Btrfs: change how subvolumes are organized
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 static void free_fs_root(struct btrfs_root *root);
45
46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
47
48 /*
49  * end_io_wq structs are used to do processing in task context when an IO is
50  * complete.  This is used during reads to verify checksums, and it is used
51  * by writes to insert metadata for new file extents after IO is complete.
52  */
53 struct end_io_wq {
54         struct bio *bio;
55         bio_end_io_t *end_io;
56         void *private;
57         struct btrfs_fs_info *info;
58         int error;
59         int metadata;
60         struct list_head list;
61         struct btrfs_work work;
62 };
63
64 /*
65  * async submit bios are used to offload expensive checksumming
66  * onto the worker threads.  They checksum file and metadata bios
67  * just before they are sent down the IO stack.
68  */
69 struct async_submit_bio {
70         struct inode *inode;
71         struct bio *bio;
72         struct list_head list;
73         extent_submit_bio_hook_t *submit_bio_start;
74         extent_submit_bio_hook_t *submit_bio_done;
75         int rw;
76         int mirror_num;
77         unsigned long bio_flags;
78         struct btrfs_work work;
79 };
80
81 /* These are used to set the lockdep class on the extent buffer locks.
82  * The class is set by the readpage_end_io_hook after the buffer has
83  * passed csum validation but before the pages are unlocked.
84  *
85  * The lockdep class is also set by btrfs_init_new_buffer on freshly
86  * allocated blocks.
87  *
88  * The class is based on the level in the tree block, which allows lockdep
89  * to know that lower nodes nest inside the locks of higher nodes.
90  *
91  * We also add a check to make sure the highest level of the tree is
92  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
93  * code needs update as well.
94  */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
97 #  error
98 # endif
99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
101         /* leaf */
102         "btrfs-extent-00",
103         "btrfs-extent-01",
104         "btrfs-extent-02",
105         "btrfs-extent-03",
106         "btrfs-extent-04",
107         "btrfs-extent-05",
108         "btrfs-extent-06",
109         "btrfs-extent-07",
110         /* highest possible level */
111         "btrfs-extent-08",
112 };
113 #endif
114
115 /*
116  * extents on the btree inode are pretty simple, there's one extent
117  * that covers the entire device
118  */
119 static struct extent_map *btree_get_extent(struct inode *inode,
120                 struct page *page, size_t page_offset, u64 start, u64 len,
121                 int create)
122 {
123         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
124         struct extent_map *em;
125         int ret;
126
127         read_lock(&em_tree->lock);
128         em = lookup_extent_mapping(em_tree, start, len);
129         if (em) {
130                 em->bdev =
131                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
132                 read_unlock(&em_tree->lock);
133                 goto out;
134         }
135         read_unlock(&em_tree->lock);
136
137         em = alloc_extent_map(GFP_NOFS);
138         if (!em) {
139                 em = ERR_PTR(-ENOMEM);
140                 goto out;
141         }
142         em->start = 0;
143         em->len = (u64)-1;
144         em->block_len = (u64)-1;
145         em->block_start = 0;
146         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
147
148         write_lock(&em_tree->lock);
149         ret = add_extent_mapping(em_tree, em);
150         if (ret == -EEXIST) {
151                 u64 failed_start = em->start;
152                 u64 failed_len = em->len;
153
154                 free_extent_map(em);
155                 em = lookup_extent_mapping(em_tree, start, len);
156                 if (em) {
157                         ret = 0;
158                 } else {
159                         em = lookup_extent_mapping(em_tree, failed_start,
160                                                    failed_len);
161                         ret = -EIO;
162                 }
163         } else if (ret) {
164                 free_extent_map(em);
165                 em = NULL;
166         }
167         write_unlock(&em_tree->lock);
168
169         if (ret)
170                 em = ERR_PTR(ret);
171 out:
172         return em;
173 }
174
175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
176 {
177         return crc32c(seed, data, len);
178 }
179
180 void btrfs_csum_final(u32 crc, char *result)
181 {
182         *(__le32 *)result = ~cpu_to_le32(crc);
183 }
184
185 /*
186  * compute the csum for a btree block, and either verify it or write it
187  * into the csum field of the block.
188  */
189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
190                            int verify)
191 {
192         u16 csum_size =
193                 btrfs_super_csum_size(&root->fs_info->super_copy);
194         char *result = NULL;
195         unsigned long len;
196         unsigned long cur_len;
197         unsigned long offset = BTRFS_CSUM_SIZE;
198         char *map_token = NULL;
199         char *kaddr;
200         unsigned long map_start;
201         unsigned long map_len;
202         int err;
203         u32 crc = ~(u32)0;
204         unsigned long inline_result;
205
206         len = buf->len - offset;
207         while (len > 0) {
208                 err = map_private_extent_buffer(buf, offset, 32,
209                                         &map_token, &kaddr,
210                                         &map_start, &map_len, KM_USER0);
211                 if (err)
212                         return 1;
213                 cur_len = min(len, map_len - (offset - map_start));
214                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
215                                       crc, cur_len);
216                 len -= cur_len;
217                 offset += cur_len;
218                 unmap_extent_buffer(buf, map_token, KM_USER0);
219         }
220         if (csum_size > sizeof(inline_result)) {
221                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
222                 if (!result)
223                         return 1;
224         } else {
225                 result = (char *)&inline_result;
226         }
227
228         btrfs_csum_final(crc, result);
229
230         if (verify) {
231                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232                         u32 val;
233                         u32 found = 0;
234                         memcpy(&found, result, csum_size);
235
236                         read_extent_buffer(buf, &val, 0, csum_size);
237                         if (printk_ratelimit()) {
238                                 printk(KERN_INFO "btrfs: %s checksum verify "
239                                        "failed on %llu wanted %X found %X "
240                                        "level %d\n",
241                                        root->fs_info->sb->s_id,
242                                        (unsigned long long)buf->start, val, found,
243                                        btrfs_header_level(buf));
244                         }
245                         if (result != (char *)&inline_result)
246                                 kfree(result);
247                         return 1;
248                 }
249         } else {
250                 write_extent_buffer(buf, result, 0, csum_size);
251         }
252         if (result != (char *)&inline_result)
253                 kfree(result);
254         return 0;
255 }
256
257 /*
258  * we can't consider a given block up to date unless the transid of the
259  * block matches the transid in the parent node's pointer.  This is how we
260  * detect blocks that either didn't get written at all or got written
261  * in the wrong place.
262  */
263 static int verify_parent_transid(struct extent_io_tree *io_tree,
264                                  struct extent_buffer *eb, u64 parent_transid)
265 {
266         int ret;
267
268         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269                 return 0;
270
271         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
272         if (extent_buffer_uptodate(io_tree, eb) &&
273             btrfs_header_generation(eb) == parent_transid) {
274                 ret = 0;
275                 goto out;
276         }
277         if (printk_ratelimit()) {
278                 printk("parent transid verify failed on %llu wanted %llu "
279                        "found %llu\n",
280                        (unsigned long long)eb->start,
281                        (unsigned long long)parent_transid,
282                        (unsigned long long)btrfs_header_generation(eb));
283         }
284         ret = 1;
285         clear_extent_buffer_uptodate(io_tree, eb);
286 out:
287         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
288                       GFP_NOFS);
289         return ret;
290 }
291
292 /*
293  * helper to read a given tree block, doing retries as required when
294  * the checksums don't match and we have alternate mirrors to try.
295  */
296 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
297                                           struct extent_buffer *eb,
298                                           u64 start, u64 parent_transid)
299 {
300         struct extent_io_tree *io_tree;
301         int ret;
302         int num_copies = 0;
303         int mirror_num = 0;
304
305         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
306         while (1) {
307                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
308                                                btree_get_extent, mirror_num);
309                 if (!ret &&
310                     !verify_parent_transid(io_tree, eb, parent_transid))
311                         return ret;
312
313                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
314                                               eb->start, eb->len);
315                 if (num_copies == 1)
316                         return ret;
317
318                 mirror_num++;
319                 if (mirror_num > num_copies)
320                         return ret;
321         }
322         return -EIO;
323 }
324
325 /*
326  * checksum a dirty tree block before IO.  This has extra checks to make sure
327  * we only fill in the checksum field in the first page of a multi-page block
328  */
329
330 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
331 {
332         struct extent_io_tree *tree;
333         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
334         u64 found_start;
335         int found_level;
336         unsigned long len;
337         struct extent_buffer *eb;
338         int ret;
339
340         tree = &BTRFS_I(page->mapping->host)->io_tree;
341
342         if (page->private == EXTENT_PAGE_PRIVATE)
343                 goto out;
344         if (!page->private)
345                 goto out;
346         len = page->private >> 2;
347         WARN_ON(len == 0);
348
349         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
351                                              btrfs_header_generation(eb));
352         BUG_ON(ret);
353         found_start = btrfs_header_bytenr(eb);
354         if (found_start != start) {
355                 WARN_ON(1);
356                 goto err;
357         }
358         if (eb->first_page != page) {
359                 WARN_ON(1);
360                 goto err;
361         }
362         if (!PageUptodate(page)) {
363                 WARN_ON(1);
364                 goto err;
365         }
366         found_level = btrfs_header_level(eb);
367
368         csum_tree_block(root, eb, 0);
369 err:
370         free_extent_buffer(eb);
371 out:
372         return 0;
373 }
374
375 static int check_tree_block_fsid(struct btrfs_root *root,
376                                  struct extent_buffer *eb)
377 {
378         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
379         u8 fsid[BTRFS_UUID_SIZE];
380         int ret = 1;
381
382         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
383                            BTRFS_FSID_SIZE);
384         while (fs_devices) {
385                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
386                         ret = 0;
387                         break;
388                 }
389                 fs_devices = fs_devices->seed;
390         }
391         return ret;
392 }
393
394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
395 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
396 {
397         lockdep_set_class_and_name(&eb->lock,
398                            &btrfs_eb_class[level],
399                            btrfs_eb_name[level]);
400 }
401 #endif
402
403 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
404                                struct extent_state *state)
405 {
406         struct extent_io_tree *tree;
407         u64 found_start;
408         int found_level;
409         unsigned long len;
410         struct extent_buffer *eb;
411         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
412         int ret = 0;
413
414         tree = &BTRFS_I(page->mapping->host)->io_tree;
415         if (page->private == EXTENT_PAGE_PRIVATE)
416                 goto out;
417         if (!page->private)
418                 goto out;
419
420         len = page->private >> 2;
421         WARN_ON(len == 0);
422
423         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
424
425         found_start = btrfs_header_bytenr(eb);
426         if (found_start != start) {
427                 if (printk_ratelimit()) {
428                         printk(KERN_INFO "btrfs bad tree block start "
429                                "%llu %llu\n",
430                                (unsigned long long)found_start,
431                                (unsigned long long)eb->start);
432                 }
433                 ret = -EIO;
434                 goto err;
435         }
436         if (eb->first_page != page) {
437                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
438                        eb->first_page->index, page->index);
439                 WARN_ON(1);
440                 ret = -EIO;
441                 goto err;
442         }
443         if (check_tree_block_fsid(root, eb)) {
444                 if (printk_ratelimit()) {
445                         printk(KERN_INFO "btrfs bad fsid on block %llu\n",
446                                (unsigned long long)eb->start);
447                 }
448                 ret = -EIO;
449                 goto err;
450         }
451         found_level = btrfs_header_level(eb);
452
453         btrfs_set_buffer_lockdep_class(eb, found_level);
454
455         ret = csum_tree_block(root, eb, 1);
456         if (ret)
457                 ret = -EIO;
458
459         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
460         end = eb->start + end - 1;
461 err:
462         free_extent_buffer(eb);
463 out:
464         return ret;
465 }
466
467 static void end_workqueue_bio(struct bio *bio, int err)
468 {
469         struct end_io_wq *end_io_wq = bio->bi_private;
470         struct btrfs_fs_info *fs_info;
471
472         fs_info = end_io_wq->info;
473         end_io_wq->error = err;
474         end_io_wq->work.func = end_workqueue_fn;
475         end_io_wq->work.flags = 0;
476
477         if (bio->bi_rw & (1 << BIO_RW)) {
478                 if (end_io_wq->metadata)
479                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
480                                            &end_io_wq->work);
481                 else
482                         btrfs_queue_worker(&fs_info->endio_write_workers,
483                                            &end_io_wq->work);
484         } else {
485                 if (end_io_wq->metadata)
486                         btrfs_queue_worker(&fs_info->endio_meta_workers,
487                                            &end_io_wq->work);
488                 else
489                         btrfs_queue_worker(&fs_info->endio_workers,
490                                            &end_io_wq->work);
491         }
492 }
493
494 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
495                         int metadata)
496 {
497         struct end_io_wq *end_io_wq;
498         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
499         if (!end_io_wq)
500                 return -ENOMEM;
501
502         end_io_wq->private = bio->bi_private;
503         end_io_wq->end_io = bio->bi_end_io;
504         end_io_wq->info = info;
505         end_io_wq->error = 0;
506         end_io_wq->bio = bio;
507         end_io_wq->metadata = metadata;
508
509         bio->bi_private = end_io_wq;
510         bio->bi_end_io = end_workqueue_bio;
511         return 0;
512 }
513
514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
515 {
516         unsigned long limit = min_t(unsigned long,
517                                     info->workers.max_workers,
518                                     info->fs_devices->open_devices);
519         return 256 * limit;
520 }
521
522 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
523 {
524         return atomic_read(&info->nr_async_bios) >
525                 btrfs_async_submit_limit(info);
526 }
527
528 static void run_one_async_start(struct btrfs_work *work)
529 {
530         struct btrfs_fs_info *fs_info;
531         struct async_submit_bio *async;
532
533         async = container_of(work, struct  async_submit_bio, work);
534         fs_info = BTRFS_I(async->inode)->root->fs_info;
535         async->submit_bio_start(async->inode, async->rw, async->bio,
536                                async->mirror_num, async->bio_flags);
537 }
538
539 static void run_one_async_done(struct btrfs_work *work)
540 {
541         struct btrfs_fs_info *fs_info;
542         struct async_submit_bio *async;
543         int limit;
544
545         async = container_of(work, struct  async_submit_bio, work);
546         fs_info = BTRFS_I(async->inode)->root->fs_info;
547
548         limit = btrfs_async_submit_limit(fs_info);
549         limit = limit * 2 / 3;
550
551         atomic_dec(&fs_info->nr_async_submits);
552
553         if (atomic_read(&fs_info->nr_async_submits) < limit &&
554             waitqueue_active(&fs_info->async_submit_wait))
555                 wake_up(&fs_info->async_submit_wait);
556
557         async->submit_bio_done(async->inode, async->rw, async->bio,
558                                async->mirror_num, async->bio_flags);
559 }
560
561 static void run_one_async_free(struct btrfs_work *work)
562 {
563         struct async_submit_bio *async;
564
565         async = container_of(work, struct  async_submit_bio, work);
566         kfree(async);
567 }
568
569 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
570                         int rw, struct bio *bio, int mirror_num,
571                         unsigned long bio_flags,
572                         extent_submit_bio_hook_t *submit_bio_start,
573                         extent_submit_bio_hook_t *submit_bio_done)
574 {
575         struct async_submit_bio *async;
576
577         async = kmalloc(sizeof(*async), GFP_NOFS);
578         if (!async)
579                 return -ENOMEM;
580
581         async->inode = inode;
582         async->rw = rw;
583         async->bio = bio;
584         async->mirror_num = mirror_num;
585         async->submit_bio_start = submit_bio_start;
586         async->submit_bio_done = submit_bio_done;
587
588         async->work.func = run_one_async_start;
589         async->work.ordered_func = run_one_async_done;
590         async->work.ordered_free = run_one_async_free;
591
592         async->work.flags = 0;
593         async->bio_flags = bio_flags;
594
595         atomic_inc(&fs_info->nr_async_submits);
596
597         if (rw & (1 << BIO_RW_SYNCIO))
598                 btrfs_set_work_high_prio(&async->work);
599
600         btrfs_queue_worker(&fs_info->workers, &async->work);
601
602         while (atomic_read(&fs_info->async_submit_draining) &&
603               atomic_read(&fs_info->nr_async_submits)) {
604                 wait_event(fs_info->async_submit_wait,
605                            (atomic_read(&fs_info->nr_async_submits) == 0));
606         }
607
608         return 0;
609 }
610
611 static int btree_csum_one_bio(struct bio *bio)
612 {
613         struct bio_vec *bvec = bio->bi_io_vec;
614         int bio_index = 0;
615         struct btrfs_root *root;
616
617         WARN_ON(bio->bi_vcnt <= 0);
618         while (bio_index < bio->bi_vcnt) {
619                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
620                 csum_dirty_buffer(root, bvec->bv_page);
621                 bio_index++;
622                 bvec++;
623         }
624         return 0;
625 }
626
627 static int __btree_submit_bio_start(struct inode *inode, int rw,
628                                     struct bio *bio, int mirror_num,
629                                     unsigned long bio_flags)
630 {
631         /*
632          * when we're called for a write, we're already in the async
633          * submission context.  Just jump into btrfs_map_bio
634          */
635         btree_csum_one_bio(bio);
636         return 0;
637 }
638
639 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
640                                  int mirror_num, unsigned long bio_flags)
641 {
642         /*
643          * when we're called for a write, we're already in the async
644          * submission context.  Just jump into btrfs_map_bio
645          */
646         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
647 }
648
649 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
650                                  int mirror_num, unsigned long bio_flags)
651 {
652         int ret;
653
654         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
655                                           bio, 1);
656         BUG_ON(ret);
657
658         if (!(rw & (1 << BIO_RW))) {
659                 /*
660                  * called for a read, do the setup so that checksum validation
661                  * can happen in the async kernel threads
662                  */
663                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
664                                      mirror_num, 0);
665         }
666
667         /*
668          * kthread helpers are used to submit writes so that checksumming
669          * can happen in parallel across all CPUs
670          */
671         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
672                                    inode, rw, bio, mirror_num, 0,
673                                    __btree_submit_bio_start,
674                                    __btree_submit_bio_done);
675 }
676
677 static int btree_writepage(struct page *page, struct writeback_control *wbc)
678 {
679         struct extent_io_tree *tree;
680         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681         struct extent_buffer *eb;
682         int was_dirty;
683
684         tree = &BTRFS_I(page->mapping->host)->io_tree;
685         if (!(current->flags & PF_MEMALLOC)) {
686                 return extent_write_full_page(tree, page,
687                                               btree_get_extent, wbc);
688         }
689
690         redirty_page_for_writepage(wbc, page);
691         eb = btrfs_find_tree_block(root, page_offset(page),
692                                       PAGE_CACHE_SIZE);
693         WARN_ON(!eb);
694
695         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
696         if (!was_dirty) {
697                 spin_lock(&root->fs_info->delalloc_lock);
698                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
699                 spin_unlock(&root->fs_info->delalloc_lock);
700         }
701         free_extent_buffer(eb);
702
703         unlock_page(page);
704         return 0;
705 }
706
707 static int btree_writepages(struct address_space *mapping,
708                             struct writeback_control *wbc)
709 {
710         struct extent_io_tree *tree;
711         tree = &BTRFS_I(mapping->host)->io_tree;
712         if (wbc->sync_mode == WB_SYNC_NONE) {
713                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
714                 u64 num_dirty;
715                 unsigned long thresh = 32 * 1024 * 1024;
716
717                 if (wbc->for_kupdate)
718                         return 0;
719
720                 /* this is a bit racy, but that's ok */
721                 num_dirty = root->fs_info->dirty_metadata_bytes;
722                 if (num_dirty < thresh)
723                         return 0;
724         }
725         return extent_writepages(tree, mapping, btree_get_extent, wbc);
726 }
727
728 static int btree_readpage(struct file *file, struct page *page)
729 {
730         struct extent_io_tree *tree;
731         tree = &BTRFS_I(page->mapping->host)->io_tree;
732         return extent_read_full_page(tree, page, btree_get_extent);
733 }
734
735 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
736 {
737         struct extent_io_tree *tree;
738         struct extent_map_tree *map;
739         int ret;
740
741         if (PageWriteback(page) || PageDirty(page))
742                 return 0;
743
744         tree = &BTRFS_I(page->mapping->host)->io_tree;
745         map = &BTRFS_I(page->mapping->host)->extent_tree;
746
747         ret = try_release_extent_state(map, tree, page, gfp_flags);
748         if (!ret)
749                 return 0;
750
751         ret = try_release_extent_buffer(tree, page);
752         if (ret == 1) {
753                 ClearPagePrivate(page);
754                 set_page_private(page, 0);
755                 page_cache_release(page);
756         }
757
758         return ret;
759 }
760
761 static void btree_invalidatepage(struct page *page, unsigned long offset)
762 {
763         struct extent_io_tree *tree;
764         tree = &BTRFS_I(page->mapping->host)->io_tree;
765         extent_invalidatepage(tree, page, offset);
766         btree_releasepage(page, GFP_NOFS);
767         if (PagePrivate(page)) {
768                 printk(KERN_WARNING "btrfs warning page private not zero "
769                        "on page %llu\n", (unsigned long long)page_offset(page));
770                 ClearPagePrivate(page);
771                 set_page_private(page, 0);
772                 page_cache_release(page);
773         }
774 }
775
776 static struct address_space_operations btree_aops = {
777         .readpage       = btree_readpage,
778         .writepage      = btree_writepage,
779         .writepages     = btree_writepages,
780         .releasepage    = btree_releasepage,
781         .invalidatepage = btree_invalidatepage,
782         .sync_page      = block_sync_page,
783 };
784
785 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
786                          u64 parent_transid)
787 {
788         struct extent_buffer *buf = NULL;
789         struct inode *btree_inode = root->fs_info->btree_inode;
790         int ret = 0;
791
792         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
793         if (!buf)
794                 return 0;
795         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
796                                  buf, 0, 0, btree_get_extent, 0);
797         free_extent_buffer(buf);
798         return ret;
799 }
800
801 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
802                                             u64 bytenr, u32 blocksize)
803 {
804         struct inode *btree_inode = root->fs_info->btree_inode;
805         struct extent_buffer *eb;
806         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
807                                 bytenr, blocksize, GFP_NOFS);
808         return eb;
809 }
810
811 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
812                                                  u64 bytenr, u32 blocksize)
813 {
814         struct inode *btree_inode = root->fs_info->btree_inode;
815         struct extent_buffer *eb;
816
817         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
818                                  bytenr, blocksize, NULL, GFP_NOFS);
819         return eb;
820 }
821
822
823 int btrfs_write_tree_block(struct extent_buffer *buf)
824 {
825         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
826                                       buf->start + buf->len - 1, WB_SYNC_ALL);
827 }
828
829 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
830 {
831         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
832                                   buf->start, buf->start + buf->len - 1);
833 }
834
835 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
836                                       u32 blocksize, u64 parent_transid)
837 {
838         struct extent_buffer *buf = NULL;
839         struct inode *btree_inode = root->fs_info->btree_inode;
840         struct extent_io_tree *io_tree;
841         int ret;
842
843         io_tree = &BTRFS_I(btree_inode)->io_tree;
844
845         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
846         if (!buf)
847                 return NULL;
848
849         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
850
851         if (ret == 0)
852                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
853         return buf;
854
855 }
856
857 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
858                      struct extent_buffer *buf)
859 {
860         struct inode *btree_inode = root->fs_info->btree_inode;
861         if (btrfs_header_generation(buf) ==
862             root->fs_info->running_transaction->transid) {
863                 btrfs_assert_tree_locked(buf);
864
865                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
866                         spin_lock(&root->fs_info->delalloc_lock);
867                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
868                                 root->fs_info->dirty_metadata_bytes -= buf->len;
869                         else
870                                 WARN_ON(1);
871                         spin_unlock(&root->fs_info->delalloc_lock);
872                 }
873
874                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
875                 btrfs_set_lock_blocking(buf);
876                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
877                                           buf);
878         }
879         return 0;
880 }
881
882 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
883                         u32 stripesize, struct btrfs_root *root,
884                         struct btrfs_fs_info *fs_info,
885                         u64 objectid)
886 {
887         root->node = NULL;
888         root->commit_root = NULL;
889         root->sectorsize = sectorsize;
890         root->nodesize = nodesize;
891         root->leafsize = leafsize;
892         root->stripesize = stripesize;
893         root->ref_cows = 0;
894         root->track_dirty = 0;
895
896         root->fs_info = fs_info;
897         root->objectid = objectid;
898         root->last_trans = 0;
899         root->highest_objectid = 0;
900         root->name = NULL;
901         root->in_sysfs = 0;
902         root->inode_tree.rb_node = NULL;
903
904         INIT_LIST_HEAD(&root->dirty_list);
905         INIT_LIST_HEAD(&root->orphan_list);
906         INIT_LIST_HEAD(&root->root_list);
907         spin_lock_init(&root->node_lock);
908         spin_lock_init(&root->list_lock);
909         spin_lock_init(&root->inode_lock);
910         mutex_init(&root->objectid_mutex);
911         mutex_init(&root->log_mutex);
912         init_waitqueue_head(&root->log_writer_wait);
913         init_waitqueue_head(&root->log_commit_wait[0]);
914         init_waitqueue_head(&root->log_commit_wait[1]);
915         atomic_set(&root->log_commit[0], 0);
916         atomic_set(&root->log_commit[1], 0);
917         atomic_set(&root->log_writers, 0);
918         root->log_batch = 0;
919         root->log_transid = 0;
920         extent_io_tree_init(&root->dirty_log_pages,
921                              fs_info->btree_inode->i_mapping, GFP_NOFS);
922
923         memset(&root->root_key, 0, sizeof(root->root_key));
924         memset(&root->root_item, 0, sizeof(root->root_item));
925         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
926         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
927         root->defrag_trans_start = fs_info->generation;
928         init_completion(&root->kobj_unregister);
929         root->defrag_running = 0;
930         root->defrag_level = 0;
931         root->root_key.objectid = objectid;
932         root->anon_super.s_root = NULL;
933         root->anon_super.s_dev = 0;
934         INIT_LIST_HEAD(&root->anon_super.s_list);
935         INIT_LIST_HEAD(&root->anon_super.s_instances);
936         init_rwsem(&root->anon_super.s_umount);
937
938         return 0;
939 }
940
941 static int find_and_setup_root(struct btrfs_root *tree_root,
942                                struct btrfs_fs_info *fs_info,
943                                u64 objectid,
944                                struct btrfs_root *root)
945 {
946         int ret;
947         u32 blocksize;
948         u64 generation;
949
950         __setup_root(tree_root->nodesize, tree_root->leafsize,
951                      tree_root->sectorsize, tree_root->stripesize,
952                      root, fs_info, objectid);
953         ret = btrfs_find_last_root(tree_root, objectid,
954                                    &root->root_item, &root->root_key);
955         if (ret > 0)
956                 return -ENOENT;
957         BUG_ON(ret);
958
959         generation = btrfs_root_generation(&root->root_item);
960         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
961         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
962                                      blocksize, generation);
963         BUG_ON(!root->node);
964         root->commit_root = btrfs_root_node(root);
965         return 0;
966 }
967
968 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
969                              struct btrfs_fs_info *fs_info)
970 {
971         struct extent_buffer *eb;
972         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
973         u64 start = 0;
974         u64 end = 0;
975         int ret;
976
977         if (!log_root_tree)
978                 return 0;
979
980         while (1) {
981                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
982                                     0, &start, &end, EXTENT_DIRTY);
983                 if (ret)
984                         break;
985
986                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
987                                    start, end, GFP_NOFS);
988         }
989         eb = fs_info->log_root_tree->node;
990
991         WARN_ON(btrfs_header_level(eb) != 0);
992         WARN_ON(btrfs_header_nritems(eb) != 0);
993
994         ret = btrfs_free_reserved_extent(fs_info->tree_root,
995                                 eb->start, eb->len);
996         BUG_ON(ret);
997
998         free_extent_buffer(eb);
999         kfree(fs_info->log_root_tree);
1000         fs_info->log_root_tree = NULL;
1001         return 0;
1002 }
1003
1004 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1005                                          struct btrfs_fs_info *fs_info)
1006 {
1007         struct btrfs_root *root;
1008         struct btrfs_root *tree_root = fs_info->tree_root;
1009         struct extent_buffer *leaf;
1010
1011         root = kzalloc(sizeof(*root), GFP_NOFS);
1012         if (!root)
1013                 return ERR_PTR(-ENOMEM);
1014
1015         __setup_root(tree_root->nodesize, tree_root->leafsize,
1016                      tree_root->sectorsize, tree_root->stripesize,
1017                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1018
1019         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1020         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1021         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1022         /*
1023          * log trees do not get reference counted because they go away
1024          * before a real commit is actually done.  They do store pointers
1025          * to file data extents, and those reference counts still get
1026          * updated (along with back refs to the log tree).
1027          */
1028         root->ref_cows = 0;
1029
1030         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1031                                       BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1032         if (IS_ERR(leaf)) {
1033                 kfree(root);
1034                 return ERR_CAST(leaf);
1035         }
1036
1037         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1038         btrfs_set_header_bytenr(leaf, leaf->start);
1039         btrfs_set_header_generation(leaf, trans->transid);
1040         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1041         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1042         root->node = leaf;
1043
1044         write_extent_buffer(root->node, root->fs_info->fsid,
1045                             (unsigned long)btrfs_header_fsid(root->node),
1046                             BTRFS_FSID_SIZE);
1047         btrfs_mark_buffer_dirty(root->node);
1048         btrfs_tree_unlock(root->node);
1049         return root;
1050 }
1051
1052 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1053                              struct btrfs_fs_info *fs_info)
1054 {
1055         struct btrfs_root *log_root;
1056
1057         log_root = alloc_log_tree(trans, fs_info);
1058         if (IS_ERR(log_root))
1059                 return PTR_ERR(log_root);
1060         WARN_ON(fs_info->log_root_tree);
1061         fs_info->log_root_tree = log_root;
1062         return 0;
1063 }
1064
1065 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1066                        struct btrfs_root *root)
1067 {
1068         struct btrfs_root *log_root;
1069         struct btrfs_inode_item *inode_item;
1070
1071         log_root = alloc_log_tree(trans, root->fs_info);
1072         if (IS_ERR(log_root))
1073                 return PTR_ERR(log_root);
1074
1075         log_root->last_trans = trans->transid;
1076         log_root->root_key.offset = root->root_key.objectid;
1077
1078         inode_item = &log_root->root_item.inode;
1079         inode_item->generation = cpu_to_le64(1);
1080         inode_item->size = cpu_to_le64(3);
1081         inode_item->nlink = cpu_to_le32(1);
1082         inode_item->nbytes = cpu_to_le64(root->leafsize);
1083         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1084
1085         btrfs_set_root_node(&log_root->root_item, log_root->node);
1086
1087         WARN_ON(root->log_root);
1088         root->log_root = log_root;
1089         root->log_transid = 0;
1090         return 0;
1091 }
1092
1093 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1094                                                struct btrfs_key *location)
1095 {
1096         struct btrfs_root *root;
1097         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1098         struct btrfs_path *path;
1099         struct extent_buffer *l;
1100         u64 generation;
1101         u32 blocksize;
1102         int ret = 0;
1103
1104         root = kzalloc(sizeof(*root), GFP_NOFS);
1105         if (!root)
1106                 return ERR_PTR(-ENOMEM);
1107         if (location->offset == (u64)-1) {
1108                 ret = find_and_setup_root(tree_root, fs_info,
1109                                           location->objectid, root);
1110                 if (ret) {
1111                         kfree(root);
1112                         return ERR_PTR(ret);
1113                 }
1114                 goto out;
1115         }
1116
1117         __setup_root(tree_root->nodesize, tree_root->leafsize,
1118                      tree_root->sectorsize, tree_root->stripesize,
1119                      root, fs_info, location->objectid);
1120
1121         path = btrfs_alloc_path();
1122         BUG_ON(!path);
1123         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1124         if (ret == 0) {
1125                 l = path->nodes[0];
1126                 read_extent_buffer(l, &root->root_item,
1127                                 btrfs_item_ptr_offset(l, path->slots[0]),
1128                                 sizeof(root->root_item));
1129                 memcpy(&root->root_key, location, sizeof(*location));
1130         }
1131         btrfs_free_path(path);
1132         if (ret) {
1133                 if (ret > 0)
1134                         ret = -ENOENT;
1135                 return ERR_PTR(ret);
1136         }
1137
1138         generation = btrfs_root_generation(&root->root_item);
1139         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1140         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1141                                      blocksize, generation);
1142         root->commit_root = btrfs_root_node(root);
1143         BUG_ON(!root->node);
1144 out:
1145         if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1146                 root->ref_cows = 1;
1147
1148         return root;
1149 }
1150
1151 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1152                                         u64 root_objectid)
1153 {
1154         struct btrfs_root *root;
1155
1156         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1157                 return fs_info->tree_root;
1158         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1159                 return fs_info->extent_root;
1160
1161         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1162                                  (unsigned long)root_objectid);
1163         return root;
1164 }
1165
1166 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1167                                               struct btrfs_key *location)
1168 {
1169         struct btrfs_root *root;
1170         int ret;
1171
1172         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1173                 return fs_info->tree_root;
1174         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1175                 return fs_info->extent_root;
1176         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1177                 return fs_info->chunk_root;
1178         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1179                 return fs_info->dev_root;
1180         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1181                 return fs_info->csum_root;
1182 again:
1183         spin_lock(&fs_info->fs_roots_radix_lock);
1184         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1185                                  (unsigned long)location->objectid);
1186         spin_unlock(&fs_info->fs_roots_radix_lock);
1187         if (root)
1188                 return root;
1189
1190         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1191         if (ret == 0)
1192                 ret = -ENOENT;
1193         if (ret < 0)
1194                 return ERR_PTR(ret);
1195
1196         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1197         if (IS_ERR(root))
1198                 return root;
1199
1200         WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1201         set_anon_super(&root->anon_super, NULL);
1202
1203         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1204         if (ret)
1205                 goto fail;
1206
1207         spin_lock(&fs_info->fs_roots_radix_lock);
1208         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1209                                 (unsigned long)root->root_key.objectid,
1210                                 root);
1211         if (ret == 0)
1212                 root->in_radix = 1;
1213         spin_unlock(&fs_info->fs_roots_radix_lock);
1214         radix_tree_preload_end();
1215         if (ret) {
1216                 if (ret == -EEXIST) {
1217                         free_fs_root(root);
1218                         goto again;
1219                 }
1220                 goto fail;
1221         }
1222
1223         ret = btrfs_find_dead_roots(fs_info->tree_root,
1224                                     root->root_key.objectid);
1225         WARN_ON(ret);
1226
1227         if (!(fs_info->sb->s_flags & MS_RDONLY))
1228                 btrfs_orphan_cleanup(root);
1229
1230         return root;
1231 fail:
1232         free_fs_root(root);
1233         return ERR_PTR(ret);
1234 }
1235
1236 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1237                                       struct btrfs_key *location,
1238                                       const char *name, int namelen)
1239 {
1240         return btrfs_read_fs_root_no_name(fs_info, location);
1241 #if 0
1242         struct btrfs_root *root;
1243         int ret;
1244
1245         root = btrfs_read_fs_root_no_name(fs_info, location);
1246         if (!root)
1247                 return NULL;
1248
1249         if (root->in_sysfs)
1250                 return root;
1251
1252         ret = btrfs_set_root_name(root, name, namelen);
1253         if (ret) {
1254                 free_extent_buffer(root->node);
1255                 kfree(root);
1256                 return ERR_PTR(ret);
1257         }
1258
1259         ret = btrfs_sysfs_add_root(root);
1260         if (ret) {
1261                 free_extent_buffer(root->node);
1262                 kfree(root->name);
1263                 kfree(root);
1264                 return ERR_PTR(ret);
1265         }
1266         root->in_sysfs = 1;
1267         return root;
1268 #endif
1269 }
1270
1271 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1272 {
1273         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1274         int ret = 0;
1275         struct btrfs_device *device;
1276         struct backing_dev_info *bdi;
1277
1278         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1279                 if (!device->bdev)
1280                         continue;
1281                 bdi = blk_get_backing_dev_info(device->bdev);
1282                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1283                         ret = 1;
1284                         break;
1285                 }
1286         }
1287         return ret;
1288 }
1289
1290 /*
1291  * this unplugs every device on the box, and it is only used when page
1292  * is null
1293  */
1294 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1295 {
1296         struct btrfs_device *device;
1297         struct btrfs_fs_info *info;
1298
1299         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1300         list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1301                 if (!device->bdev)
1302                         continue;
1303
1304                 bdi = blk_get_backing_dev_info(device->bdev);
1305                 if (bdi->unplug_io_fn)
1306                         bdi->unplug_io_fn(bdi, page);
1307         }
1308 }
1309
1310 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1311 {
1312         struct inode *inode;
1313         struct extent_map_tree *em_tree;
1314         struct extent_map *em;
1315         struct address_space *mapping;
1316         u64 offset;
1317
1318         /* the generic O_DIRECT read code does this */
1319         if (1 || !page) {
1320                 __unplug_io_fn(bdi, page);
1321                 return;
1322         }
1323
1324         /*
1325          * page->mapping may change at any time.  Get a consistent copy
1326          * and use that for everything below
1327          */
1328         smp_mb();
1329         mapping = page->mapping;
1330         if (!mapping)
1331                 return;
1332
1333         inode = mapping->host;
1334
1335         /*
1336          * don't do the expensive searching for a small number of
1337          * devices
1338          */
1339         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1340                 __unplug_io_fn(bdi, page);
1341                 return;
1342         }
1343
1344         offset = page_offset(page);
1345
1346         em_tree = &BTRFS_I(inode)->extent_tree;
1347         read_lock(&em_tree->lock);
1348         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1349         read_unlock(&em_tree->lock);
1350         if (!em) {
1351                 __unplug_io_fn(bdi, page);
1352                 return;
1353         }
1354
1355         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1356                 free_extent_map(em);
1357                 __unplug_io_fn(bdi, page);
1358                 return;
1359         }
1360         offset = offset - em->start;
1361         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1362                           em->block_start + offset, page);
1363         free_extent_map(em);
1364 }
1365
1366 /*
1367  * If this fails, caller must call bdi_destroy() to get rid of the
1368  * bdi again.
1369  */
1370 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1371 {
1372         int err;
1373
1374         bdi->capabilities = BDI_CAP_MAP_COPY;
1375         err = bdi_init(bdi);
1376         if (err)
1377                 return err;
1378
1379         err = bdi_register(bdi, NULL, "btrfs-%d",
1380                                 atomic_inc_return(&btrfs_bdi_num));
1381         if (err)
1382                 return err;
1383
1384         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1385         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1386         bdi->unplug_io_data     = info;
1387         bdi->congested_fn       = btrfs_congested_fn;
1388         bdi->congested_data     = info;
1389         return 0;
1390 }
1391
1392 static int bio_ready_for_csum(struct bio *bio)
1393 {
1394         u64 length = 0;
1395         u64 buf_len = 0;
1396         u64 start = 0;
1397         struct page *page;
1398         struct extent_io_tree *io_tree = NULL;
1399         struct btrfs_fs_info *info = NULL;
1400         struct bio_vec *bvec;
1401         int i;
1402         int ret;
1403
1404         bio_for_each_segment(bvec, bio, i) {
1405                 page = bvec->bv_page;
1406                 if (page->private == EXTENT_PAGE_PRIVATE) {
1407                         length += bvec->bv_len;
1408                         continue;
1409                 }
1410                 if (!page->private) {
1411                         length += bvec->bv_len;
1412                         continue;
1413                 }
1414                 length = bvec->bv_len;
1415                 buf_len = page->private >> 2;
1416                 start = page_offset(page) + bvec->bv_offset;
1417                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1418                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1419         }
1420         /* are we fully contained in this bio? */
1421         if (buf_len <= length)
1422                 return 1;
1423
1424         ret = extent_range_uptodate(io_tree, start + length,
1425                                     start + buf_len - 1);
1426         return ret;
1427 }
1428
1429 /*
1430  * called by the kthread helper functions to finally call the bio end_io
1431  * functions.  This is where read checksum verification actually happens
1432  */
1433 static void end_workqueue_fn(struct btrfs_work *work)
1434 {
1435         struct bio *bio;
1436         struct end_io_wq *end_io_wq;
1437         struct btrfs_fs_info *fs_info;
1438         int error;
1439
1440         end_io_wq = container_of(work, struct end_io_wq, work);
1441         bio = end_io_wq->bio;
1442         fs_info = end_io_wq->info;
1443
1444         /* metadata bio reads are special because the whole tree block must
1445          * be checksummed at once.  This makes sure the entire block is in
1446          * ram and up to date before trying to verify things.  For
1447          * blocksize <= pagesize, it is basically a noop
1448          */
1449         if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1450             !bio_ready_for_csum(bio)) {
1451                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1452                                    &end_io_wq->work);
1453                 return;
1454         }
1455         error = end_io_wq->error;
1456         bio->bi_private = end_io_wq->private;
1457         bio->bi_end_io = end_io_wq->end_io;
1458         kfree(end_io_wq);
1459         bio_endio(bio, error);
1460 }
1461
1462 static int cleaner_kthread(void *arg)
1463 {
1464         struct btrfs_root *root = arg;
1465
1466         do {
1467                 smp_mb();
1468                 if (root->fs_info->closing)
1469                         break;
1470
1471                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1472                 mutex_lock(&root->fs_info->cleaner_mutex);
1473                 btrfs_clean_old_snapshots(root);
1474                 mutex_unlock(&root->fs_info->cleaner_mutex);
1475
1476                 if (freezing(current)) {
1477                         refrigerator();
1478                 } else {
1479                         smp_mb();
1480                         if (root->fs_info->closing)
1481                                 break;
1482                         set_current_state(TASK_INTERRUPTIBLE);
1483                         schedule();
1484                         __set_current_state(TASK_RUNNING);
1485                 }
1486         } while (!kthread_should_stop());
1487         return 0;
1488 }
1489
1490 static int transaction_kthread(void *arg)
1491 {
1492         struct btrfs_root *root = arg;
1493         struct btrfs_trans_handle *trans;
1494         struct btrfs_transaction *cur;
1495         unsigned long now;
1496         unsigned long delay;
1497         int ret;
1498
1499         do {
1500                 smp_mb();
1501                 if (root->fs_info->closing)
1502                         break;
1503
1504                 delay = HZ * 30;
1505                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1506                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1507
1508                 mutex_lock(&root->fs_info->trans_mutex);
1509                 cur = root->fs_info->running_transaction;
1510                 if (!cur) {
1511                         mutex_unlock(&root->fs_info->trans_mutex);
1512                         goto sleep;
1513                 }
1514
1515                 now = get_seconds();
1516                 if (now < cur->start_time || now - cur->start_time < 30) {
1517                         mutex_unlock(&root->fs_info->trans_mutex);
1518                         delay = HZ * 5;
1519                         goto sleep;
1520                 }
1521                 mutex_unlock(&root->fs_info->trans_mutex);
1522                 trans = btrfs_start_transaction(root, 1);
1523                 ret = btrfs_commit_transaction(trans, root);
1524
1525 sleep:
1526                 wake_up_process(root->fs_info->cleaner_kthread);
1527                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1528
1529                 if (freezing(current)) {
1530                         refrigerator();
1531                 } else {
1532                         if (root->fs_info->closing)
1533                                 break;
1534                         set_current_state(TASK_INTERRUPTIBLE);
1535                         schedule_timeout(delay);
1536                         __set_current_state(TASK_RUNNING);
1537                 }
1538         } while (!kthread_should_stop());
1539         return 0;
1540 }
1541
1542 struct btrfs_root *open_ctree(struct super_block *sb,
1543                               struct btrfs_fs_devices *fs_devices,
1544                               char *options)
1545 {
1546         u32 sectorsize;
1547         u32 nodesize;
1548         u32 leafsize;
1549         u32 blocksize;
1550         u32 stripesize;
1551         u64 generation;
1552         u64 features;
1553         struct btrfs_key location;
1554         struct buffer_head *bh;
1555         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1556                                                  GFP_NOFS);
1557         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1558                                                  GFP_NOFS);
1559         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1560                                                GFP_NOFS);
1561         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1562                                                 GFP_NOFS);
1563         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1564                                                 GFP_NOFS);
1565         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1566                                               GFP_NOFS);
1567         struct btrfs_root *log_tree_root;
1568
1569         int ret;
1570         int err = -EINVAL;
1571
1572         struct btrfs_super_block *disk_super;
1573
1574         if (!extent_root || !tree_root || !fs_info ||
1575             !chunk_root || !dev_root || !csum_root) {
1576                 err = -ENOMEM;
1577                 goto fail;
1578         }
1579         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1580         INIT_LIST_HEAD(&fs_info->trans_list);
1581         INIT_LIST_HEAD(&fs_info->dead_roots);
1582         INIT_LIST_HEAD(&fs_info->hashers);
1583         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1584         INIT_LIST_HEAD(&fs_info->ordered_operations);
1585         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1586         spin_lock_init(&fs_info->delalloc_lock);
1587         spin_lock_init(&fs_info->new_trans_lock);
1588         spin_lock_init(&fs_info->ref_cache_lock);
1589
1590         init_completion(&fs_info->kobj_unregister);
1591         fs_info->tree_root = tree_root;
1592         fs_info->extent_root = extent_root;
1593         fs_info->csum_root = csum_root;
1594         fs_info->chunk_root = chunk_root;
1595         fs_info->dev_root = dev_root;
1596         fs_info->fs_devices = fs_devices;
1597         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1598         INIT_LIST_HEAD(&fs_info->space_info);
1599         btrfs_mapping_init(&fs_info->mapping_tree);
1600         atomic_set(&fs_info->nr_async_submits, 0);
1601         atomic_set(&fs_info->async_delalloc_pages, 0);
1602         atomic_set(&fs_info->async_submit_draining, 0);
1603         atomic_set(&fs_info->nr_async_bios, 0);
1604         fs_info->sb = sb;
1605         fs_info->max_extent = (u64)-1;
1606         fs_info->max_inline = 8192 * 1024;
1607         if (setup_bdi(fs_info, &fs_info->bdi))
1608                 goto fail_bdi;
1609         fs_info->btree_inode = new_inode(sb);
1610         fs_info->btree_inode->i_ino = 1;
1611         fs_info->btree_inode->i_nlink = 1;
1612         fs_info->metadata_ratio = 8;
1613
1614         fs_info->thread_pool_size = min_t(unsigned long,
1615                                           num_online_cpus() + 2, 8);
1616
1617         INIT_LIST_HEAD(&fs_info->ordered_extents);
1618         spin_lock_init(&fs_info->ordered_extent_lock);
1619
1620         sb->s_blocksize = 4096;
1621         sb->s_blocksize_bits = blksize_bits(4096);
1622
1623         /*
1624          * we set the i_size on the btree inode to the max possible int.
1625          * the real end of the address space is determined by all of
1626          * the devices in the system
1627          */
1628         fs_info->btree_inode->i_size = OFFSET_MAX;
1629         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1630         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1631
1632         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1633         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1634                              fs_info->btree_inode->i_mapping,
1635                              GFP_NOFS);
1636         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1637                              GFP_NOFS);
1638
1639         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1640
1641         spin_lock_init(&fs_info->block_group_cache_lock);
1642         fs_info->block_group_cache_tree.rb_node = NULL;
1643
1644         extent_io_tree_init(&fs_info->freed_extents[0],
1645                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1646         extent_io_tree_init(&fs_info->freed_extents[1],
1647                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1648         fs_info->pinned_extents = &fs_info->freed_extents[0];
1649         fs_info->do_barriers = 1;
1650
1651         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1652         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1653                sizeof(struct btrfs_key));
1654         insert_inode_hash(fs_info->btree_inode);
1655
1656         mutex_init(&fs_info->trans_mutex);
1657         mutex_init(&fs_info->ordered_operations_mutex);
1658         mutex_init(&fs_info->tree_log_mutex);
1659         mutex_init(&fs_info->drop_mutex);
1660         mutex_init(&fs_info->chunk_mutex);
1661         mutex_init(&fs_info->transaction_kthread_mutex);
1662         mutex_init(&fs_info->cleaner_mutex);
1663         mutex_init(&fs_info->volume_mutex);
1664         mutex_init(&fs_info->tree_reloc_mutex);
1665         init_rwsem(&fs_info->extent_commit_sem);
1666
1667         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1668         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1669
1670         init_waitqueue_head(&fs_info->transaction_throttle);
1671         init_waitqueue_head(&fs_info->transaction_wait);
1672         init_waitqueue_head(&fs_info->async_submit_wait);
1673
1674         __setup_root(4096, 4096, 4096, 4096, tree_root,
1675                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1676
1677
1678         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1679         if (!bh)
1680                 goto fail_iput;
1681
1682         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1683         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1684                sizeof(fs_info->super_for_commit));
1685         brelse(bh);
1686
1687         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1688
1689         disk_super = &fs_info->super_copy;
1690         if (!btrfs_super_root(disk_super))
1691                 goto fail_iput;
1692
1693         ret = btrfs_parse_options(tree_root, options);
1694         if (ret) {
1695                 err = ret;
1696                 goto fail_iput;
1697         }
1698
1699         features = btrfs_super_incompat_flags(disk_super) &
1700                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1701         if (features) {
1702                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1703                        "unsupported optional features (%Lx).\n",
1704                        (unsigned long long)features);
1705                 err = -EINVAL;
1706                 goto fail_iput;
1707         }
1708
1709         features = btrfs_super_incompat_flags(disk_super);
1710         if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1711                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1712                 btrfs_set_super_incompat_flags(disk_super, features);
1713         }
1714
1715         features = btrfs_super_compat_ro_flags(disk_super) &
1716                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1717         if (!(sb->s_flags & MS_RDONLY) && features) {
1718                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1719                        "unsupported option features (%Lx).\n",
1720                        (unsigned long long)features);
1721                 err = -EINVAL;
1722                 goto fail_iput;
1723         }
1724 printk("thread pool is %d\n", fs_info->thread_pool_size);
1725         /*
1726          * we need to start all the end_io workers up front because the
1727          * queue work function gets called at interrupt time, and so it
1728          * cannot dynamically grow.
1729          */
1730         btrfs_init_workers(&fs_info->workers, "worker",
1731                            fs_info->thread_pool_size);
1732
1733         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1734                            fs_info->thread_pool_size);
1735
1736         btrfs_init_workers(&fs_info->submit_workers, "submit",
1737                            min_t(u64, fs_devices->num_devices,
1738                            fs_info->thread_pool_size));
1739
1740         /* a higher idle thresh on the submit workers makes it much more
1741          * likely that bios will be send down in a sane order to the
1742          * devices
1743          */
1744         fs_info->submit_workers.idle_thresh = 64;
1745
1746         fs_info->workers.idle_thresh = 16;
1747         fs_info->workers.ordered = 1;
1748
1749         fs_info->delalloc_workers.idle_thresh = 2;
1750         fs_info->delalloc_workers.ordered = 1;
1751
1752         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1753         btrfs_init_workers(&fs_info->endio_workers, "endio",
1754                            fs_info->thread_pool_size);
1755         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1756                            fs_info->thread_pool_size);
1757         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1758                            "endio-meta-write", fs_info->thread_pool_size);
1759         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1760                            fs_info->thread_pool_size);
1761
1762         /*
1763          * endios are largely parallel and should have a very
1764          * low idle thresh
1765          */
1766         fs_info->endio_workers.idle_thresh = 4;
1767         fs_info->endio_meta_workers.idle_thresh = 4;
1768
1769         fs_info->endio_write_workers.idle_thresh = 2;
1770         fs_info->endio_meta_write_workers.idle_thresh = 2;
1771
1772         fs_info->endio_workers.atomic_worker_start = 1;
1773         fs_info->endio_meta_workers.atomic_worker_start = 1;
1774         fs_info->endio_write_workers.atomic_worker_start = 1;
1775         fs_info->endio_meta_write_workers.atomic_worker_start = 1;
1776
1777         btrfs_start_workers(&fs_info->workers, 1);
1778         btrfs_start_workers(&fs_info->submit_workers, 1);
1779         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1780         btrfs_start_workers(&fs_info->fixup_workers, 1);
1781         btrfs_start_workers(&fs_info->endio_workers, 1);
1782         btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1783         btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1784         btrfs_start_workers(&fs_info->endio_write_workers, 1);
1785
1786         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1787         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1788                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1789
1790         nodesize = btrfs_super_nodesize(disk_super);
1791         leafsize = btrfs_super_leafsize(disk_super);
1792         sectorsize = btrfs_super_sectorsize(disk_super);
1793         stripesize = btrfs_super_stripesize(disk_super);
1794         tree_root->nodesize = nodesize;
1795         tree_root->leafsize = leafsize;
1796         tree_root->sectorsize = sectorsize;
1797         tree_root->stripesize = stripesize;
1798
1799         sb->s_blocksize = sectorsize;
1800         sb->s_blocksize_bits = blksize_bits(sectorsize);
1801
1802         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1803                     sizeof(disk_super->magic))) {
1804                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1805                 goto fail_sb_buffer;
1806         }
1807
1808         mutex_lock(&fs_info->chunk_mutex);
1809         ret = btrfs_read_sys_array(tree_root);
1810         mutex_unlock(&fs_info->chunk_mutex);
1811         if (ret) {
1812                 printk(KERN_WARNING "btrfs: failed to read the system "
1813                        "array on %s\n", sb->s_id);
1814                 goto fail_sb_buffer;
1815         }
1816
1817         blocksize = btrfs_level_size(tree_root,
1818                                      btrfs_super_chunk_root_level(disk_super));
1819         generation = btrfs_super_chunk_root_generation(disk_super);
1820
1821         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1822                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1823
1824         chunk_root->node = read_tree_block(chunk_root,
1825                                            btrfs_super_chunk_root(disk_super),
1826                                            blocksize, generation);
1827         BUG_ON(!chunk_root->node);
1828         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1829                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1830                        sb->s_id);
1831                 goto fail_chunk_root;
1832         }
1833         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1834         chunk_root->commit_root = btrfs_root_node(chunk_root);
1835
1836         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1837            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1838            BTRFS_UUID_SIZE);
1839
1840         mutex_lock(&fs_info->chunk_mutex);
1841         ret = btrfs_read_chunk_tree(chunk_root);
1842         mutex_unlock(&fs_info->chunk_mutex);
1843         if (ret) {
1844                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1845                        sb->s_id);
1846                 goto fail_chunk_root;
1847         }
1848
1849         btrfs_close_extra_devices(fs_devices);
1850
1851         blocksize = btrfs_level_size(tree_root,
1852                                      btrfs_super_root_level(disk_super));
1853         generation = btrfs_super_generation(disk_super);
1854
1855         tree_root->node = read_tree_block(tree_root,
1856                                           btrfs_super_root(disk_super),
1857                                           blocksize, generation);
1858         if (!tree_root->node)
1859                 goto fail_chunk_root;
1860         if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1861                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1862                        sb->s_id);
1863                 goto fail_tree_root;
1864         }
1865         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1866         tree_root->commit_root = btrfs_root_node(tree_root);
1867
1868         ret = find_and_setup_root(tree_root, fs_info,
1869                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1870         if (ret)
1871                 goto fail_tree_root;
1872         extent_root->track_dirty = 1;
1873
1874         ret = find_and_setup_root(tree_root, fs_info,
1875                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1876         if (ret)
1877                 goto fail_extent_root;
1878         dev_root->track_dirty = 1;
1879
1880         ret = find_and_setup_root(tree_root, fs_info,
1881                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1882         if (ret)
1883                 goto fail_dev_root;
1884
1885         csum_root->track_dirty = 1;
1886
1887         btrfs_read_block_groups(extent_root);
1888
1889         fs_info->generation = generation;
1890         fs_info->last_trans_committed = generation;
1891         fs_info->data_alloc_profile = (u64)-1;
1892         fs_info->metadata_alloc_profile = (u64)-1;
1893         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1894         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1895                                                "btrfs-cleaner");
1896         if (IS_ERR(fs_info->cleaner_kthread))
1897                 goto fail_csum_root;
1898
1899         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1900                                                    tree_root,
1901                                                    "btrfs-transaction");
1902         if (IS_ERR(fs_info->transaction_kthread))
1903                 goto fail_cleaner;
1904
1905         if (!btrfs_test_opt(tree_root, SSD) &&
1906             !btrfs_test_opt(tree_root, NOSSD) &&
1907             !fs_info->fs_devices->rotating) {
1908                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1909                        "mode\n");
1910                 btrfs_set_opt(fs_info->mount_opt, SSD);
1911         }
1912
1913         if (btrfs_super_log_root(disk_super) != 0) {
1914                 u64 bytenr = btrfs_super_log_root(disk_super);
1915
1916                 if (fs_devices->rw_devices == 0) {
1917                         printk(KERN_WARNING "Btrfs log replay required "
1918                                "on RO media\n");
1919                         err = -EIO;
1920                         goto fail_trans_kthread;
1921                 }
1922                 blocksize =
1923                      btrfs_level_size(tree_root,
1924                                       btrfs_super_log_root_level(disk_super));
1925
1926                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1927                                                       GFP_NOFS);
1928
1929                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1930                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1931
1932                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1933                                                       blocksize,
1934                                                       generation + 1);
1935                 ret = btrfs_recover_log_trees(log_tree_root);
1936                 BUG_ON(ret);
1937
1938                 if (sb->s_flags & MS_RDONLY) {
1939                         ret =  btrfs_commit_super(tree_root);
1940                         BUG_ON(ret);
1941                 }
1942         }
1943
1944         if (!(sb->s_flags & MS_RDONLY)) {
1945                 ret = btrfs_recover_relocation(tree_root);
1946                 BUG_ON(ret);
1947         }
1948
1949         location.objectid = BTRFS_FS_TREE_OBJECTID;
1950         location.type = BTRFS_ROOT_ITEM_KEY;
1951         location.offset = (u64)-1;
1952
1953         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1954         if (!fs_info->fs_root)
1955                 goto fail_trans_kthread;
1956
1957         return tree_root;
1958
1959 fail_trans_kthread:
1960         kthread_stop(fs_info->transaction_kthread);
1961 fail_cleaner:
1962         kthread_stop(fs_info->cleaner_kthread);
1963
1964         /*
1965          * make sure we're done with the btree inode before we stop our
1966          * kthreads
1967          */
1968         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1969         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1970
1971 fail_csum_root:
1972         free_extent_buffer(csum_root->node);
1973         free_extent_buffer(csum_root->commit_root);
1974 fail_dev_root:
1975         free_extent_buffer(dev_root->node);
1976         free_extent_buffer(dev_root->commit_root);
1977 fail_extent_root:
1978         free_extent_buffer(extent_root->node);
1979         free_extent_buffer(extent_root->commit_root);
1980 fail_tree_root:
1981         free_extent_buffer(tree_root->node);
1982         free_extent_buffer(tree_root->commit_root);
1983 fail_chunk_root:
1984         free_extent_buffer(chunk_root->node);
1985         free_extent_buffer(chunk_root->commit_root);
1986 fail_sb_buffer:
1987         btrfs_stop_workers(&fs_info->fixup_workers);
1988         btrfs_stop_workers(&fs_info->delalloc_workers);
1989         btrfs_stop_workers(&fs_info->workers);
1990         btrfs_stop_workers(&fs_info->endio_workers);
1991         btrfs_stop_workers(&fs_info->endio_meta_workers);
1992         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1993         btrfs_stop_workers(&fs_info->endio_write_workers);
1994         btrfs_stop_workers(&fs_info->submit_workers);
1995 fail_iput:
1996         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1997         iput(fs_info->btree_inode);
1998
1999         btrfs_close_devices(fs_info->fs_devices);
2000         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2001 fail_bdi:
2002         bdi_destroy(&fs_info->bdi);
2003 fail:
2004         kfree(extent_root);
2005         kfree(tree_root);
2006         kfree(fs_info);
2007         kfree(chunk_root);
2008         kfree(dev_root);
2009         kfree(csum_root);
2010         return ERR_PTR(err);
2011 }
2012
2013 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2014 {
2015         char b[BDEVNAME_SIZE];
2016
2017         if (uptodate) {
2018                 set_buffer_uptodate(bh);
2019         } else {
2020                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2021                         printk(KERN_WARNING "lost page write due to "
2022                                         "I/O error on %s\n",
2023                                        bdevname(bh->b_bdev, b));
2024                 }
2025                 /* note, we dont' set_buffer_write_io_error because we have
2026                  * our own ways of dealing with the IO errors
2027                  */
2028                 clear_buffer_uptodate(bh);
2029         }
2030         unlock_buffer(bh);
2031         put_bh(bh);
2032 }
2033
2034 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2035 {
2036         struct buffer_head *bh;
2037         struct buffer_head *latest = NULL;
2038         struct btrfs_super_block *super;
2039         int i;
2040         u64 transid = 0;
2041         u64 bytenr;
2042
2043         /* we would like to check all the supers, but that would make
2044          * a btrfs mount succeed after a mkfs from a different FS.
2045          * So, we need to add a special mount option to scan for
2046          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2047          */
2048         for (i = 0; i < 1; i++) {
2049                 bytenr = btrfs_sb_offset(i);
2050                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2051                         break;
2052                 bh = __bread(bdev, bytenr / 4096, 4096);
2053                 if (!bh)
2054                         continue;
2055
2056                 super = (struct btrfs_super_block *)bh->b_data;
2057                 if (btrfs_super_bytenr(super) != bytenr ||
2058                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2059                             sizeof(super->magic))) {
2060                         brelse(bh);
2061                         continue;
2062                 }
2063
2064                 if (!latest || btrfs_super_generation(super) > transid) {
2065                         brelse(latest);
2066                         latest = bh;
2067                         transid = btrfs_super_generation(super);
2068                 } else {
2069                         brelse(bh);
2070                 }
2071         }
2072         return latest;
2073 }
2074
2075 /*
2076  * this should be called twice, once with wait == 0 and
2077  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2078  * we write are pinned.
2079  *
2080  * They are released when wait == 1 is done.
2081  * max_mirrors must be the same for both runs, and it indicates how
2082  * many supers on this one device should be written.
2083  *
2084  * max_mirrors == 0 means to write them all.
2085  */
2086 static int write_dev_supers(struct btrfs_device *device,
2087                             struct btrfs_super_block *sb,
2088                             int do_barriers, int wait, int max_mirrors)
2089 {
2090         struct buffer_head *bh;
2091         int i;
2092         int ret;
2093         int errors = 0;
2094         u32 crc;
2095         u64 bytenr;
2096         int last_barrier = 0;
2097
2098         if (max_mirrors == 0)
2099                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2100
2101         /* make sure only the last submit_bh does a barrier */
2102         if (do_barriers) {
2103                 for (i = 0; i < max_mirrors; i++) {
2104                         bytenr = btrfs_sb_offset(i);
2105                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2106                             device->total_bytes)
2107                                 break;
2108                         last_barrier = i;
2109                 }
2110         }
2111
2112         for (i = 0; i < max_mirrors; i++) {
2113                 bytenr = btrfs_sb_offset(i);
2114                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2115                         break;
2116
2117                 if (wait) {
2118                         bh = __find_get_block(device->bdev, bytenr / 4096,
2119                                               BTRFS_SUPER_INFO_SIZE);
2120                         BUG_ON(!bh);
2121                         wait_on_buffer(bh);
2122                         if (!buffer_uptodate(bh))
2123                                 errors++;
2124
2125                         /* drop our reference */
2126                         brelse(bh);
2127
2128                         /* drop the reference from the wait == 0 run */
2129                         brelse(bh);
2130                         continue;
2131                 } else {
2132                         btrfs_set_super_bytenr(sb, bytenr);
2133
2134                         crc = ~(u32)0;
2135                         crc = btrfs_csum_data(NULL, (char *)sb +
2136                                               BTRFS_CSUM_SIZE, crc,
2137                                               BTRFS_SUPER_INFO_SIZE -
2138                                               BTRFS_CSUM_SIZE);
2139                         btrfs_csum_final(crc, sb->csum);
2140
2141                         /*
2142                          * one reference for us, and we leave it for the
2143                          * caller
2144                          */
2145                         bh = __getblk(device->bdev, bytenr / 4096,
2146                                       BTRFS_SUPER_INFO_SIZE);
2147                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2148
2149                         /* one reference for submit_bh */
2150                         get_bh(bh);
2151
2152                         set_buffer_uptodate(bh);
2153                         lock_buffer(bh);
2154                         bh->b_end_io = btrfs_end_buffer_write_sync;
2155                 }
2156
2157                 if (i == last_barrier && do_barriers && device->barriers) {
2158                         ret = submit_bh(WRITE_BARRIER, bh);
2159                         if (ret == -EOPNOTSUPP) {
2160                                 printk("btrfs: disabling barriers on dev %s\n",
2161                                        device->name);
2162                                 set_buffer_uptodate(bh);
2163                                 device->barriers = 0;
2164                                 /* one reference for submit_bh */
2165                                 get_bh(bh);
2166                                 lock_buffer(bh);
2167                                 ret = submit_bh(WRITE_SYNC, bh);
2168                         }
2169                 } else {
2170                         ret = submit_bh(WRITE_SYNC, bh);
2171                 }
2172
2173                 if (ret)
2174                         errors++;
2175         }
2176         return errors < i ? 0 : -1;
2177 }
2178
2179 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2180 {
2181         struct list_head *head;
2182         struct btrfs_device *dev;
2183         struct btrfs_super_block *sb;
2184         struct btrfs_dev_item *dev_item;
2185         int ret;
2186         int do_barriers;
2187         int max_errors;
2188         int total_errors = 0;
2189         u64 flags;
2190
2191         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2192         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2193
2194         sb = &root->fs_info->super_for_commit;
2195         dev_item = &sb->dev_item;
2196
2197         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2198         head = &root->fs_info->fs_devices->devices;
2199         list_for_each_entry(dev, head, dev_list) {
2200                 if (!dev->bdev) {
2201                         total_errors++;
2202                         continue;
2203                 }
2204                 if (!dev->in_fs_metadata || !dev->writeable)
2205                         continue;
2206
2207                 btrfs_set_stack_device_generation(dev_item, 0);
2208                 btrfs_set_stack_device_type(dev_item, dev->type);
2209                 btrfs_set_stack_device_id(dev_item, dev->devid);
2210                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2211                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2212                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2213                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2214                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2215                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2216                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2217
2218                 flags = btrfs_super_flags(sb);
2219                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2220
2221                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2222                 if (ret)
2223                         total_errors++;
2224         }
2225         if (total_errors > max_errors) {
2226                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2227                        total_errors);
2228                 BUG();
2229         }
2230
2231         total_errors = 0;
2232         list_for_each_entry(dev, head, dev_list) {
2233                 if (!dev->bdev)
2234                         continue;
2235                 if (!dev->in_fs_metadata || !dev->writeable)
2236                         continue;
2237
2238                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2239                 if (ret)
2240                         total_errors++;
2241         }
2242         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2243         if (total_errors > max_errors) {
2244                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2245                        total_errors);
2246                 BUG();
2247         }
2248         return 0;
2249 }
2250
2251 int write_ctree_super(struct btrfs_trans_handle *trans,
2252                       struct btrfs_root *root, int max_mirrors)
2253 {
2254         int ret;
2255
2256         ret = write_all_supers(root, max_mirrors);
2257         return ret;
2258 }
2259
2260 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2261 {
2262         spin_lock(&fs_info->fs_roots_radix_lock);
2263         radix_tree_delete(&fs_info->fs_roots_radix,
2264                           (unsigned long)root->root_key.objectid);
2265         spin_unlock(&fs_info->fs_roots_radix_lock);
2266         free_fs_root(root);
2267         return 0;
2268 }
2269
2270 static void free_fs_root(struct btrfs_root *root)
2271 {
2272         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2273         if (root->anon_super.s_dev) {
2274                 down_write(&root->anon_super.s_umount);
2275                 kill_anon_super(&root->anon_super);
2276         }
2277         free_extent_buffer(root->node);
2278         free_extent_buffer(root->commit_root);
2279         kfree(root->name);
2280         kfree(root);
2281 }
2282
2283 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2284 {
2285         int ret;
2286         struct btrfs_root *gang[8];
2287         int i;
2288
2289         while (1) {
2290                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2291                                              (void **)gang, 0,
2292                                              ARRAY_SIZE(gang));
2293                 if (!ret)
2294                         break;
2295                 for (i = 0; i < ret; i++)
2296                         btrfs_free_fs_root(fs_info, gang[i]);
2297         }
2298         return 0;
2299 }
2300
2301 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2302 {
2303         u64 root_objectid = 0;
2304         struct btrfs_root *gang[8];
2305         int i;
2306         int ret;
2307
2308         while (1) {
2309                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2310                                              (void **)gang, root_objectid,
2311                                              ARRAY_SIZE(gang));
2312                 if (!ret)
2313                         break;
2314
2315                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2316                 for (i = 0; i < ret; i++) {
2317                         root_objectid = gang[i]->root_key.objectid;
2318                         ret = btrfs_find_dead_roots(fs_info->tree_root,
2319                                                     root_objectid);
2320                         BUG_ON(ret);
2321                         btrfs_orphan_cleanup(gang[i]);
2322                 }
2323                 root_objectid++;
2324         }
2325         return 0;
2326 }
2327
2328 int btrfs_commit_super(struct btrfs_root *root)
2329 {
2330         struct btrfs_trans_handle *trans;
2331         int ret;
2332
2333         mutex_lock(&root->fs_info->cleaner_mutex);
2334         btrfs_clean_old_snapshots(root);
2335         mutex_unlock(&root->fs_info->cleaner_mutex);
2336         trans = btrfs_start_transaction(root, 1);
2337         ret = btrfs_commit_transaction(trans, root);
2338         BUG_ON(ret);
2339         /* run commit again to drop the original snapshot */
2340         trans = btrfs_start_transaction(root, 1);
2341         btrfs_commit_transaction(trans, root);
2342         ret = btrfs_write_and_wait_transaction(NULL, root);
2343         BUG_ON(ret);
2344
2345         ret = write_ctree_super(NULL, root, 0);
2346         return ret;
2347 }
2348
2349 int close_ctree(struct btrfs_root *root)
2350 {
2351         struct btrfs_fs_info *fs_info = root->fs_info;
2352         int ret;
2353
2354         fs_info->closing = 1;
2355         smp_mb();
2356
2357         kthread_stop(root->fs_info->transaction_kthread);
2358         kthread_stop(root->fs_info->cleaner_kthread);
2359
2360         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2361                 ret =  btrfs_commit_super(root);
2362                 if (ret)
2363                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2364         }
2365
2366         fs_info->closing = 2;
2367         smp_mb();
2368
2369         if (fs_info->delalloc_bytes) {
2370                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2371                        (unsigned long long)fs_info->delalloc_bytes);
2372         }
2373         if (fs_info->total_ref_cache_size) {
2374                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2375                        (unsigned long long)fs_info->total_ref_cache_size);
2376         }
2377
2378         free_extent_buffer(fs_info->extent_root->node);
2379         free_extent_buffer(fs_info->extent_root->commit_root);
2380         free_extent_buffer(fs_info->tree_root->node);
2381         free_extent_buffer(fs_info->tree_root->commit_root);
2382         free_extent_buffer(root->fs_info->chunk_root->node);
2383         free_extent_buffer(root->fs_info->chunk_root->commit_root);
2384         free_extent_buffer(root->fs_info->dev_root->node);
2385         free_extent_buffer(root->fs_info->dev_root->commit_root);
2386         free_extent_buffer(root->fs_info->csum_root->node);
2387         free_extent_buffer(root->fs_info->csum_root->commit_root);
2388
2389         btrfs_free_block_groups(root->fs_info);
2390
2391         del_fs_roots(fs_info);
2392
2393         iput(fs_info->btree_inode);
2394
2395         btrfs_stop_workers(&fs_info->fixup_workers);
2396         btrfs_stop_workers(&fs_info->delalloc_workers);
2397         btrfs_stop_workers(&fs_info->workers);
2398         btrfs_stop_workers(&fs_info->endio_workers);
2399         btrfs_stop_workers(&fs_info->endio_meta_workers);
2400         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2401         btrfs_stop_workers(&fs_info->endio_write_workers);
2402         btrfs_stop_workers(&fs_info->submit_workers);
2403
2404         btrfs_close_devices(fs_info->fs_devices);
2405         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2406
2407         bdi_destroy(&fs_info->bdi);
2408
2409         kfree(fs_info->extent_root);
2410         kfree(fs_info->tree_root);
2411         kfree(fs_info->chunk_root);
2412         kfree(fs_info->dev_root);
2413         kfree(fs_info->csum_root);
2414         return 0;
2415 }
2416
2417 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2418 {
2419         int ret;
2420         struct inode *btree_inode = buf->first_page->mapping->host;
2421
2422         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2423         if (!ret)
2424                 return ret;
2425
2426         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2427                                     parent_transid);
2428         return !ret;
2429 }
2430
2431 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2432 {
2433         struct inode *btree_inode = buf->first_page->mapping->host;
2434         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2435                                           buf);
2436 }
2437
2438 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2439 {
2440         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2441         u64 transid = btrfs_header_generation(buf);
2442         struct inode *btree_inode = root->fs_info->btree_inode;
2443         int was_dirty;
2444
2445         btrfs_assert_tree_locked(buf);
2446         if (transid != root->fs_info->generation) {
2447                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2448                        "found %llu running %llu\n",
2449                         (unsigned long long)buf->start,
2450                         (unsigned long long)transid,
2451                         (unsigned long long)root->fs_info->generation);
2452                 WARN_ON(1);
2453         }
2454         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2455                                             buf);
2456         if (!was_dirty) {
2457                 spin_lock(&root->fs_info->delalloc_lock);
2458                 root->fs_info->dirty_metadata_bytes += buf->len;
2459                 spin_unlock(&root->fs_info->delalloc_lock);
2460         }
2461 }
2462
2463 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2464 {
2465         /*
2466          * looks as though older kernels can get into trouble with
2467          * this code, they end up stuck in balance_dirty_pages forever
2468          */
2469         u64 num_dirty;
2470         unsigned long thresh = 32 * 1024 * 1024;
2471
2472         if (current->flags & PF_MEMALLOC)
2473                 return;
2474
2475         num_dirty = root->fs_info->dirty_metadata_bytes;
2476
2477         if (num_dirty > thresh) {
2478                 balance_dirty_pages_ratelimited_nr(
2479                                    root->fs_info->btree_inode->i_mapping, 1);
2480         }
2481         return;
2482 }
2483
2484 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2485 {
2486         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2487         int ret;
2488         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2489         if (ret == 0)
2490                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2491         return ret;
2492 }
2493
2494 int btree_lock_page_hook(struct page *page)
2495 {
2496         struct inode *inode = page->mapping->host;
2497         struct btrfs_root *root = BTRFS_I(inode)->root;
2498         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2499         struct extent_buffer *eb;
2500         unsigned long len;
2501         u64 bytenr = page_offset(page);
2502
2503         if (page->private == EXTENT_PAGE_PRIVATE)
2504                 goto out;
2505
2506         len = page->private >> 2;
2507         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2508         if (!eb)
2509                 goto out;
2510
2511         btrfs_tree_lock(eb);
2512         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2513
2514         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2515                 spin_lock(&root->fs_info->delalloc_lock);
2516                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2517                         root->fs_info->dirty_metadata_bytes -= eb->len;
2518                 else
2519                         WARN_ON(1);
2520                 spin_unlock(&root->fs_info->delalloc_lock);
2521         }
2522
2523         btrfs_tree_unlock(eb);
2524         free_extent_buffer(eb);
2525 out:
2526         lock_page(page);
2527         return 0;
2528 }
2529
2530 static struct extent_io_ops btree_extent_io_ops = {
2531         .write_cache_pages_lock_hook = btree_lock_page_hook,
2532         .readpage_end_io_hook = btree_readpage_end_io_hook,
2533         .submit_bio_hook = btree_submit_bio_hook,
2534         /* note we're sharing with inode.c for the merge bio hook */
2535         .merge_bio_hook = btrfs_merge_bio_hook,
2536 };