btrfs: add xxhash64 to checksumming algorithms
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44
45 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
46                                  BTRFS_HEADER_FLAG_RELOC |\
47                                  BTRFS_SUPER_FLAG_ERROR |\
48                                  BTRFS_SUPER_FLAG_SEEDING |\
49                                  BTRFS_SUPER_FLAG_METADUMP |\
50                                  BTRFS_SUPER_FLAG_METADUMP_V2)
51
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106         void *private_data;
107         struct bio *bio;
108         extent_submit_bio_start_t *submit_bio_start;
109         int mirror_num;
110         /*
111          * bio_offset is optional, can be used if the pages in the bio
112          * can't tell us where in the file the bio should go
113          */
114         u64 bio_offset;
115         struct btrfs_work work;
116         blk_status_t status;
117 };
118
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146
147 static struct btrfs_lockdep_keyset {
148         u64                     id;             /* root objectid */
149         const char              *name_stem;     /* lock name stem */
150         char                    names[BTRFS_MAX_LEVEL + 1][20];
151         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
154         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
155         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
156         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
157         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
158         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
159         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
160         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
161         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
162         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
163         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
164         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165         { .id = 0,                              .name_stem = "tree"     },
166 };
167
168 void __init btrfs_init_lockdep(void)
169 {
170         int i, j;
171
172         /* initialize lockdep class names */
173         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177                         snprintf(ks->names[j], sizeof(ks->names[j]),
178                                  "btrfs-%s-%02d", ks->name_stem, j);
179         }
180 }
181
182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183                                     int level)
184 {
185         struct btrfs_lockdep_keyset *ks;
186
187         BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189         /* find the matching keyset, id 0 is the default entry */
190         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191                 if (ks->id == objectid)
192                         break;
193
194         lockdep_set_class_and_name(&eb->lock,
195                                    &ks->keys[level], ks->names[level]);
196 }
197
198 #endif
199
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205                 struct page *page, size_t pg_offset, u64 start, u64 len,
206                 int create)
207 {
208         struct btrfs_fs_info *fs_info = inode->root->fs_info;
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 em->bdev = fs_info->fs_devices->latest_bdev;
217                 read_unlock(&em_tree->lock);
218                 goto out;
219         }
220         read_unlock(&em_tree->lock);
221
222         em = alloc_extent_map();
223         if (!em) {
224                 em = ERR_PTR(-ENOMEM);
225                 goto out;
226         }
227         em->start = 0;
228         em->len = (u64)-1;
229         em->block_len = (u64)-1;
230         em->block_start = 0;
231         em->bdev = fs_info->fs_devices->latest_bdev;
232
233         write_lock(&em_tree->lock);
234         ret = add_extent_mapping(em_tree, em, 0);
235         if (ret == -EEXIST) {
236                 free_extent_map(em);
237                 em = lookup_extent_mapping(em_tree, start, len);
238                 if (!em)
239                         em = ERR_PTR(-EIO);
240         } else if (ret) {
241                 free_extent_map(em);
242                 em = ERR_PTR(ret);
243         }
244         write_unlock(&em_tree->lock);
245
246 out:
247         return em;
248 }
249
250 /*
251  * Compute the csum of a btree block and store the result to provided buffer.
252  *
253  * Returns error if the extent buffer cannot be mapped.
254  */
255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257         struct btrfs_fs_info *fs_info = buf->fs_info;
258         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259         unsigned long len;
260         unsigned long cur_len;
261         unsigned long offset = BTRFS_CSUM_SIZE;
262         char *kaddr;
263         unsigned long map_start;
264         unsigned long map_len;
265         int err;
266
267         shash->tfm = fs_info->csum_shash;
268         crypto_shash_init(shash);
269
270         len = buf->len - offset;
271
272         while (len > 0) {
273                 /*
274                  * Note: we don't need to check for the err == 1 case here, as
275                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276                  * and 'min_len = 32' and the currently implemented mapping
277                  * algorithm we cannot cross a page boundary.
278                  */
279                 err = map_private_extent_buffer(buf, offset, 32,
280                                         &kaddr, &map_start, &map_len);
281                 if (WARN_ON(err))
282                         return err;
283                 cur_len = min(len, map_len - (offset - map_start));
284                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285                 len -= cur_len;
286                 offset += cur_len;
287         }
288         memset(result, 0, BTRFS_CSUM_SIZE);
289
290         crypto_shash_final(shash, result);
291
292         return 0;
293 }
294
295 /*
296  * we can't consider a given block up to date unless the transid of the
297  * block matches the transid in the parent node's pointer.  This is how we
298  * detect blocks that either didn't get written at all or got written
299  * in the wrong place.
300  */
301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302                                  struct extent_buffer *eb, u64 parent_transid,
303                                  int atomic)
304 {
305         struct extent_state *cached_state = NULL;
306         int ret;
307         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310                 return 0;
311
312         if (atomic)
313                 return -EAGAIN;
314
315         if (need_lock) {
316                 btrfs_tree_read_lock(eb);
317                 btrfs_set_lock_blocking_read(eb);
318         }
319
320         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321                          &cached_state);
322         if (extent_buffer_uptodate(eb) &&
323             btrfs_header_generation(eb) == parent_transid) {
324                 ret = 0;
325                 goto out;
326         }
327         btrfs_err_rl(eb->fs_info,
328                 "parent transid verify failed on %llu wanted %llu found %llu",
329                         eb->start,
330                         parent_transid, btrfs_header_generation(eb));
331         ret = 1;
332
333         /*
334          * Things reading via commit roots that don't have normal protection,
335          * like send, can have a really old block in cache that may point at a
336          * block that has been freed and re-allocated.  So don't clear uptodate
337          * if we find an eb that is under IO (dirty/writeback) because we could
338          * end up reading in the stale data and then writing it back out and
339          * making everybody very sad.
340          */
341         if (!extent_buffer_under_io(eb))
342                 clear_extent_buffer_uptodate(eb);
343 out:
344         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345                              &cached_state);
346         if (need_lock)
347                 btrfs_tree_read_unlock_blocking(eb);
348         return ret;
349 }
350
351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353         switch (csum_type) {
354         case BTRFS_CSUM_TYPE_CRC32:
355         case BTRFS_CSUM_TYPE_XXHASH:
356                 return true;
357         default:
358                 return false;
359         }
360 }
361
362 /*
363  * Return 0 if the superblock checksum type matches the checksum value of that
364  * algorithm. Pass the raw disk superblock data.
365  */
366 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
367                                   char *raw_disk_sb)
368 {
369         struct btrfs_super_block *disk_sb =
370                 (struct btrfs_super_block *)raw_disk_sb;
371         char result[BTRFS_CSUM_SIZE];
372         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
373
374         shash->tfm = fs_info->csum_shash;
375         crypto_shash_init(shash);
376
377         /*
378          * The super_block structure does not span the whole
379          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
380          * filled with zeros and is included in the checksum.
381          */
382         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
383                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
384         crypto_shash_final(shash, result);
385
386         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
387                 return 1;
388
389         return 0;
390 }
391
392 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
393                            struct btrfs_key *first_key, u64 parent_transid)
394 {
395         struct btrfs_fs_info *fs_info = eb->fs_info;
396         int found_level;
397         struct btrfs_key found_key;
398         int ret;
399
400         found_level = btrfs_header_level(eb);
401         if (found_level != level) {
402                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
403                      KERN_ERR "BTRFS: tree level check failed\n");
404                 btrfs_err(fs_info,
405 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
406                           eb->start, level, found_level);
407                 return -EIO;
408         }
409
410         if (!first_key)
411                 return 0;
412
413         /*
414          * For live tree block (new tree blocks in current transaction),
415          * we need proper lock context to avoid race, which is impossible here.
416          * So we only checks tree blocks which is read from disk, whose
417          * generation <= fs_info->last_trans_committed.
418          */
419         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
420                 return 0;
421
422         /* We have @first_key, so this @eb must have at least one item */
423         if (btrfs_header_nritems(eb) == 0) {
424                 btrfs_err(fs_info,
425                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
426                           eb->start);
427                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
428                 return -EUCLEAN;
429         }
430
431         if (found_level)
432                 btrfs_node_key_to_cpu(eb, &found_key, 0);
433         else
434                 btrfs_item_key_to_cpu(eb, &found_key, 0);
435         ret = btrfs_comp_cpu_keys(first_key, &found_key);
436
437         if (ret) {
438                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
439                      KERN_ERR "BTRFS: tree first key check failed\n");
440                 btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442                           eb->start, parent_transid, first_key->objectid,
443                           first_key->type, first_key->offset,
444                           found_key.objectid, found_key.type,
445                           found_key.offset);
446         }
447         return ret;
448 }
449
450 /*
451  * helper to read a given tree block, doing retries as required when
452  * the checksums don't match and we have alternate mirrors to try.
453  *
454  * @parent_transid:     expected transid, skip check if 0
455  * @level:              expected level, mandatory check
456  * @first_key:          expected key of first slot, skip check if NULL
457  */
458 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
459                                           u64 parent_transid, int level,
460                                           struct btrfs_key *first_key)
461 {
462         struct btrfs_fs_info *fs_info = eb->fs_info;
463         struct extent_io_tree *io_tree;
464         int failed = 0;
465         int ret;
466         int num_copies = 0;
467         int mirror_num = 0;
468         int failed_mirror = 0;
469
470         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
471         while (1) {
472                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
473                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
474                 if (!ret) {
475                         if (verify_parent_transid(io_tree, eb,
476                                                    parent_transid, 0))
477                                 ret = -EIO;
478                         else if (btrfs_verify_level_key(eb, level,
479                                                 first_key, parent_transid))
480                                 ret = -EUCLEAN;
481                         else
482                                 break;
483                 }
484
485                 num_copies = btrfs_num_copies(fs_info,
486                                               eb->start, eb->len);
487                 if (num_copies == 1)
488                         break;
489
490                 if (!failed_mirror) {
491                         failed = 1;
492                         failed_mirror = eb->read_mirror;
493                 }
494
495                 mirror_num++;
496                 if (mirror_num == failed_mirror)
497                         mirror_num++;
498
499                 if (mirror_num > num_copies)
500                         break;
501         }
502
503         if (failed && !ret && failed_mirror)
504                 btrfs_repair_eb_io_failure(eb, failed_mirror);
505
506         return ret;
507 }
508
509 /*
510  * checksum a dirty tree block before IO.  This has extra checks to make sure
511  * we only fill in the checksum field in the first page of a multi-page block
512  */
513
514 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
515 {
516         u64 start = page_offset(page);
517         u64 found_start;
518         u8 result[BTRFS_CSUM_SIZE];
519         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
520         struct extent_buffer *eb;
521         int ret;
522
523         eb = (struct extent_buffer *)page->private;
524         if (page != eb->pages[0])
525                 return 0;
526
527         found_start = btrfs_header_bytenr(eb);
528         /*
529          * Please do not consolidate these warnings into a single if.
530          * It is useful to know what went wrong.
531          */
532         if (WARN_ON(found_start != start))
533                 return -EUCLEAN;
534         if (WARN_ON(!PageUptodate(page)))
535                 return -EUCLEAN;
536
537         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
538                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
539
540         if (csum_tree_block(eb, result))
541                 return -EINVAL;
542
543         if (btrfs_header_level(eb))
544                 ret = btrfs_check_node(eb);
545         else
546                 ret = btrfs_check_leaf_full(eb);
547
548         if (ret < 0) {
549                 btrfs_print_tree(eb, 0);
550                 btrfs_err(fs_info,
551                 "block=%llu write time tree block corruption detected",
552                           eb->start);
553                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
554                 return ret;
555         }
556         write_extent_buffer(eb, result, 0, csum_size);
557
558         return 0;
559 }
560
561 static int check_tree_block_fsid(struct extent_buffer *eb)
562 {
563         struct btrfs_fs_info *fs_info = eb->fs_info;
564         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
565         u8 fsid[BTRFS_FSID_SIZE];
566         int ret = 1;
567
568         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
569         while (fs_devices) {
570                 u8 *metadata_uuid;
571
572                 /*
573                  * Checking the incompat flag is only valid for the current
574                  * fs. For seed devices it's forbidden to have their uuid
575                  * changed so reading ->fsid in this case is fine
576                  */
577                 if (fs_devices == fs_info->fs_devices &&
578                     btrfs_fs_incompat(fs_info, METADATA_UUID))
579                         metadata_uuid = fs_devices->metadata_uuid;
580                 else
581                         metadata_uuid = fs_devices->fsid;
582
583                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
584                         ret = 0;
585                         break;
586                 }
587                 fs_devices = fs_devices->seed;
588         }
589         return ret;
590 }
591
592 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
593                                       u64 phy_offset, struct page *page,
594                                       u64 start, u64 end, int mirror)
595 {
596         u64 found_start;
597         int found_level;
598         struct extent_buffer *eb;
599         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
600         struct btrfs_fs_info *fs_info = root->fs_info;
601         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
602         int ret = 0;
603         u8 result[BTRFS_CSUM_SIZE];
604         int reads_done;
605
606         if (!page->private)
607                 goto out;
608
609         eb = (struct extent_buffer *)page->private;
610
611         /* the pending IO might have been the only thing that kept this buffer
612          * in memory.  Make sure we have a ref for all this other checks
613          */
614         atomic_inc(&eb->refs);
615
616         reads_done = atomic_dec_and_test(&eb->io_pages);
617         if (!reads_done)
618                 goto err;
619
620         eb->read_mirror = mirror;
621         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
622                 ret = -EIO;
623                 goto err;
624         }
625
626         found_start = btrfs_header_bytenr(eb);
627         if (found_start != eb->start) {
628                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
629                              eb->start, found_start);
630                 ret = -EIO;
631                 goto err;
632         }
633         if (check_tree_block_fsid(eb)) {
634                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
635                              eb->start);
636                 ret = -EIO;
637                 goto err;
638         }
639         found_level = btrfs_header_level(eb);
640         if (found_level >= BTRFS_MAX_LEVEL) {
641                 btrfs_err(fs_info, "bad tree block level %d on %llu",
642                           (int)btrfs_header_level(eb), eb->start);
643                 ret = -EIO;
644                 goto err;
645         }
646
647         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
648                                        eb, found_level);
649
650         ret = csum_tree_block(eb, result);
651         if (ret)
652                 goto err;
653
654         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
655                 u32 val;
656                 u32 found = 0;
657
658                 memcpy(&found, result, csum_size);
659
660                 read_extent_buffer(eb, &val, 0, csum_size);
661                 btrfs_warn_rl(fs_info,
662                 "%s checksum verify failed on %llu wanted %x found %x level %d",
663                               fs_info->sb->s_id, eb->start,
664                               val, found, btrfs_header_level(eb));
665                 ret = -EUCLEAN;
666                 goto err;
667         }
668
669         /*
670          * If this is a leaf block and it is corrupt, set the corrupt bit so
671          * that we don't try and read the other copies of this block, just
672          * return -EIO.
673          */
674         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
675                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676                 ret = -EIO;
677         }
678
679         if (found_level > 0 && btrfs_check_node(eb))
680                 ret = -EIO;
681
682         if (!ret)
683                 set_extent_buffer_uptodate(eb);
684         else
685                 btrfs_err(fs_info,
686                           "block=%llu read time tree block corruption detected",
687                           eb->start);
688 err:
689         if (reads_done &&
690             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691                 btree_readahead_hook(eb, ret);
692
693         if (ret) {
694                 /*
695                  * our io error hook is going to dec the io pages
696                  * again, we have to make sure it has something
697                  * to decrement
698                  */
699                 atomic_inc(&eb->io_pages);
700                 clear_extent_buffer_uptodate(eb);
701         }
702         free_extent_buffer(eb);
703 out:
704         return ret;
705 }
706
707 static void end_workqueue_bio(struct bio *bio)
708 {
709         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
710         struct btrfs_fs_info *fs_info;
711         struct btrfs_workqueue *wq;
712
713         fs_info = end_io_wq->info;
714         end_io_wq->status = bio->bi_status;
715
716         if (bio_op(bio) == REQ_OP_WRITE) {
717                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
718                         wq = fs_info->endio_meta_write_workers;
719                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
720                         wq = fs_info->endio_freespace_worker;
721                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
722                         wq = fs_info->endio_raid56_workers;
723                 else
724                         wq = fs_info->endio_write_workers;
725         } else {
726                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
727                         wq = fs_info->endio_repair_workers;
728                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
729                         wq = fs_info->endio_raid56_workers;
730                 else if (end_io_wq->metadata)
731                         wq = fs_info->endio_meta_workers;
732                 else
733                         wq = fs_info->endio_workers;
734         }
735
736         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
737         btrfs_queue_work(wq, &end_io_wq->work);
738 }
739
740 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
741                         enum btrfs_wq_endio_type metadata)
742 {
743         struct btrfs_end_io_wq *end_io_wq;
744
745         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
746         if (!end_io_wq)
747                 return BLK_STS_RESOURCE;
748
749         end_io_wq->private = bio->bi_private;
750         end_io_wq->end_io = bio->bi_end_io;
751         end_io_wq->info = info;
752         end_io_wq->status = 0;
753         end_io_wq->bio = bio;
754         end_io_wq->metadata = metadata;
755
756         bio->bi_private = end_io_wq;
757         bio->bi_end_io = end_workqueue_bio;
758         return 0;
759 }
760
761 static void run_one_async_start(struct btrfs_work *work)
762 {
763         struct async_submit_bio *async;
764         blk_status_t ret;
765
766         async = container_of(work, struct  async_submit_bio, work);
767         ret = async->submit_bio_start(async->private_data, async->bio,
768                                       async->bio_offset);
769         if (ret)
770                 async->status = ret;
771 }
772
773 /*
774  * In order to insert checksums into the metadata in large chunks, we wait
775  * until bio submission time.   All the pages in the bio are checksummed and
776  * sums are attached onto the ordered extent record.
777  *
778  * At IO completion time the csums attached on the ordered extent record are
779  * inserted into the tree.
780  */
781 static void run_one_async_done(struct btrfs_work *work)
782 {
783         struct async_submit_bio *async;
784         struct inode *inode;
785         blk_status_t ret;
786
787         async = container_of(work, struct  async_submit_bio, work);
788         inode = async->private_data;
789
790         /* If an error occurred we just want to clean up the bio and move on */
791         if (async->status) {
792                 async->bio->bi_status = async->status;
793                 bio_endio(async->bio);
794                 return;
795         }
796
797         /*
798          * All of the bios that pass through here are from async helpers.
799          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
800          * This changes nothing when cgroups aren't in use.
801          */
802         async->bio->bi_opf |= REQ_CGROUP_PUNT;
803         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
804         if (ret) {
805                 async->bio->bi_status = ret;
806                 bio_endio(async->bio);
807         }
808 }
809
810 static void run_one_async_free(struct btrfs_work *work)
811 {
812         struct async_submit_bio *async;
813
814         async = container_of(work, struct  async_submit_bio, work);
815         kfree(async);
816 }
817
818 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819                                  int mirror_num, unsigned long bio_flags,
820                                  u64 bio_offset, void *private_data,
821                                  extent_submit_bio_start_t *submit_bio_start)
822 {
823         struct async_submit_bio *async;
824
825         async = kmalloc(sizeof(*async), GFP_NOFS);
826         if (!async)
827                 return BLK_STS_RESOURCE;
828
829         async->private_data = private_data;
830         async->bio = bio;
831         async->mirror_num = mirror_num;
832         async->submit_bio_start = submit_bio_start;
833
834         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
835                         run_one_async_free);
836
837         async->bio_offset = bio_offset;
838
839         async->status = 0;
840
841         if (op_is_sync(bio->bi_opf))
842                 btrfs_set_work_high_priority(&async->work);
843
844         btrfs_queue_work(fs_info->workers, &async->work);
845         return 0;
846 }
847
848 static blk_status_t btree_csum_one_bio(struct bio *bio)
849 {
850         struct bio_vec *bvec;
851         struct btrfs_root *root;
852         int ret = 0;
853         struct bvec_iter_all iter_all;
854
855         ASSERT(!bio_flagged(bio, BIO_CLONED));
856         bio_for_each_segment_all(bvec, bio, iter_all) {
857                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
858                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
859                 if (ret)
860                         break;
861         }
862
863         return errno_to_blk_status(ret);
864 }
865
866 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
867                                              u64 bio_offset)
868 {
869         /*
870          * when we're called for a write, we're already in the async
871          * submission context.  Just jump into btrfs_map_bio
872          */
873         return btree_csum_one_bio(bio);
874 }
875
876 static int check_async_write(struct btrfs_fs_info *fs_info,
877                              struct btrfs_inode *bi)
878 {
879         if (atomic_read(&bi->sync_writers))
880                 return 0;
881         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
882                 return 0;
883         return 1;
884 }
885
886 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
887                                           int mirror_num,
888                                           unsigned long bio_flags)
889 {
890         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
891         int async = check_async_write(fs_info, BTRFS_I(inode));
892         blk_status_t ret;
893
894         if (bio_op(bio) != REQ_OP_WRITE) {
895                 /*
896                  * called for a read, do the setup so that checksum validation
897                  * can happen in the async kernel threads
898                  */
899                 ret = btrfs_bio_wq_end_io(fs_info, bio,
900                                           BTRFS_WQ_ENDIO_METADATA);
901                 if (ret)
902                         goto out_w_error;
903                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
904         } else if (!async) {
905                 ret = btree_csum_one_bio(bio);
906                 if (ret)
907                         goto out_w_error;
908                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
909         } else {
910                 /*
911                  * kthread helpers are used to submit writes so that
912                  * checksumming can happen in parallel across all CPUs
913                  */
914                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
915                                           0, inode, btree_submit_bio_start);
916         }
917
918         if (ret)
919                 goto out_w_error;
920         return 0;
921
922 out_w_error:
923         bio->bi_status = ret;
924         bio_endio(bio);
925         return ret;
926 }
927
928 #ifdef CONFIG_MIGRATION
929 static int btree_migratepage(struct address_space *mapping,
930                         struct page *newpage, struct page *page,
931                         enum migrate_mode mode)
932 {
933         /*
934          * we can't safely write a btree page from here,
935          * we haven't done the locking hook
936          */
937         if (PageDirty(page))
938                 return -EAGAIN;
939         /*
940          * Buffers may be managed in a filesystem specific way.
941          * We must have no buffers or drop them.
942          */
943         if (page_has_private(page) &&
944             !try_to_release_page(page, GFP_KERNEL))
945                 return -EAGAIN;
946         return migrate_page(mapping, newpage, page, mode);
947 }
948 #endif
949
950
951 static int btree_writepages(struct address_space *mapping,
952                             struct writeback_control *wbc)
953 {
954         struct btrfs_fs_info *fs_info;
955         int ret;
956
957         if (wbc->sync_mode == WB_SYNC_NONE) {
958
959                 if (wbc->for_kupdate)
960                         return 0;
961
962                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
963                 /* this is a bit racy, but that's ok */
964                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
965                                              BTRFS_DIRTY_METADATA_THRESH,
966                                              fs_info->dirty_metadata_batch);
967                 if (ret < 0)
968                         return 0;
969         }
970         return btree_write_cache_pages(mapping, wbc);
971 }
972
973 static int btree_readpage(struct file *file, struct page *page)
974 {
975         struct extent_io_tree *tree;
976         tree = &BTRFS_I(page->mapping->host)->io_tree;
977         return extent_read_full_page(tree, page, btree_get_extent, 0);
978 }
979
980 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
981 {
982         if (PageWriteback(page) || PageDirty(page))
983                 return 0;
984
985         return try_release_extent_buffer(page);
986 }
987
988 static void btree_invalidatepage(struct page *page, unsigned int offset,
989                                  unsigned int length)
990 {
991         struct extent_io_tree *tree;
992         tree = &BTRFS_I(page->mapping->host)->io_tree;
993         extent_invalidatepage(tree, page, offset);
994         btree_releasepage(page, GFP_NOFS);
995         if (PagePrivate(page)) {
996                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
997                            "page private not zero on page %llu",
998                            (unsigned long long)page_offset(page));
999                 ClearPagePrivate(page);
1000                 set_page_private(page, 0);
1001                 put_page(page);
1002         }
1003 }
1004
1005 static int btree_set_page_dirty(struct page *page)
1006 {
1007 #ifdef DEBUG
1008         struct extent_buffer *eb;
1009
1010         BUG_ON(!PagePrivate(page));
1011         eb = (struct extent_buffer *)page->private;
1012         BUG_ON(!eb);
1013         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1014         BUG_ON(!atomic_read(&eb->refs));
1015         btrfs_assert_tree_locked(eb);
1016 #endif
1017         return __set_page_dirty_nobuffers(page);
1018 }
1019
1020 static const struct address_space_operations btree_aops = {
1021         .readpage       = btree_readpage,
1022         .writepages     = btree_writepages,
1023         .releasepage    = btree_releasepage,
1024         .invalidatepage = btree_invalidatepage,
1025 #ifdef CONFIG_MIGRATION
1026         .migratepage    = btree_migratepage,
1027 #endif
1028         .set_page_dirty = btree_set_page_dirty,
1029 };
1030
1031 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1032 {
1033         struct extent_buffer *buf = NULL;
1034         int ret;
1035
1036         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1037         if (IS_ERR(buf))
1038                 return;
1039
1040         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1041         if (ret < 0)
1042                 free_extent_buffer_stale(buf);
1043         else
1044                 free_extent_buffer(buf);
1045 }
1046
1047 struct extent_buffer *btrfs_find_create_tree_block(
1048                                                 struct btrfs_fs_info *fs_info,
1049                                                 u64 bytenr)
1050 {
1051         if (btrfs_is_testing(fs_info))
1052                 return alloc_test_extent_buffer(fs_info, bytenr);
1053         return alloc_extent_buffer(fs_info, bytenr);
1054 }
1055
1056 /*
1057  * Read tree block at logical address @bytenr and do variant basic but critical
1058  * verification.
1059  *
1060  * @parent_transid:     expected transid of this tree block, skip check if 0
1061  * @level:              expected level, mandatory check
1062  * @first_key:          expected key in slot 0, skip check if NULL
1063  */
1064 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1065                                       u64 parent_transid, int level,
1066                                       struct btrfs_key *first_key)
1067 {
1068         struct extent_buffer *buf = NULL;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1072         if (IS_ERR(buf))
1073                 return buf;
1074
1075         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1076                                              level, first_key);
1077         if (ret) {
1078                 free_extent_buffer_stale(buf);
1079                 return ERR_PTR(ret);
1080         }
1081         return buf;
1082
1083 }
1084
1085 void btrfs_clean_tree_block(struct extent_buffer *buf)
1086 {
1087         struct btrfs_fs_info *fs_info = buf->fs_info;
1088         if (btrfs_header_generation(buf) ==
1089             fs_info->running_transaction->transid) {
1090                 btrfs_assert_tree_locked(buf);
1091
1092                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1093                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1094                                                  -buf->len,
1095                                                  fs_info->dirty_metadata_batch);
1096                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1097                         btrfs_set_lock_blocking_write(buf);
1098                         clear_extent_buffer_dirty(buf);
1099                 }
1100         }
1101 }
1102
1103 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1104 {
1105         struct btrfs_subvolume_writers *writers;
1106         int ret;
1107
1108         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1109         if (!writers)
1110                 return ERR_PTR(-ENOMEM);
1111
1112         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1113         if (ret < 0) {
1114                 kfree(writers);
1115                 return ERR_PTR(ret);
1116         }
1117
1118         init_waitqueue_head(&writers->wait);
1119         return writers;
1120 }
1121
1122 static void
1123 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1124 {
1125         percpu_counter_destroy(&writers->counter);
1126         kfree(writers);
1127 }
1128
1129 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1130                          u64 objectid)
1131 {
1132         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1133         root->node = NULL;
1134         root->commit_root = NULL;
1135         root->state = 0;
1136         root->orphan_cleanup_state = 0;
1137
1138         root->last_trans = 0;
1139         root->highest_objectid = 0;
1140         root->nr_delalloc_inodes = 0;
1141         root->nr_ordered_extents = 0;
1142         root->inode_tree = RB_ROOT;
1143         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1144         root->block_rsv = NULL;
1145
1146         INIT_LIST_HEAD(&root->dirty_list);
1147         INIT_LIST_HEAD(&root->root_list);
1148         INIT_LIST_HEAD(&root->delalloc_inodes);
1149         INIT_LIST_HEAD(&root->delalloc_root);
1150         INIT_LIST_HEAD(&root->ordered_extents);
1151         INIT_LIST_HEAD(&root->ordered_root);
1152         INIT_LIST_HEAD(&root->reloc_dirty_list);
1153         INIT_LIST_HEAD(&root->logged_list[0]);
1154         INIT_LIST_HEAD(&root->logged_list[1]);
1155         spin_lock_init(&root->inode_lock);
1156         spin_lock_init(&root->delalloc_lock);
1157         spin_lock_init(&root->ordered_extent_lock);
1158         spin_lock_init(&root->accounting_lock);
1159         spin_lock_init(&root->log_extents_lock[0]);
1160         spin_lock_init(&root->log_extents_lock[1]);
1161         spin_lock_init(&root->qgroup_meta_rsv_lock);
1162         mutex_init(&root->objectid_mutex);
1163         mutex_init(&root->log_mutex);
1164         mutex_init(&root->ordered_extent_mutex);
1165         mutex_init(&root->delalloc_mutex);
1166         init_waitqueue_head(&root->log_writer_wait);
1167         init_waitqueue_head(&root->log_commit_wait[0]);
1168         init_waitqueue_head(&root->log_commit_wait[1]);
1169         INIT_LIST_HEAD(&root->log_ctxs[0]);
1170         INIT_LIST_HEAD(&root->log_ctxs[1]);
1171         atomic_set(&root->log_commit[0], 0);
1172         atomic_set(&root->log_commit[1], 0);
1173         atomic_set(&root->log_writers, 0);
1174         atomic_set(&root->log_batch, 0);
1175         refcount_set(&root->refs, 1);
1176         atomic_set(&root->will_be_snapshotted, 0);
1177         atomic_set(&root->snapshot_force_cow, 0);
1178         atomic_set(&root->nr_swapfiles, 0);
1179         root->log_transid = 0;
1180         root->log_transid_committed = -1;
1181         root->last_log_commit = 0;
1182         if (!dummy)
1183                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1184                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1185
1186         memset(&root->root_key, 0, sizeof(root->root_key));
1187         memset(&root->root_item, 0, sizeof(root->root_item));
1188         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1189         if (!dummy)
1190                 root->defrag_trans_start = fs_info->generation;
1191         else
1192                 root->defrag_trans_start = 0;
1193         root->root_key.objectid = objectid;
1194         root->anon_dev = 0;
1195
1196         spin_lock_init(&root->root_item_lock);
1197         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1198 }
1199
1200 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1201                 gfp_t flags)
1202 {
1203         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1204         if (root)
1205                 root->fs_info = fs_info;
1206         return root;
1207 }
1208
1209 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1210 /* Should only be used by the testing infrastructure */
1211 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1212 {
1213         struct btrfs_root *root;
1214
1215         if (!fs_info)
1216                 return ERR_PTR(-EINVAL);
1217
1218         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1219         if (!root)
1220                 return ERR_PTR(-ENOMEM);
1221
1222         /* We don't use the stripesize in selftest, set it as sectorsize */
1223         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1224         root->alloc_bytenr = 0;
1225
1226         return root;
1227 }
1228 #endif
1229
1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231                                      u64 objectid)
1232 {
1233         struct btrfs_fs_info *fs_info = trans->fs_info;
1234         struct extent_buffer *leaf;
1235         struct btrfs_root *tree_root = fs_info->tree_root;
1236         struct btrfs_root *root;
1237         struct btrfs_key key;
1238         unsigned int nofs_flag;
1239         int ret = 0;
1240         uuid_le uuid = NULL_UUID_LE;
1241
1242         /*
1243          * We're holding a transaction handle, so use a NOFS memory allocation
1244          * context to avoid deadlock if reclaim happens.
1245          */
1246         nofs_flag = memalloc_nofs_save();
1247         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1248         memalloc_nofs_restore(nofs_flag);
1249         if (!root)
1250                 return ERR_PTR(-ENOMEM);
1251
1252         __setup_root(root, fs_info, objectid);
1253         root->root_key.objectid = objectid;
1254         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1255         root->root_key.offset = 0;
1256
1257         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1258         if (IS_ERR(leaf)) {
1259                 ret = PTR_ERR(leaf);
1260                 leaf = NULL;
1261                 goto fail;
1262         }
1263
1264         root->node = leaf;
1265         btrfs_mark_buffer_dirty(leaf);
1266
1267         root->commit_root = btrfs_root_node(root);
1268         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1269
1270         root->root_item.flags = 0;
1271         root->root_item.byte_limit = 0;
1272         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1273         btrfs_set_root_generation(&root->root_item, trans->transid);
1274         btrfs_set_root_level(&root->root_item, 0);
1275         btrfs_set_root_refs(&root->root_item, 1);
1276         btrfs_set_root_used(&root->root_item, leaf->len);
1277         btrfs_set_root_last_snapshot(&root->root_item, 0);
1278         btrfs_set_root_dirid(&root->root_item, 0);
1279         if (is_fstree(objectid))
1280                 uuid_le_gen(&uuid);
1281         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1282         root->root_item.drop_level = 0;
1283
1284         key.objectid = objectid;
1285         key.type = BTRFS_ROOT_ITEM_KEY;
1286         key.offset = 0;
1287         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1288         if (ret)
1289                 goto fail;
1290
1291         btrfs_tree_unlock(leaf);
1292
1293         return root;
1294
1295 fail:
1296         if (leaf) {
1297                 btrfs_tree_unlock(leaf);
1298                 free_extent_buffer(root->commit_root);
1299                 free_extent_buffer(leaf);
1300         }
1301         kfree(root);
1302
1303         return ERR_PTR(ret);
1304 }
1305
1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307                                          struct btrfs_fs_info *fs_info)
1308 {
1309         struct btrfs_root *root;
1310         struct extent_buffer *leaf;
1311
1312         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1313         if (!root)
1314                 return ERR_PTR(-ENOMEM);
1315
1316         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1317
1318         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1319         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1320         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1321
1322         /*
1323          * DON'T set REF_COWS for log trees
1324          *
1325          * log trees do not get reference counted because they go away
1326          * before a real commit is actually done.  They do store pointers
1327          * to file data extents, and those reference counts still get
1328          * updated (along with back refs to the log tree).
1329          */
1330
1331         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1332                         NULL, 0, 0, 0);
1333         if (IS_ERR(leaf)) {
1334                 kfree(root);
1335                 return ERR_CAST(leaf);
1336         }
1337
1338         root->node = leaf;
1339
1340         btrfs_mark_buffer_dirty(root->node);
1341         btrfs_tree_unlock(root->node);
1342         return root;
1343 }
1344
1345 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1346                              struct btrfs_fs_info *fs_info)
1347 {
1348         struct btrfs_root *log_root;
1349
1350         log_root = alloc_log_tree(trans, fs_info);
1351         if (IS_ERR(log_root))
1352                 return PTR_ERR(log_root);
1353         WARN_ON(fs_info->log_root_tree);
1354         fs_info->log_root_tree = log_root;
1355         return 0;
1356 }
1357
1358 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1359                        struct btrfs_root *root)
1360 {
1361         struct btrfs_fs_info *fs_info = root->fs_info;
1362         struct btrfs_root *log_root;
1363         struct btrfs_inode_item *inode_item;
1364
1365         log_root = alloc_log_tree(trans, fs_info);
1366         if (IS_ERR(log_root))
1367                 return PTR_ERR(log_root);
1368
1369         log_root->last_trans = trans->transid;
1370         log_root->root_key.offset = root->root_key.objectid;
1371
1372         inode_item = &log_root->root_item.inode;
1373         btrfs_set_stack_inode_generation(inode_item, 1);
1374         btrfs_set_stack_inode_size(inode_item, 3);
1375         btrfs_set_stack_inode_nlink(inode_item, 1);
1376         btrfs_set_stack_inode_nbytes(inode_item,
1377                                      fs_info->nodesize);
1378         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1379
1380         btrfs_set_root_node(&log_root->root_item, log_root->node);
1381
1382         WARN_ON(root->log_root);
1383         root->log_root = log_root;
1384         root->log_transid = 0;
1385         root->log_transid_committed = -1;
1386         root->last_log_commit = 0;
1387         return 0;
1388 }
1389
1390 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1391                                                struct btrfs_key *key)
1392 {
1393         struct btrfs_root *root;
1394         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1395         struct btrfs_path *path;
1396         u64 generation;
1397         int ret;
1398         int level;
1399
1400         path = btrfs_alloc_path();
1401         if (!path)
1402                 return ERR_PTR(-ENOMEM);
1403
1404         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1405         if (!root) {
1406                 ret = -ENOMEM;
1407                 goto alloc_fail;
1408         }
1409
1410         __setup_root(root, fs_info, key->objectid);
1411
1412         ret = btrfs_find_root(tree_root, key, path,
1413                               &root->root_item, &root->root_key);
1414         if (ret) {
1415                 if (ret > 0)
1416                         ret = -ENOENT;
1417                 goto find_fail;
1418         }
1419
1420         generation = btrfs_root_generation(&root->root_item);
1421         level = btrfs_root_level(&root->root_item);
1422         root->node = read_tree_block(fs_info,
1423                                      btrfs_root_bytenr(&root->root_item),
1424                                      generation, level, NULL);
1425         if (IS_ERR(root->node)) {
1426                 ret = PTR_ERR(root->node);
1427                 goto find_fail;
1428         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1429                 ret = -EIO;
1430                 free_extent_buffer(root->node);
1431                 goto find_fail;
1432         }
1433         root->commit_root = btrfs_root_node(root);
1434 out:
1435         btrfs_free_path(path);
1436         return root;
1437
1438 find_fail:
1439         kfree(root);
1440 alloc_fail:
1441         root = ERR_PTR(ret);
1442         goto out;
1443 }
1444
1445 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1446                                       struct btrfs_key *location)
1447 {
1448         struct btrfs_root *root;
1449
1450         root = btrfs_read_tree_root(tree_root, location);
1451         if (IS_ERR(root))
1452                 return root;
1453
1454         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1455                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1456                 btrfs_check_and_init_root_item(&root->root_item);
1457         }
1458
1459         return root;
1460 }
1461
1462 int btrfs_init_fs_root(struct btrfs_root *root)
1463 {
1464         int ret;
1465         struct btrfs_subvolume_writers *writers;
1466
1467         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1468         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1469                                         GFP_NOFS);
1470         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1471                 ret = -ENOMEM;
1472                 goto fail;
1473         }
1474
1475         writers = btrfs_alloc_subvolume_writers();
1476         if (IS_ERR(writers)) {
1477                 ret = PTR_ERR(writers);
1478                 goto fail;
1479         }
1480         root->subv_writers = writers;
1481
1482         btrfs_init_free_ino_ctl(root);
1483         spin_lock_init(&root->ino_cache_lock);
1484         init_waitqueue_head(&root->ino_cache_wait);
1485
1486         ret = get_anon_bdev(&root->anon_dev);
1487         if (ret)
1488                 goto fail;
1489
1490         mutex_lock(&root->objectid_mutex);
1491         ret = btrfs_find_highest_objectid(root,
1492                                         &root->highest_objectid);
1493         if (ret) {
1494                 mutex_unlock(&root->objectid_mutex);
1495                 goto fail;
1496         }
1497
1498         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1499
1500         mutex_unlock(&root->objectid_mutex);
1501
1502         return 0;
1503 fail:
1504         /* The caller is responsible to call btrfs_free_fs_root */
1505         return ret;
1506 }
1507
1508 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1509                                         u64 root_id)
1510 {
1511         struct btrfs_root *root;
1512
1513         spin_lock(&fs_info->fs_roots_radix_lock);
1514         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1515                                  (unsigned long)root_id);
1516         spin_unlock(&fs_info->fs_roots_radix_lock);
1517         return root;
1518 }
1519
1520 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1521                          struct btrfs_root *root)
1522 {
1523         int ret;
1524
1525         ret = radix_tree_preload(GFP_NOFS);
1526         if (ret)
1527                 return ret;
1528
1529         spin_lock(&fs_info->fs_roots_radix_lock);
1530         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1531                                 (unsigned long)root->root_key.objectid,
1532                                 root);
1533         if (ret == 0)
1534                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1535         spin_unlock(&fs_info->fs_roots_radix_lock);
1536         radix_tree_preload_end();
1537
1538         return ret;
1539 }
1540
1541 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1542                                      struct btrfs_key *location,
1543                                      bool check_ref)
1544 {
1545         struct btrfs_root *root;
1546         struct btrfs_path *path;
1547         struct btrfs_key key;
1548         int ret;
1549
1550         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1551                 return fs_info->tree_root;
1552         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1553                 return fs_info->extent_root;
1554         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1555                 return fs_info->chunk_root;
1556         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1557                 return fs_info->dev_root;
1558         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1559                 return fs_info->csum_root;
1560         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1561                 return fs_info->quota_root ? fs_info->quota_root :
1562                                              ERR_PTR(-ENOENT);
1563         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1564                 return fs_info->uuid_root ? fs_info->uuid_root :
1565                                             ERR_PTR(-ENOENT);
1566         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1567                 return fs_info->free_space_root ? fs_info->free_space_root :
1568                                                   ERR_PTR(-ENOENT);
1569 again:
1570         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1571         if (root) {
1572                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1573                         return ERR_PTR(-ENOENT);
1574                 return root;
1575         }
1576
1577         root = btrfs_read_fs_root(fs_info->tree_root, location);
1578         if (IS_ERR(root))
1579                 return root;
1580
1581         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582                 ret = -ENOENT;
1583                 goto fail;
1584         }
1585
1586         ret = btrfs_init_fs_root(root);
1587         if (ret)
1588                 goto fail;
1589
1590         path = btrfs_alloc_path();
1591         if (!path) {
1592                 ret = -ENOMEM;
1593                 goto fail;
1594         }
1595         key.objectid = BTRFS_ORPHAN_OBJECTID;
1596         key.type = BTRFS_ORPHAN_ITEM_KEY;
1597         key.offset = location->objectid;
1598
1599         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600         btrfs_free_path(path);
1601         if (ret < 0)
1602                 goto fail;
1603         if (ret == 0)
1604                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605
1606         ret = btrfs_insert_fs_root(fs_info, root);
1607         if (ret) {
1608                 if (ret == -EEXIST) {
1609                         btrfs_free_fs_root(root);
1610                         goto again;
1611                 }
1612                 goto fail;
1613         }
1614         return root;
1615 fail:
1616         btrfs_free_fs_root(root);
1617         return ERR_PTR(ret);
1618 }
1619
1620 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1621 {
1622         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1623         int ret = 0;
1624         struct btrfs_device *device;
1625         struct backing_dev_info *bdi;
1626
1627         rcu_read_lock();
1628         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1629                 if (!device->bdev)
1630                         continue;
1631                 bdi = device->bdev->bd_bdi;
1632                 if (bdi_congested(bdi, bdi_bits)) {
1633                         ret = 1;
1634                         break;
1635                 }
1636         }
1637         rcu_read_unlock();
1638         return ret;
1639 }
1640
1641 /*
1642  * called by the kthread helper functions to finally call the bio end_io
1643  * functions.  This is where read checksum verification actually happens
1644  */
1645 static void end_workqueue_fn(struct btrfs_work *work)
1646 {
1647         struct bio *bio;
1648         struct btrfs_end_io_wq *end_io_wq;
1649
1650         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1651         bio = end_io_wq->bio;
1652
1653         bio->bi_status = end_io_wq->status;
1654         bio->bi_private = end_io_wq->private;
1655         bio->bi_end_io = end_io_wq->end_io;
1656         bio_endio(bio);
1657         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1658 }
1659
1660 static int cleaner_kthread(void *arg)
1661 {
1662         struct btrfs_root *root = arg;
1663         struct btrfs_fs_info *fs_info = root->fs_info;
1664         int again;
1665
1666         while (1) {
1667                 again = 0;
1668
1669                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1670
1671                 /* Make the cleaner go to sleep early. */
1672                 if (btrfs_need_cleaner_sleep(fs_info))
1673                         goto sleep;
1674
1675                 /*
1676                  * Do not do anything if we might cause open_ctree() to block
1677                  * before we have finished mounting the filesystem.
1678                  */
1679                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1680                         goto sleep;
1681
1682                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1683                         goto sleep;
1684
1685                 /*
1686                  * Avoid the problem that we change the status of the fs
1687                  * during the above check and trylock.
1688                  */
1689                 if (btrfs_need_cleaner_sleep(fs_info)) {
1690                         mutex_unlock(&fs_info->cleaner_mutex);
1691                         goto sleep;
1692                 }
1693
1694                 btrfs_run_delayed_iputs(fs_info);
1695
1696                 again = btrfs_clean_one_deleted_snapshot(root);
1697                 mutex_unlock(&fs_info->cleaner_mutex);
1698
1699                 /*
1700                  * The defragger has dealt with the R/O remount and umount,
1701                  * needn't do anything special here.
1702                  */
1703                 btrfs_run_defrag_inodes(fs_info);
1704
1705                 /*
1706                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1707                  * with relocation (btrfs_relocate_chunk) and relocation
1708                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1709                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1710                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1711                  * unused block groups.
1712                  */
1713                 btrfs_delete_unused_bgs(fs_info);
1714 sleep:
1715                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1716                 if (kthread_should_park())
1717                         kthread_parkme();
1718                 if (kthread_should_stop())
1719                         return 0;
1720                 if (!again) {
1721                         set_current_state(TASK_INTERRUPTIBLE);
1722                         schedule();
1723                         __set_current_state(TASK_RUNNING);
1724                 }
1725         }
1726 }
1727
1728 static int transaction_kthread(void *arg)
1729 {
1730         struct btrfs_root *root = arg;
1731         struct btrfs_fs_info *fs_info = root->fs_info;
1732         struct btrfs_trans_handle *trans;
1733         struct btrfs_transaction *cur;
1734         u64 transid;
1735         time64_t now;
1736         unsigned long delay;
1737         bool cannot_commit;
1738
1739         do {
1740                 cannot_commit = false;
1741                 delay = HZ * fs_info->commit_interval;
1742                 mutex_lock(&fs_info->transaction_kthread_mutex);
1743
1744                 spin_lock(&fs_info->trans_lock);
1745                 cur = fs_info->running_transaction;
1746                 if (!cur) {
1747                         spin_unlock(&fs_info->trans_lock);
1748                         goto sleep;
1749                 }
1750
1751                 now = ktime_get_seconds();
1752                 if (cur->state < TRANS_STATE_COMMIT_START &&
1753                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1754                     (now < cur->start_time ||
1755                      now - cur->start_time < fs_info->commit_interval)) {
1756                         spin_unlock(&fs_info->trans_lock);
1757                         delay = HZ * 5;
1758                         goto sleep;
1759                 }
1760                 transid = cur->transid;
1761                 spin_unlock(&fs_info->trans_lock);
1762
1763                 /* If the file system is aborted, this will always fail. */
1764                 trans = btrfs_attach_transaction(root);
1765                 if (IS_ERR(trans)) {
1766                         if (PTR_ERR(trans) != -ENOENT)
1767                                 cannot_commit = true;
1768                         goto sleep;
1769                 }
1770                 if (transid == trans->transid) {
1771                         btrfs_commit_transaction(trans);
1772                 } else {
1773                         btrfs_end_transaction(trans);
1774                 }
1775 sleep:
1776                 wake_up_process(fs_info->cleaner_kthread);
1777                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1778
1779                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1780                                       &fs_info->fs_state)))
1781                         btrfs_cleanup_transaction(fs_info);
1782                 if (!kthread_should_stop() &&
1783                                 (!btrfs_transaction_blocked(fs_info) ||
1784                                  cannot_commit))
1785                         schedule_timeout_interruptible(delay);
1786         } while (!kthread_should_stop());
1787         return 0;
1788 }
1789
1790 /*
1791  * this will find the highest generation in the array of
1792  * root backups.  The index of the highest array is returned,
1793  * or -1 if we can't find anything.
1794  *
1795  * We check to make sure the array is valid by comparing the
1796  * generation of the latest  root in the array with the generation
1797  * in the super block.  If they don't match we pitch it.
1798  */
1799 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1800 {
1801         u64 cur;
1802         int newest_index = -1;
1803         struct btrfs_root_backup *root_backup;
1804         int i;
1805
1806         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1807                 root_backup = info->super_copy->super_roots + i;
1808                 cur = btrfs_backup_tree_root_gen(root_backup);
1809                 if (cur == newest_gen)
1810                         newest_index = i;
1811         }
1812
1813         /* check to see if we actually wrapped around */
1814         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1815                 root_backup = info->super_copy->super_roots;
1816                 cur = btrfs_backup_tree_root_gen(root_backup);
1817                 if (cur == newest_gen)
1818                         newest_index = 0;
1819         }
1820         return newest_index;
1821 }
1822
1823
1824 /*
1825  * find the oldest backup so we know where to store new entries
1826  * in the backup array.  This will set the backup_root_index
1827  * field in the fs_info struct
1828  */
1829 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1830                                      u64 newest_gen)
1831 {
1832         int newest_index = -1;
1833
1834         newest_index = find_newest_super_backup(info, newest_gen);
1835         /* if there was garbage in there, just move along */
1836         if (newest_index == -1) {
1837                 info->backup_root_index = 0;
1838         } else {
1839                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1840         }
1841 }
1842
1843 /*
1844  * copy all the root pointers into the super backup array.
1845  * this will bump the backup pointer by one when it is
1846  * done
1847  */
1848 static void backup_super_roots(struct btrfs_fs_info *info)
1849 {
1850         int next_backup;
1851         struct btrfs_root_backup *root_backup;
1852         int last_backup;
1853
1854         next_backup = info->backup_root_index;
1855         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1856                 BTRFS_NUM_BACKUP_ROOTS;
1857
1858         /*
1859          * just overwrite the last backup if we're at the same generation
1860          * this happens only at umount
1861          */
1862         root_backup = info->super_for_commit->super_roots + last_backup;
1863         if (btrfs_backup_tree_root_gen(root_backup) ==
1864             btrfs_header_generation(info->tree_root->node))
1865                 next_backup = last_backup;
1866
1867         root_backup = info->super_for_commit->super_roots + next_backup;
1868
1869         /*
1870          * make sure all of our padding and empty slots get zero filled
1871          * regardless of which ones we use today
1872          */
1873         memset(root_backup, 0, sizeof(*root_backup));
1874
1875         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1876
1877         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1878         btrfs_set_backup_tree_root_gen(root_backup,
1879                                btrfs_header_generation(info->tree_root->node));
1880
1881         btrfs_set_backup_tree_root_level(root_backup,
1882                                btrfs_header_level(info->tree_root->node));
1883
1884         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1885         btrfs_set_backup_chunk_root_gen(root_backup,
1886                                btrfs_header_generation(info->chunk_root->node));
1887         btrfs_set_backup_chunk_root_level(root_backup,
1888                                btrfs_header_level(info->chunk_root->node));
1889
1890         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1891         btrfs_set_backup_extent_root_gen(root_backup,
1892                                btrfs_header_generation(info->extent_root->node));
1893         btrfs_set_backup_extent_root_level(root_backup,
1894                                btrfs_header_level(info->extent_root->node));
1895
1896         /*
1897          * we might commit during log recovery, which happens before we set
1898          * the fs_root.  Make sure it is valid before we fill it in.
1899          */
1900         if (info->fs_root && info->fs_root->node) {
1901                 btrfs_set_backup_fs_root(root_backup,
1902                                          info->fs_root->node->start);
1903                 btrfs_set_backup_fs_root_gen(root_backup,
1904                                btrfs_header_generation(info->fs_root->node));
1905                 btrfs_set_backup_fs_root_level(root_backup,
1906                                btrfs_header_level(info->fs_root->node));
1907         }
1908
1909         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1910         btrfs_set_backup_dev_root_gen(root_backup,
1911                                btrfs_header_generation(info->dev_root->node));
1912         btrfs_set_backup_dev_root_level(root_backup,
1913                                        btrfs_header_level(info->dev_root->node));
1914
1915         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1916         btrfs_set_backup_csum_root_gen(root_backup,
1917                                btrfs_header_generation(info->csum_root->node));
1918         btrfs_set_backup_csum_root_level(root_backup,
1919                                btrfs_header_level(info->csum_root->node));
1920
1921         btrfs_set_backup_total_bytes(root_backup,
1922                              btrfs_super_total_bytes(info->super_copy));
1923         btrfs_set_backup_bytes_used(root_backup,
1924                              btrfs_super_bytes_used(info->super_copy));
1925         btrfs_set_backup_num_devices(root_backup,
1926                              btrfs_super_num_devices(info->super_copy));
1927
1928         /*
1929          * if we don't copy this out to the super_copy, it won't get remembered
1930          * for the next commit
1931          */
1932         memcpy(&info->super_copy->super_roots,
1933                &info->super_for_commit->super_roots,
1934                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1935 }
1936
1937 /*
1938  * this copies info out of the root backup array and back into
1939  * the in-memory super block.  It is meant to help iterate through
1940  * the array, so you send it the number of backups you've already
1941  * tried and the last backup index you used.
1942  *
1943  * this returns -1 when it has tried all the backups
1944  */
1945 static noinline int next_root_backup(struct btrfs_fs_info *info,
1946                                      struct btrfs_super_block *super,
1947                                      int *num_backups_tried, int *backup_index)
1948 {
1949         struct btrfs_root_backup *root_backup;
1950         int newest = *backup_index;
1951
1952         if (*num_backups_tried == 0) {
1953                 u64 gen = btrfs_super_generation(super);
1954
1955                 newest = find_newest_super_backup(info, gen);
1956                 if (newest == -1)
1957                         return -1;
1958
1959                 *backup_index = newest;
1960                 *num_backups_tried = 1;
1961         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1962                 /* we've tried all the backups, all done */
1963                 return -1;
1964         } else {
1965                 /* jump to the next oldest backup */
1966                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1967                         BTRFS_NUM_BACKUP_ROOTS;
1968                 *backup_index = newest;
1969                 *num_backups_tried += 1;
1970         }
1971         root_backup = super->super_roots + newest;
1972
1973         btrfs_set_super_generation(super,
1974                                    btrfs_backup_tree_root_gen(root_backup));
1975         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1976         btrfs_set_super_root_level(super,
1977                                    btrfs_backup_tree_root_level(root_backup));
1978         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1979
1980         /*
1981          * fixme: the total bytes and num_devices need to match or we should
1982          * need a fsck
1983          */
1984         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1985         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1986         return 0;
1987 }
1988
1989 /* helper to cleanup workers */
1990 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1991 {
1992         btrfs_destroy_workqueue(fs_info->fixup_workers);
1993         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1994         btrfs_destroy_workqueue(fs_info->workers);
1995         btrfs_destroy_workqueue(fs_info->endio_workers);
1996         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1997         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1998         btrfs_destroy_workqueue(fs_info->rmw_workers);
1999         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2000         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2001         btrfs_destroy_workqueue(fs_info->delayed_workers);
2002         btrfs_destroy_workqueue(fs_info->caching_workers);
2003         btrfs_destroy_workqueue(fs_info->readahead_workers);
2004         btrfs_destroy_workqueue(fs_info->flush_workers);
2005         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2006         /*
2007          * Now that all other work queues are destroyed, we can safely destroy
2008          * the queues used for metadata I/O, since tasks from those other work
2009          * queues can do metadata I/O operations.
2010          */
2011         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2012         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2013 }
2014
2015 static void free_root_extent_buffers(struct btrfs_root *root)
2016 {
2017         if (root) {
2018                 free_extent_buffer(root->node);
2019                 free_extent_buffer(root->commit_root);
2020                 root->node = NULL;
2021                 root->commit_root = NULL;
2022         }
2023 }
2024
2025 /* helper to cleanup tree roots */
2026 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2027 {
2028         free_root_extent_buffers(info->tree_root);
2029
2030         free_root_extent_buffers(info->dev_root);
2031         free_root_extent_buffers(info->extent_root);
2032         free_root_extent_buffers(info->csum_root);
2033         free_root_extent_buffers(info->quota_root);
2034         free_root_extent_buffers(info->uuid_root);
2035         if (free_chunk_root)
2036                 free_root_extent_buffers(info->chunk_root);
2037         free_root_extent_buffers(info->free_space_root);
2038 }
2039
2040 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2041 {
2042         int ret;
2043         struct btrfs_root *gang[8];
2044         int i;
2045
2046         while (!list_empty(&fs_info->dead_roots)) {
2047                 gang[0] = list_entry(fs_info->dead_roots.next,
2048                                      struct btrfs_root, root_list);
2049                 list_del(&gang[0]->root_list);
2050
2051                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2052                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2053                 } else {
2054                         free_extent_buffer(gang[0]->node);
2055                         free_extent_buffer(gang[0]->commit_root);
2056                         btrfs_put_fs_root(gang[0]);
2057                 }
2058         }
2059
2060         while (1) {
2061                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2062                                              (void **)gang, 0,
2063                                              ARRAY_SIZE(gang));
2064                 if (!ret)
2065                         break;
2066                 for (i = 0; i < ret; i++)
2067                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2068         }
2069
2070         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2071                 btrfs_free_log_root_tree(NULL, fs_info);
2072                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2073         }
2074 }
2075
2076 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2077 {
2078         mutex_init(&fs_info->scrub_lock);
2079         atomic_set(&fs_info->scrubs_running, 0);
2080         atomic_set(&fs_info->scrub_pause_req, 0);
2081         atomic_set(&fs_info->scrubs_paused, 0);
2082         atomic_set(&fs_info->scrub_cancel_req, 0);
2083         init_waitqueue_head(&fs_info->scrub_pause_wait);
2084         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2085 }
2086
2087 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2088 {
2089         spin_lock_init(&fs_info->balance_lock);
2090         mutex_init(&fs_info->balance_mutex);
2091         atomic_set(&fs_info->balance_pause_req, 0);
2092         atomic_set(&fs_info->balance_cancel_req, 0);
2093         fs_info->balance_ctl = NULL;
2094         init_waitqueue_head(&fs_info->balance_wait_q);
2095 }
2096
2097 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2098 {
2099         struct inode *inode = fs_info->btree_inode;
2100
2101         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2102         set_nlink(inode, 1);
2103         /*
2104          * we set the i_size on the btree inode to the max possible int.
2105          * the real end of the address space is determined by all of
2106          * the devices in the system
2107          */
2108         inode->i_size = OFFSET_MAX;
2109         inode->i_mapping->a_ops = &btree_aops;
2110
2111         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2112         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2113                             IO_TREE_INODE_IO, inode);
2114         BTRFS_I(inode)->io_tree.track_uptodate = false;
2115         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2116
2117         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2118
2119         BTRFS_I(inode)->root = fs_info->tree_root;
2120         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2121         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2122         btrfs_insert_inode_hash(inode);
2123 }
2124
2125 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2126 {
2127         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2128         init_rwsem(&fs_info->dev_replace.rwsem);
2129         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2130 }
2131
2132 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2133 {
2134         spin_lock_init(&fs_info->qgroup_lock);
2135         mutex_init(&fs_info->qgroup_ioctl_lock);
2136         fs_info->qgroup_tree = RB_ROOT;
2137         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2138         fs_info->qgroup_seq = 1;
2139         fs_info->qgroup_ulist = NULL;
2140         fs_info->qgroup_rescan_running = false;
2141         mutex_init(&fs_info->qgroup_rescan_lock);
2142 }
2143
2144 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2145                 struct btrfs_fs_devices *fs_devices)
2146 {
2147         u32 max_active = fs_info->thread_pool_size;
2148         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2149
2150         fs_info->workers =
2151                 btrfs_alloc_workqueue(fs_info, "worker",
2152                                       flags | WQ_HIGHPRI, max_active, 16);
2153
2154         fs_info->delalloc_workers =
2155                 btrfs_alloc_workqueue(fs_info, "delalloc",
2156                                       flags, max_active, 2);
2157
2158         fs_info->flush_workers =
2159                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2160                                       flags, max_active, 0);
2161
2162         fs_info->caching_workers =
2163                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2164
2165         fs_info->fixup_workers =
2166                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2167
2168         /*
2169          * endios are largely parallel and should have a very
2170          * low idle thresh
2171          */
2172         fs_info->endio_workers =
2173                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2174         fs_info->endio_meta_workers =
2175                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2176                                       max_active, 4);
2177         fs_info->endio_meta_write_workers =
2178                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2179                                       max_active, 2);
2180         fs_info->endio_raid56_workers =
2181                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2182                                       max_active, 4);
2183         fs_info->endio_repair_workers =
2184                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2185         fs_info->rmw_workers =
2186                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2187         fs_info->endio_write_workers =
2188                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2189                                       max_active, 2);
2190         fs_info->endio_freespace_worker =
2191                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2192                                       max_active, 0);
2193         fs_info->delayed_workers =
2194                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2195                                       max_active, 0);
2196         fs_info->readahead_workers =
2197                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2198                                       max_active, 2);
2199         fs_info->qgroup_rescan_workers =
2200                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2201
2202         if (!(fs_info->workers && fs_info->delalloc_workers &&
2203               fs_info->flush_workers &&
2204               fs_info->endio_workers && fs_info->endio_meta_workers &&
2205               fs_info->endio_meta_write_workers &&
2206               fs_info->endio_repair_workers &&
2207               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2208               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2209               fs_info->caching_workers && fs_info->readahead_workers &&
2210               fs_info->fixup_workers && fs_info->delayed_workers &&
2211               fs_info->qgroup_rescan_workers)) {
2212                 return -ENOMEM;
2213         }
2214
2215         return 0;
2216 }
2217
2218 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2219 {
2220         struct crypto_shash *csum_shash;
2221         const char *csum_name = btrfs_super_csum_name(csum_type);
2222
2223         csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2224
2225         if (IS_ERR(csum_shash)) {
2226                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2227                           csum_name);
2228                 return PTR_ERR(csum_shash);
2229         }
2230
2231         fs_info->csum_shash = csum_shash;
2232
2233         return 0;
2234 }
2235
2236 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2237 {
2238         crypto_free_shash(fs_info->csum_shash);
2239 }
2240
2241 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242                             struct btrfs_fs_devices *fs_devices)
2243 {
2244         int ret;
2245         struct btrfs_root *log_tree_root;
2246         struct btrfs_super_block *disk_super = fs_info->super_copy;
2247         u64 bytenr = btrfs_super_log_root(disk_super);
2248         int level = btrfs_super_log_root_level(disk_super);
2249
2250         if (fs_devices->rw_devices == 0) {
2251                 btrfs_warn(fs_info, "log replay required on RO media");
2252                 return -EIO;
2253         }
2254
2255         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2256         if (!log_tree_root)
2257                 return -ENOMEM;
2258
2259         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2260
2261         log_tree_root->node = read_tree_block(fs_info, bytenr,
2262                                               fs_info->generation + 1,
2263                                               level, NULL);
2264         if (IS_ERR(log_tree_root->node)) {
2265                 btrfs_warn(fs_info, "failed to read log tree");
2266                 ret = PTR_ERR(log_tree_root->node);
2267                 kfree(log_tree_root);
2268                 return ret;
2269         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2270                 btrfs_err(fs_info, "failed to read log tree");
2271                 free_extent_buffer(log_tree_root->node);
2272                 kfree(log_tree_root);
2273                 return -EIO;
2274         }
2275         /* returns with log_tree_root freed on success */
2276         ret = btrfs_recover_log_trees(log_tree_root);
2277         if (ret) {
2278                 btrfs_handle_fs_error(fs_info, ret,
2279                                       "Failed to recover log tree");
2280                 free_extent_buffer(log_tree_root->node);
2281                 kfree(log_tree_root);
2282                 return ret;
2283         }
2284
2285         if (sb_rdonly(fs_info->sb)) {
2286                 ret = btrfs_commit_super(fs_info);
2287                 if (ret)
2288                         return ret;
2289         }
2290
2291         return 0;
2292 }
2293
2294 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2295 {
2296         struct btrfs_root *tree_root = fs_info->tree_root;
2297         struct btrfs_root *root;
2298         struct btrfs_key location;
2299         int ret;
2300
2301         BUG_ON(!fs_info->tree_root);
2302
2303         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2304         location.type = BTRFS_ROOT_ITEM_KEY;
2305         location.offset = 0;
2306
2307         root = btrfs_read_tree_root(tree_root, &location);
2308         if (IS_ERR(root)) {
2309                 ret = PTR_ERR(root);
2310                 goto out;
2311         }
2312         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2313         fs_info->extent_root = root;
2314
2315         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2316         root = btrfs_read_tree_root(tree_root, &location);
2317         if (IS_ERR(root)) {
2318                 ret = PTR_ERR(root);
2319                 goto out;
2320         }
2321         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2322         fs_info->dev_root = root;
2323         btrfs_init_devices_late(fs_info);
2324
2325         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2326         root = btrfs_read_tree_root(tree_root, &location);
2327         if (IS_ERR(root)) {
2328                 ret = PTR_ERR(root);
2329                 goto out;
2330         }
2331         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332         fs_info->csum_root = root;
2333
2334         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2335         root = btrfs_read_tree_root(tree_root, &location);
2336         if (!IS_ERR(root)) {
2337                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2338                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2339                 fs_info->quota_root = root;
2340         }
2341
2342         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2343         root = btrfs_read_tree_root(tree_root, &location);
2344         if (IS_ERR(root)) {
2345                 ret = PTR_ERR(root);
2346                 if (ret != -ENOENT)
2347                         goto out;
2348         } else {
2349                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350                 fs_info->uuid_root = root;
2351         }
2352
2353         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2354                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2355                 root = btrfs_read_tree_root(tree_root, &location);
2356                 if (IS_ERR(root)) {
2357                         ret = PTR_ERR(root);
2358                         goto out;
2359                 }
2360                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361                 fs_info->free_space_root = root;
2362         }
2363
2364         return 0;
2365 out:
2366         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2367                    location.objectid, ret);
2368         return ret;
2369 }
2370
2371 /*
2372  * Real super block validation
2373  * NOTE: super csum type and incompat features will not be checked here.
2374  *
2375  * @sb:         super block to check
2376  * @mirror_num: the super block number to check its bytenr:
2377  *              0       the primary (1st) sb
2378  *              1, 2    2nd and 3rd backup copy
2379  *             -1       skip bytenr check
2380  */
2381 static int validate_super(struct btrfs_fs_info *fs_info,
2382                             struct btrfs_super_block *sb, int mirror_num)
2383 {
2384         u64 nodesize = btrfs_super_nodesize(sb);
2385         u64 sectorsize = btrfs_super_sectorsize(sb);
2386         int ret = 0;
2387
2388         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2389                 btrfs_err(fs_info, "no valid FS found");
2390                 ret = -EINVAL;
2391         }
2392         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2393                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2394                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2395                 ret = -EINVAL;
2396         }
2397         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2398                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2399                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2400                 ret = -EINVAL;
2401         }
2402         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2403                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2404                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2405                 ret = -EINVAL;
2406         }
2407         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2408                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2409                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2410                 ret = -EINVAL;
2411         }
2412
2413         /*
2414          * Check sectorsize and nodesize first, other check will need it.
2415          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2416          */
2417         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2418             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2419                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2420                 ret = -EINVAL;
2421         }
2422         /* Only PAGE SIZE is supported yet */
2423         if (sectorsize != PAGE_SIZE) {
2424                 btrfs_err(fs_info,
2425                         "sectorsize %llu not supported yet, only support %lu",
2426                         sectorsize, PAGE_SIZE);
2427                 ret = -EINVAL;
2428         }
2429         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2430             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2431                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2432                 ret = -EINVAL;
2433         }
2434         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2435                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2436                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2437                 ret = -EINVAL;
2438         }
2439
2440         /* Root alignment check */
2441         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2442                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2443                            btrfs_super_root(sb));
2444                 ret = -EINVAL;
2445         }
2446         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2447                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2448                            btrfs_super_chunk_root(sb));
2449                 ret = -EINVAL;
2450         }
2451         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2452                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2453                            btrfs_super_log_root(sb));
2454                 ret = -EINVAL;
2455         }
2456
2457         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2458                    BTRFS_FSID_SIZE) != 0) {
2459                 btrfs_err(fs_info,
2460                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2461                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2462                 ret = -EINVAL;
2463         }
2464
2465         /*
2466          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2467          * done later
2468          */
2469         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2470                 btrfs_err(fs_info, "bytes_used is too small %llu",
2471                           btrfs_super_bytes_used(sb));
2472                 ret = -EINVAL;
2473         }
2474         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2475                 btrfs_err(fs_info, "invalid stripesize %u",
2476                           btrfs_super_stripesize(sb));
2477                 ret = -EINVAL;
2478         }
2479         if (btrfs_super_num_devices(sb) > (1UL << 31))
2480                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2481                            btrfs_super_num_devices(sb));
2482         if (btrfs_super_num_devices(sb) == 0) {
2483                 btrfs_err(fs_info, "number of devices is 0");
2484                 ret = -EINVAL;
2485         }
2486
2487         if (mirror_num >= 0 &&
2488             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2489                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2490                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2491                 ret = -EINVAL;
2492         }
2493
2494         /*
2495          * Obvious sys_chunk_array corruptions, it must hold at least one key
2496          * and one chunk
2497          */
2498         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2499                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2500                           btrfs_super_sys_array_size(sb),
2501                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2502                 ret = -EINVAL;
2503         }
2504         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2505                         + sizeof(struct btrfs_chunk)) {
2506                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2507                           btrfs_super_sys_array_size(sb),
2508                           sizeof(struct btrfs_disk_key)
2509                           + sizeof(struct btrfs_chunk));
2510                 ret = -EINVAL;
2511         }
2512
2513         /*
2514          * The generation is a global counter, we'll trust it more than the others
2515          * but it's still possible that it's the one that's wrong.
2516          */
2517         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2518                 btrfs_warn(fs_info,
2519                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2520                         btrfs_super_generation(sb),
2521                         btrfs_super_chunk_root_generation(sb));
2522         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2523             && btrfs_super_cache_generation(sb) != (u64)-1)
2524                 btrfs_warn(fs_info,
2525                         "suspicious: generation < cache_generation: %llu < %llu",
2526                         btrfs_super_generation(sb),
2527                         btrfs_super_cache_generation(sb));
2528
2529         return ret;
2530 }
2531
2532 /*
2533  * Validation of super block at mount time.
2534  * Some checks already done early at mount time, like csum type and incompat
2535  * flags will be skipped.
2536  */
2537 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2538 {
2539         return validate_super(fs_info, fs_info->super_copy, 0);
2540 }
2541
2542 /*
2543  * Validation of super block at write time.
2544  * Some checks like bytenr check will be skipped as their values will be
2545  * overwritten soon.
2546  * Extra checks like csum type and incompat flags will be done here.
2547  */
2548 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2549                                       struct btrfs_super_block *sb)
2550 {
2551         int ret;
2552
2553         ret = validate_super(fs_info, sb, -1);
2554         if (ret < 0)
2555                 goto out;
2556         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2557                 ret = -EUCLEAN;
2558                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2559                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2560                 goto out;
2561         }
2562         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2563                 ret = -EUCLEAN;
2564                 btrfs_err(fs_info,
2565                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2566                           btrfs_super_incompat_flags(sb),
2567                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2568                 goto out;
2569         }
2570 out:
2571         if (ret < 0)
2572                 btrfs_err(fs_info,
2573                 "super block corruption detected before writing it to disk");
2574         return ret;
2575 }
2576
2577 int __cold open_ctree(struct super_block *sb,
2578                struct btrfs_fs_devices *fs_devices,
2579                char *options)
2580 {
2581         u32 sectorsize;
2582         u32 nodesize;
2583         u32 stripesize;
2584         u64 generation;
2585         u64 features;
2586         u16 csum_type;
2587         struct btrfs_key location;
2588         struct buffer_head *bh;
2589         struct btrfs_super_block *disk_super;
2590         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2591         struct btrfs_root *tree_root;
2592         struct btrfs_root *chunk_root;
2593         int ret;
2594         int err = -EINVAL;
2595         int num_backups_tried = 0;
2596         int backup_index = 0;
2597         int clear_free_space_tree = 0;
2598         int level;
2599
2600         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2601         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2602         if (!tree_root || !chunk_root) {
2603                 err = -ENOMEM;
2604                 goto fail;
2605         }
2606
2607         ret = init_srcu_struct(&fs_info->subvol_srcu);
2608         if (ret) {
2609                 err = ret;
2610                 goto fail;
2611         }
2612
2613         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2614         if (ret) {
2615                 err = ret;
2616                 goto fail_srcu;
2617         }
2618
2619         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2620         if (ret) {
2621                 err = ret;
2622                 goto fail_dio_bytes;
2623         }
2624         fs_info->dirty_metadata_batch = PAGE_SIZE *
2625                                         (1 + ilog2(nr_cpu_ids));
2626
2627         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2628         if (ret) {
2629                 err = ret;
2630                 goto fail_dirty_metadata_bytes;
2631         }
2632
2633         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2634                         GFP_KERNEL);
2635         if (ret) {
2636                 err = ret;
2637                 goto fail_delalloc_bytes;
2638         }
2639
2640         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2641         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2642         INIT_LIST_HEAD(&fs_info->trans_list);
2643         INIT_LIST_HEAD(&fs_info->dead_roots);
2644         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2645         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2646         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2647         spin_lock_init(&fs_info->delalloc_root_lock);
2648         spin_lock_init(&fs_info->trans_lock);
2649         spin_lock_init(&fs_info->fs_roots_radix_lock);
2650         spin_lock_init(&fs_info->delayed_iput_lock);
2651         spin_lock_init(&fs_info->defrag_inodes_lock);
2652         spin_lock_init(&fs_info->tree_mod_seq_lock);
2653         spin_lock_init(&fs_info->super_lock);
2654         spin_lock_init(&fs_info->buffer_lock);
2655         spin_lock_init(&fs_info->unused_bgs_lock);
2656         rwlock_init(&fs_info->tree_mod_log_lock);
2657         mutex_init(&fs_info->unused_bg_unpin_mutex);
2658         mutex_init(&fs_info->delete_unused_bgs_mutex);
2659         mutex_init(&fs_info->reloc_mutex);
2660         mutex_init(&fs_info->delalloc_root_mutex);
2661         seqlock_init(&fs_info->profiles_lock);
2662
2663         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2664         INIT_LIST_HEAD(&fs_info->space_info);
2665         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2666         INIT_LIST_HEAD(&fs_info->unused_bgs);
2667         extent_map_tree_init(&fs_info->mapping_tree);
2668         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2669                              BTRFS_BLOCK_RSV_GLOBAL);
2670         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674                              BTRFS_BLOCK_RSV_DELOPS);
2675         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2676                              BTRFS_BLOCK_RSV_DELREFS);
2677
2678         atomic_set(&fs_info->async_delalloc_pages, 0);
2679         atomic_set(&fs_info->defrag_running, 0);
2680         atomic_set(&fs_info->reada_works_cnt, 0);
2681         atomic_set(&fs_info->nr_delayed_iputs, 0);
2682         atomic64_set(&fs_info->tree_mod_seq, 0);
2683         fs_info->sb = sb;
2684         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2685         fs_info->metadata_ratio = 0;
2686         fs_info->defrag_inodes = RB_ROOT;
2687         atomic64_set(&fs_info->free_chunk_space, 0);
2688         fs_info->tree_mod_log = RB_ROOT;
2689         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2690         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2691         /* readahead state */
2692         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2693         spin_lock_init(&fs_info->reada_lock);
2694         btrfs_init_ref_verify(fs_info);
2695
2696         fs_info->thread_pool_size = min_t(unsigned long,
2697                                           num_online_cpus() + 2, 8);
2698
2699         INIT_LIST_HEAD(&fs_info->ordered_roots);
2700         spin_lock_init(&fs_info->ordered_root_lock);
2701
2702         fs_info->btree_inode = new_inode(sb);
2703         if (!fs_info->btree_inode) {
2704                 err = -ENOMEM;
2705                 goto fail_bio_counter;
2706         }
2707         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2708
2709         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2710                                         GFP_KERNEL);
2711         if (!fs_info->delayed_root) {
2712                 err = -ENOMEM;
2713                 goto fail_iput;
2714         }
2715         btrfs_init_delayed_root(fs_info->delayed_root);
2716
2717         btrfs_init_scrub(fs_info);
2718 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2719         fs_info->check_integrity_print_mask = 0;
2720 #endif
2721         btrfs_init_balance(fs_info);
2722         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2723
2724         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2725         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2726
2727         btrfs_init_btree_inode(fs_info);
2728
2729         spin_lock_init(&fs_info->block_group_cache_lock);
2730         fs_info->block_group_cache_tree = RB_ROOT;
2731         fs_info->first_logical_byte = (u64)-1;
2732
2733         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2734                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2735         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2736                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2737         fs_info->pinned_extents = &fs_info->freed_extents[0];
2738         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2739
2740         mutex_init(&fs_info->ordered_operations_mutex);
2741         mutex_init(&fs_info->tree_log_mutex);
2742         mutex_init(&fs_info->chunk_mutex);
2743         mutex_init(&fs_info->transaction_kthread_mutex);
2744         mutex_init(&fs_info->cleaner_mutex);
2745         mutex_init(&fs_info->ro_block_group_mutex);
2746         init_rwsem(&fs_info->commit_root_sem);
2747         init_rwsem(&fs_info->cleanup_work_sem);
2748         init_rwsem(&fs_info->subvol_sem);
2749         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2750
2751         btrfs_init_dev_replace_locks(fs_info);
2752         btrfs_init_qgroup(fs_info);
2753
2754         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2755         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2756
2757         init_waitqueue_head(&fs_info->transaction_throttle);
2758         init_waitqueue_head(&fs_info->transaction_wait);
2759         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2760         init_waitqueue_head(&fs_info->async_submit_wait);
2761         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2762
2763         /* Usable values until the real ones are cached from the superblock */
2764         fs_info->nodesize = 4096;
2765         fs_info->sectorsize = 4096;
2766         fs_info->stripesize = 4096;
2767
2768         spin_lock_init(&fs_info->swapfile_pins_lock);
2769         fs_info->swapfile_pins = RB_ROOT;
2770
2771         fs_info->send_in_progress = 0;
2772
2773         ret = btrfs_alloc_stripe_hash_table(fs_info);
2774         if (ret) {
2775                 err = ret;
2776                 goto fail_alloc;
2777         }
2778
2779         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2780
2781         invalidate_bdev(fs_devices->latest_bdev);
2782
2783         /*
2784          * Read super block and check the signature bytes only
2785          */
2786         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2787         if (IS_ERR(bh)) {
2788                 err = PTR_ERR(bh);
2789                 goto fail_alloc;
2790         }
2791
2792         /*
2793          * Verify the type first, if that or the the checksum value are
2794          * corrupted, we'll find out
2795          */
2796         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2797         if (!btrfs_supported_super_csum(csum_type)) {
2798                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2799                           csum_type);
2800                 err = -EINVAL;
2801                 brelse(bh);
2802                 goto fail_alloc;
2803         }
2804
2805         ret = btrfs_init_csum_hash(fs_info, csum_type);
2806         if (ret) {
2807                 err = ret;
2808                 goto fail_alloc;
2809         }
2810
2811         /*
2812          * We want to check superblock checksum, the type is stored inside.
2813          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2814          */
2815         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2816                 btrfs_err(fs_info, "superblock checksum mismatch");
2817                 err = -EINVAL;
2818                 brelse(bh);
2819                 goto fail_csum;
2820         }
2821
2822         /*
2823          * super_copy is zeroed at allocation time and we never touch the
2824          * following bytes up to INFO_SIZE, the checksum is calculated from
2825          * the whole block of INFO_SIZE
2826          */
2827         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2828         brelse(bh);
2829
2830         disk_super = fs_info->super_copy;
2831
2832         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2833                        BTRFS_FSID_SIZE));
2834
2835         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2836                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2837                                 fs_info->super_copy->metadata_uuid,
2838                                 BTRFS_FSID_SIZE));
2839         }
2840
2841         features = btrfs_super_flags(disk_super);
2842         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2843                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2844                 btrfs_set_super_flags(disk_super, features);
2845                 btrfs_info(fs_info,
2846                         "found metadata UUID change in progress flag, clearing");
2847         }
2848
2849         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2850                sizeof(*fs_info->super_for_commit));
2851
2852         ret = btrfs_validate_mount_super(fs_info);
2853         if (ret) {
2854                 btrfs_err(fs_info, "superblock contains fatal errors");
2855                 err = -EINVAL;
2856                 goto fail_csum;
2857         }
2858
2859         if (!btrfs_super_root(disk_super))
2860                 goto fail_csum;
2861
2862         /* check FS state, whether FS is broken. */
2863         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2864                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2865
2866         /*
2867          * run through our array of backup supers and setup
2868          * our ring pointer to the oldest one
2869          */
2870         generation = btrfs_super_generation(disk_super);
2871         find_oldest_super_backup(fs_info, generation);
2872
2873         /*
2874          * In the long term, we'll store the compression type in the super
2875          * block, and it'll be used for per file compression control.
2876          */
2877         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2878
2879         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2880         if (ret) {
2881                 err = ret;
2882                 goto fail_csum;
2883         }
2884
2885         features = btrfs_super_incompat_flags(disk_super) &
2886                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2887         if (features) {
2888                 btrfs_err(fs_info,
2889                     "cannot mount because of unsupported optional features (%llx)",
2890                     features);
2891                 err = -EINVAL;
2892                 goto fail_csum;
2893         }
2894
2895         features = btrfs_super_incompat_flags(disk_super);
2896         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2897         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2898                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2899         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2900                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2901
2902         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2903                 btrfs_info(fs_info, "has skinny extents");
2904
2905         /*
2906          * flag our filesystem as having big metadata blocks if
2907          * they are bigger than the page size
2908          */
2909         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2910                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2911                         btrfs_info(fs_info,
2912                                 "flagging fs with big metadata feature");
2913                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2914         }
2915
2916         nodesize = btrfs_super_nodesize(disk_super);
2917         sectorsize = btrfs_super_sectorsize(disk_super);
2918         stripesize = sectorsize;
2919         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2920         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2921
2922         /* Cache block sizes */
2923         fs_info->nodesize = nodesize;
2924         fs_info->sectorsize = sectorsize;
2925         fs_info->stripesize = stripesize;
2926
2927         /*
2928          * mixed block groups end up with duplicate but slightly offset
2929          * extent buffers for the same range.  It leads to corruptions
2930          */
2931         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2932             (sectorsize != nodesize)) {
2933                 btrfs_err(fs_info,
2934 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2935                         nodesize, sectorsize);
2936                 goto fail_csum;
2937         }
2938
2939         /*
2940          * Needn't use the lock because there is no other task which will
2941          * update the flag.
2942          */
2943         btrfs_set_super_incompat_flags(disk_super, features);
2944
2945         features = btrfs_super_compat_ro_flags(disk_super) &
2946                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2947         if (!sb_rdonly(sb) && features) {
2948                 btrfs_err(fs_info,
2949         "cannot mount read-write because of unsupported optional features (%llx)",
2950                        features);
2951                 err = -EINVAL;
2952                 goto fail_csum;
2953         }
2954
2955         ret = btrfs_init_workqueues(fs_info, fs_devices);
2956         if (ret) {
2957                 err = ret;
2958                 goto fail_sb_buffer;
2959         }
2960
2961         sb->s_bdi->congested_fn = btrfs_congested_fn;
2962         sb->s_bdi->congested_data = fs_info;
2963         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2964         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2965         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2966         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2967
2968         sb->s_blocksize = sectorsize;
2969         sb->s_blocksize_bits = blksize_bits(sectorsize);
2970         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2971
2972         mutex_lock(&fs_info->chunk_mutex);
2973         ret = btrfs_read_sys_array(fs_info);
2974         mutex_unlock(&fs_info->chunk_mutex);
2975         if (ret) {
2976                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2977                 goto fail_sb_buffer;
2978         }
2979
2980         generation = btrfs_super_chunk_root_generation(disk_super);
2981         level = btrfs_super_chunk_root_level(disk_super);
2982
2983         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2984
2985         chunk_root->node = read_tree_block(fs_info,
2986                                            btrfs_super_chunk_root(disk_super),
2987                                            generation, level, NULL);
2988         if (IS_ERR(chunk_root->node) ||
2989             !extent_buffer_uptodate(chunk_root->node)) {
2990                 btrfs_err(fs_info, "failed to read chunk root");
2991                 if (!IS_ERR(chunk_root->node))
2992                         free_extent_buffer(chunk_root->node);
2993                 chunk_root->node = NULL;
2994                 goto fail_tree_roots;
2995         }
2996         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2997         chunk_root->commit_root = btrfs_root_node(chunk_root);
2998
2999         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3000            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3001
3002         ret = btrfs_read_chunk_tree(fs_info);
3003         if (ret) {
3004                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3005                 goto fail_tree_roots;
3006         }
3007
3008         /*
3009          * Keep the devid that is marked to be the target device for the
3010          * device replace procedure
3011          */
3012         btrfs_free_extra_devids(fs_devices, 0);
3013
3014         if (!fs_devices->latest_bdev) {
3015                 btrfs_err(fs_info, "failed to read devices");
3016                 goto fail_tree_roots;
3017         }
3018
3019 retry_root_backup:
3020         generation = btrfs_super_generation(disk_super);
3021         level = btrfs_super_root_level(disk_super);
3022
3023         tree_root->node = read_tree_block(fs_info,
3024                                           btrfs_super_root(disk_super),
3025                                           generation, level, NULL);
3026         if (IS_ERR(tree_root->node) ||
3027             !extent_buffer_uptodate(tree_root->node)) {
3028                 btrfs_warn(fs_info, "failed to read tree root");
3029                 if (!IS_ERR(tree_root->node))
3030                         free_extent_buffer(tree_root->node);
3031                 tree_root->node = NULL;
3032                 goto recovery_tree_root;
3033         }
3034
3035         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3036         tree_root->commit_root = btrfs_root_node(tree_root);
3037         btrfs_set_root_refs(&tree_root->root_item, 1);
3038
3039         mutex_lock(&tree_root->objectid_mutex);
3040         ret = btrfs_find_highest_objectid(tree_root,
3041                                         &tree_root->highest_objectid);
3042         if (ret) {
3043                 mutex_unlock(&tree_root->objectid_mutex);
3044                 goto recovery_tree_root;
3045         }
3046
3047         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3048
3049         mutex_unlock(&tree_root->objectid_mutex);
3050
3051         ret = btrfs_read_roots(fs_info);
3052         if (ret)
3053                 goto recovery_tree_root;
3054
3055         fs_info->generation = generation;
3056         fs_info->last_trans_committed = generation;
3057
3058         ret = btrfs_verify_dev_extents(fs_info);
3059         if (ret) {
3060                 btrfs_err(fs_info,
3061                           "failed to verify dev extents against chunks: %d",
3062                           ret);
3063                 goto fail_block_groups;
3064         }
3065         ret = btrfs_recover_balance(fs_info);
3066         if (ret) {
3067                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3068                 goto fail_block_groups;
3069         }
3070
3071         ret = btrfs_init_dev_stats(fs_info);
3072         if (ret) {
3073                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3074                 goto fail_block_groups;
3075         }
3076
3077         ret = btrfs_init_dev_replace(fs_info);
3078         if (ret) {
3079                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3080                 goto fail_block_groups;
3081         }
3082
3083         btrfs_free_extra_devids(fs_devices, 1);
3084
3085         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3086         if (ret) {
3087                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3088                                 ret);
3089                 goto fail_block_groups;
3090         }
3091
3092         ret = btrfs_sysfs_add_device(fs_devices);
3093         if (ret) {
3094                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3095                                 ret);
3096                 goto fail_fsdev_sysfs;
3097         }
3098
3099         ret = btrfs_sysfs_add_mounted(fs_info);
3100         if (ret) {
3101                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3102                 goto fail_fsdev_sysfs;
3103         }
3104
3105         ret = btrfs_init_space_info(fs_info);
3106         if (ret) {
3107                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3108                 goto fail_sysfs;
3109         }
3110
3111         ret = btrfs_read_block_groups(fs_info);
3112         if (ret) {
3113                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3114                 goto fail_sysfs;
3115         }
3116
3117         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3118                 btrfs_warn(fs_info,
3119                 "writable mount is not allowed due to too many missing devices");
3120                 goto fail_sysfs;
3121         }
3122
3123         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3124                                                "btrfs-cleaner");
3125         if (IS_ERR(fs_info->cleaner_kthread))
3126                 goto fail_sysfs;
3127
3128         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3129                                                    tree_root,
3130                                                    "btrfs-transaction");
3131         if (IS_ERR(fs_info->transaction_kthread))
3132                 goto fail_cleaner;
3133
3134         if (!btrfs_test_opt(fs_info, NOSSD) &&
3135             !fs_info->fs_devices->rotating) {
3136                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3137         }
3138
3139         /*
3140          * Mount does not set all options immediately, we can do it now and do
3141          * not have to wait for transaction commit
3142          */
3143         btrfs_apply_pending_changes(fs_info);
3144
3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3146         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3147                 ret = btrfsic_mount(fs_info, fs_devices,
3148                                     btrfs_test_opt(fs_info,
3149                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3150                                     1 : 0,
3151                                     fs_info->check_integrity_print_mask);
3152                 if (ret)
3153                         btrfs_warn(fs_info,
3154                                 "failed to initialize integrity check module: %d",
3155                                 ret);
3156         }
3157 #endif
3158         ret = btrfs_read_qgroup_config(fs_info);
3159         if (ret)
3160                 goto fail_trans_kthread;
3161
3162         if (btrfs_build_ref_tree(fs_info))
3163                 btrfs_err(fs_info, "couldn't build ref tree");
3164
3165         /* do not make disk changes in broken FS or nologreplay is given */
3166         if (btrfs_super_log_root(disk_super) != 0 &&
3167             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3168                 ret = btrfs_replay_log(fs_info, fs_devices);
3169                 if (ret) {
3170                         err = ret;
3171                         goto fail_qgroup;
3172                 }
3173         }
3174
3175         ret = btrfs_find_orphan_roots(fs_info);
3176         if (ret)
3177                 goto fail_qgroup;
3178
3179         if (!sb_rdonly(sb)) {
3180                 ret = btrfs_cleanup_fs_roots(fs_info);
3181                 if (ret)
3182                         goto fail_qgroup;
3183
3184                 mutex_lock(&fs_info->cleaner_mutex);
3185                 ret = btrfs_recover_relocation(tree_root);
3186                 mutex_unlock(&fs_info->cleaner_mutex);
3187                 if (ret < 0) {
3188                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3189                                         ret);
3190                         err = -EINVAL;
3191                         goto fail_qgroup;
3192                 }
3193         }
3194
3195         location.objectid = BTRFS_FS_TREE_OBJECTID;
3196         location.type = BTRFS_ROOT_ITEM_KEY;
3197         location.offset = 0;
3198
3199         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3200         if (IS_ERR(fs_info->fs_root)) {
3201                 err = PTR_ERR(fs_info->fs_root);
3202                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3203                 goto fail_qgroup;
3204         }
3205
3206         if (sb_rdonly(sb))
3207                 return 0;
3208
3209         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3210             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3211                 clear_free_space_tree = 1;
3212         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3213                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3214                 btrfs_warn(fs_info, "free space tree is invalid");
3215                 clear_free_space_tree = 1;
3216         }
3217
3218         if (clear_free_space_tree) {
3219                 btrfs_info(fs_info, "clearing free space tree");
3220                 ret = btrfs_clear_free_space_tree(fs_info);
3221                 if (ret) {
3222                         btrfs_warn(fs_info,
3223                                    "failed to clear free space tree: %d", ret);
3224                         close_ctree(fs_info);
3225                         return ret;
3226                 }
3227         }
3228
3229         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3230             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3231                 btrfs_info(fs_info, "creating free space tree");
3232                 ret = btrfs_create_free_space_tree(fs_info);
3233                 if (ret) {
3234                         btrfs_warn(fs_info,
3235                                 "failed to create free space tree: %d", ret);
3236                         close_ctree(fs_info);
3237                         return ret;
3238                 }
3239         }
3240
3241         down_read(&fs_info->cleanup_work_sem);
3242         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3243             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3244                 up_read(&fs_info->cleanup_work_sem);
3245                 close_ctree(fs_info);
3246                 return ret;
3247         }
3248         up_read(&fs_info->cleanup_work_sem);
3249
3250         ret = btrfs_resume_balance_async(fs_info);
3251         if (ret) {
3252                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3253                 close_ctree(fs_info);
3254                 return ret;
3255         }
3256
3257         ret = btrfs_resume_dev_replace_async(fs_info);
3258         if (ret) {
3259                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3260                 close_ctree(fs_info);
3261                 return ret;
3262         }
3263
3264         btrfs_qgroup_rescan_resume(fs_info);
3265
3266         if (!fs_info->uuid_root) {
3267                 btrfs_info(fs_info, "creating UUID tree");
3268                 ret = btrfs_create_uuid_tree(fs_info);
3269                 if (ret) {
3270                         btrfs_warn(fs_info,
3271                                 "failed to create the UUID tree: %d", ret);
3272                         close_ctree(fs_info);
3273                         return ret;
3274                 }
3275         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3276                    fs_info->generation !=
3277                                 btrfs_super_uuid_tree_generation(disk_super)) {
3278                 btrfs_info(fs_info, "checking UUID tree");
3279                 ret = btrfs_check_uuid_tree(fs_info);
3280                 if (ret) {
3281                         btrfs_warn(fs_info,
3282                                 "failed to check the UUID tree: %d", ret);
3283                         close_ctree(fs_info);
3284                         return ret;
3285                 }
3286         } else {
3287                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3288         }
3289         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3290
3291         /*
3292          * backuproot only affect mount behavior, and if open_ctree succeeded,
3293          * no need to keep the flag
3294          */
3295         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3296
3297         return 0;
3298
3299 fail_qgroup:
3300         btrfs_free_qgroup_config(fs_info);
3301 fail_trans_kthread:
3302         kthread_stop(fs_info->transaction_kthread);
3303         btrfs_cleanup_transaction(fs_info);
3304         btrfs_free_fs_roots(fs_info);
3305 fail_cleaner:
3306         kthread_stop(fs_info->cleaner_kthread);
3307
3308         /*
3309          * make sure we're done with the btree inode before we stop our
3310          * kthreads
3311          */
3312         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3313
3314 fail_sysfs:
3315         btrfs_sysfs_remove_mounted(fs_info);
3316
3317 fail_fsdev_sysfs:
3318         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3319
3320 fail_block_groups:
3321         btrfs_put_block_group_cache(fs_info);
3322
3323 fail_tree_roots:
3324         free_root_pointers(fs_info, true);
3325         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3326
3327 fail_sb_buffer:
3328         btrfs_stop_all_workers(fs_info);
3329         btrfs_free_block_groups(fs_info);
3330 fail_csum:
3331         btrfs_free_csum_hash(fs_info);
3332 fail_alloc:
3333 fail_iput:
3334         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3335
3336         iput(fs_info->btree_inode);
3337 fail_bio_counter:
3338         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3339 fail_delalloc_bytes:
3340         percpu_counter_destroy(&fs_info->delalloc_bytes);
3341 fail_dirty_metadata_bytes:
3342         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3343 fail_dio_bytes:
3344         percpu_counter_destroy(&fs_info->dio_bytes);
3345 fail_srcu:
3346         cleanup_srcu_struct(&fs_info->subvol_srcu);
3347 fail:
3348         btrfs_free_stripe_hash_table(fs_info);
3349         btrfs_close_devices(fs_info->fs_devices);
3350         return err;
3351
3352 recovery_tree_root:
3353         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3354                 goto fail_tree_roots;
3355
3356         free_root_pointers(fs_info, false);
3357
3358         /* don't use the log in recovery mode, it won't be valid */
3359         btrfs_set_super_log_root(disk_super, 0);
3360
3361         /* we can't trust the free space cache either */
3362         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3363
3364         ret = next_root_backup(fs_info, fs_info->super_copy,
3365                                &num_backups_tried, &backup_index);
3366         if (ret == -1)
3367                 goto fail_block_groups;
3368         goto retry_root_backup;
3369 }
3370 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3371
3372 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3373 {
3374         if (uptodate) {
3375                 set_buffer_uptodate(bh);
3376         } else {
3377                 struct btrfs_device *device = (struct btrfs_device *)
3378                         bh->b_private;
3379
3380                 btrfs_warn_rl_in_rcu(device->fs_info,
3381                                 "lost page write due to IO error on %s",
3382                                           rcu_str_deref(device->name));
3383                 /* note, we don't set_buffer_write_io_error because we have
3384                  * our own ways of dealing with the IO errors
3385                  */
3386                 clear_buffer_uptodate(bh);
3387                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3388         }
3389         unlock_buffer(bh);
3390         put_bh(bh);
3391 }
3392
3393 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3394                         struct buffer_head **bh_ret)
3395 {
3396         struct buffer_head *bh;
3397         struct btrfs_super_block *super;
3398         u64 bytenr;
3399
3400         bytenr = btrfs_sb_offset(copy_num);
3401         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3402                 return -EINVAL;
3403
3404         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3405         /*
3406          * If we fail to read from the underlying devices, as of now
3407          * the best option we have is to mark it EIO.
3408          */
3409         if (!bh)
3410                 return -EIO;
3411
3412         super = (struct btrfs_super_block *)bh->b_data;
3413         if (btrfs_super_bytenr(super) != bytenr ||
3414                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3415                 brelse(bh);
3416                 return -EINVAL;
3417         }
3418
3419         *bh_ret = bh;
3420         return 0;
3421 }
3422
3423
3424 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3425 {
3426         struct buffer_head *bh;
3427         struct buffer_head *latest = NULL;
3428         struct btrfs_super_block *super;
3429         int i;
3430         u64 transid = 0;
3431         int ret = -EINVAL;
3432
3433         /* we would like to check all the supers, but that would make
3434          * a btrfs mount succeed after a mkfs from a different FS.
3435          * So, we need to add a special mount option to scan for
3436          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3437          */
3438         for (i = 0; i < 1; i++) {
3439                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3440                 if (ret)
3441                         continue;
3442
3443                 super = (struct btrfs_super_block *)bh->b_data;
3444
3445                 if (!latest || btrfs_super_generation(super) > transid) {
3446                         brelse(latest);
3447                         latest = bh;
3448                         transid = btrfs_super_generation(super);
3449                 } else {
3450                         brelse(bh);
3451                 }
3452         }
3453
3454         if (!latest)
3455                 return ERR_PTR(ret);
3456
3457         return latest;
3458 }
3459
3460 /*
3461  * Write superblock @sb to the @device. Do not wait for completion, all the
3462  * buffer heads we write are pinned.
3463  *
3464  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3465  * the expected device size at commit time. Note that max_mirrors must be
3466  * same for write and wait phases.
3467  *
3468  * Return number of errors when buffer head is not found or submission fails.
3469  */
3470 static int write_dev_supers(struct btrfs_device *device,
3471                             struct btrfs_super_block *sb, int max_mirrors)
3472 {
3473         struct btrfs_fs_info *fs_info = device->fs_info;
3474         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3475         struct buffer_head *bh;
3476         int i;
3477         int ret;
3478         int errors = 0;
3479         u64 bytenr;
3480         int op_flags;
3481
3482         if (max_mirrors == 0)
3483                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3484
3485         shash->tfm = fs_info->csum_shash;
3486
3487         for (i = 0; i < max_mirrors; i++) {
3488                 bytenr = btrfs_sb_offset(i);
3489                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3490                     device->commit_total_bytes)
3491                         break;
3492
3493                 btrfs_set_super_bytenr(sb, bytenr);
3494
3495                 crypto_shash_init(shash);
3496                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3497                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3498                 crypto_shash_final(shash, sb->csum);
3499
3500                 /* One reference for us, and we leave it for the caller */
3501                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3502                               BTRFS_SUPER_INFO_SIZE);
3503                 if (!bh) {
3504                         btrfs_err(device->fs_info,
3505                             "couldn't get super buffer head for bytenr %llu",
3506                             bytenr);
3507                         errors++;
3508                         continue;
3509                 }
3510
3511                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3512
3513                 /* one reference for submit_bh */
3514                 get_bh(bh);
3515
3516                 set_buffer_uptodate(bh);
3517                 lock_buffer(bh);
3518                 bh->b_end_io = btrfs_end_buffer_write_sync;
3519                 bh->b_private = device;
3520
3521                 /*
3522                  * we fua the first super.  The others we allow
3523                  * to go down lazy.
3524                  */
3525                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3526                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3527                         op_flags |= REQ_FUA;
3528                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3529                 if (ret)
3530                         errors++;
3531         }
3532         return errors < i ? 0 : -1;
3533 }
3534
3535 /*
3536  * Wait for write completion of superblocks done by write_dev_supers,
3537  * @max_mirrors same for write and wait phases.
3538  *
3539  * Return number of errors when buffer head is not found or not marked up to
3540  * date.
3541  */
3542 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3543 {
3544         struct buffer_head *bh;
3545         int i;
3546         int errors = 0;
3547         bool primary_failed = false;
3548         u64 bytenr;
3549
3550         if (max_mirrors == 0)
3551                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3552
3553         for (i = 0; i < max_mirrors; i++) {
3554                 bytenr = btrfs_sb_offset(i);
3555                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3556                     device->commit_total_bytes)
3557                         break;
3558
3559                 bh = __find_get_block(device->bdev,
3560                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3561                                       BTRFS_SUPER_INFO_SIZE);
3562                 if (!bh) {
3563                         errors++;
3564                         if (i == 0)
3565                                 primary_failed = true;
3566                         continue;
3567                 }
3568                 wait_on_buffer(bh);
3569                 if (!buffer_uptodate(bh)) {
3570                         errors++;
3571                         if (i == 0)
3572                                 primary_failed = true;
3573                 }
3574
3575                 /* drop our reference */
3576                 brelse(bh);
3577
3578                 /* drop the reference from the writing run */
3579                 brelse(bh);
3580         }
3581
3582         /* log error, force error return */
3583         if (primary_failed) {
3584                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3585                           device->devid);
3586                 return -1;
3587         }
3588
3589         return errors < i ? 0 : -1;
3590 }
3591
3592 /*
3593  * endio for the write_dev_flush, this will wake anyone waiting
3594  * for the barrier when it is done
3595  */
3596 static void btrfs_end_empty_barrier(struct bio *bio)
3597 {
3598         complete(bio->bi_private);
3599 }
3600
3601 /*
3602  * Submit a flush request to the device if it supports it. Error handling is
3603  * done in the waiting counterpart.
3604  */
3605 static void write_dev_flush(struct btrfs_device *device)
3606 {
3607         struct request_queue *q = bdev_get_queue(device->bdev);
3608         struct bio *bio = device->flush_bio;
3609
3610         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3611                 return;
3612
3613         bio_reset(bio);
3614         bio->bi_end_io = btrfs_end_empty_barrier;
3615         bio_set_dev(bio, device->bdev);
3616         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3617         init_completion(&device->flush_wait);
3618         bio->bi_private = &device->flush_wait;
3619
3620         btrfsic_submit_bio(bio);
3621         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3622 }
3623
3624 /*
3625  * If the flush bio has been submitted by write_dev_flush, wait for it.
3626  */
3627 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3628 {
3629         struct bio *bio = device->flush_bio;
3630
3631         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3632                 return BLK_STS_OK;
3633
3634         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3635         wait_for_completion_io(&device->flush_wait);
3636
3637         return bio->bi_status;
3638 }
3639
3640 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3641 {
3642         if (!btrfs_check_rw_degradable(fs_info, NULL))
3643                 return -EIO;
3644         return 0;
3645 }
3646
3647 /*
3648  * send an empty flush down to each device in parallel,
3649  * then wait for them
3650  */
3651 static int barrier_all_devices(struct btrfs_fs_info *info)
3652 {
3653         struct list_head *head;
3654         struct btrfs_device *dev;
3655         int errors_wait = 0;
3656         blk_status_t ret;
3657
3658         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3659         /* send down all the barriers */
3660         head = &info->fs_devices->devices;
3661         list_for_each_entry(dev, head, dev_list) {
3662                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3663                         continue;
3664                 if (!dev->bdev)
3665                         continue;
3666                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3667                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3668                         continue;
3669
3670                 write_dev_flush(dev);
3671                 dev->last_flush_error = BLK_STS_OK;
3672         }
3673
3674         /* wait for all the barriers */
3675         list_for_each_entry(dev, head, dev_list) {
3676                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3677                         continue;
3678                 if (!dev->bdev) {
3679                         errors_wait++;
3680                         continue;
3681                 }
3682                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3683                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3684                         continue;
3685
3686                 ret = wait_dev_flush(dev);
3687                 if (ret) {
3688                         dev->last_flush_error = ret;
3689                         btrfs_dev_stat_inc_and_print(dev,
3690                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3691                         errors_wait++;
3692                 }
3693         }
3694
3695         if (errors_wait) {
3696                 /*
3697                  * At some point we need the status of all disks
3698                  * to arrive at the volume status. So error checking
3699                  * is being pushed to a separate loop.
3700                  */
3701                 return check_barrier_error(info);
3702         }
3703         return 0;
3704 }
3705
3706 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3707 {
3708         int raid_type;
3709         int min_tolerated = INT_MAX;
3710
3711         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3712             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3713                 min_tolerated = min_t(int, min_tolerated,
3714                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3715                                     tolerated_failures);
3716
3717         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3718                 if (raid_type == BTRFS_RAID_SINGLE)
3719                         continue;
3720                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3721                         continue;
3722                 min_tolerated = min_t(int, min_tolerated,
3723                                     btrfs_raid_array[raid_type].
3724                                     tolerated_failures);
3725         }
3726
3727         if (min_tolerated == INT_MAX) {
3728                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3729                 min_tolerated = 0;
3730         }
3731
3732         return min_tolerated;
3733 }
3734
3735 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3736 {
3737         struct list_head *head;
3738         struct btrfs_device *dev;
3739         struct btrfs_super_block *sb;
3740         struct btrfs_dev_item *dev_item;
3741         int ret;
3742         int do_barriers;
3743         int max_errors;
3744         int total_errors = 0;
3745         u64 flags;
3746
3747         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3748
3749         /*
3750          * max_mirrors == 0 indicates we're from commit_transaction,
3751          * not from fsync where the tree roots in fs_info have not
3752          * been consistent on disk.
3753          */
3754         if (max_mirrors == 0)
3755                 backup_super_roots(fs_info);
3756
3757         sb = fs_info->super_for_commit;
3758         dev_item = &sb->dev_item;
3759
3760         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3761         head = &fs_info->fs_devices->devices;
3762         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3763
3764         if (do_barriers) {
3765                 ret = barrier_all_devices(fs_info);
3766                 if (ret) {
3767                         mutex_unlock(
3768                                 &fs_info->fs_devices->device_list_mutex);
3769                         btrfs_handle_fs_error(fs_info, ret,
3770                                               "errors while submitting device barriers.");
3771                         return ret;
3772                 }
3773         }
3774
3775         list_for_each_entry(dev, head, dev_list) {
3776                 if (!dev->bdev) {
3777                         total_errors++;
3778                         continue;
3779                 }
3780                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3781                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3782                         continue;
3783
3784                 btrfs_set_stack_device_generation(dev_item, 0);
3785                 btrfs_set_stack_device_type(dev_item, dev->type);
3786                 btrfs_set_stack_device_id(dev_item, dev->devid);
3787                 btrfs_set_stack_device_total_bytes(dev_item,
3788                                                    dev->commit_total_bytes);
3789                 btrfs_set_stack_device_bytes_used(dev_item,
3790                                                   dev->commit_bytes_used);
3791                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3792                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3793                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3794                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3795                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3796                        BTRFS_FSID_SIZE);
3797
3798                 flags = btrfs_super_flags(sb);
3799                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3800
3801                 ret = btrfs_validate_write_super(fs_info, sb);
3802                 if (ret < 0) {
3803                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3804                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3805                                 "unexpected superblock corruption detected");
3806                         return -EUCLEAN;
3807                 }
3808
3809                 ret = write_dev_supers(dev, sb, max_mirrors);
3810                 if (ret)
3811                         total_errors++;
3812         }
3813         if (total_errors > max_errors) {
3814                 btrfs_err(fs_info, "%d errors while writing supers",
3815                           total_errors);
3816                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3817
3818                 /* FUA is masked off if unsupported and can't be the reason */
3819                 btrfs_handle_fs_error(fs_info, -EIO,
3820                                       "%d errors while writing supers",
3821                                       total_errors);
3822                 return -EIO;
3823         }
3824
3825         total_errors = 0;
3826         list_for_each_entry(dev, head, dev_list) {
3827                 if (!dev->bdev)
3828                         continue;
3829                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3830                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3831                         continue;
3832
3833                 ret = wait_dev_supers(dev, max_mirrors);
3834                 if (ret)
3835                         total_errors++;
3836         }
3837         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3838         if (total_errors > max_errors) {
3839                 btrfs_handle_fs_error(fs_info, -EIO,
3840                                       "%d errors while writing supers",
3841                                       total_errors);
3842                 return -EIO;
3843         }
3844         return 0;
3845 }
3846
3847 /* Drop a fs root from the radix tree and free it. */
3848 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3849                                   struct btrfs_root *root)
3850 {
3851         spin_lock(&fs_info->fs_roots_radix_lock);
3852         radix_tree_delete(&fs_info->fs_roots_radix,
3853                           (unsigned long)root->root_key.objectid);
3854         spin_unlock(&fs_info->fs_roots_radix_lock);
3855
3856         if (btrfs_root_refs(&root->root_item) == 0)
3857                 synchronize_srcu(&fs_info->subvol_srcu);
3858
3859         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3860                 btrfs_free_log(NULL, root);
3861                 if (root->reloc_root) {
3862                         free_extent_buffer(root->reloc_root->node);
3863                         free_extent_buffer(root->reloc_root->commit_root);
3864                         btrfs_put_fs_root(root->reloc_root);
3865                         root->reloc_root = NULL;
3866                 }
3867         }
3868
3869         if (root->free_ino_pinned)
3870                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3871         if (root->free_ino_ctl)
3872                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3873         btrfs_free_fs_root(root);
3874 }
3875
3876 void btrfs_free_fs_root(struct btrfs_root *root)
3877 {
3878         iput(root->ino_cache_inode);
3879         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3880         if (root->anon_dev)
3881                 free_anon_bdev(root->anon_dev);
3882         if (root->subv_writers)
3883                 btrfs_free_subvolume_writers(root->subv_writers);
3884         free_extent_buffer(root->node);
3885         free_extent_buffer(root->commit_root);
3886         kfree(root->free_ino_ctl);
3887         kfree(root->free_ino_pinned);
3888         btrfs_put_fs_root(root);
3889 }
3890
3891 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3892 {
3893         u64 root_objectid = 0;
3894         struct btrfs_root *gang[8];
3895         int i = 0;
3896         int err = 0;
3897         unsigned int ret = 0;
3898         int index;
3899
3900         while (1) {
3901                 index = srcu_read_lock(&fs_info->subvol_srcu);
3902                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3903                                              (void **)gang, root_objectid,
3904                                              ARRAY_SIZE(gang));
3905                 if (!ret) {
3906                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3907                         break;
3908                 }
3909                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3910
3911                 for (i = 0; i < ret; i++) {
3912                         /* Avoid to grab roots in dead_roots */
3913                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3914                                 gang[i] = NULL;
3915                                 continue;
3916                         }
3917                         /* grab all the search result for later use */
3918                         gang[i] = btrfs_grab_fs_root(gang[i]);
3919                 }
3920                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3921
3922                 for (i = 0; i < ret; i++) {
3923                         if (!gang[i])
3924                                 continue;
3925                         root_objectid = gang[i]->root_key.objectid;
3926                         err = btrfs_orphan_cleanup(gang[i]);
3927                         if (err)
3928                                 break;
3929                         btrfs_put_fs_root(gang[i]);
3930                 }
3931                 root_objectid++;
3932         }
3933
3934         /* release the uncleaned roots due to error */
3935         for (; i < ret; i++) {
3936                 if (gang[i])
3937                         btrfs_put_fs_root(gang[i]);
3938         }
3939         return err;
3940 }
3941
3942 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3943 {
3944         struct btrfs_root *root = fs_info->tree_root;
3945         struct btrfs_trans_handle *trans;
3946
3947         mutex_lock(&fs_info->cleaner_mutex);
3948         btrfs_run_delayed_iputs(fs_info);
3949         mutex_unlock(&fs_info->cleaner_mutex);
3950         wake_up_process(fs_info->cleaner_kthread);
3951
3952         /* wait until ongoing cleanup work done */
3953         down_write(&fs_info->cleanup_work_sem);
3954         up_write(&fs_info->cleanup_work_sem);
3955
3956         trans = btrfs_join_transaction(root);
3957         if (IS_ERR(trans))
3958                 return PTR_ERR(trans);
3959         return btrfs_commit_transaction(trans);
3960 }
3961
3962 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3963 {
3964         int ret;
3965
3966         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3967         /*
3968          * We don't want the cleaner to start new transactions, add more delayed
3969          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3970          * because that frees the task_struct, and the transaction kthread might
3971          * still try to wake up the cleaner.
3972          */
3973         kthread_park(fs_info->cleaner_kthread);
3974
3975         /* wait for the qgroup rescan worker to stop */
3976         btrfs_qgroup_wait_for_completion(fs_info, false);
3977
3978         /* wait for the uuid_scan task to finish */
3979         down(&fs_info->uuid_tree_rescan_sem);
3980         /* avoid complains from lockdep et al., set sem back to initial state */
3981         up(&fs_info->uuid_tree_rescan_sem);
3982
3983         /* pause restriper - we want to resume on mount */
3984         btrfs_pause_balance(fs_info);
3985
3986         btrfs_dev_replace_suspend_for_unmount(fs_info);
3987
3988         btrfs_scrub_cancel(fs_info);
3989
3990         /* wait for any defraggers to finish */
3991         wait_event(fs_info->transaction_wait,
3992                    (atomic_read(&fs_info->defrag_running) == 0));
3993
3994         /* clear out the rbtree of defraggable inodes */
3995         btrfs_cleanup_defrag_inodes(fs_info);
3996
3997         cancel_work_sync(&fs_info->async_reclaim_work);
3998
3999         if (!sb_rdonly(fs_info->sb)) {
4000                 /*
4001                  * The cleaner kthread is stopped, so do one final pass over
4002                  * unused block groups.
4003                  */
4004                 btrfs_delete_unused_bgs(fs_info);
4005
4006                 ret = btrfs_commit_super(fs_info);
4007                 if (ret)
4008                         btrfs_err(fs_info, "commit super ret %d", ret);
4009         }
4010
4011         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4012             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4013                 btrfs_error_commit_super(fs_info);
4014
4015         kthread_stop(fs_info->transaction_kthread);
4016         kthread_stop(fs_info->cleaner_kthread);
4017
4018         ASSERT(list_empty(&fs_info->delayed_iputs));
4019         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4020
4021         btrfs_free_qgroup_config(fs_info);
4022         ASSERT(list_empty(&fs_info->delalloc_roots));
4023
4024         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4025                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4026                        percpu_counter_sum(&fs_info->delalloc_bytes));
4027         }
4028
4029         if (percpu_counter_sum(&fs_info->dio_bytes))
4030                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4031                            percpu_counter_sum(&fs_info->dio_bytes));
4032
4033         btrfs_sysfs_remove_mounted(fs_info);
4034         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4035
4036         btrfs_free_fs_roots(fs_info);
4037
4038         btrfs_put_block_group_cache(fs_info);
4039
4040         /*
4041          * we must make sure there is not any read request to
4042          * submit after we stopping all workers.
4043          */
4044         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4045         btrfs_stop_all_workers(fs_info);
4046
4047         btrfs_free_block_groups(fs_info);
4048
4049         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4050         free_root_pointers(fs_info, true);
4051
4052         iput(fs_info->btree_inode);
4053
4054 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4055         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4056                 btrfsic_unmount(fs_info->fs_devices);
4057 #endif
4058
4059         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4060         btrfs_close_devices(fs_info->fs_devices);
4061
4062         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4063         percpu_counter_destroy(&fs_info->delalloc_bytes);
4064         percpu_counter_destroy(&fs_info->dio_bytes);
4065         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4066         cleanup_srcu_struct(&fs_info->subvol_srcu);
4067
4068         btrfs_free_csum_hash(fs_info);
4069         btrfs_free_stripe_hash_table(fs_info);
4070         btrfs_free_ref_cache(fs_info);
4071 }
4072
4073 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4074                           int atomic)
4075 {
4076         int ret;
4077         struct inode *btree_inode = buf->pages[0]->mapping->host;
4078
4079         ret = extent_buffer_uptodate(buf);
4080         if (!ret)
4081                 return ret;
4082
4083         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4084                                     parent_transid, atomic);
4085         if (ret == -EAGAIN)
4086                 return ret;
4087         return !ret;
4088 }
4089
4090 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4091 {
4092         struct btrfs_fs_info *fs_info;
4093         struct btrfs_root *root;
4094         u64 transid = btrfs_header_generation(buf);
4095         int was_dirty;
4096
4097 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4098         /*
4099          * This is a fast path so only do this check if we have sanity tests
4100          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4101          * outside of the sanity tests.
4102          */
4103         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4104                 return;
4105 #endif
4106         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4107         fs_info = root->fs_info;
4108         btrfs_assert_tree_locked(buf);
4109         if (transid != fs_info->generation)
4110                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4111                         buf->start, transid, fs_info->generation);
4112         was_dirty = set_extent_buffer_dirty(buf);
4113         if (!was_dirty)
4114                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4115                                          buf->len,
4116                                          fs_info->dirty_metadata_batch);
4117 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4118         /*
4119          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4120          * but item data not updated.
4121          * So here we should only check item pointers, not item data.
4122          */
4123         if (btrfs_header_level(buf) == 0 &&
4124             btrfs_check_leaf_relaxed(buf)) {
4125                 btrfs_print_leaf(buf);
4126                 ASSERT(0);
4127         }
4128 #endif
4129 }
4130
4131 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4132                                         int flush_delayed)
4133 {
4134         /*
4135          * looks as though older kernels can get into trouble with
4136          * this code, they end up stuck in balance_dirty_pages forever
4137          */
4138         int ret;
4139
4140         if (current->flags & PF_MEMALLOC)
4141                 return;
4142
4143         if (flush_delayed)
4144                 btrfs_balance_delayed_items(fs_info);
4145
4146         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4147                                      BTRFS_DIRTY_METADATA_THRESH,
4148                                      fs_info->dirty_metadata_batch);
4149         if (ret > 0) {
4150                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4151         }
4152 }
4153
4154 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4155 {
4156         __btrfs_btree_balance_dirty(fs_info, 1);
4157 }
4158
4159 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4160 {
4161         __btrfs_btree_balance_dirty(fs_info, 0);
4162 }
4163
4164 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4165                       struct btrfs_key *first_key)
4166 {
4167         return btree_read_extent_buffer_pages(buf, parent_transid,
4168                                               level, first_key);
4169 }
4170
4171 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4172 {
4173         /* cleanup FS via transaction */
4174         btrfs_cleanup_transaction(fs_info);
4175
4176         mutex_lock(&fs_info->cleaner_mutex);
4177         btrfs_run_delayed_iputs(fs_info);
4178         mutex_unlock(&fs_info->cleaner_mutex);
4179
4180         down_write(&fs_info->cleanup_work_sem);
4181         up_write(&fs_info->cleanup_work_sem);
4182 }
4183
4184 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4185 {
4186         struct btrfs_ordered_extent *ordered;
4187
4188         spin_lock(&root->ordered_extent_lock);
4189         /*
4190          * This will just short circuit the ordered completion stuff which will
4191          * make sure the ordered extent gets properly cleaned up.
4192          */
4193         list_for_each_entry(ordered, &root->ordered_extents,
4194                             root_extent_list)
4195                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4196         spin_unlock(&root->ordered_extent_lock);
4197 }
4198
4199 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4200 {
4201         struct btrfs_root *root;
4202         struct list_head splice;
4203
4204         INIT_LIST_HEAD(&splice);
4205
4206         spin_lock(&fs_info->ordered_root_lock);
4207         list_splice_init(&fs_info->ordered_roots, &splice);
4208         while (!list_empty(&splice)) {
4209                 root = list_first_entry(&splice, struct btrfs_root,
4210                                         ordered_root);
4211                 list_move_tail(&root->ordered_root,
4212                                &fs_info->ordered_roots);
4213
4214                 spin_unlock(&fs_info->ordered_root_lock);
4215                 btrfs_destroy_ordered_extents(root);
4216
4217                 cond_resched();
4218                 spin_lock(&fs_info->ordered_root_lock);
4219         }
4220         spin_unlock(&fs_info->ordered_root_lock);
4221
4222         /*
4223          * We need this here because if we've been flipped read-only we won't
4224          * get sync() from the umount, so we need to make sure any ordered
4225          * extents that haven't had their dirty pages IO start writeout yet
4226          * actually get run and error out properly.
4227          */
4228         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4229 }
4230
4231 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4232                                       struct btrfs_fs_info *fs_info)
4233 {
4234         struct rb_node *node;
4235         struct btrfs_delayed_ref_root *delayed_refs;
4236         struct btrfs_delayed_ref_node *ref;
4237         int ret = 0;
4238
4239         delayed_refs = &trans->delayed_refs;
4240
4241         spin_lock(&delayed_refs->lock);
4242         if (atomic_read(&delayed_refs->num_entries) == 0) {
4243                 spin_unlock(&delayed_refs->lock);
4244                 btrfs_info(fs_info, "delayed_refs has NO entry");
4245                 return ret;
4246         }
4247
4248         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4249                 struct btrfs_delayed_ref_head *head;
4250                 struct rb_node *n;
4251                 bool pin_bytes = false;
4252
4253                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4254                                 href_node);
4255                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4256                         continue;
4257
4258                 spin_lock(&head->lock);
4259                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4260                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4261                                        ref_node);
4262                         ref->in_tree = 0;
4263                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4264                         RB_CLEAR_NODE(&ref->ref_node);
4265                         if (!list_empty(&ref->add_list))
4266                                 list_del(&ref->add_list);
4267                         atomic_dec(&delayed_refs->num_entries);
4268                         btrfs_put_delayed_ref(ref);
4269                 }
4270                 if (head->must_insert_reserved)
4271                         pin_bytes = true;
4272                 btrfs_free_delayed_extent_op(head->extent_op);
4273                 btrfs_delete_ref_head(delayed_refs, head);
4274                 spin_unlock(&head->lock);
4275                 spin_unlock(&delayed_refs->lock);
4276                 mutex_unlock(&head->mutex);
4277
4278                 if (pin_bytes)
4279                         btrfs_pin_extent(fs_info, head->bytenr,
4280                                          head->num_bytes, 1);
4281                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4282                 btrfs_put_delayed_ref_head(head);
4283                 cond_resched();
4284                 spin_lock(&delayed_refs->lock);
4285         }
4286
4287         spin_unlock(&delayed_refs->lock);
4288
4289         return ret;
4290 }
4291
4292 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4293 {
4294         struct btrfs_inode *btrfs_inode;
4295         struct list_head splice;
4296
4297         INIT_LIST_HEAD(&splice);
4298
4299         spin_lock(&root->delalloc_lock);
4300         list_splice_init(&root->delalloc_inodes, &splice);
4301
4302         while (!list_empty(&splice)) {
4303                 struct inode *inode = NULL;
4304                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4305                                                delalloc_inodes);
4306                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4307                 spin_unlock(&root->delalloc_lock);
4308
4309                 /*
4310                  * Make sure we get a live inode and that it'll not disappear
4311                  * meanwhile.
4312                  */
4313                 inode = igrab(&btrfs_inode->vfs_inode);
4314                 if (inode) {
4315                         invalidate_inode_pages2(inode->i_mapping);
4316                         iput(inode);
4317                 }
4318                 spin_lock(&root->delalloc_lock);
4319         }
4320         spin_unlock(&root->delalloc_lock);
4321 }
4322
4323 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4324 {
4325         struct btrfs_root *root;
4326         struct list_head splice;
4327
4328         INIT_LIST_HEAD(&splice);
4329
4330         spin_lock(&fs_info->delalloc_root_lock);
4331         list_splice_init(&fs_info->delalloc_roots, &splice);
4332         while (!list_empty(&splice)) {
4333                 root = list_first_entry(&splice, struct btrfs_root,
4334                                          delalloc_root);
4335                 root = btrfs_grab_fs_root(root);
4336                 BUG_ON(!root);
4337                 spin_unlock(&fs_info->delalloc_root_lock);
4338
4339                 btrfs_destroy_delalloc_inodes(root);
4340                 btrfs_put_fs_root(root);
4341
4342                 spin_lock(&fs_info->delalloc_root_lock);
4343         }
4344         spin_unlock(&fs_info->delalloc_root_lock);
4345 }
4346
4347 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4348                                         struct extent_io_tree *dirty_pages,
4349                                         int mark)
4350 {
4351         int ret;
4352         struct extent_buffer *eb;
4353         u64 start = 0;
4354         u64 end;
4355
4356         while (1) {
4357                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4358                                             mark, NULL);
4359                 if (ret)
4360                         break;
4361
4362                 clear_extent_bits(dirty_pages, start, end, mark);
4363                 while (start <= end) {
4364                         eb = find_extent_buffer(fs_info, start);
4365                         start += fs_info->nodesize;
4366                         if (!eb)
4367                                 continue;
4368                         wait_on_extent_buffer_writeback(eb);
4369
4370                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4371                                                &eb->bflags))
4372                                 clear_extent_buffer_dirty(eb);
4373                         free_extent_buffer_stale(eb);
4374                 }
4375         }
4376
4377         return ret;
4378 }
4379
4380 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4381                                        struct extent_io_tree *pinned_extents)
4382 {
4383         struct extent_io_tree *unpin;
4384         u64 start;
4385         u64 end;
4386         int ret;
4387         bool loop = true;
4388
4389         unpin = pinned_extents;
4390 again:
4391         while (1) {
4392                 struct extent_state *cached_state = NULL;
4393
4394                 /*
4395                  * The btrfs_finish_extent_commit() may get the same range as
4396                  * ours between find_first_extent_bit and clear_extent_dirty.
4397                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4398                  * the same extent range.
4399                  */
4400                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4401                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4402                                             EXTENT_DIRTY, &cached_state);
4403                 if (ret) {
4404                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4405                         break;
4406                 }
4407
4408                 clear_extent_dirty(unpin, start, end, &cached_state);
4409                 free_extent_state(cached_state);
4410                 btrfs_error_unpin_extent_range(fs_info, start, end);
4411                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4412                 cond_resched();
4413         }
4414
4415         if (loop) {
4416                 if (unpin == &fs_info->freed_extents[0])
4417                         unpin = &fs_info->freed_extents[1];
4418                 else
4419                         unpin = &fs_info->freed_extents[0];
4420                 loop = false;
4421                 goto again;
4422         }
4423
4424         return 0;
4425 }
4426
4427 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4428 {
4429         struct inode *inode;
4430
4431         inode = cache->io_ctl.inode;
4432         if (inode) {
4433                 invalidate_inode_pages2(inode->i_mapping);
4434                 BTRFS_I(inode)->generation = 0;
4435                 cache->io_ctl.inode = NULL;
4436                 iput(inode);
4437         }
4438         btrfs_put_block_group(cache);
4439 }
4440
4441 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4442                              struct btrfs_fs_info *fs_info)
4443 {
4444         struct btrfs_block_group_cache *cache;
4445
4446         spin_lock(&cur_trans->dirty_bgs_lock);
4447         while (!list_empty(&cur_trans->dirty_bgs)) {
4448                 cache = list_first_entry(&cur_trans->dirty_bgs,
4449                                          struct btrfs_block_group_cache,
4450                                          dirty_list);
4451
4452                 if (!list_empty(&cache->io_list)) {
4453                         spin_unlock(&cur_trans->dirty_bgs_lock);
4454                         list_del_init(&cache->io_list);
4455                         btrfs_cleanup_bg_io(cache);
4456                         spin_lock(&cur_trans->dirty_bgs_lock);
4457                 }
4458
4459                 list_del_init(&cache->dirty_list);
4460                 spin_lock(&cache->lock);
4461                 cache->disk_cache_state = BTRFS_DC_ERROR;
4462                 spin_unlock(&cache->lock);
4463
4464                 spin_unlock(&cur_trans->dirty_bgs_lock);
4465                 btrfs_put_block_group(cache);
4466                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4467                 spin_lock(&cur_trans->dirty_bgs_lock);
4468         }
4469         spin_unlock(&cur_trans->dirty_bgs_lock);
4470
4471         /*
4472          * Refer to the definition of io_bgs member for details why it's safe
4473          * to use it without any locking
4474          */
4475         while (!list_empty(&cur_trans->io_bgs)) {
4476                 cache = list_first_entry(&cur_trans->io_bgs,
4477                                          struct btrfs_block_group_cache,
4478                                          io_list);
4479
4480                 list_del_init(&cache->io_list);
4481                 spin_lock(&cache->lock);
4482                 cache->disk_cache_state = BTRFS_DC_ERROR;
4483                 spin_unlock(&cache->lock);
4484                 btrfs_cleanup_bg_io(cache);
4485         }
4486 }
4487
4488 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4489                                    struct btrfs_fs_info *fs_info)
4490 {
4491         struct btrfs_device *dev, *tmp;
4492
4493         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4494         ASSERT(list_empty(&cur_trans->dirty_bgs));
4495         ASSERT(list_empty(&cur_trans->io_bgs));
4496
4497         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4498                                  post_commit_list) {
4499                 list_del_init(&dev->post_commit_list);
4500         }
4501
4502         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4503
4504         cur_trans->state = TRANS_STATE_COMMIT_START;
4505         wake_up(&fs_info->transaction_blocked_wait);
4506
4507         cur_trans->state = TRANS_STATE_UNBLOCKED;
4508         wake_up(&fs_info->transaction_wait);
4509
4510         btrfs_destroy_delayed_inodes(fs_info);
4511         btrfs_assert_delayed_root_empty(fs_info);
4512
4513         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4514                                      EXTENT_DIRTY);
4515         btrfs_destroy_pinned_extent(fs_info,
4516                                     fs_info->pinned_extents);
4517
4518         cur_trans->state =TRANS_STATE_COMPLETED;
4519         wake_up(&cur_trans->commit_wait);
4520 }
4521
4522 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4523 {
4524         struct btrfs_transaction *t;
4525
4526         mutex_lock(&fs_info->transaction_kthread_mutex);
4527
4528         spin_lock(&fs_info->trans_lock);
4529         while (!list_empty(&fs_info->trans_list)) {
4530                 t = list_first_entry(&fs_info->trans_list,
4531                                      struct btrfs_transaction, list);
4532                 if (t->state >= TRANS_STATE_COMMIT_START) {
4533                         refcount_inc(&t->use_count);
4534                         spin_unlock(&fs_info->trans_lock);
4535                         btrfs_wait_for_commit(fs_info, t->transid);
4536                         btrfs_put_transaction(t);
4537                         spin_lock(&fs_info->trans_lock);
4538                         continue;
4539                 }
4540                 if (t == fs_info->running_transaction) {
4541                         t->state = TRANS_STATE_COMMIT_DOING;
4542                         spin_unlock(&fs_info->trans_lock);
4543                         /*
4544                          * We wait for 0 num_writers since we don't hold a trans
4545                          * handle open currently for this transaction.
4546                          */
4547                         wait_event(t->writer_wait,
4548                                    atomic_read(&t->num_writers) == 0);
4549                 } else {
4550                         spin_unlock(&fs_info->trans_lock);
4551                 }
4552                 btrfs_cleanup_one_transaction(t, fs_info);
4553
4554                 spin_lock(&fs_info->trans_lock);
4555                 if (t == fs_info->running_transaction)
4556                         fs_info->running_transaction = NULL;
4557                 list_del_init(&t->list);
4558                 spin_unlock(&fs_info->trans_lock);
4559
4560                 btrfs_put_transaction(t);
4561                 trace_btrfs_transaction_commit(fs_info->tree_root);
4562                 spin_lock(&fs_info->trans_lock);
4563         }
4564         spin_unlock(&fs_info->trans_lock);
4565         btrfs_destroy_all_ordered_extents(fs_info);
4566         btrfs_destroy_delayed_inodes(fs_info);
4567         btrfs_assert_delayed_root_empty(fs_info);
4568         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4569         btrfs_destroy_all_delalloc_inodes(fs_info);
4570         mutex_unlock(&fs_info->transaction_kthread_mutex);
4571
4572         return 0;
4573 }
4574
4575 static const struct extent_io_ops btree_extent_io_ops = {
4576         /* mandatory callbacks */
4577         .submit_bio_hook = btree_submit_bio_hook,
4578         .readpage_end_io_hook = btree_readpage_end_io_hook,
4579 };