leds: gpio: Support the "panic-indicator" firmware property
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53 #include "compression.h"
54
55 #ifdef CONFIG_X86
56 #include <asm/cpufeature.h>
57 #endif
58
59 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
60                                  BTRFS_HEADER_FLAG_RELOC |\
61                                  BTRFS_SUPER_FLAG_ERROR |\
62                                  BTRFS_SUPER_FLAG_SEEDING |\
63                                  BTRFS_SUPER_FLAG_METADUMP)
64
65 static const struct extent_io_ops btree_extent_io_ops;
66 static void end_workqueue_fn(struct btrfs_work *work);
67 static void free_fs_root(struct btrfs_root *root);
68 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
69                                     int read_only);
70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72                                       struct btrfs_root *root);
73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
75                                         struct extent_io_tree *dirty_pages,
76                                         int mark);
77 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
78                                        struct extent_io_tree *pinned_extents);
79 static int btrfs_cleanup_transaction(struct btrfs_root *root);
80 static void btrfs_error_commit_super(struct btrfs_root *root);
81
82 /*
83  * btrfs_end_io_wq structs are used to do processing in task context when an IO
84  * is complete.  This is used during reads to verify checksums, and it is used
85  * by writes to insert metadata for new file extents after IO is complete.
86  */
87 struct btrfs_end_io_wq {
88         struct bio *bio;
89         bio_end_io_t *end_io;
90         void *private;
91         struct btrfs_fs_info *info;
92         int error;
93         enum btrfs_wq_endio_type metadata;
94         struct list_head list;
95         struct btrfs_work work;
96 };
97
98 static struct kmem_cache *btrfs_end_io_wq_cache;
99
100 int __init btrfs_end_io_wq_init(void)
101 {
102         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
103                                         sizeof(struct btrfs_end_io_wq),
104                                         0,
105                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
106                                         NULL);
107         if (!btrfs_end_io_wq_cache)
108                 return -ENOMEM;
109         return 0;
110 }
111
112 void btrfs_end_io_wq_exit(void)
113 {
114         kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116
117 /*
118  * async submit bios are used to offload expensive checksumming
119  * onto the worker threads.  They checksum file and metadata bios
120  * just before they are sent down the IO stack.
121  */
122 struct async_submit_bio {
123         struct inode *inode;
124         struct bio *bio;
125         struct list_head list;
126         extent_submit_bio_hook_t *submit_bio_start;
127         extent_submit_bio_hook_t *submit_bio_done;
128         int rw;
129         int mirror_num;
130         unsigned long bio_flags;
131         /*
132          * bio_offset is optional, can be used if the pages in the bio
133          * can't tell us where in the file the bio should go
134          */
135         u64 bio_offset;
136         struct btrfs_work work;
137         int error;
138 };
139
140 /*
141  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
142  * eb, the lockdep key is determined by the btrfs_root it belongs to and
143  * the level the eb occupies in the tree.
144  *
145  * Different roots are used for different purposes and may nest inside each
146  * other and they require separate keysets.  As lockdep keys should be
147  * static, assign keysets according to the purpose of the root as indicated
148  * by btrfs_root->objectid.  This ensures that all special purpose roots
149  * have separate keysets.
150  *
151  * Lock-nesting across peer nodes is always done with the immediate parent
152  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
153  * subclass to avoid triggering lockdep warning in such cases.
154  *
155  * The key is set by the readpage_end_io_hook after the buffer has passed
156  * csum validation but before the pages are unlocked.  It is also set by
157  * btrfs_init_new_buffer on freshly allocated blocks.
158  *
159  * We also add a check to make sure the highest level of the tree is the
160  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
161  * needs update as well.
162  */
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
165 #  error
166 # endif
167
168 static struct btrfs_lockdep_keyset {
169         u64                     id;             /* root objectid */
170         const char              *name_stem;     /* lock name stem */
171         char                    names[BTRFS_MAX_LEVEL + 1][20];
172         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
175         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
176         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
177         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
178         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
179         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
180         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
181         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
182         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
183         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
184         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
185         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
186         { .id = 0,                              .name_stem = "tree"     },
187 };
188
189 void __init btrfs_init_lockdep(void)
190 {
191         int i, j;
192
193         /* initialize lockdep class names */
194         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
196
197                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198                         snprintf(ks->names[j], sizeof(ks->names[j]),
199                                  "btrfs-%s-%02d", ks->name_stem, j);
200         }
201 }
202
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204                                     int level)
205 {
206         struct btrfs_lockdep_keyset *ks;
207
208         BUG_ON(level >= ARRAY_SIZE(ks->keys));
209
210         /* find the matching keyset, id 0 is the default entry */
211         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212                 if (ks->id == objectid)
213                         break;
214
215         lockdep_set_class_and_name(&eb->lock,
216                                    &ks->keys[level], ks->names[level]);
217 }
218
219 #endif
220
221 /*
222  * extents on the btree inode are pretty simple, there's one extent
223  * that covers the entire device
224  */
225 static struct extent_map *btree_get_extent(struct inode *inode,
226                 struct page *page, size_t pg_offset, u64 start, u64 len,
227                 int create)
228 {
229         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
230         struct extent_map *em;
231         int ret;
232
233         read_lock(&em_tree->lock);
234         em = lookup_extent_mapping(em_tree, start, len);
235         if (em) {
236                 em->bdev =
237                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
238                 read_unlock(&em_tree->lock);
239                 goto out;
240         }
241         read_unlock(&em_tree->lock);
242
243         em = alloc_extent_map();
244         if (!em) {
245                 em = ERR_PTR(-ENOMEM);
246                 goto out;
247         }
248         em->start = 0;
249         em->len = (u64)-1;
250         em->block_len = (u64)-1;
251         em->block_start = 0;
252         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
253
254         write_lock(&em_tree->lock);
255         ret = add_extent_mapping(em_tree, em, 0);
256         if (ret == -EEXIST) {
257                 free_extent_map(em);
258                 em = lookup_extent_mapping(em_tree, start, len);
259                 if (!em)
260                         em = ERR_PTR(-EIO);
261         } else if (ret) {
262                 free_extent_map(em);
263                 em = ERR_PTR(ret);
264         }
265         write_unlock(&em_tree->lock);
266
267 out:
268         return em;
269 }
270
271 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
272 {
273         return btrfs_crc32c(seed, data, len);
274 }
275
276 void btrfs_csum_final(u32 crc, char *result)
277 {
278         put_unaligned_le32(~crc, result);
279 }
280
281 /*
282  * compute the csum for a btree block, and either verify it or write it
283  * into the csum field of the block.
284  */
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286                            struct extent_buffer *buf,
287                            int verify)
288 {
289         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290         char *result = NULL;
291         unsigned long len;
292         unsigned long cur_len;
293         unsigned long offset = BTRFS_CSUM_SIZE;
294         char *kaddr;
295         unsigned long map_start;
296         unsigned long map_len;
297         int err;
298         u32 crc = ~(u32)0;
299         unsigned long inline_result;
300
301         len = buf->len - offset;
302         while (len > 0) {
303                 err = map_private_extent_buffer(buf, offset, 32,
304                                         &kaddr, &map_start, &map_len);
305                 if (err)
306                         return 1;
307                 cur_len = min(len, map_len - (offset - map_start));
308                 crc = btrfs_csum_data(kaddr + offset - map_start,
309                                       crc, cur_len);
310                 len -= cur_len;
311                 offset += cur_len;
312         }
313         if (csum_size > sizeof(inline_result)) {
314                 result = kzalloc(csum_size, GFP_NOFS);
315                 if (!result)
316                         return 1;
317         } else {
318                 result = (char *)&inline_result;
319         }
320
321         btrfs_csum_final(crc, result);
322
323         if (verify) {
324                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
325                         u32 val;
326                         u32 found = 0;
327                         memcpy(&found, result, csum_size);
328
329                         read_extent_buffer(buf, &val, 0, csum_size);
330                         btrfs_warn_rl(fs_info,
331                                 "%s checksum verify failed on %llu wanted %X found %X "
332                                 "level %d",
333                                 fs_info->sb->s_id, buf->start,
334                                 val, found, btrfs_header_level(buf));
335                         if (result != (char *)&inline_result)
336                                 kfree(result);
337                         return 1;
338                 }
339         } else {
340                 write_extent_buffer(buf, result, 0, csum_size);
341         }
342         if (result != (char *)&inline_result)
343                 kfree(result);
344         return 0;
345 }
346
347 /*
348  * we can't consider a given block up to date unless the transid of the
349  * block matches the transid in the parent node's pointer.  This is how we
350  * detect blocks that either didn't get written at all or got written
351  * in the wrong place.
352  */
353 static int verify_parent_transid(struct extent_io_tree *io_tree,
354                                  struct extent_buffer *eb, u64 parent_transid,
355                                  int atomic)
356 {
357         struct extent_state *cached_state = NULL;
358         int ret;
359         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
360
361         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
362                 return 0;
363
364         if (atomic)
365                 return -EAGAIN;
366
367         if (need_lock) {
368                 btrfs_tree_read_lock(eb);
369                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
370         }
371
372         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
373                          &cached_state);
374         if (extent_buffer_uptodate(eb) &&
375             btrfs_header_generation(eb) == parent_transid) {
376                 ret = 0;
377                 goto out;
378         }
379         btrfs_err_rl(eb->fs_info,
380                 "parent transid verify failed on %llu wanted %llu found %llu",
381                         eb->start,
382                         parent_transid, btrfs_header_generation(eb));
383         ret = 1;
384
385         /*
386          * Things reading via commit roots that don't have normal protection,
387          * like send, can have a really old block in cache that may point at a
388          * block that has been free'd and re-allocated.  So don't clear uptodate
389          * if we find an eb that is under IO (dirty/writeback) because we could
390          * end up reading in the stale data and then writing it back out and
391          * making everybody very sad.
392          */
393         if (!extent_buffer_under_io(eb))
394                 clear_extent_buffer_uptodate(eb);
395 out:
396         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
397                              &cached_state, GFP_NOFS);
398         if (need_lock)
399                 btrfs_tree_read_unlock_blocking(eb);
400         return ret;
401 }
402
403 /*
404  * Return 0 if the superblock checksum type matches the checksum value of that
405  * algorithm. Pass the raw disk superblock data.
406  */
407 static int btrfs_check_super_csum(char *raw_disk_sb)
408 {
409         struct btrfs_super_block *disk_sb =
410                 (struct btrfs_super_block *)raw_disk_sb;
411         u16 csum_type = btrfs_super_csum_type(disk_sb);
412         int ret = 0;
413
414         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
415                 u32 crc = ~(u32)0;
416                 const int csum_size = sizeof(crc);
417                 char result[csum_size];
418
419                 /*
420                  * The super_block structure does not span the whole
421                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
422                  * is filled with zeros and is included in the checkum.
423                  */
424                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
425                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
426                 btrfs_csum_final(crc, result);
427
428                 if (memcmp(raw_disk_sb, result, csum_size))
429                         ret = 1;
430         }
431
432         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
433                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
434                                 csum_type);
435                 ret = 1;
436         }
437
438         return ret;
439 }
440
441 /*
442  * helper to read a given tree block, doing retries as required when
443  * the checksums don't match and we have alternate mirrors to try.
444  */
445 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
446                                           struct extent_buffer *eb,
447                                           u64 start, u64 parent_transid)
448 {
449         struct extent_io_tree *io_tree;
450         int failed = 0;
451         int ret;
452         int num_copies = 0;
453         int mirror_num = 0;
454         int failed_mirror = 0;
455
456         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
458         while (1) {
459                 ret = read_extent_buffer_pages(io_tree, eb, start,
460                                                WAIT_COMPLETE,
461                                                btree_get_extent, mirror_num);
462                 if (!ret) {
463                         if (!verify_parent_transid(io_tree, eb,
464                                                    parent_transid, 0))
465                                 break;
466                         else
467                                 ret = -EIO;
468                 }
469
470                 /*
471                  * This buffer's crc is fine, but its contents are corrupted, so
472                  * there is no reason to read the other copies, they won't be
473                  * any less wrong.
474                  */
475                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
476                         break;
477
478                 num_copies = btrfs_num_copies(root->fs_info,
479                                               eb->start, eb->len);
480                 if (num_copies == 1)
481                         break;
482
483                 if (!failed_mirror) {
484                         failed = 1;
485                         failed_mirror = eb->read_mirror;
486                 }
487
488                 mirror_num++;
489                 if (mirror_num == failed_mirror)
490                         mirror_num++;
491
492                 if (mirror_num > num_copies)
493                         break;
494         }
495
496         if (failed && !ret && failed_mirror)
497                 repair_eb_io_failure(root, eb, failed_mirror);
498
499         return ret;
500 }
501
502 /*
503  * checksum a dirty tree block before IO.  This has extra checks to make sure
504  * we only fill in the checksum field in the first page of a multi-page block
505  */
506
507 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
508 {
509         u64 start = page_offset(page);
510         u64 found_start;
511         struct extent_buffer *eb;
512
513         eb = (struct extent_buffer *)page->private;
514         if (page != eb->pages[0])
515                 return 0;
516         found_start = btrfs_header_bytenr(eb);
517         if (WARN_ON(found_start != start || !PageUptodate(page)))
518                 return 0;
519         csum_tree_block(fs_info, eb, 0);
520         return 0;
521 }
522
523 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
524                                  struct extent_buffer *eb)
525 {
526         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
527         u8 fsid[BTRFS_UUID_SIZE];
528         int ret = 1;
529
530         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
531         while (fs_devices) {
532                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
533                         ret = 0;
534                         break;
535                 }
536                 fs_devices = fs_devices->seed;
537         }
538         return ret;
539 }
540
541 #define CORRUPT(reason, eb, root, slot)                         \
542         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
543                    "root=%llu, slot=%d", reason,                        \
544                btrfs_header_bytenr(eb), root->objectid, slot)
545
546 static noinline int check_leaf(struct btrfs_root *root,
547                                struct extent_buffer *leaf)
548 {
549         struct btrfs_key key;
550         struct btrfs_key leaf_key;
551         u32 nritems = btrfs_header_nritems(leaf);
552         int slot;
553
554         if (nritems == 0)
555                 return 0;
556
557         /* Check the 0 item */
558         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
559             BTRFS_LEAF_DATA_SIZE(root)) {
560                 CORRUPT("invalid item offset size pair", leaf, root, 0);
561                 return -EIO;
562         }
563
564         /*
565          * Check to make sure each items keys are in the correct order and their
566          * offsets make sense.  We only have to loop through nritems-1 because
567          * we check the current slot against the next slot, which verifies the
568          * next slot's offset+size makes sense and that the current's slot
569          * offset is correct.
570          */
571         for (slot = 0; slot < nritems - 1; slot++) {
572                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
573                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
574
575                 /* Make sure the keys are in the right order */
576                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
577                         CORRUPT("bad key order", leaf, root, slot);
578                         return -EIO;
579                 }
580
581                 /*
582                  * Make sure the offset and ends are right, remember that the
583                  * item data starts at the end of the leaf and grows towards the
584                  * front.
585                  */
586                 if (btrfs_item_offset_nr(leaf, slot) !=
587                         btrfs_item_end_nr(leaf, slot + 1)) {
588                         CORRUPT("slot offset bad", leaf, root, slot);
589                         return -EIO;
590                 }
591
592                 /*
593                  * Check to make sure that we don't point outside of the leaf,
594                  * just incase all the items are consistent to eachother, but
595                  * all point outside of the leaf.
596                  */
597                 if (btrfs_item_end_nr(leaf, slot) >
598                     BTRFS_LEAF_DATA_SIZE(root)) {
599                         CORRUPT("slot end outside of leaf", leaf, root, slot);
600                         return -EIO;
601                 }
602         }
603
604         return 0;
605 }
606
607 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
608                                       u64 phy_offset, struct page *page,
609                                       u64 start, u64 end, int mirror)
610 {
611         u64 found_start;
612         int found_level;
613         struct extent_buffer *eb;
614         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
615         struct btrfs_fs_info *fs_info = root->fs_info;
616         int ret = 0;
617         int reads_done;
618
619         if (!page->private)
620                 goto out;
621
622         eb = (struct extent_buffer *)page->private;
623
624         /* the pending IO might have been the only thing that kept this buffer
625          * in memory.  Make sure we have a ref for all this other checks
626          */
627         extent_buffer_get(eb);
628
629         reads_done = atomic_dec_and_test(&eb->io_pages);
630         if (!reads_done)
631                 goto err;
632
633         eb->read_mirror = mirror;
634         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
635                 ret = -EIO;
636                 goto err;
637         }
638
639         found_start = btrfs_header_bytenr(eb);
640         if (found_start != eb->start) {
641                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
642                              found_start, eb->start);
643                 ret = -EIO;
644                 goto err;
645         }
646         if (check_tree_block_fsid(fs_info, eb)) {
647                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
648                              eb->start);
649                 ret = -EIO;
650                 goto err;
651         }
652         found_level = btrfs_header_level(eb);
653         if (found_level >= BTRFS_MAX_LEVEL) {
654                 btrfs_err(fs_info, "bad tree block level %d",
655                           (int)btrfs_header_level(eb));
656                 ret = -EIO;
657                 goto err;
658         }
659
660         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
661                                        eb, found_level);
662
663         ret = csum_tree_block(fs_info, eb, 1);
664         if (ret) {
665                 ret = -EIO;
666                 goto err;
667         }
668
669         /*
670          * If this is a leaf block and it is corrupt, set the corrupt bit so
671          * that we don't try and read the other copies of this block, just
672          * return -EIO.
673          */
674         if (found_level == 0 && check_leaf(root, eb)) {
675                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
676                 ret = -EIO;
677         }
678
679         if (!ret)
680                 set_extent_buffer_uptodate(eb);
681 err:
682         if (reads_done &&
683             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684                 btree_readahead_hook(fs_info, eb, eb->start, ret);
685
686         if (ret) {
687                 /*
688                  * our io error hook is going to dec the io pages
689                  * again, we have to make sure it has something
690                  * to decrement
691                  */
692                 atomic_inc(&eb->io_pages);
693                 clear_extent_buffer_uptodate(eb);
694         }
695         free_extent_buffer(eb);
696 out:
697         return ret;
698 }
699
700 static int btree_io_failed_hook(struct page *page, int failed_mirror)
701 {
702         struct extent_buffer *eb;
703
704         eb = (struct extent_buffer *)page->private;
705         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
706         eb->read_mirror = failed_mirror;
707         atomic_dec(&eb->io_pages);
708         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
709                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
710         return -EIO;    /* we fixed nothing */
711 }
712
713 static void end_workqueue_bio(struct bio *bio)
714 {
715         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
716         struct btrfs_fs_info *fs_info;
717         struct btrfs_workqueue *wq;
718         btrfs_work_func_t func;
719
720         fs_info = end_io_wq->info;
721         end_io_wq->error = bio->bi_error;
722
723         if (bio->bi_rw & REQ_WRITE) {
724                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
725                         wq = fs_info->endio_meta_write_workers;
726                         func = btrfs_endio_meta_write_helper;
727                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
728                         wq = fs_info->endio_freespace_worker;
729                         func = btrfs_freespace_write_helper;
730                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
731                         wq = fs_info->endio_raid56_workers;
732                         func = btrfs_endio_raid56_helper;
733                 } else {
734                         wq = fs_info->endio_write_workers;
735                         func = btrfs_endio_write_helper;
736                 }
737         } else {
738                 if (unlikely(end_io_wq->metadata ==
739                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
740                         wq = fs_info->endio_repair_workers;
741                         func = btrfs_endio_repair_helper;
742                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
743                         wq = fs_info->endio_raid56_workers;
744                         func = btrfs_endio_raid56_helper;
745                 } else if (end_io_wq->metadata) {
746                         wq = fs_info->endio_meta_workers;
747                         func = btrfs_endio_meta_helper;
748                 } else {
749                         wq = fs_info->endio_workers;
750                         func = btrfs_endio_helper;
751                 }
752         }
753
754         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
755         btrfs_queue_work(wq, &end_io_wq->work);
756 }
757
758 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
759                         enum btrfs_wq_endio_type metadata)
760 {
761         struct btrfs_end_io_wq *end_io_wq;
762
763         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
764         if (!end_io_wq)
765                 return -ENOMEM;
766
767         end_io_wq->private = bio->bi_private;
768         end_io_wq->end_io = bio->bi_end_io;
769         end_io_wq->info = info;
770         end_io_wq->error = 0;
771         end_io_wq->bio = bio;
772         end_io_wq->metadata = metadata;
773
774         bio->bi_private = end_io_wq;
775         bio->bi_end_io = end_workqueue_bio;
776         return 0;
777 }
778
779 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
780 {
781         unsigned long limit = min_t(unsigned long,
782                                     info->thread_pool_size,
783                                     info->fs_devices->open_devices);
784         return 256 * limit;
785 }
786
787 static void run_one_async_start(struct btrfs_work *work)
788 {
789         struct async_submit_bio *async;
790         int ret;
791
792         async = container_of(work, struct  async_submit_bio, work);
793         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
794                                       async->mirror_num, async->bio_flags,
795                                       async->bio_offset);
796         if (ret)
797                 async->error = ret;
798 }
799
800 static void run_one_async_done(struct btrfs_work *work)
801 {
802         struct btrfs_fs_info *fs_info;
803         struct async_submit_bio *async;
804         int limit;
805
806         async = container_of(work, struct  async_submit_bio, work);
807         fs_info = BTRFS_I(async->inode)->root->fs_info;
808
809         limit = btrfs_async_submit_limit(fs_info);
810         limit = limit * 2 / 3;
811
812         /*
813          * atomic_dec_return implies a barrier for waitqueue_active
814          */
815         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
816             waitqueue_active(&fs_info->async_submit_wait))
817                 wake_up(&fs_info->async_submit_wait);
818
819         /* If an error occurred we just want to clean up the bio and move on */
820         if (async->error) {
821                 async->bio->bi_error = async->error;
822                 bio_endio(async->bio);
823                 return;
824         }
825
826         async->submit_bio_done(async->inode, async->rw, async->bio,
827                                async->mirror_num, async->bio_flags,
828                                async->bio_offset);
829 }
830
831 static void run_one_async_free(struct btrfs_work *work)
832 {
833         struct async_submit_bio *async;
834
835         async = container_of(work, struct  async_submit_bio, work);
836         kfree(async);
837 }
838
839 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
840                         int rw, struct bio *bio, int mirror_num,
841                         unsigned long bio_flags,
842                         u64 bio_offset,
843                         extent_submit_bio_hook_t *submit_bio_start,
844                         extent_submit_bio_hook_t *submit_bio_done)
845 {
846         struct async_submit_bio *async;
847
848         async = kmalloc(sizeof(*async), GFP_NOFS);
849         if (!async)
850                 return -ENOMEM;
851
852         async->inode = inode;
853         async->rw = rw;
854         async->bio = bio;
855         async->mirror_num = mirror_num;
856         async->submit_bio_start = submit_bio_start;
857         async->submit_bio_done = submit_bio_done;
858
859         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
860                         run_one_async_done, run_one_async_free);
861
862         async->bio_flags = bio_flags;
863         async->bio_offset = bio_offset;
864
865         async->error = 0;
866
867         atomic_inc(&fs_info->nr_async_submits);
868
869         if (rw & REQ_SYNC)
870                 btrfs_set_work_high_priority(&async->work);
871
872         btrfs_queue_work(fs_info->workers, &async->work);
873
874         while (atomic_read(&fs_info->async_submit_draining) &&
875               atomic_read(&fs_info->nr_async_submits)) {
876                 wait_event(fs_info->async_submit_wait,
877                            (atomic_read(&fs_info->nr_async_submits) == 0));
878         }
879
880         return 0;
881 }
882
883 static int btree_csum_one_bio(struct bio *bio)
884 {
885         struct bio_vec *bvec;
886         struct btrfs_root *root;
887         int i, ret = 0;
888
889         bio_for_each_segment_all(bvec, bio, i) {
890                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
891                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
892                 if (ret)
893                         break;
894         }
895
896         return ret;
897 }
898
899 static int __btree_submit_bio_start(struct inode *inode, int rw,
900                                     struct bio *bio, int mirror_num,
901                                     unsigned long bio_flags,
902                                     u64 bio_offset)
903 {
904         /*
905          * when we're called for a write, we're already in the async
906          * submission context.  Just jump into btrfs_map_bio
907          */
908         return btree_csum_one_bio(bio);
909 }
910
911 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
912                                  int mirror_num, unsigned long bio_flags,
913                                  u64 bio_offset)
914 {
915         int ret;
916
917         /*
918          * when we're called for a write, we're already in the async
919          * submission context.  Just jump into btrfs_map_bio
920          */
921         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
922         if (ret) {
923                 bio->bi_error = ret;
924                 bio_endio(bio);
925         }
926         return ret;
927 }
928
929 static int check_async_write(struct inode *inode, unsigned long bio_flags)
930 {
931         if (bio_flags & EXTENT_BIO_TREE_LOG)
932                 return 0;
933 #ifdef CONFIG_X86
934         if (static_cpu_has(X86_FEATURE_XMM4_2))
935                 return 0;
936 #endif
937         return 1;
938 }
939
940 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
941                                  int mirror_num, unsigned long bio_flags,
942                                  u64 bio_offset)
943 {
944         int async = check_async_write(inode, bio_flags);
945         int ret;
946
947         if (!(rw & REQ_WRITE)) {
948                 /*
949                  * called for a read, do the setup so that checksum validation
950                  * can happen in the async kernel threads
951                  */
952                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
953                                           bio, BTRFS_WQ_ENDIO_METADATA);
954                 if (ret)
955                         goto out_w_error;
956                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
957                                     mirror_num, 0);
958         } else if (!async) {
959                 ret = btree_csum_one_bio(bio);
960                 if (ret)
961                         goto out_w_error;
962                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
963                                     mirror_num, 0);
964         } else {
965                 /*
966                  * kthread helpers are used to submit writes so that
967                  * checksumming can happen in parallel across all CPUs
968                  */
969                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
970                                           inode, rw, bio, mirror_num, 0,
971                                           bio_offset,
972                                           __btree_submit_bio_start,
973                                           __btree_submit_bio_done);
974         }
975
976         if (ret)
977                 goto out_w_error;
978         return 0;
979
980 out_w_error:
981         bio->bi_error = ret;
982         bio_endio(bio);
983         return ret;
984 }
985
986 #ifdef CONFIG_MIGRATION
987 static int btree_migratepage(struct address_space *mapping,
988                         struct page *newpage, struct page *page,
989                         enum migrate_mode mode)
990 {
991         /*
992          * we can't safely write a btree page from here,
993          * we haven't done the locking hook
994          */
995         if (PageDirty(page))
996                 return -EAGAIN;
997         /*
998          * Buffers may be managed in a filesystem specific way.
999          * We must have no buffers or drop them.
1000          */
1001         if (page_has_private(page) &&
1002             !try_to_release_page(page, GFP_KERNEL))
1003                 return -EAGAIN;
1004         return migrate_page(mapping, newpage, page, mode);
1005 }
1006 #endif
1007
1008
1009 static int btree_writepages(struct address_space *mapping,
1010                             struct writeback_control *wbc)
1011 {
1012         struct btrfs_fs_info *fs_info;
1013         int ret;
1014
1015         if (wbc->sync_mode == WB_SYNC_NONE) {
1016
1017                 if (wbc->for_kupdate)
1018                         return 0;
1019
1020                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1021                 /* this is a bit racy, but that's ok */
1022                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1023                                              BTRFS_DIRTY_METADATA_THRESH);
1024                 if (ret < 0)
1025                         return 0;
1026         }
1027         return btree_write_cache_pages(mapping, wbc);
1028 }
1029
1030 static int btree_readpage(struct file *file, struct page *page)
1031 {
1032         struct extent_io_tree *tree;
1033         tree = &BTRFS_I(page->mapping->host)->io_tree;
1034         return extent_read_full_page(tree, page, btree_get_extent, 0);
1035 }
1036
1037 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1038 {
1039         if (PageWriteback(page) || PageDirty(page))
1040                 return 0;
1041
1042         return try_release_extent_buffer(page);
1043 }
1044
1045 static void btree_invalidatepage(struct page *page, unsigned int offset,
1046                                  unsigned int length)
1047 {
1048         struct extent_io_tree *tree;
1049         tree = &BTRFS_I(page->mapping->host)->io_tree;
1050         extent_invalidatepage(tree, page, offset);
1051         btree_releasepage(page, GFP_NOFS);
1052         if (PagePrivate(page)) {
1053                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1054                            "page private not zero on page %llu",
1055                            (unsigned long long)page_offset(page));
1056                 ClearPagePrivate(page);
1057                 set_page_private(page, 0);
1058                 page_cache_release(page);
1059         }
1060 }
1061
1062 static int btree_set_page_dirty(struct page *page)
1063 {
1064 #ifdef DEBUG
1065         struct extent_buffer *eb;
1066
1067         BUG_ON(!PagePrivate(page));
1068         eb = (struct extent_buffer *)page->private;
1069         BUG_ON(!eb);
1070         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1071         BUG_ON(!atomic_read(&eb->refs));
1072         btrfs_assert_tree_locked(eb);
1073 #endif
1074         return __set_page_dirty_nobuffers(page);
1075 }
1076
1077 static const struct address_space_operations btree_aops = {
1078         .readpage       = btree_readpage,
1079         .writepages     = btree_writepages,
1080         .releasepage    = btree_releasepage,
1081         .invalidatepage = btree_invalidatepage,
1082 #ifdef CONFIG_MIGRATION
1083         .migratepage    = btree_migratepage,
1084 #endif
1085         .set_page_dirty = btree_set_page_dirty,
1086 };
1087
1088 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1089 {
1090         struct extent_buffer *buf = NULL;
1091         struct inode *btree_inode = root->fs_info->btree_inode;
1092
1093         buf = btrfs_find_create_tree_block(root, bytenr);
1094         if (!buf)
1095                 return;
1096         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1097                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1098         free_extent_buffer(buf);
1099 }
1100
1101 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1102                          int mirror_num, struct extent_buffer **eb)
1103 {
1104         struct extent_buffer *buf = NULL;
1105         struct inode *btree_inode = root->fs_info->btree_inode;
1106         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1107         int ret;
1108
1109         buf = btrfs_find_create_tree_block(root, bytenr);
1110         if (!buf)
1111                 return 0;
1112
1113         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1114
1115         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1116                                        btree_get_extent, mirror_num);
1117         if (ret) {
1118                 free_extent_buffer(buf);
1119                 return ret;
1120         }
1121
1122         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1123                 free_extent_buffer(buf);
1124                 return -EIO;
1125         } else if (extent_buffer_uptodate(buf)) {
1126                 *eb = buf;
1127         } else {
1128                 free_extent_buffer(buf);
1129         }
1130         return 0;
1131 }
1132
1133 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1134                                             u64 bytenr)
1135 {
1136         return find_extent_buffer(fs_info, bytenr);
1137 }
1138
1139 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1140                                                  u64 bytenr)
1141 {
1142         if (btrfs_test_is_dummy_root(root))
1143                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1144         return alloc_extent_buffer(root->fs_info, bytenr);
1145 }
1146
1147
1148 int btrfs_write_tree_block(struct extent_buffer *buf)
1149 {
1150         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1151                                         buf->start + buf->len - 1);
1152 }
1153
1154 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1155 {
1156         return filemap_fdatawait_range(buf->pages[0]->mapping,
1157                                        buf->start, buf->start + buf->len - 1);
1158 }
1159
1160 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1161                                       u64 parent_transid)
1162 {
1163         struct extent_buffer *buf = NULL;
1164         int ret;
1165
1166         buf = btrfs_find_create_tree_block(root, bytenr);
1167         if (!buf)
1168                 return ERR_PTR(-ENOMEM);
1169
1170         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1171         if (ret) {
1172                 free_extent_buffer(buf);
1173                 return ERR_PTR(ret);
1174         }
1175         return buf;
1176
1177 }
1178
1179 void clean_tree_block(struct btrfs_trans_handle *trans,
1180                       struct btrfs_fs_info *fs_info,
1181                       struct extent_buffer *buf)
1182 {
1183         if (btrfs_header_generation(buf) ==
1184             fs_info->running_transaction->transid) {
1185                 btrfs_assert_tree_locked(buf);
1186
1187                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1188                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1189                                              -buf->len,
1190                                              fs_info->dirty_metadata_batch);
1191                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1192                         btrfs_set_lock_blocking(buf);
1193                         clear_extent_buffer_dirty(buf);
1194                 }
1195         }
1196 }
1197
1198 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1199 {
1200         struct btrfs_subvolume_writers *writers;
1201         int ret;
1202
1203         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1204         if (!writers)
1205                 return ERR_PTR(-ENOMEM);
1206
1207         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1208         if (ret < 0) {
1209                 kfree(writers);
1210                 return ERR_PTR(ret);
1211         }
1212
1213         init_waitqueue_head(&writers->wait);
1214         return writers;
1215 }
1216
1217 static void
1218 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1219 {
1220         percpu_counter_destroy(&writers->counter);
1221         kfree(writers);
1222 }
1223
1224 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1225                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1226                          u64 objectid)
1227 {
1228         root->node = NULL;
1229         root->commit_root = NULL;
1230         root->sectorsize = sectorsize;
1231         root->nodesize = nodesize;
1232         root->stripesize = stripesize;
1233         root->state = 0;
1234         root->orphan_cleanup_state = 0;
1235
1236         root->objectid = objectid;
1237         root->last_trans = 0;
1238         root->highest_objectid = 0;
1239         root->nr_delalloc_inodes = 0;
1240         root->nr_ordered_extents = 0;
1241         root->name = NULL;
1242         root->inode_tree = RB_ROOT;
1243         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1244         root->block_rsv = NULL;
1245         root->orphan_block_rsv = NULL;
1246
1247         INIT_LIST_HEAD(&root->dirty_list);
1248         INIT_LIST_HEAD(&root->root_list);
1249         INIT_LIST_HEAD(&root->delalloc_inodes);
1250         INIT_LIST_HEAD(&root->delalloc_root);
1251         INIT_LIST_HEAD(&root->ordered_extents);
1252         INIT_LIST_HEAD(&root->ordered_root);
1253         INIT_LIST_HEAD(&root->logged_list[0]);
1254         INIT_LIST_HEAD(&root->logged_list[1]);
1255         spin_lock_init(&root->orphan_lock);
1256         spin_lock_init(&root->inode_lock);
1257         spin_lock_init(&root->delalloc_lock);
1258         spin_lock_init(&root->ordered_extent_lock);
1259         spin_lock_init(&root->accounting_lock);
1260         spin_lock_init(&root->log_extents_lock[0]);
1261         spin_lock_init(&root->log_extents_lock[1]);
1262         mutex_init(&root->objectid_mutex);
1263         mutex_init(&root->log_mutex);
1264         mutex_init(&root->ordered_extent_mutex);
1265         mutex_init(&root->delalloc_mutex);
1266         init_waitqueue_head(&root->log_writer_wait);
1267         init_waitqueue_head(&root->log_commit_wait[0]);
1268         init_waitqueue_head(&root->log_commit_wait[1]);
1269         INIT_LIST_HEAD(&root->log_ctxs[0]);
1270         INIT_LIST_HEAD(&root->log_ctxs[1]);
1271         atomic_set(&root->log_commit[0], 0);
1272         atomic_set(&root->log_commit[1], 0);
1273         atomic_set(&root->log_writers, 0);
1274         atomic_set(&root->log_batch, 0);
1275         atomic_set(&root->orphan_inodes, 0);
1276         atomic_set(&root->refs, 1);
1277         atomic_set(&root->will_be_snapshoted, 0);
1278         atomic_set(&root->qgroup_meta_rsv, 0);
1279         root->log_transid = 0;
1280         root->log_transid_committed = -1;
1281         root->last_log_commit = 0;
1282         if (fs_info)
1283                 extent_io_tree_init(&root->dirty_log_pages,
1284                                      fs_info->btree_inode->i_mapping);
1285
1286         memset(&root->root_key, 0, sizeof(root->root_key));
1287         memset(&root->root_item, 0, sizeof(root->root_item));
1288         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1289         if (fs_info)
1290                 root->defrag_trans_start = fs_info->generation;
1291         else
1292                 root->defrag_trans_start = 0;
1293         root->root_key.objectid = objectid;
1294         root->anon_dev = 0;
1295
1296         spin_lock_init(&root->root_item_lock);
1297 }
1298
1299 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1300                 gfp_t flags)
1301 {
1302         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1303         if (root)
1304                 root->fs_info = fs_info;
1305         return root;
1306 }
1307
1308 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1309 /* Should only be used by the testing infrastructure */
1310 struct btrfs_root *btrfs_alloc_dummy_root(void)
1311 {
1312         struct btrfs_root *root;
1313
1314         root = btrfs_alloc_root(NULL, GFP_KERNEL);
1315         if (!root)
1316                 return ERR_PTR(-ENOMEM);
1317         __setup_root(4096, 4096, 4096, root, NULL, 1);
1318         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1319         root->alloc_bytenr = 0;
1320
1321         return root;
1322 }
1323 #endif
1324
1325 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1326                                      struct btrfs_fs_info *fs_info,
1327                                      u64 objectid)
1328 {
1329         struct extent_buffer *leaf;
1330         struct btrfs_root *tree_root = fs_info->tree_root;
1331         struct btrfs_root *root;
1332         struct btrfs_key key;
1333         int ret = 0;
1334         uuid_le uuid;
1335
1336         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1337         if (!root)
1338                 return ERR_PTR(-ENOMEM);
1339
1340         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1341                 tree_root->stripesize, root, fs_info, objectid);
1342         root->root_key.objectid = objectid;
1343         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344         root->root_key.offset = 0;
1345
1346         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1347         if (IS_ERR(leaf)) {
1348                 ret = PTR_ERR(leaf);
1349                 leaf = NULL;
1350                 goto fail;
1351         }
1352
1353         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1354         btrfs_set_header_bytenr(leaf, leaf->start);
1355         btrfs_set_header_generation(leaf, trans->transid);
1356         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1357         btrfs_set_header_owner(leaf, objectid);
1358         root->node = leaf;
1359
1360         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1361                             BTRFS_FSID_SIZE);
1362         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1363                             btrfs_header_chunk_tree_uuid(leaf),
1364                             BTRFS_UUID_SIZE);
1365         btrfs_mark_buffer_dirty(leaf);
1366
1367         root->commit_root = btrfs_root_node(root);
1368         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1369
1370         root->root_item.flags = 0;
1371         root->root_item.byte_limit = 0;
1372         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1373         btrfs_set_root_generation(&root->root_item, trans->transid);
1374         btrfs_set_root_level(&root->root_item, 0);
1375         btrfs_set_root_refs(&root->root_item, 1);
1376         btrfs_set_root_used(&root->root_item, leaf->len);
1377         btrfs_set_root_last_snapshot(&root->root_item, 0);
1378         btrfs_set_root_dirid(&root->root_item, 0);
1379         uuid_le_gen(&uuid);
1380         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1381         root->root_item.drop_level = 0;
1382
1383         key.objectid = objectid;
1384         key.type = BTRFS_ROOT_ITEM_KEY;
1385         key.offset = 0;
1386         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1387         if (ret)
1388                 goto fail;
1389
1390         btrfs_tree_unlock(leaf);
1391
1392         return root;
1393
1394 fail:
1395         if (leaf) {
1396                 btrfs_tree_unlock(leaf);
1397                 free_extent_buffer(root->commit_root);
1398                 free_extent_buffer(leaf);
1399         }
1400         kfree(root);
1401
1402         return ERR_PTR(ret);
1403 }
1404
1405 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1406                                          struct btrfs_fs_info *fs_info)
1407 {
1408         struct btrfs_root *root;
1409         struct btrfs_root *tree_root = fs_info->tree_root;
1410         struct extent_buffer *leaf;
1411
1412         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1413         if (!root)
1414                 return ERR_PTR(-ENOMEM);
1415
1416         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1417                      tree_root->stripesize, root, fs_info,
1418                      BTRFS_TREE_LOG_OBJECTID);
1419
1420         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1421         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1422         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1423
1424         /*
1425          * DON'T set REF_COWS for log trees
1426          *
1427          * log trees do not get reference counted because they go away
1428          * before a real commit is actually done.  They do store pointers
1429          * to file data extents, and those reference counts still get
1430          * updated (along with back refs to the log tree).
1431          */
1432
1433         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1434                         NULL, 0, 0, 0);
1435         if (IS_ERR(leaf)) {
1436                 kfree(root);
1437                 return ERR_CAST(leaf);
1438         }
1439
1440         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1441         btrfs_set_header_bytenr(leaf, leaf->start);
1442         btrfs_set_header_generation(leaf, trans->transid);
1443         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1444         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1445         root->node = leaf;
1446
1447         write_extent_buffer(root->node, root->fs_info->fsid,
1448                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1449         btrfs_mark_buffer_dirty(root->node);
1450         btrfs_tree_unlock(root->node);
1451         return root;
1452 }
1453
1454 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1455                              struct btrfs_fs_info *fs_info)
1456 {
1457         struct btrfs_root *log_root;
1458
1459         log_root = alloc_log_tree(trans, fs_info);
1460         if (IS_ERR(log_root))
1461                 return PTR_ERR(log_root);
1462         WARN_ON(fs_info->log_root_tree);
1463         fs_info->log_root_tree = log_root;
1464         return 0;
1465 }
1466
1467 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1468                        struct btrfs_root *root)
1469 {
1470         struct btrfs_root *log_root;
1471         struct btrfs_inode_item *inode_item;
1472
1473         log_root = alloc_log_tree(trans, root->fs_info);
1474         if (IS_ERR(log_root))
1475                 return PTR_ERR(log_root);
1476
1477         log_root->last_trans = trans->transid;
1478         log_root->root_key.offset = root->root_key.objectid;
1479
1480         inode_item = &log_root->root_item.inode;
1481         btrfs_set_stack_inode_generation(inode_item, 1);
1482         btrfs_set_stack_inode_size(inode_item, 3);
1483         btrfs_set_stack_inode_nlink(inode_item, 1);
1484         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1485         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1486
1487         btrfs_set_root_node(&log_root->root_item, log_root->node);
1488
1489         WARN_ON(root->log_root);
1490         root->log_root = log_root;
1491         root->log_transid = 0;
1492         root->log_transid_committed = -1;
1493         root->last_log_commit = 0;
1494         return 0;
1495 }
1496
1497 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1498                                                struct btrfs_key *key)
1499 {
1500         struct btrfs_root *root;
1501         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1502         struct btrfs_path *path;
1503         u64 generation;
1504         int ret;
1505
1506         path = btrfs_alloc_path();
1507         if (!path)
1508                 return ERR_PTR(-ENOMEM);
1509
1510         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1511         if (!root) {
1512                 ret = -ENOMEM;
1513                 goto alloc_fail;
1514         }
1515
1516         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1517                 tree_root->stripesize, root, fs_info, key->objectid);
1518
1519         ret = btrfs_find_root(tree_root, key, path,
1520                               &root->root_item, &root->root_key);
1521         if (ret) {
1522                 if (ret > 0)
1523                         ret = -ENOENT;
1524                 goto find_fail;
1525         }
1526
1527         generation = btrfs_root_generation(&root->root_item);
1528         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1529                                      generation);
1530         if (IS_ERR(root->node)) {
1531                 ret = PTR_ERR(root->node);
1532                 goto find_fail;
1533         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1534                 ret = -EIO;
1535                 free_extent_buffer(root->node);
1536                 goto find_fail;
1537         }
1538         root->commit_root = btrfs_root_node(root);
1539 out:
1540         btrfs_free_path(path);
1541         return root;
1542
1543 find_fail:
1544         kfree(root);
1545 alloc_fail:
1546         root = ERR_PTR(ret);
1547         goto out;
1548 }
1549
1550 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1551                                       struct btrfs_key *location)
1552 {
1553         struct btrfs_root *root;
1554
1555         root = btrfs_read_tree_root(tree_root, location);
1556         if (IS_ERR(root))
1557                 return root;
1558
1559         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1560                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1561                 btrfs_check_and_init_root_item(&root->root_item);
1562         }
1563
1564         return root;
1565 }
1566
1567 int btrfs_init_fs_root(struct btrfs_root *root)
1568 {
1569         int ret;
1570         struct btrfs_subvolume_writers *writers;
1571
1572         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1573         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1574                                         GFP_NOFS);
1575         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1576                 ret = -ENOMEM;
1577                 goto fail;
1578         }
1579
1580         writers = btrfs_alloc_subvolume_writers();
1581         if (IS_ERR(writers)) {
1582                 ret = PTR_ERR(writers);
1583                 goto fail;
1584         }
1585         root->subv_writers = writers;
1586
1587         btrfs_init_free_ino_ctl(root);
1588         spin_lock_init(&root->ino_cache_lock);
1589         init_waitqueue_head(&root->ino_cache_wait);
1590
1591         ret = get_anon_bdev(&root->anon_dev);
1592         if (ret)
1593                 goto free_writers;
1594
1595         mutex_lock(&root->objectid_mutex);
1596         ret = btrfs_find_highest_objectid(root,
1597                                         &root->highest_objectid);
1598         if (ret) {
1599                 mutex_unlock(&root->objectid_mutex);
1600                 goto free_root_dev;
1601         }
1602
1603         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1604
1605         mutex_unlock(&root->objectid_mutex);
1606
1607         return 0;
1608
1609 free_root_dev:
1610         free_anon_bdev(root->anon_dev);
1611 free_writers:
1612         btrfs_free_subvolume_writers(root->subv_writers);
1613 fail:
1614         kfree(root->free_ino_ctl);
1615         kfree(root->free_ino_pinned);
1616         return ret;
1617 }
1618
1619 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1620                                                u64 root_id)
1621 {
1622         struct btrfs_root *root;
1623
1624         spin_lock(&fs_info->fs_roots_radix_lock);
1625         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1626                                  (unsigned long)root_id);
1627         spin_unlock(&fs_info->fs_roots_radix_lock);
1628         return root;
1629 }
1630
1631 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1632                          struct btrfs_root *root)
1633 {
1634         int ret;
1635
1636         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1637         if (ret)
1638                 return ret;
1639
1640         spin_lock(&fs_info->fs_roots_radix_lock);
1641         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1642                                 (unsigned long)root->root_key.objectid,
1643                                 root);
1644         if (ret == 0)
1645                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1646         spin_unlock(&fs_info->fs_roots_radix_lock);
1647         radix_tree_preload_end();
1648
1649         return ret;
1650 }
1651
1652 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1653                                      struct btrfs_key *location,
1654                                      bool check_ref)
1655 {
1656         struct btrfs_root *root;
1657         struct btrfs_path *path;
1658         struct btrfs_key key;
1659         int ret;
1660
1661         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1662                 return fs_info->tree_root;
1663         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1664                 return fs_info->extent_root;
1665         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1666                 return fs_info->chunk_root;
1667         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1668                 return fs_info->dev_root;
1669         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1670                 return fs_info->csum_root;
1671         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1672                 return fs_info->quota_root ? fs_info->quota_root :
1673                                              ERR_PTR(-ENOENT);
1674         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1675                 return fs_info->uuid_root ? fs_info->uuid_root :
1676                                             ERR_PTR(-ENOENT);
1677         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1678                 return fs_info->free_space_root ? fs_info->free_space_root :
1679                                                   ERR_PTR(-ENOENT);
1680 again:
1681         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1682         if (root) {
1683                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1684                         return ERR_PTR(-ENOENT);
1685                 return root;
1686         }
1687
1688         root = btrfs_read_fs_root(fs_info->tree_root, location);
1689         if (IS_ERR(root))
1690                 return root;
1691
1692         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1693                 ret = -ENOENT;
1694                 goto fail;
1695         }
1696
1697         ret = btrfs_init_fs_root(root);
1698         if (ret)
1699                 goto fail;
1700
1701         path = btrfs_alloc_path();
1702         if (!path) {
1703                 ret = -ENOMEM;
1704                 goto fail;
1705         }
1706         key.objectid = BTRFS_ORPHAN_OBJECTID;
1707         key.type = BTRFS_ORPHAN_ITEM_KEY;
1708         key.offset = location->objectid;
1709
1710         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1711         btrfs_free_path(path);
1712         if (ret < 0)
1713                 goto fail;
1714         if (ret == 0)
1715                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1716
1717         ret = btrfs_insert_fs_root(fs_info, root);
1718         if (ret) {
1719                 if (ret == -EEXIST) {
1720                         free_fs_root(root);
1721                         goto again;
1722                 }
1723                 goto fail;
1724         }
1725         return root;
1726 fail:
1727         free_fs_root(root);
1728         return ERR_PTR(ret);
1729 }
1730
1731 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1732 {
1733         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1734         int ret = 0;
1735         struct btrfs_device *device;
1736         struct backing_dev_info *bdi;
1737
1738         rcu_read_lock();
1739         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1740                 if (!device->bdev)
1741                         continue;
1742                 bdi = blk_get_backing_dev_info(device->bdev);
1743                 if (bdi_congested(bdi, bdi_bits)) {
1744                         ret = 1;
1745                         break;
1746                 }
1747         }
1748         rcu_read_unlock();
1749         return ret;
1750 }
1751
1752 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1753 {
1754         int err;
1755
1756         err = bdi_setup_and_register(bdi, "btrfs");
1757         if (err)
1758                 return err;
1759
1760         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1761         bdi->congested_fn       = btrfs_congested_fn;
1762         bdi->congested_data     = info;
1763         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1764         return 0;
1765 }
1766
1767 /*
1768  * called by the kthread helper functions to finally call the bio end_io
1769  * functions.  This is where read checksum verification actually happens
1770  */
1771 static void end_workqueue_fn(struct btrfs_work *work)
1772 {
1773         struct bio *bio;
1774         struct btrfs_end_io_wq *end_io_wq;
1775
1776         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1777         bio = end_io_wq->bio;
1778
1779         bio->bi_error = end_io_wq->error;
1780         bio->bi_private = end_io_wq->private;
1781         bio->bi_end_io = end_io_wq->end_io;
1782         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1783         bio_endio(bio);
1784 }
1785
1786 static int cleaner_kthread(void *arg)
1787 {
1788         struct btrfs_root *root = arg;
1789         int again;
1790         struct btrfs_trans_handle *trans;
1791
1792         do {
1793                 again = 0;
1794
1795                 /* Make the cleaner go to sleep early. */
1796                 if (btrfs_need_cleaner_sleep(root))
1797                         goto sleep;
1798
1799                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1800                         goto sleep;
1801
1802                 /*
1803                  * Avoid the problem that we change the status of the fs
1804                  * during the above check and trylock.
1805                  */
1806                 if (btrfs_need_cleaner_sleep(root)) {
1807                         mutex_unlock(&root->fs_info->cleaner_mutex);
1808                         goto sleep;
1809                 }
1810
1811                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1812                 btrfs_run_delayed_iputs(root);
1813                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1814
1815                 again = btrfs_clean_one_deleted_snapshot(root);
1816                 mutex_unlock(&root->fs_info->cleaner_mutex);
1817
1818                 /*
1819                  * The defragger has dealt with the R/O remount and umount,
1820                  * needn't do anything special here.
1821                  */
1822                 btrfs_run_defrag_inodes(root->fs_info);
1823
1824                 /*
1825                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1826                  * with relocation (btrfs_relocate_chunk) and relocation
1827                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1828                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1829                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1830                  * unused block groups.
1831                  */
1832                 btrfs_delete_unused_bgs(root->fs_info);
1833 sleep:
1834                 if (!try_to_freeze() && !again) {
1835                         set_current_state(TASK_INTERRUPTIBLE);
1836                         if (!kthread_should_stop())
1837                                 schedule();
1838                         __set_current_state(TASK_RUNNING);
1839                 }
1840         } while (!kthread_should_stop());
1841
1842         /*
1843          * Transaction kthread is stopped before us and wakes us up.
1844          * However we might have started a new transaction and COWed some
1845          * tree blocks when deleting unused block groups for example. So
1846          * make sure we commit the transaction we started to have a clean
1847          * shutdown when evicting the btree inode - if it has dirty pages
1848          * when we do the final iput() on it, eviction will trigger a
1849          * writeback for it which will fail with null pointer dereferences
1850          * since work queues and other resources were already released and
1851          * destroyed by the time the iput/eviction/writeback is made.
1852          */
1853         trans = btrfs_attach_transaction(root);
1854         if (IS_ERR(trans)) {
1855                 if (PTR_ERR(trans) != -ENOENT)
1856                         btrfs_err(root->fs_info,
1857                                   "cleaner transaction attach returned %ld",
1858                                   PTR_ERR(trans));
1859         } else {
1860                 int ret;
1861
1862                 ret = btrfs_commit_transaction(trans, root);
1863                 if (ret)
1864                         btrfs_err(root->fs_info,
1865                                   "cleaner open transaction commit returned %d",
1866                                   ret);
1867         }
1868
1869         return 0;
1870 }
1871
1872 static int transaction_kthread(void *arg)
1873 {
1874         struct btrfs_root *root = arg;
1875         struct btrfs_trans_handle *trans;
1876         struct btrfs_transaction *cur;
1877         u64 transid;
1878         unsigned long now;
1879         unsigned long delay;
1880         bool cannot_commit;
1881
1882         do {
1883                 cannot_commit = false;
1884                 delay = HZ * root->fs_info->commit_interval;
1885                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1886
1887                 spin_lock(&root->fs_info->trans_lock);
1888                 cur = root->fs_info->running_transaction;
1889                 if (!cur) {
1890                         spin_unlock(&root->fs_info->trans_lock);
1891                         goto sleep;
1892                 }
1893
1894                 now = get_seconds();
1895                 if (cur->state < TRANS_STATE_BLOCKED &&
1896                     (now < cur->start_time ||
1897                      now - cur->start_time < root->fs_info->commit_interval)) {
1898                         spin_unlock(&root->fs_info->trans_lock);
1899                         delay = HZ * 5;
1900                         goto sleep;
1901                 }
1902                 transid = cur->transid;
1903                 spin_unlock(&root->fs_info->trans_lock);
1904
1905                 /* If the file system is aborted, this will always fail. */
1906                 trans = btrfs_attach_transaction(root);
1907                 if (IS_ERR(trans)) {
1908                         if (PTR_ERR(trans) != -ENOENT)
1909                                 cannot_commit = true;
1910                         goto sleep;
1911                 }
1912                 if (transid == trans->transid) {
1913                         btrfs_commit_transaction(trans, root);
1914                 } else {
1915                         btrfs_end_transaction(trans, root);
1916                 }
1917 sleep:
1918                 wake_up_process(root->fs_info->cleaner_kthread);
1919                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1920
1921                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1922                                       &root->fs_info->fs_state)))
1923                         btrfs_cleanup_transaction(root);
1924                 if (!try_to_freeze()) {
1925                         set_current_state(TASK_INTERRUPTIBLE);
1926                         if (!kthread_should_stop() &&
1927                             (!btrfs_transaction_blocked(root->fs_info) ||
1928                              cannot_commit))
1929                                 schedule_timeout(delay);
1930                         __set_current_state(TASK_RUNNING);
1931                 }
1932         } while (!kthread_should_stop());
1933         return 0;
1934 }
1935
1936 /*
1937  * this will find the highest generation in the array of
1938  * root backups.  The index of the highest array is returned,
1939  * or -1 if we can't find anything.
1940  *
1941  * We check to make sure the array is valid by comparing the
1942  * generation of the latest  root in the array with the generation
1943  * in the super block.  If they don't match we pitch it.
1944  */
1945 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1946 {
1947         u64 cur;
1948         int newest_index = -1;
1949         struct btrfs_root_backup *root_backup;
1950         int i;
1951
1952         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1953                 root_backup = info->super_copy->super_roots + i;
1954                 cur = btrfs_backup_tree_root_gen(root_backup);
1955                 if (cur == newest_gen)
1956                         newest_index = i;
1957         }
1958
1959         /* check to see if we actually wrapped around */
1960         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1961                 root_backup = info->super_copy->super_roots;
1962                 cur = btrfs_backup_tree_root_gen(root_backup);
1963                 if (cur == newest_gen)
1964                         newest_index = 0;
1965         }
1966         return newest_index;
1967 }
1968
1969
1970 /*
1971  * find the oldest backup so we know where to store new entries
1972  * in the backup array.  This will set the backup_root_index
1973  * field in the fs_info struct
1974  */
1975 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1976                                      u64 newest_gen)
1977 {
1978         int newest_index = -1;
1979
1980         newest_index = find_newest_super_backup(info, newest_gen);
1981         /* if there was garbage in there, just move along */
1982         if (newest_index == -1) {
1983                 info->backup_root_index = 0;
1984         } else {
1985                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1986         }
1987 }
1988
1989 /*
1990  * copy all the root pointers into the super backup array.
1991  * this will bump the backup pointer by one when it is
1992  * done
1993  */
1994 static void backup_super_roots(struct btrfs_fs_info *info)
1995 {
1996         int next_backup;
1997         struct btrfs_root_backup *root_backup;
1998         int last_backup;
1999
2000         next_backup = info->backup_root_index;
2001         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2002                 BTRFS_NUM_BACKUP_ROOTS;
2003
2004         /*
2005          * just overwrite the last backup if we're at the same generation
2006          * this happens only at umount
2007          */
2008         root_backup = info->super_for_commit->super_roots + last_backup;
2009         if (btrfs_backup_tree_root_gen(root_backup) ==
2010             btrfs_header_generation(info->tree_root->node))
2011                 next_backup = last_backup;
2012
2013         root_backup = info->super_for_commit->super_roots + next_backup;
2014
2015         /*
2016          * make sure all of our padding and empty slots get zero filled
2017          * regardless of which ones we use today
2018          */
2019         memset(root_backup, 0, sizeof(*root_backup));
2020
2021         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2022
2023         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2024         btrfs_set_backup_tree_root_gen(root_backup,
2025                                btrfs_header_generation(info->tree_root->node));
2026
2027         btrfs_set_backup_tree_root_level(root_backup,
2028                                btrfs_header_level(info->tree_root->node));
2029
2030         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2031         btrfs_set_backup_chunk_root_gen(root_backup,
2032                                btrfs_header_generation(info->chunk_root->node));
2033         btrfs_set_backup_chunk_root_level(root_backup,
2034                                btrfs_header_level(info->chunk_root->node));
2035
2036         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2037         btrfs_set_backup_extent_root_gen(root_backup,
2038                                btrfs_header_generation(info->extent_root->node));
2039         btrfs_set_backup_extent_root_level(root_backup,
2040                                btrfs_header_level(info->extent_root->node));
2041
2042         /*
2043          * we might commit during log recovery, which happens before we set
2044          * the fs_root.  Make sure it is valid before we fill it in.
2045          */
2046         if (info->fs_root && info->fs_root->node) {
2047                 btrfs_set_backup_fs_root(root_backup,
2048                                          info->fs_root->node->start);
2049                 btrfs_set_backup_fs_root_gen(root_backup,
2050                                btrfs_header_generation(info->fs_root->node));
2051                 btrfs_set_backup_fs_root_level(root_backup,
2052                                btrfs_header_level(info->fs_root->node));
2053         }
2054
2055         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2056         btrfs_set_backup_dev_root_gen(root_backup,
2057                                btrfs_header_generation(info->dev_root->node));
2058         btrfs_set_backup_dev_root_level(root_backup,
2059                                        btrfs_header_level(info->dev_root->node));
2060
2061         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2062         btrfs_set_backup_csum_root_gen(root_backup,
2063                                btrfs_header_generation(info->csum_root->node));
2064         btrfs_set_backup_csum_root_level(root_backup,
2065                                btrfs_header_level(info->csum_root->node));
2066
2067         btrfs_set_backup_total_bytes(root_backup,
2068                              btrfs_super_total_bytes(info->super_copy));
2069         btrfs_set_backup_bytes_used(root_backup,
2070                              btrfs_super_bytes_used(info->super_copy));
2071         btrfs_set_backup_num_devices(root_backup,
2072                              btrfs_super_num_devices(info->super_copy));
2073
2074         /*
2075          * if we don't copy this out to the super_copy, it won't get remembered
2076          * for the next commit
2077          */
2078         memcpy(&info->super_copy->super_roots,
2079                &info->super_for_commit->super_roots,
2080                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2081 }
2082
2083 /*
2084  * this copies info out of the root backup array and back into
2085  * the in-memory super block.  It is meant to help iterate through
2086  * the array, so you send it the number of backups you've already
2087  * tried and the last backup index you used.
2088  *
2089  * this returns -1 when it has tried all the backups
2090  */
2091 static noinline int next_root_backup(struct btrfs_fs_info *info,
2092                                      struct btrfs_super_block *super,
2093                                      int *num_backups_tried, int *backup_index)
2094 {
2095         struct btrfs_root_backup *root_backup;
2096         int newest = *backup_index;
2097
2098         if (*num_backups_tried == 0) {
2099                 u64 gen = btrfs_super_generation(super);
2100
2101                 newest = find_newest_super_backup(info, gen);
2102                 if (newest == -1)
2103                         return -1;
2104
2105                 *backup_index = newest;
2106                 *num_backups_tried = 1;
2107         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2108                 /* we've tried all the backups, all done */
2109                 return -1;
2110         } else {
2111                 /* jump to the next oldest backup */
2112                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2113                         BTRFS_NUM_BACKUP_ROOTS;
2114                 *backup_index = newest;
2115                 *num_backups_tried += 1;
2116         }
2117         root_backup = super->super_roots + newest;
2118
2119         btrfs_set_super_generation(super,
2120                                    btrfs_backup_tree_root_gen(root_backup));
2121         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2122         btrfs_set_super_root_level(super,
2123                                    btrfs_backup_tree_root_level(root_backup));
2124         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2125
2126         /*
2127          * fixme: the total bytes and num_devices need to match or we should
2128          * need a fsck
2129          */
2130         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2131         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2132         return 0;
2133 }
2134
2135 /* helper to cleanup workers */
2136 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2137 {
2138         btrfs_destroy_workqueue(fs_info->fixup_workers);
2139         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2140         btrfs_destroy_workqueue(fs_info->workers);
2141         btrfs_destroy_workqueue(fs_info->endio_workers);
2142         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2143         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2144         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2145         btrfs_destroy_workqueue(fs_info->rmw_workers);
2146         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2147         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2148         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2149         btrfs_destroy_workqueue(fs_info->submit_workers);
2150         btrfs_destroy_workqueue(fs_info->delayed_workers);
2151         btrfs_destroy_workqueue(fs_info->caching_workers);
2152         btrfs_destroy_workqueue(fs_info->readahead_workers);
2153         btrfs_destroy_workqueue(fs_info->flush_workers);
2154         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2155         btrfs_destroy_workqueue(fs_info->extent_workers);
2156 }
2157
2158 static void free_root_extent_buffers(struct btrfs_root *root)
2159 {
2160         if (root) {
2161                 free_extent_buffer(root->node);
2162                 free_extent_buffer(root->commit_root);
2163                 root->node = NULL;
2164                 root->commit_root = NULL;
2165         }
2166 }
2167
2168 /* helper to cleanup tree roots */
2169 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2170 {
2171         free_root_extent_buffers(info->tree_root);
2172
2173         free_root_extent_buffers(info->dev_root);
2174         free_root_extent_buffers(info->extent_root);
2175         free_root_extent_buffers(info->csum_root);
2176         free_root_extent_buffers(info->quota_root);
2177         free_root_extent_buffers(info->uuid_root);
2178         if (chunk_root)
2179                 free_root_extent_buffers(info->chunk_root);
2180         free_root_extent_buffers(info->free_space_root);
2181 }
2182
2183 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2184 {
2185         int ret;
2186         struct btrfs_root *gang[8];
2187         int i;
2188
2189         while (!list_empty(&fs_info->dead_roots)) {
2190                 gang[0] = list_entry(fs_info->dead_roots.next,
2191                                      struct btrfs_root, root_list);
2192                 list_del(&gang[0]->root_list);
2193
2194                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2195                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2196                 } else {
2197                         free_extent_buffer(gang[0]->node);
2198                         free_extent_buffer(gang[0]->commit_root);
2199                         btrfs_put_fs_root(gang[0]);
2200                 }
2201         }
2202
2203         while (1) {
2204                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2205                                              (void **)gang, 0,
2206                                              ARRAY_SIZE(gang));
2207                 if (!ret)
2208                         break;
2209                 for (i = 0; i < ret; i++)
2210                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2211         }
2212
2213         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2214                 btrfs_free_log_root_tree(NULL, fs_info);
2215                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2216                                             fs_info->pinned_extents);
2217         }
2218 }
2219
2220 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2221 {
2222         mutex_init(&fs_info->scrub_lock);
2223         atomic_set(&fs_info->scrubs_running, 0);
2224         atomic_set(&fs_info->scrub_pause_req, 0);
2225         atomic_set(&fs_info->scrubs_paused, 0);
2226         atomic_set(&fs_info->scrub_cancel_req, 0);
2227         init_waitqueue_head(&fs_info->scrub_pause_wait);
2228         fs_info->scrub_workers_refcnt = 0;
2229 }
2230
2231 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2232 {
2233         spin_lock_init(&fs_info->balance_lock);
2234         mutex_init(&fs_info->balance_mutex);
2235         atomic_set(&fs_info->balance_running, 0);
2236         atomic_set(&fs_info->balance_pause_req, 0);
2237         atomic_set(&fs_info->balance_cancel_req, 0);
2238         fs_info->balance_ctl = NULL;
2239         init_waitqueue_head(&fs_info->balance_wait_q);
2240 }
2241
2242 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2243                                    struct btrfs_root *tree_root)
2244 {
2245         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2246         set_nlink(fs_info->btree_inode, 1);
2247         /*
2248          * we set the i_size on the btree inode to the max possible int.
2249          * the real end of the address space is determined by all of
2250          * the devices in the system
2251          */
2252         fs_info->btree_inode->i_size = OFFSET_MAX;
2253         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2254
2255         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2256         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2257                              fs_info->btree_inode->i_mapping);
2258         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2259         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2260
2261         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2262
2263         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2264         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2265                sizeof(struct btrfs_key));
2266         set_bit(BTRFS_INODE_DUMMY,
2267                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2268         btrfs_insert_inode_hash(fs_info->btree_inode);
2269 }
2270
2271 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2272 {
2273         fs_info->dev_replace.lock_owner = 0;
2274         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2275         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2276         rwlock_init(&fs_info->dev_replace.lock);
2277         atomic_set(&fs_info->dev_replace.read_locks, 0);
2278         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2279         init_waitqueue_head(&fs_info->replace_wait);
2280         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2281 }
2282
2283 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2284 {
2285         spin_lock_init(&fs_info->qgroup_lock);
2286         mutex_init(&fs_info->qgroup_ioctl_lock);
2287         fs_info->qgroup_tree = RB_ROOT;
2288         fs_info->qgroup_op_tree = RB_ROOT;
2289         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2290         fs_info->qgroup_seq = 1;
2291         fs_info->quota_enabled = 0;
2292         fs_info->pending_quota_state = 0;
2293         fs_info->qgroup_ulist = NULL;
2294         mutex_init(&fs_info->qgroup_rescan_lock);
2295 }
2296
2297 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2298                 struct btrfs_fs_devices *fs_devices)
2299 {
2300         int max_active = fs_info->thread_pool_size;
2301         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2302
2303         fs_info->workers =
2304                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2305                                       max_active, 16);
2306
2307         fs_info->delalloc_workers =
2308                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2309
2310         fs_info->flush_workers =
2311                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2312
2313         fs_info->caching_workers =
2314                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2315
2316         /*
2317          * a higher idle thresh on the submit workers makes it much more
2318          * likely that bios will be send down in a sane order to the
2319          * devices
2320          */
2321         fs_info->submit_workers =
2322                 btrfs_alloc_workqueue("submit", flags,
2323                                       min_t(u64, fs_devices->num_devices,
2324                                             max_active), 64);
2325
2326         fs_info->fixup_workers =
2327                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2328
2329         /*
2330          * endios are largely parallel and should have a very
2331          * low idle thresh
2332          */
2333         fs_info->endio_workers =
2334                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2335         fs_info->endio_meta_workers =
2336                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2337         fs_info->endio_meta_write_workers =
2338                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2339         fs_info->endio_raid56_workers =
2340                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2341         fs_info->endio_repair_workers =
2342                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2343         fs_info->rmw_workers =
2344                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2345         fs_info->endio_write_workers =
2346                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2347         fs_info->endio_freespace_worker =
2348                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2349         fs_info->delayed_workers =
2350                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2351         fs_info->readahead_workers =
2352                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2353         fs_info->qgroup_rescan_workers =
2354                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2355         fs_info->extent_workers =
2356                 btrfs_alloc_workqueue("extent-refs", flags,
2357                                       min_t(u64, fs_devices->num_devices,
2358                                             max_active), 8);
2359
2360         if (!(fs_info->workers && fs_info->delalloc_workers &&
2361               fs_info->submit_workers && fs_info->flush_workers &&
2362               fs_info->endio_workers && fs_info->endio_meta_workers &&
2363               fs_info->endio_meta_write_workers &&
2364               fs_info->endio_repair_workers &&
2365               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2366               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2367               fs_info->caching_workers && fs_info->readahead_workers &&
2368               fs_info->fixup_workers && fs_info->delayed_workers &&
2369               fs_info->extent_workers &&
2370               fs_info->qgroup_rescan_workers)) {
2371                 return -ENOMEM;
2372         }
2373
2374         return 0;
2375 }
2376
2377 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2378                             struct btrfs_fs_devices *fs_devices)
2379 {
2380         int ret;
2381         struct btrfs_root *tree_root = fs_info->tree_root;
2382         struct btrfs_root *log_tree_root;
2383         struct btrfs_super_block *disk_super = fs_info->super_copy;
2384         u64 bytenr = btrfs_super_log_root(disk_super);
2385
2386         if (fs_devices->rw_devices == 0) {
2387                 btrfs_warn(fs_info, "log replay required on RO media");
2388                 return -EIO;
2389         }
2390
2391         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2392         if (!log_tree_root)
2393                 return -ENOMEM;
2394
2395         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2396                         tree_root->stripesize, log_tree_root, fs_info,
2397                         BTRFS_TREE_LOG_OBJECTID);
2398
2399         log_tree_root->node = read_tree_block(tree_root, bytenr,
2400                         fs_info->generation + 1);
2401         if (IS_ERR(log_tree_root->node)) {
2402                 btrfs_warn(fs_info, "failed to read log tree");
2403                 ret = PTR_ERR(log_tree_root->node);
2404                 kfree(log_tree_root);
2405                 return ret;
2406         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2407                 btrfs_err(fs_info, "failed to read log tree");
2408                 free_extent_buffer(log_tree_root->node);
2409                 kfree(log_tree_root);
2410                 return -EIO;
2411         }
2412         /* returns with log_tree_root freed on success */
2413         ret = btrfs_recover_log_trees(log_tree_root);
2414         if (ret) {
2415                 btrfs_std_error(tree_root->fs_info, ret,
2416                             "Failed to recover log tree");
2417                 free_extent_buffer(log_tree_root->node);
2418                 kfree(log_tree_root);
2419                 return ret;
2420         }
2421
2422         if (fs_info->sb->s_flags & MS_RDONLY) {
2423                 ret = btrfs_commit_super(tree_root);
2424                 if (ret)
2425                         return ret;
2426         }
2427
2428         return 0;
2429 }
2430
2431 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2432                             struct btrfs_root *tree_root)
2433 {
2434         struct btrfs_root *root;
2435         struct btrfs_key location;
2436         int ret;
2437
2438         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2439         location.type = BTRFS_ROOT_ITEM_KEY;
2440         location.offset = 0;
2441
2442         root = btrfs_read_tree_root(tree_root, &location);
2443         if (IS_ERR(root))
2444                 return PTR_ERR(root);
2445         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2446         fs_info->extent_root = root;
2447
2448         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2449         root = btrfs_read_tree_root(tree_root, &location);
2450         if (IS_ERR(root))
2451                 return PTR_ERR(root);
2452         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2453         fs_info->dev_root = root;
2454         btrfs_init_devices_late(fs_info);
2455
2456         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2457         root = btrfs_read_tree_root(tree_root, &location);
2458         if (IS_ERR(root))
2459                 return PTR_ERR(root);
2460         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2461         fs_info->csum_root = root;
2462
2463         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2464         root = btrfs_read_tree_root(tree_root, &location);
2465         if (!IS_ERR(root)) {
2466                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2467                 fs_info->quota_enabled = 1;
2468                 fs_info->pending_quota_state = 1;
2469                 fs_info->quota_root = root;
2470         }
2471
2472         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2473         root = btrfs_read_tree_root(tree_root, &location);
2474         if (IS_ERR(root)) {
2475                 ret = PTR_ERR(root);
2476                 if (ret != -ENOENT)
2477                         return ret;
2478         } else {
2479                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2480                 fs_info->uuid_root = root;
2481         }
2482
2483         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2484                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2485                 root = btrfs_read_tree_root(tree_root, &location);
2486                 if (IS_ERR(root))
2487                         return PTR_ERR(root);
2488                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2489                 fs_info->free_space_root = root;
2490         }
2491
2492         return 0;
2493 }
2494
2495 int open_ctree(struct super_block *sb,
2496                struct btrfs_fs_devices *fs_devices,
2497                char *options)
2498 {
2499         u32 sectorsize;
2500         u32 nodesize;
2501         u32 stripesize;
2502         u64 generation;
2503         u64 features;
2504         struct btrfs_key location;
2505         struct buffer_head *bh;
2506         struct btrfs_super_block *disk_super;
2507         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2508         struct btrfs_root *tree_root;
2509         struct btrfs_root *chunk_root;
2510         int ret;
2511         int err = -EINVAL;
2512         int num_backups_tried = 0;
2513         int backup_index = 0;
2514         int max_active;
2515
2516         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2517         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2518         if (!tree_root || !chunk_root) {
2519                 err = -ENOMEM;
2520                 goto fail;
2521         }
2522
2523         ret = init_srcu_struct(&fs_info->subvol_srcu);
2524         if (ret) {
2525                 err = ret;
2526                 goto fail;
2527         }
2528
2529         ret = setup_bdi(fs_info, &fs_info->bdi);
2530         if (ret) {
2531                 err = ret;
2532                 goto fail_srcu;
2533         }
2534
2535         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2536         if (ret) {
2537                 err = ret;
2538                 goto fail_bdi;
2539         }
2540         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2541                                         (1 + ilog2(nr_cpu_ids));
2542
2543         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2544         if (ret) {
2545                 err = ret;
2546                 goto fail_dirty_metadata_bytes;
2547         }
2548
2549         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2550         if (ret) {
2551                 err = ret;
2552                 goto fail_delalloc_bytes;
2553         }
2554
2555         fs_info->btree_inode = new_inode(sb);
2556         if (!fs_info->btree_inode) {
2557                 err = -ENOMEM;
2558                 goto fail_bio_counter;
2559         }
2560
2561         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2562
2563         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2564         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2565         INIT_LIST_HEAD(&fs_info->trans_list);
2566         INIT_LIST_HEAD(&fs_info->dead_roots);
2567         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2568         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2569         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2570         spin_lock_init(&fs_info->delalloc_root_lock);
2571         spin_lock_init(&fs_info->trans_lock);
2572         spin_lock_init(&fs_info->fs_roots_radix_lock);
2573         spin_lock_init(&fs_info->delayed_iput_lock);
2574         spin_lock_init(&fs_info->defrag_inodes_lock);
2575         spin_lock_init(&fs_info->free_chunk_lock);
2576         spin_lock_init(&fs_info->tree_mod_seq_lock);
2577         spin_lock_init(&fs_info->super_lock);
2578         spin_lock_init(&fs_info->qgroup_op_lock);
2579         spin_lock_init(&fs_info->buffer_lock);
2580         spin_lock_init(&fs_info->unused_bgs_lock);
2581         rwlock_init(&fs_info->tree_mod_log_lock);
2582         mutex_init(&fs_info->unused_bg_unpin_mutex);
2583         mutex_init(&fs_info->delete_unused_bgs_mutex);
2584         mutex_init(&fs_info->reloc_mutex);
2585         mutex_init(&fs_info->delalloc_root_mutex);
2586         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2587         seqlock_init(&fs_info->profiles_lock);
2588
2589         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2590         INIT_LIST_HEAD(&fs_info->space_info);
2591         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2592         INIT_LIST_HEAD(&fs_info->unused_bgs);
2593         btrfs_mapping_init(&fs_info->mapping_tree);
2594         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2595                              BTRFS_BLOCK_RSV_GLOBAL);
2596         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2597                              BTRFS_BLOCK_RSV_DELALLOC);
2598         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2599         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2600         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2601         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2602                              BTRFS_BLOCK_RSV_DELOPS);
2603         atomic_set(&fs_info->nr_async_submits, 0);
2604         atomic_set(&fs_info->async_delalloc_pages, 0);
2605         atomic_set(&fs_info->async_submit_draining, 0);
2606         atomic_set(&fs_info->nr_async_bios, 0);
2607         atomic_set(&fs_info->defrag_running, 0);
2608         atomic_set(&fs_info->qgroup_op_seq, 0);
2609         atomic_set(&fs_info->reada_works_cnt, 0);
2610         atomic64_set(&fs_info->tree_mod_seq, 0);
2611         fs_info->sb = sb;
2612         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2613         fs_info->metadata_ratio = 0;
2614         fs_info->defrag_inodes = RB_ROOT;
2615         fs_info->free_chunk_space = 0;
2616         fs_info->tree_mod_log = RB_ROOT;
2617         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2618         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2619         /* readahead state */
2620         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2621         spin_lock_init(&fs_info->reada_lock);
2622
2623         fs_info->thread_pool_size = min_t(unsigned long,
2624                                           num_online_cpus() + 2, 8);
2625
2626         INIT_LIST_HEAD(&fs_info->ordered_roots);
2627         spin_lock_init(&fs_info->ordered_root_lock);
2628         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2629                                         GFP_KERNEL);
2630         if (!fs_info->delayed_root) {
2631                 err = -ENOMEM;
2632                 goto fail_iput;
2633         }
2634         btrfs_init_delayed_root(fs_info->delayed_root);
2635
2636         btrfs_init_scrub(fs_info);
2637 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2638         fs_info->check_integrity_print_mask = 0;
2639 #endif
2640         btrfs_init_balance(fs_info);
2641         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2642
2643         sb->s_blocksize = 4096;
2644         sb->s_blocksize_bits = blksize_bits(4096);
2645         sb->s_bdi = &fs_info->bdi;
2646
2647         btrfs_init_btree_inode(fs_info, tree_root);
2648
2649         spin_lock_init(&fs_info->block_group_cache_lock);
2650         fs_info->block_group_cache_tree = RB_ROOT;
2651         fs_info->first_logical_byte = (u64)-1;
2652
2653         extent_io_tree_init(&fs_info->freed_extents[0],
2654                              fs_info->btree_inode->i_mapping);
2655         extent_io_tree_init(&fs_info->freed_extents[1],
2656                              fs_info->btree_inode->i_mapping);
2657         fs_info->pinned_extents = &fs_info->freed_extents[0];
2658         fs_info->do_barriers = 1;
2659
2660
2661         mutex_init(&fs_info->ordered_operations_mutex);
2662         mutex_init(&fs_info->tree_log_mutex);
2663         mutex_init(&fs_info->chunk_mutex);
2664         mutex_init(&fs_info->transaction_kthread_mutex);
2665         mutex_init(&fs_info->cleaner_mutex);
2666         mutex_init(&fs_info->volume_mutex);
2667         mutex_init(&fs_info->ro_block_group_mutex);
2668         init_rwsem(&fs_info->commit_root_sem);
2669         init_rwsem(&fs_info->cleanup_work_sem);
2670         init_rwsem(&fs_info->subvol_sem);
2671         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2672
2673         btrfs_init_dev_replace_locks(fs_info);
2674         btrfs_init_qgroup(fs_info);
2675
2676         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2677         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2678
2679         init_waitqueue_head(&fs_info->transaction_throttle);
2680         init_waitqueue_head(&fs_info->transaction_wait);
2681         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2682         init_waitqueue_head(&fs_info->async_submit_wait);
2683
2684         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2685
2686         ret = btrfs_alloc_stripe_hash_table(fs_info);
2687         if (ret) {
2688                 err = ret;
2689                 goto fail_alloc;
2690         }
2691
2692         __setup_root(4096, 4096, 4096, tree_root,
2693                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2694
2695         invalidate_bdev(fs_devices->latest_bdev);
2696
2697         /*
2698          * Read super block and check the signature bytes only
2699          */
2700         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2701         if (IS_ERR(bh)) {
2702                 err = PTR_ERR(bh);
2703                 goto fail_alloc;
2704         }
2705
2706         /*
2707          * We want to check superblock checksum, the type is stored inside.
2708          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2709          */
2710         if (btrfs_check_super_csum(bh->b_data)) {
2711                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2712                 err = -EINVAL;
2713                 brelse(bh);
2714                 goto fail_alloc;
2715         }
2716
2717         /*
2718          * super_copy is zeroed at allocation time and we never touch the
2719          * following bytes up to INFO_SIZE, the checksum is calculated from
2720          * the whole block of INFO_SIZE
2721          */
2722         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2723         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2724                sizeof(*fs_info->super_for_commit));
2725         brelse(bh);
2726
2727         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2728
2729         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2730         if (ret) {
2731                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2732                 err = -EINVAL;
2733                 goto fail_alloc;
2734         }
2735
2736         disk_super = fs_info->super_copy;
2737         if (!btrfs_super_root(disk_super))
2738                 goto fail_alloc;
2739
2740         /* check FS state, whether FS is broken. */
2741         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2742                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2743
2744         /*
2745          * run through our array of backup supers and setup
2746          * our ring pointer to the oldest one
2747          */
2748         generation = btrfs_super_generation(disk_super);
2749         find_oldest_super_backup(fs_info, generation);
2750
2751         /*
2752          * In the long term, we'll store the compression type in the super
2753          * block, and it'll be used for per file compression control.
2754          */
2755         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2756
2757         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2758         if (ret) {
2759                 err = ret;
2760                 goto fail_alloc;
2761         }
2762
2763         features = btrfs_super_incompat_flags(disk_super) &
2764                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2765         if (features) {
2766                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2767                        "unsupported optional features (%Lx).\n",
2768                        features);
2769                 err = -EINVAL;
2770                 goto fail_alloc;
2771         }
2772
2773         features = btrfs_super_incompat_flags(disk_super);
2774         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2775         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2776                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2777
2778         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2779                 printk(KERN_INFO "BTRFS: has skinny extents\n");
2780
2781         /*
2782          * flag our filesystem as having big metadata blocks if
2783          * they are bigger than the page size
2784          */
2785         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2786                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2787                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2788                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2789         }
2790
2791         nodesize = btrfs_super_nodesize(disk_super);
2792         sectorsize = btrfs_super_sectorsize(disk_super);
2793         stripesize = btrfs_super_stripesize(disk_super);
2794         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2795         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2796
2797         /*
2798          * mixed block groups end up with duplicate but slightly offset
2799          * extent buffers for the same range.  It leads to corruptions
2800          */
2801         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2802             (sectorsize != nodesize)) {
2803                 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2804                                 "are not allowed for mixed block groups on %s\n",
2805                                 sb->s_id);
2806                 goto fail_alloc;
2807         }
2808
2809         /*
2810          * Needn't use the lock because there is no other task which will
2811          * update the flag.
2812          */
2813         btrfs_set_super_incompat_flags(disk_super, features);
2814
2815         features = btrfs_super_compat_ro_flags(disk_super) &
2816                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2817         if (!(sb->s_flags & MS_RDONLY) && features) {
2818                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2819                        "unsupported option features (%Lx).\n",
2820                        features);
2821                 err = -EINVAL;
2822                 goto fail_alloc;
2823         }
2824
2825         max_active = fs_info->thread_pool_size;
2826
2827         ret = btrfs_init_workqueues(fs_info, fs_devices);
2828         if (ret) {
2829                 err = ret;
2830                 goto fail_sb_buffer;
2831         }
2832
2833         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2834         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2835                                     SZ_4M / PAGE_CACHE_SIZE);
2836
2837         tree_root->nodesize = nodesize;
2838         tree_root->sectorsize = sectorsize;
2839         tree_root->stripesize = stripesize;
2840
2841         sb->s_blocksize = sectorsize;
2842         sb->s_blocksize_bits = blksize_bits(sectorsize);
2843
2844         mutex_lock(&fs_info->chunk_mutex);
2845         ret = btrfs_read_sys_array(tree_root);
2846         mutex_unlock(&fs_info->chunk_mutex);
2847         if (ret) {
2848                 printk(KERN_ERR "BTRFS: failed to read the system "
2849                        "array on %s\n", sb->s_id);
2850                 goto fail_sb_buffer;
2851         }
2852
2853         generation = btrfs_super_chunk_root_generation(disk_super);
2854
2855         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2856                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2857
2858         chunk_root->node = read_tree_block(chunk_root,
2859                                            btrfs_super_chunk_root(disk_super),
2860                                            generation);
2861         if (IS_ERR(chunk_root->node) ||
2862             !extent_buffer_uptodate(chunk_root->node)) {
2863                 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2864                        sb->s_id);
2865                 if (!IS_ERR(chunk_root->node))
2866                         free_extent_buffer(chunk_root->node);
2867                 chunk_root->node = NULL;
2868                 goto fail_tree_roots;
2869         }
2870         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2871         chunk_root->commit_root = btrfs_root_node(chunk_root);
2872
2873         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2874            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2875
2876         ret = btrfs_read_chunk_tree(chunk_root);
2877         if (ret) {
2878                 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2879                        sb->s_id);
2880                 goto fail_tree_roots;
2881         }
2882
2883         /*
2884          * keep the device that is marked to be the target device for the
2885          * dev_replace procedure
2886          */
2887         btrfs_close_extra_devices(fs_devices, 0);
2888
2889         if (!fs_devices->latest_bdev) {
2890                 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2891                        sb->s_id);
2892                 goto fail_tree_roots;
2893         }
2894
2895 retry_root_backup:
2896         generation = btrfs_super_generation(disk_super);
2897
2898         tree_root->node = read_tree_block(tree_root,
2899                                           btrfs_super_root(disk_super),
2900                                           generation);
2901         if (IS_ERR(tree_root->node) ||
2902             !extent_buffer_uptodate(tree_root->node)) {
2903                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2904                        sb->s_id);
2905                 if (!IS_ERR(tree_root->node))
2906                         free_extent_buffer(tree_root->node);
2907                 tree_root->node = NULL;
2908                 goto recovery_tree_root;
2909         }
2910
2911         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2912         tree_root->commit_root = btrfs_root_node(tree_root);
2913         btrfs_set_root_refs(&tree_root->root_item, 1);
2914
2915         mutex_lock(&tree_root->objectid_mutex);
2916         ret = btrfs_find_highest_objectid(tree_root,
2917                                         &tree_root->highest_objectid);
2918         if (ret) {
2919                 mutex_unlock(&tree_root->objectid_mutex);
2920                 goto recovery_tree_root;
2921         }
2922
2923         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2924
2925         mutex_unlock(&tree_root->objectid_mutex);
2926
2927         ret = btrfs_read_roots(fs_info, tree_root);
2928         if (ret)
2929                 goto recovery_tree_root;
2930
2931         fs_info->generation = generation;
2932         fs_info->last_trans_committed = generation;
2933
2934         ret = btrfs_recover_balance(fs_info);
2935         if (ret) {
2936                 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2937                 goto fail_block_groups;
2938         }
2939
2940         ret = btrfs_init_dev_stats(fs_info);
2941         if (ret) {
2942                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2943                        ret);
2944                 goto fail_block_groups;
2945         }
2946
2947         ret = btrfs_init_dev_replace(fs_info);
2948         if (ret) {
2949                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2950                 goto fail_block_groups;
2951         }
2952
2953         btrfs_close_extra_devices(fs_devices, 1);
2954
2955         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2956         if (ret) {
2957                 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2958                 goto fail_block_groups;
2959         }
2960
2961         ret = btrfs_sysfs_add_device(fs_devices);
2962         if (ret) {
2963                 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2964                 goto fail_fsdev_sysfs;
2965         }
2966
2967         ret = btrfs_sysfs_add_mounted(fs_info);
2968         if (ret) {
2969                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2970                 goto fail_fsdev_sysfs;
2971         }
2972
2973         ret = btrfs_init_space_info(fs_info);
2974         if (ret) {
2975                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2976                 goto fail_sysfs;
2977         }
2978
2979         ret = btrfs_read_block_groups(fs_info->extent_root);
2980         if (ret) {
2981                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2982                 goto fail_sysfs;
2983         }
2984         fs_info->num_tolerated_disk_barrier_failures =
2985                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2986         if (fs_info->fs_devices->missing_devices >
2987              fs_info->num_tolerated_disk_barrier_failures &&
2988             !(sb->s_flags & MS_RDONLY)) {
2989                 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2990                         fs_info->fs_devices->missing_devices,
2991                         fs_info->num_tolerated_disk_barrier_failures);
2992                 goto fail_sysfs;
2993         }
2994
2995         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2996                                                "btrfs-cleaner");
2997         if (IS_ERR(fs_info->cleaner_kthread))
2998                 goto fail_sysfs;
2999
3000         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3001                                                    tree_root,
3002                                                    "btrfs-transaction");
3003         if (IS_ERR(fs_info->transaction_kthread))
3004                 goto fail_cleaner;
3005
3006         if (!btrfs_test_opt(tree_root, SSD) &&
3007             !btrfs_test_opt(tree_root, NOSSD) &&
3008             !fs_info->fs_devices->rotating) {
3009                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3010                        "mode\n");
3011                 btrfs_set_opt(fs_info->mount_opt, SSD);
3012         }
3013
3014         /*
3015          * Mount does not set all options immediatelly, we can do it now and do
3016          * not have to wait for transaction commit
3017          */
3018         btrfs_apply_pending_changes(fs_info);
3019
3020 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3021         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3022                 ret = btrfsic_mount(tree_root, fs_devices,
3023                                     btrfs_test_opt(tree_root,
3024                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3025                                     1 : 0,
3026                                     fs_info->check_integrity_print_mask);
3027                 if (ret)
3028                         printk(KERN_WARNING "BTRFS: failed to initialize"
3029                                " integrity check module %s\n", sb->s_id);
3030         }
3031 #endif
3032         ret = btrfs_read_qgroup_config(fs_info);
3033         if (ret)
3034                 goto fail_trans_kthread;
3035
3036         /* do not make disk changes in broken FS or nologreplay is given */
3037         if (btrfs_super_log_root(disk_super) != 0 &&
3038             !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3039                 ret = btrfs_replay_log(fs_info, fs_devices);
3040                 if (ret) {
3041                         err = ret;
3042                         goto fail_qgroup;
3043                 }
3044         }
3045
3046         ret = btrfs_find_orphan_roots(tree_root);
3047         if (ret)
3048                 goto fail_qgroup;
3049
3050         if (!(sb->s_flags & MS_RDONLY)) {
3051                 ret = btrfs_cleanup_fs_roots(fs_info);
3052                 if (ret)
3053                         goto fail_qgroup;
3054
3055                 mutex_lock(&fs_info->cleaner_mutex);
3056                 ret = btrfs_recover_relocation(tree_root);
3057                 mutex_unlock(&fs_info->cleaner_mutex);
3058                 if (ret < 0) {
3059                         printk(KERN_WARNING
3060                                "BTRFS: failed to recover relocation\n");
3061                         err = -EINVAL;
3062                         goto fail_qgroup;
3063                 }
3064         }
3065
3066         location.objectid = BTRFS_FS_TREE_OBJECTID;
3067         location.type = BTRFS_ROOT_ITEM_KEY;
3068         location.offset = 0;
3069
3070         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3071         if (IS_ERR(fs_info->fs_root)) {
3072                 err = PTR_ERR(fs_info->fs_root);
3073                 goto fail_qgroup;
3074         }
3075
3076         if (sb->s_flags & MS_RDONLY)
3077                 return 0;
3078
3079         if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3080             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3081                 pr_info("BTRFS: creating free space tree\n");
3082                 ret = btrfs_create_free_space_tree(fs_info);
3083                 if (ret) {
3084                         pr_warn("BTRFS: failed to create free space tree %d\n",
3085                                 ret);
3086                         close_ctree(tree_root);
3087                         return ret;
3088                 }
3089         }
3090
3091         down_read(&fs_info->cleanup_work_sem);
3092         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3093             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3094                 up_read(&fs_info->cleanup_work_sem);
3095                 close_ctree(tree_root);
3096                 return ret;
3097         }
3098         up_read(&fs_info->cleanup_work_sem);
3099
3100         ret = btrfs_resume_balance_async(fs_info);
3101         if (ret) {
3102                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3103                 close_ctree(tree_root);
3104                 return ret;
3105         }
3106
3107         ret = btrfs_resume_dev_replace_async(fs_info);
3108         if (ret) {
3109                 pr_warn("BTRFS: failed to resume dev_replace\n");
3110                 close_ctree(tree_root);
3111                 return ret;
3112         }
3113
3114         btrfs_qgroup_rescan_resume(fs_info);
3115
3116         if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3117             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3118                 pr_info("BTRFS: clearing free space tree\n");
3119                 ret = btrfs_clear_free_space_tree(fs_info);
3120                 if (ret) {
3121                         pr_warn("BTRFS: failed to clear free space tree %d\n",
3122                                 ret);
3123                         close_ctree(tree_root);
3124                         return ret;
3125                 }
3126         }
3127
3128         if (!fs_info->uuid_root) {
3129                 pr_info("BTRFS: creating UUID tree\n");
3130                 ret = btrfs_create_uuid_tree(fs_info);
3131                 if (ret) {
3132                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
3133                                 ret);
3134                         close_ctree(tree_root);
3135                         return ret;
3136                 }
3137         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3138                    fs_info->generation !=
3139                                 btrfs_super_uuid_tree_generation(disk_super)) {
3140                 pr_info("BTRFS: checking UUID tree\n");
3141                 ret = btrfs_check_uuid_tree(fs_info);
3142                 if (ret) {
3143                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
3144                                 ret);
3145                         close_ctree(tree_root);
3146                         return ret;
3147                 }
3148         } else {
3149                 fs_info->update_uuid_tree_gen = 1;
3150         }
3151
3152         fs_info->open = 1;
3153
3154         /*
3155          * backuproot only affect mount behavior, and if open_ctree succeeded,
3156          * no need to keep the flag
3157          */
3158         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3159
3160         return 0;
3161
3162 fail_qgroup:
3163         btrfs_free_qgroup_config(fs_info);
3164 fail_trans_kthread:
3165         kthread_stop(fs_info->transaction_kthread);
3166         btrfs_cleanup_transaction(fs_info->tree_root);
3167         btrfs_free_fs_roots(fs_info);
3168 fail_cleaner:
3169         kthread_stop(fs_info->cleaner_kthread);
3170
3171         /*
3172          * make sure we're done with the btree inode before we stop our
3173          * kthreads
3174          */
3175         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3176
3177 fail_sysfs:
3178         btrfs_sysfs_remove_mounted(fs_info);
3179
3180 fail_fsdev_sysfs:
3181         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3182
3183 fail_block_groups:
3184         btrfs_put_block_group_cache(fs_info);
3185         btrfs_free_block_groups(fs_info);
3186
3187 fail_tree_roots:
3188         free_root_pointers(fs_info, 1);
3189         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3190
3191 fail_sb_buffer:
3192         btrfs_stop_all_workers(fs_info);
3193 fail_alloc:
3194 fail_iput:
3195         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3196
3197         iput(fs_info->btree_inode);
3198 fail_bio_counter:
3199         percpu_counter_destroy(&fs_info->bio_counter);
3200 fail_delalloc_bytes:
3201         percpu_counter_destroy(&fs_info->delalloc_bytes);
3202 fail_dirty_metadata_bytes:
3203         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3204 fail_bdi:
3205         bdi_destroy(&fs_info->bdi);
3206 fail_srcu:
3207         cleanup_srcu_struct(&fs_info->subvol_srcu);
3208 fail:
3209         btrfs_free_stripe_hash_table(fs_info);
3210         btrfs_close_devices(fs_info->fs_devices);
3211         return err;
3212
3213 recovery_tree_root:
3214         if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3215                 goto fail_tree_roots;
3216
3217         free_root_pointers(fs_info, 0);
3218
3219         /* don't use the log in recovery mode, it won't be valid */
3220         btrfs_set_super_log_root(disk_super, 0);
3221
3222         /* we can't trust the free space cache either */
3223         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3224
3225         ret = next_root_backup(fs_info, fs_info->super_copy,
3226                                &num_backups_tried, &backup_index);
3227         if (ret == -1)
3228                 goto fail_block_groups;
3229         goto retry_root_backup;
3230 }
3231
3232 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3233 {
3234         if (uptodate) {
3235                 set_buffer_uptodate(bh);
3236         } else {
3237                 struct btrfs_device *device = (struct btrfs_device *)
3238                         bh->b_private;
3239
3240                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3241                                 "lost page write due to IO error on %s",
3242                                           rcu_str_deref(device->name));
3243                 /* note, we dont' set_buffer_write_io_error because we have
3244                  * our own ways of dealing with the IO errors
3245                  */
3246                 clear_buffer_uptodate(bh);
3247                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3248         }
3249         unlock_buffer(bh);
3250         put_bh(bh);
3251 }
3252
3253 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3254                         struct buffer_head **bh_ret)
3255 {
3256         struct buffer_head *bh;
3257         struct btrfs_super_block *super;
3258         u64 bytenr;
3259
3260         bytenr = btrfs_sb_offset(copy_num);
3261         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3262                 return -EINVAL;
3263
3264         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3265         /*
3266          * If we fail to read from the underlying devices, as of now
3267          * the best option we have is to mark it EIO.
3268          */
3269         if (!bh)
3270                 return -EIO;
3271
3272         super = (struct btrfs_super_block *)bh->b_data;
3273         if (btrfs_super_bytenr(super) != bytenr ||
3274                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3275                 brelse(bh);
3276                 return -EINVAL;
3277         }
3278
3279         *bh_ret = bh;
3280         return 0;
3281 }
3282
3283
3284 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3285 {
3286         struct buffer_head *bh;
3287         struct buffer_head *latest = NULL;
3288         struct btrfs_super_block *super;
3289         int i;
3290         u64 transid = 0;
3291         int ret = -EINVAL;
3292
3293         /* we would like to check all the supers, but that would make
3294          * a btrfs mount succeed after a mkfs from a different FS.
3295          * So, we need to add a special mount option to scan for
3296          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3297          */
3298         for (i = 0; i < 1; i++) {
3299                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3300                 if (ret)
3301                         continue;
3302
3303                 super = (struct btrfs_super_block *)bh->b_data;
3304
3305                 if (!latest || btrfs_super_generation(super) > transid) {
3306                         brelse(latest);
3307                         latest = bh;
3308                         transid = btrfs_super_generation(super);
3309                 } else {
3310                         brelse(bh);
3311                 }
3312         }
3313
3314         if (!latest)
3315                 return ERR_PTR(ret);
3316
3317         return latest;
3318 }
3319
3320 /*
3321  * this should be called twice, once with wait == 0 and
3322  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3323  * we write are pinned.
3324  *
3325  * They are released when wait == 1 is done.
3326  * max_mirrors must be the same for both runs, and it indicates how
3327  * many supers on this one device should be written.
3328  *
3329  * max_mirrors == 0 means to write them all.
3330  */
3331 static int write_dev_supers(struct btrfs_device *device,
3332                             struct btrfs_super_block *sb,
3333                             int do_barriers, int wait, int max_mirrors)
3334 {
3335         struct buffer_head *bh;
3336         int i;
3337         int ret;
3338         int errors = 0;
3339         u32 crc;
3340         u64 bytenr;
3341
3342         if (max_mirrors == 0)
3343                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3344
3345         for (i = 0; i < max_mirrors; i++) {
3346                 bytenr = btrfs_sb_offset(i);
3347                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3348                     device->commit_total_bytes)
3349                         break;
3350
3351                 if (wait) {
3352                         bh = __find_get_block(device->bdev, bytenr / 4096,
3353                                               BTRFS_SUPER_INFO_SIZE);
3354                         if (!bh) {
3355                                 errors++;
3356                                 continue;
3357                         }
3358                         wait_on_buffer(bh);
3359                         if (!buffer_uptodate(bh))
3360                                 errors++;
3361
3362                         /* drop our reference */
3363                         brelse(bh);
3364
3365                         /* drop the reference from the wait == 0 run */
3366                         brelse(bh);
3367                         continue;
3368                 } else {
3369                         btrfs_set_super_bytenr(sb, bytenr);
3370
3371                         crc = ~(u32)0;
3372                         crc = btrfs_csum_data((char *)sb +
3373                                               BTRFS_CSUM_SIZE, crc,
3374                                               BTRFS_SUPER_INFO_SIZE -
3375                                               BTRFS_CSUM_SIZE);
3376                         btrfs_csum_final(crc, sb->csum);
3377
3378                         /*
3379                          * one reference for us, and we leave it for the
3380                          * caller
3381                          */
3382                         bh = __getblk(device->bdev, bytenr / 4096,
3383                                       BTRFS_SUPER_INFO_SIZE);
3384                         if (!bh) {
3385                                 btrfs_err(device->dev_root->fs_info,
3386                                     "couldn't get super buffer head for bytenr %llu",
3387                                     bytenr);
3388                                 errors++;
3389                                 continue;
3390                         }
3391
3392                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3393
3394                         /* one reference for submit_bh */
3395                         get_bh(bh);
3396
3397                         set_buffer_uptodate(bh);
3398                         lock_buffer(bh);
3399                         bh->b_end_io = btrfs_end_buffer_write_sync;
3400                         bh->b_private = device;
3401                 }
3402
3403                 /*
3404                  * we fua the first super.  The others we allow
3405                  * to go down lazy.
3406                  */
3407                 if (i == 0)
3408                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3409                 else
3410                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3411                 if (ret)
3412                         errors++;
3413         }
3414         return errors < i ? 0 : -1;
3415 }
3416
3417 /*
3418  * endio for the write_dev_flush, this will wake anyone waiting
3419  * for the barrier when it is done
3420  */
3421 static void btrfs_end_empty_barrier(struct bio *bio)
3422 {
3423         if (bio->bi_private)
3424                 complete(bio->bi_private);
3425         bio_put(bio);
3426 }
3427
3428 /*
3429  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3430  * sent down.  With wait == 1, it waits for the previous flush.
3431  *
3432  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3433  * capable
3434  */
3435 static int write_dev_flush(struct btrfs_device *device, int wait)
3436 {
3437         struct bio *bio;
3438         int ret = 0;
3439
3440         if (device->nobarriers)
3441                 return 0;
3442
3443         if (wait) {
3444                 bio = device->flush_bio;
3445                 if (!bio)
3446                         return 0;
3447
3448                 wait_for_completion(&device->flush_wait);
3449
3450                 if (bio->bi_error) {
3451                         ret = bio->bi_error;
3452                         btrfs_dev_stat_inc_and_print(device,
3453                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3454                 }
3455
3456                 /* drop the reference from the wait == 0 run */
3457                 bio_put(bio);
3458                 device->flush_bio = NULL;
3459
3460                 return ret;
3461         }
3462
3463         /*
3464          * one reference for us, and we leave it for the
3465          * caller
3466          */
3467         device->flush_bio = NULL;
3468         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3469         if (!bio)
3470                 return -ENOMEM;
3471
3472         bio->bi_end_io = btrfs_end_empty_barrier;
3473         bio->bi_bdev = device->bdev;
3474         init_completion(&device->flush_wait);
3475         bio->bi_private = &device->flush_wait;
3476         device->flush_bio = bio;
3477
3478         bio_get(bio);
3479         btrfsic_submit_bio(WRITE_FLUSH, bio);
3480
3481         return 0;
3482 }
3483
3484 /*
3485  * send an empty flush down to each device in parallel,
3486  * then wait for them
3487  */
3488 static int barrier_all_devices(struct btrfs_fs_info *info)
3489 {
3490         struct list_head *head;
3491         struct btrfs_device *dev;
3492         int errors_send = 0;
3493         int errors_wait = 0;
3494         int ret;
3495
3496         /* send down all the barriers */
3497         head = &info->fs_devices->devices;
3498         list_for_each_entry_rcu(dev, head, dev_list) {
3499                 if (dev->missing)
3500                         continue;
3501                 if (!dev->bdev) {
3502                         errors_send++;
3503                         continue;
3504                 }
3505                 if (!dev->in_fs_metadata || !dev->writeable)
3506                         continue;
3507
3508                 ret = write_dev_flush(dev, 0);
3509                 if (ret)
3510                         errors_send++;
3511         }
3512
3513         /* wait for all the barriers */
3514         list_for_each_entry_rcu(dev, head, dev_list) {
3515                 if (dev->missing)
3516                         continue;
3517                 if (!dev->bdev) {
3518                         errors_wait++;
3519                         continue;
3520                 }
3521                 if (!dev->in_fs_metadata || !dev->writeable)
3522                         continue;
3523
3524                 ret = write_dev_flush(dev, 1);
3525                 if (ret)
3526                         errors_wait++;
3527         }
3528         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3529             errors_wait > info->num_tolerated_disk_barrier_failures)
3530                 return -EIO;
3531         return 0;
3532 }
3533
3534 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3535 {
3536         int raid_type;
3537         int min_tolerated = INT_MAX;
3538
3539         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3540             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3541                 min_tolerated = min(min_tolerated,
3542                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3543                                     tolerated_failures);
3544
3545         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3546                 if (raid_type == BTRFS_RAID_SINGLE)
3547                         continue;
3548                 if (!(flags & btrfs_raid_group[raid_type]))
3549                         continue;
3550                 min_tolerated = min(min_tolerated,
3551                                     btrfs_raid_array[raid_type].
3552                                     tolerated_failures);
3553         }
3554
3555         if (min_tolerated == INT_MAX) {
3556                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3557                 min_tolerated = 0;
3558         }
3559
3560         return min_tolerated;
3561 }
3562
3563 int btrfs_calc_num_tolerated_disk_barrier_failures(
3564         struct btrfs_fs_info *fs_info)
3565 {
3566         struct btrfs_ioctl_space_info space;
3567         struct btrfs_space_info *sinfo;
3568         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3569                        BTRFS_BLOCK_GROUP_SYSTEM,
3570                        BTRFS_BLOCK_GROUP_METADATA,
3571                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3572         int i;
3573         int c;
3574         int num_tolerated_disk_barrier_failures =
3575                 (int)fs_info->fs_devices->num_devices;
3576
3577         for (i = 0; i < ARRAY_SIZE(types); i++) {
3578                 struct btrfs_space_info *tmp;
3579
3580                 sinfo = NULL;
3581                 rcu_read_lock();
3582                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3583                         if (tmp->flags == types[i]) {
3584                                 sinfo = tmp;
3585                                 break;
3586                         }
3587                 }
3588                 rcu_read_unlock();
3589
3590                 if (!sinfo)
3591                         continue;
3592
3593                 down_read(&sinfo->groups_sem);
3594                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3595                         u64 flags;
3596
3597                         if (list_empty(&sinfo->block_groups[c]))
3598                                 continue;
3599
3600                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3601                                                    &space);
3602                         if (space.total_bytes == 0 || space.used_bytes == 0)
3603                                 continue;
3604                         flags = space.flags;
3605
3606                         num_tolerated_disk_barrier_failures = min(
3607                                 num_tolerated_disk_barrier_failures,
3608                                 btrfs_get_num_tolerated_disk_barrier_failures(
3609                                         flags));
3610                 }
3611                 up_read(&sinfo->groups_sem);
3612         }
3613
3614         return num_tolerated_disk_barrier_failures;
3615 }
3616
3617 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3618 {
3619         struct list_head *head;
3620         struct btrfs_device *dev;
3621         struct btrfs_super_block *sb;
3622         struct btrfs_dev_item *dev_item;
3623         int ret;
3624         int do_barriers;
3625         int max_errors;
3626         int total_errors = 0;
3627         u64 flags;
3628
3629         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3630         backup_super_roots(root->fs_info);
3631
3632         sb = root->fs_info->super_for_commit;
3633         dev_item = &sb->dev_item;
3634
3635         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3636         head = &root->fs_info->fs_devices->devices;
3637         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3638
3639         if (do_barriers) {
3640                 ret = barrier_all_devices(root->fs_info);
3641                 if (ret) {
3642                         mutex_unlock(
3643                                 &root->fs_info->fs_devices->device_list_mutex);
3644                         btrfs_std_error(root->fs_info, ret,
3645                                     "errors while submitting device barriers.");
3646                         return ret;
3647                 }
3648         }
3649
3650         list_for_each_entry_rcu(dev, head, dev_list) {
3651                 if (!dev->bdev) {
3652                         total_errors++;
3653                         continue;
3654                 }
3655                 if (!dev->in_fs_metadata || !dev->writeable)
3656                         continue;
3657
3658                 btrfs_set_stack_device_generation(dev_item, 0);
3659                 btrfs_set_stack_device_type(dev_item, dev->type);
3660                 btrfs_set_stack_device_id(dev_item, dev->devid);
3661                 btrfs_set_stack_device_total_bytes(dev_item,
3662                                                    dev->commit_total_bytes);
3663                 btrfs_set_stack_device_bytes_used(dev_item,
3664                                                   dev->commit_bytes_used);
3665                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3666                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3667                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3668                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3669                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3670
3671                 flags = btrfs_super_flags(sb);
3672                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3673
3674                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3675                 if (ret)
3676                         total_errors++;
3677         }
3678         if (total_errors > max_errors) {
3679                 btrfs_err(root->fs_info, "%d errors while writing supers",
3680                        total_errors);
3681                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3682
3683                 /* FUA is masked off if unsupported and can't be the reason */
3684                 btrfs_std_error(root->fs_info, -EIO,
3685                             "%d errors while writing supers", total_errors);
3686                 return -EIO;
3687         }
3688
3689         total_errors = 0;
3690         list_for_each_entry_rcu(dev, head, dev_list) {
3691                 if (!dev->bdev)
3692                         continue;
3693                 if (!dev->in_fs_metadata || !dev->writeable)
3694                         continue;
3695
3696                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3697                 if (ret)
3698                         total_errors++;
3699         }
3700         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3701         if (total_errors > max_errors) {
3702                 btrfs_std_error(root->fs_info, -EIO,
3703                             "%d errors while writing supers", total_errors);
3704                 return -EIO;
3705         }
3706         return 0;
3707 }
3708
3709 int write_ctree_super(struct btrfs_trans_handle *trans,
3710                       struct btrfs_root *root, int max_mirrors)
3711 {
3712         return write_all_supers(root, max_mirrors);
3713 }
3714
3715 /* Drop a fs root from the radix tree and free it. */
3716 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3717                                   struct btrfs_root *root)
3718 {
3719         spin_lock(&fs_info->fs_roots_radix_lock);
3720         radix_tree_delete(&fs_info->fs_roots_radix,
3721                           (unsigned long)root->root_key.objectid);
3722         spin_unlock(&fs_info->fs_roots_radix_lock);
3723
3724         if (btrfs_root_refs(&root->root_item) == 0)
3725                 synchronize_srcu(&fs_info->subvol_srcu);
3726
3727         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3728                 btrfs_free_log(NULL, root);
3729
3730         if (root->free_ino_pinned)
3731                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3732         if (root->free_ino_ctl)
3733                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3734         free_fs_root(root);
3735 }
3736
3737 static void free_fs_root(struct btrfs_root *root)
3738 {
3739         iput(root->ino_cache_inode);
3740         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3741         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3742         root->orphan_block_rsv = NULL;
3743         if (root->anon_dev)
3744                 free_anon_bdev(root->anon_dev);
3745         if (root->subv_writers)
3746                 btrfs_free_subvolume_writers(root->subv_writers);
3747         free_extent_buffer(root->node);
3748         free_extent_buffer(root->commit_root);
3749         kfree(root->free_ino_ctl);
3750         kfree(root->free_ino_pinned);
3751         kfree(root->name);
3752         btrfs_put_fs_root(root);
3753 }
3754
3755 void btrfs_free_fs_root(struct btrfs_root *root)
3756 {
3757         free_fs_root(root);
3758 }
3759
3760 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3761 {
3762         u64 root_objectid = 0;
3763         struct btrfs_root *gang[8];
3764         int i = 0;
3765         int err = 0;
3766         unsigned int ret = 0;
3767         int index;
3768
3769         while (1) {
3770                 index = srcu_read_lock(&fs_info->subvol_srcu);
3771                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3772                                              (void **)gang, root_objectid,
3773                                              ARRAY_SIZE(gang));
3774                 if (!ret) {
3775                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3776                         break;
3777                 }
3778                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3779
3780                 for (i = 0; i < ret; i++) {
3781                         /* Avoid to grab roots in dead_roots */
3782                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3783                                 gang[i] = NULL;
3784                                 continue;
3785                         }
3786                         /* grab all the search result for later use */
3787                         gang[i] = btrfs_grab_fs_root(gang[i]);
3788                 }
3789                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3790
3791                 for (i = 0; i < ret; i++) {
3792                         if (!gang[i])
3793                                 continue;
3794                         root_objectid = gang[i]->root_key.objectid;
3795                         err = btrfs_orphan_cleanup(gang[i]);
3796                         if (err)
3797                                 break;
3798                         btrfs_put_fs_root(gang[i]);
3799                 }
3800                 root_objectid++;
3801         }
3802
3803         /* release the uncleaned roots due to error */
3804         for (; i < ret; i++) {
3805                 if (gang[i])
3806                         btrfs_put_fs_root(gang[i]);
3807         }
3808         return err;
3809 }
3810
3811 int btrfs_commit_super(struct btrfs_root *root)
3812 {
3813         struct btrfs_trans_handle *trans;
3814
3815         mutex_lock(&root->fs_info->cleaner_mutex);
3816         btrfs_run_delayed_iputs(root);
3817         mutex_unlock(&root->fs_info->cleaner_mutex);
3818         wake_up_process(root->fs_info->cleaner_kthread);
3819
3820         /* wait until ongoing cleanup work done */
3821         down_write(&root->fs_info->cleanup_work_sem);
3822         up_write(&root->fs_info->cleanup_work_sem);
3823
3824         trans = btrfs_join_transaction(root);
3825         if (IS_ERR(trans))
3826                 return PTR_ERR(trans);
3827         return btrfs_commit_transaction(trans, root);
3828 }
3829
3830 void close_ctree(struct btrfs_root *root)
3831 {
3832         struct btrfs_fs_info *fs_info = root->fs_info;
3833         int ret;
3834
3835         fs_info->closing = 1;
3836         smp_mb();
3837
3838         /* wait for the qgroup rescan worker to stop */
3839         btrfs_qgroup_wait_for_completion(fs_info);
3840
3841         /* wait for the uuid_scan task to finish */
3842         down(&fs_info->uuid_tree_rescan_sem);
3843         /* avoid complains from lockdep et al., set sem back to initial state */
3844         up(&fs_info->uuid_tree_rescan_sem);
3845
3846         /* pause restriper - we want to resume on mount */
3847         btrfs_pause_balance(fs_info);
3848
3849         btrfs_dev_replace_suspend_for_unmount(fs_info);
3850
3851         btrfs_scrub_cancel(fs_info);
3852
3853         /* wait for any defraggers to finish */
3854         wait_event(fs_info->transaction_wait,
3855                    (atomic_read(&fs_info->defrag_running) == 0));
3856
3857         /* clear out the rbtree of defraggable inodes */
3858         btrfs_cleanup_defrag_inodes(fs_info);
3859
3860         cancel_work_sync(&fs_info->async_reclaim_work);
3861
3862         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3863                 /*
3864                  * If the cleaner thread is stopped and there are
3865                  * block groups queued for removal, the deletion will be
3866                  * skipped when we quit the cleaner thread.
3867                  */
3868                 btrfs_delete_unused_bgs(root->fs_info);
3869
3870                 ret = btrfs_commit_super(root);
3871                 if (ret)
3872                         btrfs_err(fs_info, "commit super ret %d", ret);
3873         }
3874
3875         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3876                 btrfs_error_commit_super(root);
3877
3878         kthread_stop(fs_info->transaction_kthread);
3879         kthread_stop(fs_info->cleaner_kthread);
3880
3881         fs_info->closing = 2;
3882         smp_mb();
3883
3884         btrfs_free_qgroup_config(fs_info);
3885
3886         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3887                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3888                        percpu_counter_sum(&fs_info->delalloc_bytes));
3889         }
3890
3891         btrfs_sysfs_remove_mounted(fs_info);
3892         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3893
3894         btrfs_free_fs_roots(fs_info);
3895
3896         btrfs_put_block_group_cache(fs_info);
3897
3898         btrfs_free_block_groups(fs_info);
3899
3900         /*
3901          * we must make sure there is not any read request to
3902          * submit after we stopping all workers.
3903          */
3904         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3905         btrfs_stop_all_workers(fs_info);
3906
3907         fs_info->open = 0;
3908         free_root_pointers(fs_info, 1);
3909
3910         iput(fs_info->btree_inode);
3911
3912 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3913         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3914                 btrfsic_unmount(root, fs_info->fs_devices);
3915 #endif
3916
3917         btrfs_close_devices(fs_info->fs_devices);
3918         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3919
3920         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3921         percpu_counter_destroy(&fs_info->delalloc_bytes);
3922         percpu_counter_destroy(&fs_info->bio_counter);
3923         bdi_destroy(&fs_info->bdi);
3924         cleanup_srcu_struct(&fs_info->subvol_srcu);
3925
3926         btrfs_free_stripe_hash_table(fs_info);
3927
3928         __btrfs_free_block_rsv(root->orphan_block_rsv);
3929         root->orphan_block_rsv = NULL;
3930
3931         lock_chunks(root);
3932         while (!list_empty(&fs_info->pinned_chunks)) {
3933                 struct extent_map *em;
3934
3935                 em = list_first_entry(&fs_info->pinned_chunks,
3936                                       struct extent_map, list);
3937                 list_del_init(&em->list);
3938                 free_extent_map(em);
3939         }
3940         unlock_chunks(root);
3941 }
3942
3943 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3944                           int atomic)
3945 {
3946         int ret;
3947         struct inode *btree_inode = buf->pages[0]->mapping->host;
3948
3949         ret = extent_buffer_uptodate(buf);
3950         if (!ret)
3951                 return ret;
3952
3953         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3954                                     parent_transid, atomic);
3955         if (ret == -EAGAIN)
3956                 return ret;
3957         return !ret;
3958 }
3959
3960 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3961 {
3962         struct btrfs_root *root;
3963         u64 transid = btrfs_header_generation(buf);
3964         int was_dirty;
3965
3966 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3967         /*
3968          * This is a fast path so only do this check if we have sanity tests
3969          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3970          * outside of the sanity tests.
3971          */
3972         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3973                 return;
3974 #endif
3975         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3976         btrfs_assert_tree_locked(buf);
3977         if (transid != root->fs_info->generation)
3978                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3979                        "found %llu running %llu\n",
3980                         buf->start, transid, root->fs_info->generation);
3981         was_dirty = set_extent_buffer_dirty(buf);
3982         if (!was_dirty)
3983                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3984                                      buf->len,
3985                                      root->fs_info->dirty_metadata_batch);
3986 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3987         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3988                 btrfs_print_leaf(root, buf);
3989                 ASSERT(0);
3990         }
3991 #endif
3992 }
3993
3994 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3995                                         int flush_delayed)
3996 {
3997         /*
3998          * looks as though older kernels can get into trouble with
3999          * this code, they end up stuck in balance_dirty_pages forever
4000          */
4001         int ret;
4002
4003         if (current->flags & PF_MEMALLOC)
4004                 return;
4005
4006         if (flush_delayed)
4007                 btrfs_balance_delayed_items(root);
4008
4009         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4010                                      BTRFS_DIRTY_METADATA_THRESH);
4011         if (ret > 0) {
4012                 balance_dirty_pages_ratelimited(
4013                                    root->fs_info->btree_inode->i_mapping);
4014         }
4015 }
4016
4017 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4018 {
4019         __btrfs_btree_balance_dirty(root, 1);
4020 }
4021
4022 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4023 {
4024         __btrfs_btree_balance_dirty(root, 0);
4025 }
4026
4027 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4028 {
4029         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4030         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4031 }
4032
4033 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4034                               int read_only)
4035 {
4036         struct btrfs_super_block *sb = fs_info->super_copy;
4037         u64 nodesize = btrfs_super_nodesize(sb);
4038         u64 sectorsize = btrfs_super_sectorsize(sb);
4039         int ret = 0;
4040
4041         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4042                 printk(KERN_ERR "BTRFS: no valid FS found\n");
4043                 ret = -EINVAL;
4044         }
4045         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4046                 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4047                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4048         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4049                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4050                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4051                 ret = -EINVAL;
4052         }
4053         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4054                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4055                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4056                 ret = -EINVAL;
4057         }
4058         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4060                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4061                 ret = -EINVAL;
4062         }
4063
4064         /*
4065          * Check sectorsize and nodesize first, other check will need it.
4066          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4067          */
4068         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4069             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4070                 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4071                 ret = -EINVAL;
4072         }
4073         /* Only PAGE SIZE is supported yet */
4074         if (sectorsize != PAGE_CACHE_SIZE) {
4075                 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4076                                 sectorsize, PAGE_CACHE_SIZE);
4077                 ret = -EINVAL;
4078         }
4079         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4080             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4081                 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4082                 ret = -EINVAL;
4083         }
4084         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4085                 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4086                                 le32_to_cpu(sb->__unused_leafsize),
4087                                 nodesize);
4088                 ret = -EINVAL;
4089         }
4090
4091         /* Root alignment check */
4092         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4093                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4094                                 btrfs_super_root(sb));
4095                 ret = -EINVAL;
4096         }
4097         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4098                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4099                                 btrfs_super_chunk_root(sb));
4100                 ret = -EINVAL;
4101         }
4102         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4103                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4104                                 btrfs_super_log_root(sb));
4105                 ret = -EINVAL;
4106         }
4107
4108         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4109                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4110                                 fs_info->fsid, sb->dev_item.fsid);
4111                 ret = -EINVAL;
4112         }
4113
4114         /*
4115          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4116          * done later
4117          */
4118         if (btrfs_super_num_devices(sb) > (1UL << 31))
4119                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4120                                 btrfs_super_num_devices(sb));
4121         if (btrfs_super_num_devices(sb) == 0) {
4122                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4123                 ret = -EINVAL;
4124         }
4125
4126         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4127                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4128                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4129                 ret = -EINVAL;
4130         }
4131
4132         /*
4133          * Obvious sys_chunk_array corruptions, it must hold at least one key
4134          * and one chunk
4135          */
4136         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4137                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4138                                 btrfs_super_sys_array_size(sb),
4139                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4140                 ret = -EINVAL;
4141         }
4142         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4143                         + sizeof(struct btrfs_chunk)) {
4144                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4145                                 btrfs_super_sys_array_size(sb),
4146                                 sizeof(struct btrfs_disk_key)
4147                                 + sizeof(struct btrfs_chunk));
4148                 ret = -EINVAL;
4149         }
4150
4151         /*
4152          * The generation is a global counter, we'll trust it more than the others
4153          * but it's still possible that it's the one that's wrong.
4154          */
4155         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4156                 printk(KERN_WARNING
4157                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4158                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4159         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4160             && btrfs_super_cache_generation(sb) != (u64)-1)
4161                 printk(KERN_WARNING
4162                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4163                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4164
4165         return ret;
4166 }
4167
4168 static void btrfs_error_commit_super(struct btrfs_root *root)
4169 {
4170         mutex_lock(&root->fs_info->cleaner_mutex);
4171         btrfs_run_delayed_iputs(root);
4172         mutex_unlock(&root->fs_info->cleaner_mutex);
4173
4174         down_write(&root->fs_info->cleanup_work_sem);
4175         up_write(&root->fs_info->cleanup_work_sem);
4176
4177         /* cleanup FS via transaction */
4178         btrfs_cleanup_transaction(root);
4179 }
4180
4181 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4182 {
4183         struct btrfs_ordered_extent *ordered;
4184
4185         spin_lock(&root->ordered_extent_lock);
4186         /*
4187          * This will just short circuit the ordered completion stuff which will
4188          * make sure the ordered extent gets properly cleaned up.
4189          */
4190         list_for_each_entry(ordered, &root->ordered_extents,
4191                             root_extent_list)
4192                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4193         spin_unlock(&root->ordered_extent_lock);
4194 }
4195
4196 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4197 {
4198         struct btrfs_root *root;
4199         struct list_head splice;
4200
4201         INIT_LIST_HEAD(&splice);
4202
4203         spin_lock(&fs_info->ordered_root_lock);
4204         list_splice_init(&fs_info->ordered_roots, &splice);
4205         while (!list_empty(&splice)) {
4206                 root = list_first_entry(&splice, struct btrfs_root,
4207                                         ordered_root);
4208                 list_move_tail(&root->ordered_root,
4209                                &fs_info->ordered_roots);
4210
4211                 spin_unlock(&fs_info->ordered_root_lock);
4212                 btrfs_destroy_ordered_extents(root);
4213
4214                 cond_resched();
4215                 spin_lock(&fs_info->ordered_root_lock);
4216         }
4217         spin_unlock(&fs_info->ordered_root_lock);
4218 }
4219
4220 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4221                                       struct btrfs_root *root)
4222 {
4223         struct rb_node *node;
4224         struct btrfs_delayed_ref_root *delayed_refs;
4225         struct btrfs_delayed_ref_node *ref;
4226         int ret = 0;
4227
4228         delayed_refs = &trans->delayed_refs;
4229
4230         spin_lock(&delayed_refs->lock);
4231         if (atomic_read(&delayed_refs->num_entries) == 0) {
4232                 spin_unlock(&delayed_refs->lock);
4233                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4234                 return ret;
4235         }
4236
4237         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4238                 struct btrfs_delayed_ref_head *head;
4239                 struct btrfs_delayed_ref_node *tmp;
4240                 bool pin_bytes = false;
4241
4242                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4243                                 href_node);
4244                 if (!mutex_trylock(&head->mutex)) {
4245                         atomic_inc(&head->node.refs);
4246                         spin_unlock(&delayed_refs->lock);
4247
4248                         mutex_lock(&head->mutex);
4249                         mutex_unlock(&head->mutex);
4250                         btrfs_put_delayed_ref(&head->node);
4251                         spin_lock(&delayed_refs->lock);
4252                         continue;
4253                 }
4254                 spin_lock(&head->lock);
4255                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4256                                                  list) {
4257                         ref->in_tree = 0;
4258                         list_del(&ref->list);
4259                         atomic_dec(&delayed_refs->num_entries);
4260                         btrfs_put_delayed_ref(ref);
4261                 }
4262                 if (head->must_insert_reserved)
4263                         pin_bytes = true;
4264                 btrfs_free_delayed_extent_op(head->extent_op);
4265                 delayed_refs->num_heads--;
4266                 if (head->processing == 0)
4267                         delayed_refs->num_heads_ready--;
4268                 atomic_dec(&delayed_refs->num_entries);
4269                 head->node.in_tree = 0;
4270                 rb_erase(&head->href_node, &delayed_refs->href_root);
4271                 spin_unlock(&head->lock);
4272                 spin_unlock(&delayed_refs->lock);
4273                 mutex_unlock(&head->mutex);
4274
4275                 if (pin_bytes)
4276                         btrfs_pin_extent(root, head->node.bytenr,
4277                                          head->node.num_bytes, 1);
4278                 btrfs_put_delayed_ref(&head->node);
4279                 cond_resched();
4280                 spin_lock(&delayed_refs->lock);
4281         }
4282
4283         spin_unlock(&delayed_refs->lock);
4284
4285         return ret;
4286 }
4287
4288 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4289 {
4290         struct btrfs_inode *btrfs_inode;
4291         struct list_head splice;
4292
4293         INIT_LIST_HEAD(&splice);
4294
4295         spin_lock(&root->delalloc_lock);
4296         list_splice_init(&root->delalloc_inodes, &splice);
4297
4298         while (!list_empty(&splice)) {
4299                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4300                                                delalloc_inodes);
4301
4302                 list_del_init(&btrfs_inode->delalloc_inodes);
4303                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4304                           &btrfs_inode->runtime_flags);
4305                 spin_unlock(&root->delalloc_lock);
4306
4307                 btrfs_invalidate_inodes(btrfs_inode->root);
4308
4309                 spin_lock(&root->delalloc_lock);
4310         }
4311
4312         spin_unlock(&root->delalloc_lock);
4313 }
4314
4315 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4316 {
4317         struct btrfs_root *root;
4318         struct list_head splice;
4319
4320         INIT_LIST_HEAD(&splice);
4321
4322         spin_lock(&fs_info->delalloc_root_lock);
4323         list_splice_init(&fs_info->delalloc_roots, &splice);
4324         while (!list_empty(&splice)) {
4325                 root = list_first_entry(&splice, struct btrfs_root,
4326                                          delalloc_root);
4327                 list_del_init(&root->delalloc_root);
4328                 root = btrfs_grab_fs_root(root);
4329                 BUG_ON(!root);
4330                 spin_unlock(&fs_info->delalloc_root_lock);
4331
4332                 btrfs_destroy_delalloc_inodes(root);
4333                 btrfs_put_fs_root(root);
4334
4335                 spin_lock(&fs_info->delalloc_root_lock);
4336         }
4337         spin_unlock(&fs_info->delalloc_root_lock);
4338 }
4339
4340 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4341                                         struct extent_io_tree *dirty_pages,
4342                                         int mark)
4343 {
4344         int ret;
4345         struct extent_buffer *eb;
4346         u64 start = 0;
4347         u64 end;
4348
4349         while (1) {
4350                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4351                                             mark, NULL);
4352                 if (ret)
4353                         break;
4354
4355                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4356                 while (start <= end) {
4357                         eb = btrfs_find_tree_block(root->fs_info, start);
4358                         start += root->nodesize;
4359                         if (!eb)
4360                                 continue;
4361                         wait_on_extent_buffer_writeback(eb);
4362
4363                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4364                                                &eb->bflags))
4365                                 clear_extent_buffer_dirty(eb);
4366                         free_extent_buffer_stale(eb);
4367                 }
4368         }
4369
4370         return ret;
4371 }
4372
4373 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4374                                        struct extent_io_tree *pinned_extents)
4375 {
4376         struct extent_io_tree *unpin;
4377         u64 start;
4378         u64 end;
4379         int ret;
4380         bool loop = true;
4381
4382         unpin = pinned_extents;
4383 again:
4384         while (1) {
4385                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4386                                             EXTENT_DIRTY, NULL);
4387                 if (ret)
4388                         break;
4389
4390                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4391                 btrfs_error_unpin_extent_range(root, start, end);
4392                 cond_resched();
4393         }
4394
4395         if (loop) {
4396                 if (unpin == &root->fs_info->freed_extents[0])
4397                         unpin = &root->fs_info->freed_extents[1];
4398                 else
4399                         unpin = &root->fs_info->freed_extents[0];
4400                 loop = false;
4401                 goto again;
4402         }
4403
4404         return 0;
4405 }
4406
4407 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4408                                    struct btrfs_root *root)
4409 {
4410         btrfs_destroy_delayed_refs(cur_trans, root);
4411
4412         cur_trans->state = TRANS_STATE_COMMIT_START;
4413         wake_up(&root->fs_info->transaction_blocked_wait);
4414
4415         cur_trans->state = TRANS_STATE_UNBLOCKED;
4416         wake_up(&root->fs_info->transaction_wait);
4417
4418         btrfs_destroy_delayed_inodes(root);
4419         btrfs_assert_delayed_root_empty(root);
4420
4421         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4422                                      EXTENT_DIRTY);
4423         btrfs_destroy_pinned_extent(root,
4424                                     root->fs_info->pinned_extents);
4425
4426         cur_trans->state =TRANS_STATE_COMPLETED;
4427         wake_up(&cur_trans->commit_wait);
4428
4429         /*
4430         memset(cur_trans, 0, sizeof(*cur_trans));
4431         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4432         */
4433 }
4434
4435 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4436 {
4437         struct btrfs_transaction *t;
4438
4439         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4440
4441         spin_lock(&root->fs_info->trans_lock);
4442         while (!list_empty(&root->fs_info->trans_list)) {
4443                 t = list_first_entry(&root->fs_info->trans_list,
4444                                      struct btrfs_transaction, list);
4445                 if (t->state >= TRANS_STATE_COMMIT_START) {
4446                         atomic_inc(&t->use_count);
4447                         spin_unlock(&root->fs_info->trans_lock);
4448                         btrfs_wait_for_commit(root, t->transid);
4449                         btrfs_put_transaction(t);
4450                         spin_lock(&root->fs_info->trans_lock);
4451                         continue;
4452                 }
4453                 if (t == root->fs_info->running_transaction) {
4454                         t->state = TRANS_STATE_COMMIT_DOING;
4455                         spin_unlock(&root->fs_info->trans_lock);
4456                         /*
4457                          * We wait for 0 num_writers since we don't hold a trans
4458                          * handle open currently for this transaction.
4459                          */
4460                         wait_event(t->writer_wait,
4461                                    atomic_read(&t->num_writers) == 0);
4462                 } else {
4463                         spin_unlock(&root->fs_info->trans_lock);
4464                 }
4465                 btrfs_cleanup_one_transaction(t, root);
4466
4467                 spin_lock(&root->fs_info->trans_lock);
4468                 if (t == root->fs_info->running_transaction)
4469                         root->fs_info->running_transaction = NULL;
4470                 list_del_init(&t->list);
4471                 spin_unlock(&root->fs_info->trans_lock);
4472
4473                 btrfs_put_transaction(t);
4474                 trace_btrfs_transaction_commit(root);
4475                 spin_lock(&root->fs_info->trans_lock);
4476         }
4477         spin_unlock(&root->fs_info->trans_lock);
4478         btrfs_destroy_all_ordered_extents(root->fs_info);
4479         btrfs_destroy_delayed_inodes(root);
4480         btrfs_assert_delayed_root_empty(root);
4481         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4482         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4483         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4484
4485         return 0;
4486 }
4487
4488 static const struct extent_io_ops btree_extent_io_ops = {
4489         .readpage_end_io_hook = btree_readpage_end_io_hook,
4490         .readpage_io_failed_hook = btree_io_failed_hook,
4491         .submit_bio_hook = btree_submit_bio_hook,
4492         /* note we're sharing with inode.c for the merge bio hook */
4493         .merge_bio_hook = btrfs_merge_bio_hook,
4494 };