Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / namei.c
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * Some corrections by tytso.
9  */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now 
53  * replaced with a single function lookup_dentry() that can handle all 
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *      inside the path - always follow.
96  *      in the last component in creation/removal/renaming - never follow.
97  *      if LOOKUP_FOLLOW passed - follow.
98  *      if the pathname has trailing slashes - follow.
99  *      otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121
122 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127         struct filename *result;
128         char *kname;
129         int len;
130
131         result = audit_reusename(filename);
132         if (result)
133                 return result;
134
135         result = __getname();
136         if (unlikely(!result))
137                 return ERR_PTR(-ENOMEM);
138
139         /*
140          * First, try to embed the struct filename inside the names_cache
141          * allocation
142          */
143         kname = (char *)result->iname;
144         result->name = kname;
145
146         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147         if (unlikely(len < 0)) {
148                 __putname(result);
149                 return ERR_PTR(len);
150         }
151
152         /*
153          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154          * separate struct filename so we can dedicate the entire
155          * names_cache allocation for the pathname, and re-do the copy from
156          * userland.
157          */
158         if (unlikely(len == EMBEDDED_NAME_MAX)) {
159                 const size_t size = offsetof(struct filename, iname[1]);
160                 kname = (char *)result;
161
162                 /*
163                  * size is chosen that way we to guarantee that
164                  * result->iname[0] is within the same object and that
165                  * kname can't be equal to result->iname, no matter what.
166                  */
167                 result = kzalloc(size, GFP_KERNEL);
168                 if (unlikely(!result)) {
169                         __putname(kname);
170                         return ERR_PTR(-ENOMEM);
171                 }
172                 result->name = kname;
173                 len = strncpy_from_user(kname, filename, PATH_MAX);
174                 if (unlikely(len < 0)) {
175                         __putname(kname);
176                         kfree(result);
177                         return ERR_PTR(len);
178                 }
179                 if (unlikely(len == PATH_MAX)) {
180                         __putname(kname);
181                         kfree(result);
182                         return ERR_PTR(-ENAMETOOLONG);
183                 }
184         }
185
186         result->refcnt = 1;
187         /* The empty path is special. */
188         if (unlikely(!len)) {
189                 if (empty)
190                         *empty = 1;
191                 if (!(flags & LOOKUP_EMPTY)) {
192                         putname(result);
193                         return ERR_PTR(-ENOENT);
194                 }
195         }
196
197         result->uptr = filename;
198         result->aname = NULL;
199         audit_getname(result);
200         return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206         return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212         struct filename *result;
213         int len = strlen(filename) + 1;
214
215         result = __getname();
216         if (unlikely(!result))
217                 return ERR_PTR(-ENOMEM);
218
219         if (len <= EMBEDDED_NAME_MAX) {
220                 result->name = (char *)result->iname;
221         } else if (len <= PATH_MAX) {
222                 struct filename *tmp;
223
224                 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225                 if (unlikely(!tmp)) {
226                         __putname(result);
227                         return ERR_PTR(-ENOMEM);
228                 }
229                 tmp->name = (char *)result;
230                 result = tmp;
231         } else {
232                 __putname(result);
233                 return ERR_PTR(-ENAMETOOLONG);
234         }
235         memcpy((char *)result->name, filename, len);
236         result->uptr = NULL;
237         result->aname = NULL;
238         result->refcnt = 1;
239         audit_getname(result);
240
241         return result;
242 }
243
244 void putname(struct filename *name)
245 {
246         BUG_ON(name->refcnt <= 0);
247
248         if (--name->refcnt > 0)
249                 return;
250
251         if (name->name != name->iname) {
252                 __putname(name->name);
253                 kfree(name);
254         } else
255                 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261         struct posix_acl *acl;
262
263         if (mask & MAY_NOT_BLOCK) {
264                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265                 if (!acl)
266                         return -EAGAIN;
267                 /* no ->get_acl() calls in RCU mode... */
268                 if (acl == ACL_NOT_CACHED)
269                         return -ECHILD;
270                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271         }
272
273         acl = get_acl(inode, ACL_TYPE_ACCESS);
274         if (IS_ERR(acl))
275                 return PTR_ERR(acl);
276         if (acl) {
277                 int error = posix_acl_permission(inode, acl, mask);
278                 posix_acl_release(acl);
279                 return error;
280         }
281 #endif
282
283         return -EAGAIN;
284 }
285
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291         unsigned int mode = inode->i_mode;
292
293         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294                 mode >>= 6;
295         else {
296                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297                         int error = check_acl(inode, mask);
298                         if (error != -EAGAIN)
299                                 return error;
300                 }
301
302                 if (in_group_p(inode->i_gid))
303                         mode >>= 3;
304         }
305
306         /*
307          * If the DACs are ok we don't need any capability check.
308          */
309         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310                 return 0;
311         return -EACCES;
312 }
313
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:      inode to check access rights for
317  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330         int ret;
331
332         /*
333          * Do the basic permission checks.
334          */
335         ret = acl_permission_check(inode, mask);
336         if (ret != -EACCES)
337                 return ret;
338
339         if (S_ISDIR(inode->i_mode)) {
340                 /* DACs are overridable for directories */
341                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342                         return 0;
343                 if (!(mask & MAY_WRITE))
344                         if (capable_wrt_inode_uidgid(inode,
345                                                      CAP_DAC_READ_SEARCH))
346                                 return 0;
347                 return -EACCES;
348         }
349         /*
350          * Read/write DACs are always overridable.
351          * Executable DACs are overridable when there is
352          * at least one exec bit set.
353          */
354         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356                         return 0;
357
358         /*
359          * Searching includes executable on directories, else just read.
360          */
361         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362         if (mask == MAY_READ)
363                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364                         return 0;
365
366         return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379                 if (likely(inode->i_op->permission))
380                         return inode->i_op->permission(inode, mask);
381
382                 /* This gets set once for the inode lifetime */
383                 spin_lock(&inode->i_lock);
384                 inode->i_opflags |= IOP_FASTPERM;
385                 spin_unlock(&inode->i_lock);
386         }
387         return generic_permission(inode, mask);
388 }
389
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404         int retval;
405
406         if (unlikely(mask & MAY_WRITE)) {
407                 /*
408                  * Nobody gets write access to an immutable file.
409                  */
410                 if (IS_IMMUTABLE(inode))
411                         return -EACCES;
412         }
413
414         retval = do_inode_permission(inode, mask);
415         if (retval)
416                 return retval;
417
418         retval = devcgroup_inode_permission(inode, mask);
419         if (retval)
420                 return retval;
421
422         return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436         if (unlikely(mask & MAY_WRITE)) {
437                 umode_t mode = inode->i_mode;
438
439                 /* Nobody gets write access to a read-only fs. */
440                 if ((sb->s_flags & MS_RDONLY) &&
441                     (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442                         return -EROFS;
443         }
444         return 0;
445 }
446
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460         int retval;
461
462         retval = sb_permission(inode->i_sb, inode, mask);
463         if (retval)
464                 return retval;
465         return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477         mntget(path->mnt);
478         dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490         dput(path->dentry);
491         mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497         struct path     path;
498         struct qstr     last;
499         struct path     root;
500         struct inode    *inode; /* path.dentry.d_inode */
501         unsigned int    flags;
502         unsigned        seq, m_seq;
503         int             last_type;
504         unsigned        depth;
505         int             total_link_count;
506         struct saved {
507                 struct path link;
508                 struct delayed_call done;
509                 const char *name;
510                 unsigned seq;
511         } *stack, internal[EMBEDDED_LEVELS];
512         struct filename *name;
513         struct nameidata *saved;
514         struct inode    *link_inode;
515         unsigned        root_seq;
516         int             dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521         struct nameidata *old = current->nameidata;
522         p->stack = p->internal;
523         p->dfd = dfd;
524         p->name = name;
525         p->total_link_count = old ? old->total_link_count : 0;
526         p->saved = old;
527         current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532         struct nameidata *now = current->nameidata, *old = now->saved;
533
534         current->nameidata = old;
535         if (old)
536                 old->total_link_count = now->total_link_count;
537         if (now->stack != now->internal)
538                 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543         struct saved *p;
544
545         if (nd->flags & LOOKUP_RCU) {
546                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547                                   GFP_ATOMIC);
548                 if (unlikely(!p))
549                         return -ECHILD;
550         } else {
551                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552                                   GFP_KERNEL);
553                 if (unlikely(!p))
554                         return -ENOMEM;
555         }
556         memcpy(p, nd->internal, sizeof(nd->internal));
557         nd->stack = p;
558         return 0;
559 }
560
561 /**
562  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563  * @path: nameidate to verify
564  *
565  * Rename can sometimes move a file or directory outside of a bind
566  * mount, path_connected allows those cases to be detected.
567  */
568 static bool path_connected(const struct path *path)
569 {
570         struct vfsmount *mnt = path->mnt;
571
572         /* Only bind mounts can have disconnected paths */
573         if (mnt->mnt_root == mnt->mnt_sb->s_root)
574                 return true;
575
576         return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581         if (likely(nd->depth != EMBEDDED_LEVELS))
582                 return 0;
583         if (likely(nd->stack != nd->internal))
584                 return 0;
585         return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590         int i = nd->depth;
591         while (i--) {
592                 struct saved *last = nd->stack + i;
593                 do_delayed_call(&last->done);
594                 clear_delayed_call(&last->done);
595         }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600         drop_links(nd);
601         if (!(nd->flags & LOOKUP_RCU)) {
602                 int i;
603                 path_put(&nd->path);
604                 for (i = 0; i < nd->depth; i++)
605                         path_put(&nd->stack[i].link);
606                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607                         path_put(&nd->root);
608                         nd->root.mnt = NULL;
609                 }
610         } else {
611                 nd->flags &= ~LOOKUP_RCU;
612                 if (!(nd->flags & LOOKUP_ROOT))
613                         nd->root.mnt = NULL;
614                 rcu_read_unlock();
615         }
616         nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621                             struct path *path, unsigned seq)
622 {
623         int res = __legitimize_mnt(path->mnt, nd->m_seq);
624         if (unlikely(res)) {
625                 if (res > 0)
626                         path->mnt = NULL;
627                 path->dentry = NULL;
628                 return false;
629         }
630         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631                 path->dentry = NULL;
632                 return false;
633         }
634         return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639         int i;
640         for (i = 0; i < nd->depth; i++) {
641                 struct saved *last = nd->stack + i;
642                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643                         drop_links(nd);
644                         nd->depth = i + 1;
645                         return false;
646                 }
647         }
648         return true;
649 }
650
651 /*
652  * Path walking has 2 modes, rcu-walk and ref-walk (see
653  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
654  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655  * normal reference counts on dentries and vfsmounts to transition to ref-walk
656  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
657  * got stuck, so ref-walk may continue from there. If this is not successful
658  * (eg. a seqcount has changed), then failure is returned and it's up to caller
659  * to restart the path walk from the beginning in ref-walk mode.
660  */
661
662 /**
663  * unlazy_walk - try to switch to ref-walk mode.
664  * @nd: nameidata pathwalk data
665  * @dentry: child of nd->path.dentry or NULL
666  * @seq: seq number to check dentry against
667  * Returns: 0 on success, -ECHILD on failure
668  *
669  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
671  * @nd or NULL.  Must be called from rcu-walk context.
672  * Nothing should touch nameidata between unlazy_walk() failure and
673  * terminate_walk().
674  */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677         struct dentry *parent = nd->path.dentry;
678
679         BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681         nd->flags &= ~LOOKUP_RCU;
682         if (unlikely(!legitimize_links(nd)))
683                 goto out2;
684         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685                 goto out2;
686         if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687                 goto out1;
688
689         /*
690          * For a negative lookup, the lookup sequence point is the parents
691          * sequence point, and it only needs to revalidate the parent dentry.
692          *
693          * For a positive lookup, we need to move both the parent and the
694          * dentry from the RCU domain to be properly refcounted. And the
695          * sequence number in the dentry validates *both* dentry counters,
696          * since we checked the sequence number of the parent after we got
697          * the child sequence number. So we know the parent must still
698          * be valid if the child sequence number is still valid.
699          */
700         if (!dentry) {
701                 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702                         goto out;
703                 BUG_ON(nd->inode != parent->d_inode);
704         } else {
705                 if (!lockref_get_not_dead(&dentry->d_lockref))
706                         goto out;
707                 if (read_seqcount_retry(&dentry->d_seq, seq))
708                         goto drop_dentry;
709         }
710
711         /*
712          * Sequence counts matched. Now make sure that the root is
713          * still valid and get it if required.
714          */
715         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717                         rcu_read_unlock();
718                         dput(dentry);
719                         return -ECHILD;
720                 }
721         }
722
723         rcu_read_unlock();
724         return 0;
725
726 drop_dentry:
727         rcu_read_unlock();
728         dput(dentry);
729         goto drop_root_mnt;
730 out2:
731         nd->path.mnt = NULL;
732 out1:
733         nd->path.dentry = NULL;
734 out:
735         rcu_read_unlock();
736 drop_root_mnt:
737         if (!(nd->flags & LOOKUP_ROOT))
738                 nd->root.mnt = NULL;
739         return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744         if (unlikely(!legitimize_path(nd, link, seq))) {
745                 drop_links(nd);
746                 nd->depth = 0;
747                 nd->flags &= ~LOOKUP_RCU;
748                 nd->path.mnt = NULL;
749                 nd->path.dentry = NULL;
750                 if (!(nd->flags & LOOKUP_ROOT))
751                         nd->root.mnt = NULL;
752                 rcu_read_unlock();
753         } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754                 return 0;
755         }
756         path_put(link);
757         return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762         return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766  * complete_walk - successful completion of path walk
767  * @nd:  pointer nameidata
768  *
769  * If we had been in RCU mode, drop out of it and legitimize nd->path.
770  * Revalidate the final result, unless we'd already done that during
771  * the path walk or the filesystem doesn't ask for it.  Return 0 on
772  * success, -error on failure.  In case of failure caller does not
773  * need to drop nd->path.
774  */
775 static int complete_walk(struct nameidata *nd)
776 {
777         struct dentry *dentry = nd->path.dentry;
778         int status;
779
780         if (nd->flags & LOOKUP_RCU) {
781                 if (!(nd->flags & LOOKUP_ROOT))
782                         nd->root.mnt = NULL;
783                 if (unlikely(unlazy_walk(nd, NULL, 0)))
784                         return -ECHILD;
785         }
786
787         if (likely(!(nd->flags & LOOKUP_JUMPED)))
788                 return 0;
789
790         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791                 return 0;
792
793         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794         if (status > 0)
795                 return 0;
796
797         if (!status)
798                 status = -ESTALE;
799
800         return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805         struct fs_struct *fs = current->fs;
806
807         if (nd->flags & LOOKUP_RCU) {
808                 unsigned seq;
809
810                 do {
811                         seq = read_seqcount_begin(&fs->seq);
812                         nd->root = fs->root;
813                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814                 } while (read_seqcount_retry(&fs->seq, seq));
815         } else {
816                 get_fs_root(fs, &nd->root);
817         }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822         dput(path->dentry);
823         if (path->mnt != nd->path.mnt)
824                 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828                                         struct nameidata *nd)
829 {
830         if (!(nd->flags & LOOKUP_RCU)) {
831                 dput(nd->path.dentry);
832                 if (nd->path.mnt != path->mnt)
833                         mntput(nd->path.mnt);
834         }
835         nd->path.mnt = path->mnt;
836         nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841         if (nd->flags & LOOKUP_RCU) {
842                 struct dentry *d;
843                 nd->path = nd->root;
844                 d = nd->path.dentry;
845                 nd->inode = d->d_inode;
846                 nd->seq = nd->root_seq;
847                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848                         return -ECHILD;
849         } else {
850                 path_put(&nd->path);
851                 nd->path = nd->root;
852                 path_get(&nd->path);
853                 nd->inode = nd->path.dentry->d_inode;
854         }
855         nd->flags |= LOOKUP_JUMPED;
856         return 0;
857 }
858
859 /*
860  * Helper to directly jump to a known parsed path from ->get_link,
861  * caller must have taken a reference to path beforehand.
862  */
863 void nd_jump_link(struct path *path)
864 {
865         struct nameidata *nd = current->nameidata;
866         path_put(&nd->path);
867
868         nd->path = *path;
869         nd->inode = nd->path.dentry->d_inode;
870         nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875         struct saved *last = nd->stack + --nd->depth;
876         do_delayed_call(&last->done);
877         if (!(nd->flags & LOOKUP_RCU))
878                 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885  * may_follow_link - Check symlink following for unsafe situations
886  * @nd: nameidata pathwalk data
887  *
888  * In the case of the sysctl_protected_symlinks sysctl being enabled,
889  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890  * in a sticky world-writable directory. This is to protect privileged
891  * processes from failing races against path names that may change out
892  * from under them by way of other users creating malicious symlinks.
893  * It will permit symlinks to be followed only when outside a sticky
894  * world-writable directory, or when the uid of the symlink and follower
895  * match, or when the directory owner matches the symlink's owner.
896  *
897  * Returns 0 if following the symlink is allowed, -ve on error.
898  */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901         const struct inode *inode;
902         const struct inode *parent;
903
904         if (!sysctl_protected_symlinks)
905                 return 0;
906
907         /* Allowed if owner and follower match. */
908         inode = nd->link_inode;
909         if (uid_eq(current_cred()->fsuid, inode->i_uid))
910                 return 0;
911
912         /* Allowed if parent directory not sticky and world-writable. */
913         parent = nd->inode;
914         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915                 return 0;
916
917         /* Allowed if parent directory and link owner match. */
918         if (uid_eq(parent->i_uid, inode->i_uid))
919                 return 0;
920
921         if (nd->flags & LOOKUP_RCU)
922                 return -ECHILD;
923
924         audit_log_link_denied("follow_link", &nd->stack[0].link);
925         return -EACCES;
926 }
927
928 /**
929  * safe_hardlink_source - Check for safe hardlink conditions
930  * @inode: the source inode to hardlink from
931  *
932  * Return false if at least one of the following conditions:
933  *    - inode is not a regular file
934  *    - inode is setuid
935  *    - inode is setgid and group-exec
936  *    - access failure for read and write
937  *
938  * Otherwise returns true.
939  */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942         umode_t mode = inode->i_mode;
943
944         /* Special files should not get pinned to the filesystem. */
945         if (!S_ISREG(mode))
946                 return false;
947
948         /* Setuid files should not get pinned to the filesystem. */
949         if (mode & S_ISUID)
950                 return false;
951
952         /* Executable setgid files should not get pinned to the filesystem. */
953         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954                 return false;
955
956         /* Hardlinking to unreadable or unwritable sources is dangerous. */
957         if (inode_permission(inode, MAY_READ | MAY_WRITE))
958                 return false;
959
960         return true;
961 }
962
963 /**
964  * may_linkat - Check permissions for creating a hardlink
965  * @link: the source to hardlink from
966  *
967  * Block hardlink when all of:
968  *  - sysctl_protected_hardlinks enabled
969  *  - fsuid does not match inode
970  *  - hardlink source is unsafe (see safe_hardlink_source() above)
971  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
972  *
973  * Returns 0 if successful, -ve on error.
974  */
975 static int may_linkat(struct path *link)
976 {
977         struct inode *inode;
978
979         if (!sysctl_protected_hardlinks)
980                 return 0;
981
982         inode = link->dentry->d_inode;
983
984         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985          * otherwise, it must be a safe source.
986          */
987         if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988                 return 0;
989
990         audit_log_link_denied("linkat", link);
991         return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997         struct saved *last = nd->stack + nd->depth - 1;
998         struct dentry *dentry = last->link.dentry;
999         struct inode *inode = nd->link_inode;
1000         int error;
1001         const char *res;
1002
1003         if (!(nd->flags & LOOKUP_RCU)) {
1004                 touch_atime(&last->link);
1005                 cond_resched();
1006         } else if (atime_needs_update(&last->link, inode)) {
1007                 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008                         return ERR_PTR(-ECHILD);
1009                 touch_atime(&last->link);
1010         }
1011
1012         error = security_inode_follow_link(dentry, inode,
1013                                            nd->flags & LOOKUP_RCU);
1014         if (unlikely(error))
1015                 return ERR_PTR(error);
1016
1017         nd->last_type = LAST_BIND;
1018         res = inode->i_link;
1019         if (!res) {
1020                 const char * (*get)(struct dentry *, struct inode *,
1021                                 struct delayed_call *);
1022                 get = inode->i_op->get_link;
1023                 if (nd->flags & LOOKUP_RCU) {
1024                         res = get(NULL, inode, &last->done);
1025                         if (res == ERR_PTR(-ECHILD)) {
1026                                 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027                                         return ERR_PTR(-ECHILD);
1028                                 res = get(dentry, inode, &last->done);
1029                         }
1030                 } else {
1031                         res = get(dentry, inode, &last->done);
1032                 }
1033                 if (IS_ERR_OR_NULL(res))
1034                         return res;
1035         }
1036         if (*res == '/') {
1037                 if (!nd->root.mnt)
1038                         set_root(nd);
1039                 if (unlikely(nd_jump_root(nd)))
1040                         return ERR_PTR(-ECHILD);
1041                 while (unlikely(*++res == '/'))
1042                         ;
1043         }
1044         if (!*res)
1045                 res = NULL;
1046         return res;
1047 }
1048
1049 /*
1050  * follow_up - Find the mountpoint of path's vfsmount
1051  *
1052  * Given a path, find the mountpoint of its source file system.
1053  * Replace @path with the path of the mountpoint in the parent mount.
1054  * Up is towards /.
1055  *
1056  * Return 1 if we went up a level and 0 if we were already at the
1057  * root.
1058  */
1059 int follow_up(struct path *path)
1060 {
1061         struct mount *mnt = real_mount(path->mnt);
1062         struct mount *parent;
1063         struct dentry *mountpoint;
1064
1065         read_seqlock_excl(&mount_lock);
1066         parent = mnt->mnt_parent;
1067         if (parent == mnt) {
1068                 read_sequnlock_excl(&mount_lock);
1069                 return 0;
1070         }
1071         mntget(&parent->mnt);
1072         mountpoint = dget(mnt->mnt_mountpoint);
1073         read_sequnlock_excl(&mount_lock);
1074         dput(path->dentry);
1075         path->dentry = mountpoint;
1076         mntput(path->mnt);
1077         path->mnt = &parent->mnt;
1078         return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083  * Perform an automount
1084  * - return -EISDIR to tell follow_managed() to stop and return the path we
1085  *   were called with.
1086  */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088                             bool *need_mntput)
1089 {
1090         struct vfsmount *mnt;
1091         int err;
1092
1093         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094                 return -EREMOTE;
1095
1096         /* We don't want to mount if someone's just doing a stat -
1097          * unless they're stat'ing a directory and appended a '/' to
1098          * the name.
1099          *
1100          * We do, however, want to mount if someone wants to open or
1101          * create a file of any type under the mountpoint, wants to
1102          * traverse through the mountpoint or wants to open the
1103          * mounted directory.  Also, autofs may mark negative dentries
1104          * as being automount points.  These will need the attentions
1105          * of the daemon to instantiate them before they can be used.
1106          */
1107         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109             path->dentry->d_inode)
1110                 return -EISDIR;
1111
1112         nd->total_link_count++;
1113         if (nd->total_link_count >= 40)
1114                 return -ELOOP;
1115
1116         mnt = path->dentry->d_op->d_automount(path);
1117         if (IS_ERR(mnt)) {
1118                 /*
1119                  * The filesystem is allowed to return -EISDIR here to indicate
1120                  * it doesn't want to automount.  For instance, autofs would do
1121                  * this so that its userspace daemon can mount on this dentry.
1122                  *
1123                  * However, we can only permit this if it's a terminal point in
1124                  * the path being looked up; if it wasn't then the remainder of
1125                  * the path is inaccessible and we should say so.
1126                  */
1127                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128                         return -EREMOTE;
1129                 return PTR_ERR(mnt);
1130         }
1131
1132         if (!mnt) /* mount collision */
1133                 return 0;
1134
1135         if (!*need_mntput) {
1136                 /* lock_mount() may release path->mnt on error */
1137                 mntget(path->mnt);
1138                 *need_mntput = true;
1139         }
1140         err = finish_automount(mnt, path);
1141
1142         switch (err) {
1143         case -EBUSY:
1144                 /* Someone else made a mount here whilst we were busy */
1145                 return 0;
1146         case 0:
1147                 path_put(path);
1148                 path->mnt = mnt;
1149                 path->dentry = dget(mnt->mnt_root);
1150                 return 0;
1151         default:
1152                 return err;
1153         }
1154
1155 }
1156
1157 /*
1158  * Handle a dentry that is managed in some way.
1159  * - Flagged for transit management (autofs)
1160  * - Flagged as mountpoint
1161  * - Flagged as automount point
1162  *
1163  * This may only be called in refwalk mode.
1164  *
1165  * Serialization is taken care of in namespace.c
1166  */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170         unsigned managed;
1171         bool need_mntput = false;
1172         int ret = 0;
1173
1174         /* Given that we're not holding a lock here, we retain the value in a
1175          * local variable for each dentry as we look at it so that we don't see
1176          * the components of that value change under us */
1177         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178                managed &= DCACHE_MANAGED_DENTRY,
1179                unlikely(managed != 0)) {
1180                 /* Allow the filesystem to manage the transit without i_mutex
1181                  * being held. */
1182                 if (managed & DCACHE_MANAGE_TRANSIT) {
1183                         BUG_ON(!path->dentry->d_op);
1184                         BUG_ON(!path->dentry->d_op->d_manage);
1185                         ret = path->dentry->d_op->d_manage(path->dentry, false);
1186                         if (ret < 0)
1187                                 break;
1188                 }
1189
1190                 /* Transit to a mounted filesystem. */
1191                 if (managed & DCACHE_MOUNTED) {
1192                         struct vfsmount *mounted = lookup_mnt(path);
1193                         if (mounted) {
1194                                 dput(path->dentry);
1195                                 if (need_mntput)
1196                                         mntput(path->mnt);
1197                                 path->mnt = mounted;
1198                                 path->dentry = dget(mounted->mnt_root);
1199                                 need_mntput = true;
1200                                 continue;
1201                         }
1202
1203                         /* Something is mounted on this dentry in another
1204                          * namespace and/or whatever was mounted there in this
1205                          * namespace got unmounted before lookup_mnt() could
1206                          * get it */
1207                 }
1208
1209                 /* Handle an automount point */
1210                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211                         ret = follow_automount(path, nd, &need_mntput);
1212                         if (ret < 0)
1213                                 break;
1214                         continue;
1215                 }
1216
1217                 /* We didn't change the current path point */
1218                 break;
1219         }
1220
1221         if (need_mntput && path->mnt == mnt)
1222                 mntput(path->mnt);
1223         if (ret == -EISDIR || !ret)
1224                 ret = 1;
1225         if (need_mntput)
1226                 nd->flags |= LOOKUP_JUMPED;
1227         if (unlikely(ret < 0))
1228                 path_put_conditional(path, nd);
1229         return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234         struct vfsmount *mounted;
1235
1236         mounted = lookup_mnt(path);
1237         if (mounted) {
1238                 dput(path->dentry);
1239                 mntput(path->mnt);
1240                 path->mnt = mounted;
1241                 path->dentry = dget(mounted->mnt_root);
1242                 return 1;
1243         }
1244         return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250         return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251                 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1256  * we meet a managed dentry that would need blocking.
1257  */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259                                struct inode **inode, unsigned *seqp)
1260 {
1261         for (;;) {
1262                 struct mount *mounted;
1263                 /*
1264                  * Don't forget we might have a non-mountpoint managed dentry
1265                  * that wants to block transit.
1266                  */
1267                 switch (managed_dentry_rcu(path->dentry)) {
1268                 case -ECHILD:
1269                 default:
1270                         return false;
1271                 case -EISDIR:
1272                         return true;
1273                 case 0:
1274                         break;
1275                 }
1276
1277                 if (!d_mountpoint(path->dentry))
1278                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280                 mounted = __lookup_mnt(path->mnt, path->dentry);
1281                 if (!mounted)
1282                         break;
1283                 path->mnt = &mounted->mnt;
1284                 path->dentry = mounted->mnt.mnt_root;
1285                 nd->flags |= LOOKUP_JUMPED;
1286                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287                 /*
1288                  * Update the inode too. We don't need to re-check the
1289                  * dentry sequence number here after this d_inode read,
1290                  * because a mount-point is always pinned.
1291                  */
1292                 *inode = path->dentry->d_inode;
1293         }
1294         return !read_seqretry(&mount_lock, nd->m_seq) &&
1295                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300         struct inode *inode = nd->inode;
1301
1302         while (1) {
1303                 if (path_equal(&nd->path, &nd->root))
1304                         break;
1305                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306                         struct dentry *old = nd->path.dentry;
1307                         struct dentry *parent = old->d_parent;
1308                         unsigned seq;
1309
1310                         inode = parent->d_inode;
1311                         seq = read_seqcount_begin(&parent->d_seq);
1312                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313                                 return -ECHILD;
1314                         nd->path.dentry = parent;
1315                         nd->seq = seq;
1316                         if (unlikely(!path_connected(&nd->path)))
1317                                 return -ENOENT;
1318                         break;
1319                 } else {
1320                         struct mount *mnt = real_mount(nd->path.mnt);
1321                         struct mount *mparent = mnt->mnt_parent;
1322                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1323                         struct inode *inode2 = mountpoint->d_inode;
1324                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326                                 return -ECHILD;
1327                         if (&mparent->mnt == nd->path.mnt)
1328                                 break;
1329                         /* we know that mountpoint was pinned */
1330                         nd->path.dentry = mountpoint;
1331                         nd->path.mnt = &mparent->mnt;
1332                         inode = inode2;
1333                         nd->seq = seq;
1334                 }
1335         }
1336         while (unlikely(d_mountpoint(nd->path.dentry))) {
1337                 struct mount *mounted;
1338                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340                         return -ECHILD;
1341                 if (!mounted)
1342                         break;
1343                 nd->path.mnt = &mounted->mnt;
1344                 nd->path.dentry = mounted->mnt.mnt_root;
1345                 inode = nd->path.dentry->d_inode;
1346                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347         }
1348         nd->inode = inode;
1349         return 0;
1350 }
1351
1352 /*
1353  * Follow down to the covering mount currently visible to userspace.  At each
1354  * point, the filesystem owning that dentry may be queried as to whether the
1355  * caller is permitted to proceed or not.
1356  */
1357 int follow_down(struct path *path)
1358 {
1359         unsigned managed;
1360         int ret;
1361
1362         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364                 /* Allow the filesystem to manage the transit without i_mutex
1365                  * being held.
1366                  *
1367                  * We indicate to the filesystem if someone is trying to mount
1368                  * something here.  This gives autofs the chance to deny anyone
1369                  * other than its daemon the right to mount on its
1370                  * superstructure.
1371                  *
1372                  * The filesystem may sleep at this point.
1373                  */
1374                 if (managed & DCACHE_MANAGE_TRANSIT) {
1375                         BUG_ON(!path->dentry->d_op);
1376                         BUG_ON(!path->dentry->d_op->d_manage);
1377                         ret = path->dentry->d_op->d_manage(
1378                                 path->dentry, false);
1379                         if (ret < 0)
1380                                 return ret == -EISDIR ? 0 : ret;
1381                 }
1382
1383                 /* Transit to a mounted filesystem. */
1384                 if (managed & DCACHE_MOUNTED) {
1385                         struct vfsmount *mounted = lookup_mnt(path);
1386                         if (!mounted)
1387                                 break;
1388                         dput(path->dentry);
1389                         mntput(path->mnt);
1390                         path->mnt = mounted;
1391                         path->dentry = dget(mounted->mnt_root);
1392                         continue;
1393                 }
1394
1395                 /* Don't handle automount points here */
1396                 break;
1397         }
1398         return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404  */
1405 static void follow_mount(struct path *path)
1406 {
1407         while (d_mountpoint(path->dentry)) {
1408                 struct vfsmount *mounted = lookup_mnt(path);
1409                 if (!mounted)
1410                         break;
1411                 dput(path->dentry);
1412                 mntput(path->mnt);
1413                 path->mnt = mounted;
1414                 path->dentry = dget(mounted->mnt_root);
1415         }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420         while(1) {
1421                 struct dentry *old = nd->path.dentry;
1422
1423                 if (nd->path.dentry == nd->root.dentry &&
1424                     nd->path.mnt == nd->root.mnt) {
1425                         break;
1426                 }
1427                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428                         /* rare case of legitimate dget_parent()... */
1429                         nd->path.dentry = dget_parent(nd->path.dentry);
1430                         dput(old);
1431                         if (unlikely(!path_connected(&nd->path)))
1432                                 return -ENOENT;
1433                         break;
1434                 }
1435                 if (!follow_up(&nd->path))
1436                         break;
1437         }
1438         follow_mount(&nd->path);
1439         nd->inode = nd->path.dentry->d_inode;
1440         return 0;
1441 }
1442
1443 /*
1444  * This looks up the name in dcache, possibly revalidates the old dentry and
1445  * allocates a new one if not found or not valid.  In the need_lookup argument
1446  * returns whether i_op->lookup is necessary.
1447  */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449                                     struct dentry *dir,
1450                                     unsigned int flags)
1451 {
1452         struct dentry *dentry;
1453         int error;
1454
1455         dentry = d_lookup(dir, name);
1456         if (dentry) {
1457                 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458                         error = d_revalidate(dentry, flags);
1459                         if (unlikely(error <= 0)) {
1460                                 if (!error)
1461                                         d_invalidate(dentry);
1462                                 dput(dentry);
1463                                 return ERR_PTR(error);
1464                         }
1465                 }
1466         }
1467         return dentry;
1468 }
1469
1470 /*
1471  * Call i_op->lookup on the dentry.  The dentry must be negative and
1472  * unhashed.
1473  *
1474  * dir->d_inode->i_mutex must be held
1475  */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477                                   unsigned int flags)
1478 {
1479         struct dentry *old;
1480
1481         /* Don't create child dentry for a dead directory. */
1482         if (unlikely(IS_DEADDIR(dir))) {
1483                 dput(dentry);
1484                 return ERR_PTR(-ENOENT);
1485         }
1486
1487         old = dir->i_op->lookup(dir, dentry, flags);
1488         if (unlikely(old)) {
1489                 dput(dentry);
1490                 dentry = old;
1491         }
1492         return dentry;
1493 }
1494
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496                 struct dentry *base, unsigned int flags)
1497 {
1498         struct dentry *dentry = lookup_dcache(name, base, flags);
1499
1500         if (dentry)
1501                 return dentry;
1502
1503         dentry = d_alloc(base, name);
1504         if (unlikely(!dentry))
1505                 return ERR_PTR(-ENOMEM);
1506
1507         return lookup_real(base->d_inode, dentry, flags);
1508 }
1509
1510 static int lookup_fast(struct nameidata *nd,
1511                        struct path *path, struct inode **inode,
1512                        unsigned *seqp)
1513 {
1514         struct vfsmount *mnt = nd->path.mnt;
1515         struct dentry *dentry, *parent = nd->path.dentry;
1516         int status = 1;
1517         int err;
1518
1519         /*
1520          * Rename seqlock is not required here because in the off chance
1521          * of a false negative due to a concurrent rename, the caller is
1522          * going to fall back to non-racy lookup.
1523          */
1524         if (nd->flags & LOOKUP_RCU) {
1525                 unsigned seq;
1526                 bool negative;
1527                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528                 if (unlikely(!dentry)) {
1529                         if (unlazy_walk(nd, NULL, 0))
1530                                 return -ECHILD;
1531                         return 0;
1532                 }
1533
1534                 /*
1535                  * This sequence count validates that the inode matches
1536                  * the dentry name information from lookup.
1537                  */
1538                 *inode = d_backing_inode(dentry);
1539                 negative = d_is_negative(dentry);
1540                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541                         return -ECHILD;
1542
1543                 /*
1544                  * This sequence count validates that the parent had no
1545                  * changes while we did the lookup of the dentry above.
1546                  *
1547                  * The memory barrier in read_seqcount_begin of child is
1548                  *  enough, we can use __read_seqcount_retry here.
1549                  */
1550                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551                         return -ECHILD;
1552
1553                 *seqp = seq;
1554                 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555                         status = d_revalidate(dentry, nd->flags);
1556                 if (unlikely(status <= 0)) {
1557                         if (unlazy_walk(nd, dentry, seq))
1558                                 return -ECHILD;
1559                         if (status == -ECHILD)
1560                                 status = d_revalidate(dentry, nd->flags);
1561                 } else {
1562                         /*
1563                          * Note: do negative dentry check after revalidation in
1564                          * case that drops it.
1565                          */
1566                         if (unlikely(negative))
1567                                 return -ENOENT;
1568                         path->mnt = mnt;
1569                         path->dentry = dentry;
1570                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571                                 return 1;
1572                         if (unlazy_walk(nd, dentry, seq))
1573                                 return -ECHILD;
1574                 }
1575         } else {
1576                 dentry = __d_lookup(parent, &nd->last);
1577                 if (unlikely(!dentry))
1578                         return 0;
1579                 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580                         status = d_revalidate(dentry, nd->flags);
1581         }
1582         if (unlikely(status <= 0)) {
1583                 if (!status)
1584                         d_invalidate(dentry);
1585                 dput(dentry);
1586                 return status;
1587         }
1588         if (unlikely(d_is_negative(dentry))) {
1589                 dput(dentry);
1590                 return -ENOENT;
1591         }
1592
1593         path->mnt = mnt;
1594         path->dentry = dentry;
1595         err = follow_managed(path, nd);
1596         if (likely(err > 0))
1597                 *inode = d_backing_inode(path->dentry);
1598         return err;
1599 }
1600
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603                                   struct dentry *dir,
1604                                   unsigned int flags)
1605 {
1606         struct dentry *dentry;
1607         inode_lock(dir->d_inode);
1608         dentry = d_lookup(dir, name);
1609         if (unlikely(dentry)) {
1610                 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1611                     !(flags & LOOKUP_NO_REVAL)) {
1612                         int error = d_revalidate(dentry, flags);
1613                         if (unlikely(error <= 0)) {
1614                                 if (!error)
1615                                         d_invalidate(dentry);
1616                                 dput(dentry);
1617                                 dentry = ERR_PTR(error);
1618                         }
1619                 }
1620                 if (dentry) {
1621                         inode_unlock(dir->d_inode);
1622                         return dentry;
1623                 }
1624         }
1625         dentry = d_alloc(dir, name);
1626         if (unlikely(!dentry)) {
1627                 inode_unlock(dir->d_inode);
1628                 return ERR_PTR(-ENOMEM);
1629         }
1630         dentry = lookup_real(dir->d_inode, dentry, flags);
1631         inode_unlock(dir->d_inode);
1632         return dentry;
1633 }
1634
1635 static inline int may_lookup(struct nameidata *nd)
1636 {
1637         if (nd->flags & LOOKUP_RCU) {
1638                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1639                 if (err != -ECHILD)
1640                         return err;
1641                 if (unlazy_walk(nd, NULL, 0))
1642                         return -ECHILD;
1643         }
1644         return inode_permission(nd->inode, MAY_EXEC);
1645 }
1646
1647 static inline int handle_dots(struct nameidata *nd, int type)
1648 {
1649         if (type == LAST_DOTDOT) {
1650                 if (!nd->root.mnt)
1651                         set_root(nd);
1652                 if (nd->flags & LOOKUP_RCU) {
1653                         return follow_dotdot_rcu(nd);
1654                 } else
1655                         return follow_dotdot(nd);
1656         }
1657         return 0;
1658 }
1659
1660 static int pick_link(struct nameidata *nd, struct path *link,
1661                      struct inode *inode, unsigned seq)
1662 {
1663         int error;
1664         struct saved *last;
1665         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1666                 path_to_nameidata(link, nd);
1667                 return -ELOOP;
1668         }
1669         if (!(nd->flags & LOOKUP_RCU)) {
1670                 if (link->mnt == nd->path.mnt)
1671                         mntget(link->mnt);
1672         }
1673         error = nd_alloc_stack(nd);
1674         if (unlikely(error)) {
1675                 if (error == -ECHILD) {
1676                         if (unlikely(unlazy_link(nd, link, seq)))
1677                                 return -ECHILD;
1678                         error = nd_alloc_stack(nd);
1679                 }
1680                 if (error) {
1681                         path_put(link);
1682                         return error;
1683                 }
1684         }
1685
1686         last = nd->stack + nd->depth++;
1687         last->link = *link;
1688         clear_delayed_call(&last->done);
1689         nd->link_inode = inode;
1690         last->seq = seq;
1691         return 1;
1692 }
1693
1694 /*
1695  * Do we need to follow links? We _really_ want to be able
1696  * to do this check without having to look at inode->i_op,
1697  * so we keep a cache of "no, this doesn't need follow_link"
1698  * for the common case.
1699  */
1700 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1701                                      int follow,
1702                                      struct inode *inode, unsigned seq)
1703 {
1704         if (likely(!d_is_symlink(link->dentry)))
1705                 return 0;
1706         if (!follow)
1707                 return 0;
1708         /* make sure that d_is_symlink above matches inode */
1709         if (nd->flags & LOOKUP_RCU) {
1710                 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1711                         return -ECHILD;
1712         }
1713         return pick_link(nd, link, inode, seq);
1714 }
1715
1716 enum {WALK_GET = 1, WALK_PUT = 2};
1717
1718 static int walk_component(struct nameidata *nd, int flags)
1719 {
1720         struct path path;
1721         struct inode *inode;
1722         unsigned seq;
1723         int err;
1724         /*
1725          * "." and ".." are special - ".." especially so because it has
1726          * to be able to know about the current root directory and
1727          * parent relationships.
1728          */
1729         if (unlikely(nd->last_type != LAST_NORM)) {
1730                 err = handle_dots(nd, nd->last_type);
1731                 if (flags & WALK_PUT)
1732                         put_link(nd);
1733                 return err;
1734         }
1735         err = lookup_fast(nd, &path, &inode, &seq);
1736         if (unlikely(err <= 0)) {
1737                 if (err < 0)
1738                         return err;
1739                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1740                                           nd->flags);
1741                 if (IS_ERR(path.dentry))
1742                         return PTR_ERR(path.dentry);
1743
1744                 path.mnt = nd->path.mnt;
1745                 err = follow_managed(&path, nd);
1746                 if (unlikely(err < 0))
1747                         return err;
1748
1749                 if (unlikely(d_is_negative(path.dentry))) {
1750                         path_to_nameidata(&path, nd);
1751                         return -ENOENT;
1752                 }
1753
1754                 seq = 0;        /* we are already out of RCU mode */
1755                 inode = d_backing_inode(path.dentry);
1756         }
1757
1758         if (flags & WALK_PUT)
1759                 put_link(nd);
1760         err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1761         if (unlikely(err))
1762                 return err;
1763         path_to_nameidata(&path, nd);
1764         nd->inode = inode;
1765         nd->seq = seq;
1766         return 0;
1767 }
1768
1769 /*
1770  * We can do the critical dentry name comparison and hashing
1771  * operations one word at a time, but we are limited to:
1772  *
1773  * - Architectures with fast unaligned word accesses. We could
1774  *   do a "get_unaligned()" if this helps and is sufficiently
1775  *   fast.
1776  *
1777  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1778  *   do not trap on the (extremely unlikely) case of a page
1779  *   crossing operation.
1780  *
1781  * - Furthermore, we need an efficient 64-bit compile for the
1782  *   64-bit case in order to generate the "number of bytes in
1783  *   the final mask". Again, that could be replaced with a
1784  *   efficient population count instruction or similar.
1785  */
1786 #ifdef CONFIG_DCACHE_WORD_ACCESS
1787
1788 #include <asm/word-at-a-time.h>
1789
1790 #ifdef CONFIG_64BIT
1791
1792 static inline unsigned int fold_hash(unsigned long hash)
1793 {
1794         return hash_64(hash, 32);
1795 }
1796
1797 /*
1798  * This is George Marsaglia's XORSHIFT generator.
1799  * It implements a maximum-period LFSR in only a few
1800  * instructions.  It also has the property (required
1801  * by hash_name()) that mix_hash(0) = 0.
1802  */
1803 static inline unsigned long mix_hash(unsigned long hash)
1804 {
1805         hash ^= hash << 13;
1806         hash ^= hash >> 7;
1807         hash ^= hash << 17;
1808         return hash;
1809 }
1810
1811 #else   /* 32-bit case */
1812
1813 #define fold_hash(x) (x)
1814
1815 static inline unsigned long mix_hash(unsigned long hash)
1816 {
1817         hash ^= hash << 13;
1818         hash ^= hash >> 17;
1819         hash ^= hash << 5;
1820         return hash;
1821 }
1822
1823 #endif
1824
1825 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1826 {
1827         unsigned long a, hash = 0;
1828
1829         for (;;) {
1830                 a = load_unaligned_zeropad(name);
1831                 if (len < sizeof(unsigned long))
1832                         break;
1833                 hash = mix_hash(hash + a);
1834                 name += sizeof(unsigned long);
1835                 len -= sizeof(unsigned long);
1836                 if (!len)
1837                         goto done;
1838         }
1839         hash += a & bytemask_from_count(len);
1840 done:
1841         return fold_hash(hash);
1842 }
1843 EXPORT_SYMBOL(full_name_hash);
1844
1845 /*
1846  * Calculate the length and hash of the path component, and
1847  * return the "hash_len" as the result.
1848  */
1849 static inline u64 hash_name(const char *name)
1850 {
1851         unsigned long a, b, adata, bdata, mask, hash, len;
1852         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1853
1854         hash = a = 0;
1855         len = -sizeof(unsigned long);
1856         do {
1857                 hash = mix_hash(hash + a);
1858                 len += sizeof(unsigned long);
1859                 a = load_unaligned_zeropad(name+len);
1860                 b = a ^ REPEAT_BYTE('/');
1861         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1862
1863         adata = prep_zero_mask(a, adata, &constants);
1864         bdata = prep_zero_mask(b, bdata, &constants);
1865
1866         mask = create_zero_mask(adata | bdata);
1867
1868         hash += a & zero_bytemask(mask);
1869         len += find_zero(mask);
1870         return hashlen_create(fold_hash(hash), len);
1871 }
1872
1873 #else
1874
1875 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1876 {
1877         unsigned long hash = init_name_hash();
1878         while (len--)
1879                 hash = partial_name_hash(*name++, hash);
1880         return end_name_hash(hash);
1881 }
1882 EXPORT_SYMBOL(full_name_hash);
1883
1884 /*
1885  * We know there's a real path component here of at least
1886  * one character.
1887  */
1888 static inline u64 hash_name(const char *name)
1889 {
1890         unsigned long hash = init_name_hash();
1891         unsigned long len = 0, c;
1892
1893         c = (unsigned char)*name;
1894         do {
1895                 len++;
1896                 hash = partial_name_hash(c, hash);
1897                 c = (unsigned char)name[len];
1898         } while (c && c != '/');
1899         return hashlen_create(end_name_hash(hash), len);
1900 }
1901
1902 #endif
1903
1904 /*
1905  * Name resolution.
1906  * This is the basic name resolution function, turning a pathname into
1907  * the final dentry. We expect 'base' to be positive and a directory.
1908  *
1909  * Returns 0 and nd will have valid dentry and mnt on success.
1910  * Returns error and drops reference to input namei data on failure.
1911  */
1912 static int link_path_walk(const char *name, struct nameidata *nd)
1913 {
1914         int err;
1915
1916         while (*name=='/')
1917                 name++;
1918         if (!*name)
1919                 return 0;
1920
1921         /* At this point we know we have a real path component. */
1922         for(;;) {
1923                 u64 hash_len;
1924                 int type;
1925
1926                 err = may_lookup(nd);
1927                 if (err)
1928                         return err;
1929
1930                 hash_len = hash_name(name);
1931
1932                 type = LAST_NORM;
1933                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1934                         case 2:
1935                                 if (name[1] == '.') {
1936                                         type = LAST_DOTDOT;
1937                                         nd->flags |= LOOKUP_JUMPED;
1938                                 }
1939                                 break;
1940                         case 1:
1941                                 type = LAST_DOT;
1942                 }
1943                 if (likely(type == LAST_NORM)) {
1944                         struct dentry *parent = nd->path.dentry;
1945                         nd->flags &= ~LOOKUP_JUMPED;
1946                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1947                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
1948                                 err = parent->d_op->d_hash(parent, &this);
1949                                 if (err < 0)
1950                                         return err;
1951                                 hash_len = this.hash_len;
1952                                 name = this.name;
1953                         }
1954                 }
1955
1956                 nd->last.hash_len = hash_len;
1957                 nd->last.name = name;
1958                 nd->last_type = type;
1959
1960                 name += hashlen_len(hash_len);
1961                 if (!*name)
1962                         goto OK;
1963                 /*
1964                  * If it wasn't NUL, we know it was '/'. Skip that
1965                  * slash, and continue until no more slashes.
1966                  */
1967                 do {
1968                         name++;
1969                 } while (unlikely(*name == '/'));
1970                 if (unlikely(!*name)) {
1971 OK:
1972                         /* pathname body, done */
1973                         if (!nd->depth)
1974                                 return 0;
1975                         name = nd->stack[nd->depth - 1].name;
1976                         /* trailing symlink, done */
1977                         if (!name)
1978                                 return 0;
1979                         /* last component of nested symlink */
1980                         err = walk_component(nd, WALK_GET | WALK_PUT);
1981                 } else {
1982                         err = walk_component(nd, WALK_GET);
1983                 }
1984                 if (err < 0)
1985                         return err;
1986
1987                 if (err) {
1988                         const char *s = get_link(nd);
1989
1990                         if (IS_ERR(s))
1991                                 return PTR_ERR(s);
1992                         err = 0;
1993                         if (unlikely(!s)) {
1994                                 /* jumped */
1995                                 put_link(nd);
1996                         } else {
1997                                 nd->stack[nd->depth - 1].name = name;
1998                                 name = s;
1999                                 continue;
2000                         }
2001                 }
2002                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2003                         if (nd->flags & LOOKUP_RCU) {
2004                                 if (unlazy_walk(nd, NULL, 0))
2005                                         return -ECHILD;
2006                         }
2007                         return -ENOTDIR;
2008                 }
2009         }
2010 }
2011
2012 static const char *path_init(struct nameidata *nd, unsigned flags)
2013 {
2014         int retval = 0;
2015         const char *s = nd->name->name;
2016
2017         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2018         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2019         nd->depth = 0;
2020         if (flags & LOOKUP_ROOT) {
2021                 struct dentry *root = nd->root.dentry;
2022                 struct inode *inode = root->d_inode;
2023                 if (*s) {
2024                         if (!d_can_lookup(root))
2025                                 return ERR_PTR(-ENOTDIR);
2026                         retval = inode_permission(inode, MAY_EXEC);
2027                         if (retval)
2028                                 return ERR_PTR(retval);
2029                 }
2030                 nd->path = nd->root;
2031                 nd->inode = inode;
2032                 if (flags & LOOKUP_RCU) {
2033                         rcu_read_lock();
2034                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2035                         nd->root_seq = nd->seq;
2036                         nd->m_seq = read_seqbegin(&mount_lock);
2037                 } else {
2038                         path_get(&nd->path);
2039                 }
2040                 return s;
2041         }
2042
2043         nd->root.mnt = NULL;
2044         nd->path.mnt = NULL;
2045         nd->path.dentry = NULL;
2046
2047         nd->m_seq = read_seqbegin(&mount_lock);
2048         if (*s == '/') {
2049                 if (flags & LOOKUP_RCU)
2050                         rcu_read_lock();
2051                 set_root(nd);
2052                 if (likely(!nd_jump_root(nd)))
2053                         return s;
2054                 nd->root.mnt = NULL;
2055                 rcu_read_unlock();
2056                 return ERR_PTR(-ECHILD);
2057         } else if (nd->dfd == AT_FDCWD) {
2058                 if (flags & LOOKUP_RCU) {
2059                         struct fs_struct *fs = current->fs;
2060                         unsigned seq;
2061
2062                         rcu_read_lock();
2063
2064                         do {
2065                                 seq = read_seqcount_begin(&fs->seq);
2066                                 nd->path = fs->pwd;
2067                                 nd->inode = nd->path.dentry->d_inode;
2068                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2069                         } while (read_seqcount_retry(&fs->seq, seq));
2070                 } else {
2071                         get_fs_pwd(current->fs, &nd->path);
2072                         nd->inode = nd->path.dentry->d_inode;
2073                 }
2074                 return s;
2075         } else {
2076                 /* Caller must check execute permissions on the starting path component */
2077                 struct fd f = fdget_raw(nd->dfd);
2078                 struct dentry *dentry;
2079
2080                 if (!f.file)
2081                         return ERR_PTR(-EBADF);
2082
2083                 dentry = f.file->f_path.dentry;
2084
2085                 if (*s) {
2086                         if (!d_can_lookup(dentry)) {
2087                                 fdput(f);
2088                                 return ERR_PTR(-ENOTDIR);
2089                         }
2090                 }
2091
2092                 nd->path = f.file->f_path;
2093                 if (flags & LOOKUP_RCU) {
2094                         rcu_read_lock();
2095                         nd->inode = nd->path.dentry->d_inode;
2096                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2097                 } else {
2098                         path_get(&nd->path);
2099                         nd->inode = nd->path.dentry->d_inode;
2100                 }
2101                 fdput(f);
2102                 return s;
2103         }
2104 }
2105
2106 static const char *trailing_symlink(struct nameidata *nd)
2107 {
2108         const char *s;
2109         int error = may_follow_link(nd);
2110         if (unlikely(error))
2111                 return ERR_PTR(error);
2112         nd->flags |= LOOKUP_PARENT;
2113         nd->stack[0].name = NULL;
2114         s = get_link(nd);
2115         return s ? s : "";
2116 }
2117
2118 static inline int lookup_last(struct nameidata *nd)
2119 {
2120         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2121                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2122
2123         nd->flags &= ~LOOKUP_PARENT;
2124         return walk_component(nd,
2125                         nd->flags & LOOKUP_FOLLOW
2126                                 ? nd->depth
2127                                         ? WALK_PUT | WALK_GET
2128                                         : WALK_GET
2129                                 : 0);
2130 }
2131
2132 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2133 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2134 {
2135         const char *s = path_init(nd, flags);
2136         int err;
2137
2138         if (IS_ERR(s))
2139                 return PTR_ERR(s);
2140         while (!(err = link_path_walk(s, nd))
2141                 && ((err = lookup_last(nd)) > 0)) {
2142                 s = trailing_symlink(nd);
2143                 if (IS_ERR(s)) {
2144                         err = PTR_ERR(s);
2145                         break;
2146                 }
2147         }
2148         if (!err)
2149                 err = complete_walk(nd);
2150
2151         if (!err && nd->flags & LOOKUP_DIRECTORY)
2152                 if (!d_can_lookup(nd->path.dentry))
2153                         err = -ENOTDIR;
2154         if (!err) {
2155                 *path = nd->path;
2156                 nd->path.mnt = NULL;
2157                 nd->path.dentry = NULL;
2158         }
2159         terminate_walk(nd);
2160         return err;
2161 }
2162
2163 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2164                            struct path *path, struct path *root)
2165 {
2166         int retval;
2167         struct nameidata nd;
2168         if (IS_ERR(name))
2169                 return PTR_ERR(name);
2170         if (unlikely(root)) {
2171                 nd.root = *root;
2172                 flags |= LOOKUP_ROOT;
2173         }
2174         set_nameidata(&nd, dfd, name);
2175         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2176         if (unlikely(retval == -ECHILD))
2177                 retval = path_lookupat(&nd, flags, path);
2178         if (unlikely(retval == -ESTALE))
2179                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2180
2181         if (likely(!retval))
2182                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2183         restore_nameidata();
2184         putname(name);
2185         return retval;
2186 }
2187
2188 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2189 static int path_parentat(struct nameidata *nd, unsigned flags,
2190                                 struct path *parent)
2191 {
2192         const char *s = path_init(nd, flags);
2193         int err;
2194         if (IS_ERR(s))
2195                 return PTR_ERR(s);
2196         err = link_path_walk(s, nd);
2197         if (!err)
2198                 err = complete_walk(nd);
2199         if (!err) {
2200                 *parent = nd->path;
2201                 nd->path.mnt = NULL;
2202                 nd->path.dentry = NULL;
2203         }
2204         terminate_walk(nd);
2205         return err;
2206 }
2207
2208 static struct filename *filename_parentat(int dfd, struct filename *name,
2209                                 unsigned int flags, struct path *parent,
2210                                 struct qstr *last, int *type)
2211 {
2212         int retval;
2213         struct nameidata nd;
2214
2215         if (IS_ERR(name))
2216                 return name;
2217         set_nameidata(&nd, dfd, name);
2218         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2219         if (unlikely(retval == -ECHILD))
2220                 retval = path_parentat(&nd, flags, parent);
2221         if (unlikely(retval == -ESTALE))
2222                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2223         if (likely(!retval)) {
2224                 *last = nd.last;
2225                 *type = nd.last_type;
2226                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2227         } else {
2228                 putname(name);
2229                 name = ERR_PTR(retval);
2230         }
2231         restore_nameidata();
2232         return name;
2233 }
2234
2235 /* does lookup, returns the object with parent locked */
2236 struct dentry *kern_path_locked(const char *name, struct path *path)
2237 {
2238         struct filename *filename;
2239         struct dentry *d;
2240         struct qstr last;
2241         int type;
2242
2243         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2244                                     &last, &type);
2245         if (IS_ERR(filename))
2246                 return ERR_CAST(filename);
2247         if (unlikely(type != LAST_NORM)) {
2248                 path_put(path);
2249                 putname(filename);
2250                 return ERR_PTR(-EINVAL);
2251         }
2252         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2253         d = __lookup_hash(&last, path->dentry, 0);
2254         if (IS_ERR(d)) {
2255                 inode_unlock(path->dentry->d_inode);
2256                 path_put(path);
2257         }
2258         putname(filename);
2259         return d;
2260 }
2261
2262 int kern_path(const char *name, unsigned int flags, struct path *path)
2263 {
2264         return filename_lookup(AT_FDCWD, getname_kernel(name),
2265                                flags, path, NULL);
2266 }
2267 EXPORT_SYMBOL(kern_path);
2268
2269 /**
2270  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2271  * @dentry:  pointer to dentry of the base directory
2272  * @mnt: pointer to vfs mount of the base directory
2273  * @name: pointer to file name
2274  * @flags: lookup flags
2275  * @path: pointer to struct path to fill
2276  */
2277 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2278                     const char *name, unsigned int flags,
2279                     struct path *path)
2280 {
2281         struct path root = {.mnt = mnt, .dentry = dentry};
2282         /* the first argument of filename_lookup() is ignored with root */
2283         return filename_lookup(AT_FDCWD, getname_kernel(name),
2284                                flags , path, &root);
2285 }
2286 EXPORT_SYMBOL(vfs_path_lookup);
2287
2288 /**
2289  * lookup_hash - lookup single pathname component on already hashed name
2290  * @name:       name and hash to lookup
2291  * @base:       base directory to lookup from
2292  *
2293  * The name must have been verified and hashed (see lookup_one_len()).  Using
2294  * this after just full_name_hash() is unsafe.
2295  *
2296  * This function also doesn't check for search permission on base directory.
2297  *
2298  * Use lookup_one_len_unlocked() instead, unless you really know what you are
2299  * doing.
2300  *
2301  * Do not hold i_mutex; this helper takes i_mutex if necessary.
2302  */
2303 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2304 {
2305         struct dentry *ret;
2306
2307         ret = lookup_dcache(name, base, 0);
2308         if (!ret)
2309                 ret = lookup_slow(name, base, 0);
2310
2311         return ret;
2312 }
2313 EXPORT_SYMBOL(lookup_hash);
2314
2315 /**
2316  * lookup_one_len - filesystem helper to lookup single pathname component
2317  * @name:       pathname component to lookup
2318  * @base:       base directory to lookup from
2319  * @len:        maximum length @len should be interpreted to
2320  *
2321  * Note that this routine is purely a helper for filesystem usage and should
2322  * not be called by generic code.
2323  *
2324  * The caller must hold base->i_mutex.
2325  */
2326 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2327 {
2328         struct qstr this;
2329         unsigned int c;
2330         int err;
2331
2332         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2333
2334         this.name = name;
2335         this.len = len;
2336         this.hash = full_name_hash(name, len);
2337         if (!len)
2338                 return ERR_PTR(-EACCES);
2339
2340         if (unlikely(name[0] == '.')) {
2341                 if (len < 2 || (len == 2 && name[1] == '.'))
2342                         return ERR_PTR(-EACCES);
2343         }
2344
2345         while (len--) {
2346                 c = *(const unsigned char *)name++;
2347                 if (c == '/' || c == '\0')
2348                         return ERR_PTR(-EACCES);
2349         }
2350         /*
2351          * See if the low-level filesystem might want
2352          * to use its own hash..
2353          */
2354         if (base->d_flags & DCACHE_OP_HASH) {
2355                 int err = base->d_op->d_hash(base, &this);
2356                 if (err < 0)
2357                         return ERR_PTR(err);
2358         }
2359
2360         err = inode_permission(base->d_inode, MAY_EXEC);
2361         if (err)
2362                 return ERR_PTR(err);
2363
2364         return __lookup_hash(&this, base, 0);
2365 }
2366 EXPORT_SYMBOL(lookup_one_len);
2367
2368 /**
2369  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2370  * @name:       pathname component to lookup
2371  * @base:       base directory to lookup from
2372  * @len:        maximum length @len should be interpreted to
2373  *
2374  * Note that this routine is purely a helper for filesystem usage and should
2375  * not be called by generic code.
2376  *
2377  * Unlike lookup_one_len, it should be called without the parent
2378  * i_mutex held, and will take the i_mutex itself if necessary.
2379  */
2380 struct dentry *lookup_one_len_unlocked(const char *name,
2381                                        struct dentry *base, int len)
2382 {
2383         struct qstr this;
2384         unsigned int c;
2385         int err;
2386
2387         this.name = name;
2388         this.len = len;
2389         this.hash = full_name_hash(name, len);
2390         if (!len)
2391                 return ERR_PTR(-EACCES);
2392
2393         if (unlikely(name[0] == '.')) {
2394                 if (len < 2 || (len == 2 && name[1] == '.'))
2395                         return ERR_PTR(-EACCES);
2396         }
2397
2398         while (len--) {
2399                 c = *(const unsigned char *)name++;
2400                 if (c == '/' || c == '\0')
2401                         return ERR_PTR(-EACCES);
2402         }
2403         /*
2404          * See if the low-level filesystem might want
2405          * to use its own hash..
2406          */
2407         if (base->d_flags & DCACHE_OP_HASH) {
2408                 int err = base->d_op->d_hash(base, &this);
2409                 if (err < 0)
2410                         return ERR_PTR(err);
2411         }
2412
2413         err = inode_permission(base->d_inode, MAY_EXEC);
2414         if (err)
2415                 return ERR_PTR(err);
2416
2417         return lookup_hash(&this, base);
2418 }
2419 EXPORT_SYMBOL(lookup_one_len_unlocked);
2420
2421 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2422                  struct path *path, int *empty)
2423 {
2424         return filename_lookup(dfd, getname_flags(name, flags, empty),
2425                                flags, path, NULL);
2426 }
2427 EXPORT_SYMBOL(user_path_at_empty);
2428
2429 /*
2430  * NB: most callers don't do anything directly with the reference to the
2431  *     to struct filename, but the nd->last pointer points into the name string
2432  *     allocated by getname. So we must hold the reference to it until all
2433  *     path-walking is complete.
2434  */
2435 static inline struct filename *
2436 user_path_parent(int dfd, const char __user *path,
2437                  struct path *parent,
2438                  struct qstr *last,
2439                  int *type,
2440                  unsigned int flags)
2441 {
2442         /* only LOOKUP_REVAL is allowed in extra flags */
2443         return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2444                                  parent, last, type);
2445 }
2446
2447 /**
2448  * mountpoint_last - look up last component for umount
2449  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2450  * @path: pointer to container for result
2451  *
2452  * This is a special lookup_last function just for umount. In this case, we
2453  * need to resolve the path without doing any revalidation.
2454  *
2455  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2456  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2457  * in almost all cases, this lookup will be served out of the dcache. The only
2458  * cases where it won't are if nd->last refers to a symlink or the path is
2459  * bogus and it doesn't exist.
2460  *
2461  * Returns:
2462  * -error: if there was an error during lookup. This includes -ENOENT if the
2463  *         lookup found a negative dentry. The nd->path reference will also be
2464  *         put in this case.
2465  *
2466  * 0:      if we successfully resolved nd->path and found it to not to be a
2467  *         symlink that needs to be followed. "path" will also be populated.
2468  *         The nd->path reference will also be put.
2469  *
2470  * 1:      if we successfully resolved nd->last and found it to be a symlink
2471  *         that needs to be followed. "path" will be populated with the path
2472  *         to the link, and nd->path will *not* be put.
2473  */
2474 static int
2475 mountpoint_last(struct nameidata *nd, struct path *path)
2476 {
2477         int error = 0;
2478         struct dentry *dentry;
2479         struct dentry *dir = nd->path.dentry;
2480
2481         /* If we're in rcuwalk, drop out of it to handle last component */
2482         if (nd->flags & LOOKUP_RCU) {
2483                 if (unlazy_walk(nd, NULL, 0))
2484                         return -ECHILD;
2485         }
2486
2487         nd->flags &= ~LOOKUP_PARENT;
2488
2489         if (unlikely(nd->last_type != LAST_NORM)) {
2490                 error = handle_dots(nd, nd->last_type);
2491                 if (error)
2492                         return error;
2493                 dentry = dget(nd->path.dentry);
2494         } else {
2495                 dentry = d_lookup(dir, &nd->last);
2496                 if (!dentry) {
2497                         /*
2498                          * No cached dentry. Mounted dentries are pinned in the
2499                          * cache, so that means that this dentry is probably
2500                          * a symlink or the path doesn't actually point
2501                          * to a mounted dentry.
2502                          */
2503                         dentry = lookup_slow(&nd->last, dir,
2504                                              nd->flags | LOOKUP_NO_REVAL);
2505                         if (IS_ERR(dentry))
2506                                 return PTR_ERR(dentry);
2507                 }
2508         }
2509         if (d_is_negative(dentry)) {
2510                 dput(dentry);
2511                 return -ENOENT;
2512         }
2513         if (nd->depth)
2514                 put_link(nd);
2515         path->dentry = dentry;
2516         path->mnt = nd->path.mnt;
2517         error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2518                                    d_backing_inode(dentry), 0);
2519         if (unlikely(error))
2520                 return error;
2521         mntget(path->mnt);
2522         follow_mount(path);
2523         return 0;
2524 }
2525
2526 /**
2527  * path_mountpoint - look up a path to be umounted
2528  * @nd:         lookup context
2529  * @flags:      lookup flags
2530  * @path:       pointer to container for result
2531  *
2532  * Look up the given name, but don't attempt to revalidate the last component.
2533  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2534  */
2535 static int
2536 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2537 {
2538         const char *s = path_init(nd, flags);
2539         int err;
2540         if (IS_ERR(s))
2541                 return PTR_ERR(s);
2542         while (!(err = link_path_walk(s, nd)) &&
2543                 (err = mountpoint_last(nd, path)) > 0) {
2544                 s = trailing_symlink(nd);
2545                 if (IS_ERR(s)) {
2546                         err = PTR_ERR(s);
2547                         break;
2548                 }
2549         }
2550         terminate_walk(nd);
2551         return err;
2552 }
2553
2554 static int
2555 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2556                         unsigned int flags)
2557 {
2558         struct nameidata nd;
2559         int error;
2560         if (IS_ERR(name))
2561                 return PTR_ERR(name);
2562         set_nameidata(&nd, dfd, name);
2563         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2564         if (unlikely(error == -ECHILD))
2565                 error = path_mountpoint(&nd, flags, path);
2566         if (unlikely(error == -ESTALE))
2567                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2568         if (likely(!error))
2569                 audit_inode(name, path->dentry, 0);
2570         restore_nameidata();
2571         putname(name);
2572         return error;
2573 }
2574
2575 /**
2576  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2577  * @dfd:        directory file descriptor
2578  * @name:       pathname from userland
2579  * @flags:      lookup flags
2580  * @path:       pointer to container to hold result
2581  *
2582  * A umount is a special case for path walking. We're not actually interested
2583  * in the inode in this situation, and ESTALE errors can be a problem. We
2584  * simply want track down the dentry and vfsmount attached at the mountpoint
2585  * and avoid revalidating the last component.
2586  *
2587  * Returns 0 and populates "path" on success.
2588  */
2589 int
2590 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2591                         struct path *path)
2592 {
2593         return filename_mountpoint(dfd, getname(name), path, flags);
2594 }
2595
2596 int
2597 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2598                         unsigned int flags)
2599 {
2600         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2601 }
2602 EXPORT_SYMBOL(kern_path_mountpoint);
2603
2604 int __check_sticky(struct inode *dir, struct inode *inode)
2605 {
2606         kuid_t fsuid = current_fsuid();
2607
2608         if (uid_eq(inode->i_uid, fsuid))
2609                 return 0;
2610         if (uid_eq(dir->i_uid, fsuid))
2611                 return 0;
2612         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2613 }
2614 EXPORT_SYMBOL(__check_sticky);
2615
2616 /*
2617  *      Check whether we can remove a link victim from directory dir, check
2618  *  whether the type of victim is right.
2619  *  1. We can't do it if dir is read-only (done in permission())
2620  *  2. We should have write and exec permissions on dir
2621  *  3. We can't remove anything from append-only dir
2622  *  4. We can't do anything with immutable dir (done in permission())
2623  *  5. If the sticky bit on dir is set we should either
2624  *      a. be owner of dir, or
2625  *      b. be owner of victim, or
2626  *      c. have CAP_FOWNER capability
2627  *  6. If the victim is append-only or immutable we can't do antyhing with
2628  *     links pointing to it.
2629  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2630  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2631  *  9. We can't remove a root or mountpoint.
2632  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2633  *     nfs_async_unlink().
2634  */
2635 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2636 {
2637         struct inode *inode = d_backing_inode(victim);
2638         int error;
2639
2640         if (d_is_negative(victim))
2641                 return -ENOENT;
2642         BUG_ON(!inode);
2643
2644         BUG_ON(victim->d_parent->d_inode != dir);
2645         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2646
2647         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2648         if (error)
2649                 return error;
2650         if (IS_APPEND(dir))
2651                 return -EPERM;
2652
2653         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2654             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2655                 return -EPERM;
2656         if (isdir) {
2657                 if (!d_is_dir(victim))
2658                         return -ENOTDIR;
2659                 if (IS_ROOT(victim))
2660                         return -EBUSY;
2661         } else if (d_is_dir(victim))
2662                 return -EISDIR;
2663         if (IS_DEADDIR(dir))
2664                 return -ENOENT;
2665         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2666                 return -EBUSY;
2667         return 0;
2668 }
2669
2670 /*      Check whether we can create an object with dentry child in directory
2671  *  dir.
2672  *  1. We can't do it if child already exists (open has special treatment for
2673  *     this case, but since we are inlined it's OK)
2674  *  2. We can't do it if dir is read-only (done in permission())
2675  *  3. We should have write and exec permissions on dir
2676  *  4. We can't do it if dir is immutable (done in permission())
2677  */
2678 static inline int may_create(struct inode *dir, struct dentry *child)
2679 {
2680         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2681         if (child->d_inode)
2682                 return -EEXIST;
2683         if (IS_DEADDIR(dir))
2684                 return -ENOENT;
2685         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2686 }
2687
2688 /*
2689  * p1 and p2 should be directories on the same fs.
2690  */
2691 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2692 {
2693         struct dentry *p;
2694
2695         if (p1 == p2) {
2696                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2697                 return NULL;
2698         }
2699
2700         mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2701
2702         p = d_ancestor(p2, p1);
2703         if (p) {
2704                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2705                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2706                 return p;
2707         }
2708
2709         p = d_ancestor(p1, p2);
2710         if (p) {
2711                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2712                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2713                 return p;
2714         }
2715
2716         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2717         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2718         return NULL;
2719 }
2720 EXPORT_SYMBOL(lock_rename);
2721
2722 void unlock_rename(struct dentry *p1, struct dentry *p2)
2723 {
2724         inode_unlock(p1->d_inode);
2725         if (p1 != p2) {
2726                 inode_unlock(p2->d_inode);
2727                 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2728         }
2729 }
2730 EXPORT_SYMBOL(unlock_rename);
2731
2732 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2733                 bool want_excl)
2734 {
2735         int error = may_create(dir, dentry);
2736         if (error)
2737                 return error;
2738
2739         if (!dir->i_op->create)
2740                 return -EACCES; /* shouldn't it be ENOSYS? */
2741         mode &= S_IALLUGO;
2742         mode |= S_IFREG;
2743         error = security_inode_create(dir, dentry, mode);
2744         if (error)
2745                 return error;
2746         error = dir->i_op->create(dir, dentry, mode, want_excl);
2747         if (!error)
2748                 fsnotify_create(dir, dentry);
2749         return error;
2750 }
2751 EXPORT_SYMBOL(vfs_create);
2752
2753 static int may_open(struct path *path, int acc_mode, int flag)
2754 {
2755         struct dentry *dentry = path->dentry;
2756         struct inode *inode = dentry->d_inode;
2757         int error;
2758
2759         if (!inode)
2760                 return -ENOENT;
2761
2762         switch (inode->i_mode & S_IFMT) {
2763         case S_IFLNK:
2764                 return -ELOOP;
2765         case S_IFDIR:
2766                 if (acc_mode & MAY_WRITE)
2767                         return -EISDIR;
2768                 break;
2769         case S_IFBLK:
2770         case S_IFCHR:
2771                 if (path->mnt->mnt_flags & MNT_NODEV)
2772                         return -EACCES;
2773                 /*FALLTHRU*/
2774         case S_IFIFO:
2775         case S_IFSOCK:
2776                 flag &= ~O_TRUNC;
2777                 break;
2778         }
2779
2780         error = inode_permission(inode, MAY_OPEN | acc_mode);
2781         if (error)
2782                 return error;
2783
2784         /*
2785          * An append-only file must be opened in append mode for writing.
2786          */
2787         if (IS_APPEND(inode)) {
2788                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2789                         return -EPERM;
2790                 if (flag & O_TRUNC)
2791                         return -EPERM;
2792         }
2793
2794         /* O_NOATIME can only be set by the owner or superuser */
2795         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2796                 return -EPERM;
2797
2798         return 0;
2799 }
2800
2801 static int handle_truncate(struct file *filp)
2802 {
2803         struct path *path = &filp->f_path;
2804         struct inode *inode = path->dentry->d_inode;
2805         int error = get_write_access(inode);
2806         if (error)
2807                 return error;
2808         /*
2809          * Refuse to truncate files with mandatory locks held on them.
2810          */
2811         error = locks_verify_locked(filp);
2812         if (!error)
2813                 error = security_path_truncate(path);
2814         if (!error) {
2815                 error = do_truncate(path->dentry, 0,
2816                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2817                                     filp);
2818         }
2819         put_write_access(inode);
2820         return error;
2821 }
2822
2823 static inline int open_to_namei_flags(int flag)
2824 {
2825         if ((flag & O_ACCMODE) == 3)
2826                 flag--;
2827         return flag;
2828 }
2829
2830 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2831 {
2832         int error = security_path_mknod(dir, dentry, mode, 0);
2833         if (error)
2834                 return error;
2835
2836         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2837         if (error)
2838                 return error;
2839
2840         return security_inode_create(dir->dentry->d_inode, dentry, mode);
2841 }
2842
2843 /*
2844  * Attempt to atomically look up, create and open a file from a negative
2845  * dentry.
2846  *
2847  * Returns 0 if successful.  The file will have been created and attached to
2848  * @file by the filesystem calling finish_open().
2849  *
2850  * Returns 1 if the file was looked up only or didn't need creating.  The
2851  * caller will need to perform the open themselves.  @path will have been
2852  * updated to point to the new dentry.  This may be negative.
2853  *
2854  * Returns an error code otherwise.
2855  */
2856 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2857                         struct path *path, struct file *file,
2858                         const struct open_flags *op,
2859                         bool got_write, bool need_lookup,
2860                         int *opened)
2861 {
2862         struct inode *dir =  nd->path.dentry->d_inode;
2863         unsigned open_flag = open_to_namei_flags(op->open_flag);
2864         umode_t mode;
2865         int error;
2866         int acc_mode;
2867         int create_error = 0;
2868         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2869         bool excl;
2870
2871         BUG_ON(dentry->d_inode);
2872
2873         /* Don't create child dentry for a dead directory. */
2874         if (unlikely(IS_DEADDIR(dir))) {
2875                 error = -ENOENT;
2876                 goto out;
2877         }
2878
2879         mode = op->mode;
2880         if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2881                 mode &= ~current_umask();
2882
2883         excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2884         if (excl)
2885                 open_flag &= ~O_TRUNC;
2886
2887         /*
2888          * Checking write permission is tricky, bacuse we don't know if we are
2889          * going to actually need it: O_CREAT opens should work as long as the
2890          * file exists.  But checking existence breaks atomicity.  The trick is
2891          * to check access and if not granted clear O_CREAT from the flags.
2892          *
2893          * Another problem is returing the "right" error value (e.g. for an
2894          * O_EXCL open we want to return EEXIST not EROFS).
2895          */
2896         if (((open_flag & (O_CREAT | O_TRUNC)) ||
2897             (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2898                 if (!(open_flag & O_CREAT)) {
2899                         /*
2900                          * No O_CREATE -> atomicity not a requirement -> fall
2901                          * back to lookup + open
2902                          */
2903                         goto no_open;
2904                 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2905                         /* Fall back and fail with the right error */
2906                         create_error = -EROFS;
2907                         goto no_open;
2908                 } else {
2909                         /* No side effects, safe to clear O_CREAT */
2910                         create_error = -EROFS;
2911                         open_flag &= ~O_CREAT;
2912                 }
2913         }
2914
2915         if (open_flag & O_CREAT) {
2916                 error = may_o_create(&nd->path, dentry, mode);
2917                 if (error) {
2918                         create_error = error;
2919                         if (open_flag & O_EXCL)
2920                                 goto no_open;
2921                         open_flag &= ~O_CREAT;
2922                 }
2923         }
2924
2925         if (nd->flags & LOOKUP_DIRECTORY)
2926                 open_flag |= O_DIRECTORY;
2927
2928         file->f_path.dentry = DENTRY_NOT_SET;
2929         file->f_path.mnt = nd->path.mnt;
2930         error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2931                                       opened);
2932         if (error < 0) {
2933                 if (create_error && error == -ENOENT)
2934                         error = create_error;
2935                 goto out;
2936         }
2937
2938         if (error) {    /* returned 1, that is */
2939                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2940                         error = -EIO;
2941                         goto out;
2942                 }
2943                 if (file->f_path.dentry) {
2944                         dput(dentry);
2945                         dentry = file->f_path.dentry;
2946                 }
2947                 if (*opened & FILE_CREATED)
2948                         fsnotify_create(dir, dentry);
2949                 if (!dentry->d_inode) {
2950                         WARN_ON(*opened & FILE_CREATED);
2951                         if (create_error) {
2952                                 error = create_error;
2953                                 goto out;
2954                         }
2955                 } else {
2956                         if (excl && !(*opened & FILE_CREATED)) {
2957                                 error = -EEXIST;
2958                                 goto out;
2959                         }
2960                 }
2961                 goto looked_up;
2962         }
2963
2964         /*
2965          * We didn't have the inode before the open, so check open permission
2966          * here.
2967          */
2968         acc_mode = op->acc_mode;
2969         if (*opened & FILE_CREATED) {
2970                 WARN_ON(!(open_flag & O_CREAT));
2971                 fsnotify_create(dir, dentry);
2972                 acc_mode = 0;
2973         }
2974         error = may_open(&file->f_path, acc_mode, open_flag);
2975         if (error)
2976                 fput(file);
2977
2978 out:
2979         dput(dentry);
2980         return error;
2981
2982 no_open:
2983         if (need_lookup) {
2984                 dentry = lookup_real(dir, dentry, nd->flags);
2985                 if (IS_ERR(dentry))
2986                         return PTR_ERR(dentry);
2987         }
2988         if (create_error && !dentry->d_inode) {
2989                 error = create_error;
2990                 goto out;
2991         }
2992 looked_up:
2993         path->dentry = dentry;
2994         path->mnt = nd->path.mnt;
2995         return 1;
2996 }
2997
2998 /*
2999  * Look up and maybe create and open the last component.
3000  *
3001  * Must be called with i_mutex held on parent.
3002  *
3003  * Returns 0 if the file was successfully atomically created (if necessary) and
3004  * opened.  In this case the file will be returned attached to @file.
3005  *
3006  * Returns 1 if the file was not completely opened at this time, though lookups
3007  * and creations will have been performed and the dentry returned in @path will
3008  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3009  * specified then a negative dentry may be returned.
3010  *
3011  * An error code is returned otherwise.
3012  *
3013  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3014  * cleared otherwise prior to returning.
3015  */
3016 static int lookup_open(struct nameidata *nd, struct path *path,
3017                         struct file *file,
3018                         const struct open_flags *op,
3019                         bool got_write, int *opened)
3020 {
3021         struct dentry *dir = nd->path.dentry;
3022         struct inode *dir_inode = dir->d_inode;
3023         struct dentry *dentry;
3024         int error;
3025         bool need_lookup = false;
3026
3027         *opened &= ~FILE_CREATED;
3028         dentry = lookup_dcache(&nd->last, dir, nd->flags);
3029         if (IS_ERR(dentry))
3030                 return PTR_ERR(dentry);
3031
3032         if (!dentry) {
3033                 dentry = d_alloc(dir, &nd->last);
3034                 if (unlikely(!dentry))
3035                         return -ENOMEM;
3036                 need_lookup = true;
3037         } else if (dentry->d_inode) {
3038                 /* Cached positive dentry: will open in f_op->open */
3039                 goto out_no_open;
3040         }
3041
3042         if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3043                 return atomic_open(nd, dentry, path, file, op, got_write,
3044                                    need_lookup, opened);
3045         }
3046
3047         if (need_lookup) {
3048                 BUG_ON(dentry->d_inode);
3049
3050                 dentry = lookup_real(dir_inode, dentry, nd->flags);
3051                 if (IS_ERR(dentry))
3052                         return PTR_ERR(dentry);
3053         }
3054
3055         /* Negative dentry, just create the file */
3056         if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3057                 umode_t mode = op->mode;
3058                 if (!IS_POSIXACL(dir->d_inode))
3059                         mode &= ~current_umask();
3060                 /*
3061                  * This write is needed to ensure that a
3062                  * rw->ro transition does not occur between
3063                  * the time when the file is created and when
3064                  * a permanent write count is taken through
3065                  * the 'struct file' in finish_open().
3066                  */
3067                 if (!got_write) {
3068                         error = -EROFS;
3069                         goto out_dput;
3070                 }
3071                 *opened |= FILE_CREATED;
3072                 error = security_path_mknod(&nd->path, dentry, mode, 0);
3073                 if (error)
3074                         goto out_dput;
3075                 error = vfs_create(dir->d_inode, dentry, mode,
3076                                    nd->flags & LOOKUP_EXCL);
3077                 if (error)
3078                         goto out_dput;
3079         }
3080 out_no_open:
3081         path->dentry = dentry;
3082         path->mnt = nd->path.mnt;
3083         return 1;
3084
3085 out_dput:
3086         dput(dentry);
3087         return error;
3088 }
3089
3090 /*
3091  * Handle the last step of open()
3092  */
3093 static int do_last(struct nameidata *nd,
3094                    struct file *file, const struct open_flags *op,
3095                    int *opened)
3096 {
3097         struct dentry *dir = nd->path.dentry;
3098         int open_flag = op->open_flag;
3099         bool will_truncate = (open_flag & O_TRUNC) != 0;
3100         bool got_write = false;
3101         int acc_mode = op->acc_mode;
3102         unsigned seq;
3103         struct inode *inode;
3104         struct path save_parent = { .dentry = NULL, .mnt = NULL };
3105         struct path path;
3106         bool retried = false;
3107         int error;
3108
3109         nd->flags &= ~LOOKUP_PARENT;
3110         nd->flags |= op->intent;
3111
3112         if (nd->last_type != LAST_NORM) {
3113                 error = handle_dots(nd, nd->last_type);
3114                 if (unlikely(error))
3115                         return error;
3116                 goto finish_open;
3117         }
3118
3119         if (!(open_flag & O_CREAT)) {
3120                 if (nd->last.name[nd->last.len])
3121                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3122                 /* we _can_ be in RCU mode here */
3123                 error = lookup_fast(nd, &path, &inode, &seq);
3124                 if (likely(error > 0))
3125                         goto finish_lookup;
3126
3127                 if (error < 0)
3128                         return error;
3129
3130                 BUG_ON(nd->inode != dir->d_inode);
3131                 BUG_ON(nd->flags & LOOKUP_RCU);
3132         } else {
3133                 /* create side of things */
3134                 /*
3135                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3136                  * has been cleared when we got to the last component we are
3137                  * about to look up
3138                  */
3139                 error = complete_walk(nd);
3140                 if (error)
3141                         return error;
3142
3143                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3144                 /* trailing slashes? */
3145                 if (unlikely(nd->last.name[nd->last.len]))
3146                         return -EISDIR;
3147         }
3148
3149 retry_lookup:
3150         if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3151                 error = mnt_want_write(nd->path.mnt);
3152                 if (!error)
3153                         got_write = true;
3154                 /*
3155                  * do _not_ fail yet - we might not need that or fail with
3156                  * a different error; let lookup_open() decide; we'll be
3157                  * dropping this one anyway.
3158                  */
3159         }
3160         inode_lock(dir->d_inode);
3161         error = lookup_open(nd, &path, file, op, got_write, opened);
3162         inode_unlock(dir->d_inode);
3163
3164         if (error <= 0) {
3165                 if (error)
3166                         goto out;
3167
3168                 if ((*opened & FILE_CREATED) ||
3169                     !S_ISREG(file_inode(file)->i_mode))
3170                         will_truncate = false;
3171
3172                 audit_inode(nd->name, file->f_path.dentry, 0);
3173                 goto opened;
3174         }
3175
3176         if (*opened & FILE_CREATED) {
3177                 /* Don't check for write permission, don't truncate */
3178                 open_flag &= ~O_TRUNC;
3179                 will_truncate = false;
3180                 acc_mode = 0;
3181                 path_to_nameidata(&path, nd);
3182                 goto finish_open_created;
3183         }
3184
3185         /*
3186          * If atomic_open() acquired write access it is dropped now due to
3187          * possible mount and symlink following (this might be optimized away if
3188          * necessary...)
3189          */
3190         if (got_write) {
3191                 mnt_drop_write(nd->path.mnt);
3192                 got_write = false;
3193         }
3194
3195         if (unlikely(d_is_negative(path.dentry))) {
3196                 path_to_nameidata(&path, nd);
3197                 return -ENOENT;
3198         }
3199
3200         /*
3201          * create/update audit record if it already exists.
3202          */
3203         audit_inode(nd->name, path.dentry, 0);
3204
3205         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3206                 path_to_nameidata(&path, nd);
3207                 return -EEXIST;
3208         }
3209
3210         error = follow_managed(&path, nd);
3211         if (unlikely(error < 0))
3212                 return error;
3213
3214         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3215         inode = d_backing_inode(path.dentry);
3216 finish_lookup:
3217         if (nd->depth)
3218                 put_link(nd);
3219         error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3220                                    inode, seq);
3221         if (unlikely(error))
3222                 return error;
3223
3224         if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3225                 path_to_nameidata(&path, nd);
3226         } else {
3227                 save_parent.dentry = nd->path.dentry;
3228                 save_parent.mnt = mntget(path.mnt);
3229                 nd->path.dentry = path.dentry;
3230
3231         }
3232         nd->inode = inode;
3233         nd->seq = seq;
3234         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3235 finish_open:
3236         error = complete_walk(nd);
3237         if (error) {
3238                 path_put(&save_parent);
3239                 return error;
3240         }
3241         audit_inode(nd->name, nd->path.dentry, 0);
3242         if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3243                 error = -ELOOP;
3244                 goto out;
3245         }
3246         error = -EISDIR;
3247         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3248                 goto out;
3249         error = -ENOTDIR;
3250         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3251                 goto out;
3252         if (!d_is_reg(nd->path.dentry))
3253                 will_truncate = false;
3254
3255         if (will_truncate) {
3256                 error = mnt_want_write(nd->path.mnt);
3257                 if (error)
3258                         goto out;
3259                 got_write = true;
3260         }
3261 finish_open_created:
3262         if (likely(!(open_flag & O_PATH))) {
3263                 error = may_open(&nd->path, acc_mode, open_flag);
3264                 if (error)
3265                         goto out;
3266         }
3267         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3268         error = vfs_open(&nd->path, file, current_cred());
3269         if (!error) {
3270                 *opened |= FILE_OPENED;
3271         } else {
3272                 if (error == -EOPENSTALE)
3273                         goto stale_open;
3274                 goto out;
3275         }
3276 opened:
3277         error = open_check_o_direct(file);
3278         if (error)
3279                 goto exit_fput;
3280         error = ima_file_check(file, op->acc_mode, *opened);
3281         if (error)
3282                 goto exit_fput;
3283
3284         if (will_truncate) {
3285                 error = handle_truncate(file);
3286                 if (error)
3287                         goto exit_fput;
3288         }
3289 out:
3290         if (unlikely(error > 0)) {
3291                 WARN_ON(1);
3292                 error = -EINVAL;
3293         }
3294         if (got_write)
3295                 mnt_drop_write(nd->path.mnt);
3296         path_put(&save_parent);
3297         return error;
3298
3299 exit_fput:
3300         fput(file);
3301         goto out;
3302
3303 stale_open:
3304         /* If no saved parent or already retried then can't retry */
3305         if (!save_parent.dentry || retried)
3306                 goto out;
3307
3308         BUG_ON(save_parent.dentry != dir);
3309         path_put(&nd->path);
3310         nd->path = save_parent;
3311         nd->inode = dir->d_inode;
3312         save_parent.mnt = NULL;
3313         save_parent.dentry = NULL;
3314         if (got_write) {
3315                 mnt_drop_write(nd->path.mnt);
3316                 got_write = false;
3317         }
3318         retried = true;
3319         goto retry_lookup;
3320 }
3321
3322 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3323                 const struct open_flags *op,
3324                 struct file *file, int *opened)
3325 {
3326         static const struct qstr name = QSTR_INIT("/", 1);
3327         struct dentry *child;
3328         struct inode *dir;
3329         struct path path;
3330         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3331         if (unlikely(error))
3332                 return error;
3333         error = mnt_want_write(path.mnt);
3334         if (unlikely(error))
3335                 goto out;
3336         dir = path.dentry->d_inode;
3337         /* we want directory to be writable */
3338         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3339         if (error)
3340                 goto out2;
3341         if (!dir->i_op->tmpfile) {
3342                 error = -EOPNOTSUPP;
3343                 goto out2;
3344         }
3345         child = d_alloc(path.dentry, &name);
3346         if (unlikely(!child)) {
3347                 error = -ENOMEM;
3348                 goto out2;
3349         }
3350         dput(path.dentry);
3351         path.dentry = child;
3352         error = dir->i_op->tmpfile(dir, child, op->mode);
3353         if (error)
3354                 goto out2;
3355         audit_inode(nd->name, child, 0);
3356         /* Don't check for other permissions, the inode was just created */
3357         error = may_open(&path, 0, op->open_flag);
3358         if (error)
3359                 goto out2;
3360         file->f_path.mnt = path.mnt;
3361         error = finish_open(file, child, NULL, opened);
3362         if (error)
3363                 goto out2;
3364         error = open_check_o_direct(file);
3365         if (error) {
3366                 fput(file);
3367         } else if (!(op->open_flag & O_EXCL)) {
3368                 struct inode *inode = file_inode(file);
3369                 spin_lock(&inode->i_lock);
3370                 inode->i_state |= I_LINKABLE;
3371                 spin_unlock(&inode->i_lock);
3372         }
3373 out2:
3374         mnt_drop_write(path.mnt);
3375 out:
3376         path_put(&path);
3377         return error;
3378 }
3379
3380 static struct file *path_openat(struct nameidata *nd,
3381                         const struct open_flags *op, unsigned flags)
3382 {
3383         const char *s;
3384         struct file *file;
3385         int opened = 0;
3386         int error;
3387
3388         file = get_empty_filp();
3389         if (IS_ERR(file))
3390                 return file;
3391
3392         file->f_flags = op->open_flag;
3393
3394         if (unlikely(file->f_flags & __O_TMPFILE)) {
3395                 error = do_tmpfile(nd, flags, op, file, &opened);
3396                 goto out2;
3397         }
3398
3399         s = path_init(nd, flags);
3400         if (IS_ERR(s)) {
3401                 put_filp(file);
3402                 return ERR_CAST(s);
3403         }
3404         while (!(error = link_path_walk(s, nd)) &&
3405                 (error = do_last(nd, file, op, &opened)) > 0) {
3406                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3407                 s = trailing_symlink(nd);
3408                 if (IS_ERR(s)) {
3409                         error = PTR_ERR(s);
3410                         break;
3411                 }
3412         }
3413         terminate_walk(nd);
3414 out2:
3415         if (!(opened & FILE_OPENED)) {
3416                 BUG_ON(!error);
3417                 put_filp(file);
3418         }
3419         if (unlikely(error)) {
3420                 if (error == -EOPENSTALE) {
3421                         if (flags & LOOKUP_RCU)
3422                                 error = -ECHILD;
3423                         else
3424                                 error = -ESTALE;
3425                 }
3426                 file = ERR_PTR(error);
3427         }
3428         return file;
3429 }
3430
3431 struct file *do_filp_open(int dfd, struct filename *pathname,
3432                 const struct open_flags *op)
3433 {
3434         struct nameidata nd;
3435         int flags = op->lookup_flags;
3436         struct file *filp;
3437
3438         set_nameidata(&nd, dfd, pathname);
3439         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3440         if (unlikely(filp == ERR_PTR(-ECHILD)))
3441                 filp = path_openat(&nd, op, flags);
3442         if (unlikely(filp == ERR_PTR(-ESTALE)))
3443                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3444         restore_nameidata();
3445         return filp;
3446 }
3447
3448 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3449                 const char *name, const struct open_flags *op)
3450 {
3451         struct nameidata nd;
3452         struct file *file;
3453         struct filename *filename;
3454         int flags = op->lookup_flags | LOOKUP_ROOT;
3455
3456         nd.root.mnt = mnt;
3457         nd.root.dentry = dentry;
3458
3459         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3460                 return ERR_PTR(-ELOOP);
3461
3462         filename = getname_kernel(name);
3463         if (IS_ERR(filename))
3464                 return ERR_CAST(filename);
3465
3466         set_nameidata(&nd, -1, filename);
3467         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3468         if (unlikely(file == ERR_PTR(-ECHILD)))
3469                 file = path_openat(&nd, op, flags);
3470         if (unlikely(file == ERR_PTR(-ESTALE)))
3471                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3472         restore_nameidata();
3473         putname(filename);
3474         return file;
3475 }
3476
3477 static struct dentry *filename_create(int dfd, struct filename *name,
3478                                 struct path *path, unsigned int lookup_flags)
3479 {
3480         struct dentry *dentry = ERR_PTR(-EEXIST);
3481         struct qstr last;
3482         int type;
3483         int err2;
3484         int error;
3485         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3486
3487         /*
3488          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3489          * other flags passed in are ignored!
3490          */
3491         lookup_flags &= LOOKUP_REVAL;
3492
3493         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3494         if (IS_ERR(name))
3495                 return ERR_CAST(name);
3496
3497         /*
3498          * Yucky last component or no last component at all?
3499          * (foo/., foo/.., /////)
3500          */
3501         if (unlikely(type != LAST_NORM))
3502                 goto out;
3503
3504         /* don't fail immediately if it's r/o, at least try to report other errors */
3505         err2 = mnt_want_write(path->mnt);
3506         /*
3507          * Do the final lookup.
3508          */
3509         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3510         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3511         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3512         if (IS_ERR(dentry))
3513                 goto unlock;
3514
3515         error = -EEXIST;
3516         if (d_is_positive(dentry))
3517                 goto fail;
3518
3519         /*
3520          * Special case - lookup gave negative, but... we had foo/bar/
3521          * From the vfs_mknod() POV we just have a negative dentry -
3522          * all is fine. Let's be bastards - you had / on the end, you've
3523          * been asking for (non-existent) directory. -ENOENT for you.
3524          */
3525         if (unlikely(!is_dir && last.name[last.len])) {
3526                 error = -ENOENT;
3527                 goto fail;
3528         }
3529         if (unlikely(err2)) {
3530                 error = err2;
3531                 goto fail;
3532         }
3533         putname(name);
3534         return dentry;
3535 fail:
3536         dput(dentry);
3537         dentry = ERR_PTR(error);
3538 unlock:
3539         inode_unlock(path->dentry->d_inode);
3540         if (!err2)
3541                 mnt_drop_write(path->mnt);
3542 out:
3543         path_put(path);
3544         putname(name);
3545         return dentry;
3546 }
3547
3548 struct dentry *kern_path_create(int dfd, const char *pathname,
3549                                 struct path *path, unsigned int lookup_flags)
3550 {
3551         return filename_create(dfd, getname_kernel(pathname),
3552                                 path, lookup_flags);
3553 }
3554 EXPORT_SYMBOL(kern_path_create);
3555
3556 void done_path_create(struct path *path, struct dentry *dentry)
3557 {
3558         dput(dentry);
3559         inode_unlock(path->dentry->d_inode);
3560         mnt_drop_write(path->mnt);
3561         path_put(path);
3562 }
3563 EXPORT_SYMBOL(done_path_create);
3564
3565 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3566                                 struct path *path, unsigned int lookup_flags)
3567 {
3568         return filename_create(dfd, getname(pathname), path, lookup_flags);
3569 }
3570 EXPORT_SYMBOL(user_path_create);
3571
3572 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3573 {
3574         int error = may_create(dir, dentry);
3575
3576         if (error)
3577                 return error;
3578
3579         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3580                 return -EPERM;
3581
3582         if (!dir->i_op->mknod)
3583                 return -EPERM;
3584
3585         error = devcgroup_inode_mknod(mode, dev);
3586         if (error)
3587                 return error;
3588
3589         error = security_inode_mknod(dir, dentry, mode, dev);
3590         if (error)
3591                 return error;
3592
3593         error = dir->i_op->mknod(dir, dentry, mode, dev);
3594         if (!error)
3595                 fsnotify_create(dir, dentry);
3596         return error;
3597 }
3598 EXPORT_SYMBOL(vfs_mknod);
3599
3600 static int may_mknod(umode_t mode)
3601 {
3602         switch (mode & S_IFMT) {
3603         case S_IFREG:
3604         case S_IFCHR:
3605         case S_IFBLK:
3606         case S_IFIFO:
3607         case S_IFSOCK:
3608         case 0: /* zero mode translates to S_IFREG */
3609                 return 0;
3610         case S_IFDIR:
3611                 return -EPERM;
3612         default:
3613                 return -EINVAL;
3614         }
3615 }
3616
3617 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3618                 unsigned, dev)
3619 {
3620         struct dentry *dentry;
3621         struct path path;
3622         int error;
3623         unsigned int lookup_flags = 0;
3624
3625         error = may_mknod(mode);
3626         if (error)
3627                 return error;
3628 retry:
3629         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3630         if (IS_ERR(dentry))
3631                 return PTR_ERR(dentry);
3632
3633         if (!IS_POSIXACL(path.dentry->d_inode))
3634                 mode &= ~current_umask();
3635         error = security_path_mknod(&path, dentry, mode, dev);
3636         if (error)
3637                 goto out;
3638         switch (mode & S_IFMT) {
3639                 case 0: case S_IFREG:
3640                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3641                         break;
3642                 case S_IFCHR: case S_IFBLK:
3643                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3644                                         new_decode_dev(dev));
3645                         break;
3646                 case S_IFIFO: case S_IFSOCK:
3647                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3648                         break;
3649         }
3650 out:
3651         done_path_create(&path, dentry);
3652         if (retry_estale(error, lookup_flags)) {
3653                 lookup_flags |= LOOKUP_REVAL;
3654                 goto retry;
3655         }
3656         return error;
3657 }
3658
3659 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3660 {
3661         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3662 }
3663
3664 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3665 {
3666         int error = may_create(dir, dentry);
3667         unsigned max_links = dir->i_sb->s_max_links;
3668
3669         if (error)
3670                 return error;
3671
3672         if (!dir->i_op->mkdir)
3673                 return -EPERM;
3674
3675         mode &= (S_IRWXUGO|S_ISVTX);
3676         error = security_inode_mkdir(dir, dentry, mode);
3677         if (error)
3678                 return error;
3679
3680         if (max_links && dir->i_nlink >= max_links)
3681                 return -EMLINK;
3682
3683         error = dir->i_op->mkdir(dir, dentry, mode);
3684         if (!error)
3685                 fsnotify_mkdir(dir, dentry);
3686         return error;
3687 }
3688 EXPORT_SYMBOL(vfs_mkdir);
3689
3690 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3691 {
3692         struct dentry *dentry;
3693         struct path path;
3694         int error;
3695         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3696
3697 retry:
3698         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3699         if (IS_ERR(dentry))
3700                 return PTR_ERR(dentry);
3701
3702         if (!IS_POSIXACL(path.dentry->d_inode))
3703                 mode &= ~current_umask();
3704         error = security_path_mkdir(&path, dentry, mode);
3705         if (!error)
3706                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3707         done_path_create(&path, dentry);
3708         if (retry_estale(error, lookup_flags)) {
3709                 lookup_flags |= LOOKUP_REVAL;
3710                 goto retry;
3711         }
3712         return error;
3713 }
3714
3715 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3716 {
3717         return sys_mkdirat(AT_FDCWD, pathname, mode);
3718 }
3719
3720 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3721 {
3722         int error = may_delete(dir, dentry, 1);
3723
3724         if (error)
3725                 return error;
3726
3727         if (!dir->i_op->rmdir)
3728                 return -EPERM;
3729
3730         dget(dentry);
3731         inode_lock(dentry->d_inode);
3732
3733         error = -EBUSY;
3734         if (is_local_mountpoint(dentry))
3735                 goto out;
3736
3737         error = security_inode_rmdir(dir, dentry);
3738         if (error)
3739                 goto out;
3740
3741         shrink_dcache_parent(dentry);
3742         error = dir->i_op->rmdir(dir, dentry);
3743         if (error)
3744                 goto out;
3745
3746         dentry->d_inode->i_flags |= S_DEAD;
3747         dont_mount(dentry);
3748         detach_mounts(dentry);
3749
3750 out:
3751         inode_unlock(dentry->d_inode);
3752         dput(dentry);
3753         if (!error)
3754                 d_delete(dentry);
3755         return error;
3756 }
3757 EXPORT_SYMBOL(vfs_rmdir);
3758
3759 static long do_rmdir(int dfd, const char __user *pathname)
3760 {
3761         int error = 0;
3762         struct filename *name;
3763         struct dentry *dentry;
3764         struct path path;
3765         struct qstr last;
3766         int type;
3767         unsigned int lookup_flags = 0;
3768 retry:
3769         name = user_path_parent(dfd, pathname,
3770                                 &path, &last, &type, lookup_flags);
3771         if (IS_ERR(name))
3772                 return PTR_ERR(name);
3773
3774         switch (type) {
3775         case LAST_DOTDOT:
3776                 error = -ENOTEMPTY;
3777                 goto exit1;
3778         case LAST_DOT:
3779                 error = -EINVAL;
3780                 goto exit1;
3781         case LAST_ROOT:
3782                 error = -EBUSY;
3783                 goto exit1;
3784         }
3785
3786         error = mnt_want_write(path.mnt);
3787         if (error)
3788                 goto exit1;
3789
3790         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3791         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3792         error = PTR_ERR(dentry);
3793         if (IS_ERR(dentry))
3794                 goto exit2;
3795         if (!dentry->d_inode) {
3796                 error = -ENOENT;
3797                 goto exit3;
3798         }
3799         error = security_path_rmdir(&path, dentry);
3800         if (error)
3801                 goto exit3;
3802         error = vfs_rmdir(path.dentry->d_inode, dentry);
3803 exit3:
3804         dput(dentry);
3805 exit2:
3806         inode_unlock(path.dentry->d_inode);
3807         mnt_drop_write(path.mnt);
3808 exit1:
3809         path_put(&path);
3810         putname(name);
3811         if (retry_estale(error, lookup_flags)) {
3812                 lookup_flags |= LOOKUP_REVAL;
3813                 goto retry;
3814         }
3815         return error;
3816 }
3817
3818 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3819 {
3820         return do_rmdir(AT_FDCWD, pathname);
3821 }
3822
3823 /**
3824  * vfs_unlink - unlink a filesystem object
3825  * @dir:        parent directory
3826  * @dentry:     victim
3827  * @delegated_inode: returns victim inode, if the inode is delegated.
3828  *
3829  * The caller must hold dir->i_mutex.
3830  *
3831  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3832  * return a reference to the inode in delegated_inode.  The caller
3833  * should then break the delegation on that inode and retry.  Because
3834  * breaking a delegation may take a long time, the caller should drop
3835  * dir->i_mutex before doing so.
3836  *
3837  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3838  * be appropriate for callers that expect the underlying filesystem not
3839  * to be NFS exported.
3840  */
3841 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3842 {
3843         struct inode *target = dentry->d_inode;
3844         int error = may_delete(dir, dentry, 0);
3845
3846         if (error)
3847                 return error;
3848
3849         if (!dir->i_op->unlink)
3850                 return -EPERM;
3851
3852         inode_lock(target);
3853         if (is_local_mountpoint(dentry))
3854                 error = -EBUSY;
3855         else {
3856                 error = security_inode_unlink(dir, dentry);
3857                 if (!error) {
3858                         error = try_break_deleg(target, delegated_inode);
3859                         if (error)
3860                                 goto out;
3861                         error = dir->i_op->unlink(dir, dentry);
3862                         if (!error) {
3863                                 dont_mount(dentry);
3864                                 detach_mounts(dentry);
3865                         }
3866                 }
3867         }
3868 out:
3869         inode_unlock(target);
3870
3871         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3872         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3873                 fsnotify_link_count(target);
3874                 d_delete(dentry);
3875         }
3876
3877         return error;
3878 }
3879 EXPORT_SYMBOL(vfs_unlink);
3880
3881 /*
3882  * Make sure that the actual truncation of the file will occur outside its
3883  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3884  * writeout happening, and we don't want to prevent access to the directory
3885  * while waiting on the I/O.
3886  */
3887 static long do_unlinkat(int dfd, const char __user *pathname)
3888 {
3889         int error;
3890         struct filename *name;
3891         struct dentry *dentry;
3892         struct path path;
3893         struct qstr last;
3894         int type;
3895         struct inode *inode = NULL;
3896         struct inode *delegated_inode = NULL;
3897         unsigned int lookup_flags = 0;
3898 retry:
3899         name = user_path_parent(dfd, pathname,
3900                                 &path, &last, &type, lookup_flags);
3901         if (IS_ERR(name))
3902                 return PTR_ERR(name);
3903
3904         error = -EISDIR;
3905         if (type != LAST_NORM)
3906                 goto exit1;
3907
3908         error = mnt_want_write(path.mnt);
3909         if (error)
3910                 goto exit1;
3911 retry_deleg:
3912         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3913         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3914         error = PTR_ERR(dentry);
3915         if (!IS_ERR(dentry)) {
3916                 /* Why not before? Because we want correct error value */
3917                 if (last.name[last.len])
3918                         goto slashes;
3919                 inode = dentry->d_inode;
3920                 if (d_is_negative(dentry))
3921                         goto slashes;
3922                 ihold(inode);
3923                 error = security_path_unlink(&path, dentry);
3924                 if (error)
3925                         goto exit2;
3926                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3927 exit2:
3928                 dput(dentry);
3929         }
3930         inode_unlock(path.dentry->d_inode);
3931         if (inode)
3932                 iput(inode);    /* truncate the inode here */
3933         inode = NULL;
3934         if (delegated_inode) {
3935                 error = break_deleg_wait(&delegated_inode);
3936                 if (!error)
3937                         goto retry_deleg;
3938         }
3939         mnt_drop_write(path.mnt);
3940 exit1:
3941         path_put(&path);
3942         putname(name);
3943         if (retry_estale(error, lookup_flags)) {
3944                 lookup_flags |= LOOKUP_REVAL;
3945                 inode = NULL;
3946                 goto retry;
3947         }
3948         return error;
3949
3950 slashes:
3951         if (d_is_negative(dentry))
3952                 error = -ENOENT;
3953         else if (d_is_dir(dentry))
3954                 error = -EISDIR;
3955         else
3956                 error = -ENOTDIR;
3957         goto exit2;
3958 }
3959
3960 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3961 {
3962         if ((flag & ~AT_REMOVEDIR) != 0)
3963                 return -EINVAL;
3964
3965         if (flag & AT_REMOVEDIR)
3966                 return do_rmdir(dfd, pathname);
3967
3968         return do_unlinkat(dfd, pathname);
3969 }
3970
3971 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3972 {
3973         return do_unlinkat(AT_FDCWD, pathname);
3974 }
3975
3976 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3977 {
3978         int error = may_create(dir, dentry);
3979
3980         if (error)
3981                 return error;
3982
3983         if (!dir->i_op->symlink)
3984                 return -EPERM;
3985
3986         error = security_inode_symlink(dir, dentry, oldname);
3987         if (error)
3988                 return error;
3989
3990         error = dir->i_op->symlink(dir, dentry, oldname);
3991         if (!error)
3992                 fsnotify_create(dir, dentry);
3993         return error;
3994 }
3995 EXPORT_SYMBOL(vfs_symlink);
3996
3997 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3998                 int, newdfd, const char __user *, newname)
3999 {
4000         int error;
4001         struct filename *from;
4002         struct dentry *dentry;
4003         struct path path;
4004         unsigned int lookup_flags = 0;
4005
4006         from = getname(oldname);
4007         if (IS_ERR(from))
4008                 return PTR_ERR(from);
4009 retry:
4010         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4011         error = PTR_ERR(dentry);
4012         if (IS_ERR(dentry))
4013                 goto out_putname;
4014
4015         error = security_path_symlink(&path, dentry, from->name);
4016         if (!error)
4017                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4018         done_path_create(&path, dentry);
4019         if (retry_estale(error, lookup_flags)) {
4020                 lookup_flags |= LOOKUP_REVAL;
4021                 goto retry;
4022         }
4023 out_putname:
4024         putname(from);
4025         return error;
4026 }
4027
4028 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4029 {
4030         return sys_symlinkat(oldname, AT_FDCWD, newname);
4031 }
4032
4033 /**
4034  * vfs_link - create a new link
4035  * @old_dentry: object to be linked
4036  * @dir:        new parent
4037  * @new_dentry: where to create the new link
4038  * @delegated_inode: returns inode needing a delegation break
4039  *
4040  * The caller must hold dir->i_mutex
4041  *
4042  * If vfs_link discovers a delegation on the to-be-linked file in need
4043  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4044  * inode in delegated_inode.  The caller should then break the delegation
4045  * and retry.  Because breaking a delegation may take a long time, the
4046  * caller should drop the i_mutex before doing so.
4047  *
4048  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4049  * be appropriate for callers that expect the underlying filesystem not
4050  * to be NFS exported.
4051  */
4052 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4053 {
4054         struct inode *inode = old_dentry->d_inode;
4055         unsigned max_links = dir->i_sb->s_max_links;
4056         int error;
4057
4058         if (!inode)
4059                 return -ENOENT;
4060
4061         error = may_create(dir, new_dentry);
4062         if (error)
4063                 return error;
4064
4065         if (dir->i_sb != inode->i_sb)
4066                 return -EXDEV;
4067
4068         /*
4069          * A link to an append-only or immutable file cannot be created.
4070          */
4071         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4072                 return -EPERM;
4073         if (!dir->i_op->link)
4074                 return -EPERM;
4075         if (S_ISDIR(inode->i_mode))
4076                 return -EPERM;
4077
4078         error = security_inode_link(old_dentry, dir, new_dentry);
4079         if (error)
4080                 return error;
4081
4082         inode_lock(inode);
4083         /* Make sure we don't allow creating hardlink to an unlinked file */
4084         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4085                 error =  -ENOENT;
4086         else if (max_links && inode->i_nlink >= max_links)
4087                 error = -EMLINK;
4088         else {
4089                 error = try_break_deleg(inode, delegated_inode);
4090                 if (!error)
4091                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4092         }
4093
4094         if (!error && (inode->i_state & I_LINKABLE)) {
4095                 spin_lock(&inode->i_lock);
4096                 inode->i_state &= ~I_LINKABLE;
4097                 spin_unlock(&inode->i_lock);
4098         }
4099         inode_unlock(inode);
4100         if (!error)
4101                 fsnotify_link(dir, inode, new_dentry);
4102         return error;
4103 }
4104 EXPORT_SYMBOL(vfs_link);
4105
4106 /*
4107  * Hardlinks are often used in delicate situations.  We avoid
4108  * security-related surprises by not following symlinks on the
4109  * newname.  --KAB
4110  *
4111  * We don't follow them on the oldname either to be compatible
4112  * with linux 2.0, and to avoid hard-linking to directories
4113  * and other special files.  --ADM
4114  */
4115 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4116                 int, newdfd, const char __user *, newname, int, flags)
4117 {
4118         struct dentry *new_dentry;
4119         struct path old_path, new_path;
4120         struct inode *delegated_inode = NULL;
4121         int how = 0;
4122         int error;
4123
4124         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4125                 return -EINVAL;
4126         /*
4127          * To use null names we require CAP_DAC_READ_SEARCH
4128          * This ensures that not everyone will be able to create
4129          * handlink using the passed filedescriptor.
4130          */
4131         if (flags & AT_EMPTY_PATH) {
4132                 if (!capable(CAP_DAC_READ_SEARCH))
4133                         return -ENOENT;
4134                 how = LOOKUP_EMPTY;
4135         }
4136
4137         if (flags & AT_SYMLINK_FOLLOW)
4138                 how |= LOOKUP_FOLLOW;
4139 retry:
4140         error = user_path_at(olddfd, oldname, how, &old_path);
4141         if (error)
4142                 return error;
4143
4144         new_dentry = user_path_create(newdfd, newname, &new_path,
4145                                         (how & LOOKUP_REVAL));
4146         error = PTR_ERR(new_dentry);
4147         if (IS_ERR(new_dentry))
4148                 goto out;
4149
4150         error = -EXDEV;
4151         if (old_path.mnt != new_path.mnt)
4152                 goto out_dput;
4153         error = may_linkat(&old_path);
4154         if (unlikely(error))
4155                 goto out_dput;
4156         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4157         if (error)
4158                 goto out_dput;
4159         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4160 out_dput:
4161         done_path_create(&new_path, new_dentry);
4162         if (delegated_inode) {
4163                 error = break_deleg_wait(&delegated_inode);
4164                 if (!error) {
4165                         path_put(&old_path);
4166                         goto retry;
4167                 }
4168         }
4169         if (retry_estale(error, how)) {
4170                 path_put(&old_path);
4171                 how |= LOOKUP_REVAL;
4172                 goto retry;
4173         }
4174 out:
4175         path_put(&old_path);
4176
4177         return error;
4178 }
4179
4180 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4181 {
4182         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4183 }
4184
4185 /**
4186  * vfs_rename - rename a filesystem object
4187  * @old_dir:    parent of source
4188  * @old_dentry: source
4189  * @new_dir:    parent of destination
4190  * @new_dentry: destination
4191  * @delegated_inode: returns an inode needing a delegation break
4192  * @flags:      rename flags
4193  *
4194  * The caller must hold multiple mutexes--see lock_rename()).
4195  *
4196  * If vfs_rename discovers a delegation in need of breaking at either
4197  * the source or destination, it will return -EWOULDBLOCK and return a
4198  * reference to the inode in delegated_inode.  The caller should then
4199  * break the delegation and retry.  Because breaking a delegation may
4200  * take a long time, the caller should drop all locks before doing
4201  * so.
4202  *
4203  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4204  * be appropriate for callers that expect the underlying filesystem not
4205  * to be NFS exported.
4206  *
4207  * The worst of all namespace operations - renaming directory. "Perverted"
4208  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4209  * Problems:
4210  *      a) we can get into loop creation.
4211  *      b) race potential - two innocent renames can create a loop together.
4212  *         That's where 4.4 screws up. Current fix: serialization on
4213  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4214  *         story.
4215  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4216  *         and source (if it is not a directory).
4217  *         And that - after we got ->i_mutex on parents (until then we don't know
4218  *         whether the target exists).  Solution: try to be smart with locking
4219  *         order for inodes.  We rely on the fact that tree topology may change
4220  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4221  *         move will be locked.  Thus we can rank directories by the tree
4222  *         (ancestors first) and rank all non-directories after them.
4223  *         That works since everybody except rename does "lock parent, lookup,
4224  *         lock child" and rename is under ->s_vfs_rename_mutex.
4225  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4226  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4227  *         we'd better make sure that there's no link(2) for them.
4228  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4229  *         we are removing the target. Solution: we will have to grab ->i_mutex
4230  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4231  *         ->i_mutex on parents, which works but leads to some truly excessive
4232  *         locking].
4233  */
4234 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4235                struct inode *new_dir, struct dentry *new_dentry,
4236                struct inode **delegated_inode, unsigned int flags)
4237 {
4238         int error;
4239         bool is_dir = d_is_dir(old_dentry);
4240         const unsigned char *old_name;
4241         struct inode *source = old_dentry->d_inode;
4242         struct inode *target = new_dentry->d_inode;
4243         bool new_is_dir = false;
4244         unsigned max_links = new_dir->i_sb->s_max_links;
4245
4246         /*
4247          * Check source == target.
4248          * On overlayfs need to look at underlying inodes.
4249          */
4250         if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4251                 return 0;
4252
4253         error = may_delete(old_dir, old_dentry, is_dir);
4254         if (error)
4255                 return error;
4256
4257         if (!target) {
4258                 error = may_create(new_dir, new_dentry);
4259         } else {
4260                 new_is_dir = d_is_dir(new_dentry);
4261
4262                 if (!(flags & RENAME_EXCHANGE))
4263                         error = may_delete(new_dir, new_dentry, is_dir);
4264                 else
4265                         error = may_delete(new_dir, new_dentry, new_is_dir);
4266         }
4267         if (error)
4268                 return error;
4269
4270         if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4271                 return -EPERM;
4272
4273         if (flags && !old_dir->i_op->rename2)
4274                 return -EINVAL;
4275
4276         /*
4277          * If we are going to change the parent - check write permissions,
4278          * we'll need to flip '..'.
4279          */
4280         if (new_dir != old_dir) {
4281                 if (is_dir) {
4282                         error = inode_permission(source, MAY_WRITE);
4283                         if (error)
4284                                 return error;
4285                 }
4286                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4287                         error = inode_permission(target, MAY_WRITE);
4288                         if (error)
4289                                 return error;
4290                 }
4291         }
4292
4293         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4294                                       flags);
4295         if (error)
4296                 return error;
4297
4298         old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4299         dget(new_dentry);
4300         if (!is_dir || (flags & RENAME_EXCHANGE))
4301                 lock_two_nondirectories(source, target);
4302         else if (target)
4303                 inode_lock(target);
4304
4305         error = -EBUSY;
4306         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4307                 goto out;
4308
4309         if (max_links && new_dir != old_dir) {
4310                 error = -EMLINK;
4311                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4312                         goto out;
4313                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4314                     old_dir->i_nlink >= max_links)
4315                         goto out;
4316         }
4317         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4318                 shrink_dcache_parent(new_dentry);
4319         if (!is_dir) {
4320                 error = try_break_deleg(source, delegated_inode);
4321                 if (error)
4322                         goto out;
4323         }
4324         if (target && !new_is_dir) {
4325                 error = try_break_deleg(target, delegated_inode);
4326                 if (error)
4327                         goto out;
4328         }
4329         if (!old_dir->i_op->rename2) {
4330                 error = old_dir->i_op->rename(old_dir, old_dentry,
4331                                               new_dir, new_dentry);
4332         } else {
4333                 WARN_ON(old_dir->i_op->rename != NULL);
4334                 error = old_dir->i_op->rename2(old_dir, old_dentry,
4335                                                new_dir, new_dentry, flags);
4336         }
4337         if (error)
4338                 goto out;
4339
4340         if (!(flags & RENAME_EXCHANGE) && target) {
4341                 if (is_dir)
4342                         target->i_flags |= S_DEAD;
4343                 dont_mount(new_dentry);
4344                 detach_mounts(new_dentry);
4345         }
4346         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4347                 if (!(flags & RENAME_EXCHANGE))
4348                         d_move(old_dentry, new_dentry);
4349                 else
4350                         d_exchange(old_dentry, new_dentry);
4351         }
4352 out:
4353         if (!is_dir || (flags & RENAME_EXCHANGE))
4354                 unlock_two_nondirectories(source, target);
4355         else if (target)
4356                 inode_unlock(target);
4357         dput(new_dentry);
4358         if (!error) {
4359                 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4360                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4361                 if (flags & RENAME_EXCHANGE) {
4362                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4363                                       new_is_dir, NULL, new_dentry);
4364                 }
4365         }
4366         fsnotify_oldname_free(old_name);
4367
4368         return error;
4369 }
4370 EXPORT_SYMBOL(vfs_rename);
4371
4372 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4373                 int, newdfd, const char __user *, newname, unsigned int, flags)
4374 {
4375         struct dentry *old_dentry, *new_dentry;
4376         struct dentry *trap;
4377         struct path old_path, new_path;
4378         struct qstr old_last, new_last;
4379         int old_type, new_type;
4380         struct inode *delegated_inode = NULL;
4381         struct filename *from;
4382         struct filename *to;
4383         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4384         bool should_retry = false;
4385         int error;
4386
4387         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4388                 return -EINVAL;
4389
4390         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4391             (flags & RENAME_EXCHANGE))
4392                 return -EINVAL;
4393
4394         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4395                 return -EPERM;
4396
4397         if (flags & RENAME_EXCHANGE)
4398                 target_flags = 0;
4399
4400 retry:
4401         from = user_path_parent(olddfd, oldname,
4402                                 &old_path, &old_last, &old_type, lookup_flags);
4403         if (IS_ERR(from)) {
4404                 error = PTR_ERR(from);
4405                 goto exit;
4406         }
4407
4408         to = user_path_parent(newdfd, newname,
4409                                 &new_path, &new_last, &new_type, lookup_flags);
4410         if (IS_ERR(to)) {
4411                 error = PTR_ERR(to);
4412                 goto exit1;
4413         }
4414
4415         error = -EXDEV;
4416         if (old_path.mnt != new_path.mnt)
4417                 goto exit2;
4418
4419         error = -EBUSY;
4420         if (old_type != LAST_NORM)
4421                 goto exit2;
4422
4423         if (flags & RENAME_NOREPLACE)
4424                 error = -EEXIST;
4425         if (new_type != LAST_NORM)
4426                 goto exit2;
4427
4428         error = mnt_want_write(old_path.mnt);
4429         if (error)
4430                 goto exit2;
4431
4432 retry_deleg:
4433         trap = lock_rename(new_path.dentry, old_path.dentry);
4434
4435         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4436         error = PTR_ERR(old_dentry);
4437         if (IS_ERR(old_dentry))
4438                 goto exit3;
4439         /* source must exist */
4440         error = -ENOENT;
4441         if (d_is_negative(old_dentry))
4442                 goto exit4;
4443         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4444         error = PTR_ERR(new_dentry);
4445         if (IS_ERR(new_dentry))
4446                 goto exit4;
4447         error = -EEXIST;
4448         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4449                 goto exit5;
4450         if (flags & RENAME_EXCHANGE) {
4451                 error = -ENOENT;
4452                 if (d_is_negative(new_dentry))
4453                         goto exit5;
4454
4455                 if (!d_is_dir(new_dentry)) {
4456                         error = -ENOTDIR;
4457                         if (new_last.name[new_last.len])
4458                                 goto exit5;
4459                 }
4460         }
4461         /* unless the source is a directory trailing slashes give -ENOTDIR */
4462         if (!d_is_dir(old_dentry)) {
4463                 error = -ENOTDIR;
4464                 if (old_last.name[old_last.len])
4465                         goto exit5;
4466                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4467                         goto exit5;
4468         }
4469         /* source should not be ancestor of target */
4470         error = -EINVAL;
4471         if (old_dentry == trap)
4472                 goto exit5;
4473         /* target should not be an ancestor of source */
4474         if (!(flags & RENAME_EXCHANGE))
4475                 error = -ENOTEMPTY;
4476         if (new_dentry == trap)
4477                 goto exit5;
4478
4479         error = security_path_rename(&old_path, old_dentry,
4480                                      &new_path, new_dentry, flags);
4481         if (error)
4482                 goto exit5;
4483         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4484                            new_path.dentry->d_inode, new_dentry,
4485                            &delegated_inode, flags);
4486 exit5:
4487         dput(new_dentry);
4488 exit4:
4489         dput(old_dentry);
4490 exit3:
4491         unlock_rename(new_path.dentry, old_path.dentry);
4492         if (delegated_inode) {
4493                 error = break_deleg_wait(&delegated_inode);
4494                 if (!error)
4495                         goto retry_deleg;
4496         }
4497         mnt_drop_write(old_path.mnt);
4498 exit2:
4499         if (retry_estale(error, lookup_flags))
4500                 should_retry = true;
4501         path_put(&new_path);
4502         putname(to);
4503 exit1:
4504         path_put(&old_path);
4505         putname(from);
4506         if (should_retry) {
4507                 should_retry = false;
4508                 lookup_flags |= LOOKUP_REVAL;
4509                 goto retry;
4510         }
4511 exit:
4512         return error;
4513 }
4514
4515 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4516                 int, newdfd, const char __user *, newname)
4517 {
4518         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4519 }
4520
4521 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4522 {
4523         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4524 }
4525
4526 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4527 {
4528         int error = may_create(dir, dentry);
4529         if (error)
4530                 return error;
4531
4532         if (!dir->i_op->mknod)
4533                 return -EPERM;
4534
4535         return dir->i_op->mknod(dir, dentry,
4536                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4537 }
4538 EXPORT_SYMBOL(vfs_whiteout);
4539
4540 int readlink_copy(char __user *buffer, int buflen, const char *link)
4541 {
4542         int len = PTR_ERR(link);
4543         if (IS_ERR(link))
4544                 goto out;
4545
4546         len = strlen(link);
4547         if (len > (unsigned) buflen)
4548                 len = buflen;
4549         if (copy_to_user(buffer, link, len))
4550                 len = -EFAULT;
4551 out:
4552         return len;
4553 }
4554 EXPORT_SYMBOL(readlink_copy);
4555
4556 /*
4557  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4558  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4559  * for any given inode is up to filesystem.
4560  */
4561 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4562 {
4563         DEFINE_DELAYED_CALL(done);
4564         struct inode *inode = d_inode(dentry);
4565         const char *link = inode->i_link;
4566         int res;
4567
4568         if (!link) {
4569                 link = inode->i_op->get_link(dentry, inode, &done);
4570                 if (IS_ERR(link))
4571                         return PTR_ERR(link);
4572         }
4573         res = readlink_copy(buffer, buflen, link);
4574         do_delayed_call(&done);
4575         return res;
4576 }
4577 EXPORT_SYMBOL(generic_readlink);
4578
4579 /* get the link contents into pagecache */
4580 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4581                           struct delayed_call *callback)
4582 {
4583         char *kaddr;
4584         struct page *page;
4585         struct address_space *mapping = inode->i_mapping;
4586
4587         if (!dentry) {
4588                 page = find_get_page(mapping, 0);
4589                 if (!page)
4590                         return ERR_PTR(-ECHILD);
4591                 if (!PageUptodate(page)) {
4592                         put_page(page);
4593                         return ERR_PTR(-ECHILD);
4594                 }
4595         } else {
4596                 page = read_mapping_page(mapping, 0, NULL);
4597                 if (IS_ERR(page))
4598                         return (char*)page;
4599         }
4600         set_delayed_call(callback, page_put_link, page);
4601         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4602         kaddr = page_address(page);
4603         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4604         return kaddr;
4605 }
4606
4607 EXPORT_SYMBOL(page_get_link);
4608
4609 void page_put_link(void *arg)
4610 {
4611         put_page(arg);
4612 }
4613 EXPORT_SYMBOL(page_put_link);
4614
4615 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4616 {
4617         DEFINE_DELAYED_CALL(done);
4618         int res = readlink_copy(buffer, buflen,
4619                                 page_get_link(dentry, d_inode(dentry),
4620                                               &done));
4621         do_delayed_call(&done);
4622         return res;
4623 }
4624 EXPORT_SYMBOL(page_readlink);
4625
4626 /*
4627  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4628  */
4629 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4630 {
4631         struct address_space *mapping = inode->i_mapping;
4632         struct page *page;
4633         void *fsdata;
4634         int err;
4635         unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4636         if (nofs)
4637                 flags |= AOP_FLAG_NOFS;
4638
4639 retry:
4640         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4641                                 flags, &page, &fsdata);
4642         if (err)
4643                 goto fail;
4644
4645         memcpy(page_address(page), symname, len-1);
4646
4647         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4648                                                         page, fsdata);
4649         if (err < 0)
4650                 goto fail;
4651         if (err < len-1)
4652                 goto retry;
4653
4654         mark_inode_dirty(inode);
4655         return 0;
4656 fail:
4657         return err;
4658 }
4659 EXPORT_SYMBOL(__page_symlink);
4660
4661 int page_symlink(struct inode *inode, const char *symname, int len)
4662 {
4663         return __page_symlink(inode, symname, len,
4664                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4665 }
4666 EXPORT_SYMBOL(page_symlink);
4667
4668 const struct inode_operations page_symlink_inode_operations = {
4669         .readlink       = generic_readlink,
4670         .get_link       = page_get_link,
4671 };
4672 EXPORT_SYMBOL(page_symlink_inode_operations);