Btrfs: Add delayed iput
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34         WARN_ON(transaction->use_count == 0);
35         transaction->use_count--;
36         if (transaction->use_count == 0) {
37                 list_del_init(&transaction->list);
38                 memset(transaction, 0, sizeof(*transaction));
39                 kmem_cache_free(btrfs_transaction_cachep, transaction);
40         }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45         free_extent_buffer(root->commit_root);
46         root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54         struct btrfs_transaction *cur_trans;
55         cur_trans = root->fs_info->running_transaction;
56         if (!cur_trans) {
57                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58                                              GFP_NOFS);
59                 BUG_ON(!cur_trans);
60                 root->fs_info->generation++;
61                 cur_trans->num_writers = 1;
62                 cur_trans->num_joined = 0;
63                 cur_trans->transid = root->fs_info->generation;
64                 init_waitqueue_head(&cur_trans->writer_wait);
65                 init_waitqueue_head(&cur_trans->commit_wait);
66                 cur_trans->in_commit = 0;
67                 cur_trans->blocked = 0;
68                 cur_trans->use_count = 1;
69                 cur_trans->commit_done = 0;
70                 cur_trans->start_time = get_seconds();
71
72                 cur_trans->delayed_refs.root.rb_node = NULL;
73                 cur_trans->delayed_refs.num_entries = 0;
74                 cur_trans->delayed_refs.num_heads_ready = 0;
75                 cur_trans->delayed_refs.num_heads = 0;
76                 cur_trans->delayed_refs.flushing = 0;
77                 cur_trans->delayed_refs.run_delayed_start = 0;
78                 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82                 extent_io_tree_init(&cur_trans->dirty_pages,
83                                      root->fs_info->btree_inode->i_mapping,
84                                      GFP_NOFS);
85                 spin_lock(&root->fs_info->new_trans_lock);
86                 root->fs_info->running_transaction = cur_trans;
87                 spin_unlock(&root->fs_info->new_trans_lock);
88         } else {
89                 cur_trans->num_writers++;
90                 cur_trans->num_joined++;
91         }
92
93         return 0;
94 }
95
96 /*
97  * this does all the record keeping required to make sure that a reference
98  * counted root is properly recorded in a given transaction.  This is required
99  * to make sure the old root from before we joined the transaction is deleted
100  * when the transaction commits
101  */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103                                          struct btrfs_root *root)
104 {
105         if (root->ref_cows && root->last_trans < trans->transid) {
106                 WARN_ON(root == root->fs_info->extent_root);
107                 WARN_ON(root->commit_root != root->node);
108
109                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110                            (unsigned long)root->root_key.objectid,
111                            BTRFS_ROOT_TRANS_TAG);
112                 root->last_trans = trans->transid;
113                 btrfs_init_reloc_root(trans, root);
114         }
115         return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119                                struct btrfs_root *root)
120 {
121         if (!root->ref_cows)
122                 return 0;
123
124         mutex_lock(&root->fs_info->trans_mutex);
125         if (root->last_trans == trans->transid) {
126                 mutex_unlock(&root->fs_info->trans_mutex);
127                 return 0;
128         }
129
130         record_root_in_trans(trans, root);
131         mutex_unlock(&root->fs_info->trans_mutex);
132         return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136  * when this is done, it is safe to start a new transaction, but the current
137  * transaction might not be fully on disk.
138  */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141         struct btrfs_transaction *cur_trans;
142
143         cur_trans = root->fs_info->running_transaction;
144         if (cur_trans && cur_trans->blocked) {
145                 DEFINE_WAIT(wait);
146                 cur_trans->use_count++;
147                 while (1) {
148                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149                                         TASK_UNINTERRUPTIBLE);
150                         if (cur_trans->blocked) {
151                                 mutex_unlock(&root->fs_info->trans_mutex);
152                                 schedule();
153                                 mutex_lock(&root->fs_info->trans_mutex);
154                                 finish_wait(&root->fs_info->transaction_wait,
155                                             &wait);
156                         } else {
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                                 break;
160                         }
161                 }
162                 put_transaction(cur_trans);
163         }
164 }
165
166 enum btrfs_trans_type {
167         TRANS_START,
168         TRANS_JOIN,
169         TRANS_USERSPACE,
170 };
171
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173                                              int num_blocks, int type)
174 {
175         struct btrfs_trans_handle *h =
176                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177         int ret;
178
179         mutex_lock(&root->fs_info->trans_mutex);
180         if (!root->fs_info->log_root_recovering &&
181             ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
182              type == TRANS_USERSPACE))
183                 wait_current_trans(root);
184         ret = join_transaction(root);
185         BUG_ON(ret);
186
187         h->transid = root->fs_info->running_transaction->transid;
188         h->transaction = root->fs_info->running_transaction;
189         h->blocks_reserved = num_blocks;
190         h->blocks_used = 0;
191         h->block_group = 0;
192         h->alloc_exclude_nr = 0;
193         h->alloc_exclude_start = 0;
194         h->delayed_ref_updates = 0;
195
196         if (!current->journal_info && type != TRANS_USERSPACE)
197                 current->journal_info = h;
198
199         root->fs_info->running_transaction->use_count++;
200         record_root_in_trans(h, root);
201         mutex_unlock(&root->fs_info->trans_mutex);
202         return h;
203 }
204
205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
206                                                    int num_blocks)
207 {
208         return start_transaction(root, num_blocks, TRANS_START);
209 }
210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
211                                                    int num_blocks)
212 {
213         return start_transaction(root, num_blocks, TRANS_JOIN);
214 }
215
216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
217                                                          int num_blocks)
218 {
219         return start_transaction(r, num_blocks, TRANS_USERSPACE);
220 }
221
222 /* wait for a transaction commit to be fully complete */
223 static noinline int wait_for_commit(struct btrfs_root *root,
224                                     struct btrfs_transaction *commit)
225 {
226         DEFINE_WAIT(wait);
227         mutex_lock(&root->fs_info->trans_mutex);
228         while (!commit->commit_done) {
229                 prepare_to_wait(&commit->commit_wait, &wait,
230                                 TASK_UNINTERRUPTIBLE);
231                 if (commit->commit_done)
232                         break;
233                 mutex_unlock(&root->fs_info->trans_mutex);
234                 schedule();
235                 mutex_lock(&root->fs_info->trans_mutex);
236         }
237         mutex_unlock(&root->fs_info->trans_mutex);
238         finish_wait(&commit->commit_wait, &wait);
239         return 0;
240 }
241
242 #if 0
243 /*
244  * rate limit against the drop_snapshot code.  This helps to slow down new
245  * operations if the drop_snapshot code isn't able to keep up.
246  */
247 static void throttle_on_drops(struct btrfs_root *root)
248 {
249         struct btrfs_fs_info *info = root->fs_info;
250         int harder_count = 0;
251
252 harder:
253         if (atomic_read(&info->throttles)) {
254                 DEFINE_WAIT(wait);
255                 int thr;
256                 thr = atomic_read(&info->throttle_gen);
257
258                 do {
259                         prepare_to_wait(&info->transaction_throttle,
260                                         &wait, TASK_UNINTERRUPTIBLE);
261                         if (!atomic_read(&info->throttles)) {
262                                 finish_wait(&info->transaction_throttle, &wait);
263                                 break;
264                         }
265                         schedule();
266                         finish_wait(&info->transaction_throttle, &wait);
267                 } while (thr == atomic_read(&info->throttle_gen));
268                 harder_count++;
269
270                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
271                     harder_count < 2)
272                         goto harder;
273
274                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
275                     harder_count < 10)
276                         goto harder;
277
278                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
279                     harder_count < 20)
280                         goto harder;
281         }
282 }
283 #endif
284
285 void btrfs_throttle(struct btrfs_root *root)
286 {
287         mutex_lock(&root->fs_info->trans_mutex);
288         if (!root->fs_info->open_ioctl_trans)
289                 wait_current_trans(root);
290         mutex_unlock(&root->fs_info->trans_mutex);
291 }
292
293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
294                           struct btrfs_root *root, int throttle)
295 {
296         struct btrfs_transaction *cur_trans;
297         struct btrfs_fs_info *info = root->fs_info;
298         int count = 0;
299
300         while (count < 4) {
301                 unsigned long cur = trans->delayed_ref_updates;
302                 trans->delayed_ref_updates = 0;
303                 if (cur &&
304                     trans->transaction->delayed_refs.num_heads_ready > 64) {
305                         trans->delayed_ref_updates = 0;
306
307                         /*
308                          * do a full flush if the transaction is trying
309                          * to close
310                          */
311                         if (trans->transaction->delayed_refs.flushing)
312                                 cur = 0;
313                         btrfs_run_delayed_refs(trans, root, cur);
314                 } else {
315                         break;
316                 }
317                 count++;
318         }
319
320         mutex_lock(&info->trans_mutex);
321         cur_trans = info->running_transaction;
322         WARN_ON(cur_trans != trans->transaction);
323         WARN_ON(cur_trans->num_writers < 1);
324         cur_trans->num_writers--;
325
326         if (waitqueue_active(&cur_trans->writer_wait))
327                 wake_up(&cur_trans->writer_wait);
328         put_transaction(cur_trans);
329         mutex_unlock(&info->trans_mutex);
330
331         if (current->journal_info == trans)
332                 current->journal_info = NULL;
333         memset(trans, 0, sizeof(*trans));
334         kmem_cache_free(btrfs_trans_handle_cachep, trans);
335
336         if (throttle)
337                 btrfs_run_delayed_iputs(root);
338
339         return 0;
340 }
341
342 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
343                           struct btrfs_root *root)
344 {
345         return __btrfs_end_transaction(trans, root, 0);
346 }
347
348 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
349                                    struct btrfs_root *root)
350 {
351         return __btrfs_end_transaction(trans, root, 1);
352 }
353
354 /*
355  * when btree blocks are allocated, they have some corresponding bits set for
356  * them in one of two extent_io trees.  This is used to make sure all of
357  * those extents are sent to disk but does not wait on them
358  */
359 int btrfs_write_marked_extents(struct btrfs_root *root,
360                                struct extent_io_tree *dirty_pages, int mark)
361 {
362         int ret;
363         int err = 0;
364         int werr = 0;
365         struct page *page;
366         struct inode *btree_inode = root->fs_info->btree_inode;
367         u64 start = 0;
368         u64 end;
369         unsigned long index;
370
371         while (1) {
372                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
373                                             mark);
374                 if (ret)
375                         break;
376                 while (start <= end) {
377                         cond_resched();
378
379                         index = start >> PAGE_CACHE_SHIFT;
380                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
381                         page = find_get_page(btree_inode->i_mapping, index);
382                         if (!page)
383                                 continue;
384
385                         btree_lock_page_hook(page);
386                         if (!page->mapping) {
387                                 unlock_page(page);
388                                 page_cache_release(page);
389                                 continue;
390                         }
391
392                         if (PageWriteback(page)) {
393                                 if (PageDirty(page))
394                                         wait_on_page_writeback(page);
395                                 else {
396                                         unlock_page(page);
397                                         page_cache_release(page);
398                                         continue;
399                                 }
400                         }
401                         err = write_one_page(page, 0);
402                         if (err)
403                                 werr = err;
404                         page_cache_release(page);
405                 }
406         }
407         if (err)
408                 werr = err;
409         return werr;
410 }
411
412 /*
413  * when btree blocks are allocated, they have some corresponding bits set for
414  * them in one of two extent_io trees.  This is used to make sure all of
415  * those extents are on disk for transaction or log commit.  We wait
416  * on all the pages and clear them from the dirty pages state tree
417  */
418 int btrfs_wait_marked_extents(struct btrfs_root *root,
419                               struct extent_io_tree *dirty_pages, int mark)
420 {
421         int ret;
422         int err = 0;
423         int werr = 0;
424         struct page *page;
425         struct inode *btree_inode = root->fs_info->btree_inode;
426         u64 start = 0;
427         u64 end;
428         unsigned long index;
429
430         while (1) {
431                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
432                                             mark);
433                 if (ret)
434                         break;
435
436                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
437                 while (start <= end) {
438                         index = start >> PAGE_CACHE_SHIFT;
439                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
440                         page = find_get_page(btree_inode->i_mapping, index);
441                         if (!page)
442                                 continue;
443                         if (PageDirty(page)) {
444                                 btree_lock_page_hook(page);
445                                 wait_on_page_writeback(page);
446                                 err = write_one_page(page, 0);
447                                 if (err)
448                                         werr = err;
449                         }
450                         wait_on_page_writeback(page);
451                         page_cache_release(page);
452                         cond_resched();
453                 }
454         }
455         if (err)
456                 werr = err;
457         return werr;
458 }
459
460 /*
461  * when btree blocks are allocated, they have some corresponding bits set for
462  * them in one of two extent_io trees.  This is used to make sure all of
463  * those extents are on disk for transaction or log commit
464  */
465 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
466                                 struct extent_io_tree *dirty_pages, int mark)
467 {
468         int ret;
469         int ret2;
470
471         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
472         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
473         return ret || ret2;
474 }
475
476 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
477                                      struct btrfs_root *root)
478 {
479         if (!trans || !trans->transaction) {
480                 struct inode *btree_inode;
481                 btree_inode = root->fs_info->btree_inode;
482                 return filemap_write_and_wait(btree_inode->i_mapping);
483         }
484         return btrfs_write_and_wait_marked_extents(root,
485                                            &trans->transaction->dirty_pages,
486                                            EXTENT_DIRTY);
487 }
488
489 /*
490  * this is used to update the root pointer in the tree of tree roots.
491  *
492  * But, in the case of the extent allocation tree, updating the root
493  * pointer may allocate blocks which may change the root of the extent
494  * allocation tree.
495  *
496  * So, this loops and repeats and makes sure the cowonly root didn't
497  * change while the root pointer was being updated in the metadata.
498  */
499 static int update_cowonly_root(struct btrfs_trans_handle *trans,
500                                struct btrfs_root *root)
501 {
502         int ret;
503         u64 old_root_bytenr;
504         struct btrfs_root *tree_root = root->fs_info->tree_root;
505
506         btrfs_write_dirty_block_groups(trans, root);
507
508         while (1) {
509                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
510                 if (old_root_bytenr == root->node->start)
511                         break;
512
513                 btrfs_set_root_node(&root->root_item, root->node);
514                 ret = btrfs_update_root(trans, tree_root,
515                                         &root->root_key,
516                                         &root->root_item);
517                 BUG_ON(ret);
518
519                 ret = btrfs_write_dirty_block_groups(trans, root);
520                 BUG_ON(ret);
521         }
522
523         if (root != root->fs_info->extent_root)
524                 switch_commit_root(root);
525
526         return 0;
527 }
528
529 /*
530  * update all the cowonly tree roots on disk
531  */
532 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
533                                          struct btrfs_root *root)
534 {
535         struct btrfs_fs_info *fs_info = root->fs_info;
536         struct list_head *next;
537         struct extent_buffer *eb;
538         int ret;
539
540         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
541         BUG_ON(ret);
542
543         eb = btrfs_lock_root_node(fs_info->tree_root);
544         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
545         btrfs_tree_unlock(eb);
546         free_extent_buffer(eb);
547
548         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
549         BUG_ON(ret);
550
551         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
552                 next = fs_info->dirty_cowonly_roots.next;
553                 list_del_init(next);
554                 root = list_entry(next, struct btrfs_root, dirty_list);
555
556                 update_cowonly_root(trans, root);
557         }
558
559         down_write(&fs_info->extent_commit_sem);
560         switch_commit_root(fs_info->extent_root);
561         up_write(&fs_info->extent_commit_sem);
562
563         return 0;
564 }
565
566 /*
567  * dead roots are old snapshots that need to be deleted.  This allocates
568  * a dirty root struct and adds it into the list of dead roots that need to
569  * be deleted
570  */
571 int btrfs_add_dead_root(struct btrfs_root *root)
572 {
573         mutex_lock(&root->fs_info->trans_mutex);
574         list_add(&root->root_list, &root->fs_info->dead_roots);
575         mutex_unlock(&root->fs_info->trans_mutex);
576         return 0;
577 }
578
579 /*
580  * update all the cowonly tree roots on disk
581  */
582 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
583                                     struct btrfs_root *root)
584 {
585         struct btrfs_root *gang[8];
586         struct btrfs_fs_info *fs_info = root->fs_info;
587         int i;
588         int ret;
589         int err = 0;
590
591         while (1) {
592                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
593                                                  (void **)gang, 0,
594                                                  ARRAY_SIZE(gang),
595                                                  BTRFS_ROOT_TRANS_TAG);
596                 if (ret == 0)
597                         break;
598                 for (i = 0; i < ret; i++) {
599                         root = gang[i];
600                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
601                                         (unsigned long)root->root_key.objectid,
602                                         BTRFS_ROOT_TRANS_TAG);
603
604                         btrfs_free_log(trans, root);
605                         btrfs_update_reloc_root(trans, root);
606
607                         if (root->commit_root != root->node) {
608                                 switch_commit_root(root);
609                                 btrfs_set_root_node(&root->root_item,
610                                                     root->node);
611                         }
612
613                         err = btrfs_update_root(trans, fs_info->tree_root,
614                                                 &root->root_key,
615                                                 &root->root_item);
616                         if (err)
617                                 break;
618                 }
619         }
620         return err;
621 }
622
623 /*
624  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
625  * otherwise every leaf in the btree is read and defragged.
626  */
627 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
628 {
629         struct btrfs_fs_info *info = root->fs_info;
630         int ret;
631         struct btrfs_trans_handle *trans;
632         unsigned long nr;
633
634         smp_mb();
635         if (root->defrag_running)
636                 return 0;
637         trans = btrfs_start_transaction(root, 1);
638         while (1) {
639                 root->defrag_running = 1;
640                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
641                 nr = trans->blocks_used;
642                 btrfs_end_transaction(trans, root);
643                 btrfs_btree_balance_dirty(info->tree_root, nr);
644                 cond_resched();
645
646                 trans = btrfs_start_transaction(root, 1);
647                 if (root->fs_info->closing || ret != -EAGAIN)
648                         break;
649         }
650         root->defrag_running = 0;
651         smp_mb();
652         btrfs_end_transaction(trans, root);
653         return 0;
654 }
655
656 #if 0
657 /*
658  * when dropping snapshots, we generate a ton of delayed refs, and it makes
659  * sense not to join the transaction while it is trying to flush the current
660  * queue of delayed refs out.
661  *
662  * This is used by the drop snapshot code only
663  */
664 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
665 {
666         DEFINE_WAIT(wait);
667
668         mutex_lock(&info->trans_mutex);
669         while (info->running_transaction &&
670                info->running_transaction->delayed_refs.flushing) {
671                 prepare_to_wait(&info->transaction_wait, &wait,
672                                 TASK_UNINTERRUPTIBLE);
673                 mutex_unlock(&info->trans_mutex);
674
675                 schedule();
676
677                 mutex_lock(&info->trans_mutex);
678                 finish_wait(&info->transaction_wait, &wait);
679         }
680         mutex_unlock(&info->trans_mutex);
681         return 0;
682 }
683
684 /*
685  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
686  * all of them
687  */
688 int btrfs_drop_dead_root(struct btrfs_root *root)
689 {
690         struct btrfs_trans_handle *trans;
691         struct btrfs_root *tree_root = root->fs_info->tree_root;
692         unsigned long nr;
693         int ret;
694
695         while (1) {
696                 /*
697                  * we don't want to jump in and create a bunch of
698                  * delayed refs if the transaction is starting to close
699                  */
700                 wait_transaction_pre_flush(tree_root->fs_info);
701                 trans = btrfs_start_transaction(tree_root, 1);
702
703                 /*
704                  * we've joined a transaction, make sure it isn't
705                  * closing right now
706                  */
707                 if (trans->transaction->delayed_refs.flushing) {
708                         btrfs_end_transaction(trans, tree_root);
709                         continue;
710                 }
711
712                 ret = btrfs_drop_snapshot(trans, root);
713                 if (ret != -EAGAIN)
714                         break;
715
716                 ret = btrfs_update_root(trans, tree_root,
717                                         &root->root_key,
718                                         &root->root_item);
719                 if (ret)
720                         break;
721
722                 nr = trans->blocks_used;
723                 ret = btrfs_end_transaction(trans, tree_root);
724                 BUG_ON(ret);
725
726                 btrfs_btree_balance_dirty(tree_root, nr);
727                 cond_resched();
728         }
729         BUG_ON(ret);
730
731         ret = btrfs_del_root(trans, tree_root, &root->root_key);
732         BUG_ON(ret);
733
734         nr = trans->blocks_used;
735         ret = btrfs_end_transaction(trans, tree_root);
736         BUG_ON(ret);
737
738         free_extent_buffer(root->node);
739         free_extent_buffer(root->commit_root);
740         kfree(root);
741
742         btrfs_btree_balance_dirty(tree_root, nr);
743         return ret;
744 }
745 #endif
746
747 /*
748  * new snapshots need to be created at a very specific time in the
749  * transaction commit.  This does the actual creation
750  */
751 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
752                                    struct btrfs_fs_info *fs_info,
753                                    struct btrfs_pending_snapshot *pending)
754 {
755         struct btrfs_key key;
756         struct btrfs_root_item *new_root_item;
757         struct btrfs_root *tree_root = fs_info->tree_root;
758         struct btrfs_root *root = pending->root;
759         struct extent_buffer *tmp;
760         struct extent_buffer *old;
761         int ret;
762         u64 objectid;
763
764         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
765         if (!new_root_item) {
766                 ret = -ENOMEM;
767                 goto fail;
768         }
769         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
770         if (ret)
771                 goto fail;
772
773         record_root_in_trans(trans, root);
774         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
775         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
776
777         key.objectid = objectid;
778         /* record when the snapshot was created in key.offset */
779         key.offset = trans->transid;
780         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
781
782         old = btrfs_lock_root_node(root);
783         btrfs_cow_block(trans, root, old, NULL, 0, &old);
784         btrfs_set_lock_blocking(old);
785
786         btrfs_copy_root(trans, root, old, &tmp, objectid);
787         btrfs_tree_unlock(old);
788         free_extent_buffer(old);
789
790         btrfs_set_root_node(new_root_item, tmp);
791         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
792                                 new_root_item);
793         btrfs_tree_unlock(tmp);
794         free_extent_buffer(tmp);
795         if (ret)
796                 goto fail;
797
798         key.offset = (u64)-1;
799         memcpy(&pending->root_key, &key, sizeof(key));
800 fail:
801         kfree(new_root_item);
802         return ret;
803 }
804
805 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
806                                    struct btrfs_pending_snapshot *pending)
807 {
808         int ret;
809         int namelen;
810         u64 index = 0;
811         struct btrfs_trans_handle *trans;
812         struct inode *parent_inode;
813         struct btrfs_root *parent_root;
814
815         parent_inode = pending->dentry->d_parent->d_inode;
816         parent_root = BTRFS_I(parent_inode)->root;
817         trans = btrfs_join_transaction(parent_root, 1);
818
819         /*
820          * insert the directory item
821          */
822         namelen = strlen(pending->name);
823         ret = btrfs_set_inode_index(parent_inode, &index);
824         ret = btrfs_insert_dir_item(trans, parent_root,
825                             pending->name, namelen,
826                             parent_inode->i_ino,
827                             &pending->root_key, BTRFS_FT_DIR, index);
828
829         if (ret)
830                 goto fail;
831
832         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
833         ret = btrfs_update_inode(trans, parent_root, parent_inode);
834         BUG_ON(ret);
835
836         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
837                                  pending->root_key.objectid,
838                                  parent_root->root_key.objectid,
839                                  parent_inode->i_ino, index, pending->name,
840                                  namelen);
841
842         BUG_ON(ret);
843
844 fail:
845         btrfs_end_transaction(trans, fs_info->fs_root);
846         return ret;
847 }
848
849 /*
850  * create all the snapshots we've scheduled for creation
851  */
852 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
853                                              struct btrfs_fs_info *fs_info)
854 {
855         struct btrfs_pending_snapshot *pending;
856         struct list_head *head = &trans->transaction->pending_snapshots;
857         int ret;
858
859         list_for_each_entry(pending, head, list) {
860                 ret = create_pending_snapshot(trans, fs_info, pending);
861                 BUG_ON(ret);
862         }
863         return 0;
864 }
865
866 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
867                                              struct btrfs_fs_info *fs_info)
868 {
869         struct btrfs_pending_snapshot *pending;
870         struct list_head *head = &trans->transaction->pending_snapshots;
871         int ret;
872
873         while (!list_empty(head)) {
874                 pending = list_entry(head->next,
875                                      struct btrfs_pending_snapshot, list);
876                 ret = finish_pending_snapshot(fs_info, pending);
877                 BUG_ON(ret);
878                 list_del(&pending->list);
879                 kfree(pending->name);
880                 kfree(pending);
881         }
882         return 0;
883 }
884
885 static void update_super_roots(struct btrfs_root *root)
886 {
887         struct btrfs_root_item *root_item;
888         struct btrfs_super_block *super;
889
890         super = &root->fs_info->super_copy;
891
892         root_item = &root->fs_info->chunk_root->root_item;
893         super->chunk_root = root_item->bytenr;
894         super->chunk_root_generation = root_item->generation;
895         super->chunk_root_level = root_item->level;
896
897         root_item = &root->fs_info->tree_root->root_item;
898         super->root = root_item->bytenr;
899         super->generation = root_item->generation;
900         super->root_level = root_item->level;
901 }
902
903 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
904 {
905         int ret = 0;
906         spin_lock(&info->new_trans_lock);
907         if (info->running_transaction)
908                 ret = info->running_transaction->in_commit;
909         spin_unlock(&info->new_trans_lock);
910         return ret;
911 }
912
913 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
914                              struct btrfs_root *root)
915 {
916         unsigned long joined = 0;
917         unsigned long timeout = 1;
918         struct btrfs_transaction *cur_trans;
919         struct btrfs_transaction *prev_trans = NULL;
920         DEFINE_WAIT(wait);
921         int ret;
922         int should_grow = 0;
923         unsigned long now = get_seconds();
924         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
925
926         btrfs_run_ordered_operations(root, 0);
927
928         /* make a pass through all the delayed refs we have so far
929          * any runnings procs may add more while we are here
930          */
931         ret = btrfs_run_delayed_refs(trans, root, 0);
932         BUG_ON(ret);
933
934         cur_trans = trans->transaction;
935         /*
936          * set the flushing flag so procs in this transaction have to
937          * start sending their work down.
938          */
939         cur_trans->delayed_refs.flushing = 1;
940
941         ret = btrfs_run_delayed_refs(trans, root, 0);
942         BUG_ON(ret);
943
944         mutex_lock(&root->fs_info->trans_mutex);
945         if (cur_trans->in_commit) {
946                 cur_trans->use_count++;
947                 mutex_unlock(&root->fs_info->trans_mutex);
948                 btrfs_end_transaction(trans, root);
949
950                 ret = wait_for_commit(root, cur_trans);
951                 BUG_ON(ret);
952
953                 mutex_lock(&root->fs_info->trans_mutex);
954                 put_transaction(cur_trans);
955                 mutex_unlock(&root->fs_info->trans_mutex);
956
957                 return 0;
958         }
959
960         trans->transaction->in_commit = 1;
961         trans->transaction->blocked = 1;
962         if (cur_trans->list.prev != &root->fs_info->trans_list) {
963                 prev_trans = list_entry(cur_trans->list.prev,
964                                         struct btrfs_transaction, list);
965                 if (!prev_trans->commit_done) {
966                         prev_trans->use_count++;
967                         mutex_unlock(&root->fs_info->trans_mutex);
968
969                         wait_for_commit(root, prev_trans);
970
971                         mutex_lock(&root->fs_info->trans_mutex);
972                         put_transaction(prev_trans);
973                 }
974         }
975
976         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
977                 should_grow = 1;
978
979         do {
980                 int snap_pending = 0;
981                 joined = cur_trans->num_joined;
982                 if (!list_empty(&trans->transaction->pending_snapshots))
983                         snap_pending = 1;
984
985                 WARN_ON(cur_trans != trans->transaction);
986                 prepare_to_wait(&cur_trans->writer_wait, &wait,
987                                 TASK_UNINTERRUPTIBLE);
988
989                 if (cur_trans->num_writers > 1)
990                         timeout = MAX_SCHEDULE_TIMEOUT;
991                 else if (should_grow)
992                         timeout = 1;
993
994                 mutex_unlock(&root->fs_info->trans_mutex);
995
996                 if (flush_on_commit) {
997                         btrfs_start_delalloc_inodes(root, 1);
998                         ret = btrfs_wait_ordered_extents(root, 0, 1);
999                         BUG_ON(ret);
1000                 } else if (snap_pending) {
1001                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1002                         BUG_ON(ret);
1003                 }
1004
1005                 /*
1006                  * rename don't use btrfs_join_transaction, so, once we
1007                  * set the transaction to blocked above, we aren't going
1008                  * to get any new ordered operations.  We can safely run
1009                  * it here and no for sure that nothing new will be added
1010                  * to the list
1011                  */
1012                 btrfs_run_ordered_operations(root, 1);
1013
1014                 smp_mb();
1015                 if (cur_trans->num_writers > 1 || should_grow)
1016                         schedule_timeout(timeout);
1017
1018                 mutex_lock(&root->fs_info->trans_mutex);
1019                 finish_wait(&cur_trans->writer_wait, &wait);
1020         } while (cur_trans->num_writers > 1 ||
1021                  (should_grow && cur_trans->num_joined != joined));
1022
1023         ret = create_pending_snapshots(trans, root->fs_info);
1024         BUG_ON(ret);
1025
1026         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1027         BUG_ON(ret);
1028
1029         WARN_ON(cur_trans != trans->transaction);
1030
1031         /* btrfs_commit_tree_roots is responsible for getting the
1032          * various roots consistent with each other.  Every pointer
1033          * in the tree of tree roots has to point to the most up to date
1034          * root for every subvolume and other tree.  So, we have to keep
1035          * the tree logging code from jumping in and changing any
1036          * of the trees.
1037          *
1038          * At this point in the commit, there can't be any tree-log
1039          * writers, but a little lower down we drop the trans mutex
1040          * and let new people in.  By holding the tree_log_mutex
1041          * from now until after the super is written, we avoid races
1042          * with the tree-log code.
1043          */
1044         mutex_lock(&root->fs_info->tree_log_mutex);
1045
1046         ret = commit_fs_roots(trans, root);
1047         BUG_ON(ret);
1048
1049         /* commit_fs_roots gets rid of all the tree log roots, it is now
1050          * safe to free the root of tree log roots
1051          */
1052         btrfs_free_log_root_tree(trans, root->fs_info);
1053
1054         ret = commit_cowonly_roots(trans, root);
1055         BUG_ON(ret);
1056
1057         btrfs_prepare_extent_commit(trans, root);
1058
1059         cur_trans = root->fs_info->running_transaction;
1060         spin_lock(&root->fs_info->new_trans_lock);
1061         root->fs_info->running_transaction = NULL;
1062         spin_unlock(&root->fs_info->new_trans_lock);
1063
1064         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1065                             root->fs_info->tree_root->node);
1066         switch_commit_root(root->fs_info->tree_root);
1067
1068         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1069                             root->fs_info->chunk_root->node);
1070         switch_commit_root(root->fs_info->chunk_root);
1071
1072         update_super_roots(root);
1073
1074         if (!root->fs_info->log_root_recovering) {
1075                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1076                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1077         }
1078
1079         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1080                sizeof(root->fs_info->super_copy));
1081
1082         trans->transaction->blocked = 0;
1083
1084         wake_up(&root->fs_info->transaction_wait);
1085
1086         mutex_unlock(&root->fs_info->trans_mutex);
1087         ret = btrfs_write_and_wait_transaction(trans, root);
1088         BUG_ON(ret);
1089         write_ctree_super(trans, root, 0);
1090
1091         /*
1092          * the super is written, we can safely allow the tree-loggers
1093          * to go about their business
1094          */
1095         mutex_unlock(&root->fs_info->tree_log_mutex);
1096
1097         btrfs_finish_extent_commit(trans, root);
1098
1099         /* do the directory inserts of any pending snapshot creations */
1100         finish_pending_snapshots(trans, root->fs_info);
1101
1102         mutex_lock(&root->fs_info->trans_mutex);
1103
1104         cur_trans->commit_done = 1;
1105
1106         root->fs_info->last_trans_committed = cur_trans->transid;
1107
1108         wake_up(&cur_trans->commit_wait);
1109
1110         put_transaction(cur_trans);
1111         put_transaction(cur_trans);
1112
1113         mutex_unlock(&root->fs_info->trans_mutex);
1114
1115         if (current->journal_info == trans)
1116                 current->journal_info = NULL;
1117
1118         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1119
1120         if (current != root->fs_info->transaction_kthread)
1121                 btrfs_run_delayed_iputs(root);
1122
1123         return ret;
1124 }
1125
1126 /*
1127  * interface function to delete all the snapshots we have scheduled for deletion
1128  */
1129 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1130 {
1131         LIST_HEAD(list);
1132         struct btrfs_fs_info *fs_info = root->fs_info;
1133
1134         mutex_lock(&fs_info->trans_mutex);
1135         list_splice_init(&fs_info->dead_roots, &list);
1136         mutex_unlock(&fs_info->trans_mutex);
1137
1138         while (!list_empty(&list)) {
1139                 root = list_entry(list.next, struct btrfs_root, root_list);
1140                 list_del(&root->root_list);
1141
1142                 if (btrfs_header_backref_rev(root->node) <
1143                     BTRFS_MIXED_BACKREF_REV)
1144                         btrfs_drop_snapshot(root, 0);
1145                 else
1146                         btrfs_drop_snapshot(root, 1);
1147         }
1148         return 0;
1149 }