Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34         WARN_ON(transaction->use_count == 0);
35         transaction->use_count--;
36         if (transaction->use_count == 0) {
37                 list_del_init(&transaction->list);
38                 memset(transaction, 0, sizeof(*transaction));
39                 kmem_cache_free(btrfs_transaction_cachep, transaction);
40         }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45         free_extent_buffer(root->commit_root);
46         root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54         struct btrfs_transaction *cur_trans;
55         cur_trans = root->fs_info->running_transaction;
56         if (!cur_trans) {
57                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58                                              GFP_NOFS);
59                 BUG_ON(!cur_trans);
60                 root->fs_info->generation++;
61                 cur_trans->num_writers = 1;
62                 cur_trans->num_joined = 0;
63                 cur_trans->transid = root->fs_info->generation;
64                 init_waitqueue_head(&cur_trans->writer_wait);
65                 init_waitqueue_head(&cur_trans->commit_wait);
66                 cur_trans->in_commit = 0;
67                 cur_trans->blocked = 0;
68                 cur_trans->use_count = 1;
69                 cur_trans->commit_done = 0;
70                 cur_trans->start_time = get_seconds();
71
72                 cur_trans->delayed_refs.root.rb_node = NULL;
73                 cur_trans->delayed_refs.num_entries = 0;
74                 cur_trans->delayed_refs.num_heads_ready = 0;
75                 cur_trans->delayed_refs.num_heads = 0;
76                 cur_trans->delayed_refs.flushing = 0;
77                 cur_trans->delayed_refs.run_delayed_start = 0;
78                 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82                 extent_io_tree_init(&cur_trans->dirty_pages,
83                                      root->fs_info->btree_inode->i_mapping,
84                                      GFP_NOFS);
85                 spin_lock(&root->fs_info->new_trans_lock);
86                 root->fs_info->running_transaction = cur_trans;
87                 spin_unlock(&root->fs_info->new_trans_lock);
88         } else {
89                 cur_trans->num_writers++;
90                 cur_trans->num_joined++;
91         }
92
93         return 0;
94 }
95
96 /*
97  * this does all the record keeping required to make sure that a reference
98  * counted root is properly recorded in a given transaction.  This is required
99  * to make sure the old root from before we joined the transaction is deleted
100  * when the transaction commits
101  */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103                                          struct btrfs_root *root)
104 {
105         if (root->ref_cows && root->last_trans < trans->transid) {
106                 WARN_ON(root == root->fs_info->extent_root);
107                 WARN_ON(root->commit_root != root->node);
108
109                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110                            (unsigned long)root->root_key.objectid,
111                            BTRFS_ROOT_TRANS_TAG);
112                 root->last_trans = trans->transid;
113                 btrfs_init_reloc_root(trans, root);
114         }
115         return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119                                struct btrfs_root *root)
120 {
121         if (!root->ref_cows)
122                 return 0;
123
124         mutex_lock(&root->fs_info->trans_mutex);
125         if (root->last_trans == trans->transid) {
126                 mutex_unlock(&root->fs_info->trans_mutex);
127                 return 0;
128         }
129
130         record_root_in_trans(trans, root);
131         mutex_unlock(&root->fs_info->trans_mutex);
132         return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136  * when this is done, it is safe to start a new transaction, but the current
137  * transaction might not be fully on disk.
138  */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141         struct btrfs_transaction *cur_trans;
142
143         cur_trans = root->fs_info->running_transaction;
144         if (cur_trans && cur_trans->blocked) {
145                 DEFINE_WAIT(wait);
146                 cur_trans->use_count++;
147                 while (1) {
148                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149                                         TASK_UNINTERRUPTIBLE);
150                         if (cur_trans->blocked) {
151                                 mutex_unlock(&root->fs_info->trans_mutex);
152                                 schedule();
153                                 mutex_lock(&root->fs_info->trans_mutex);
154                                 finish_wait(&root->fs_info->transaction_wait,
155                                             &wait);
156                         } else {
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                                 break;
160                         }
161                 }
162                 put_transaction(cur_trans);
163         }
164 }
165
166 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
167                                              int num_blocks, int wait)
168 {
169         struct btrfs_trans_handle *h =
170                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
171         int ret;
172
173         mutex_lock(&root->fs_info->trans_mutex);
174         if (!root->fs_info->log_root_recovering &&
175             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
176                 wait_current_trans(root);
177         ret = join_transaction(root);
178         BUG_ON(ret);
179
180         h->transid = root->fs_info->running_transaction->transid;
181         h->transaction = root->fs_info->running_transaction;
182         h->blocks_reserved = num_blocks;
183         h->blocks_used = 0;
184         h->block_group = 0;
185         h->alloc_exclude_nr = 0;
186         h->alloc_exclude_start = 0;
187         h->delayed_ref_updates = 0;
188
189         if (!current->journal_info)
190                 current->journal_info = h;
191
192         root->fs_info->running_transaction->use_count++;
193         record_root_in_trans(h, root);
194         mutex_unlock(&root->fs_info->trans_mutex);
195         return h;
196 }
197
198 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
199                                                    int num_blocks)
200 {
201         return start_transaction(root, num_blocks, 1);
202 }
203 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
204                                                    int num_blocks)
205 {
206         return start_transaction(root, num_blocks, 0);
207 }
208
209 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
210                                                          int num_blocks)
211 {
212         return start_transaction(r, num_blocks, 2);
213 }
214
215 /* wait for a transaction commit to be fully complete */
216 static noinline int wait_for_commit(struct btrfs_root *root,
217                                     struct btrfs_transaction *commit)
218 {
219         DEFINE_WAIT(wait);
220         mutex_lock(&root->fs_info->trans_mutex);
221         while (!commit->commit_done) {
222                 prepare_to_wait(&commit->commit_wait, &wait,
223                                 TASK_UNINTERRUPTIBLE);
224                 if (commit->commit_done)
225                         break;
226                 mutex_unlock(&root->fs_info->trans_mutex);
227                 schedule();
228                 mutex_lock(&root->fs_info->trans_mutex);
229         }
230         mutex_unlock(&root->fs_info->trans_mutex);
231         finish_wait(&commit->commit_wait, &wait);
232         return 0;
233 }
234
235 #if 0
236 /*
237  * rate limit against the drop_snapshot code.  This helps to slow down new
238  * operations if the drop_snapshot code isn't able to keep up.
239  */
240 static void throttle_on_drops(struct btrfs_root *root)
241 {
242         struct btrfs_fs_info *info = root->fs_info;
243         int harder_count = 0;
244
245 harder:
246         if (atomic_read(&info->throttles)) {
247                 DEFINE_WAIT(wait);
248                 int thr;
249                 thr = atomic_read(&info->throttle_gen);
250
251                 do {
252                         prepare_to_wait(&info->transaction_throttle,
253                                         &wait, TASK_UNINTERRUPTIBLE);
254                         if (!atomic_read(&info->throttles)) {
255                                 finish_wait(&info->transaction_throttle, &wait);
256                                 break;
257                         }
258                         schedule();
259                         finish_wait(&info->transaction_throttle, &wait);
260                 } while (thr == atomic_read(&info->throttle_gen));
261                 harder_count++;
262
263                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
264                     harder_count < 2)
265                         goto harder;
266
267                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
268                     harder_count < 10)
269                         goto harder;
270
271                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
272                     harder_count < 20)
273                         goto harder;
274         }
275 }
276 #endif
277
278 void btrfs_throttle(struct btrfs_root *root)
279 {
280         mutex_lock(&root->fs_info->trans_mutex);
281         if (!root->fs_info->open_ioctl_trans)
282                 wait_current_trans(root);
283         mutex_unlock(&root->fs_info->trans_mutex);
284 }
285
286 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
287                           struct btrfs_root *root, int throttle)
288 {
289         struct btrfs_transaction *cur_trans;
290         struct btrfs_fs_info *info = root->fs_info;
291         int count = 0;
292
293         while (count < 4) {
294                 unsigned long cur = trans->delayed_ref_updates;
295                 trans->delayed_ref_updates = 0;
296                 if (cur &&
297                     trans->transaction->delayed_refs.num_heads_ready > 64) {
298                         trans->delayed_ref_updates = 0;
299
300                         /*
301                          * do a full flush if the transaction is trying
302                          * to close
303                          */
304                         if (trans->transaction->delayed_refs.flushing)
305                                 cur = 0;
306                         btrfs_run_delayed_refs(trans, root, cur);
307                 } else {
308                         break;
309                 }
310                 count++;
311         }
312
313         mutex_lock(&info->trans_mutex);
314         cur_trans = info->running_transaction;
315         WARN_ON(cur_trans != trans->transaction);
316         WARN_ON(cur_trans->num_writers < 1);
317         cur_trans->num_writers--;
318
319         if (waitqueue_active(&cur_trans->writer_wait))
320                 wake_up(&cur_trans->writer_wait);
321         put_transaction(cur_trans);
322         mutex_unlock(&info->trans_mutex);
323
324         if (current->journal_info == trans)
325                 current->journal_info = NULL;
326         memset(trans, 0, sizeof(*trans));
327         kmem_cache_free(btrfs_trans_handle_cachep, trans);
328
329         return 0;
330 }
331
332 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
333                           struct btrfs_root *root)
334 {
335         return __btrfs_end_transaction(trans, root, 0);
336 }
337
338 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
339                                    struct btrfs_root *root)
340 {
341         return __btrfs_end_transaction(trans, root, 1);
342 }
343
344 /*
345  * when btree blocks are allocated, they have some corresponding bits set for
346  * them in one of two extent_io trees.  This is used to make sure all of
347  * those extents are on disk for transaction or log commit
348  */
349 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
350                                         struct extent_io_tree *dirty_pages)
351 {
352         int ret;
353         int err = 0;
354         int werr = 0;
355         struct page *page;
356         struct inode *btree_inode = root->fs_info->btree_inode;
357         u64 start = 0;
358         u64 end;
359         unsigned long index;
360
361         while (1) {
362                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
363                                             EXTENT_DIRTY);
364                 if (ret)
365                         break;
366                 while (start <= end) {
367                         cond_resched();
368
369                         index = start >> PAGE_CACHE_SHIFT;
370                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
371                         page = find_get_page(btree_inode->i_mapping, index);
372                         if (!page)
373                                 continue;
374
375                         btree_lock_page_hook(page);
376                         if (!page->mapping) {
377                                 unlock_page(page);
378                                 page_cache_release(page);
379                                 continue;
380                         }
381
382                         if (PageWriteback(page)) {
383                                 if (PageDirty(page))
384                                         wait_on_page_writeback(page);
385                                 else {
386                                         unlock_page(page);
387                                         page_cache_release(page);
388                                         continue;
389                                 }
390                         }
391                         err = write_one_page(page, 0);
392                         if (err)
393                                 werr = err;
394                         page_cache_release(page);
395                 }
396         }
397         while (1) {
398                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
399                                             EXTENT_DIRTY);
400                 if (ret)
401                         break;
402
403                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
404                 while (start <= end) {
405                         index = start >> PAGE_CACHE_SHIFT;
406                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
407                         page = find_get_page(btree_inode->i_mapping, index);
408                         if (!page)
409                                 continue;
410                         if (PageDirty(page)) {
411                                 btree_lock_page_hook(page);
412                                 wait_on_page_writeback(page);
413                                 err = write_one_page(page, 0);
414                                 if (err)
415                                         werr = err;
416                         }
417                         wait_on_page_writeback(page);
418                         page_cache_release(page);
419                         cond_resched();
420                 }
421         }
422         if (err)
423                 werr = err;
424         return werr;
425 }
426
427 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
428                                      struct btrfs_root *root)
429 {
430         if (!trans || !trans->transaction) {
431                 struct inode *btree_inode;
432                 btree_inode = root->fs_info->btree_inode;
433                 return filemap_write_and_wait(btree_inode->i_mapping);
434         }
435         return btrfs_write_and_wait_marked_extents(root,
436                                            &trans->transaction->dirty_pages);
437 }
438
439 /*
440  * this is used to update the root pointer in the tree of tree roots.
441  *
442  * But, in the case of the extent allocation tree, updating the root
443  * pointer may allocate blocks which may change the root of the extent
444  * allocation tree.
445  *
446  * So, this loops and repeats and makes sure the cowonly root didn't
447  * change while the root pointer was being updated in the metadata.
448  */
449 static int update_cowonly_root(struct btrfs_trans_handle *trans,
450                                struct btrfs_root *root)
451 {
452         int ret;
453         u64 old_root_bytenr;
454         struct btrfs_root *tree_root = root->fs_info->tree_root;
455
456         btrfs_write_dirty_block_groups(trans, root);
457
458         while (1) {
459                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
460                 if (old_root_bytenr == root->node->start)
461                         break;
462
463                 btrfs_set_root_node(&root->root_item, root->node);
464                 ret = btrfs_update_root(trans, tree_root,
465                                         &root->root_key,
466                                         &root->root_item);
467                 BUG_ON(ret);
468
469                 ret = btrfs_write_dirty_block_groups(trans, root);
470                 BUG_ON(ret);
471         }
472
473         if (root != root->fs_info->extent_root)
474                 switch_commit_root(root);
475
476         return 0;
477 }
478
479 /*
480  * update all the cowonly tree roots on disk
481  */
482 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
483                                          struct btrfs_root *root)
484 {
485         struct btrfs_fs_info *fs_info = root->fs_info;
486         struct list_head *next;
487         struct extent_buffer *eb;
488         int ret;
489
490         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
491         BUG_ON(ret);
492
493         eb = btrfs_lock_root_node(fs_info->tree_root);
494         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
495         btrfs_tree_unlock(eb);
496         free_extent_buffer(eb);
497
498         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
499         BUG_ON(ret);
500
501         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
502                 next = fs_info->dirty_cowonly_roots.next;
503                 list_del_init(next);
504                 root = list_entry(next, struct btrfs_root, dirty_list);
505
506                 update_cowonly_root(trans, root);
507         }
508
509         down_write(&fs_info->extent_commit_sem);
510         switch_commit_root(fs_info->extent_root);
511         up_write(&fs_info->extent_commit_sem);
512
513         return 0;
514 }
515
516 /*
517  * dead roots are old snapshots that need to be deleted.  This allocates
518  * a dirty root struct and adds it into the list of dead roots that need to
519  * be deleted
520  */
521 int btrfs_add_dead_root(struct btrfs_root *root)
522 {
523         mutex_lock(&root->fs_info->trans_mutex);
524         list_add(&root->root_list, &root->fs_info->dead_roots);
525         mutex_unlock(&root->fs_info->trans_mutex);
526         return 0;
527 }
528
529 /*
530  * update all the cowonly tree roots on disk
531  */
532 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
533                                     struct btrfs_root *root)
534 {
535         struct btrfs_root *gang[8];
536         struct btrfs_fs_info *fs_info = root->fs_info;
537         int i;
538         int ret;
539         int err = 0;
540
541         while (1) {
542                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
543                                                  (void **)gang, 0,
544                                                  ARRAY_SIZE(gang),
545                                                  BTRFS_ROOT_TRANS_TAG);
546                 if (ret == 0)
547                         break;
548                 for (i = 0; i < ret; i++) {
549                         root = gang[i];
550                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
551                                         (unsigned long)root->root_key.objectid,
552                                         BTRFS_ROOT_TRANS_TAG);
553
554                         btrfs_free_log(trans, root);
555                         btrfs_update_reloc_root(trans, root);
556
557                         if (root->commit_root != root->node) {
558                                 switch_commit_root(root);
559                                 btrfs_set_root_node(&root->root_item,
560                                                     root->node);
561                         }
562
563                         err = btrfs_update_root(trans, fs_info->tree_root,
564                                                 &root->root_key,
565                                                 &root->root_item);
566                         if (err)
567                                 break;
568                 }
569         }
570         return err;
571 }
572
573 /*
574  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
575  * otherwise every leaf in the btree is read and defragged.
576  */
577 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
578 {
579         struct btrfs_fs_info *info = root->fs_info;
580         int ret;
581         struct btrfs_trans_handle *trans;
582         unsigned long nr;
583
584         smp_mb();
585         if (root->defrag_running)
586                 return 0;
587         trans = btrfs_start_transaction(root, 1);
588         while (1) {
589                 root->defrag_running = 1;
590                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
591                 nr = trans->blocks_used;
592                 btrfs_end_transaction(trans, root);
593                 btrfs_btree_balance_dirty(info->tree_root, nr);
594                 cond_resched();
595
596                 trans = btrfs_start_transaction(root, 1);
597                 if (root->fs_info->closing || ret != -EAGAIN)
598                         break;
599         }
600         root->defrag_running = 0;
601         smp_mb();
602         btrfs_end_transaction(trans, root);
603         return 0;
604 }
605
606 #if 0
607 /*
608  * when dropping snapshots, we generate a ton of delayed refs, and it makes
609  * sense not to join the transaction while it is trying to flush the current
610  * queue of delayed refs out.
611  *
612  * This is used by the drop snapshot code only
613  */
614 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
615 {
616         DEFINE_WAIT(wait);
617
618         mutex_lock(&info->trans_mutex);
619         while (info->running_transaction &&
620                info->running_transaction->delayed_refs.flushing) {
621                 prepare_to_wait(&info->transaction_wait, &wait,
622                                 TASK_UNINTERRUPTIBLE);
623                 mutex_unlock(&info->trans_mutex);
624
625                 schedule();
626
627                 mutex_lock(&info->trans_mutex);
628                 finish_wait(&info->transaction_wait, &wait);
629         }
630         mutex_unlock(&info->trans_mutex);
631         return 0;
632 }
633
634 /*
635  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
636  * all of them
637  */
638 int btrfs_drop_dead_root(struct btrfs_root *root)
639 {
640         struct btrfs_trans_handle *trans;
641         struct btrfs_root *tree_root = root->fs_info->tree_root;
642         unsigned long nr;
643         int ret;
644
645         while (1) {
646                 /*
647                  * we don't want to jump in and create a bunch of
648                  * delayed refs if the transaction is starting to close
649                  */
650                 wait_transaction_pre_flush(tree_root->fs_info);
651                 trans = btrfs_start_transaction(tree_root, 1);
652
653                 /*
654                  * we've joined a transaction, make sure it isn't
655                  * closing right now
656                  */
657                 if (trans->transaction->delayed_refs.flushing) {
658                         btrfs_end_transaction(trans, tree_root);
659                         continue;
660                 }
661
662                 ret = btrfs_drop_snapshot(trans, root);
663                 if (ret != -EAGAIN)
664                         break;
665
666                 ret = btrfs_update_root(trans, tree_root,
667                                         &root->root_key,
668                                         &root->root_item);
669                 if (ret)
670                         break;
671
672                 nr = trans->blocks_used;
673                 ret = btrfs_end_transaction(trans, tree_root);
674                 BUG_ON(ret);
675
676                 btrfs_btree_balance_dirty(tree_root, nr);
677                 cond_resched();
678         }
679         BUG_ON(ret);
680
681         ret = btrfs_del_root(trans, tree_root, &root->root_key);
682         BUG_ON(ret);
683
684         nr = trans->blocks_used;
685         ret = btrfs_end_transaction(trans, tree_root);
686         BUG_ON(ret);
687
688         free_extent_buffer(root->node);
689         free_extent_buffer(root->commit_root);
690         kfree(root);
691
692         btrfs_btree_balance_dirty(tree_root, nr);
693         return ret;
694 }
695 #endif
696
697 /*
698  * new snapshots need to be created at a very specific time in the
699  * transaction commit.  This does the actual creation
700  */
701 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
702                                    struct btrfs_fs_info *fs_info,
703                                    struct btrfs_pending_snapshot *pending)
704 {
705         struct btrfs_key key;
706         struct btrfs_root_item *new_root_item;
707         struct btrfs_root *tree_root = fs_info->tree_root;
708         struct btrfs_root *root = pending->root;
709         struct extent_buffer *tmp;
710         struct extent_buffer *old;
711         int ret;
712         u64 objectid;
713
714         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
715         if (!new_root_item) {
716                 ret = -ENOMEM;
717                 goto fail;
718         }
719         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
720         if (ret)
721                 goto fail;
722
723         record_root_in_trans(trans, root);
724         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
725         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
726
727         key.objectid = objectid;
728         /* record when the snapshot was created in key.offset */
729         key.offset = trans->transid;
730         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
731
732         old = btrfs_lock_root_node(root);
733         btrfs_cow_block(trans, root, old, NULL, 0, &old);
734         btrfs_set_lock_blocking(old);
735
736         btrfs_copy_root(trans, root, old, &tmp, objectid);
737         btrfs_tree_unlock(old);
738         free_extent_buffer(old);
739
740         btrfs_set_root_node(new_root_item, tmp);
741         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
742                                 new_root_item);
743         btrfs_tree_unlock(tmp);
744         free_extent_buffer(tmp);
745         if (ret)
746                 goto fail;
747
748         key.offset = (u64)-1;
749         memcpy(&pending->root_key, &key, sizeof(key));
750 fail:
751         kfree(new_root_item);
752         btrfs_unreserve_metadata_space(root, 6);
753         return ret;
754 }
755
756 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
757                                    struct btrfs_pending_snapshot *pending)
758 {
759         int ret;
760         int namelen;
761         u64 index = 0;
762         struct btrfs_trans_handle *trans;
763         struct inode *parent_inode;
764         struct inode *inode;
765         struct btrfs_root *parent_root;
766
767         parent_inode = pending->dentry->d_parent->d_inode;
768         parent_root = BTRFS_I(parent_inode)->root;
769         trans = btrfs_join_transaction(parent_root, 1);
770
771         /*
772          * insert the directory item
773          */
774         namelen = strlen(pending->name);
775         ret = btrfs_set_inode_index(parent_inode, &index);
776         ret = btrfs_insert_dir_item(trans, parent_root,
777                             pending->name, namelen,
778                             parent_inode->i_ino,
779                             &pending->root_key, BTRFS_FT_DIR, index);
780
781         if (ret)
782                 goto fail;
783
784         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
785         ret = btrfs_update_inode(trans, parent_root, parent_inode);
786         BUG_ON(ret);
787
788         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
789                                  pending->root_key.objectid,
790                                  parent_root->root_key.objectid,
791                                  parent_inode->i_ino, index, pending->name,
792                                  namelen);
793
794         BUG_ON(ret);
795
796         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
797         d_instantiate(pending->dentry, inode);
798 fail:
799         btrfs_end_transaction(trans, fs_info->fs_root);
800         return ret;
801 }
802
803 /*
804  * create all the snapshots we've scheduled for creation
805  */
806 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
807                                              struct btrfs_fs_info *fs_info)
808 {
809         struct btrfs_pending_snapshot *pending;
810         struct list_head *head = &trans->transaction->pending_snapshots;
811         int ret;
812
813         list_for_each_entry(pending, head, list) {
814                 ret = create_pending_snapshot(trans, fs_info, pending);
815                 BUG_ON(ret);
816         }
817         return 0;
818 }
819
820 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
821                                              struct btrfs_fs_info *fs_info)
822 {
823         struct btrfs_pending_snapshot *pending;
824         struct list_head *head = &trans->transaction->pending_snapshots;
825         int ret;
826
827         while (!list_empty(head)) {
828                 pending = list_entry(head->next,
829                                      struct btrfs_pending_snapshot, list);
830                 ret = finish_pending_snapshot(fs_info, pending);
831                 BUG_ON(ret);
832                 list_del(&pending->list);
833                 kfree(pending->name);
834                 kfree(pending);
835         }
836         return 0;
837 }
838
839 static void update_super_roots(struct btrfs_root *root)
840 {
841         struct btrfs_root_item *root_item;
842         struct btrfs_super_block *super;
843
844         super = &root->fs_info->super_copy;
845
846         root_item = &root->fs_info->chunk_root->root_item;
847         super->chunk_root = root_item->bytenr;
848         super->chunk_root_generation = root_item->generation;
849         super->chunk_root_level = root_item->level;
850
851         root_item = &root->fs_info->tree_root->root_item;
852         super->root = root_item->bytenr;
853         super->generation = root_item->generation;
854         super->root_level = root_item->level;
855 }
856
857 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
858 {
859         int ret = 0;
860         spin_lock(&info->new_trans_lock);
861         if (info->running_transaction)
862                 ret = info->running_transaction->in_commit;
863         spin_unlock(&info->new_trans_lock);
864         return ret;
865 }
866
867 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
868                              struct btrfs_root *root)
869 {
870         unsigned long joined = 0;
871         unsigned long timeout = 1;
872         struct btrfs_transaction *cur_trans;
873         struct btrfs_transaction *prev_trans = NULL;
874         DEFINE_WAIT(wait);
875         int ret;
876         int should_grow = 0;
877         unsigned long now = get_seconds();
878         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
879
880         btrfs_run_ordered_operations(root, 0);
881
882         /* make a pass through all the delayed refs we have so far
883          * any runnings procs may add more while we are here
884          */
885         ret = btrfs_run_delayed_refs(trans, root, 0);
886         BUG_ON(ret);
887
888         cur_trans = trans->transaction;
889         /*
890          * set the flushing flag so procs in this transaction have to
891          * start sending their work down.
892          */
893         cur_trans->delayed_refs.flushing = 1;
894
895         ret = btrfs_run_delayed_refs(trans, root, 0);
896         BUG_ON(ret);
897
898         mutex_lock(&root->fs_info->trans_mutex);
899         if (cur_trans->in_commit) {
900                 cur_trans->use_count++;
901                 mutex_unlock(&root->fs_info->trans_mutex);
902                 btrfs_end_transaction(trans, root);
903
904                 ret = wait_for_commit(root, cur_trans);
905                 BUG_ON(ret);
906
907                 mutex_lock(&root->fs_info->trans_mutex);
908                 put_transaction(cur_trans);
909                 mutex_unlock(&root->fs_info->trans_mutex);
910
911                 return 0;
912         }
913
914         trans->transaction->in_commit = 1;
915         trans->transaction->blocked = 1;
916         if (cur_trans->list.prev != &root->fs_info->trans_list) {
917                 prev_trans = list_entry(cur_trans->list.prev,
918                                         struct btrfs_transaction, list);
919                 if (!prev_trans->commit_done) {
920                         prev_trans->use_count++;
921                         mutex_unlock(&root->fs_info->trans_mutex);
922
923                         wait_for_commit(root, prev_trans);
924
925                         mutex_lock(&root->fs_info->trans_mutex);
926                         put_transaction(prev_trans);
927                 }
928         }
929
930         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
931                 should_grow = 1;
932
933         do {
934                 int snap_pending = 0;
935                 joined = cur_trans->num_joined;
936                 if (!list_empty(&trans->transaction->pending_snapshots))
937                         snap_pending = 1;
938
939                 WARN_ON(cur_trans != trans->transaction);
940                 prepare_to_wait(&cur_trans->writer_wait, &wait,
941                                 TASK_UNINTERRUPTIBLE);
942
943                 if (cur_trans->num_writers > 1)
944                         timeout = MAX_SCHEDULE_TIMEOUT;
945                 else if (should_grow)
946                         timeout = 1;
947
948                 mutex_unlock(&root->fs_info->trans_mutex);
949
950                 if (flush_on_commit) {
951                         btrfs_start_delalloc_inodes(root);
952                         ret = btrfs_wait_ordered_extents(root, 0);
953                         BUG_ON(ret);
954                 } else if (snap_pending) {
955                         ret = btrfs_wait_ordered_extents(root, 1);
956                         BUG_ON(ret);
957                 }
958
959                 /*
960                  * rename don't use btrfs_join_transaction, so, once we
961                  * set the transaction to blocked above, we aren't going
962                  * to get any new ordered operations.  We can safely run
963                  * it here and no for sure that nothing new will be added
964                  * to the list
965                  */
966                 btrfs_run_ordered_operations(root, 1);
967
968                 smp_mb();
969                 if (cur_trans->num_writers > 1 || should_grow)
970                         schedule_timeout(timeout);
971
972                 mutex_lock(&root->fs_info->trans_mutex);
973                 finish_wait(&cur_trans->writer_wait, &wait);
974         } while (cur_trans->num_writers > 1 ||
975                  (should_grow && cur_trans->num_joined != joined));
976
977         ret = create_pending_snapshots(trans, root->fs_info);
978         BUG_ON(ret);
979
980         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
981         BUG_ON(ret);
982
983         WARN_ON(cur_trans != trans->transaction);
984
985         /* btrfs_commit_tree_roots is responsible for getting the
986          * various roots consistent with each other.  Every pointer
987          * in the tree of tree roots has to point to the most up to date
988          * root for every subvolume and other tree.  So, we have to keep
989          * the tree logging code from jumping in and changing any
990          * of the trees.
991          *
992          * At this point in the commit, there can't be any tree-log
993          * writers, but a little lower down we drop the trans mutex
994          * and let new people in.  By holding the tree_log_mutex
995          * from now until after the super is written, we avoid races
996          * with the tree-log code.
997          */
998         mutex_lock(&root->fs_info->tree_log_mutex);
999
1000         ret = commit_fs_roots(trans, root);
1001         BUG_ON(ret);
1002
1003         /* commit_fs_roots gets rid of all the tree log roots, it is now
1004          * safe to free the root of tree log roots
1005          */
1006         btrfs_free_log_root_tree(trans, root->fs_info);
1007
1008         ret = commit_cowonly_roots(trans, root);
1009         BUG_ON(ret);
1010
1011         btrfs_prepare_extent_commit(trans, root);
1012
1013         cur_trans = root->fs_info->running_transaction;
1014         spin_lock(&root->fs_info->new_trans_lock);
1015         root->fs_info->running_transaction = NULL;
1016         spin_unlock(&root->fs_info->new_trans_lock);
1017
1018         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1019                             root->fs_info->tree_root->node);
1020         switch_commit_root(root->fs_info->tree_root);
1021
1022         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1023                             root->fs_info->chunk_root->node);
1024         switch_commit_root(root->fs_info->chunk_root);
1025
1026         update_super_roots(root);
1027
1028         if (!root->fs_info->log_root_recovering) {
1029                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1030                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1031         }
1032
1033         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1034                sizeof(root->fs_info->super_copy));
1035
1036         trans->transaction->blocked = 0;
1037
1038         wake_up(&root->fs_info->transaction_wait);
1039
1040         mutex_unlock(&root->fs_info->trans_mutex);
1041         ret = btrfs_write_and_wait_transaction(trans, root);
1042         BUG_ON(ret);
1043         write_ctree_super(trans, root, 0);
1044
1045         /*
1046          * the super is written, we can safely allow the tree-loggers
1047          * to go about their business
1048          */
1049         mutex_unlock(&root->fs_info->tree_log_mutex);
1050
1051         btrfs_finish_extent_commit(trans, root);
1052
1053         /* do the directory inserts of any pending snapshot creations */
1054         finish_pending_snapshots(trans, root->fs_info);
1055
1056         mutex_lock(&root->fs_info->trans_mutex);
1057
1058         cur_trans->commit_done = 1;
1059
1060         root->fs_info->last_trans_committed = cur_trans->transid;
1061
1062         wake_up(&cur_trans->commit_wait);
1063
1064         put_transaction(cur_trans);
1065         put_transaction(cur_trans);
1066
1067         mutex_unlock(&root->fs_info->trans_mutex);
1068
1069         if (current->journal_info == trans)
1070                 current->journal_info = NULL;
1071
1072         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1073         return ret;
1074 }
1075
1076 /*
1077  * interface function to delete all the snapshots we have scheduled for deletion
1078  */
1079 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1080 {
1081         LIST_HEAD(list);
1082         struct btrfs_fs_info *fs_info = root->fs_info;
1083
1084         mutex_lock(&fs_info->trans_mutex);
1085         list_splice_init(&fs_info->dead_roots, &list);
1086         mutex_unlock(&fs_info->trans_mutex);
1087
1088         while (!list_empty(&list)) {
1089                 root = list_entry(list.next, struct btrfs_root, root_list);
1090                 list_del(&root->root_list);
1091
1092                 if (btrfs_header_backref_rev(root->node) <
1093                     BTRFS_MIXED_BACKREF_REV)
1094                         btrfs_drop_snapshot(root, 0);
1095                 else
1096                         btrfs_drop_snapshot(root, 1);
1097         }
1098         return 0;
1099 }