Btrfs: Add delayed iput
[linux-2.6-block.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92                                      struct inode *inode,  struct inode *dir)
93 {
94         int err;
95
96         err = btrfs_init_acl(trans, inode, dir);
97         if (!err)
98                 err = btrfs_xattr_security_init(trans, inode, dir);
99         return err;
100 }
101
102 /*
103  * this does all the hard work for inserting an inline extent into
104  * the btree.  The caller should have done a btrfs_drop_extents so that
105  * no overlapping inline items exist in the btree
106  */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108                                 struct btrfs_root *root, struct inode *inode,
109                                 u64 start, size_t size, size_t compressed_size,
110                                 struct page **compressed_pages)
111 {
112         struct btrfs_key key;
113         struct btrfs_path *path;
114         struct extent_buffer *leaf;
115         struct page *page = NULL;
116         char *kaddr;
117         unsigned long ptr;
118         struct btrfs_file_extent_item *ei;
119         int err = 0;
120         int ret;
121         size_t cur_size = size;
122         size_t datasize;
123         unsigned long offset;
124         int use_compress = 0;
125
126         if (compressed_size && compressed_pages) {
127                 use_compress = 1;
128                 cur_size = compressed_size;
129         }
130
131         path = btrfs_alloc_path();
132         if (!path)
133                 return -ENOMEM;
134
135         path->leave_spinning = 1;
136         btrfs_set_trans_block_group(trans, inode);
137
138         key.objectid = inode->i_ino;
139         key.offset = start;
140         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141         datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143         inode_add_bytes(inode, size);
144         ret = btrfs_insert_empty_item(trans, root, path, &key,
145                                       datasize);
146         BUG_ON(ret);
147         if (ret) {
148                 err = ret;
149                 goto fail;
150         }
151         leaf = path->nodes[0];
152         ei = btrfs_item_ptr(leaf, path->slots[0],
153                             struct btrfs_file_extent_item);
154         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156         btrfs_set_file_extent_encryption(leaf, ei, 0);
157         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159         ptr = btrfs_file_extent_inline_start(ei);
160
161         if (use_compress) {
162                 struct page *cpage;
163                 int i = 0;
164                 while (compressed_size > 0) {
165                         cpage = compressed_pages[i];
166                         cur_size = min_t(unsigned long, compressed_size,
167                                        PAGE_CACHE_SIZE);
168
169                         kaddr = kmap_atomic(cpage, KM_USER0);
170                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
171                         kunmap_atomic(kaddr, KM_USER0);
172
173                         i++;
174                         ptr += cur_size;
175                         compressed_size -= cur_size;
176                 }
177                 btrfs_set_file_extent_compression(leaf, ei,
178                                                   BTRFS_COMPRESS_ZLIB);
179         } else {
180                 page = find_get_page(inode->i_mapping,
181                                      start >> PAGE_CACHE_SHIFT);
182                 btrfs_set_file_extent_compression(leaf, ei, 0);
183                 kaddr = kmap_atomic(page, KM_USER0);
184                 offset = start & (PAGE_CACHE_SIZE - 1);
185                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186                 kunmap_atomic(kaddr, KM_USER0);
187                 page_cache_release(page);
188         }
189         btrfs_mark_buffer_dirty(leaf);
190         btrfs_free_path(path);
191
192         /*
193          * we're an inline extent, so nobody can
194          * extend the file past i_size without locking
195          * a page we already have locked.
196          *
197          * We must do any isize and inode updates
198          * before we unlock the pages.  Otherwise we
199          * could end up racing with unlink.
200          */
201         BTRFS_I(inode)->disk_i_size = inode->i_size;
202         btrfs_update_inode(trans, root, inode);
203
204         return 0;
205 fail:
206         btrfs_free_path(path);
207         return err;
208 }
209
210
211 /*
212  * conditionally insert an inline extent into the file.  This
213  * does the checks required to make sure the data is small enough
214  * to fit as an inline extent.
215  */
216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
217                                  struct btrfs_root *root,
218                                  struct inode *inode, u64 start, u64 end,
219                                  size_t compressed_size,
220                                  struct page **compressed_pages)
221 {
222         u64 isize = i_size_read(inode);
223         u64 actual_end = min(end + 1, isize);
224         u64 inline_len = actual_end - start;
225         u64 aligned_end = (end + root->sectorsize - 1) &
226                         ~((u64)root->sectorsize - 1);
227         u64 hint_byte;
228         u64 data_len = inline_len;
229         int ret;
230
231         if (compressed_size)
232                 data_len = compressed_size;
233
234         if (start > 0 ||
235             actual_end >= PAGE_CACHE_SIZE ||
236             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237             (!compressed_size &&
238             (actual_end & (root->sectorsize - 1)) == 0) ||
239             end + 1 < isize ||
240             data_len > root->fs_info->max_inline) {
241                 return 1;
242         }
243
244         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
245                                  &hint_byte, 1);
246         BUG_ON(ret);
247
248         if (isize > actual_end)
249                 inline_len = min_t(u64, isize, actual_end);
250         ret = insert_inline_extent(trans, root, inode, start,
251                                    inline_len, compressed_size,
252                                    compressed_pages);
253         BUG_ON(ret);
254         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
255         return 0;
256 }
257
258 struct async_extent {
259         u64 start;
260         u64 ram_size;
261         u64 compressed_size;
262         struct page **pages;
263         unsigned long nr_pages;
264         struct list_head list;
265 };
266
267 struct async_cow {
268         struct inode *inode;
269         struct btrfs_root *root;
270         struct page *locked_page;
271         u64 start;
272         u64 end;
273         struct list_head extents;
274         struct btrfs_work work;
275 };
276
277 static noinline int add_async_extent(struct async_cow *cow,
278                                      u64 start, u64 ram_size,
279                                      u64 compressed_size,
280                                      struct page **pages,
281                                      unsigned long nr_pages)
282 {
283         struct async_extent *async_extent;
284
285         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286         async_extent->start = start;
287         async_extent->ram_size = ram_size;
288         async_extent->compressed_size = compressed_size;
289         async_extent->pages = pages;
290         async_extent->nr_pages = nr_pages;
291         list_add_tail(&async_extent->list, &cow->extents);
292         return 0;
293 }
294
295 /*
296  * we create compressed extents in two phases.  The first
297  * phase compresses a range of pages that have already been
298  * locked (both pages and state bits are locked).
299  *
300  * This is done inside an ordered work queue, and the compression
301  * is spread across many cpus.  The actual IO submission is step
302  * two, and the ordered work queue takes care of making sure that
303  * happens in the same order things were put onto the queue by
304  * writepages and friends.
305  *
306  * If this code finds it can't get good compression, it puts an
307  * entry onto the work queue to write the uncompressed bytes.  This
308  * makes sure that both compressed inodes and uncompressed inodes
309  * are written in the same order that pdflush sent them down.
310  */
311 static noinline int compress_file_range(struct inode *inode,
312                                         struct page *locked_page,
313                                         u64 start, u64 end,
314                                         struct async_cow *async_cow,
315                                         int *num_added)
316 {
317         struct btrfs_root *root = BTRFS_I(inode)->root;
318         struct btrfs_trans_handle *trans;
319         u64 num_bytes;
320         u64 orig_start;
321         u64 disk_num_bytes;
322         u64 blocksize = root->sectorsize;
323         u64 actual_end;
324         u64 isize = i_size_read(inode);
325         int ret = 0;
326         struct page **pages = NULL;
327         unsigned long nr_pages;
328         unsigned long nr_pages_ret = 0;
329         unsigned long total_compressed = 0;
330         unsigned long total_in = 0;
331         unsigned long max_compressed = 128 * 1024;
332         unsigned long max_uncompressed = 128 * 1024;
333         int i;
334         int will_compress;
335
336         orig_start = start;
337
338         actual_end = min_t(u64, isize, end + 1);
339 again:
340         will_compress = 0;
341         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343
344         /*
345          * we don't want to send crud past the end of i_size through
346          * compression, that's just a waste of CPU time.  So, if the
347          * end of the file is before the start of our current
348          * requested range of bytes, we bail out to the uncompressed
349          * cleanup code that can deal with all of this.
350          *
351          * It isn't really the fastest way to fix things, but this is a
352          * very uncommon corner.
353          */
354         if (actual_end <= start)
355                 goto cleanup_and_bail_uncompressed;
356
357         total_compressed = actual_end - start;
358
359         /* we want to make sure that amount of ram required to uncompress
360          * an extent is reasonable, so we limit the total size in ram
361          * of a compressed extent to 128k.  This is a crucial number
362          * because it also controls how easily we can spread reads across
363          * cpus for decompression.
364          *
365          * We also want to make sure the amount of IO required to do
366          * a random read is reasonably small, so we limit the size of
367          * a compressed extent to 128k.
368          */
369         total_compressed = min(total_compressed, max_uncompressed);
370         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
371         num_bytes = max(blocksize,  num_bytes);
372         disk_num_bytes = num_bytes;
373         total_in = 0;
374         ret = 0;
375
376         /*
377          * we do compression for mount -o compress and when the
378          * inode has not been flagged as nocompress.  This flag can
379          * change at any time if we discover bad compression ratios.
380          */
381         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
382             btrfs_test_opt(root, COMPRESS)) {
383                 WARN_ON(pages);
384                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
385
386                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387                                                 total_compressed, pages,
388                                                 nr_pages, &nr_pages_ret,
389                                                 &total_in,
390                                                 &total_compressed,
391                                                 max_compressed);
392
393                 if (!ret) {
394                         unsigned long offset = total_compressed &
395                                 (PAGE_CACHE_SIZE - 1);
396                         struct page *page = pages[nr_pages_ret - 1];
397                         char *kaddr;
398
399                         /* zero the tail end of the last page, we might be
400                          * sending it down to disk
401                          */
402                         if (offset) {
403                                 kaddr = kmap_atomic(page, KM_USER0);
404                                 memset(kaddr + offset, 0,
405                                        PAGE_CACHE_SIZE - offset);
406                                 kunmap_atomic(kaddr, KM_USER0);
407                         }
408                         will_compress = 1;
409                 }
410         }
411         if (start == 0) {
412                 trans = btrfs_join_transaction(root, 1);
413                 BUG_ON(!trans);
414                 btrfs_set_trans_block_group(trans, inode);
415
416                 /* lets try to make an inline extent */
417                 if (ret || total_in < (actual_end - start)) {
418                         /* we didn't compress the entire range, try
419                          * to make an uncompressed inline extent.
420                          */
421                         ret = cow_file_range_inline(trans, root, inode,
422                                                     start, end, 0, NULL);
423                 } else {
424                         /* try making a compressed inline extent */
425                         ret = cow_file_range_inline(trans, root, inode,
426                                                     start, end,
427                                                     total_compressed, pages);
428                 }
429                 if (ret == 0) {
430                         /*
431                          * inline extent creation worked, we don't need
432                          * to create any more async work items.  Unlock
433                          * and free up our temp pages.
434                          */
435                         extent_clear_unlock_delalloc(inode,
436                              &BTRFS_I(inode)->io_tree,
437                              start, end, NULL,
438                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
439                              EXTENT_CLEAR_DELALLOC |
440                              EXTENT_CLEAR_ACCOUNTING |
441                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
442
443                         btrfs_end_transaction(trans, root);
444                         goto free_pages_out;
445                 }
446                 btrfs_end_transaction(trans, root);
447         }
448
449         if (will_compress) {
450                 /*
451                  * we aren't doing an inline extent round the compressed size
452                  * up to a block size boundary so the allocator does sane
453                  * things
454                  */
455                 total_compressed = (total_compressed + blocksize - 1) &
456                         ~(blocksize - 1);
457
458                 /*
459                  * one last check to make sure the compression is really a
460                  * win, compare the page count read with the blocks on disk
461                  */
462                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463                         ~(PAGE_CACHE_SIZE - 1);
464                 if (total_compressed >= total_in) {
465                         will_compress = 0;
466                 } else {
467                         disk_num_bytes = total_compressed;
468                         num_bytes = total_in;
469                 }
470         }
471         if (!will_compress && pages) {
472                 /*
473                  * the compression code ran but failed to make things smaller,
474                  * free any pages it allocated and our page pointer array
475                  */
476                 for (i = 0; i < nr_pages_ret; i++) {
477                         WARN_ON(pages[i]->mapping);
478                         page_cache_release(pages[i]);
479                 }
480                 kfree(pages);
481                 pages = NULL;
482                 total_compressed = 0;
483                 nr_pages_ret = 0;
484
485                 /* flag the file so we don't compress in the future */
486                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
487         }
488         if (will_compress) {
489                 *num_added += 1;
490
491                 /* the async work queues will take care of doing actual
492                  * allocation on disk for these compressed pages,
493                  * and will submit them to the elevator.
494                  */
495                 add_async_extent(async_cow, start, num_bytes,
496                                  total_compressed, pages, nr_pages_ret);
497
498                 if (start + num_bytes < end && start + num_bytes < actual_end) {
499                         start += num_bytes;
500                         pages = NULL;
501                         cond_resched();
502                         goto again;
503                 }
504         } else {
505 cleanup_and_bail_uncompressed:
506                 /*
507                  * No compression, but we still need to write the pages in
508                  * the file we've been given so far.  redirty the locked
509                  * page if it corresponds to our extent and set things up
510                  * for the async work queue to run cow_file_range to do
511                  * the normal delalloc dance
512                  */
513                 if (page_offset(locked_page) >= start &&
514                     page_offset(locked_page) <= end) {
515                         __set_page_dirty_nobuffers(locked_page);
516                         /* unlocked later on in the async handlers */
517                 }
518                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
519                 *num_added += 1;
520         }
521
522 out:
523         return 0;
524
525 free_pages_out:
526         for (i = 0; i < nr_pages_ret; i++) {
527                 WARN_ON(pages[i]->mapping);
528                 page_cache_release(pages[i]);
529         }
530         kfree(pages);
531
532         goto out;
533 }
534
535 /*
536  * phase two of compressed writeback.  This is the ordered portion
537  * of the code, which only gets called in the order the work was
538  * queued.  We walk all the async extents created by compress_file_range
539  * and send them down to the disk.
540  */
541 static noinline int submit_compressed_extents(struct inode *inode,
542                                               struct async_cow *async_cow)
543 {
544         struct async_extent *async_extent;
545         u64 alloc_hint = 0;
546         struct btrfs_trans_handle *trans;
547         struct btrfs_key ins;
548         struct extent_map *em;
549         struct btrfs_root *root = BTRFS_I(inode)->root;
550         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
551         struct extent_io_tree *io_tree;
552         int ret = 0;
553
554         if (list_empty(&async_cow->extents))
555                 return 0;
556
557
558         while (!list_empty(&async_cow->extents)) {
559                 async_extent = list_entry(async_cow->extents.next,
560                                           struct async_extent, list);
561                 list_del(&async_extent->list);
562
563                 io_tree = &BTRFS_I(inode)->io_tree;
564
565 retry:
566                 /* did the compression code fall back to uncompressed IO? */
567                 if (!async_extent->pages) {
568                         int page_started = 0;
569                         unsigned long nr_written = 0;
570
571                         lock_extent(io_tree, async_extent->start,
572                                     async_extent->start +
573                                     async_extent->ram_size - 1, GFP_NOFS);
574
575                         /* allocate blocks */
576                         ret = cow_file_range(inode, async_cow->locked_page,
577                                              async_extent->start,
578                                              async_extent->start +
579                                              async_extent->ram_size - 1,
580                                              &page_started, &nr_written, 0);
581
582                         /*
583                          * if page_started, cow_file_range inserted an
584                          * inline extent and took care of all the unlocking
585                          * and IO for us.  Otherwise, we need to submit
586                          * all those pages down to the drive.
587                          */
588                         if (!page_started && !ret)
589                                 extent_write_locked_range(io_tree,
590                                                   inode, async_extent->start,
591                                                   async_extent->start +
592                                                   async_extent->ram_size - 1,
593                                                   btrfs_get_extent,
594                                                   WB_SYNC_ALL);
595                         kfree(async_extent);
596                         cond_resched();
597                         continue;
598                 }
599
600                 lock_extent(io_tree, async_extent->start,
601                             async_extent->start + async_extent->ram_size - 1,
602                             GFP_NOFS);
603
604                 trans = btrfs_join_transaction(root, 1);
605                 ret = btrfs_reserve_extent(trans, root,
606                                            async_extent->compressed_size,
607                                            async_extent->compressed_size,
608                                            0, alloc_hint,
609                                            (u64)-1, &ins, 1);
610                 btrfs_end_transaction(trans, root);
611
612                 if (ret) {
613                         int i;
614                         for (i = 0; i < async_extent->nr_pages; i++) {
615                                 WARN_ON(async_extent->pages[i]->mapping);
616                                 page_cache_release(async_extent->pages[i]);
617                         }
618                         kfree(async_extent->pages);
619                         async_extent->nr_pages = 0;
620                         async_extent->pages = NULL;
621                         unlock_extent(io_tree, async_extent->start,
622                                       async_extent->start +
623                                       async_extent->ram_size - 1, GFP_NOFS);
624                         goto retry;
625                 }
626
627                 /*
628                  * here we're doing allocation and writeback of the
629                  * compressed pages
630                  */
631                 btrfs_drop_extent_cache(inode, async_extent->start,
632                                         async_extent->start +
633                                         async_extent->ram_size - 1, 0);
634
635                 em = alloc_extent_map(GFP_NOFS);
636                 em->start = async_extent->start;
637                 em->len = async_extent->ram_size;
638                 em->orig_start = em->start;
639
640                 em->block_start = ins.objectid;
641                 em->block_len = ins.offset;
642                 em->bdev = root->fs_info->fs_devices->latest_bdev;
643                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
644                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
645
646                 while (1) {
647                         write_lock(&em_tree->lock);
648                         ret = add_extent_mapping(em_tree, em);
649                         write_unlock(&em_tree->lock);
650                         if (ret != -EEXIST) {
651                                 free_extent_map(em);
652                                 break;
653                         }
654                         btrfs_drop_extent_cache(inode, async_extent->start,
655                                                 async_extent->start +
656                                                 async_extent->ram_size - 1, 0);
657                 }
658
659                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
660                                                ins.objectid,
661                                                async_extent->ram_size,
662                                                ins.offset,
663                                                BTRFS_ORDERED_COMPRESSED);
664                 BUG_ON(ret);
665
666                 /*
667                  * clear dirty, set writeback and unlock the pages.
668                  */
669                 extent_clear_unlock_delalloc(inode,
670                                 &BTRFS_I(inode)->io_tree,
671                                 async_extent->start,
672                                 async_extent->start +
673                                 async_extent->ram_size - 1,
674                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
675                                 EXTENT_CLEAR_UNLOCK |
676                                 EXTENT_CLEAR_DELALLOC |
677                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
678
679                 ret = btrfs_submit_compressed_write(inode,
680                                     async_extent->start,
681                                     async_extent->ram_size,
682                                     ins.objectid,
683                                     ins.offset, async_extent->pages,
684                                     async_extent->nr_pages);
685
686                 BUG_ON(ret);
687                 alloc_hint = ins.objectid + ins.offset;
688                 kfree(async_extent);
689                 cond_resched();
690         }
691
692         return 0;
693 }
694
695 /*
696  * when extent_io.c finds a delayed allocation range in the file,
697  * the call backs end up in this code.  The basic idea is to
698  * allocate extents on disk for the range, and create ordered data structs
699  * in ram to track those extents.
700  *
701  * locked_page is the page that writepage had locked already.  We use
702  * it to make sure we don't do extra locks or unlocks.
703  *
704  * *page_started is set to one if we unlock locked_page and do everything
705  * required to start IO on it.  It may be clean and already done with
706  * IO when we return.
707  */
708 static noinline int cow_file_range(struct inode *inode,
709                                    struct page *locked_page,
710                                    u64 start, u64 end, int *page_started,
711                                    unsigned long *nr_written,
712                                    int unlock)
713 {
714         struct btrfs_root *root = BTRFS_I(inode)->root;
715         struct btrfs_trans_handle *trans;
716         u64 alloc_hint = 0;
717         u64 num_bytes;
718         unsigned long ram_size;
719         u64 disk_num_bytes;
720         u64 cur_alloc_size;
721         u64 blocksize = root->sectorsize;
722         u64 actual_end;
723         u64 isize = i_size_read(inode);
724         struct btrfs_key ins;
725         struct extent_map *em;
726         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
727         int ret = 0;
728
729         trans = btrfs_join_transaction(root, 1);
730         BUG_ON(!trans);
731         btrfs_set_trans_block_group(trans, inode);
732
733         actual_end = min_t(u64, isize, end + 1);
734
735         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
736         num_bytes = max(blocksize,  num_bytes);
737         disk_num_bytes = num_bytes;
738         ret = 0;
739
740         if (start == 0) {
741                 /* lets try to make an inline extent */
742                 ret = cow_file_range_inline(trans, root, inode,
743                                             start, end, 0, NULL);
744                 if (ret == 0) {
745                         extent_clear_unlock_delalloc(inode,
746                                      &BTRFS_I(inode)->io_tree,
747                                      start, end, NULL,
748                                      EXTENT_CLEAR_UNLOCK_PAGE |
749                                      EXTENT_CLEAR_UNLOCK |
750                                      EXTENT_CLEAR_DELALLOC |
751                                      EXTENT_CLEAR_ACCOUNTING |
752                                      EXTENT_CLEAR_DIRTY |
753                                      EXTENT_SET_WRITEBACK |
754                                      EXTENT_END_WRITEBACK);
755
756                         *nr_written = *nr_written +
757                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
758                         *page_started = 1;
759                         ret = 0;
760                         goto out;
761                 }
762         }
763
764         BUG_ON(disk_num_bytes >
765                btrfs_super_total_bytes(&root->fs_info->super_copy));
766
767
768         read_lock(&BTRFS_I(inode)->extent_tree.lock);
769         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
770                                    start, num_bytes);
771         if (em) {
772                 /*
773                  * if block start isn't an actual block number then find the
774                  * first block in this inode and use that as a hint.  If that
775                  * block is also bogus then just don't worry about it.
776                  */
777                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
778                         free_extent_map(em);
779                         em = search_extent_mapping(em_tree, 0, 0);
780                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
781                                 alloc_hint = em->block_start;
782                         if (em)
783                                 free_extent_map(em);
784                 } else {
785                         alloc_hint = em->block_start;
786                         free_extent_map(em);
787                 }
788         }
789         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
790         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
791
792         while (disk_num_bytes > 0) {
793                 unsigned long op;
794
795                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
796                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
797                                            root->sectorsize, 0, alloc_hint,
798                                            (u64)-1, &ins, 1);
799                 BUG_ON(ret);
800
801                 em = alloc_extent_map(GFP_NOFS);
802                 em->start = start;
803                 em->orig_start = em->start;
804                 ram_size = ins.offset;
805                 em->len = ins.offset;
806
807                 em->block_start = ins.objectid;
808                 em->block_len = ins.offset;
809                 em->bdev = root->fs_info->fs_devices->latest_bdev;
810                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
811
812                 while (1) {
813                         write_lock(&em_tree->lock);
814                         ret = add_extent_mapping(em_tree, em);
815                         write_unlock(&em_tree->lock);
816                         if (ret != -EEXIST) {
817                                 free_extent_map(em);
818                                 break;
819                         }
820                         btrfs_drop_extent_cache(inode, start,
821                                                 start + ram_size - 1, 0);
822                 }
823
824                 cur_alloc_size = ins.offset;
825                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
826                                                ram_size, cur_alloc_size, 0);
827                 BUG_ON(ret);
828
829                 if (root->root_key.objectid ==
830                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
831                         ret = btrfs_reloc_clone_csums(inode, start,
832                                                       cur_alloc_size);
833                         BUG_ON(ret);
834                 }
835
836                 if (disk_num_bytes < cur_alloc_size)
837                         break;
838
839                 /* we're not doing compressed IO, don't unlock the first
840                  * page (which the caller expects to stay locked), don't
841                  * clear any dirty bits and don't set any writeback bits
842                  *
843                  * Do set the Private2 bit so we know this page was properly
844                  * setup for writepage
845                  */
846                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
847                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
848                         EXTENT_SET_PRIVATE2;
849
850                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
851                                              start, start + ram_size - 1,
852                                              locked_page, op);
853                 disk_num_bytes -= cur_alloc_size;
854                 num_bytes -= cur_alloc_size;
855                 alloc_hint = ins.objectid + ins.offset;
856                 start += cur_alloc_size;
857         }
858 out:
859         ret = 0;
860         btrfs_end_transaction(trans, root);
861
862         return ret;
863 }
864
865 /*
866  * work queue call back to started compression on a file and pages
867  */
868 static noinline void async_cow_start(struct btrfs_work *work)
869 {
870         struct async_cow *async_cow;
871         int num_added = 0;
872         async_cow = container_of(work, struct async_cow, work);
873
874         compress_file_range(async_cow->inode, async_cow->locked_page,
875                             async_cow->start, async_cow->end, async_cow,
876                             &num_added);
877         if (num_added == 0)
878                 async_cow->inode = NULL;
879 }
880
881 /*
882  * work queue call back to submit previously compressed pages
883  */
884 static noinline void async_cow_submit(struct btrfs_work *work)
885 {
886         struct async_cow *async_cow;
887         struct btrfs_root *root;
888         unsigned long nr_pages;
889
890         async_cow = container_of(work, struct async_cow, work);
891
892         root = async_cow->root;
893         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
894                 PAGE_CACHE_SHIFT;
895
896         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
897
898         if (atomic_read(&root->fs_info->async_delalloc_pages) <
899             5 * 1042 * 1024 &&
900             waitqueue_active(&root->fs_info->async_submit_wait))
901                 wake_up(&root->fs_info->async_submit_wait);
902
903         if (async_cow->inode)
904                 submit_compressed_extents(async_cow->inode, async_cow);
905 }
906
907 static noinline void async_cow_free(struct btrfs_work *work)
908 {
909         struct async_cow *async_cow;
910         async_cow = container_of(work, struct async_cow, work);
911         kfree(async_cow);
912 }
913
914 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
915                                 u64 start, u64 end, int *page_started,
916                                 unsigned long *nr_written)
917 {
918         struct async_cow *async_cow;
919         struct btrfs_root *root = BTRFS_I(inode)->root;
920         unsigned long nr_pages;
921         u64 cur_end;
922         int limit = 10 * 1024 * 1042;
923
924         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
925                          1, 0, NULL, GFP_NOFS);
926         while (start < end) {
927                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
928                 async_cow->inode = inode;
929                 async_cow->root = root;
930                 async_cow->locked_page = locked_page;
931                 async_cow->start = start;
932
933                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
934                         cur_end = end;
935                 else
936                         cur_end = min(end, start + 512 * 1024 - 1);
937
938                 async_cow->end = cur_end;
939                 INIT_LIST_HEAD(&async_cow->extents);
940
941                 async_cow->work.func = async_cow_start;
942                 async_cow->work.ordered_func = async_cow_submit;
943                 async_cow->work.ordered_free = async_cow_free;
944                 async_cow->work.flags = 0;
945
946                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
947                         PAGE_CACHE_SHIFT;
948                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
949
950                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
951                                    &async_cow->work);
952
953                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
954                         wait_event(root->fs_info->async_submit_wait,
955                            (atomic_read(&root->fs_info->async_delalloc_pages) <
956                             limit));
957                 }
958
959                 while (atomic_read(&root->fs_info->async_submit_draining) &&
960                       atomic_read(&root->fs_info->async_delalloc_pages)) {
961                         wait_event(root->fs_info->async_submit_wait,
962                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
963                            0));
964                 }
965
966                 *nr_written += nr_pages;
967                 start = cur_end + 1;
968         }
969         *page_started = 1;
970         return 0;
971 }
972
973 static noinline int csum_exist_in_range(struct btrfs_root *root,
974                                         u64 bytenr, u64 num_bytes)
975 {
976         int ret;
977         struct btrfs_ordered_sum *sums;
978         LIST_HEAD(list);
979
980         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
981                                        bytenr + num_bytes - 1, &list);
982         if (ret == 0 && list_empty(&list))
983                 return 0;
984
985         while (!list_empty(&list)) {
986                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
987                 list_del(&sums->list);
988                 kfree(sums);
989         }
990         return 1;
991 }
992
993 /*
994  * when nowcow writeback call back.  This checks for snapshots or COW copies
995  * of the extents that exist in the file, and COWs the file as required.
996  *
997  * If no cow copies or snapshots exist, we write directly to the existing
998  * blocks on disk
999  */
1000 static noinline int run_delalloc_nocow(struct inode *inode,
1001                                        struct page *locked_page,
1002                               u64 start, u64 end, int *page_started, int force,
1003                               unsigned long *nr_written)
1004 {
1005         struct btrfs_root *root = BTRFS_I(inode)->root;
1006         struct btrfs_trans_handle *trans;
1007         struct extent_buffer *leaf;
1008         struct btrfs_path *path;
1009         struct btrfs_file_extent_item *fi;
1010         struct btrfs_key found_key;
1011         u64 cow_start;
1012         u64 cur_offset;
1013         u64 extent_end;
1014         u64 extent_offset;
1015         u64 disk_bytenr;
1016         u64 num_bytes;
1017         int extent_type;
1018         int ret;
1019         int type;
1020         int nocow;
1021         int check_prev = 1;
1022
1023         path = btrfs_alloc_path();
1024         BUG_ON(!path);
1025         trans = btrfs_join_transaction(root, 1);
1026         BUG_ON(!trans);
1027
1028         cow_start = (u64)-1;
1029         cur_offset = start;
1030         while (1) {
1031                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1032                                                cur_offset, 0);
1033                 BUG_ON(ret < 0);
1034                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1035                         leaf = path->nodes[0];
1036                         btrfs_item_key_to_cpu(leaf, &found_key,
1037                                               path->slots[0] - 1);
1038                         if (found_key.objectid == inode->i_ino &&
1039                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1040                                 path->slots[0]--;
1041                 }
1042                 check_prev = 0;
1043 next_slot:
1044                 leaf = path->nodes[0];
1045                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1046                         ret = btrfs_next_leaf(root, path);
1047                         if (ret < 0)
1048                                 BUG_ON(1);
1049                         if (ret > 0)
1050                                 break;
1051                         leaf = path->nodes[0];
1052                 }
1053
1054                 nocow = 0;
1055                 disk_bytenr = 0;
1056                 num_bytes = 0;
1057                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1058
1059                 if (found_key.objectid > inode->i_ino ||
1060                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1061                     found_key.offset > end)
1062                         break;
1063
1064                 if (found_key.offset > cur_offset) {
1065                         extent_end = found_key.offset;
1066                         extent_type = 0;
1067                         goto out_check;
1068                 }
1069
1070                 fi = btrfs_item_ptr(leaf, path->slots[0],
1071                                     struct btrfs_file_extent_item);
1072                 extent_type = btrfs_file_extent_type(leaf, fi);
1073
1074                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1075                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1076                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1077                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1078                         extent_end = found_key.offset +
1079                                 btrfs_file_extent_num_bytes(leaf, fi);
1080                         if (extent_end <= start) {
1081                                 path->slots[0]++;
1082                                 goto next_slot;
1083                         }
1084                         if (disk_bytenr == 0)
1085                                 goto out_check;
1086                         if (btrfs_file_extent_compression(leaf, fi) ||
1087                             btrfs_file_extent_encryption(leaf, fi) ||
1088                             btrfs_file_extent_other_encoding(leaf, fi))
1089                                 goto out_check;
1090                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1091                                 goto out_check;
1092                         if (btrfs_extent_readonly(root, disk_bytenr))
1093                                 goto out_check;
1094                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1095                                                   found_key.offset -
1096                                                   extent_offset, disk_bytenr))
1097                                 goto out_check;
1098                         disk_bytenr += extent_offset;
1099                         disk_bytenr += cur_offset - found_key.offset;
1100                         num_bytes = min(end + 1, extent_end) - cur_offset;
1101                         /*
1102                          * force cow if csum exists in the range.
1103                          * this ensure that csum for a given extent are
1104                          * either valid or do not exist.
1105                          */
1106                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1107                                 goto out_check;
1108                         nocow = 1;
1109                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1110                         extent_end = found_key.offset +
1111                                 btrfs_file_extent_inline_len(leaf, fi);
1112                         extent_end = ALIGN(extent_end, root->sectorsize);
1113                 } else {
1114                         BUG_ON(1);
1115                 }
1116 out_check:
1117                 if (extent_end <= start) {
1118                         path->slots[0]++;
1119                         goto next_slot;
1120                 }
1121                 if (!nocow) {
1122                         if (cow_start == (u64)-1)
1123                                 cow_start = cur_offset;
1124                         cur_offset = extent_end;
1125                         if (cur_offset > end)
1126                                 break;
1127                         path->slots[0]++;
1128                         goto next_slot;
1129                 }
1130
1131                 btrfs_release_path(root, path);
1132                 if (cow_start != (u64)-1) {
1133                         ret = cow_file_range(inode, locked_page, cow_start,
1134                                         found_key.offset - 1, page_started,
1135                                         nr_written, 1);
1136                         BUG_ON(ret);
1137                         cow_start = (u64)-1;
1138                 }
1139
1140                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1141                         struct extent_map *em;
1142                         struct extent_map_tree *em_tree;
1143                         em_tree = &BTRFS_I(inode)->extent_tree;
1144                         em = alloc_extent_map(GFP_NOFS);
1145                         em->start = cur_offset;
1146                         em->orig_start = em->start;
1147                         em->len = num_bytes;
1148                         em->block_len = num_bytes;
1149                         em->block_start = disk_bytenr;
1150                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1151                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1152                         while (1) {
1153                                 write_lock(&em_tree->lock);
1154                                 ret = add_extent_mapping(em_tree, em);
1155                                 write_unlock(&em_tree->lock);
1156                                 if (ret != -EEXIST) {
1157                                         free_extent_map(em);
1158                                         break;
1159                                 }
1160                                 btrfs_drop_extent_cache(inode, em->start,
1161                                                 em->start + em->len - 1, 0);
1162                         }
1163                         type = BTRFS_ORDERED_PREALLOC;
1164                 } else {
1165                         type = BTRFS_ORDERED_NOCOW;
1166                 }
1167
1168                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1169                                                num_bytes, num_bytes, type);
1170                 BUG_ON(ret);
1171
1172                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1173                                 cur_offset, cur_offset + num_bytes - 1,
1174                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1175                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1176                                 EXTENT_SET_PRIVATE2);
1177                 cur_offset = extent_end;
1178                 if (cur_offset > end)
1179                         break;
1180         }
1181         btrfs_release_path(root, path);
1182
1183         if (cur_offset <= end && cow_start == (u64)-1)
1184                 cow_start = cur_offset;
1185         if (cow_start != (u64)-1) {
1186                 ret = cow_file_range(inode, locked_page, cow_start, end,
1187                                      page_started, nr_written, 1);
1188                 BUG_ON(ret);
1189         }
1190
1191         ret = btrfs_end_transaction(trans, root);
1192         BUG_ON(ret);
1193         btrfs_free_path(path);
1194         return 0;
1195 }
1196
1197 /*
1198  * extent_io.c call back to do delayed allocation processing
1199  */
1200 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1201                               u64 start, u64 end, int *page_started,
1202                               unsigned long *nr_written)
1203 {
1204         int ret;
1205         struct btrfs_root *root = BTRFS_I(inode)->root;
1206
1207         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1208                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1209                                          page_started, 1, nr_written);
1210         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1211                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1212                                          page_started, 0, nr_written);
1213         else if (!btrfs_test_opt(root, COMPRESS))
1214                 ret = cow_file_range(inode, locked_page, start, end,
1215                                       page_started, nr_written, 1);
1216         else
1217                 ret = cow_file_range_async(inode, locked_page, start, end,
1218                                            page_started, nr_written);
1219         return ret;
1220 }
1221
1222 static int btrfs_split_extent_hook(struct inode *inode,
1223                                     struct extent_state *orig, u64 split)
1224 {
1225         struct btrfs_root *root = BTRFS_I(inode)->root;
1226         u64 size;
1227
1228         if (!(orig->state & EXTENT_DELALLOC))
1229                 return 0;
1230
1231         size = orig->end - orig->start + 1;
1232         if (size > root->fs_info->max_extent) {
1233                 u64 num_extents;
1234                 u64 new_size;
1235
1236                 new_size = orig->end - split + 1;
1237                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1238                                         root->fs_info->max_extent);
1239
1240                 /*
1241                  * if we break a large extent up then leave oustanding_extents
1242                  * be, since we've already accounted for the large extent.
1243                  */
1244                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1245                               root->fs_info->max_extent) < num_extents)
1246                         return 0;
1247         }
1248
1249         spin_lock(&BTRFS_I(inode)->accounting_lock);
1250         BTRFS_I(inode)->outstanding_extents++;
1251         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1252
1253         return 0;
1254 }
1255
1256 /*
1257  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1258  * extents so we can keep track of new extents that are just merged onto old
1259  * extents, such as when we are doing sequential writes, so we can properly
1260  * account for the metadata space we'll need.
1261  */
1262 static int btrfs_merge_extent_hook(struct inode *inode,
1263                                    struct extent_state *new,
1264                                    struct extent_state *other)
1265 {
1266         struct btrfs_root *root = BTRFS_I(inode)->root;
1267         u64 new_size, old_size;
1268         u64 num_extents;
1269
1270         /* not delalloc, ignore it */
1271         if (!(other->state & EXTENT_DELALLOC))
1272                 return 0;
1273
1274         old_size = other->end - other->start + 1;
1275         if (new->start < other->start)
1276                 new_size = other->end - new->start + 1;
1277         else
1278                 new_size = new->end - other->start + 1;
1279
1280         /* we're not bigger than the max, unreserve the space and go */
1281         if (new_size <= root->fs_info->max_extent) {
1282                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1283                 BTRFS_I(inode)->outstanding_extents--;
1284                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1285                 return 0;
1286         }
1287
1288         /*
1289          * If we grew by another max_extent, just return, we want to keep that
1290          * reserved amount.
1291          */
1292         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1293                                 root->fs_info->max_extent);
1294         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1295                       root->fs_info->max_extent) > num_extents)
1296                 return 0;
1297
1298         spin_lock(&BTRFS_I(inode)->accounting_lock);
1299         BTRFS_I(inode)->outstanding_extents--;
1300         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1301
1302         return 0;
1303 }
1304
1305 /*
1306  * extent_io.c set_bit_hook, used to track delayed allocation
1307  * bytes in this file, and to maintain the list of inodes that
1308  * have pending delalloc work to be done.
1309  */
1310 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1311                        unsigned long old, unsigned long bits)
1312 {
1313
1314         /*
1315          * set_bit and clear bit hooks normally require _irqsave/restore
1316          * but in this case, we are only testeing for the DELALLOC
1317          * bit, which is only set or cleared with irqs on
1318          */
1319         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1320                 struct btrfs_root *root = BTRFS_I(inode)->root;
1321
1322                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1323                 BTRFS_I(inode)->outstanding_extents++;
1324                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1325                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1326                 spin_lock(&root->fs_info->delalloc_lock);
1327                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1328                 root->fs_info->delalloc_bytes += end - start + 1;
1329                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331                                       &root->fs_info->delalloc_inodes);
1332                 }
1333                 spin_unlock(&root->fs_info->delalloc_lock);
1334         }
1335         return 0;
1336 }
1337
1338 /*
1339  * extent_io.c clear_bit_hook, see set_bit_hook for why
1340  */
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342                                 struct extent_state *state, unsigned long bits)
1343 {
1344         /*
1345          * set_bit and clear bit hooks normally require _irqsave/restore
1346          * but in this case, we are only testeing for the DELALLOC
1347          * bit, which is only set or cleared with irqs on
1348          */
1349         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1350                 struct btrfs_root *root = BTRFS_I(inode)->root;
1351
1352                 if (bits & EXTENT_DO_ACCOUNTING) {
1353                         spin_lock(&BTRFS_I(inode)->accounting_lock);
1354                         BTRFS_I(inode)->outstanding_extents--;
1355                         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1356                         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1357                 }
1358
1359                 spin_lock(&root->fs_info->delalloc_lock);
1360                 if (state->end - state->start + 1 >
1361                     root->fs_info->delalloc_bytes) {
1362                         printk(KERN_INFO "btrfs warning: delalloc account "
1363                                "%llu %llu\n",
1364                                (unsigned long long)
1365                                state->end - state->start + 1,
1366                                (unsigned long long)
1367                                root->fs_info->delalloc_bytes);
1368                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1369                         root->fs_info->delalloc_bytes = 0;
1370                         BTRFS_I(inode)->delalloc_bytes = 0;
1371                 } else {
1372                         btrfs_delalloc_free_space(root, inode,
1373                                                   state->end -
1374                                                   state->start + 1);
1375                         root->fs_info->delalloc_bytes -= state->end -
1376                                 state->start + 1;
1377                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1378                                 state->start + 1;
1379                 }
1380                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1381                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1382                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1383                 }
1384                 spin_unlock(&root->fs_info->delalloc_lock);
1385         }
1386         return 0;
1387 }
1388
1389 /*
1390  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1391  * we don't create bios that span stripes or chunks
1392  */
1393 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1394                          size_t size, struct bio *bio,
1395                          unsigned long bio_flags)
1396 {
1397         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1398         struct btrfs_mapping_tree *map_tree;
1399         u64 logical = (u64)bio->bi_sector << 9;
1400         u64 length = 0;
1401         u64 map_length;
1402         int ret;
1403
1404         if (bio_flags & EXTENT_BIO_COMPRESSED)
1405                 return 0;
1406
1407         length = bio->bi_size;
1408         map_tree = &root->fs_info->mapping_tree;
1409         map_length = length;
1410         ret = btrfs_map_block(map_tree, READ, logical,
1411                               &map_length, NULL, 0);
1412
1413         if (map_length < length + size)
1414                 return 1;
1415         return 0;
1416 }
1417
1418 /*
1419  * in order to insert checksums into the metadata in large chunks,
1420  * we wait until bio submission time.   All the pages in the bio are
1421  * checksummed and sums are attached onto the ordered extent record.
1422  *
1423  * At IO completion time the cums attached on the ordered extent record
1424  * are inserted into the btree
1425  */
1426 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1427                                     struct bio *bio, int mirror_num,
1428                                     unsigned long bio_flags)
1429 {
1430         struct btrfs_root *root = BTRFS_I(inode)->root;
1431         int ret = 0;
1432
1433         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1434         BUG_ON(ret);
1435         return 0;
1436 }
1437
1438 /*
1439  * in order to insert checksums into the metadata in large chunks,
1440  * we wait until bio submission time.   All the pages in the bio are
1441  * checksummed and sums are attached onto the ordered extent record.
1442  *
1443  * At IO completion time the cums attached on the ordered extent record
1444  * are inserted into the btree
1445  */
1446 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1447                           int mirror_num, unsigned long bio_flags)
1448 {
1449         struct btrfs_root *root = BTRFS_I(inode)->root;
1450         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1451 }
1452
1453 /*
1454  * extent_io.c submission hook. This does the right thing for csum calculation
1455  * on write, or reading the csums from the tree before a read
1456  */
1457 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1458                           int mirror_num, unsigned long bio_flags)
1459 {
1460         struct btrfs_root *root = BTRFS_I(inode)->root;
1461         int ret = 0;
1462         int skip_sum;
1463
1464         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1465
1466         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1467         BUG_ON(ret);
1468
1469         if (!(rw & (1 << BIO_RW))) {
1470                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1471                         return btrfs_submit_compressed_read(inode, bio,
1472                                                     mirror_num, bio_flags);
1473                 } else if (!skip_sum)
1474                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1475                 goto mapit;
1476         } else if (!skip_sum) {
1477                 /* csum items have already been cloned */
1478                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479                         goto mapit;
1480                 /* we're doing a write, do the async checksumming */
1481                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482                                    inode, rw, bio, mirror_num,
1483                                    bio_flags, __btrfs_submit_bio_start,
1484                                    __btrfs_submit_bio_done);
1485         }
1486
1487 mapit:
1488         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1489 }
1490
1491 /*
1492  * given a list of ordered sums record them in the inode.  This happens
1493  * at IO completion time based on sums calculated at bio submission time.
1494  */
1495 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1496                              struct inode *inode, u64 file_offset,
1497                              struct list_head *list)
1498 {
1499         struct btrfs_ordered_sum *sum;
1500
1501         btrfs_set_trans_block_group(trans, inode);
1502
1503         list_for_each_entry(sum, list, list) {
1504                 btrfs_csum_file_blocks(trans,
1505                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1506         }
1507         return 0;
1508 }
1509
1510 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1511 {
1512         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1513                 WARN_ON(1);
1514         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1515                                    GFP_NOFS);
1516 }
1517
1518 /* see btrfs_writepage_start_hook for details on why this is required */
1519 struct btrfs_writepage_fixup {
1520         struct page *page;
1521         struct btrfs_work work;
1522 };
1523
1524 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1525 {
1526         struct btrfs_writepage_fixup *fixup;
1527         struct btrfs_ordered_extent *ordered;
1528         struct page *page;
1529         struct inode *inode;
1530         u64 page_start;
1531         u64 page_end;
1532
1533         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1534         page = fixup->page;
1535 again:
1536         lock_page(page);
1537         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1538                 ClearPageChecked(page);
1539                 goto out_page;
1540         }
1541
1542         inode = page->mapping->host;
1543         page_start = page_offset(page);
1544         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1545
1546         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1547
1548         /* already ordered? We're done */
1549         if (PagePrivate2(page))
1550                 goto out;
1551
1552         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1553         if (ordered) {
1554                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1555                               page_end, GFP_NOFS);
1556                 unlock_page(page);
1557                 btrfs_start_ordered_extent(inode, ordered, 1);
1558                 goto again;
1559         }
1560
1561         btrfs_set_extent_delalloc(inode, page_start, page_end);
1562         ClearPageChecked(page);
1563 out:
1564         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1565 out_page:
1566         unlock_page(page);
1567         page_cache_release(page);
1568 }
1569
1570 /*
1571  * There are a few paths in the higher layers of the kernel that directly
1572  * set the page dirty bit without asking the filesystem if it is a
1573  * good idea.  This causes problems because we want to make sure COW
1574  * properly happens and the data=ordered rules are followed.
1575  *
1576  * In our case any range that doesn't have the ORDERED bit set
1577  * hasn't been properly setup for IO.  We kick off an async process
1578  * to fix it up.  The async helper will wait for ordered extents, set
1579  * the delalloc bit and make it safe to write the page.
1580  */
1581 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1582 {
1583         struct inode *inode = page->mapping->host;
1584         struct btrfs_writepage_fixup *fixup;
1585         struct btrfs_root *root = BTRFS_I(inode)->root;
1586
1587         /* this page is properly in the ordered list */
1588         if (TestClearPagePrivate2(page))
1589                 return 0;
1590
1591         if (PageChecked(page))
1592                 return -EAGAIN;
1593
1594         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595         if (!fixup)
1596                 return -EAGAIN;
1597
1598         SetPageChecked(page);
1599         page_cache_get(page);
1600         fixup->work.func = btrfs_writepage_fixup_worker;
1601         fixup->page = page;
1602         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603         return -EAGAIN;
1604 }
1605
1606 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607                                        struct inode *inode, u64 file_pos,
1608                                        u64 disk_bytenr, u64 disk_num_bytes,
1609                                        u64 num_bytes, u64 ram_bytes,
1610                                        u8 compression, u8 encryption,
1611                                        u16 other_encoding, int extent_type)
1612 {
1613         struct btrfs_root *root = BTRFS_I(inode)->root;
1614         struct btrfs_file_extent_item *fi;
1615         struct btrfs_path *path;
1616         struct extent_buffer *leaf;
1617         struct btrfs_key ins;
1618         u64 hint;
1619         int ret;
1620
1621         path = btrfs_alloc_path();
1622         BUG_ON(!path);
1623
1624         path->leave_spinning = 1;
1625
1626         /*
1627          * we may be replacing one extent in the tree with another.
1628          * The new extent is pinned in the extent map, and we don't want
1629          * to drop it from the cache until it is completely in the btree.
1630          *
1631          * So, tell btrfs_drop_extents to leave this extent in the cache.
1632          * the caller is expected to unpin it and allow it to be merged
1633          * with the others.
1634          */
1635         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636                                  &hint, 0);
1637         BUG_ON(ret);
1638
1639         ins.objectid = inode->i_ino;
1640         ins.offset = file_pos;
1641         ins.type = BTRFS_EXTENT_DATA_KEY;
1642         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643         BUG_ON(ret);
1644         leaf = path->nodes[0];
1645         fi = btrfs_item_ptr(leaf, path->slots[0],
1646                             struct btrfs_file_extent_item);
1647         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648         btrfs_set_file_extent_type(leaf, fi, extent_type);
1649         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651         btrfs_set_file_extent_offset(leaf, fi, 0);
1652         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654         btrfs_set_file_extent_compression(leaf, fi, compression);
1655         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1657
1658         btrfs_unlock_up_safe(path, 1);
1659         btrfs_set_lock_blocking(leaf);
1660
1661         btrfs_mark_buffer_dirty(leaf);
1662
1663         inode_add_bytes(inode, num_bytes);
1664
1665         ins.objectid = disk_bytenr;
1666         ins.offset = disk_num_bytes;
1667         ins.type = BTRFS_EXTENT_ITEM_KEY;
1668         ret = btrfs_alloc_reserved_file_extent(trans, root,
1669                                         root->root_key.objectid,
1670                                         inode->i_ino, file_pos, &ins);
1671         BUG_ON(ret);
1672         btrfs_free_path(path);
1673
1674         return 0;
1675 }
1676
1677 /*
1678  * helper function for btrfs_finish_ordered_io, this
1679  * just reads in some of the csum leaves to prime them into ram
1680  * before we start the transaction.  It limits the amount of btree
1681  * reads required while inside the transaction.
1682  */
1683 static noinline void reada_csum(struct btrfs_root *root,
1684                                 struct btrfs_path *path,
1685                                 struct btrfs_ordered_extent *ordered_extent)
1686 {
1687         struct btrfs_ordered_sum *sum;
1688         u64 bytenr;
1689
1690         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1691                          list);
1692         bytenr = sum->sums[0].bytenr;
1693
1694         /*
1695          * we don't care about the results, the point of this search is
1696          * just to get the btree leaves into ram
1697          */
1698         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1699 }
1700
1701 /* as ordered data IO finishes, this gets called so we can finish
1702  * an ordered extent if the range of bytes in the file it covers are
1703  * fully written.
1704  */
1705 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1706 {
1707         struct btrfs_root *root = BTRFS_I(inode)->root;
1708         struct btrfs_trans_handle *trans;
1709         struct btrfs_ordered_extent *ordered_extent = NULL;
1710         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1711         struct btrfs_path *path;
1712         int compressed = 0;
1713         int ret;
1714
1715         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1716         if (!ret)
1717                 return 0;
1718
1719         /*
1720          * before we join the transaction, try to do some of our IO.
1721          * This will limit the amount of IO that we have to do with
1722          * the transaction running.  We're unlikely to need to do any
1723          * IO if the file extents are new, the disk_i_size checks
1724          * covers the most common case.
1725          */
1726         if (start < BTRFS_I(inode)->disk_i_size) {
1727                 path = btrfs_alloc_path();
1728                 if (path) {
1729                         ret = btrfs_lookup_file_extent(NULL, root, path,
1730                                                        inode->i_ino,
1731                                                        start, 0);
1732                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1733                                                                      start);
1734                         if (!list_empty(&ordered_extent->list)) {
1735                                 btrfs_release_path(root, path);
1736                                 reada_csum(root, path, ordered_extent);
1737                         }
1738                         btrfs_free_path(path);
1739                 }
1740         }
1741
1742         if (!ordered_extent)
1743                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1744         BUG_ON(!ordered_extent);
1745         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1746                 BUG_ON(!list_empty(&ordered_extent->list));
1747                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1748                 if (!ret) {
1749                         trans = btrfs_join_transaction(root, 1);
1750                         ret = btrfs_update_inode(trans, root, inode);
1751                         BUG_ON(ret);
1752                         btrfs_end_transaction(trans, root);
1753                 }
1754                 goto out;
1755         }
1756
1757         lock_extent(io_tree, ordered_extent->file_offset,
1758                     ordered_extent->file_offset + ordered_extent->len - 1,
1759                     GFP_NOFS);
1760
1761         trans = btrfs_join_transaction(root, 1);
1762
1763         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1764                 compressed = 1;
1765         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1766                 BUG_ON(compressed);
1767                 ret = btrfs_mark_extent_written(trans, inode,
1768                                                 ordered_extent->file_offset,
1769                                                 ordered_extent->file_offset +
1770                                                 ordered_extent->len);
1771                 BUG_ON(ret);
1772         } else {
1773                 ret = insert_reserved_file_extent(trans, inode,
1774                                                 ordered_extent->file_offset,
1775                                                 ordered_extent->start,
1776                                                 ordered_extent->disk_len,
1777                                                 ordered_extent->len,
1778                                                 ordered_extent->len,
1779                                                 compressed, 0, 0,
1780                                                 BTRFS_FILE_EXTENT_REG);
1781                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1782                                    ordered_extent->file_offset,
1783                                    ordered_extent->len);
1784                 BUG_ON(ret);
1785         }
1786         unlock_extent(io_tree, ordered_extent->file_offset,
1787                     ordered_extent->file_offset + ordered_extent->len - 1,
1788                     GFP_NOFS);
1789         add_pending_csums(trans, inode, ordered_extent->file_offset,
1790                           &ordered_extent->list);
1791
1792         /* this also removes the ordered extent from the tree */
1793         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1794         ret = btrfs_update_inode(trans, root, inode);
1795         BUG_ON(ret);
1796         btrfs_end_transaction(trans, root);
1797 out:
1798         /* once for us */
1799         btrfs_put_ordered_extent(ordered_extent);
1800         /* once for the tree */
1801         btrfs_put_ordered_extent(ordered_extent);
1802
1803         return 0;
1804 }
1805
1806 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1807                                 struct extent_state *state, int uptodate)
1808 {
1809         ClearPagePrivate2(page);
1810         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1811 }
1812
1813 /*
1814  * When IO fails, either with EIO or csum verification fails, we
1815  * try other mirrors that might have a good copy of the data.  This
1816  * io_failure_record is used to record state as we go through all the
1817  * mirrors.  If another mirror has good data, the page is set up to date
1818  * and things continue.  If a good mirror can't be found, the original
1819  * bio end_io callback is called to indicate things have failed.
1820  */
1821 struct io_failure_record {
1822         struct page *page;
1823         u64 start;
1824         u64 len;
1825         u64 logical;
1826         unsigned long bio_flags;
1827         int last_mirror;
1828 };
1829
1830 static int btrfs_io_failed_hook(struct bio *failed_bio,
1831                          struct page *page, u64 start, u64 end,
1832                          struct extent_state *state)
1833 {
1834         struct io_failure_record *failrec = NULL;
1835         u64 private;
1836         struct extent_map *em;
1837         struct inode *inode = page->mapping->host;
1838         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1839         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1840         struct bio *bio;
1841         int num_copies;
1842         int ret;
1843         int rw;
1844         u64 logical;
1845
1846         ret = get_state_private(failure_tree, start, &private);
1847         if (ret) {
1848                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1849                 if (!failrec)
1850                         return -ENOMEM;
1851                 failrec->start = start;
1852                 failrec->len = end - start + 1;
1853                 failrec->last_mirror = 0;
1854                 failrec->bio_flags = 0;
1855
1856                 read_lock(&em_tree->lock);
1857                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1858                 if (em->start > start || em->start + em->len < start) {
1859                         free_extent_map(em);
1860                         em = NULL;
1861                 }
1862                 read_unlock(&em_tree->lock);
1863
1864                 if (!em || IS_ERR(em)) {
1865                         kfree(failrec);
1866                         return -EIO;
1867                 }
1868                 logical = start - em->start;
1869                 logical = em->block_start + logical;
1870                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1871                         logical = em->block_start;
1872                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1873                 }
1874                 failrec->logical = logical;
1875                 free_extent_map(em);
1876                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1877                                 EXTENT_DIRTY, GFP_NOFS);
1878                 set_state_private(failure_tree, start,
1879                                  (u64)(unsigned long)failrec);
1880         } else {
1881                 failrec = (struct io_failure_record *)(unsigned long)private;
1882         }
1883         num_copies = btrfs_num_copies(
1884                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1885                               failrec->logical, failrec->len);
1886         failrec->last_mirror++;
1887         if (!state) {
1888                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1889                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1890                                                     failrec->start,
1891                                                     EXTENT_LOCKED);
1892                 if (state && state->start != failrec->start)
1893                         state = NULL;
1894                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1895         }
1896         if (!state || failrec->last_mirror > num_copies) {
1897                 set_state_private(failure_tree, failrec->start, 0);
1898                 clear_extent_bits(failure_tree, failrec->start,
1899                                   failrec->start + failrec->len - 1,
1900                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1901                 kfree(failrec);
1902                 return -EIO;
1903         }
1904         bio = bio_alloc(GFP_NOFS, 1);
1905         bio->bi_private = state;
1906         bio->bi_end_io = failed_bio->bi_end_io;
1907         bio->bi_sector = failrec->logical >> 9;
1908         bio->bi_bdev = failed_bio->bi_bdev;
1909         bio->bi_size = 0;
1910
1911         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1912         if (failed_bio->bi_rw & (1 << BIO_RW))
1913                 rw = WRITE;
1914         else
1915                 rw = READ;
1916
1917         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1918                                                       failrec->last_mirror,
1919                                                       failrec->bio_flags);
1920         return 0;
1921 }
1922
1923 /*
1924  * each time an IO finishes, we do a fast check in the IO failure tree
1925  * to see if we need to process or clean up an io_failure_record
1926  */
1927 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1928 {
1929         u64 private;
1930         u64 private_failure;
1931         struct io_failure_record *failure;
1932         int ret;
1933
1934         private = 0;
1935         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1936                              (u64)-1, 1, EXTENT_DIRTY)) {
1937                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1938                                         start, &private_failure);
1939                 if (ret == 0) {
1940                         failure = (struct io_failure_record *)(unsigned long)
1941                                    private_failure;
1942                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1943                                           failure->start, 0);
1944                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1945                                           failure->start,
1946                                           failure->start + failure->len - 1,
1947                                           EXTENT_DIRTY | EXTENT_LOCKED,
1948                                           GFP_NOFS);
1949                         kfree(failure);
1950                 }
1951         }
1952         return 0;
1953 }
1954
1955 /*
1956  * when reads are done, we need to check csums to verify the data is correct
1957  * if there's a match, we allow the bio to finish.  If not, we go through
1958  * the io_failure_record routines to find good copies
1959  */
1960 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1961                                struct extent_state *state)
1962 {
1963         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1964         struct inode *inode = page->mapping->host;
1965         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1966         char *kaddr;
1967         u64 private = ~(u32)0;
1968         int ret;
1969         struct btrfs_root *root = BTRFS_I(inode)->root;
1970         u32 csum = ~(u32)0;
1971
1972         if (PageChecked(page)) {
1973                 ClearPageChecked(page);
1974                 goto good;
1975         }
1976
1977         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1978                 return 0;
1979
1980         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1981             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1982                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1983                                   GFP_NOFS);
1984                 return 0;
1985         }
1986
1987         if (state && state->start == start) {
1988                 private = state->private;
1989                 ret = 0;
1990         } else {
1991                 ret = get_state_private(io_tree, start, &private);
1992         }
1993         kaddr = kmap_atomic(page, KM_USER0);
1994         if (ret)
1995                 goto zeroit;
1996
1997         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1998         btrfs_csum_final(csum, (char *)&csum);
1999         if (csum != private)
2000                 goto zeroit;
2001
2002         kunmap_atomic(kaddr, KM_USER0);
2003 good:
2004         /* if the io failure tree for this inode is non-empty,
2005          * check to see if we've recovered from a failed IO
2006          */
2007         btrfs_clean_io_failures(inode, start);
2008         return 0;
2009
2010 zeroit:
2011         if (printk_ratelimit()) {
2012                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2013                        "private %llu\n", page->mapping->host->i_ino,
2014                        (unsigned long long)start, csum,
2015                        (unsigned long long)private);
2016         }
2017         memset(kaddr + offset, 1, end - start + 1);
2018         flush_dcache_page(page);
2019         kunmap_atomic(kaddr, KM_USER0);
2020         if (private == 0)
2021                 return 0;
2022         return -EIO;
2023 }
2024
2025 struct delayed_iput {
2026         struct list_head list;
2027         struct inode *inode;
2028 };
2029
2030 void btrfs_add_delayed_iput(struct inode *inode)
2031 {
2032         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2033         struct delayed_iput *delayed;
2034
2035         if (atomic_add_unless(&inode->i_count, -1, 1))
2036                 return;
2037
2038         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2039         delayed->inode = inode;
2040
2041         spin_lock(&fs_info->delayed_iput_lock);
2042         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2043         spin_unlock(&fs_info->delayed_iput_lock);
2044 }
2045
2046 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2047 {
2048         LIST_HEAD(list);
2049         struct btrfs_fs_info *fs_info = root->fs_info;
2050         struct delayed_iput *delayed;
2051         int empty;
2052
2053         spin_lock(&fs_info->delayed_iput_lock);
2054         empty = list_empty(&fs_info->delayed_iputs);
2055         spin_unlock(&fs_info->delayed_iput_lock);
2056         if (empty)
2057                 return;
2058
2059         down_read(&root->fs_info->cleanup_work_sem);
2060         spin_lock(&fs_info->delayed_iput_lock);
2061         list_splice_init(&fs_info->delayed_iputs, &list);
2062         spin_unlock(&fs_info->delayed_iput_lock);
2063
2064         while (!list_empty(&list)) {
2065                 delayed = list_entry(list.next, struct delayed_iput, list);
2066                 list_del(&delayed->list);
2067                 iput(delayed->inode);
2068                 kfree(delayed);
2069         }
2070         up_read(&root->fs_info->cleanup_work_sem);
2071 }
2072
2073 /*
2074  * This creates an orphan entry for the given inode in case something goes
2075  * wrong in the middle of an unlink/truncate.
2076  */
2077 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2078 {
2079         struct btrfs_root *root = BTRFS_I(inode)->root;
2080         int ret = 0;
2081
2082         spin_lock(&root->list_lock);
2083
2084         /* already on the orphan list, we're good */
2085         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2086                 spin_unlock(&root->list_lock);
2087                 return 0;
2088         }
2089
2090         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2091
2092         spin_unlock(&root->list_lock);
2093
2094         /*
2095          * insert an orphan item to track this unlinked/truncated file
2096          */
2097         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2098
2099         return ret;
2100 }
2101
2102 /*
2103  * We have done the truncate/delete so we can go ahead and remove the orphan
2104  * item for this particular inode.
2105  */
2106 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2107 {
2108         struct btrfs_root *root = BTRFS_I(inode)->root;
2109         int ret = 0;
2110
2111         spin_lock(&root->list_lock);
2112
2113         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2114                 spin_unlock(&root->list_lock);
2115                 return 0;
2116         }
2117
2118         list_del_init(&BTRFS_I(inode)->i_orphan);
2119         if (!trans) {
2120                 spin_unlock(&root->list_lock);
2121                 return 0;
2122         }
2123
2124         spin_unlock(&root->list_lock);
2125
2126         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2127
2128         return ret;
2129 }
2130
2131 /*
2132  * this cleans up any orphans that may be left on the list from the last use
2133  * of this root.
2134  */
2135 void btrfs_orphan_cleanup(struct btrfs_root *root)
2136 {
2137         struct btrfs_path *path;
2138         struct extent_buffer *leaf;
2139         struct btrfs_item *item;
2140         struct btrfs_key key, found_key;
2141         struct btrfs_trans_handle *trans;
2142         struct inode *inode;
2143         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2144
2145         if (!xchg(&root->clean_orphans, 0))
2146                 return;
2147
2148         path = btrfs_alloc_path();
2149         BUG_ON(!path);
2150         path->reada = -1;
2151
2152         key.objectid = BTRFS_ORPHAN_OBJECTID;
2153         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2154         key.offset = (u64)-1;
2155
2156         while (1) {
2157                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2158                 if (ret < 0) {
2159                         printk(KERN_ERR "Error searching slot for orphan: %d"
2160                                "\n", ret);
2161                         break;
2162                 }
2163
2164                 /*
2165                  * if ret == 0 means we found what we were searching for, which
2166                  * is weird, but possible, so only screw with path if we didnt
2167                  * find the key and see if we have stuff that matches
2168                  */
2169                 if (ret > 0) {
2170                         if (path->slots[0] == 0)
2171                                 break;
2172                         path->slots[0]--;
2173                 }
2174
2175                 /* pull out the item */
2176                 leaf = path->nodes[0];
2177                 item = btrfs_item_nr(leaf, path->slots[0]);
2178                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2179
2180                 /* make sure the item matches what we want */
2181                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2182                         break;
2183                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2184                         break;
2185
2186                 /* release the path since we're done with it */
2187                 btrfs_release_path(root, path);
2188
2189                 /*
2190                  * this is where we are basically btrfs_lookup, without the
2191                  * crossing root thing.  we store the inode number in the
2192                  * offset of the orphan item.
2193                  */
2194                 found_key.objectid = found_key.offset;
2195                 found_key.type = BTRFS_INODE_ITEM_KEY;
2196                 found_key.offset = 0;
2197                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2198                 if (IS_ERR(inode))
2199                         break;
2200
2201                 /*
2202                  * add this inode to the orphan list so btrfs_orphan_del does
2203                  * the proper thing when we hit it
2204                  */
2205                 spin_lock(&root->list_lock);
2206                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2207                 spin_unlock(&root->list_lock);
2208
2209                 /*
2210                  * if this is a bad inode, means we actually succeeded in
2211                  * removing the inode, but not the orphan record, which means
2212                  * we need to manually delete the orphan since iput will just
2213                  * do a destroy_inode
2214                  */
2215                 if (is_bad_inode(inode)) {
2216                         trans = btrfs_start_transaction(root, 1);
2217                         btrfs_orphan_del(trans, inode);
2218                         btrfs_end_transaction(trans, root);
2219                         iput(inode);
2220                         continue;
2221                 }
2222
2223                 /* if we have links, this was a truncate, lets do that */
2224                 if (inode->i_nlink) {
2225                         nr_truncate++;
2226                         btrfs_truncate(inode);
2227                 } else {
2228                         nr_unlink++;
2229                 }
2230
2231                 /* this will do delete_inode and everything for us */
2232                 iput(inode);
2233         }
2234
2235         if (nr_unlink)
2236                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2237         if (nr_truncate)
2238                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2239
2240         btrfs_free_path(path);
2241 }
2242
2243 /*
2244  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2245  * don't find any xattrs, we know there can't be any acls.
2246  *
2247  * slot is the slot the inode is in, objectid is the objectid of the inode
2248  */
2249 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2250                                           int slot, u64 objectid)
2251 {
2252         u32 nritems = btrfs_header_nritems(leaf);
2253         struct btrfs_key found_key;
2254         int scanned = 0;
2255
2256         slot++;
2257         while (slot < nritems) {
2258                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2259
2260                 /* we found a different objectid, there must not be acls */
2261                 if (found_key.objectid != objectid)
2262                         return 0;
2263
2264                 /* we found an xattr, assume we've got an acl */
2265                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2266                         return 1;
2267
2268                 /*
2269                  * we found a key greater than an xattr key, there can't
2270                  * be any acls later on
2271                  */
2272                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2273                         return 0;
2274
2275                 slot++;
2276                 scanned++;
2277
2278                 /*
2279                  * it goes inode, inode backrefs, xattrs, extents,
2280                  * so if there are a ton of hard links to an inode there can
2281                  * be a lot of backrefs.  Don't waste time searching too hard,
2282                  * this is just an optimization
2283                  */
2284                 if (scanned >= 8)
2285                         break;
2286         }
2287         /* we hit the end of the leaf before we found an xattr or
2288          * something larger than an xattr.  We have to assume the inode
2289          * has acls
2290          */
2291         return 1;
2292 }
2293
2294 /*
2295  * read an inode from the btree into the in-memory inode
2296  */
2297 static void btrfs_read_locked_inode(struct inode *inode)
2298 {
2299         struct btrfs_path *path;
2300         struct extent_buffer *leaf;
2301         struct btrfs_inode_item *inode_item;
2302         struct btrfs_timespec *tspec;
2303         struct btrfs_root *root = BTRFS_I(inode)->root;
2304         struct btrfs_key location;
2305         int maybe_acls;
2306         u64 alloc_group_block;
2307         u32 rdev;
2308         int ret;
2309
2310         path = btrfs_alloc_path();
2311         BUG_ON(!path);
2312         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2313
2314         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2315         if (ret)
2316                 goto make_bad;
2317
2318         leaf = path->nodes[0];
2319         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2320                                     struct btrfs_inode_item);
2321
2322         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2323         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2324         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2325         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2326         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2327
2328         tspec = btrfs_inode_atime(inode_item);
2329         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2330         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2331
2332         tspec = btrfs_inode_mtime(inode_item);
2333         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2334         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2335
2336         tspec = btrfs_inode_ctime(inode_item);
2337         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2338         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2339
2340         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2341         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2342         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2343         inode->i_generation = BTRFS_I(inode)->generation;
2344         inode->i_rdev = 0;
2345         rdev = btrfs_inode_rdev(leaf, inode_item);
2346
2347         BTRFS_I(inode)->index_cnt = (u64)-1;
2348         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2349
2350         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2351
2352         /*
2353          * try to precache a NULL acl entry for files that don't have
2354          * any xattrs or acls
2355          */
2356         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2357         if (!maybe_acls)
2358                 cache_no_acl(inode);
2359
2360         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2361                                                 alloc_group_block, 0);
2362         btrfs_free_path(path);
2363         inode_item = NULL;
2364
2365         switch (inode->i_mode & S_IFMT) {
2366         case S_IFREG:
2367                 inode->i_mapping->a_ops = &btrfs_aops;
2368                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2369                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2370                 inode->i_fop = &btrfs_file_operations;
2371                 inode->i_op = &btrfs_file_inode_operations;
2372                 break;
2373         case S_IFDIR:
2374                 inode->i_fop = &btrfs_dir_file_operations;
2375                 if (root == root->fs_info->tree_root)
2376                         inode->i_op = &btrfs_dir_ro_inode_operations;
2377                 else
2378                         inode->i_op = &btrfs_dir_inode_operations;
2379                 break;
2380         case S_IFLNK:
2381                 inode->i_op = &btrfs_symlink_inode_operations;
2382                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2383                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2384                 break;
2385         default:
2386                 inode->i_op = &btrfs_special_inode_operations;
2387                 init_special_inode(inode, inode->i_mode, rdev);
2388                 break;
2389         }
2390
2391         btrfs_update_iflags(inode);
2392         return;
2393
2394 make_bad:
2395         btrfs_free_path(path);
2396         make_bad_inode(inode);
2397 }
2398
2399 /*
2400  * given a leaf and an inode, copy the inode fields into the leaf
2401  */
2402 static void fill_inode_item(struct btrfs_trans_handle *trans,
2403                             struct extent_buffer *leaf,
2404                             struct btrfs_inode_item *item,
2405                             struct inode *inode)
2406 {
2407         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2408         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2409         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2410         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2411         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2412
2413         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2414                                inode->i_atime.tv_sec);
2415         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2416                                 inode->i_atime.tv_nsec);
2417
2418         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2419                                inode->i_mtime.tv_sec);
2420         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2421                                 inode->i_mtime.tv_nsec);
2422
2423         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2424                                inode->i_ctime.tv_sec);
2425         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2426                                 inode->i_ctime.tv_nsec);
2427
2428         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2429         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2430         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2431         btrfs_set_inode_transid(leaf, item, trans->transid);
2432         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2433         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2434         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2435 }
2436
2437 /*
2438  * copy everything in the in-memory inode into the btree.
2439  */
2440 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2441                                 struct btrfs_root *root, struct inode *inode)
2442 {
2443         struct btrfs_inode_item *inode_item;
2444         struct btrfs_path *path;
2445         struct extent_buffer *leaf;
2446         int ret;
2447
2448         path = btrfs_alloc_path();
2449         BUG_ON(!path);
2450         path->leave_spinning = 1;
2451         ret = btrfs_lookup_inode(trans, root, path,
2452                                  &BTRFS_I(inode)->location, 1);
2453         if (ret) {
2454                 if (ret > 0)
2455                         ret = -ENOENT;
2456                 goto failed;
2457         }
2458
2459         btrfs_unlock_up_safe(path, 1);
2460         leaf = path->nodes[0];
2461         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2462                                   struct btrfs_inode_item);
2463
2464         fill_inode_item(trans, leaf, inode_item, inode);
2465         btrfs_mark_buffer_dirty(leaf);
2466         btrfs_set_inode_last_trans(trans, inode);
2467         ret = 0;
2468 failed:
2469         btrfs_free_path(path);
2470         return ret;
2471 }
2472
2473
2474 /*
2475  * unlink helper that gets used here in inode.c and in the tree logging
2476  * recovery code.  It remove a link in a directory with a given name, and
2477  * also drops the back refs in the inode to the directory
2478  */
2479 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2480                        struct btrfs_root *root,
2481                        struct inode *dir, struct inode *inode,
2482                        const char *name, int name_len)
2483 {
2484         struct btrfs_path *path;
2485         int ret = 0;
2486         struct extent_buffer *leaf;
2487         struct btrfs_dir_item *di;
2488         struct btrfs_key key;
2489         u64 index;
2490
2491         path = btrfs_alloc_path();
2492         if (!path) {
2493                 ret = -ENOMEM;
2494                 goto err;
2495         }
2496
2497         path->leave_spinning = 1;
2498         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2499                                     name, name_len, -1);
2500         if (IS_ERR(di)) {
2501                 ret = PTR_ERR(di);
2502                 goto err;
2503         }
2504         if (!di) {
2505                 ret = -ENOENT;
2506                 goto err;
2507         }
2508         leaf = path->nodes[0];
2509         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2510         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2511         if (ret)
2512                 goto err;
2513         btrfs_release_path(root, path);
2514
2515         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2516                                   inode->i_ino,
2517                                   dir->i_ino, &index);
2518         if (ret) {
2519                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2520                        "inode %lu parent %lu\n", name_len, name,
2521                        inode->i_ino, dir->i_ino);
2522                 goto err;
2523         }
2524
2525         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2526                                          index, name, name_len, -1);
2527         if (IS_ERR(di)) {
2528                 ret = PTR_ERR(di);
2529                 goto err;
2530         }
2531         if (!di) {
2532                 ret = -ENOENT;
2533                 goto err;
2534         }
2535         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2536         btrfs_release_path(root, path);
2537
2538         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2539                                          inode, dir->i_ino);
2540         BUG_ON(ret != 0 && ret != -ENOENT);
2541
2542         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2543                                            dir, index);
2544         BUG_ON(ret);
2545 err:
2546         btrfs_free_path(path);
2547         if (ret)
2548                 goto out;
2549
2550         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2551         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2552         btrfs_update_inode(trans, root, dir);
2553         btrfs_drop_nlink(inode);
2554         ret = btrfs_update_inode(trans, root, inode);
2555 out:
2556         return ret;
2557 }
2558
2559 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2560 {
2561         struct btrfs_root *root;
2562         struct btrfs_trans_handle *trans;
2563         struct inode *inode = dentry->d_inode;
2564         int ret;
2565         unsigned long nr = 0;
2566
2567         root = BTRFS_I(dir)->root;
2568
2569         /*
2570          * 5 items for unlink inode
2571          * 1 for orphan
2572          */
2573         ret = btrfs_reserve_metadata_space(root, 6);
2574         if (ret)
2575                 return ret;
2576
2577         trans = btrfs_start_transaction(root, 1);
2578         if (IS_ERR(trans)) {
2579                 btrfs_unreserve_metadata_space(root, 6);
2580                 return PTR_ERR(trans);
2581         }
2582
2583         btrfs_set_trans_block_group(trans, dir);
2584
2585         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2586
2587         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2588                                  dentry->d_name.name, dentry->d_name.len);
2589
2590         if (inode->i_nlink == 0)
2591                 ret = btrfs_orphan_add(trans, inode);
2592
2593         nr = trans->blocks_used;
2594
2595         btrfs_end_transaction_throttle(trans, root);
2596         btrfs_unreserve_metadata_space(root, 6);
2597         btrfs_btree_balance_dirty(root, nr);
2598         return ret;
2599 }
2600
2601 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2602                         struct btrfs_root *root,
2603                         struct inode *dir, u64 objectid,
2604                         const char *name, int name_len)
2605 {
2606         struct btrfs_path *path;
2607         struct extent_buffer *leaf;
2608         struct btrfs_dir_item *di;
2609         struct btrfs_key key;
2610         u64 index;
2611         int ret;
2612
2613         path = btrfs_alloc_path();
2614         if (!path)
2615                 return -ENOMEM;
2616
2617         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2618                                    name, name_len, -1);
2619         BUG_ON(!di || IS_ERR(di));
2620
2621         leaf = path->nodes[0];
2622         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2623         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2624         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2625         BUG_ON(ret);
2626         btrfs_release_path(root, path);
2627
2628         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2629                                  objectid, root->root_key.objectid,
2630                                  dir->i_ino, &index, name, name_len);
2631         if (ret < 0) {
2632                 BUG_ON(ret != -ENOENT);
2633                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2634                                                  name, name_len);
2635                 BUG_ON(!di || IS_ERR(di));
2636
2637                 leaf = path->nodes[0];
2638                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2639                 btrfs_release_path(root, path);
2640                 index = key.offset;
2641         }
2642
2643         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2644                                          index, name, name_len, -1);
2645         BUG_ON(!di || IS_ERR(di));
2646
2647         leaf = path->nodes[0];
2648         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2649         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2650         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2651         BUG_ON(ret);
2652         btrfs_release_path(root, path);
2653
2654         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2655         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2656         ret = btrfs_update_inode(trans, root, dir);
2657         BUG_ON(ret);
2658         dir->i_sb->s_dirt = 1;
2659
2660         btrfs_free_path(path);
2661         return 0;
2662 }
2663
2664 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2665 {
2666         struct inode *inode = dentry->d_inode;
2667         int err = 0;
2668         int ret;
2669         struct btrfs_root *root = BTRFS_I(dir)->root;
2670         struct btrfs_trans_handle *trans;
2671         unsigned long nr = 0;
2672
2673         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2674             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2675                 return -ENOTEMPTY;
2676
2677         ret = btrfs_reserve_metadata_space(root, 5);
2678         if (ret)
2679                 return ret;
2680
2681         trans = btrfs_start_transaction(root, 1);
2682         if (IS_ERR(trans)) {
2683                 btrfs_unreserve_metadata_space(root, 5);
2684                 return PTR_ERR(trans);
2685         }
2686
2687         btrfs_set_trans_block_group(trans, dir);
2688
2689         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2690                 err = btrfs_unlink_subvol(trans, root, dir,
2691                                           BTRFS_I(inode)->location.objectid,
2692                                           dentry->d_name.name,
2693                                           dentry->d_name.len);
2694                 goto out;
2695         }
2696
2697         err = btrfs_orphan_add(trans, inode);
2698         if (err)
2699                 goto out;
2700
2701         /* now the directory is empty */
2702         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2703                                  dentry->d_name.name, dentry->d_name.len);
2704         if (!err)
2705                 btrfs_i_size_write(inode, 0);
2706 out:
2707         nr = trans->blocks_used;
2708         ret = btrfs_end_transaction_throttle(trans, root);
2709         btrfs_unreserve_metadata_space(root, 5);
2710         btrfs_btree_balance_dirty(root, nr);
2711
2712         if (ret && !err)
2713                 err = ret;
2714         return err;
2715 }
2716
2717 #if 0
2718 /*
2719  * when truncating bytes in a file, it is possible to avoid reading
2720  * the leaves that contain only checksum items.  This can be the
2721  * majority of the IO required to delete a large file, but it must
2722  * be done carefully.
2723  *
2724  * The keys in the level just above the leaves are checked to make sure
2725  * the lowest key in a given leaf is a csum key, and starts at an offset
2726  * after the new  size.
2727  *
2728  * Then the key for the next leaf is checked to make sure it also has
2729  * a checksum item for the same file.  If it does, we know our target leaf
2730  * contains only checksum items, and it can be safely freed without reading
2731  * it.
2732  *
2733  * This is just an optimization targeted at large files.  It may do
2734  * nothing.  It will return 0 unless things went badly.
2735  */
2736 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2737                                      struct btrfs_root *root,
2738                                      struct btrfs_path *path,
2739                                      struct inode *inode, u64 new_size)
2740 {
2741         struct btrfs_key key;
2742         int ret;
2743         int nritems;
2744         struct btrfs_key found_key;
2745         struct btrfs_key other_key;
2746         struct btrfs_leaf_ref *ref;
2747         u64 leaf_gen;
2748         u64 leaf_start;
2749
2750         path->lowest_level = 1;
2751         key.objectid = inode->i_ino;
2752         key.type = BTRFS_CSUM_ITEM_KEY;
2753         key.offset = new_size;
2754 again:
2755         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2756         if (ret < 0)
2757                 goto out;
2758
2759         if (path->nodes[1] == NULL) {
2760                 ret = 0;
2761                 goto out;
2762         }
2763         ret = 0;
2764         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2765         nritems = btrfs_header_nritems(path->nodes[1]);
2766
2767         if (!nritems)
2768                 goto out;
2769
2770         if (path->slots[1] >= nritems)
2771                 goto next_node;
2772
2773         /* did we find a key greater than anything we want to delete? */
2774         if (found_key.objectid > inode->i_ino ||
2775            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2776                 goto out;
2777
2778         /* we check the next key in the node to make sure the leave contains
2779          * only checksum items.  This comparison doesn't work if our
2780          * leaf is the last one in the node
2781          */
2782         if (path->slots[1] + 1 >= nritems) {
2783 next_node:
2784                 /* search forward from the last key in the node, this
2785                  * will bring us into the next node in the tree
2786                  */
2787                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2788
2789                 /* unlikely, but we inc below, so check to be safe */
2790                 if (found_key.offset == (u64)-1)
2791                         goto out;
2792
2793                 /* search_forward needs a path with locks held, do the
2794                  * search again for the original key.  It is possible
2795                  * this will race with a balance and return a path that
2796                  * we could modify, but this drop is just an optimization
2797                  * and is allowed to miss some leaves.
2798                  */
2799                 btrfs_release_path(root, path);
2800                 found_key.offset++;
2801
2802                 /* setup a max key for search_forward */
2803                 other_key.offset = (u64)-1;
2804                 other_key.type = key.type;
2805                 other_key.objectid = key.objectid;
2806
2807                 path->keep_locks = 1;
2808                 ret = btrfs_search_forward(root, &found_key, &other_key,
2809                                            path, 0, 0);
2810                 path->keep_locks = 0;
2811                 if (ret || found_key.objectid != key.objectid ||
2812                     found_key.type != key.type) {
2813                         ret = 0;
2814                         goto out;
2815                 }
2816
2817                 key.offset = found_key.offset;
2818                 btrfs_release_path(root, path);
2819                 cond_resched();
2820                 goto again;
2821         }
2822
2823         /* we know there's one more slot after us in the tree,
2824          * read that key so we can verify it is also a checksum item
2825          */
2826         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2827
2828         if (found_key.objectid < inode->i_ino)
2829                 goto next_key;
2830
2831         if (found_key.type != key.type || found_key.offset < new_size)
2832                 goto next_key;
2833
2834         /*
2835          * if the key for the next leaf isn't a csum key from this objectid,
2836          * we can't be sure there aren't good items inside this leaf.
2837          * Bail out
2838          */
2839         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2840                 goto out;
2841
2842         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2843         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2844         /*
2845          * it is safe to delete this leaf, it contains only
2846          * csum items from this inode at an offset >= new_size
2847          */
2848         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2849         BUG_ON(ret);
2850
2851         if (root->ref_cows && leaf_gen < trans->transid) {
2852                 ref = btrfs_alloc_leaf_ref(root, 0);
2853                 if (ref) {
2854                         ref->root_gen = root->root_key.offset;
2855                         ref->bytenr = leaf_start;
2856                         ref->owner = 0;
2857                         ref->generation = leaf_gen;
2858                         ref->nritems = 0;
2859
2860                         btrfs_sort_leaf_ref(ref);
2861
2862                         ret = btrfs_add_leaf_ref(root, ref, 0);
2863                         WARN_ON(ret);
2864                         btrfs_free_leaf_ref(root, ref);
2865                 } else {
2866                         WARN_ON(1);
2867                 }
2868         }
2869 next_key:
2870         btrfs_release_path(root, path);
2871
2872         if (other_key.objectid == inode->i_ino &&
2873             other_key.type == key.type && other_key.offset > key.offset) {
2874                 key.offset = other_key.offset;
2875                 cond_resched();
2876                 goto again;
2877         }
2878         ret = 0;
2879 out:
2880         /* fixup any changes we've made to the path */
2881         path->lowest_level = 0;
2882         path->keep_locks = 0;
2883         btrfs_release_path(root, path);
2884         return ret;
2885 }
2886
2887 #endif
2888
2889 /*
2890  * this can truncate away extent items, csum items and directory items.
2891  * It starts at a high offset and removes keys until it can't find
2892  * any higher than new_size
2893  *
2894  * csum items that cross the new i_size are truncated to the new size
2895  * as well.
2896  *
2897  * min_type is the minimum key type to truncate down to.  If set to 0, this
2898  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2899  */
2900 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2901                                struct btrfs_root *root,
2902                                struct inode *inode,
2903                                u64 new_size, u32 min_type)
2904 {
2905         struct btrfs_path *path;
2906         struct extent_buffer *leaf;
2907         struct btrfs_file_extent_item *fi;
2908         struct btrfs_key key;
2909         struct btrfs_key found_key;
2910         u64 extent_start = 0;
2911         u64 extent_num_bytes = 0;
2912         u64 extent_offset = 0;
2913         u64 item_end = 0;
2914         u64 mask = root->sectorsize - 1;
2915         u32 found_type = (u8)-1;
2916         int found_extent;
2917         int del_item;
2918         int pending_del_nr = 0;
2919         int pending_del_slot = 0;
2920         int extent_type = -1;
2921         int encoding;
2922         int ret;
2923         int err = 0;
2924
2925         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2926
2927         if (root->ref_cows)
2928                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2929
2930         path = btrfs_alloc_path();
2931         BUG_ON(!path);
2932         path->reada = -1;
2933
2934         key.objectid = inode->i_ino;
2935         key.offset = (u64)-1;
2936         key.type = (u8)-1;
2937
2938 search_again:
2939         path->leave_spinning = 1;
2940         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2941         if (ret < 0) {
2942                 err = ret;
2943                 goto out;
2944         }
2945
2946         if (ret > 0) {
2947                 /* there are no items in the tree for us to truncate, we're
2948                  * done
2949                  */
2950                 if (path->slots[0] == 0)
2951                         goto out;
2952                 path->slots[0]--;
2953         }
2954
2955         while (1) {
2956                 fi = NULL;
2957                 leaf = path->nodes[0];
2958                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2959                 found_type = btrfs_key_type(&found_key);
2960                 encoding = 0;
2961
2962                 if (found_key.objectid != inode->i_ino)
2963                         break;
2964
2965                 if (found_type < min_type)
2966                         break;
2967
2968                 item_end = found_key.offset;
2969                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2970                         fi = btrfs_item_ptr(leaf, path->slots[0],
2971                                             struct btrfs_file_extent_item);
2972                         extent_type = btrfs_file_extent_type(leaf, fi);
2973                         encoding = btrfs_file_extent_compression(leaf, fi);
2974                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2975                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2976
2977                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2978                                 item_end +=
2979                                     btrfs_file_extent_num_bytes(leaf, fi);
2980                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2981                                 item_end += btrfs_file_extent_inline_len(leaf,
2982                                                                          fi);
2983                         }
2984                         item_end--;
2985                 }
2986                 if (found_type > min_type) {
2987                         del_item = 1;
2988                 } else {
2989                         if (item_end < new_size)
2990                                 break;
2991                         if (found_key.offset >= new_size)
2992                                 del_item = 1;
2993                         else
2994                                 del_item = 0;
2995                 }
2996                 found_extent = 0;
2997                 /* FIXME, shrink the extent if the ref count is only 1 */
2998                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2999                         goto delete;
3000
3001                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3002                         u64 num_dec;
3003                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3004                         if (!del_item && !encoding) {
3005                                 u64 orig_num_bytes =
3006                                         btrfs_file_extent_num_bytes(leaf, fi);
3007                                 extent_num_bytes = new_size -
3008                                         found_key.offset + root->sectorsize - 1;
3009                                 extent_num_bytes = extent_num_bytes &
3010                                         ~((u64)root->sectorsize - 1);
3011                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3012                                                          extent_num_bytes);
3013                                 num_dec = (orig_num_bytes -
3014                                            extent_num_bytes);
3015                                 if (root->ref_cows && extent_start != 0)
3016                                         inode_sub_bytes(inode, num_dec);
3017                                 btrfs_mark_buffer_dirty(leaf);
3018                         } else {
3019                                 extent_num_bytes =
3020                                         btrfs_file_extent_disk_num_bytes(leaf,
3021                                                                          fi);
3022                                 extent_offset = found_key.offset -
3023                                         btrfs_file_extent_offset(leaf, fi);
3024
3025                                 /* FIXME blocksize != 4096 */
3026                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3027                                 if (extent_start != 0) {
3028                                         found_extent = 1;
3029                                         if (root->ref_cows)
3030                                                 inode_sub_bytes(inode, num_dec);
3031                                 }
3032                         }
3033                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3034                         /*
3035                          * we can't truncate inline items that have had
3036                          * special encodings
3037                          */
3038                         if (!del_item &&
3039                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3040                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3041                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3042                                 u32 size = new_size - found_key.offset;
3043
3044                                 if (root->ref_cows) {
3045                                         inode_sub_bytes(inode, item_end + 1 -
3046                                                         new_size);
3047                                 }
3048                                 size =
3049                                     btrfs_file_extent_calc_inline_size(size);
3050                                 ret = btrfs_truncate_item(trans, root, path,
3051                                                           size, 1);
3052                                 BUG_ON(ret);
3053                         } else if (root->ref_cows) {
3054                                 inode_sub_bytes(inode, item_end + 1 -
3055                                                 found_key.offset);
3056                         }
3057                 }
3058 delete:
3059                 if (del_item) {
3060                         if (!pending_del_nr) {
3061                                 /* no pending yet, add ourselves */
3062                                 pending_del_slot = path->slots[0];
3063                                 pending_del_nr = 1;
3064                         } else if (pending_del_nr &&
3065                                    path->slots[0] + 1 == pending_del_slot) {
3066                                 /* hop on the pending chunk */
3067                                 pending_del_nr++;
3068                                 pending_del_slot = path->slots[0];
3069                         } else {
3070                                 BUG();
3071                         }
3072                 } else {
3073                         break;
3074                 }
3075                 if (found_extent && root->ref_cows) {
3076                         btrfs_set_path_blocking(path);
3077                         ret = btrfs_free_extent(trans, root, extent_start,
3078                                                 extent_num_bytes, 0,
3079                                                 btrfs_header_owner(leaf),
3080                                                 inode->i_ino, extent_offset);
3081                         BUG_ON(ret);
3082                 }
3083
3084                 if (found_type == BTRFS_INODE_ITEM_KEY)
3085                         break;
3086
3087                 if (path->slots[0] == 0 ||
3088                     path->slots[0] != pending_del_slot) {
3089                         if (root->ref_cows) {
3090                                 err = -EAGAIN;
3091                                 goto out;
3092                         }
3093                         if (pending_del_nr) {
3094                                 ret = btrfs_del_items(trans, root, path,
3095                                                 pending_del_slot,
3096                                                 pending_del_nr);
3097                                 BUG_ON(ret);
3098                                 pending_del_nr = 0;
3099                         }
3100                         btrfs_release_path(root, path);
3101                         goto search_again;
3102                 } else {
3103                         path->slots[0]--;
3104                 }
3105         }
3106 out:
3107         if (pending_del_nr) {
3108                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3109                                       pending_del_nr);
3110         }
3111         btrfs_free_path(path);
3112         return err;
3113 }
3114
3115 /*
3116  * taken from block_truncate_page, but does cow as it zeros out
3117  * any bytes left in the last page in the file.
3118  */
3119 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3120 {
3121         struct inode *inode = mapping->host;
3122         struct btrfs_root *root = BTRFS_I(inode)->root;
3123         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3124         struct btrfs_ordered_extent *ordered;
3125         char *kaddr;
3126         u32 blocksize = root->sectorsize;
3127         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3128         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3129         struct page *page;
3130         int ret = 0;
3131         u64 page_start;
3132         u64 page_end;
3133
3134         if ((offset & (blocksize - 1)) == 0)
3135                 goto out;
3136         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3137         if (ret)
3138                 goto out;
3139
3140         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3141         if (ret)
3142                 goto out;
3143
3144         ret = -ENOMEM;
3145 again:
3146         page = grab_cache_page(mapping, index);
3147         if (!page) {
3148                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3149                 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3150                 goto out;
3151         }
3152
3153         page_start = page_offset(page);
3154         page_end = page_start + PAGE_CACHE_SIZE - 1;
3155
3156         if (!PageUptodate(page)) {
3157                 ret = btrfs_readpage(NULL, page);
3158                 lock_page(page);
3159                 if (page->mapping != mapping) {
3160                         unlock_page(page);
3161                         page_cache_release(page);
3162                         goto again;
3163                 }
3164                 if (!PageUptodate(page)) {
3165                         ret = -EIO;
3166                         goto out_unlock;
3167                 }
3168         }
3169         wait_on_page_writeback(page);
3170
3171         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3172         set_page_extent_mapped(page);
3173
3174         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3175         if (ordered) {
3176                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3177                 unlock_page(page);
3178                 page_cache_release(page);
3179                 btrfs_start_ordered_extent(inode, ordered, 1);
3180                 btrfs_put_ordered_extent(ordered);
3181                 goto again;
3182         }
3183
3184         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3185                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3186                           GFP_NOFS);
3187
3188         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3189         if (ret) {
3190                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3191                 goto out_unlock;
3192         }
3193
3194         ret = 0;
3195         if (offset != PAGE_CACHE_SIZE) {
3196                 kaddr = kmap(page);
3197                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3198                 flush_dcache_page(page);
3199                 kunmap(page);
3200         }
3201         ClearPageChecked(page);
3202         set_page_dirty(page);
3203         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3204
3205 out_unlock:
3206         if (ret)
3207                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3208         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3209         unlock_page(page);
3210         page_cache_release(page);
3211 out:
3212         return ret;
3213 }
3214
3215 int btrfs_cont_expand(struct inode *inode, loff_t size)
3216 {
3217         struct btrfs_trans_handle *trans;
3218         struct btrfs_root *root = BTRFS_I(inode)->root;
3219         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3220         struct extent_map *em;
3221         u64 mask = root->sectorsize - 1;
3222         u64 hole_start = (inode->i_size + mask) & ~mask;
3223         u64 block_end = (size + mask) & ~mask;
3224         u64 last_byte;
3225         u64 cur_offset;
3226         u64 hole_size;
3227         int err = 0;
3228
3229         if (size <= hole_start)
3230                 return 0;
3231
3232         while (1) {
3233                 struct btrfs_ordered_extent *ordered;
3234                 btrfs_wait_ordered_range(inode, hole_start,
3235                                          block_end - hole_start);
3236                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3237                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3238                 if (!ordered)
3239                         break;
3240                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3241                 btrfs_put_ordered_extent(ordered);
3242         }
3243
3244         cur_offset = hole_start;
3245         while (1) {
3246                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3247                                 block_end - cur_offset, 0);
3248                 BUG_ON(IS_ERR(em) || !em);
3249                 last_byte = min(extent_map_end(em), block_end);
3250                 last_byte = (last_byte + mask) & ~mask;
3251                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3252                         u64 hint_byte = 0;
3253                         hole_size = last_byte - cur_offset;
3254
3255                         err = btrfs_reserve_metadata_space(root, 2);
3256                         if (err)
3257                                 break;
3258
3259                         trans = btrfs_start_transaction(root, 1);
3260                         btrfs_set_trans_block_group(trans, inode);
3261
3262                         err = btrfs_drop_extents(trans, inode, cur_offset,
3263                                                  cur_offset + hole_size,
3264                                                  &hint_byte, 1);
3265                         BUG_ON(err);
3266
3267                         err = btrfs_insert_file_extent(trans, root,
3268                                         inode->i_ino, cur_offset, 0,
3269                                         0, hole_size, 0, hole_size,
3270                                         0, 0, 0);
3271                         BUG_ON(err);
3272
3273                         btrfs_drop_extent_cache(inode, hole_start,
3274                                         last_byte - 1, 0);
3275
3276                         btrfs_end_transaction(trans, root);
3277                         btrfs_unreserve_metadata_space(root, 2);
3278                 }
3279                 free_extent_map(em);
3280                 cur_offset = last_byte;
3281                 if (cur_offset >= block_end)
3282                         break;
3283         }
3284
3285         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3286         return err;
3287 }
3288
3289 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3290 {
3291         struct btrfs_root *root = BTRFS_I(inode)->root;
3292         struct btrfs_trans_handle *trans;
3293         unsigned long nr;
3294         int ret;
3295
3296         if (attr->ia_size == inode->i_size)
3297                 return 0;
3298
3299         if (attr->ia_size > inode->i_size) {
3300                 unsigned long limit;
3301                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3302                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3303                         return -EFBIG;
3304                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3305                         send_sig(SIGXFSZ, current, 0);
3306                         return -EFBIG;
3307                 }
3308         }
3309
3310         ret = btrfs_reserve_metadata_space(root, 1);
3311         if (ret)
3312                 return ret;
3313
3314         trans = btrfs_start_transaction(root, 1);
3315         btrfs_set_trans_block_group(trans, inode);
3316
3317         ret = btrfs_orphan_add(trans, inode);
3318         BUG_ON(ret);
3319
3320         nr = trans->blocks_used;
3321         btrfs_end_transaction(trans, root);
3322         btrfs_unreserve_metadata_space(root, 1);
3323         btrfs_btree_balance_dirty(root, nr);
3324
3325         if (attr->ia_size > inode->i_size) {
3326                 ret = btrfs_cont_expand(inode, attr->ia_size);
3327                 if (ret) {
3328                         btrfs_truncate(inode);
3329                         return ret;
3330                 }
3331
3332                 i_size_write(inode, attr->ia_size);
3333                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3334
3335                 trans = btrfs_start_transaction(root, 1);
3336                 btrfs_set_trans_block_group(trans, inode);
3337
3338                 ret = btrfs_update_inode(trans, root, inode);
3339                 BUG_ON(ret);
3340                 if (inode->i_nlink > 0) {
3341                         ret = btrfs_orphan_del(trans, inode);
3342                         BUG_ON(ret);
3343                 }
3344                 nr = trans->blocks_used;
3345                 btrfs_end_transaction(trans, root);
3346                 btrfs_btree_balance_dirty(root, nr);
3347                 return 0;
3348         }
3349
3350         /*
3351          * We're truncating a file that used to have good data down to
3352          * zero. Make sure it gets into the ordered flush list so that
3353          * any new writes get down to disk quickly.
3354          */
3355         if (attr->ia_size == 0)
3356                 BTRFS_I(inode)->ordered_data_close = 1;
3357
3358         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3359         ret = vmtruncate(inode, attr->ia_size);
3360         BUG_ON(ret);
3361
3362         return 0;
3363 }
3364
3365 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3366 {
3367         struct inode *inode = dentry->d_inode;
3368         int err;
3369
3370         err = inode_change_ok(inode, attr);
3371         if (err)
3372                 return err;
3373
3374         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3375                 err = btrfs_setattr_size(inode, attr);
3376                 if (err)
3377                         return err;
3378         }
3379         attr->ia_valid &= ~ATTR_SIZE;
3380
3381         if (attr->ia_valid)
3382                 err = inode_setattr(inode, attr);
3383
3384         if (!err && ((attr->ia_valid & ATTR_MODE)))
3385                 err = btrfs_acl_chmod(inode);
3386         return err;
3387 }
3388
3389 void btrfs_delete_inode(struct inode *inode)
3390 {
3391         struct btrfs_trans_handle *trans;
3392         struct btrfs_root *root = BTRFS_I(inode)->root;
3393         unsigned long nr;
3394         int ret;
3395
3396         truncate_inode_pages(&inode->i_data, 0);
3397         if (is_bad_inode(inode)) {
3398                 btrfs_orphan_del(NULL, inode);
3399                 goto no_delete;
3400         }
3401         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3402
3403         if (root->fs_info->log_root_recovering) {
3404                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3405                 goto no_delete;
3406         }
3407
3408         if (inode->i_nlink > 0) {
3409                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3410                 goto no_delete;
3411         }
3412
3413         btrfs_i_size_write(inode, 0);
3414
3415         while (1) {
3416                 trans = btrfs_start_transaction(root, 1);
3417                 btrfs_set_trans_block_group(trans, inode);
3418                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3419
3420                 if (ret != -EAGAIN)
3421                         break;
3422
3423                 nr = trans->blocks_used;
3424                 btrfs_end_transaction(trans, root);
3425                 trans = NULL;
3426                 btrfs_btree_balance_dirty(root, nr);
3427         }
3428
3429         if (ret == 0) {
3430                 ret = btrfs_orphan_del(trans, inode);
3431                 BUG_ON(ret);
3432         }
3433
3434         nr = trans->blocks_used;
3435         btrfs_end_transaction(trans, root);
3436         btrfs_btree_balance_dirty(root, nr);
3437 no_delete:
3438         clear_inode(inode);
3439         return;
3440 }
3441
3442 /*
3443  * this returns the key found in the dir entry in the location pointer.
3444  * If no dir entries were found, location->objectid is 0.
3445  */
3446 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3447                                struct btrfs_key *location)
3448 {
3449         const char *name = dentry->d_name.name;
3450         int namelen = dentry->d_name.len;
3451         struct btrfs_dir_item *di;
3452         struct btrfs_path *path;
3453         struct btrfs_root *root = BTRFS_I(dir)->root;
3454         int ret = 0;
3455
3456         path = btrfs_alloc_path();
3457         BUG_ON(!path);
3458
3459         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3460                                     namelen, 0);
3461         if (IS_ERR(di))
3462                 ret = PTR_ERR(di);
3463
3464         if (!di || IS_ERR(di))
3465                 goto out_err;
3466
3467         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3468 out:
3469         btrfs_free_path(path);
3470         return ret;
3471 out_err:
3472         location->objectid = 0;
3473         goto out;
3474 }
3475
3476 /*
3477  * when we hit a tree root in a directory, the btrfs part of the inode
3478  * needs to be changed to reflect the root directory of the tree root.  This
3479  * is kind of like crossing a mount point.
3480  */
3481 static int fixup_tree_root_location(struct btrfs_root *root,
3482                                     struct inode *dir,
3483                                     struct dentry *dentry,
3484                                     struct btrfs_key *location,
3485                                     struct btrfs_root **sub_root)
3486 {
3487         struct btrfs_path *path;
3488         struct btrfs_root *new_root;
3489         struct btrfs_root_ref *ref;
3490         struct extent_buffer *leaf;
3491         int ret;
3492         int err = 0;
3493
3494         path = btrfs_alloc_path();
3495         if (!path) {
3496                 err = -ENOMEM;
3497                 goto out;
3498         }
3499
3500         err = -ENOENT;
3501         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3502                                   BTRFS_I(dir)->root->root_key.objectid,
3503                                   location->objectid);
3504         if (ret) {
3505                 if (ret < 0)
3506                         err = ret;
3507                 goto out;
3508         }
3509
3510         leaf = path->nodes[0];
3511         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3512         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3513             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3514                 goto out;
3515
3516         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3517                                    (unsigned long)(ref + 1),
3518                                    dentry->d_name.len);
3519         if (ret)
3520                 goto out;
3521
3522         btrfs_release_path(root->fs_info->tree_root, path);
3523
3524         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3525         if (IS_ERR(new_root)) {
3526                 err = PTR_ERR(new_root);
3527                 goto out;
3528         }
3529
3530         if (btrfs_root_refs(&new_root->root_item) == 0) {
3531                 err = -ENOENT;
3532                 goto out;
3533         }
3534
3535         *sub_root = new_root;
3536         location->objectid = btrfs_root_dirid(&new_root->root_item);
3537         location->type = BTRFS_INODE_ITEM_KEY;
3538         location->offset = 0;
3539         err = 0;
3540 out:
3541         btrfs_free_path(path);
3542         return err;
3543 }
3544
3545 static void inode_tree_add(struct inode *inode)
3546 {
3547         struct btrfs_root *root = BTRFS_I(inode)->root;
3548         struct btrfs_inode *entry;
3549         struct rb_node **p;
3550         struct rb_node *parent;
3551 again:
3552         p = &root->inode_tree.rb_node;
3553         parent = NULL;
3554
3555         if (hlist_unhashed(&inode->i_hash))
3556                 return;
3557
3558         spin_lock(&root->inode_lock);
3559         while (*p) {
3560                 parent = *p;
3561                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3562
3563                 if (inode->i_ino < entry->vfs_inode.i_ino)
3564                         p = &parent->rb_left;
3565                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3566                         p = &parent->rb_right;
3567                 else {
3568                         WARN_ON(!(entry->vfs_inode.i_state &
3569                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3570                         rb_erase(parent, &root->inode_tree);
3571                         RB_CLEAR_NODE(parent);
3572                         spin_unlock(&root->inode_lock);
3573                         goto again;
3574                 }
3575         }
3576         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3577         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3578         spin_unlock(&root->inode_lock);
3579 }
3580
3581 static void inode_tree_del(struct inode *inode)
3582 {
3583         struct btrfs_root *root = BTRFS_I(inode)->root;
3584         int empty = 0;
3585
3586         spin_lock(&root->inode_lock);
3587         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3588                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3589                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3590                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3591         }
3592         spin_unlock(&root->inode_lock);
3593
3594         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3595                 synchronize_srcu(&root->fs_info->subvol_srcu);
3596                 spin_lock(&root->inode_lock);
3597                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3598                 spin_unlock(&root->inode_lock);
3599                 if (empty)
3600                         btrfs_add_dead_root(root);
3601         }
3602 }
3603
3604 int btrfs_invalidate_inodes(struct btrfs_root *root)
3605 {
3606         struct rb_node *node;
3607         struct rb_node *prev;
3608         struct btrfs_inode *entry;
3609         struct inode *inode;
3610         u64 objectid = 0;
3611
3612         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3613
3614         spin_lock(&root->inode_lock);
3615 again:
3616         node = root->inode_tree.rb_node;
3617         prev = NULL;
3618         while (node) {
3619                 prev = node;
3620                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3621
3622                 if (objectid < entry->vfs_inode.i_ino)
3623                         node = node->rb_left;
3624                 else if (objectid > entry->vfs_inode.i_ino)
3625                         node = node->rb_right;
3626                 else
3627                         break;
3628         }
3629         if (!node) {
3630                 while (prev) {
3631                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3632                         if (objectid <= entry->vfs_inode.i_ino) {
3633                                 node = prev;
3634                                 break;
3635                         }
3636                         prev = rb_next(prev);
3637                 }
3638         }
3639         while (node) {
3640                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3641                 objectid = entry->vfs_inode.i_ino + 1;
3642                 inode = igrab(&entry->vfs_inode);
3643                 if (inode) {
3644                         spin_unlock(&root->inode_lock);
3645                         if (atomic_read(&inode->i_count) > 1)
3646                                 d_prune_aliases(inode);
3647                         /*
3648                          * btrfs_drop_inode will remove it from
3649                          * the inode cache when its usage count
3650                          * hits zero.
3651                          */
3652                         iput(inode);
3653                         cond_resched();
3654                         spin_lock(&root->inode_lock);
3655                         goto again;
3656                 }
3657
3658                 if (cond_resched_lock(&root->inode_lock))
3659                         goto again;
3660
3661                 node = rb_next(node);
3662         }
3663         spin_unlock(&root->inode_lock);
3664         return 0;
3665 }
3666
3667 static noinline void init_btrfs_i(struct inode *inode)
3668 {
3669         struct btrfs_inode *bi = BTRFS_I(inode);
3670
3671         bi->generation = 0;
3672         bi->sequence = 0;
3673         bi->last_trans = 0;
3674         bi->last_sub_trans = 0;
3675         bi->logged_trans = 0;
3676         bi->delalloc_bytes = 0;
3677         bi->reserved_bytes = 0;
3678         bi->disk_i_size = 0;
3679         bi->flags = 0;
3680         bi->index_cnt = (u64)-1;
3681         bi->last_unlink_trans = 0;
3682         bi->ordered_data_close = 0;
3683         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3684         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3685                              inode->i_mapping, GFP_NOFS);
3686         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3687                              inode->i_mapping, GFP_NOFS);
3688         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3689         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3690         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3691         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3692         mutex_init(&BTRFS_I(inode)->log_mutex);
3693 }
3694
3695 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3696 {
3697         struct btrfs_iget_args *args = p;
3698         inode->i_ino = args->ino;
3699         init_btrfs_i(inode);
3700         BTRFS_I(inode)->root = args->root;
3701         btrfs_set_inode_space_info(args->root, inode);
3702         return 0;
3703 }
3704
3705 static int btrfs_find_actor(struct inode *inode, void *opaque)
3706 {
3707         struct btrfs_iget_args *args = opaque;
3708         return args->ino == inode->i_ino &&
3709                 args->root == BTRFS_I(inode)->root;
3710 }
3711
3712 static struct inode *btrfs_iget_locked(struct super_block *s,
3713                                        u64 objectid,
3714                                        struct btrfs_root *root)
3715 {
3716         struct inode *inode;
3717         struct btrfs_iget_args args;
3718         args.ino = objectid;
3719         args.root = root;
3720
3721         inode = iget5_locked(s, objectid, btrfs_find_actor,
3722                              btrfs_init_locked_inode,
3723                              (void *)&args);
3724         return inode;
3725 }
3726
3727 /* Get an inode object given its location and corresponding root.
3728  * Returns in *is_new if the inode was read from disk
3729  */
3730 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3731                          struct btrfs_root *root)
3732 {
3733         struct inode *inode;
3734
3735         inode = btrfs_iget_locked(s, location->objectid, root);
3736         if (!inode)
3737                 return ERR_PTR(-ENOMEM);
3738
3739         if (inode->i_state & I_NEW) {
3740                 BTRFS_I(inode)->root = root;
3741                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3742                 btrfs_read_locked_inode(inode);
3743
3744                 inode_tree_add(inode);
3745                 unlock_new_inode(inode);
3746         }
3747
3748         return inode;
3749 }
3750
3751 static struct inode *new_simple_dir(struct super_block *s,
3752                                     struct btrfs_key *key,
3753                                     struct btrfs_root *root)
3754 {
3755         struct inode *inode = new_inode(s);
3756
3757         if (!inode)
3758                 return ERR_PTR(-ENOMEM);
3759
3760         init_btrfs_i(inode);
3761
3762         BTRFS_I(inode)->root = root;
3763         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3764         BTRFS_I(inode)->dummy_inode = 1;
3765
3766         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3767         inode->i_op = &simple_dir_inode_operations;
3768         inode->i_fop = &simple_dir_operations;
3769         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3770         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3771
3772         return inode;
3773 }
3774
3775 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3776 {
3777         struct inode *inode;
3778         struct btrfs_root *root = BTRFS_I(dir)->root;
3779         struct btrfs_root *sub_root = root;
3780         struct btrfs_key location;
3781         int index;
3782         int ret;
3783
3784         dentry->d_op = &btrfs_dentry_operations;
3785
3786         if (dentry->d_name.len > BTRFS_NAME_LEN)
3787                 return ERR_PTR(-ENAMETOOLONG);
3788
3789         ret = btrfs_inode_by_name(dir, dentry, &location);
3790
3791         if (ret < 0)
3792                 return ERR_PTR(ret);
3793
3794         if (location.objectid == 0)
3795                 return NULL;
3796
3797         if (location.type == BTRFS_INODE_ITEM_KEY) {
3798                 inode = btrfs_iget(dir->i_sb, &location, root);
3799                 return inode;
3800         }
3801
3802         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3803
3804         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3805         ret = fixup_tree_root_location(root, dir, dentry,
3806                                        &location, &sub_root);
3807         if (ret < 0) {
3808                 if (ret != -ENOENT)
3809                         inode = ERR_PTR(ret);
3810                 else
3811                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3812         } else {
3813                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3814         }
3815         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3816
3817         if (root != sub_root) {
3818                 down_read(&root->fs_info->cleanup_work_sem);
3819                 if (!(inode->i_sb->s_flags & MS_RDONLY))
3820                         btrfs_orphan_cleanup(sub_root);
3821                 up_read(&root->fs_info->cleanup_work_sem);
3822         }
3823
3824         return inode;
3825 }
3826
3827 static int btrfs_dentry_delete(struct dentry *dentry)
3828 {
3829         struct btrfs_root *root;
3830
3831         if (!dentry->d_inode && !IS_ROOT(dentry))
3832                 dentry = dentry->d_parent;
3833
3834         if (dentry->d_inode) {
3835                 root = BTRFS_I(dentry->d_inode)->root;
3836                 if (btrfs_root_refs(&root->root_item) == 0)
3837                         return 1;
3838         }
3839         return 0;
3840 }
3841
3842 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3843                                    struct nameidata *nd)
3844 {
3845         struct inode *inode;
3846
3847         inode = btrfs_lookup_dentry(dir, dentry);
3848         if (IS_ERR(inode))
3849                 return ERR_CAST(inode);
3850
3851         return d_splice_alias(inode, dentry);
3852 }
3853
3854 static unsigned char btrfs_filetype_table[] = {
3855         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3856 };
3857
3858 static int btrfs_real_readdir(struct file *filp, void *dirent,
3859                               filldir_t filldir)
3860 {
3861         struct inode *inode = filp->f_dentry->d_inode;
3862         struct btrfs_root *root = BTRFS_I(inode)->root;
3863         struct btrfs_item *item;
3864         struct btrfs_dir_item *di;
3865         struct btrfs_key key;
3866         struct btrfs_key found_key;
3867         struct btrfs_path *path;
3868         int ret;
3869         u32 nritems;
3870         struct extent_buffer *leaf;
3871         int slot;
3872         int advance;
3873         unsigned char d_type;
3874         int over = 0;
3875         u32 di_cur;
3876         u32 di_total;
3877         u32 di_len;
3878         int key_type = BTRFS_DIR_INDEX_KEY;
3879         char tmp_name[32];
3880         char *name_ptr;
3881         int name_len;
3882
3883         /* FIXME, use a real flag for deciding about the key type */
3884         if (root->fs_info->tree_root == root)
3885                 key_type = BTRFS_DIR_ITEM_KEY;
3886
3887         /* special case for "." */
3888         if (filp->f_pos == 0) {
3889                 over = filldir(dirent, ".", 1,
3890                                1, inode->i_ino,
3891                                DT_DIR);
3892                 if (over)
3893                         return 0;
3894                 filp->f_pos = 1;
3895         }
3896         /* special case for .., just use the back ref */
3897         if (filp->f_pos == 1) {
3898                 u64 pino = parent_ino(filp->f_path.dentry);
3899                 over = filldir(dirent, "..", 2,
3900                                2, pino, DT_DIR);
3901                 if (over)
3902                         return 0;
3903                 filp->f_pos = 2;
3904         }
3905         path = btrfs_alloc_path();
3906         path->reada = 2;
3907
3908         btrfs_set_key_type(&key, key_type);
3909         key.offset = filp->f_pos;
3910         key.objectid = inode->i_ino;
3911
3912         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3913         if (ret < 0)
3914                 goto err;
3915         advance = 0;
3916
3917         while (1) {
3918                 leaf = path->nodes[0];
3919                 nritems = btrfs_header_nritems(leaf);
3920                 slot = path->slots[0];
3921                 if (advance || slot >= nritems) {
3922                         if (slot >= nritems - 1) {
3923                                 ret = btrfs_next_leaf(root, path);
3924                                 if (ret)
3925                                         break;
3926                                 leaf = path->nodes[0];
3927                                 nritems = btrfs_header_nritems(leaf);
3928                                 slot = path->slots[0];
3929                         } else {
3930                                 slot++;
3931                                 path->slots[0]++;
3932                         }
3933                 }
3934
3935                 advance = 1;
3936                 item = btrfs_item_nr(leaf, slot);
3937                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3938
3939                 if (found_key.objectid != key.objectid)
3940                         break;
3941                 if (btrfs_key_type(&found_key) != key_type)
3942                         break;
3943                 if (found_key.offset < filp->f_pos)
3944                         continue;
3945
3946                 filp->f_pos = found_key.offset;
3947
3948                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3949                 di_cur = 0;
3950                 di_total = btrfs_item_size(leaf, item);
3951
3952                 while (di_cur < di_total) {
3953                         struct btrfs_key location;
3954
3955                         name_len = btrfs_dir_name_len(leaf, di);
3956                         if (name_len <= sizeof(tmp_name)) {
3957                                 name_ptr = tmp_name;
3958                         } else {
3959                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3960                                 if (!name_ptr) {
3961                                         ret = -ENOMEM;
3962                                         goto err;
3963                                 }
3964                         }
3965                         read_extent_buffer(leaf, name_ptr,
3966                                            (unsigned long)(di + 1), name_len);
3967
3968                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3969                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3970
3971                         /* is this a reference to our own snapshot? If so
3972                          * skip it
3973                          */
3974                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3975                             location.objectid == root->root_key.objectid) {
3976                                 over = 0;
3977                                 goto skip;
3978                         }
3979                         over = filldir(dirent, name_ptr, name_len,
3980                                        found_key.offset, location.objectid,
3981                                        d_type);
3982
3983 skip:
3984                         if (name_ptr != tmp_name)
3985                                 kfree(name_ptr);
3986
3987                         if (over)
3988                                 goto nopos;
3989                         di_len = btrfs_dir_name_len(leaf, di) +
3990                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3991                         di_cur += di_len;
3992                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3993                 }
3994         }
3995
3996         /* Reached end of directory/root. Bump pos past the last item. */
3997         if (key_type == BTRFS_DIR_INDEX_KEY)
3998                 filp->f_pos = INT_LIMIT(off_t);
3999         else
4000                 filp->f_pos++;
4001 nopos:
4002         ret = 0;
4003 err:
4004         btrfs_free_path(path);
4005         return ret;
4006 }
4007
4008 int btrfs_write_inode(struct inode *inode, int wait)
4009 {
4010         struct btrfs_root *root = BTRFS_I(inode)->root;
4011         struct btrfs_trans_handle *trans;
4012         int ret = 0;
4013
4014         if (root->fs_info->btree_inode == inode)
4015                 return 0;
4016
4017         if (wait) {
4018                 trans = btrfs_join_transaction(root, 1);
4019                 btrfs_set_trans_block_group(trans, inode);
4020                 ret = btrfs_commit_transaction(trans, root);
4021         }
4022         return ret;
4023 }
4024
4025 /*
4026  * This is somewhat expensive, updating the tree every time the
4027  * inode changes.  But, it is most likely to find the inode in cache.
4028  * FIXME, needs more benchmarking...there are no reasons other than performance
4029  * to keep or drop this code.
4030  */
4031 void btrfs_dirty_inode(struct inode *inode)
4032 {
4033         struct btrfs_root *root = BTRFS_I(inode)->root;
4034         struct btrfs_trans_handle *trans;
4035
4036         trans = btrfs_join_transaction(root, 1);
4037         btrfs_set_trans_block_group(trans, inode);
4038         btrfs_update_inode(trans, root, inode);
4039         btrfs_end_transaction(trans, root);
4040 }
4041
4042 /*
4043  * find the highest existing sequence number in a directory
4044  * and then set the in-memory index_cnt variable to reflect
4045  * free sequence numbers
4046  */
4047 static int btrfs_set_inode_index_count(struct inode *inode)
4048 {
4049         struct btrfs_root *root = BTRFS_I(inode)->root;
4050         struct btrfs_key key, found_key;
4051         struct btrfs_path *path;
4052         struct extent_buffer *leaf;
4053         int ret;
4054
4055         key.objectid = inode->i_ino;
4056         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4057         key.offset = (u64)-1;
4058
4059         path = btrfs_alloc_path();
4060         if (!path)
4061                 return -ENOMEM;
4062
4063         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4064         if (ret < 0)
4065                 goto out;
4066         /* FIXME: we should be able to handle this */
4067         if (ret == 0)
4068                 goto out;
4069         ret = 0;
4070
4071         /*
4072          * MAGIC NUMBER EXPLANATION:
4073          * since we search a directory based on f_pos we have to start at 2
4074          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4075          * else has to start at 2
4076          */
4077         if (path->slots[0] == 0) {
4078                 BTRFS_I(inode)->index_cnt = 2;
4079                 goto out;
4080         }
4081
4082         path->slots[0]--;
4083
4084         leaf = path->nodes[0];
4085         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4086
4087         if (found_key.objectid != inode->i_ino ||
4088             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4089                 BTRFS_I(inode)->index_cnt = 2;
4090                 goto out;
4091         }
4092
4093         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4094 out:
4095         btrfs_free_path(path);
4096         return ret;
4097 }
4098
4099 /*
4100  * helper to find a free sequence number in a given directory.  This current
4101  * code is very simple, later versions will do smarter things in the btree
4102  */
4103 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4104 {
4105         int ret = 0;
4106
4107         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4108                 ret = btrfs_set_inode_index_count(dir);
4109                 if (ret)
4110                         return ret;
4111         }
4112
4113         *index = BTRFS_I(dir)->index_cnt;
4114         BTRFS_I(dir)->index_cnt++;
4115
4116         return ret;
4117 }
4118
4119 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4120                                      struct btrfs_root *root,
4121                                      struct inode *dir,
4122                                      const char *name, int name_len,
4123                                      u64 ref_objectid, u64 objectid,
4124                                      u64 alloc_hint, int mode, u64 *index)
4125 {
4126         struct inode *inode;
4127         struct btrfs_inode_item *inode_item;
4128         struct btrfs_key *location;
4129         struct btrfs_path *path;
4130         struct btrfs_inode_ref *ref;
4131         struct btrfs_key key[2];
4132         u32 sizes[2];
4133         unsigned long ptr;
4134         int ret;
4135         int owner;
4136
4137         path = btrfs_alloc_path();
4138         BUG_ON(!path);
4139
4140         inode = new_inode(root->fs_info->sb);
4141         if (!inode)
4142                 return ERR_PTR(-ENOMEM);
4143
4144         if (dir) {
4145                 ret = btrfs_set_inode_index(dir, index);
4146                 if (ret) {
4147                         iput(inode);
4148                         return ERR_PTR(ret);
4149                 }
4150         }
4151         /*
4152          * index_cnt is ignored for everything but a dir,
4153          * btrfs_get_inode_index_count has an explanation for the magic
4154          * number
4155          */
4156         init_btrfs_i(inode);
4157         BTRFS_I(inode)->index_cnt = 2;
4158         BTRFS_I(inode)->root = root;
4159         BTRFS_I(inode)->generation = trans->transid;
4160         btrfs_set_inode_space_info(root, inode);
4161
4162         if (mode & S_IFDIR)
4163                 owner = 0;
4164         else
4165                 owner = 1;
4166         BTRFS_I(inode)->block_group =
4167                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4168
4169         key[0].objectid = objectid;
4170         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4171         key[0].offset = 0;
4172
4173         key[1].objectid = objectid;
4174         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4175         key[1].offset = ref_objectid;
4176
4177         sizes[0] = sizeof(struct btrfs_inode_item);
4178         sizes[1] = name_len + sizeof(*ref);
4179
4180         path->leave_spinning = 1;
4181         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4182         if (ret != 0)
4183                 goto fail;
4184
4185         inode->i_uid = current_fsuid();
4186
4187         if (dir && (dir->i_mode & S_ISGID)) {
4188                 inode->i_gid = dir->i_gid;
4189                 if (S_ISDIR(mode))
4190                         mode |= S_ISGID;
4191         } else
4192                 inode->i_gid = current_fsgid();
4193
4194         inode->i_mode = mode;
4195         inode->i_ino = objectid;
4196         inode_set_bytes(inode, 0);
4197         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4198         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4199                                   struct btrfs_inode_item);
4200         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4201
4202         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4203                              struct btrfs_inode_ref);
4204         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4205         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4206         ptr = (unsigned long)(ref + 1);
4207         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4208
4209         btrfs_mark_buffer_dirty(path->nodes[0]);
4210         btrfs_free_path(path);
4211
4212         location = &BTRFS_I(inode)->location;
4213         location->objectid = objectid;
4214         location->offset = 0;
4215         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4216
4217         btrfs_inherit_iflags(inode, dir);
4218
4219         if ((mode & S_IFREG)) {
4220                 if (btrfs_test_opt(root, NODATASUM))
4221                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4222                 if (btrfs_test_opt(root, NODATACOW))
4223                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4224         }
4225
4226         insert_inode_hash(inode);
4227         inode_tree_add(inode);
4228         return inode;
4229 fail:
4230         if (dir)
4231                 BTRFS_I(dir)->index_cnt--;
4232         btrfs_free_path(path);
4233         iput(inode);
4234         return ERR_PTR(ret);
4235 }
4236
4237 static inline u8 btrfs_inode_type(struct inode *inode)
4238 {
4239         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4240 }
4241
4242 /*
4243  * utility function to add 'inode' into 'parent_inode' with
4244  * a give name and a given sequence number.
4245  * if 'add_backref' is true, also insert a backref from the
4246  * inode to the parent directory.
4247  */
4248 int btrfs_add_link(struct btrfs_trans_handle *trans,
4249                    struct inode *parent_inode, struct inode *inode,
4250                    const char *name, int name_len, int add_backref, u64 index)
4251 {
4252         int ret = 0;
4253         struct btrfs_key key;
4254         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4255
4256         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4257                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4258         } else {
4259                 key.objectid = inode->i_ino;
4260                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4261                 key.offset = 0;
4262         }
4263
4264         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4265                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4266                                          key.objectid, root->root_key.objectid,
4267                                          parent_inode->i_ino,
4268                                          index, name, name_len);
4269         } else if (add_backref) {
4270                 ret = btrfs_insert_inode_ref(trans, root,
4271                                              name, name_len, inode->i_ino,
4272                                              parent_inode->i_ino, index);
4273         }
4274
4275         if (ret == 0) {
4276                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4277                                             parent_inode->i_ino, &key,
4278                                             btrfs_inode_type(inode), index);
4279                 BUG_ON(ret);
4280
4281                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4282                                    name_len * 2);
4283                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4284                 ret = btrfs_update_inode(trans, root, parent_inode);
4285         }
4286         return ret;
4287 }
4288
4289 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4290                             struct dentry *dentry, struct inode *inode,
4291                             int backref, u64 index)
4292 {
4293         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4294                                  inode, dentry->d_name.name,
4295                                  dentry->d_name.len, backref, index);
4296         if (!err) {
4297                 d_instantiate(dentry, inode);
4298                 return 0;
4299         }
4300         if (err > 0)
4301                 err = -EEXIST;
4302         return err;
4303 }
4304
4305 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4306                         int mode, dev_t rdev)
4307 {
4308         struct btrfs_trans_handle *trans;
4309         struct btrfs_root *root = BTRFS_I(dir)->root;
4310         struct inode *inode = NULL;
4311         int err;
4312         int drop_inode = 0;
4313         u64 objectid;
4314         unsigned long nr = 0;
4315         u64 index = 0;
4316
4317         if (!new_valid_dev(rdev))
4318                 return -EINVAL;
4319
4320         /*
4321          * 2 for inode item and ref
4322          * 2 for dir items
4323          * 1 for xattr if selinux is on
4324          */
4325         err = btrfs_reserve_metadata_space(root, 5);
4326         if (err)
4327                 return err;
4328
4329         trans = btrfs_start_transaction(root, 1);
4330         if (!trans)
4331                 goto fail;
4332         btrfs_set_trans_block_group(trans, dir);
4333
4334         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4335         if (err) {
4336                 err = -ENOSPC;
4337                 goto out_unlock;
4338         }
4339
4340         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4341                                 dentry->d_name.len,
4342                                 dentry->d_parent->d_inode->i_ino, objectid,
4343                                 BTRFS_I(dir)->block_group, mode, &index);
4344         err = PTR_ERR(inode);
4345         if (IS_ERR(inode))
4346                 goto out_unlock;
4347
4348         err = btrfs_init_inode_security(trans, inode, dir);
4349         if (err) {
4350                 drop_inode = 1;
4351                 goto out_unlock;
4352         }
4353
4354         btrfs_set_trans_block_group(trans, inode);
4355         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4356         if (err)
4357                 drop_inode = 1;
4358         else {
4359                 inode->i_op = &btrfs_special_inode_operations;
4360                 init_special_inode(inode, inode->i_mode, rdev);
4361                 btrfs_update_inode(trans, root, inode);
4362         }
4363         btrfs_update_inode_block_group(trans, inode);
4364         btrfs_update_inode_block_group(trans, dir);
4365 out_unlock:
4366         nr = trans->blocks_used;
4367         btrfs_end_transaction_throttle(trans, root);
4368 fail:
4369         btrfs_unreserve_metadata_space(root, 5);
4370         if (drop_inode) {
4371                 inode_dec_link_count(inode);
4372                 iput(inode);
4373         }
4374         btrfs_btree_balance_dirty(root, nr);
4375         return err;
4376 }
4377
4378 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4379                         int mode, struct nameidata *nd)
4380 {
4381         struct btrfs_trans_handle *trans;
4382         struct btrfs_root *root = BTRFS_I(dir)->root;
4383         struct inode *inode = NULL;
4384         int err;
4385         int drop_inode = 0;
4386         unsigned long nr = 0;
4387         u64 objectid;
4388         u64 index = 0;
4389
4390         /*
4391          * 2 for inode item and ref
4392          * 2 for dir items
4393          * 1 for xattr if selinux is on
4394          */
4395         err = btrfs_reserve_metadata_space(root, 5);
4396         if (err)
4397                 return err;
4398
4399         trans = btrfs_start_transaction(root, 1);
4400         if (!trans)
4401                 goto fail;
4402         btrfs_set_trans_block_group(trans, dir);
4403
4404         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4405         if (err) {
4406                 err = -ENOSPC;
4407                 goto out_unlock;
4408         }
4409
4410         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4411                                 dentry->d_name.len,
4412                                 dentry->d_parent->d_inode->i_ino,
4413                                 objectid, BTRFS_I(dir)->block_group, mode,
4414                                 &index);
4415         err = PTR_ERR(inode);
4416         if (IS_ERR(inode))
4417                 goto out_unlock;
4418
4419         err = btrfs_init_inode_security(trans, inode, dir);
4420         if (err) {
4421                 drop_inode = 1;
4422                 goto out_unlock;
4423         }
4424
4425         btrfs_set_trans_block_group(trans, inode);
4426         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4427         if (err)
4428                 drop_inode = 1;
4429         else {
4430                 inode->i_mapping->a_ops = &btrfs_aops;
4431                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4432                 inode->i_fop = &btrfs_file_operations;
4433                 inode->i_op = &btrfs_file_inode_operations;
4434                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4435         }
4436         btrfs_update_inode_block_group(trans, inode);
4437         btrfs_update_inode_block_group(trans, dir);
4438 out_unlock:
4439         nr = trans->blocks_used;
4440         btrfs_end_transaction_throttle(trans, root);
4441 fail:
4442         btrfs_unreserve_metadata_space(root, 5);
4443         if (drop_inode) {
4444                 inode_dec_link_count(inode);
4445                 iput(inode);
4446         }
4447         btrfs_btree_balance_dirty(root, nr);
4448         return err;
4449 }
4450
4451 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4452                       struct dentry *dentry)
4453 {
4454         struct btrfs_trans_handle *trans;
4455         struct btrfs_root *root = BTRFS_I(dir)->root;
4456         struct inode *inode = old_dentry->d_inode;
4457         u64 index;
4458         unsigned long nr = 0;
4459         int err;
4460         int drop_inode = 0;
4461
4462         if (inode->i_nlink == 0)
4463                 return -ENOENT;
4464
4465         /*
4466          * 1 item for inode ref
4467          * 2 items for dir items
4468          */
4469         err = btrfs_reserve_metadata_space(root, 3);
4470         if (err)
4471                 return err;
4472
4473         btrfs_inc_nlink(inode);
4474
4475         err = btrfs_set_inode_index(dir, &index);
4476         if (err)
4477                 goto fail;
4478
4479         trans = btrfs_start_transaction(root, 1);
4480
4481         btrfs_set_trans_block_group(trans, dir);
4482         atomic_inc(&inode->i_count);
4483
4484         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4485
4486         if (err) {
4487                 drop_inode = 1;
4488         } else {
4489                 btrfs_update_inode_block_group(trans, dir);
4490                 err = btrfs_update_inode(trans, root, inode);
4491                 BUG_ON(err);
4492                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4493         }
4494
4495         nr = trans->blocks_used;
4496         btrfs_end_transaction_throttle(trans, root);
4497 fail:
4498         btrfs_unreserve_metadata_space(root, 3);
4499         if (drop_inode) {
4500                 inode_dec_link_count(inode);
4501                 iput(inode);
4502         }
4503         btrfs_btree_balance_dirty(root, nr);
4504         return err;
4505 }
4506
4507 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4508 {
4509         struct inode *inode = NULL;
4510         struct btrfs_trans_handle *trans;
4511         struct btrfs_root *root = BTRFS_I(dir)->root;
4512         int err = 0;
4513         int drop_on_err = 0;
4514         u64 objectid = 0;
4515         u64 index = 0;
4516         unsigned long nr = 1;
4517
4518         /*
4519          * 2 items for inode and ref
4520          * 2 items for dir items
4521          * 1 for xattr if selinux is on
4522          */
4523         err = btrfs_reserve_metadata_space(root, 5);
4524         if (err)
4525                 return err;
4526
4527         trans = btrfs_start_transaction(root, 1);
4528         if (!trans) {
4529                 err = -ENOMEM;
4530                 goto out_unlock;
4531         }
4532         btrfs_set_trans_block_group(trans, dir);
4533
4534         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4535         if (err) {
4536                 err = -ENOSPC;
4537                 goto out_unlock;
4538         }
4539
4540         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4541                                 dentry->d_name.len,
4542                                 dentry->d_parent->d_inode->i_ino, objectid,
4543                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4544                                 &index);
4545         if (IS_ERR(inode)) {
4546                 err = PTR_ERR(inode);
4547                 goto out_fail;
4548         }
4549
4550         drop_on_err = 1;
4551
4552         err = btrfs_init_inode_security(trans, inode, dir);
4553         if (err)
4554                 goto out_fail;
4555
4556         inode->i_op = &btrfs_dir_inode_operations;
4557         inode->i_fop = &btrfs_dir_file_operations;
4558         btrfs_set_trans_block_group(trans, inode);
4559
4560         btrfs_i_size_write(inode, 0);
4561         err = btrfs_update_inode(trans, root, inode);
4562         if (err)
4563                 goto out_fail;
4564
4565         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4566                                  inode, dentry->d_name.name,
4567                                  dentry->d_name.len, 0, index);
4568         if (err)
4569                 goto out_fail;
4570
4571         d_instantiate(dentry, inode);
4572         drop_on_err = 0;
4573         btrfs_update_inode_block_group(trans, inode);
4574         btrfs_update_inode_block_group(trans, dir);
4575
4576 out_fail:
4577         nr = trans->blocks_used;
4578         btrfs_end_transaction_throttle(trans, root);
4579
4580 out_unlock:
4581         btrfs_unreserve_metadata_space(root, 5);
4582         if (drop_on_err)
4583                 iput(inode);
4584         btrfs_btree_balance_dirty(root, nr);
4585         return err;
4586 }
4587
4588 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4589  * and an extent that you want to insert, deal with overlap and insert
4590  * the new extent into the tree.
4591  */
4592 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4593                                 struct extent_map *existing,
4594                                 struct extent_map *em,
4595                                 u64 map_start, u64 map_len)
4596 {
4597         u64 start_diff;
4598
4599         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4600         start_diff = map_start - em->start;
4601         em->start = map_start;
4602         em->len = map_len;
4603         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4604             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4605                 em->block_start += start_diff;
4606                 em->block_len -= start_diff;
4607         }
4608         return add_extent_mapping(em_tree, em);
4609 }
4610
4611 static noinline int uncompress_inline(struct btrfs_path *path,
4612                                       struct inode *inode, struct page *page,
4613                                       size_t pg_offset, u64 extent_offset,
4614                                       struct btrfs_file_extent_item *item)
4615 {
4616         int ret;
4617         struct extent_buffer *leaf = path->nodes[0];
4618         char *tmp;
4619         size_t max_size;
4620         unsigned long inline_size;
4621         unsigned long ptr;
4622
4623         WARN_ON(pg_offset != 0);
4624         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4625         inline_size = btrfs_file_extent_inline_item_len(leaf,
4626                                         btrfs_item_nr(leaf, path->slots[0]));
4627         tmp = kmalloc(inline_size, GFP_NOFS);
4628         ptr = btrfs_file_extent_inline_start(item);
4629
4630         read_extent_buffer(leaf, tmp, ptr, inline_size);
4631
4632         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4633         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4634                                     inline_size, max_size);
4635         if (ret) {
4636                 char *kaddr = kmap_atomic(page, KM_USER0);
4637                 unsigned long copy_size = min_t(u64,
4638                                   PAGE_CACHE_SIZE - pg_offset,
4639                                   max_size - extent_offset);
4640                 memset(kaddr + pg_offset, 0, copy_size);
4641                 kunmap_atomic(kaddr, KM_USER0);
4642         }
4643         kfree(tmp);
4644         return 0;
4645 }
4646
4647 /*
4648  * a bit scary, this does extent mapping from logical file offset to the disk.
4649  * the ugly parts come from merging extents from the disk with the in-ram
4650  * representation.  This gets more complex because of the data=ordered code,
4651  * where the in-ram extents might be locked pending data=ordered completion.
4652  *
4653  * This also copies inline extents directly into the page.
4654  */
4655
4656 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4657                                     size_t pg_offset, u64 start, u64 len,
4658                                     int create)
4659 {
4660         int ret;
4661         int err = 0;
4662         u64 bytenr;
4663         u64 extent_start = 0;
4664         u64 extent_end = 0;
4665         u64 objectid = inode->i_ino;
4666         u32 found_type;
4667         struct btrfs_path *path = NULL;
4668         struct btrfs_root *root = BTRFS_I(inode)->root;
4669         struct btrfs_file_extent_item *item;
4670         struct extent_buffer *leaf;
4671         struct btrfs_key found_key;
4672         struct extent_map *em = NULL;
4673         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4674         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4675         struct btrfs_trans_handle *trans = NULL;
4676         int compressed;
4677
4678 again:
4679         read_lock(&em_tree->lock);
4680         em = lookup_extent_mapping(em_tree, start, len);
4681         if (em)
4682                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4683         read_unlock(&em_tree->lock);
4684
4685         if (em) {
4686                 if (em->start > start || em->start + em->len <= start)
4687                         free_extent_map(em);
4688                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4689                         free_extent_map(em);
4690                 else
4691                         goto out;
4692         }
4693         em = alloc_extent_map(GFP_NOFS);
4694         if (!em) {
4695                 err = -ENOMEM;
4696                 goto out;
4697         }
4698         em->bdev = root->fs_info->fs_devices->latest_bdev;
4699         em->start = EXTENT_MAP_HOLE;
4700         em->orig_start = EXTENT_MAP_HOLE;
4701         em->len = (u64)-1;
4702         em->block_len = (u64)-1;
4703
4704         if (!path) {
4705                 path = btrfs_alloc_path();
4706                 BUG_ON(!path);
4707         }
4708
4709         ret = btrfs_lookup_file_extent(trans, root, path,
4710                                        objectid, start, trans != NULL);
4711         if (ret < 0) {
4712                 err = ret;
4713                 goto out;
4714         }
4715
4716         if (ret != 0) {
4717                 if (path->slots[0] == 0)
4718                         goto not_found;
4719                 path->slots[0]--;
4720         }
4721
4722         leaf = path->nodes[0];
4723         item = btrfs_item_ptr(leaf, path->slots[0],
4724                               struct btrfs_file_extent_item);
4725         /* are we inside the extent that was found? */
4726         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4727         found_type = btrfs_key_type(&found_key);
4728         if (found_key.objectid != objectid ||
4729             found_type != BTRFS_EXTENT_DATA_KEY) {
4730                 goto not_found;
4731         }
4732
4733         found_type = btrfs_file_extent_type(leaf, item);
4734         extent_start = found_key.offset;
4735         compressed = btrfs_file_extent_compression(leaf, item);
4736         if (found_type == BTRFS_FILE_EXTENT_REG ||
4737             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4738                 extent_end = extent_start +
4739                        btrfs_file_extent_num_bytes(leaf, item);
4740         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4741                 size_t size;
4742                 size = btrfs_file_extent_inline_len(leaf, item);
4743                 extent_end = (extent_start + size + root->sectorsize - 1) &
4744                         ~((u64)root->sectorsize - 1);
4745         }
4746
4747         if (start >= extent_end) {
4748                 path->slots[0]++;
4749                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4750                         ret = btrfs_next_leaf(root, path);
4751                         if (ret < 0) {
4752                                 err = ret;
4753                                 goto out;
4754                         }
4755                         if (ret > 0)
4756                                 goto not_found;
4757                         leaf = path->nodes[0];
4758                 }
4759                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4760                 if (found_key.objectid != objectid ||
4761                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4762                         goto not_found;
4763                 if (start + len <= found_key.offset)
4764                         goto not_found;
4765                 em->start = start;
4766                 em->len = found_key.offset - start;
4767                 goto not_found_em;
4768         }
4769
4770         if (found_type == BTRFS_FILE_EXTENT_REG ||
4771             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4772                 em->start = extent_start;
4773                 em->len = extent_end - extent_start;
4774                 em->orig_start = extent_start -
4775                                  btrfs_file_extent_offset(leaf, item);
4776                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4777                 if (bytenr == 0) {
4778                         em->block_start = EXTENT_MAP_HOLE;
4779                         goto insert;
4780                 }
4781                 if (compressed) {
4782                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4783                         em->block_start = bytenr;
4784                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4785                                                                          item);
4786                 } else {
4787                         bytenr += btrfs_file_extent_offset(leaf, item);
4788                         em->block_start = bytenr;
4789                         em->block_len = em->len;
4790                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4791                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4792                 }
4793                 goto insert;
4794         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4795                 unsigned long ptr;
4796                 char *map;
4797                 size_t size;
4798                 size_t extent_offset;
4799                 size_t copy_size;
4800
4801                 em->block_start = EXTENT_MAP_INLINE;
4802                 if (!page || create) {
4803                         em->start = extent_start;
4804                         em->len = extent_end - extent_start;
4805                         goto out;
4806                 }
4807
4808                 size = btrfs_file_extent_inline_len(leaf, item);
4809                 extent_offset = page_offset(page) + pg_offset - extent_start;
4810                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4811                                 size - extent_offset);
4812                 em->start = extent_start + extent_offset;
4813                 em->len = (copy_size + root->sectorsize - 1) &
4814                         ~((u64)root->sectorsize - 1);
4815                 em->orig_start = EXTENT_MAP_INLINE;
4816                 if (compressed)
4817                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4818                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4819                 if (create == 0 && !PageUptodate(page)) {
4820                         if (btrfs_file_extent_compression(leaf, item) ==
4821                             BTRFS_COMPRESS_ZLIB) {
4822                                 ret = uncompress_inline(path, inode, page,
4823                                                         pg_offset,
4824                                                         extent_offset, item);
4825                                 BUG_ON(ret);
4826                         } else {
4827                                 map = kmap(page);
4828                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4829                                                    copy_size);
4830                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4831                                         memset(map + pg_offset + copy_size, 0,
4832                                                PAGE_CACHE_SIZE - pg_offset -
4833                                                copy_size);
4834                                 }
4835                                 kunmap(page);
4836                         }
4837                         flush_dcache_page(page);
4838                 } else if (create && PageUptodate(page)) {
4839                         if (!trans) {
4840                                 kunmap(page);
4841                                 free_extent_map(em);
4842                                 em = NULL;
4843                                 btrfs_release_path(root, path);
4844                                 trans = btrfs_join_transaction(root, 1);
4845                                 goto again;
4846                         }
4847                         map = kmap(page);
4848                         write_extent_buffer(leaf, map + pg_offset, ptr,
4849                                             copy_size);
4850                         kunmap(page);
4851                         btrfs_mark_buffer_dirty(leaf);
4852                 }
4853                 set_extent_uptodate(io_tree, em->start,
4854                                     extent_map_end(em) - 1, GFP_NOFS);
4855                 goto insert;
4856         } else {
4857                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4858                 WARN_ON(1);
4859         }
4860 not_found:
4861         em->start = start;
4862         em->len = len;
4863 not_found_em:
4864         em->block_start = EXTENT_MAP_HOLE;
4865         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4866 insert:
4867         btrfs_release_path(root, path);
4868         if (em->start > start || extent_map_end(em) <= start) {
4869                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4870                        "[%llu %llu]\n", (unsigned long long)em->start,
4871                        (unsigned long long)em->len,
4872                        (unsigned long long)start,
4873                        (unsigned long long)len);
4874                 err = -EIO;
4875                 goto out;
4876         }
4877
4878         err = 0;
4879         write_lock(&em_tree->lock);
4880         ret = add_extent_mapping(em_tree, em);
4881         /* it is possible that someone inserted the extent into the tree
4882          * while we had the lock dropped.  It is also possible that
4883          * an overlapping map exists in the tree
4884          */
4885         if (ret == -EEXIST) {
4886                 struct extent_map *existing;
4887
4888                 ret = 0;
4889
4890                 existing = lookup_extent_mapping(em_tree, start, len);
4891                 if (existing && (existing->start > start ||
4892                     existing->start + existing->len <= start)) {
4893                         free_extent_map(existing);
4894                         existing = NULL;
4895                 }
4896                 if (!existing) {
4897                         existing = lookup_extent_mapping(em_tree, em->start,
4898                                                          em->len);
4899                         if (existing) {
4900                                 err = merge_extent_mapping(em_tree, existing,
4901                                                            em, start,
4902                                                            root->sectorsize);
4903                                 free_extent_map(existing);
4904                                 if (err) {
4905                                         free_extent_map(em);
4906                                         em = NULL;
4907                                 }
4908                         } else {
4909                                 err = -EIO;
4910                                 free_extent_map(em);
4911                                 em = NULL;
4912                         }
4913                 } else {
4914                         free_extent_map(em);
4915                         em = existing;
4916                         err = 0;
4917                 }
4918         }
4919         write_unlock(&em_tree->lock);
4920 out:
4921         if (path)
4922                 btrfs_free_path(path);
4923         if (trans) {
4924                 ret = btrfs_end_transaction(trans, root);
4925                 if (!err)
4926                         err = ret;
4927         }
4928         if (err) {
4929                 free_extent_map(em);
4930                 return ERR_PTR(err);
4931         }
4932         return em;
4933 }
4934
4935 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4936                         const struct iovec *iov, loff_t offset,
4937                         unsigned long nr_segs)
4938 {
4939         return -EINVAL;
4940 }
4941
4942 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4943                 __u64 start, __u64 len)
4944 {
4945         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4946 }
4947
4948 int btrfs_readpage(struct file *file, struct page *page)
4949 {
4950         struct extent_io_tree *tree;
4951         tree = &BTRFS_I(page->mapping->host)->io_tree;
4952         return extent_read_full_page(tree, page, btrfs_get_extent);
4953 }
4954
4955 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4956 {
4957         struct extent_io_tree *tree;
4958
4959
4960         if (current->flags & PF_MEMALLOC) {
4961                 redirty_page_for_writepage(wbc, page);
4962                 unlock_page(page);
4963                 return 0;
4964         }
4965         tree = &BTRFS_I(page->mapping->host)->io_tree;
4966         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4967 }
4968
4969 int btrfs_writepages(struct address_space *mapping,
4970                      struct writeback_control *wbc)
4971 {
4972         struct extent_io_tree *tree;
4973
4974         tree = &BTRFS_I(mapping->host)->io_tree;
4975         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4976 }
4977
4978 static int
4979 btrfs_readpages(struct file *file, struct address_space *mapping,
4980                 struct list_head *pages, unsigned nr_pages)
4981 {
4982         struct extent_io_tree *tree;
4983         tree = &BTRFS_I(mapping->host)->io_tree;
4984         return extent_readpages(tree, mapping, pages, nr_pages,
4985                                 btrfs_get_extent);
4986 }
4987 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4988 {
4989         struct extent_io_tree *tree;
4990         struct extent_map_tree *map;
4991         int ret;
4992
4993         tree = &BTRFS_I(page->mapping->host)->io_tree;
4994         map = &BTRFS_I(page->mapping->host)->extent_tree;
4995         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4996         if (ret == 1) {
4997                 ClearPagePrivate(page);
4998                 set_page_private(page, 0);
4999                 page_cache_release(page);
5000         }
5001         return ret;
5002 }
5003
5004 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5005 {
5006         if (PageWriteback(page) || PageDirty(page))
5007                 return 0;
5008         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5009 }
5010
5011 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5012 {
5013         struct extent_io_tree *tree;
5014         struct btrfs_ordered_extent *ordered;
5015         u64 page_start = page_offset(page);
5016         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5017
5018
5019         /*
5020          * we have the page locked, so new writeback can't start,
5021          * and the dirty bit won't be cleared while we are here.
5022          *
5023          * Wait for IO on this page so that we can safely clear
5024          * the PagePrivate2 bit and do ordered accounting
5025          */
5026         wait_on_page_writeback(page);
5027
5028         tree = &BTRFS_I(page->mapping->host)->io_tree;
5029         if (offset) {
5030                 btrfs_releasepage(page, GFP_NOFS);
5031                 return;
5032         }
5033         lock_extent(tree, page_start, page_end, GFP_NOFS);
5034         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5035                                            page_offset(page));
5036         if (ordered) {
5037                 /*
5038                  * IO on this page will never be started, so we need
5039                  * to account for any ordered extents now
5040                  */
5041                 clear_extent_bit(tree, page_start, page_end,
5042                                  EXTENT_DIRTY | EXTENT_DELALLOC |
5043                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5044                                  NULL, GFP_NOFS);
5045                 /*
5046                  * whoever cleared the private bit is responsible
5047                  * for the finish_ordered_io
5048                  */
5049                 if (TestClearPagePrivate2(page)) {
5050                         btrfs_finish_ordered_io(page->mapping->host,
5051                                                 page_start, page_end);
5052                 }
5053                 btrfs_put_ordered_extent(ordered);
5054                 lock_extent(tree, page_start, page_end, GFP_NOFS);
5055         }
5056         clear_extent_bit(tree, page_start, page_end,
5057                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5058                  EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
5059         __btrfs_releasepage(page, GFP_NOFS);
5060
5061         ClearPageChecked(page);
5062         if (PagePrivate(page)) {
5063                 ClearPagePrivate(page);
5064                 set_page_private(page, 0);
5065                 page_cache_release(page);
5066         }
5067 }
5068
5069 /*
5070  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5071  * called from a page fault handler when a page is first dirtied. Hence we must
5072  * be careful to check for EOF conditions here. We set the page up correctly
5073  * for a written page which means we get ENOSPC checking when writing into
5074  * holes and correct delalloc and unwritten extent mapping on filesystems that
5075  * support these features.
5076  *
5077  * We are not allowed to take the i_mutex here so we have to play games to
5078  * protect against truncate races as the page could now be beyond EOF.  Because
5079  * vmtruncate() writes the inode size before removing pages, once we have the
5080  * page lock we can determine safely if the page is beyond EOF. If it is not
5081  * beyond EOF, then the page is guaranteed safe against truncation until we
5082  * unlock the page.
5083  */
5084 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5085 {
5086         struct page *page = vmf->page;
5087         struct inode *inode = fdentry(vma->vm_file)->d_inode;
5088         struct btrfs_root *root = BTRFS_I(inode)->root;
5089         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5090         struct btrfs_ordered_extent *ordered;
5091         char *kaddr;
5092         unsigned long zero_start;
5093         loff_t size;
5094         int ret;
5095         u64 page_start;
5096         u64 page_end;
5097
5098         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5099         if (ret) {
5100                 if (ret == -ENOMEM)
5101                         ret = VM_FAULT_OOM;
5102                 else /* -ENOSPC, -EIO, etc */
5103                         ret = VM_FAULT_SIGBUS;
5104                 goto out;
5105         }
5106
5107         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5108         if (ret) {
5109                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5110                 ret = VM_FAULT_SIGBUS;
5111                 goto out;
5112         }
5113
5114         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5115 again:
5116         lock_page(page);
5117         size = i_size_read(inode);
5118         page_start = page_offset(page);
5119         page_end = page_start + PAGE_CACHE_SIZE - 1;
5120
5121         if ((page->mapping != inode->i_mapping) ||
5122             (page_start >= size)) {
5123                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5124                 /* page got truncated out from underneath us */
5125                 goto out_unlock;
5126         }
5127         wait_on_page_writeback(page);
5128
5129         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5130         set_page_extent_mapped(page);
5131
5132         /*
5133          * we can't set the delalloc bits if there are pending ordered
5134          * extents.  Drop our locks and wait for them to finish
5135          */
5136         ordered = btrfs_lookup_ordered_extent(inode, page_start);
5137         if (ordered) {
5138                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5139                 unlock_page(page);
5140                 btrfs_start_ordered_extent(inode, ordered, 1);
5141                 btrfs_put_ordered_extent(ordered);
5142                 goto again;
5143         }
5144
5145         /*
5146          * XXX - page_mkwrite gets called every time the page is dirtied, even
5147          * if it was already dirty, so for space accounting reasons we need to
5148          * clear any delalloc bits for the range we are fixing to save.  There
5149          * is probably a better way to do this, but for now keep consistent with
5150          * prepare_pages in the normal write path.
5151          */
5152         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5153                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5154                           GFP_NOFS);
5155
5156         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5157         if (ret) {
5158                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5159                 ret = VM_FAULT_SIGBUS;
5160                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5161                 goto out_unlock;
5162         }
5163         ret = 0;
5164
5165         /* page is wholly or partially inside EOF */
5166         if (page_start + PAGE_CACHE_SIZE > size)
5167                 zero_start = size & ~PAGE_CACHE_MASK;
5168         else
5169                 zero_start = PAGE_CACHE_SIZE;
5170
5171         if (zero_start != PAGE_CACHE_SIZE) {
5172                 kaddr = kmap(page);
5173                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5174                 flush_dcache_page(page);
5175                 kunmap(page);
5176         }
5177         ClearPageChecked(page);
5178         set_page_dirty(page);
5179         SetPageUptodate(page);
5180
5181         BTRFS_I(inode)->last_trans = root->fs_info->generation;
5182         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5183
5184         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5185
5186 out_unlock:
5187         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5188         if (!ret)
5189                 return VM_FAULT_LOCKED;
5190         unlock_page(page);
5191 out:
5192         return ret;
5193 }
5194
5195 static void btrfs_truncate(struct inode *inode)
5196 {
5197         struct btrfs_root *root = BTRFS_I(inode)->root;
5198         int ret;
5199         struct btrfs_trans_handle *trans;
5200         unsigned long nr;
5201         u64 mask = root->sectorsize - 1;
5202
5203         if (!S_ISREG(inode->i_mode)) {
5204                 WARN_ON(1);
5205                 return;
5206         }
5207
5208         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5209         if (ret)
5210                 return;
5211
5212         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5213         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5214
5215         trans = btrfs_start_transaction(root, 1);
5216         btrfs_set_trans_block_group(trans, inode);
5217
5218         /*
5219          * setattr is responsible for setting the ordered_data_close flag,
5220          * but that is only tested during the last file release.  That
5221          * could happen well after the next commit, leaving a great big
5222          * window where new writes may get lost if someone chooses to write
5223          * to this file after truncating to zero
5224          *
5225          * The inode doesn't have any dirty data here, and so if we commit
5226          * this is a noop.  If someone immediately starts writing to the inode
5227          * it is very likely we'll catch some of their writes in this
5228          * transaction, and the commit will find this file on the ordered
5229          * data list with good things to send down.
5230          *
5231          * This is a best effort solution, there is still a window where
5232          * using truncate to replace the contents of the file will
5233          * end up with a zero length file after a crash.
5234          */
5235         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5236                 btrfs_add_ordered_operation(trans, root, inode);
5237
5238         while (1) {
5239                 ret = btrfs_truncate_inode_items(trans, root, inode,
5240                                                  inode->i_size,
5241                                                  BTRFS_EXTENT_DATA_KEY);
5242                 if (ret != -EAGAIN)
5243                         break;
5244
5245                 ret = btrfs_update_inode(trans, root, inode);
5246                 BUG_ON(ret);
5247
5248                 nr = trans->blocks_used;
5249                 btrfs_end_transaction(trans, root);
5250                 btrfs_btree_balance_dirty(root, nr);
5251
5252                 trans = btrfs_start_transaction(root, 1);
5253                 btrfs_set_trans_block_group(trans, inode);
5254         }
5255
5256         if (ret == 0 && inode->i_nlink > 0) {
5257                 ret = btrfs_orphan_del(trans, inode);
5258                 BUG_ON(ret);
5259         }
5260
5261         ret = btrfs_update_inode(trans, root, inode);
5262         BUG_ON(ret);
5263
5264         nr = trans->blocks_used;
5265         ret = btrfs_end_transaction_throttle(trans, root);
5266         BUG_ON(ret);
5267         btrfs_btree_balance_dirty(root, nr);
5268 }
5269
5270 /*
5271  * create a new subvolume directory/inode (helper for the ioctl).
5272  */
5273 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5274                              struct btrfs_root *new_root,
5275                              u64 new_dirid, u64 alloc_hint)
5276 {
5277         struct inode *inode;
5278         int err;
5279         u64 index = 0;
5280
5281         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5282                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5283         if (IS_ERR(inode))
5284                 return PTR_ERR(inode);
5285         inode->i_op = &btrfs_dir_inode_operations;
5286         inode->i_fop = &btrfs_dir_file_operations;
5287
5288         inode->i_nlink = 1;
5289         btrfs_i_size_write(inode, 0);
5290
5291         err = btrfs_update_inode(trans, new_root, inode);
5292         BUG_ON(err);
5293
5294         iput(inode);
5295         return 0;
5296 }
5297
5298 /* helper function for file defrag and space balancing.  This
5299  * forces readahead on a given range of bytes in an inode
5300  */
5301 unsigned long btrfs_force_ra(struct address_space *mapping,
5302                               struct file_ra_state *ra, struct file *file,
5303                               pgoff_t offset, pgoff_t last_index)
5304 {
5305         pgoff_t req_size = last_index - offset + 1;
5306
5307         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5308         return offset + req_size;
5309 }
5310
5311 struct inode *btrfs_alloc_inode(struct super_block *sb)
5312 {
5313         struct btrfs_inode *ei;
5314
5315         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5316         if (!ei)
5317                 return NULL;
5318         ei->last_trans = 0;
5319         ei->last_sub_trans = 0;
5320         ei->logged_trans = 0;
5321         ei->outstanding_extents = 0;
5322         ei->reserved_extents = 0;
5323         ei->root = NULL;
5324         spin_lock_init(&ei->accounting_lock);
5325         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5326         INIT_LIST_HEAD(&ei->i_orphan);
5327         INIT_LIST_HEAD(&ei->ordered_operations);
5328         return &ei->vfs_inode;
5329 }
5330
5331 void btrfs_destroy_inode(struct inode *inode)
5332 {
5333         struct btrfs_ordered_extent *ordered;
5334         struct btrfs_root *root = BTRFS_I(inode)->root;
5335
5336         WARN_ON(!list_empty(&inode->i_dentry));
5337         WARN_ON(inode->i_data.nrpages);
5338
5339         /*
5340          * This can happen where we create an inode, but somebody else also
5341          * created the same inode and we need to destroy the one we already
5342          * created.
5343          */
5344         if (!root)
5345                 goto free;
5346
5347         /*
5348          * Make sure we're properly removed from the ordered operation
5349          * lists.
5350          */
5351         smp_mb();
5352         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5353                 spin_lock(&root->fs_info->ordered_extent_lock);
5354                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5355                 spin_unlock(&root->fs_info->ordered_extent_lock);
5356         }
5357
5358         spin_lock(&root->list_lock);
5359         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5360                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5361                        inode->i_ino);
5362                 list_del_init(&BTRFS_I(inode)->i_orphan);
5363         }
5364         spin_unlock(&root->list_lock);
5365
5366         while (1) {
5367                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5368                 if (!ordered)
5369                         break;
5370                 else {
5371                         printk(KERN_ERR "btrfs found ordered "
5372                                "extent %llu %llu on inode cleanup\n",
5373                                (unsigned long long)ordered->file_offset,
5374                                (unsigned long long)ordered->len);
5375                         btrfs_remove_ordered_extent(inode, ordered);
5376                         btrfs_put_ordered_extent(ordered);
5377                         btrfs_put_ordered_extent(ordered);
5378                 }
5379         }
5380         inode_tree_del(inode);
5381         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5382 free:
5383         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5384 }
5385
5386 void btrfs_drop_inode(struct inode *inode)
5387 {
5388         struct btrfs_root *root = BTRFS_I(inode)->root;
5389
5390         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5391                 generic_delete_inode(inode);
5392         else
5393                 generic_drop_inode(inode);
5394 }
5395
5396 static void init_once(void *foo)
5397 {
5398         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5399
5400         inode_init_once(&ei->vfs_inode);
5401 }
5402
5403 void btrfs_destroy_cachep(void)
5404 {
5405         if (btrfs_inode_cachep)
5406                 kmem_cache_destroy(btrfs_inode_cachep);
5407         if (btrfs_trans_handle_cachep)
5408                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5409         if (btrfs_transaction_cachep)
5410                 kmem_cache_destroy(btrfs_transaction_cachep);
5411         if (btrfs_path_cachep)
5412                 kmem_cache_destroy(btrfs_path_cachep);
5413 }
5414
5415 int btrfs_init_cachep(void)
5416 {
5417         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5418                         sizeof(struct btrfs_inode), 0,
5419                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5420         if (!btrfs_inode_cachep)
5421                 goto fail;
5422
5423         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5424                         sizeof(struct btrfs_trans_handle), 0,
5425                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5426         if (!btrfs_trans_handle_cachep)
5427                 goto fail;
5428
5429         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5430                         sizeof(struct btrfs_transaction), 0,
5431                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5432         if (!btrfs_transaction_cachep)
5433                 goto fail;
5434
5435         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5436                         sizeof(struct btrfs_path), 0,
5437                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5438         if (!btrfs_path_cachep)
5439                 goto fail;
5440
5441         return 0;
5442 fail:
5443         btrfs_destroy_cachep();
5444         return -ENOMEM;
5445 }
5446
5447 static int btrfs_getattr(struct vfsmount *mnt,
5448                          struct dentry *dentry, struct kstat *stat)
5449 {
5450         struct inode *inode = dentry->d_inode;
5451         generic_fillattr(inode, stat);
5452         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5453         stat->blksize = PAGE_CACHE_SIZE;
5454         stat->blocks = (inode_get_bytes(inode) +
5455                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5456         return 0;
5457 }
5458
5459 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5460                            struct inode *new_dir, struct dentry *new_dentry)
5461 {
5462         struct btrfs_trans_handle *trans;
5463         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5464         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5465         struct inode *new_inode = new_dentry->d_inode;
5466         struct inode *old_inode = old_dentry->d_inode;
5467         struct timespec ctime = CURRENT_TIME;
5468         u64 index = 0;
5469         u64 root_objectid;
5470         int ret;
5471
5472         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5473                 return -EPERM;
5474
5475         /* we only allow rename subvolume link between subvolumes */
5476         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5477                 return -EXDEV;
5478
5479         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5480             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5481                 return -ENOTEMPTY;
5482
5483         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5484             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5485                 return -ENOTEMPTY;
5486
5487         /*
5488          * We want to reserve the absolute worst case amount of items.  So if
5489          * both inodes are subvols and we need to unlink them then that would
5490          * require 4 item modifications, but if they are both normal inodes it
5491          * would require 5 item modifications, so we'll assume their normal
5492          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5493          * should cover the worst case number of items we'll modify.
5494          */
5495         ret = btrfs_reserve_metadata_space(root, 11);
5496         if (ret)
5497                 return ret;
5498
5499         /*
5500          * we're using rename to replace one file with another.
5501          * and the replacement file is large.  Start IO on it now so
5502          * we don't add too much work to the end of the transaction
5503          */
5504         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5505             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5506                 filemap_flush(old_inode->i_mapping);
5507
5508         /* close the racy window with snapshot create/destroy ioctl */
5509         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5510                 down_read(&root->fs_info->subvol_sem);
5511
5512         trans = btrfs_start_transaction(root, 1);
5513         btrfs_set_trans_block_group(trans, new_dir);
5514
5515         if (dest != root)
5516                 btrfs_record_root_in_trans(trans, dest);
5517
5518         ret = btrfs_set_inode_index(new_dir, &index);
5519         if (ret)
5520                 goto out_fail;
5521
5522         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5523                 /* force full log commit if subvolume involved. */
5524                 root->fs_info->last_trans_log_full_commit = trans->transid;
5525         } else {
5526                 ret = btrfs_insert_inode_ref(trans, dest,
5527                                              new_dentry->d_name.name,
5528                                              new_dentry->d_name.len,
5529                                              old_inode->i_ino,
5530                                              new_dir->i_ino, index);
5531                 if (ret)
5532                         goto out_fail;
5533                 /*
5534                  * this is an ugly little race, but the rename is required
5535                  * to make sure that if we crash, the inode is either at the
5536                  * old name or the new one.  pinning the log transaction lets
5537                  * us make sure we don't allow a log commit to come in after
5538                  * we unlink the name but before we add the new name back in.
5539                  */
5540                 btrfs_pin_log_trans(root);
5541         }
5542         /*
5543          * make sure the inode gets flushed if it is replacing
5544          * something.
5545          */
5546         if (new_inode && new_inode->i_size &&
5547             old_inode && S_ISREG(old_inode->i_mode)) {
5548                 btrfs_add_ordered_operation(trans, root, old_inode);
5549         }
5550
5551         old_dir->i_ctime = old_dir->i_mtime = ctime;
5552         new_dir->i_ctime = new_dir->i_mtime = ctime;
5553         old_inode->i_ctime = ctime;
5554
5555         if (old_dentry->d_parent != new_dentry->d_parent)
5556                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5557
5558         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5559                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5560                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5561                                         old_dentry->d_name.name,
5562                                         old_dentry->d_name.len);
5563         } else {
5564                 btrfs_inc_nlink(old_dentry->d_inode);
5565                 ret = btrfs_unlink_inode(trans, root, old_dir,
5566                                          old_dentry->d_inode,
5567                                          old_dentry->d_name.name,
5568                                          old_dentry->d_name.len);
5569         }
5570         BUG_ON(ret);
5571
5572         if (new_inode) {
5573                 new_inode->i_ctime = CURRENT_TIME;
5574                 if (unlikely(new_inode->i_ino ==
5575                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5576                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5577                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5578                                                 root_objectid,
5579                                                 new_dentry->d_name.name,
5580                                                 new_dentry->d_name.len);
5581                         BUG_ON(new_inode->i_nlink == 0);
5582                 } else {
5583                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5584                                                  new_dentry->d_inode,
5585                                                  new_dentry->d_name.name,
5586                                                  new_dentry->d_name.len);
5587                 }
5588                 BUG_ON(ret);
5589                 if (new_inode->i_nlink == 0) {
5590                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5591                         BUG_ON(ret);
5592                 }
5593         }
5594
5595         ret = btrfs_add_link(trans, new_dir, old_inode,
5596                              new_dentry->d_name.name,
5597                              new_dentry->d_name.len, 0, index);
5598         BUG_ON(ret);
5599
5600         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5601                 btrfs_log_new_name(trans, old_inode, old_dir,
5602                                    new_dentry->d_parent);
5603                 btrfs_end_log_trans(root);
5604         }
5605 out_fail:
5606         btrfs_end_transaction_throttle(trans, root);
5607
5608         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5609                 up_read(&root->fs_info->subvol_sem);
5610
5611         btrfs_unreserve_metadata_space(root, 11);
5612         return ret;
5613 }
5614
5615 /*
5616  * some fairly slow code that needs optimization. This walks the list
5617  * of all the inodes with pending delalloc and forces them to disk.
5618  */
5619 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5620 {
5621         struct list_head *head = &root->fs_info->delalloc_inodes;
5622         struct btrfs_inode *binode;
5623         struct inode *inode;
5624
5625         if (root->fs_info->sb->s_flags & MS_RDONLY)
5626                 return -EROFS;
5627
5628         spin_lock(&root->fs_info->delalloc_lock);
5629         while (!list_empty(head)) {
5630                 binode = list_entry(head->next, struct btrfs_inode,
5631                                     delalloc_inodes);
5632                 inode = igrab(&binode->vfs_inode);
5633                 if (!inode)
5634                         list_del_init(&binode->delalloc_inodes);
5635                 spin_unlock(&root->fs_info->delalloc_lock);
5636                 if (inode) {
5637                         filemap_flush(inode->i_mapping);
5638                         if (delay_iput)
5639                                 btrfs_add_delayed_iput(inode);
5640                         else
5641                                 iput(inode);
5642                 }
5643                 cond_resched();
5644                 spin_lock(&root->fs_info->delalloc_lock);
5645         }
5646         spin_unlock(&root->fs_info->delalloc_lock);
5647
5648         /* the filemap_flush will queue IO into the worker threads, but
5649          * we have to make sure the IO is actually started and that
5650          * ordered extents get created before we return
5651          */
5652         atomic_inc(&root->fs_info->async_submit_draining);
5653         while (atomic_read(&root->fs_info->nr_async_submits) ||
5654               atomic_read(&root->fs_info->async_delalloc_pages)) {
5655                 wait_event(root->fs_info->async_submit_wait,
5656                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5657                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5658         }
5659         atomic_dec(&root->fs_info->async_submit_draining);
5660         return 0;
5661 }
5662
5663 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5664                          const char *symname)
5665 {
5666         struct btrfs_trans_handle *trans;
5667         struct btrfs_root *root = BTRFS_I(dir)->root;
5668         struct btrfs_path *path;
5669         struct btrfs_key key;
5670         struct inode *inode = NULL;
5671         int err;
5672         int drop_inode = 0;
5673         u64 objectid;
5674         u64 index = 0 ;
5675         int name_len;
5676         int datasize;
5677         unsigned long ptr;
5678         struct btrfs_file_extent_item *ei;
5679         struct extent_buffer *leaf;
5680         unsigned long nr = 0;
5681
5682         name_len = strlen(symname) + 1;
5683         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5684                 return -ENAMETOOLONG;
5685
5686         /*
5687          * 2 items for inode item and ref
5688          * 2 items for dir items
5689          * 1 item for xattr if selinux is on
5690          */
5691         err = btrfs_reserve_metadata_space(root, 5);
5692         if (err)
5693                 return err;
5694
5695         trans = btrfs_start_transaction(root, 1);
5696         if (!trans)
5697                 goto out_fail;
5698         btrfs_set_trans_block_group(trans, dir);
5699
5700         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5701         if (err) {
5702                 err = -ENOSPC;
5703                 goto out_unlock;
5704         }
5705
5706         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5707                                 dentry->d_name.len,
5708                                 dentry->d_parent->d_inode->i_ino, objectid,
5709                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5710                                 &index);
5711         err = PTR_ERR(inode);
5712         if (IS_ERR(inode))
5713                 goto out_unlock;
5714
5715         err = btrfs_init_inode_security(trans, inode, dir);
5716         if (err) {
5717                 drop_inode = 1;
5718                 goto out_unlock;
5719         }
5720
5721         btrfs_set_trans_block_group(trans, inode);
5722         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5723         if (err)
5724                 drop_inode = 1;
5725         else {
5726                 inode->i_mapping->a_ops = &btrfs_aops;
5727                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5728                 inode->i_fop = &btrfs_file_operations;
5729                 inode->i_op = &btrfs_file_inode_operations;
5730                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5731         }
5732         btrfs_update_inode_block_group(trans, inode);
5733         btrfs_update_inode_block_group(trans, dir);
5734         if (drop_inode)
5735                 goto out_unlock;
5736
5737         path = btrfs_alloc_path();
5738         BUG_ON(!path);
5739         key.objectid = inode->i_ino;
5740         key.offset = 0;
5741         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5742         datasize = btrfs_file_extent_calc_inline_size(name_len);
5743         err = btrfs_insert_empty_item(trans, root, path, &key,
5744                                       datasize);
5745         if (err) {
5746                 drop_inode = 1;
5747                 goto out_unlock;
5748         }
5749         leaf = path->nodes[0];
5750         ei = btrfs_item_ptr(leaf, path->slots[0],
5751                             struct btrfs_file_extent_item);
5752         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5753         btrfs_set_file_extent_type(leaf, ei,
5754                                    BTRFS_FILE_EXTENT_INLINE);
5755         btrfs_set_file_extent_encryption(leaf, ei, 0);
5756         btrfs_set_file_extent_compression(leaf, ei, 0);
5757         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5758         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5759
5760         ptr = btrfs_file_extent_inline_start(ei);
5761         write_extent_buffer(leaf, symname, ptr, name_len);
5762         btrfs_mark_buffer_dirty(leaf);
5763         btrfs_free_path(path);
5764
5765         inode->i_op = &btrfs_symlink_inode_operations;
5766         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5767         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5768         inode_set_bytes(inode, name_len);
5769         btrfs_i_size_write(inode, name_len - 1);
5770         err = btrfs_update_inode(trans, root, inode);
5771         if (err)
5772                 drop_inode = 1;
5773
5774 out_unlock:
5775         nr = trans->blocks_used;
5776         btrfs_end_transaction_throttle(trans, root);
5777 out_fail:
5778         btrfs_unreserve_metadata_space(root, 5);
5779         if (drop_inode) {
5780                 inode_dec_link_count(inode);
5781                 iput(inode);
5782         }
5783         btrfs_btree_balance_dirty(root, nr);
5784         return err;
5785 }
5786
5787 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5788                                u64 alloc_hint, int mode)
5789 {
5790         struct btrfs_trans_handle *trans;
5791         struct btrfs_root *root = BTRFS_I(inode)->root;
5792         struct btrfs_key ins;
5793         u64 alloc_size;
5794         u64 cur_offset = start;
5795         u64 num_bytes = end - start;
5796         int ret = 0;
5797
5798         while (num_bytes > 0) {
5799                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5800
5801                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5802                                            root->sectorsize, 0, alloc_hint,
5803                                            (u64)-1, &ins, 1);
5804                 if (ret) {
5805                         WARN_ON(1);
5806                         break;
5807                 }
5808
5809                 ret = btrfs_reserve_metadata_space(root, 3);
5810                 if (ret) {
5811                         btrfs_free_reserved_extent(root, ins.objectid,
5812                                                    ins.offset);
5813                         break;
5814                 }
5815
5816                 trans = btrfs_start_transaction(root, 1);
5817
5818                 ret = insert_reserved_file_extent(trans, inode,
5819                                                   cur_offset, ins.objectid,
5820                                                   ins.offset, ins.offset,
5821                                                   ins.offset, 0, 0, 0,
5822                                                   BTRFS_FILE_EXTENT_PREALLOC);
5823                 BUG_ON(ret);
5824                 btrfs_drop_extent_cache(inode, cur_offset,
5825                                         cur_offset + ins.offset -1, 0);
5826
5827                 num_bytes -= ins.offset;
5828                 cur_offset += ins.offset;
5829                 alloc_hint = ins.objectid + ins.offset;
5830
5831                 inode->i_ctime = CURRENT_TIME;
5832                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5833                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5834                     cur_offset > inode->i_size) {
5835                         i_size_write(inode, cur_offset);
5836                         btrfs_ordered_update_i_size(inode, cur_offset, NULL);
5837                 }
5838
5839                 ret = btrfs_update_inode(trans, root, inode);
5840                 BUG_ON(ret);
5841
5842                 btrfs_end_transaction(trans, root);
5843                 btrfs_unreserve_metadata_space(root, 3);
5844         }
5845         return ret;
5846 }
5847
5848 static long btrfs_fallocate(struct inode *inode, int mode,
5849                             loff_t offset, loff_t len)
5850 {
5851         u64 cur_offset;
5852         u64 last_byte;
5853         u64 alloc_start;
5854         u64 alloc_end;
5855         u64 alloc_hint = 0;
5856         u64 locked_end;
5857         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5858         struct extent_map *em;
5859         int ret;
5860
5861         alloc_start = offset & ~mask;
5862         alloc_end =  (offset + len + mask) & ~mask;
5863
5864         /*
5865          * wait for ordered IO before we have any locks.  We'll loop again
5866          * below with the locks held.
5867          */
5868         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5869
5870         mutex_lock(&inode->i_mutex);
5871         if (alloc_start > inode->i_size) {
5872                 ret = btrfs_cont_expand(inode, alloc_start);
5873                 if (ret)
5874                         goto out;
5875         }
5876
5877         ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5878                                           alloc_end - alloc_start);
5879         if (ret)
5880                 goto out;
5881
5882         locked_end = alloc_end - 1;
5883         while (1) {
5884                 struct btrfs_ordered_extent *ordered;
5885
5886                 /* the extent lock is ordered inside the running
5887                  * transaction
5888                  */
5889                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5890                             GFP_NOFS);
5891                 ordered = btrfs_lookup_first_ordered_extent(inode,
5892                                                             alloc_end - 1);
5893                 if (ordered &&
5894                     ordered->file_offset + ordered->len > alloc_start &&
5895                     ordered->file_offset < alloc_end) {
5896                         btrfs_put_ordered_extent(ordered);
5897                         unlock_extent(&BTRFS_I(inode)->io_tree,
5898                                       alloc_start, locked_end, GFP_NOFS);
5899                         /*
5900                          * we can't wait on the range with the transaction
5901                          * running or with the extent lock held
5902                          */
5903                         btrfs_wait_ordered_range(inode, alloc_start,
5904                                                  alloc_end - alloc_start);
5905                 } else {
5906                         if (ordered)
5907                                 btrfs_put_ordered_extent(ordered);
5908                         break;
5909                 }
5910         }
5911
5912         cur_offset = alloc_start;
5913         while (1) {
5914                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5915                                       alloc_end - cur_offset, 0);
5916                 BUG_ON(IS_ERR(em) || !em);
5917                 last_byte = min(extent_map_end(em), alloc_end);
5918                 last_byte = (last_byte + mask) & ~mask;
5919                 if (em->block_start == EXTENT_MAP_HOLE ||
5920                     (cur_offset >= inode->i_size &&
5921                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5922                         ret = prealloc_file_range(inode,
5923                                                   cur_offset, last_byte,
5924                                                   alloc_hint, mode);
5925                         if (ret < 0) {
5926                                 free_extent_map(em);
5927                                 break;
5928                         }
5929                 }
5930                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5931                         alloc_hint = em->block_start;
5932                 free_extent_map(em);
5933
5934                 cur_offset = last_byte;
5935                 if (cur_offset >= alloc_end) {
5936                         ret = 0;
5937                         break;
5938                 }
5939         }
5940         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5941                       GFP_NOFS);
5942
5943         btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5944                                        alloc_end - alloc_start);
5945 out:
5946         mutex_unlock(&inode->i_mutex);
5947         return ret;
5948 }
5949
5950 static int btrfs_set_page_dirty(struct page *page)
5951 {
5952         return __set_page_dirty_nobuffers(page);
5953 }
5954
5955 static int btrfs_permission(struct inode *inode, int mask)
5956 {
5957         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5958                 return -EACCES;
5959         return generic_permission(inode, mask, btrfs_check_acl);
5960 }
5961
5962 static const struct inode_operations btrfs_dir_inode_operations = {
5963         .getattr        = btrfs_getattr,
5964         .lookup         = btrfs_lookup,
5965         .create         = btrfs_create,
5966         .unlink         = btrfs_unlink,
5967         .link           = btrfs_link,
5968         .mkdir          = btrfs_mkdir,
5969         .rmdir          = btrfs_rmdir,
5970         .rename         = btrfs_rename,
5971         .symlink        = btrfs_symlink,
5972         .setattr        = btrfs_setattr,
5973         .mknod          = btrfs_mknod,
5974         .setxattr       = btrfs_setxattr,
5975         .getxattr       = btrfs_getxattr,
5976         .listxattr      = btrfs_listxattr,
5977         .removexattr    = btrfs_removexattr,
5978         .permission     = btrfs_permission,
5979 };
5980 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5981         .lookup         = btrfs_lookup,
5982         .permission     = btrfs_permission,
5983 };
5984
5985 static const struct file_operations btrfs_dir_file_operations = {
5986         .llseek         = generic_file_llseek,
5987         .read           = generic_read_dir,
5988         .readdir        = btrfs_real_readdir,
5989         .unlocked_ioctl = btrfs_ioctl,
5990 #ifdef CONFIG_COMPAT
5991         .compat_ioctl   = btrfs_ioctl,
5992 #endif
5993         .release        = btrfs_release_file,
5994         .fsync          = btrfs_sync_file,
5995 };
5996
5997 static struct extent_io_ops btrfs_extent_io_ops = {
5998         .fill_delalloc = run_delalloc_range,
5999         .submit_bio_hook = btrfs_submit_bio_hook,
6000         .merge_bio_hook = btrfs_merge_bio_hook,
6001         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
6002         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
6003         .writepage_start_hook = btrfs_writepage_start_hook,
6004         .readpage_io_failed_hook = btrfs_io_failed_hook,
6005         .set_bit_hook = btrfs_set_bit_hook,
6006         .clear_bit_hook = btrfs_clear_bit_hook,
6007         .merge_extent_hook = btrfs_merge_extent_hook,
6008         .split_extent_hook = btrfs_split_extent_hook,
6009 };
6010
6011 /*
6012  * btrfs doesn't support the bmap operation because swapfiles
6013  * use bmap to make a mapping of extents in the file.  They assume
6014  * these extents won't change over the life of the file and they
6015  * use the bmap result to do IO directly to the drive.
6016  *
6017  * the btrfs bmap call would return logical addresses that aren't
6018  * suitable for IO and they also will change frequently as COW
6019  * operations happen.  So, swapfile + btrfs == corruption.
6020  *
6021  * For now we're avoiding this by dropping bmap.
6022  */
6023 static const struct address_space_operations btrfs_aops = {
6024         .readpage       = btrfs_readpage,
6025         .writepage      = btrfs_writepage,
6026         .writepages     = btrfs_writepages,
6027         .readpages      = btrfs_readpages,
6028         .sync_page      = block_sync_page,
6029         .direct_IO      = btrfs_direct_IO,
6030         .invalidatepage = btrfs_invalidatepage,
6031         .releasepage    = btrfs_releasepage,
6032         .set_page_dirty = btrfs_set_page_dirty,
6033         .error_remove_page = generic_error_remove_page,
6034 };
6035
6036 static const struct address_space_operations btrfs_symlink_aops = {
6037         .readpage       = btrfs_readpage,
6038         .writepage      = btrfs_writepage,
6039         .invalidatepage = btrfs_invalidatepage,
6040         .releasepage    = btrfs_releasepage,
6041 };
6042
6043 static const struct inode_operations btrfs_file_inode_operations = {
6044         .truncate       = btrfs_truncate,
6045         .getattr        = btrfs_getattr,
6046         .setattr        = btrfs_setattr,
6047         .setxattr       = btrfs_setxattr,
6048         .getxattr       = btrfs_getxattr,
6049         .listxattr      = btrfs_listxattr,
6050         .removexattr    = btrfs_removexattr,
6051         .permission     = btrfs_permission,
6052         .fallocate      = btrfs_fallocate,
6053         .fiemap         = btrfs_fiemap,
6054 };
6055 static const struct inode_operations btrfs_special_inode_operations = {
6056         .getattr        = btrfs_getattr,
6057         .setattr        = btrfs_setattr,
6058         .permission     = btrfs_permission,
6059         .setxattr       = btrfs_setxattr,
6060         .getxattr       = btrfs_getxattr,
6061         .listxattr      = btrfs_listxattr,
6062         .removexattr    = btrfs_removexattr,
6063 };
6064 static const struct inode_operations btrfs_symlink_inode_operations = {
6065         .readlink       = generic_readlink,
6066         .follow_link    = page_follow_link_light,
6067         .put_link       = page_put_link,
6068         .permission     = btrfs_permission,
6069         .setxattr       = btrfs_setxattr,
6070         .getxattr       = btrfs_getxattr,
6071         .listxattr      = btrfs_listxattr,
6072         .removexattr    = btrfs_removexattr,
6073 };
6074
6075 const struct dentry_operations btrfs_dentry_operations = {
6076         .d_delete       = btrfs_dentry_delete,
6077 };