Btrfs: make sure all dirty blocks are written at commit time
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34         WARN_ON(transaction->use_count == 0);
35         transaction->use_count--;
36         if (transaction->use_count == 0) {
37                 list_del_init(&transaction->list);
38                 memset(transaction, 0, sizeof(*transaction));
39                 kmem_cache_free(btrfs_transaction_cachep, transaction);
40         }
41 }
42
43 /*
44  * either allocate a new transaction or hop into the existing one
45  */
46 static noinline int join_transaction(struct btrfs_root *root)
47 {
48         struct btrfs_transaction *cur_trans;
49         cur_trans = root->fs_info->running_transaction;
50         if (!cur_trans) {
51                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
52                                              GFP_NOFS);
53                 BUG_ON(!cur_trans);
54                 root->fs_info->generation++;
55                 cur_trans->num_writers = 1;
56                 cur_trans->num_joined = 0;
57                 cur_trans->transid = root->fs_info->generation;
58                 init_waitqueue_head(&cur_trans->writer_wait);
59                 init_waitqueue_head(&cur_trans->commit_wait);
60                 cur_trans->in_commit = 0;
61                 cur_trans->blocked = 0;
62                 cur_trans->use_count = 1;
63                 cur_trans->commit_done = 0;
64                 cur_trans->start_time = get_seconds();
65
66                 cur_trans->delayed_refs.root.rb_node = NULL;
67                 cur_trans->delayed_refs.num_entries = 0;
68                 cur_trans->delayed_refs.num_heads_ready = 0;
69                 cur_trans->delayed_refs.num_heads = 0;
70                 cur_trans->delayed_refs.flushing = 0;
71                 cur_trans->delayed_refs.run_delayed_start = 0;
72                 spin_lock_init(&cur_trans->delayed_refs.lock);
73
74                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
75                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
76                 extent_io_tree_init(&cur_trans->dirty_pages,
77                                      root->fs_info->btree_inode->i_mapping,
78                                      GFP_NOFS);
79                 spin_lock(&root->fs_info->new_trans_lock);
80                 root->fs_info->running_transaction = cur_trans;
81                 spin_unlock(&root->fs_info->new_trans_lock);
82         } else {
83                 cur_trans->num_writers++;
84                 cur_trans->num_joined++;
85         }
86
87         return 0;
88 }
89
90 /*
91  * this does all the record keeping required to make sure that a reference
92  * counted root is properly recorded in a given transaction.  This is required
93  * to make sure the old root from before we joined the transaction is deleted
94  * when the transaction commits
95  */
96 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
97                                          struct btrfs_root *root)
98 {
99         if (root->ref_cows && root->last_trans < trans->transid) {
100                 WARN_ON(root == root->fs_info->extent_root);
101                 WARN_ON(root->root_item.refs == 0);
102                 WARN_ON(root->commit_root != root->node);
103
104                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
105                            (unsigned long)root->root_key.objectid,
106                            BTRFS_ROOT_TRANS_TAG);
107                 root->last_trans = trans->transid;
108                 btrfs_init_reloc_root(trans, root);
109         }
110         return 0;
111 }
112
113 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
114                                struct btrfs_root *root)
115 {
116         if (!root->ref_cows)
117                 return 0;
118
119         mutex_lock(&root->fs_info->trans_mutex);
120         if (root->last_trans == trans->transid) {
121                 mutex_unlock(&root->fs_info->trans_mutex);
122                 return 0;
123         }
124
125         record_root_in_trans(trans, root);
126         mutex_unlock(&root->fs_info->trans_mutex);
127         return 0;
128 }
129
130 /* wait for commit against the current transaction to become unblocked
131  * when this is done, it is safe to start a new transaction, but the current
132  * transaction might not be fully on disk.
133  */
134 static void wait_current_trans(struct btrfs_root *root)
135 {
136         struct btrfs_transaction *cur_trans;
137
138         cur_trans = root->fs_info->running_transaction;
139         if (cur_trans && cur_trans->blocked) {
140                 DEFINE_WAIT(wait);
141                 cur_trans->use_count++;
142                 while (1) {
143                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
144                                         TASK_UNINTERRUPTIBLE);
145                         if (cur_trans->blocked) {
146                                 mutex_unlock(&root->fs_info->trans_mutex);
147                                 schedule();
148                                 mutex_lock(&root->fs_info->trans_mutex);
149                                 finish_wait(&root->fs_info->transaction_wait,
150                                             &wait);
151                         } else {
152                                 finish_wait(&root->fs_info->transaction_wait,
153                                             &wait);
154                                 break;
155                         }
156                 }
157                 put_transaction(cur_trans);
158         }
159 }
160
161 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
162                                              int num_blocks, int wait)
163 {
164         struct btrfs_trans_handle *h =
165                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
166         int ret;
167
168         mutex_lock(&root->fs_info->trans_mutex);
169         if (!root->fs_info->log_root_recovering &&
170             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
171                 wait_current_trans(root);
172         ret = join_transaction(root);
173         BUG_ON(ret);
174
175         h->transid = root->fs_info->running_transaction->transid;
176         h->transaction = root->fs_info->running_transaction;
177         h->blocks_reserved = num_blocks;
178         h->blocks_used = 0;
179         h->block_group = 0;
180         h->alloc_exclude_nr = 0;
181         h->alloc_exclude_start = 0;
182         h->delayed_ref_updates = 0;
183
184         root->fs_info->running_transaction->use_count++;
185         record_root_in_trans(h, root);
186         mutex_unlock(&root->fs_info->trans_mutex);
187         return h;
188 }
189
190 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
191                                                    int num_blocks)
192 {
193         return start_transaction(root, num_blocks, 1);
194 }
195 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
196                                                    int num_blocks)
197 {
198         return start_transaction(root, num_blocks, 0);
199 }
200
201 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
202                                                          int num_blocks)
203 {
204         return start_transaction(r, num_blocks, 2);
205 }
206
207 /* wait for a transaction commit to be fully complete */
208 static noinline int wait_for_commit(struct btrfs_root *root,
209                                     struct btrfs_transaction *commit)
210 {
211         DEFINE_WAIT(wait);
212         mutex_lock(&root->fs_info->trans_mutex);
213         while (!commit->commit_done) {
214                 prepare_to_wait(&commit->commit_wait, &wait,
215                                 TASK_UNINTERRUPTIBLE);
216                 if (commit->commit_done)
217                         break;
218                 mutex_unlock(&root->fs_info->trans_mutex);
219                 schedule();
220                 mutex_lock(&root->fs_info->trans_mutex);
221         }
222         mutex_unlock(&root->fs_info->trans_mutex);
223         finish_wait(&commit->commit_wait, &wait);
224         return 0;
225 }
226
227 #if 0
228 /*
229  * rate limit against the drop_snapshot code.  This helps to slow down new
230  * operations if the drop_snapshot code isn't able to keep up.
231  */
232 static void throttle_on_drops(struct btrfs_root *root)
233 {
234         struct btrfs_fs_info *info = root->fs_info;
235         int harder_count = 0;
236
237 harder:
238         if (atomic_read(&info->throttles)) {
239                 DEFINE_WAIT(wait);
240                 int thr;
241                 thr = atomic_read(&info->throttle_gen);
242
243                 do {
244                         prepare_to_wait(&info->transaction_throttle,
245                                         &wait, TASK_UNINTERRUPTIBLE);
246                         if (!atomic_read(&info->throttles)) {
247                                 finish_wait(&info->transaction_throttle, &wait);
248                                 break;
249                         }
250                         schedule();
251                         finish_wait(&info->transaction_throttle, &wait);
252                 } while (thr == atomic_read(&info->throttle_gen));
253                 harder_count++;
254
255                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
256                     harder_count < 2)
257                         goto harder;
258
259                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
260                     harder_count < 10)
261                         goto harder;
262
263                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
264                     harder_count < 20)
265                         goto harder;
266         }
267 }
268 #endif
269
270 void btrfs_throttle(struct btrfs_root *root)
271 {
272         mutex_lock(&root->fs_info->trans_mutex);
273         if (!root->fs_info->open_ioctl_trans)
274                 wait_current_trans(root);
275         mutex_unlock(&root->fs_info->trans_mutex);
276 }
277
278 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
279                           struct btrfs_root *root, int throttle)
280 {
281         struct btrfs_transaction *cur_trans;
282         struct btrfs_fs_info *info = root->fs_info;
283         int count = 0;
284
285         while (count < 4) {
286                 unsigned long cur = trans->delayed_ref_updates;
287                 trans->delayed_ref_updates = 0;
288                 if (cur &&
289                     trans->transaction->delayed_refs.num_heads_ready > 64) {
290                         trans->delayed_ref_updates = 0;
291
292                         /*
293                          * do a full flush if the transaction is trying
294                          * to close
295                          */
296                         if (trans->transaction->delayed_refs.flushing)
297                                 cur = 0;
298                         btrfs_run_delayed_refs(trans, root, cur);
299                 } else {
300                         break;
301                 }
302                 count++;
303         }
304
305         mutex_lock(&info->trans_mutex);
306         cur_trans = info->running_transaction;
307         WARN_ON(cur_trans != trans->transaction);
308         WARN_ON(cur_trans->num_writers < 1);
309         cur_trans->num_writers--;
310
311         if (waitqueue_active(&cur_trans->writer_wait))
312                 wake_up(&cur_trans->writer_wait);
313         put_transaction(cur_trans);
314         mutex_unlock(&info->trans_mutex);
315         memset(trans, 0, sizeof(*trans));
316         kmem_cache_free(btrfs_trans_handle_cachep, trans);
317
318         return 0;
319 }
320
321 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
322                           struct btrfs_root *root)
323 {
324         return __btrfs_end_transaction(trans, root, 0);
325 }
326
327 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
328                                    struct btrfs_root *root)
329 {
330         return __btrfs_end_transaction(trans, root, 1);
331 }
332
333 /*
334  * when btree blocks are allocated, they have some corresponding bits set for
335  * them in one of two extent_io trees.  This is used to make sure all of
336  * those extents are on disk for transaction or log commit
337  */
338 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
339                                         struct extent_io_tree *dirty_pages)
340 {
341         int ret;
342         int err = 0;
343         int werr = 0;
344         struct page *page;
345         struct inode *btree_inode = root->fs_info->btree_inode;
346         u64 start = 0;
347         u64 end;
348         unsigned long index;
349
350         while (1) {
351                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
352                                             EXTENT_DIRTY);
353                 if (ret)
354                         break;
355                 while (start <= end) {
356                         cond_resched();
357
358                         index = start >> PAGE_CACHE_SHIFT;
359                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
360                         page = find_get_page(btree_inode->i_mapping, index);
361                         if (!page)
362                                 continue;
363
364                         btree_lock_page_hook(page);
365                         if (!page->mapping) {
366                                 unlock_page(page);
367                                 page_cache_release(page);
368                                 continue;
369                         }
370
371                         if (PageWriteback(page)) {
372                                 if (PageDirty(page))
373                                         wait_on_page_writeback(page);
374                                 else {
375                                         unlock_page(page);
376                                         page_cache_release(page);
377                                         continue;
378                                 }
379                         }
380                         err = write_one_page(page, 0);
381                         if (err)
382                                 werr = err;
383                         page_cache_release(page);
384                 }
385         }
386         while (1) {
387                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
388                                             EXTENT_DIRTY);
389                 if (ret)
390                         break;
391
392                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
393                 while (start <= end) {
394                         index = start >> PAGE_CACHE_SHIFT;
395                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
396                         page = find_get_page(btree_inode->i_mapping, index);
397                         if (!page)
398                                 continue;
399                         if (PageDirty(page)) {
400                                 btree_lock_page_hook(page);
401                                 wait_on_page_writeback(page);
402                                 err = write_one_page(page, 0);
403                                 if (err)
404                                         werr = err;
405                         }
406                         wait_on_page_writeback(page);
407                         page_cache_release(page);
408                         cond_resched();
409                 }
410         }
411         if (err)
412                 werr = err;
413         return werr;
414 }
415
416 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
417                                      struct btrfs_root *root)
418 {
419         if (!trans || !trans->transaction) {
420                 struct inode *btree_inode;
421                 btree_inode = root->fs_info->btree_inode;
422                 return filemap_write_and_wait(btree_inode->i_mapping);
423         }
424         return btrfs_write_and_wait_marked_extents(root,
425                                            &trans->transaction->dirty_pages);
426 }
427
428 /*
429  * this is used to update the root pointer in the tree of tree roots.
430  *
431  * But, in the case of the extent allocation tree, updating the root
432  * pointer may allocate blocks which may change the root of the extent
433  * allocation tree.
434  *
435  * So, this loops and repeats and makes sure the cowonly root didn't
436  * change while the root pointer was being updated in the metadata.
437  */
438 static int update_cowonly_root(struct btrfs_trans_handle *trans,
439                                struct btrfs_root *root)
440 {
441         int ret;
442         u64 old_root_bytenr;
443         struct btrfs_root *tree_root = root->fs_info->tree_root;
444
445         btrfs_write_dirty_block_groups(trans, root);
446
447         while (1) {
448                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
449                 if (old_root_bytenr == root->node->start)
450                         break;
451
452                 btrfs_set_root_node(&root->root_item, root->node);
453                 ret = btrfs_update_root(trans, tree_root,
454                                         &root->root_key,
455                                         &root->root_item);
456                 BUG_ON(ret);
457
458                 ret = btrfs_write_dirty_block_groups(trans, root);
459                 BUG_ON(ret);
460         }
461         free_extent_buffer(root->commit_root);
462         root->commit_root = btrfs_root_node(root);
463         return 0;
464 }
465
466 /*
467  * update all the cowonly tree roots on disk
468  */
469 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
470                                          struct btrfs_root *root)
471 {
472         struct btrfs_fs_info *fs_info = root->fs_info;
473         struct list_head *next;
474         struct extent_buffer *eb;
475         int ret;
476
477         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
478         BUG_ON(ret);
479
480         eb = btrfs_lock_root_node(fs_info->tree_root);
481         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
482         btrfs_tree_unlock(eb);
483         free_extent_buffer(eb);
484
485         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
486         BUG_ON(ret);
487
488         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
489                 next = fs_info->dirty_cowonly_roots.next;
490                 list_del_init(next);
491                 root = list_entry(next, struct btrfs_root, dirty_list);
492
493                 update_cowonly_root(trans, root);
494         }
495         return 0;
496 }
497
498 /*
499  * dead roots are old snapshots that need to be deleted.  This allocates
500  * a dirty root struct and adds it into the list of dead roots that need to
501  * be deleted
502  */
503 int btrfs_add_dead_root(struct btrfs_root *root)
504 {
505         mutex_lock(&root->fs_info->trans_mutex);
506         list_add(&root->root_list, &root->fs_info->dead_roots);
507         mutex_unlock(&root->fs_info->trans_mutex);
508         return 0;
509 }
510
511 /*
512  * update all the cowonly tree roots on disk
513  */
514 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
515                                     struct btrfs_root *root)
516 {
517         struct btrfs_root *gang[8];
518         struct btrfs_fs_info *fs_info = root->fs_info;
519         int i;
520         int ret;
521         int err = 0;
522
523         while (1) {
524                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
525                                                  (void **)gang, 0,
526                                                  ARRAY_SIZE(gang),
527                                                  BTRFS_ROOT_TRANS_TAG);
528                 if (ret == 0)
529                         break;
530                 for (i = 0; i < ret; i++) {
531                         root = gang[i];
532                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
533                                         (unsigned long)root->root_key.objectid,
534                                         BTRFS_ROOT_TRANS_TAG);
535
536                         btrfs_free_log(trans, root);
537                         btrfs_update_reloc_root(trans, root);
538
539                         if (root->commit_root != root->node) {
540                                 free_extent_buffer(root->commit_root);
541                                 root->commit_root = btrfs_root_node(root);
542                                 btrfs_set_root_node(&root->root_item,
543                                                     root->node);
544                         }
545
546                         err = btrfs_update_root(trans, fs_info->tree_root,
547                                                 &root->root_key,
548                                                 &root->root_item);
549                         if (err)
550                                 break;
551                 }
552         }
553         return err;
554 }
555
556 /*
557  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
558  * otherwise every leaf in the btree is read and defragged.
559  */
560 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
561 {
562         struct btrfs_fs_info *info = root->fs_info;
563         int ret;
564         struct btrfs_trans_handle *trans;
565         unsigned long nr;
566
567         smp_mb();
568         if (root->defrag_running)
569                 return 0;
570         trans = btrfs_start_transaction(root, 1);
571         while (1) {
572                 root->defrag_running = 1;
573                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
574                 nr = trans->blocks_used;
575                 btrfs_end_transaction(trans, root);
576                 btrfs_btree_balance_dirty(info->tree_root, nr);
577                 cond_resched();
578
579                 trans = btrfs_start_transaction(root, 1);
580                 if (root->fs_info->closing || ret != -EAGAIN)
581                         break;
582         }
583         root->defrag_running = 0;
584         smp_mb();
585         btrfs_end_transaction(trans, root);
586         return 0;
587 }
588
589 #if 0
590 /*
591  * when dropping snapshots, we generate a ton of delayed refs, and it makes
592  * sense not to join the transaction while it is trying to flush the current
593  * queue of delayed refs out.
594  *
595  * This is used by the drop snapshot code only
596  */
597 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
598 {
599         DEFINE_WAIT(wait);
600
601         mutex_lock(&info->trans_mutex);
602         while (info->running_transaction &&
603                info->running_transaction->delayed_refs.flushing) {
604                 prepare_to_wait(&info->transaction_wait, &wait,
605                                 TASK_UNINTERRUPTIBLE);
606                 mutex_unlock(&info->trans_mutex);
607
608                 schedule();
609
610                 mutex_lock(&info->trans_mutex);
611                 finish_wait(&info->transaction_wait, &wait);
612         }
613         mutex_unlock(&info->trans_mutex);
614         return 0;
615 }
616
617 /*
618  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
619  * all of them
620  */
621 int btrfs_drop_dead_root(struct btrfs_root *root)
622 {
623         struct btrfs_trans_handle *trans;
624         struct btrfs_root *tree_root = root->fs_info->tree_root;
625         unsigned long nr;
626         int ret;
627
628         while (1) {
629                 /*
630                  * we don't want to jump in and create a bunch of
631                  * delayed refs if the transaction is starting to close
632                  */
633                 wait_transaction_pre_flush(tree_root->fs_info);
634                 trans = btrfs_start_transaction(tree_root, 1);
635
636                 /*
637                  * we've joined a transaction, make sure it isn't
638                  * closing right now
639                  */
640                 if (trans->transaction->delayed_refs.flushing) {
641                         btrfs_end_transaction(trans, tree_root);
642                         continue;
643                 }
644
645                 ret = btrfs_drop_snapshot(trans, root);
646                 if (ret != -EAGAIN)
647                         break;
648
649                 ret = btrfs_update_root(trans, tree_root,
650                                         &root->root_key,
651                                         &root->root_item);
652                 if (ret)
653                         break;
654
655                 nr = trans->blocks_used;
656                 ret = btrfs_end_transaction(trans, tree_root);
657                 BUG_ON(ret);
658
659                 btrfs_btree_balance_dirty(tree_root, nr);
660                 cond_resched();
661         }
662         BUG_ON(ret);
663
664         ret = btrfs_del_root(trans, tree_root, &root->root_key);
665         BUG_ON(ret);
666
667         nr = trans->blocks_used;
668         ret = btrfs_end_transaction(trans, tree_root);
669         BUG_ON(ret);
670
671         free_extent_buffer(root->node);
672         free_extent_buffer(root->commit_root);
673         kfree(root);
674
675         btrfs_btree_balance_dirty(tree_root, nr);
676         return ret;
677 }
678 #endif
679
680 /*
681  * new snapshots need to be created at a very specific time in the
682  * transaction commit.  This does the actual creation
683  */
684 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
685                                    struct btrfs_fs_info *fs_info,
686                                    struct btrfs_pending_snapshot *pending)
687 {
688         struct btrfs_key key;
689         struct btrfs_root_item *new_root_item;
690         struct btrfs_root *tree_root = fs_info->tree_root;
691         struct btrfs_root *root = pending->root;
692         struct extent_buffer *tmp;
693         struct extent_buffer *old;
694         int ret;
695         u64 objectid;
696
697         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
698         if (!new_root_item) {
699                 ret = -ENOMEM;
700                 goto fail;
701         }
702         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
703         if (ret)
704                 goto fail;
705
706         record_root_in_trans(trans, root);
707         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
708         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
709
710         key.objectid = objectid;
711         key.offset = 0;
712         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
713
714         old = btrfs_lock_root_node(root);
715         btrfs_cow_block(trans, root, old, NULL, 0, &old);
716         btrfs_set_lock_blocking(old);
717
718         btrfs_copy_root(trans, root, old, &tmp, objectid);
719         btrfs_tree_unlock(old);
720         free_extent_buffer(old);
721
722         btrfs_set_root_node(new_root_item, tmp);
723         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
724                                 new_root_item);
725         btrfs_tree_unlock(tmp);
726         free_extent_buffer(tmp);
727         if (ret)
728                 goto fail;
729
730         key.offset = (u64)-1;
731         memcpy(&pending->root_key, &key, sizeof(key));
732 fail:
733         kfree(new_root_item);
734         return ret;
735 }
736
737 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
738                                    struct btrfs_pending_snapshot *pending)
739 {
740         int ret;
741         int namelen;
742         u64 index = 0;
743         struct btrfs_trans_handle *trans;
744         struct inode *parent_inode;
745         struct inode *inode;
746         struct btrfs_root *parent_root;
747
748         parent_inode = pending->dentry->d_parent->d_inode;
749         parent_root = BTRFS_I(parent_inode)->root;
750         trans = btrfs_join_transaction(parent_root, 1);
751
752         /*
753          * insert the directory item
754          */
755         namelen = strlen(pending->name);
756         ret = btrfs_set_inode_index(parent_inode, &index);
757         ret = btrfs_insert_dir_item(trans, parent_root,
758                             pending->name, namelen,
759                             parent_inode->i_ino,
760                             &pending->root_key, BTRFS_FT_DIR, index);
761
762         if (ret)
763                 goto fail;
764
765         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
766         ret = btrfs_update_inode(trans, parent_root, parent_inode);
767         BUG_ON(ret);
768
769         /* add the backref first */
770         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
771                                  pending->root_key.objectid,
772                                  BTRFS_ROOT_BACKREF_KEY,
773                                  parent_root->root_key.objectid,
774                                  parent_inode->i_ino, index, pending->name,
775                                  namelen);
776
777         BUG_ON(ret);
778
779         /* now add the forward ref */
780         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
781                                  parent_root->root_key.objectid,
782                                  BTRFS_ROOT_REF_KEY,
783                                  pending->root_key.objectid,
784                                  parent_inode->i_ino, index, pending->name,
785                                  namelen);
786
787         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
788         d_instantiate(pending->dentry, inode);
789 fail:
790         btrfs_end_transaction(trans, fs_info->fs_root);
791         return ret;
792 }
793
794 /*
795  * create all the snapshots we've scheduled for creation
796  */
797 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
798                                              struct btrfs_fs_info *fs_info)
799 {
800         struct btrfs_pending_snapshot *pending;
801         struct list_head *head = &trans->transaction->pending_snapshots;
802         int ret;
803
804         list_for_each_entry(pending, head, list) {
805                 ret = create_pending_snapshot(trans, fs_info, pending);
806                 BUG_ON(ret);
807         }
808         return 0;
809 }
810
811 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
812                                              struct btrfs_fs_info *fs_info)
813 {
814         struct btrfs_pending_snapshot *pending;
815         struct list_head *head = &trans->transaction->pending_snapshots;
816         int ret;
817
818         while (!list_empty(head)) {
819                 pending = list_entry(head->next,
820                                      struct btrfs_pending_snapshot, list);
821                 ret = finish_pending_snapshot(fs_info, pending);
822                 BUG_ON(ret);
823                 list_del(&pending->list);
824                 kfree(pending->name);
825                 kfree(pending);
826         }
827         return 0;
828 }
829
830 static void update_super_roots(struct btrfs_root *root)
831 {
832         struct btrfs_root_item *root_item;
833         struct btrfs_super_block *super;
834
835         super = &root->fs_info->super_copy;
836
837         root_item = &root->fs_info->chunk_root->root_item;
838         super->chunk_root = root_item->bytenr;
839         super->chunk_root_generation = root_item->generation;
840         super->chunk_root_level = root_item->level;
841
842         root_item = &root->fs_info->tree_root->root_item;
843         super->root = root_item->bytenr;
844         super->generation = root_item->generation;
845         super->root_level = root_item->level;
846 }
847
848 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
849                              struct btrfs_root *root)
850 {
851         unsigned long joined = 0;
852         unsigned long timeout = 1;
853         struct btrfs_transaction *cur_trans;
854         struct btrfs_transaction *prev_trans = NULL;
855         struct extent_io_tree *pinned_copy;
856         DEFINE_WAIT(wait);
857         int ret;
858         int should_grow = 0;
859         unsigned long now = get_seconds();
860         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
861
862         btrfs_run_ordered_operations(root, 0);
863
864         /* make a pass through all the delayed refs we have so far
865          * any runnings procs may add more while we are here
866          */
867         ret = btrfs_run_delayed_refs(trans, root, 0);
868         BUG_ON(ret);
869
870         cur_trans = trans->transaction;
871         /*
872          * set the flushing flag so procs in this transaction have to
873          * start sending their work down.
874          */
875         cur_trans->delayed_refs.flushing = 1;
876
877         ret = btrfs_run_delayed_refs(trans, root, 0);
878         BUG_ON(ret);
879
880         mutex_lock(&root->fs_info->trans_mutex);
881         if (cur_trans->in_commit) {
882                 cur_trans->use_count++;
883                 mutex_unlock(&root->fs_info->trans_mutex);
884                 btrfs_end_transaction(trans, root);
885
886                 ret = wait_for_commit(root, cur_trans);
887                 BUG_ON(ret);
888
889                 mutex_lock(&root->fs_info->trans_mutex);
890                 put_transaction(cur_trans);
891                 mutex_unlock(&root->fs_info->trans_mutex);
892
893                 return 0;
894         }
895
896         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
897         if (!pinned_copy)
898                 return -ENOMEM;
899
900         extent_io_tree_init(pinned_copy,
901                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
902
903         trans->transaction->in_commit = 1;
904         trans->transaction->blocked = 1;
905         if (cur_trans->list.prev != &root->fs_info->trans_list) {
906                 prev_trans = list_entry(cur_trans->list.prev,
907                                         struct btrfs_transaction, list);
908                 if (!prev_trans->commit_done) {
909                         prev_trans->use_count++;
910                         mutex_unlock(&root->fs_info->trans_mutex);
911
912                         wait_for_commit(root, prev_trans);
913
914                         mutex_lock(&root->fs_info->trans_mutex);
915                         put_transaction(prev_trans);
916                 }
917         }
918
919         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
920                 should_grow = 1;
921
922         do {
923                 int snap_pending = 0;
924                 joined = cur_trans->num_joined;
925                 if (!list_empty(&trans->transaction->pending_snapshots))
926                         snap_pending = 1;
927
928                 WARN_ON(cur_trans != trans->transaction);
929                 prepare_to_wait(&cur_trans->writer_wait, &wait,
930                                 TASK_UNINTERRUPTIBLE);
931
932                 if (cur_trans->num_writers > 1)
933                         timeout = MAX_SCHEDULE_TIMEOUT;
934                 else if (should_grow)
935                         timeout = 1;
936
937                 mutex_unlock(&root->fs_info->trans_mutex);
938
939                 if (flush_on_commit || snap_pending) {
940                         if (flush_on_commit)
941                                 btrfs_start_delalloc_inodes(root);
942                         ret = btrfs_wait_ordered_extents(root, 1);
943                         BUG_ON(ret);
944                 }
945
946                 /*
947                  * rename don't use btrfs_join_transaction, so, once we
948                  * set the transaction to blocked above, we aren't going
949                  * to get any new ordered operations.  We can safely run
950                  * it here and no for sure that nothing new will be added
951                  * to the list
952                  */
953                 btrfs_run_ordered_operations(root, 1);
954
955                 smp_mb();
956                 if (cur_trans->num_writers > 1 || should_grow)
957                         schedule_timeout(timeout);
958
959                 mutex_lock(&root->fs_info->trans_mutex);
960                 finish_wait(&cur_trans->writer_wait, &wait);
961         } while (cur_trans->num_writers > 1 ||
962                  (should_grow && cur_trans->num_joined != joined));
963
964         ret = create_pending_snapshots(trans, root->fs_info);
965         BUG_ON(ret);
966
967         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
968         BUG_ON(ret);
969
970         WARN_ON(cur_trans != trans->transaction);
971
972         /* btrfs_commit_tree_roots is responsible for getting the
973          * various roots consistent with each other.  Every pointer
974          * in the tree of tree roots has to point to the most up to date
975          * root for every subvolume and other tree.  So, we have to keep
976          * the tree logging code from jumping in and changing any
977          * of the trees.
978          *
979          * At this point in the commit, there can't be any tree-log
980          * writers, but a little lower down we drop the trans mutex
981          * and let new people in.  By holding the tree_log_mutex
982          * from now until after the super is written, we avoid races
983          * with the tree-log code.
984          */
985         mutex_lock(&root->fs_info->tree_log_mutex);
986
987         ret = commit_fs_roots(trans, root);
988         BUG_ON(ret);
989
990         /* commit_fs_roots gets rid of all the tree log roots, it is now
991          * safe to free the root of tree log roots
992          */
993         btrfs_free_log_root_tree(trans, root->fs_info);
994
995         ret = commit_cowonly_roots(trans, root);
996         BUG_ON(ret);
997
998         cur_trans = root->fs_info->running_transaction;
999         spin_lock(&root->fs_info->new_trans_lock);
1000         root->fs_info->running_transaction = NULL;
1001         spin_unlock(&root->fs_info->new_trans_lock);
1002
1003         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1004                             root->fs_info->tree_root->node);
1005         free_extent_buffer(root->fs_info->tree_root->commit_root);
1006         root->fs_info->tree_root->commit_root =
1007                                 btrfs_root_node(root->fs_info->tree_root);
1008
1009         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1010                             root->fs_info->chunk_root->node);
1011         free_extent_buffer(root->fs_info->chunk_root->commit_root);
1012         root->fs_info->chunk_root->commit_root =
1013                                 btrfs_root_node(root->fs_info->chunk_root);
1014
1015         update_super_roots(root);
1016
1017         if (!root->fs_info->log_root_recovering) {
1018                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1019                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1020         }
1021
1022         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1023                sizeof(root->fs_info->super_copy));
1024
1025         btrfs_copy_pinned(root, pinned_copy);
1026
1027         trans->transaction->blocked = 0;
1028
1029         wake_up(&root->fs_info->transaction_wait);
1030
1031         mutex_unlock(&root->fs_info->trans_mutex);
1032         ret = btrfs_write_and_wait_transaction(trans, root);
1033         BUG_ON(ret);
1034         write_ctree_super(trans, root, 0);
1035
1036         /*
1037          * the super is written, we can safely allow the tree-loggers
1038          * to go about their business
1039          */
1040         mutex_unlock(&root->fs_info->tree_log_mutex);
1041
1042         btrfs_finish_extent_commit(trans, root, pinned_copy);
1043         kfree(pinned_copy);
1044
1045         /* do the directory inserts of any pending snapshot creations */
1046         finish_pending_snapshots(trans, root->fs_info);
1047
1048         mutex_lock(&root->fs_info->trans_mutex);
1049
1050         cur_trans->commit_done = 1;
1051
1052         root->fs_info->last_trans_committed = cur_trans->transid;
1053         wake_up(&cur_trans->commit_wait);
1054
1055         put_transaction(cur_trans);
1056         put_transaction(cur_trans);
1057
1058         mutex_unlock(&root->fs_info->trans_mutex);
1059
1060         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1061         return ret;
1062 }
1063
1064 /*
1065  * interface function to delete all the snapshots we have scheduled for deletion
1066  */
1067 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1068 {
1069         LIST_HEAD(list);
1070         struct btrfs_fs_info *fs_info = root->fs_info;
1071
1072         mutex_lock(&fs_info->trans_mutex);
1073         list_splice_init(&fs_info->dead_roots, &list);
1074         mutex_unlock(&fs_info->trans_mutex);
1075
1076         while (!list_empty(&list)) {
1077                 root = list_entry(list.next, struct btrfs_root, root_list);
1078                 list_del_init(&root->root_list);
1079                 btrfs_drop_snapshot(root, 0);
1080         }
1081         return 0;
1082 }