to_alloc;
2119
2120         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2121
2122         trace_ocfs2_write_begin_nolock(
2123                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2124                         (long long)i_size_read(inode),
2125                         le32_to_cpu(di->i_clusters),
2126                         pos, len, flags, mmap_page,
2127                         clusters_to_alloc, extents_to_split);
2128
2129         /*
2130          * We set w_target_from, w_target_to here so that
2131          * ocfs2_write_end() knows which range in the target page to
2132          * write out. An allocation requires that we write the entire
2133          * cluster range.
2134          */
2135         if (clusters_to_alloc || extents_to_split) {
2136                 /*
2137                  * XXX: We are stretching the limits of
2138                  * ocfs2_lock_allocators(). It greatly over-estimates
2139                  * the work to be done.
2140                  */
2141                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2142                                               wc->w_di_bh);
2143                 ret = ocfs2_lock_allocators(inode, &et,
2144                                             clusters_to_alloc, extents_to_split,
2145                                             &data_ac, &meta_ac);
2146                 if (ret) {
2147                         mlog_errno(ret);
2148                         goto out;
2149                 }
2150
2151                 if (data_ac)
2152                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2153
2154                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2155                                                     &di->id2.i_list);
2156
2157         }
2158
2159         /*
2160          * We have to zero sparse allocated clusters, unwritten extent clusters,
2161          * and non-sparse clusters we just extended.  For non-sparse writes,
2162          * we know zeros will only be needed in the first and/or last cluster.
2163          */
2164         if (clusters_to_alloc || extents_to_split ||
2165             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2166                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2167                 cluster_of_pages = 1;
2168         else
2169                 cluster_of_pages = 0;
2170
2171         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2172
2173         handle = ocfs2_start_trans(osb, credits);
2174         if (IS_ERR(handle)) {
2175                 ret = PTR_ERR(handle);
2176                 mlog_errno(ret);
2177                 goto out;
2178         }
2179
2180         wc->w_handle = handle;
2181
2182         if (clusters_to_alloc) {
2183                 ret = dquot_alloc_space_nodirty(inode,
2184                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2185                 if (ret)
2186                         goto out_commit;
2187         }
2188         /*
2189          * We don't want this to fail in ocfs2_write_end(), so do it
2190          * here.
2191          */
2192         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2193                                       OCFS2_JOURNAL_ACCESS_WRITE);
2194         if (ret) {
2195                 mlog_errno(ret);
2196                 goto out_quota;
2197         }
2198
2199         /*
2200          * Fill our page array first. That way we've grabbed enough so
2201          * that we can zero and flush if we error after adding the
2202          * extent.
2203          */
2204         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2205                                          cluster_of_pages, mmap_page);
2206         if (ret && ret != -EAGAIN) {
2207                 mlog_errno(ret);
2208                 goto out_quota;
2209         }
2210
2211         /*
2212          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2213          * the target page. In this case, we exit with no error and no target
2214          * page. This will trigger the caller, page_mkwrite(), to re-try
2215          * the operation.
2216          */
2217         if (ret == -EAGAIN) {
2218                 BUG_ON(wc->w_target_page);
2219                 ret = 0;
2220                 goto out_quota;
2221         }
2222
2223         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2224                                           len);
2225         if (ret) {
2226                 mlog_errno(ret);
2227                 goto out_quota;
2228         }
2229
2230         if (data_ac)
2231                 ocfs2_free_alloc_context(data_ac);
2232         if (meta_ac)
2233                 ocfs2_free_alloc_context(meta_ac);
2234
2235 success:
2236         *pagep = wc->w_target_page;
2237         *fsdata = wc;
2238         return 0;
2239 out_quota:
2240         if (clusters_to_alloc)
2241                 dquot_free_space(inode,
2242                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2243 out_commit:
2244         ocfs2_commit_trans(osb, handle);
2245
2246 out:
2247         ocfs2_free_write_ctxt(wc);
2248
2249         if (data_ac) {
2250                 ocfs2_free_alloc_context(data_ac);
2251                 data_ac = NULL;
2252         }
2253         if (meta_ac) {
2254                 ocfs2_free_alloc_context(meta_ac);
2255                 meta_ac = NULL;
2256         }
2257
2258         if (ret == -ENOSPC && try_free) {
2259                 /*
2260                  * Try to free some truncate log so that we can have enough
2261                  * clusters to allocate.
2262                  */
2263                 try_free = 0;
2264
2265                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2266                 if (ret1 == 1)
2267                         goto try_again;
2268
2269                 if (ret1 < 0)
2270                         mlog_errno(ret1);
2271         }
2272
2273         return ret;
2274 }
2275
2276 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2277                              loff_t pos, unsigned len, unsigned flags,
2278                              struct page **pagep, void **fsdata)
2279 {
2280         int ret;
2281         struct buffer_head *di_bh = NULL;
2282         struct inode *inode = mapping->host;
2283
2284         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2285         if (ret) {
2286                 mlog_errno(ret);
2287                 return ret;
2288         }
2289
2290         /*
2291          * Take alloc sem here to prevent concurrent lookups. That way
2292          * the mapping, zeroing and tree manipulation within
2293          * ocfs2_write() will be safe against ->readpage(). This
2294          * should also serve to lock out allocation from a shared
2295          * writeable region.
2296          */
2297         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2298
2299         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2300                                        fsdata, di_bh, NULL);
2301         if (ret) {
2302                 mlog_errno(ret);
2303                 goto out_fail;
2304         }
2305
2306         brelse(di_bh);
2307
2308         return 0;
2309
2310 out_fail:
2311         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2312
2313         brelse(di_bh);
2314         ocfs2_inode_unlock(inode, 1);
2315
2316         return ret;
2317 }
2318
2319 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2320                                    unsigned len, unsigned *copied,
2321                                    struct ocfs2_dinode *di,
2322                                    struct ocfs2_write_ctxt *wc)
2323 {
2324         void *kaddr;
2325
2326         if (unlikely(*copied < len)) {
2327                 if (!PageUptodate(wc->w_target_page)) {
2328                         *copied = 0;
2329                         return;
2330                 }
2331         }
2332
2333         kaddr = kmap_atomic(wc->w_target_page);
2334         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2335         kunmap_atomic(kaddr);
2336
2337         trace_ocfs2_write_end_inline(
2338              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2339              (unsigned long long)pos, *copied,
2340              le16_to_cpu(di->id2.i_data.id_count),
2341              le16_to_cpu(di->i_dyn_features));
2342 }
2343
2344 int ocfs2_write_end_nolock(struct address_space *mapping,
2345                            loff_t pos, unsigned len, unsigned copied,
2346                            struct page *page, void *fsdata)
2347 {
2348         int i;
2349         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2350         struct inode *inode = mapping->host;
2351         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2352         struct ocfs2_write_ctxt *wc = fsdata;
2353         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2354         handle_t *handle = wc->w_handle;
2355         struct page *tmppage;
2356
2357         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2358                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2359                 goto out_write_size;
2360         }
2361
2362         if (unlikely(copied < len)) {
2363                 if (!PageUptodate(wc->w_target_page))
2364                         copied = 0;
2365
2366                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2367                                        start+len);
2368         }
2369         flush_dcache_page(wc->w_target_page);
2370
2371         for(i = 0; i < wc->w_num_pages; i++) {
2372                 tmppage = wc->w_pages[i];
2373
2374                 if (tmppage == wc->w_target_page) {
2375                         from = wc->w_target_from;
2376                         to = wc->w_target_to;
2377
2378                         BUG_ON(from > PAGE_CACHE_SIZE ||
2379                                to > PAGE_CACHE_SIZE ||
2380                                to < from);
2381                 } else {
2382                         /*
2383                          * Pages adjacent to the target (if any) imply
2384                          * a hole-filling write in which case we want
2385                          * to flush their entire range.
2386                          */
2387                         from = 0;
2388                         to = PAGE_CACHE_SIZE;
2389                 }
2390
2391                 if (page_has_buffers(tmppage)) {
2392                         if (ocfs2_should_order_data(inode))
2393                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2394                         block_commit_write(tmppage, from, to);
2395                 }
2396         }
2397
2398 out_write_size:
2399         pos += copied;
2400         if (pos > i_size_read(inode)) {
2401                 i_size_write(inode, pos);
2402                 mark_inode_dirty(inode);
2403         }
2404         inode->i_blocks = ocfs2_inode_sector_count(inode);
2405         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2406         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2407         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2408         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2409         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2410         ocfs2_journal_dirty(handle, wc->w_di_bh);
2411
2412         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2413          * lock, or it will cause a deadlock since journal commit threads holds
2414          * this lock and will ask for the page lock when flushing the data.
2415          * put it here to preserve the unlock order.
2416          */
2417         ocfs2_unlock_pages(wc);
2418
2419         ocfs2_commit_trans(osb, handle);
2420
2421         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2422
2423         brelse(wc->w_di_bh);
2424         kfree(wc);
2425
2426         return copied;
2427 }
2428
2429 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2430                            loff_t pos, unsigned len, unsigned copied,
2431                            struct page *page, void *fsdata)
2432 {
2433         int ret;
2434         struct inode *inode = mapping->host;
2435
2436         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2437
2438         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2439         ocfs2_inode_unlock(inode, 1);
2440
2441         return ret;
2442 }
2443
2444 const struct address_space_operations ocfs2_aops = {
2445         .readpage               = ocfs2_readpage,
2446         .readpages              = ocfs2_readpages,
2447         .writepage              = ocfs2_writepage,
2448         .write_begin            = ocfs2_write_begin,
2449         .write_end              = ocfs2_write_end,
2450         .bmap                   = ocfs2_bmap,
2451         .direct_IO              = ocfs2_direct_IO,
2452         .invalidatepage         = block_invalidatepage,
2453         .releasepage            = ocfs2_releasepage,
2454         .migratepage            = buffer_migrate_page,
2455         .is_partially_uptodate  = block_is_partially_uptodate,
2456         .error_remove_page      = generic_error_remove_page,
2457 };