88c3b338508dfa14c872b11b5998fbf6d863eddb
[linux-2.6-block.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19                       *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21                       const struct btrfs_key *ins_key, struct btrfs_path *path,
22                       int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24                           struct extent_buffer *dst,
25                           struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27                               struct extent_buffer *dst_buf,
28                               struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30                     int level, int slot);
31
32 struct btrfs_path *btrfs_alloc_path(void)
33 {
34         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
35 }
36
37 /*
38  * set all locked nodes in the path to blocking locks.  This should
39  * be done before scheduling
40  */
41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42 {
43         int i;
44         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45                 if (!p->nodes[i] || !p->locks[i])
46                         continue;
47                 /*
48                  * If we currently have a spinning reader or writer lock this
49                  * will bump the count of blocking holders and drop the
50                  * spinlock.
51                  */
52                 if (p->locks[i] == BTRFS_READ_LOCK) {
53                         btrfs_set_lock_blocking_read(p->nodes[i]);
54                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
55                 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
56                         btrfs_set_lock_blocking_write(p->nodes[i]);
57                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
58                 }
59         }
60 }
61
62 /* this also releases the path */
63 void btrfs_free_path(struct btrfs_path *p)
64 {
65         if (!p)
66                 return;
67         btrfs_release_path(p);
68         kmem_cache_free(btrfs_path_cachep, p);
69 }
70
71 /*
72  * path release drops references on the extent buffers in the path
73  * and it drops any locks held by this path
74  *
75  * It is safe to call this on paths that no locks or extent buffers held.
76  */
77 noinline void btrfs_release_path(struct btrfs_path *p)
78 {
79         int i;
80
81         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
82                 p->slots[i] = 0;
83                 if (!p->nodes[i])
84                         continue;
85                 if (p->locks[i]) {
86                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
87                         p->locks[i] = 0;
88                 }
89                 free_extent_buffer(p->nodes[i]);
90                 p->nodes[i] = NULL;
91         }
92 }
93
94 /*
95  * safely gets a reference on the root node of a tree.  A lock
96  * is not taken, so a concurrent writer may put a different node
97  * at the root of the tree.  See btrfs_lock_root_node for the
98  * looping required.
99  *
100  * The extent buffer returned by this has a reference taken, so
101  * it won't disappear.  It may stop being the root of the tree
102  * at any time because there are no locks held.
103  */
104 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
105 {
106         struct extent_buffer *eb;
107
108         while (1) {
109                 rcu_read_lock();
110                 eb = rcu_dereference(root->node);
111
112                 /*
113                  * RCU really hurts here, we could free up the root node because
114                  * it was COWed but we may not get the new root node yet so do
115                  * the inc_not_zero dance and if it doesn't work then
116                  * synchronize_rcu and try again.
117                  */
118                 if (atomic_inc_not_zero(&eb->refs)) {
119                         rcu_read_unlock();
120                         break;
121                 }
122                 rcu_read_unlock();
123                 synchronize_rcu();
124         }
125         return eb;
126 }
127
128 /* loop around taking references on and locking the root node of the
129  * tree until you end up with a lock on the root.  A locked buffer
130  * is returned, with a reference held.
131  */
132 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
133 {
134         struct extent_buffer *eb;
135
136         while (1) {
137                 eb = btrfs_root_node(root);
138                 btrfs_tree_lock(eb);
139                 if (eb == root->node)
140                         break;
141                 btrfs_tree_unlock(eb);
142                 free_extent_buffer(eb);
143         }
144         return eb;
145 }
146
147 /* loop around taking references on and locking the root node of the
148  * tree until you end up with a lock on the root.  A locked buffer
149  * is returned, with a reference held.
150  */
151 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
152 {
153         struct extent_buffer *eb;
154
155         while (1) {
156                 eb = btrfs_root_node(root);
157                 btrfs_tree_read_lock(eb);
158                 if (eb == root->node)
159                         break;
160                 btrfs_tree_read_unlock(eb);
161                 free_extent_buffer(eb);
162         }
163         return eb;
164 }
165
166 /* cowonly root (everything not a reference counted cow subvolume), just get
167  * put onto a simple dirty list.  transaction.c walks this to make sure they
168  * get properly updated on disk.
169  */
170 static void add_root_to_dirty_list(struct btrfs_root *root)
171 {
172         struct btrfs_fs_info *fs_info = root->fs_info;
173
174         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
175             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
176                 return;
177
178         spin_lock(&fs_info->trans_lock);
179         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
180                 /* Want the extent tree to be the last on the list */
181                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
182                         list_move_tail(&root->dirty_list,
183                                        &fs_info->dirty_cowonly_roots);
184                 else
185                         list_move(&root->dirty_list,
186                                   &fs_info->dirty_cowonly_roots);
187         }
188         spin_unlock(&fs_info->trans_lock);
189 }
190
191 /*
192  * used by snapshot creation to make a copy of a root for a tree with
193  * a given objectid.  The buffer with the new root node is returned in
194  * cow_ret, and this func returns zero on success or a negative error code.
195  */
196 int btrfs_copy_root(struct btrfs_trans_handle *trans,
197                       struct btrfs_root *root,
198                       struct extent_buffer *buf,
199                       struct extent_buffer **cow_ret, u64 new_root_objectid)
200 {
201         struct btrfs_fs_info *fs_info = root->fs_info;
202         struct extent_buffer *cow;
203         int ret = 0;
204         int level;
205         struct btrfs_disk_key disk_key;
206
207         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
208                 trans->transid != fs_info->running_transaction->transid);
209         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210                 trans->transid != root->last_trans);
211
212         level = btrfs_header_level(buf);
213         if (level == 0)
214                 btrfs_item_key(buf, &disk_key, 0);
215         else
216                 btrfs_node_key(buf, &disk_key, 0);
217
218         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
219                         &disk_key, level, buf->start, 0);
220         if (IS_ERR(cow))
221                 return PTR_ERR(cow);
222
223         copy_extent_buffer_full(cow, buf);
224         btrfs_set_header_bytenr(cow, cow->start);
225         btrfs_set_header_generation(cow, trans->transid);
226         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
227         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
228                                      BTRFS_HEADER_FLAG_RELOC);
229         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
230                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
231         else
232                 btrfs_set_header_owner(cow, new_root_objectid);
233
234         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
235
236         WARN_ON(btrfs_header_generation(buf) > trans->transid);
237         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
238                 ret = btrfs_inc_ref(trans, root, cow, 1);
239         else
240                 ret = btrfs_inc_ref(trans, root, cow, 0);
241
242         if (ret)
243                 return ret;
244
245         btrfs_mark_buffer_dirty(cow);
246         *cow_ret = cow;
247         return 0;
248 }
249
250 enum mod_log_op {
251         MOD_LOG_KEY_REPLACE,
252         MOD_LOG_KEY_ADD,
253         MOD_LOG_KEY_REMOVE,
254         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
255         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
256         MOD_LOG_MOVE_KEYS,
257         MOD_LOG_ROOT_REPLACE,
258 };
259
260 struct tree_mod_root {
261         u64 logical;
262         u8 level;
263 };
264
265 struct tree_mod_elem {
266         struct rb_node node;
267         u64 logical;
268         u64 seq;
269         enum mod_log_op op;
270
271         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
272         int slot;
273
274         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
275         u64 generation;
276
277         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
278         struct btrfs_disk_key key;
279         u64 blockptr;
280
281         /* this is used for op == MOD_LOG_MOVE_KEYS */
282         struct {
283                 int dst_slot;
284                 int nr_items;
285         } move;
286
287         /* this is used for op == MOD_LOG_ROOT_REPLACE */
288         struct tree_mod_root old_root;
289 };
290
291 /*
292  * Pull a new tree mod seq number for our operation.
293  */
294 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
295 {
296         return atomic64_inc_return(&fs_info->tree_mod_seq);
297 }
298
299 /*
300  * This adds a new blocker to the tree mod log's blocker list if the @elem
301  * passed does not already have a sequence number set. So when a caller expects
302  * to record tree modifications, it should ensure to set elem->seq to zero
303  * before calling btrfs_get_tree_mod_seq.
304  * Returns a fresh, unused tree log modification sequence number, even if no new
305  * blocker was added.
306  */
307 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
308                            struct seq_list *elem)
309 {
310         write_lock(&fs_info->tree_mod_log_lock);
311         spin_lock(&fs_info->tree_mod_seq_lock);
312         if (!elem->seq) {
313                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
314                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
315         }
316         spin_unlock(&fs_info->tree_mod_seq_lock);
317         write_unlock(&fs_info->tree_mod_log_lock);
318
319         return elem->seq;
320 }
321
322 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
323                             struct seq_list *elem)
324 {
325         struct rb_root *tm_root;
326         struct rb_node *node;
327         struct rb_node *next;
328         struct seq_list *cur_elem;
329         struct tree_mod_elem *tm;
330         u64 min_seq = (u64)-1;
331         u64 seq_putting = elem->seq;
332
333         if (!seq_putting)
334                 return;
335
336         spin_lock(&fs_info->tree_mod_seq_lock);
337         list_del(&elem->list);
338         elem->seq = 0;
339
340         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
341                 if (cur_elem->seq < min_seq) {
342                         if (seq_putting > cur_elem->seq) {
343                                 /*
344                                  * blocker with lower sequence number exists, we
345                                  * cannot remove anything from the log
346                                  */
347                                 spin_unlock(&fs_info->tree_mod_seq_lock);
348                                 return;
349                         }
350                         min_seq = cur_elem->seq;
351                 }
352         }
353         spin_unlock(&fs_info->tree_mod_seq_lock);
354
355         /*
356          * anything that's lower than the lowest existing (read: blocked)
357          * sequence number can be removed from the tree.
358          */
359         write_lock(&fs_info->tree_mod_log_lock);
360         tm_root = &fs_info->tree_mod_log;
361         for (node = rb_first(tm_root); node; node = next) {
362                 next = rb_next(node);
363                 tm = rb_entry(node, struct tree_mod_elem, node);
364                 if (tm->seq > min_seq)
365                         continue;
366                 rb_erase(node, tm_root);
367                 kfree(tm);
368         }
369         write_unlock(&fs_info->tree_mod_log_lock);
370 }
371
372 /*
373  * key order of the log:
374  *       node/leaf start address -> sequence
375  *
376  * The 'start address' is the logical address of the *new* root node
377  * for root replace operations, or the logical address of the affected
378  * block for all other operations.
379  */
380 static noinline int
381 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
382 {
383         struct rb_root *tm_root;
384         struct rb_node **new;
385         struct rb_node *parent = NULL;
386         struct tree_mod_elem *cur;
387
388         lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
389
390         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
391
392         tm_root = &fs_info->tree_mod_log;
393         new = &tm_root->rb_node;
394         while (*new) {
395                 cur = rb_entry(*new, struct tree_mod_elem, node);
396                 parent = *new;
397                 if (cur->logical < tm->logical)
398                         new = &((*new)->rb_left);
399                 else if (cur->logical > tm->logical)
400                         new = &((*new)->rb_right);
401                 else if (cur->seq < tm->seq)
402                         new = &((*new)->rb_left);
403                 else if (cur->seq > tm->seq)
404                         new = &((*new)->rb_right);
405                 else
406                         return -EEXIST;
407         }
408
409         rb_link_node(&tm->node, parent, new);
410         rb_insert_color(&tm->node, tm_root);
411         return 0;
412 }
413
414 /*
415  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
416  * returns zero with the tree_mod_log_lock acquired. The caller must hold
417  * this until all tree mod log insertions are recorded in the rb tree and then
418  * write unlock fs_info::tree_mod_log_lock.
419  */
420 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
421                                     struct extent_buffer *eb) {
422         smp_mb();
423         if (list_empty(&(fs_info)->tree_mod_seq_list))
424                 return 1;
425         if (eb && btrfs_header_level(eb) == 0)
426                 return 1;
427
428         write_lock(&fs_info->tree_mod_log_lock);
429         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
430                 write_unlock(&fs_info->tree_mod_log_lock);
431                 return 1;
432         }
433
434         return 0;
435 }
436
437 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
438 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
439                                     struct extent_buffer *eb)
440 {
441         smp_mb();
442         if (list_empty(&(fs_info)->tree_mod_seq_list))
443                 return 0;
444         if (eb && btrfs_header_level(eb) == 0)
445                 return 0;
446
447         return 1;
448 }
449
450 static struct tree_mod_elem *
451 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
452                     enum mod_log_op op, gfp_t flags)
453 {
454         struct tree_mod_elem *tm;
455
456         tm = kzalloc(sizeof(*tm), flags);
457         if (!tm)
458                 return NULL;
459
460         tm->logical = eb->start;
461         if (op != MOD_LOG_KEY_ADD) {
462                 btrfs_node_key(eb, &tm->key, slot);
463                 tm->blockptr = btrfs_node_blockptr(eb, slot);
464         }
465         tm->op = op;
466         tm->slot = slot;
467         tm->generation = btrfs_node_ptr_generation(eb, slot);
468         RB_CLEAR_NODE(&tm->node);
469
470         return tm;
471 }
472
473 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
474                 enum mod_log_op op, gfp_t flags)
475 {
476         struct tree_mod_elem *tm;
477         int ret;
478
479         if (!tree_mod_need_log(eb->fs_info, eb))
480                 return 0;
481
482         tm = alloc_tree_mod_elem(eb, slot, op, flags);
483         if (!tm)
484                 return -ENOMEM;
485
486         if (tree_mod_dont_log(eb->fs_info, eb)) {
487                 kfree(tm);
488                 return 0;
489         }
490
491         ret = __tree_mod_log_insert(eb->fs_info, tm);
492         write_unlock(&eb->fs_info->tree_mod_log_lock);
493         if (ret)
494                 kfree(tm);
495
496         return ret;
497 }
498
499 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
500                 int dst_slot, int src_slot, int nr_items)
501 {
502         struct tree_mod_elem *tm = NULL;
503         struct tree_mod_elem **tm_list = NULL;
504         int ret = 0;
505         int i;
506         int locked = 0;
507
508         if (!tree_mod_need_log(eb->fs_info, eb))
509                 return 0;
510
511         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
512         if (!tm_list)
513                 return -ENOMEM;
514
515         tm = kzalloc(sizeof(*tm), GFP_NOFS);
516         if (!tm) {
517                 ret = -ENOMEM;
518                 goto free_tms;
519         }
520
521         tm->logical = eb->start;
522         tm->slot = src_slot;
523         tm->move.dst_slot = dst_slot;
524         tm->move.nr_items = nr_items;
525         tm->op = MOD_LOG_MOVE_KEYS;
526
527         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
528                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
529                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
530                 if (!tm_list[i]) {
531                         ret = -ENOMEM;
532                         goto free_tms;
533                 }
534         }
535
536         if (tree_mod_dont_log(eb->fs_info, eb))
537                 goto free_tms;
538         locked = 1;
539
540         /*
541          * When we override something during the move, we log these removals.
542          * This can only happen when we move towards the beginning of the
543          * buffer, i.e. dst_slot < src_slot.
544          */
545         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
546                 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
547                 if (ret)
548                         goto free_tms;
549         }
550
551         ret = __tree_mod_log_insert(eb->fs_info, tm);
552         if (ret)
553                 goto free_tms;
554         write_unlock(&eb->fs_info->tree_mod_log_lock);
555         kfree(tm_list);
556
557         return 0;
558 free_tms:
559         for (i = 0; i < nr_items; i++) {
560                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
561                         rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
562                 kfree(tm_list[i]);
563         }
564         if (locked)
565                 write_unlock(&eb->fs_info->tree_mod_log_lock);
566         kfree(tm_list);
567         kfree(tm);
568
569         return ret;
570 }
571
572 static inline int
573 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
574                        struct tree_mod_elem **tm_list,
575                        int nritems)
576 {
577         int i, j;
578         int ret;
579
580         for (i = nritems - 1; i >= 0; i--) {
581                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
582                 if (ret) {
583                         for (j = nritems - 1; j > i; j--)
584                                 rb_erase(&tm_list[j]->node,
585                                          &fs_info->tree_mod_log);
586                         return ret;
587                 }
588         }
589
590         return 0;
591 }
592
593 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
594                          struct extent_buffer *new_root, int log_removal)
595 {
596         struct btrfs_fs_info *fs_info = old_root->fs_info;
597         struct tree_mod_elem *tm = NULL;
598         struct tree_mod_elem **tm_list = NULL;
599         int nritems = 0;
600         int ret = 0;
601         int i;
602
603         if (!tree_mod_need_log(fs_info, NULL))
604                 return 0;
605
606         if (log_removal && btrfs_header_level(old_root) > 0) {
607                 nritems = btrfs_header_nritems(old_root);
608                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
609                                   GFP_NOFS);
610                 if (!tm_list) {
611                         ret = -ENOMEM;
612                         goto free_tms;
613                 }
614                 for (i = 0; i < nritems; i++) {
615                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
616                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
617                         if (!tm_list[i]) {
618                                 ret = -ENOMEM;
619                                 goto free_tms;
620                         }
621                 }
622         }
623
624         tm = kzalloc(sizeof(*tm), GFP_NOFS);
625         if (!tm) {
626                 ret = -ENOMEM;
627                 goto free_tms;
628         }
629
630         tm->logical = new_root->start;
631         tm->old_root.logical = old_root->start;
632         tm->old_root.level = btrfs_header_level(old_root);
633         tm->generation = btrfs_header_generation(old_root);
634         tm->op = MOD_LOG_ROOT_REPLACE;
635
636         if (tree_mod_dont_log(fs_info, NULL))
637                 goto free_tms;
638
639         if (tm_list)
640                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
641         if (!ret)
642                 ret = __tree_mod_log_insert(fs_info, tm);
643
644         write_unlock(&fs_info->tree_mod_log_lock);
645         if (ret)
646                 goto free_tms;
647         kfree(tm_list);
648
649         return ret;
650
651 free_tms:
652         if (tm_list) {
653                 for (i = 0; i < nritems; i++)
654                         kfree(tm_list[i]);
655                 kfree(tm_list);
656         }
657         kfree(tm);
658
659         return ret;
660 }
661
662 static struct tree_mod_elem *
663 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
664                       int smallest)
665 {
666         struct rb_root *tm_root;
667         struct rb_node *node;
668         struct tree_mod_elem *cur = NULL;
669         struct tree_mod_elem *found = NULL;
670
671         read_lock(&fs_info->tree_mod_log_lock);
672         tm_root = &fs_info->tree_mod_log;
673         node = tm_root->rb_node;
674         while (node) {
675                 cur = rb_entry(node, struct tree_mod_elem, node);
676                 if (cur->logical < start) {
677                         node = node->rb_left;
678                 } else if (cur->logical > start) {
679                         node = node->rb_right;
680                 } else if (cur->seq < min_seq) {
681                         node = node->rb_left;
682                 } else if (!smallest) {
683                         /* we want the node with the highest seq */
684                         if (found)
685                                 BUG_ON(found->seq > cur->seq);
686                         found = cur;
687                         node = node->rb_left;
688                 } else if (cur->seq > min_seq) {
689                         /* we want the node with the smallest seq */
690                         if (found)
691                                 BUG_ON(found->seq < cur->seq);
692                         found = cur;
693                         node = node->rb_right;
694                 } else {
695                         found = cur;
696                         break;
697                 }
698         }
699         read_unlock(&fs_info->tree_mod_log_lock);
700
701         return found;
702 }
703
704 /*
705  * this returns the element from the log with the smallest time sequence
706  * value that's in the log (the oldest log item). any element with a time
707  * sequence lower than min_seq will be ignored.
708  */
709 static struct tree_mod_elem *
710 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
711                            u64 min_seq)
712 {
713         return __tree_mod_log_search(fs_info, start, min_seq, 1);
714 }
715
716 /*
717  * this returns the element from the log with the largest time sequence
718  * value that's in the log (the most recent log item). any element with
719  * a time sequence lower than min_seq will be ignored.
720  */
721 static struct tree_mod_elem *
722 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
723 {
724         return __tree_mod_log_search(fs_info, start, min_seq, 0);
725 }
726
727 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
728                      struct extent_buffer *src, unsigned long dst_offset,
729                      unsigned long src_offset, int nr_items)
730 {
731         struct btrfs_fs_info *fs_info = dst->fs_info;
732         int ret = 0;
733         struct tree_mod_elem **tm_list = NULL;
734         struct tree_mod_elem **tm_list_add, **tm_list_rem;
735         int i;
736         int locked = 0;
737
738         if (!tree_mod_need_log(fs_info, NULL))
739                 return 0;
740
741         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
742                 return 0;
743
744         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
745                           GFP_NOFS);
746         if (!tm_list)
747                 return -ENOMEM;
748
749         tm_list_add = tm_list;
750         tm_list_rem = tm_list + nr_items;
751         for (i = 0; i < nr_items; i++) {
752                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
753                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
754                 if (!tm_list_rem[i]) {
755                         ret = -ENOMEM;
756                         goto free_tms;
757                 }
758
759                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
760                     MOD_LOG_KEY_ADD, GFP_NOFS);
761                 if (!tm_list_add[i]) {
762                         ret = -ENOMEM;
763                         goto free_tms;
764                 }
765         }
766
767         if (tree_mod_dont_log(fs_info, NULL))
768                 goto free_tms;
769         locked = 1;
770
771         for (i = 0; i < nr_items; i++) {
772                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
773                 if (ret)
774                         goto free_tms;
775                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
776                 if (ret)
777                         goto free_tms;
778         }
779
780         write_unlock(&fs_info->tree_mod_log_lock);
781         kfree(tm_list);
782
783         return 0;
784
785 free_tms:
786         for (i = 0; i < nr_items * 2; i++) {
787                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
788                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
789                 kfree(tm_list[i]);
790         }
791         if (locked)
792                 write_unlock(&fs_info->tree_mod_log_lock);
793         kfree(tm_list);
794
795         return ret;
796 }
797
798 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
799 {
800         struct tree_mod_elem **tm_list = NULL;
801         int nritems = 0;
802         int i;
803         int ret = 0;
804
805         if (btrfs_header_level(eb) == 0)
806                 return 0;
807
808         if (!tree_mod_need_log(eb->fs_info, NULL))
809                 return 0;
810
811         nritems = btrfs_header_nritems(eb);
812         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
813         if (!tm_list)
814                 return -ENOMEM;
815
816         for (i = 0; i < nritems; i++) {
817                 tm_list[i] = alloc_tree_mod_elem(eb, i,
818                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
819                 if (!tm_list[i]) {
820                         ret = -ENOMEM;
821                         goto free_tms;
822                 }
823         }
824
825         if (tree_mod_dont_log(eb->fs_info, eb))
826                 goto free_tms;
827
828         ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
829         write_unlock(&eb->fs_info->tree_mod_log_lock);
830         if (ret)
831                 goto free_tms;
832         kfree(tm_list);
833
834         return 0;
835
836 free_tms:
837         for (i = 0; i < nritems; i++)
838                 kfree(tm_list[i]);
839         kfree(tm_list);
840
841         return ret;
842 }
843
844 /*
845  * check if the tree block can be shared by multiple trees
846  */
847 int btrfs_block_can_be_shared(struct btrfs_root *root,
848                               struct extent_buffer *buf)
849 {
850         /*
851          * Tree blocks not in reference counted trees and tree roots
852          * are never shared. If a block was allocated after the last
853          * snapshot and the block was not allocated by tree relocation,
854          * we know the block is not shared.
855          */
856         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
857             buf != root->node && buf != root->commit_root &&
858             (btrfs_header_generation(buf) <=
859              btrfs_root_last_snapshot(&root->root_item) ||
860              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
861                 return 1;
862
863         return 0;
864 }
865
866 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
867                                        struct btrfs_root *root,
868                                        struct extent_buffer *buf,
869                                        struct extent_buffer *cow,
870                                        int *last_ref)
871 {
872         struct btrfs_fs_info *fs_info = root->fs_info;
873         u64 refs;
874         u64 owner;
875         u64 flags;
876         u64 new_flags = 0;
877         int ret;
878
879         /*
880          * Backrefs update rules:
881          *
882          * Always use full backrefs for extent pointers in tree block
883          * allocated by tree relocation.
884          *
885          * If a shared tree block is no longer referenced by its owner
886          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
887          * use full backrefs for extent pointers in tree block.
888          *
889          * If a tree block is been relocating
890          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
891          * use full backrefs for extent pointers in tree block.
892          * The reason for this is some operations (such as drop tree)
893          * are only allowed for blocks use full backrefs.
894          */
895
896         if (btrfs_block_can_be_shared(root, buf)) {
897                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
898                                                btrfs_header_level(buf), 1,
899                                                &refs, &flags);
900                 if (ret)
901                         return ret;
902                 if (refs == 0) {
903                         ret = -EROFS;
904                         btrfs_handle_fs_error(fs_info, ret, NULL);
905                         return ret;
906                 }
907         } else {
908                 refs = 1;
909                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
910                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
911                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
912                 else
913                         flags = 0;
914         }
915
916         owner = btrfs_header_owner(buf);
917         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
918                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
919
920         if (refs > 1) {
921                 if ((owner == root->root_key.objectid ||
922                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
923                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
924                         ret = btrfs_inc_ref(trans, root, buf, 1);
925                         if (ret)
926                                 return ret;
927
928                         if (root->root_key.objectid ==
929                             BTRFS_TREE_RELOC_OBJECTID) {
930                                 ret = btrfs_dec_ref(trans, root, buf, 0);
931                                 if (ret)
932                                         return ret;
933                                 ret = btrfs_inc_ref(trans, root, cow, 1);
934                                 if (ret)
935                                         return ret;
936                         }
937                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
938                 } else {
939
940                         if (root->root_key.objectid ==
941                             BTRFS_TREE_RELOC_OBJECTID)
942                                 ret = btrfs_inc_ref(trans, root, cow, 1);
943                         else
944                                 ret = btrfs_inc_ref(trans, root, cow, 0);
945                         if (ret)
946                                 return ret;
947                 }
948                 if (new_flags != 0) {
949                         int level = btrfs_header_level(buf);
950
951                         ret = btrfs_set_disk_extent_flags(trans,
952                                                           buf->start,
953                                                           buf->len,
954                                                           new_flags, level, 0);
955                         if (ret)
956                                 return ret;
957                 }
958         } else {
959                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
960                         if (root->root_key.objectid ==
961                             BTRFS_TREE_RELOC_OBJECTID)
962                                 ret = btrfs_inc_ref(trans, root, cow, 1);
963                         else
964                                 ret = btrfs_inc_ref(trans, root, cow, 0);
965                         if (ret)
966                                 return ret;
967                         ret = btrfs_dec_ref(trans, root, buf, 1);
968                         if (ret)
969                                 return ret;
970                 }
971                 btrfs_clean_tree_block(buf);
972                 *last_ref = 1;
973         }
974         return 0;
975 }
976
977 static struct extent_buffer *alloc_tree_block_no_bg_flush(
978                                           struct btrfs_trans_handle *trans,
979                                           struct btrfs_root *root,
980                                           u64 parent_start,
981                                           const struct btrfs_disk_key *disk_key,
982                                           int level,
983                                           u64 hint,
984                                           u64 empty_size)
985 {
986         struct btrfs_fs_info *fs_info = root->fs_info;
987         struct extent_buffer *ret;
988
989         /*
990          * If we are COWing a node/leaf from the extent, chunk, device or free
991          * space trees, make sure that we do not finish block group creation of
992          * pending block groups. We do this to avoid a deadlock.
993          * COWing can result in allocation of a new chunk, and flushing pending
994          * block groups (btrfs_create_pending_block_groups()) can be triggered
995          * when finishing allocation of a new chunk. Creation of a pending block
996          * group modifies the extent, chunk, device and free space trees,
997          * therefore we could deadlock with ourselves since we are holding a
998          * lock on an extent buffer that btrfs_create_pending_block_groups() may
999          * try to COW later.
1000          * For similar reasons, we also need to delay flushing pending block
1001          * groups when splitting a leaf or node, from one of those trees, since
1002          * we are holding a write lock on it and its parent or when inserting a
1003          * new root node for one of those trees.
1004          */
1005         if (root == fs_info->extent_root ||
1006             root == fs_info->chunk_root ||
1007             root == fs_info->dev_root ||
1008             root == fs_info->free_space_root)
1009                 trans->can_flush_pending_bgs = false;
1010
1011         ret = btrfs_alloc_tree_block(trans, root, parent_start,
1012                                      root->root_key.objectid, disk_key, level,
1013                                      hint, empty_size);
1014         trans->can_flush_pending_bgs = true;
1015
1016         return ret;
1017 }
1018
1019 /*
1020  * does the dirty work in cow of a single block.  The parent block (if
1021  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1022  * dirty and returned locked.  If you modify the block it needs to be marked
1023  * dirty again.
1024  *
1025  * search_start -- an allocation hint for the new block
1026  *
1027  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1028  * bytes the allocator should try to find free next to the block it returns.
1029  * This is just a hint and may be ignored by the allocator.
1030  */
1031 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1032                              struct btrfs_root *root,
1033                              struct extent_buffer *buf,
1034                              struct extent_buffer *parent, int parent_slot,
1035                              struct extent_buffer **cow_ret,
1036                              u64 search_start, u64 empty_size)
1037 {
1038         struct btrfs_fs_info *fs_info = root->fs_info;
1039         struct btrfs_disk_key disk_key;
1040         struct extent_buffer *cow;
1041         int level, ret;
1042         int last_ref = 0;
1043         int unlock_orig = 0;
1044         u64 parent_start = 0;
1045
1046         if (*cow_ret == buf)
1047                 unlock_orig = 1;
1048
1049         btrfs_assert_tree_locked(buf);
1050
1051         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1052                 trans->transid != fs_info->running_transaction->transid);
1053         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054                 trans->transid != root->last_trans);
1055
1056         level = btrfs_header_level(buf);
1057
1058         if (level == 0)
1059                 btrfs_item_key(buf, &disk_key, 0);
1060         else
1061                 btrfs_node_key(buf, &disk_key, 0);
1062
1063         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1064                 parent_start = parent->start;
1065
1066         cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1067                                            level, search_start, empty_size);
1068         if (IS_ERR(cow))
1069                 return PTR_ERR(cow);
1070
1071         /* cow is set to blocking by btrfs_init_new_buffer */
1072
1073         copy_extent_buffer_full(cow, buf);
1074         btrfs_set_header_bytenr(cow, cow->start);
1075         btrfs_set_header_generation(cow, trans->transid);
1076         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1077         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1078                                      BTRFS_HEADER_FLAG_RELOC);
1079         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1081         else
1082                 btrfs_set_header_owner(cow, root->root_key.objectid);
1083
1084         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1085
1086         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1087         if (ret) {
1088                 btrfs_abort_transaction(trans, ret);
1089                 return ret;
1090         }
1091
1092         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1093                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1094                 if (ret) {
1095                         btrfs_abort_transaction(trans, ret);
1096                         return ret;
1097                 }
1098         }
1099
1100         if (buf == root->node) {
1101                 WARN_ON(parent && parent != buf);
1102                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1103                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1104                         parent_start = buf->start;
1105
1106                 extent_buffer_get(cow);
1107                 ret = tree_mod_log_insert_root(root->node, cow, 1);
1108                 BUG_ON(ret < 0);
1109                 rcu_assign_pointer(root->node, cow);
1110
1111                 btrfs_free_tree_block(trans, root, buf, parent_start,
1112                                       last_ref);
1113                 free_extent_buffer(buf);
1114                 add_root_to_dirty_list(root);
1115         } else {
1116                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1117                 tree_mod_log_insert_key(parent, parent_slot,
1118                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1119                 btrfs_set_node_blockptr(parent, parent_slot,
1120                                         cow->start);
1121                 btrfs_set_node_ptr_generation(parent, parent_slot,
1122                                               trans->transid);
1123                 btrfs_mark_buffer_dirty(parent);
1124                 if (last_ref) {
1125                         ret = tree_mod_log_free_eb(buf);
1126                         if (ret) {
1127                                 btrfs_abort_transaction(trans, ret);
1128                                 return ret;
1129                         }
1130                 }
1131                 btrfs_free_tree_block(trans, root, buf, parent_start,
1132                                       last_ref);
1133         }
1134         if (unlock_orig)
1135                 btrfs_tree_unlock(buf);
1136         free_extent_buffer_stale(buf);
1137         btrfs_mark_buffer_dirty(cow);
1138         *cow_ret = cow;
1139         return 0;
1140 }
1141
1142 /*
1143  * returns the logical address of the oldest predecessor of the given root.
1144  * entries older than time_seq are ignored.
1145  */
1146 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1147                 struct extent_buffer *eb_root, u64 time_seq)
1148 {
1149         struct tree_mod_elem *tm;
1150         struct tree_mod_elem *found = NULL;
1151         u64 root_logical = eb_root->start;
1152         int looped = 0;
1153
1154         if (!time_seq)
1155                 return NULL;
1156
1157         /*
1158          * the very last operation that's logged for a root is the
1159          * replacement operation (if it is replaced at all). this has
1160          * the logical address of the *new* root, making it the very
1161          * first operation that's logged for this root.
1162          */
1163         while (1) {
1164                 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1165                                                 time_seq);
1166                 if (!looped && !tm)
1167                         return NULL;
1168                 /*
1169                  * if there are no tree operation for the oldest root, we simply
1170                  * return it. this should only happen if that (old) root is at
1171                  * level 0.
1172                  */
1173                 if (!tm)
1174                         break;
1175
1176                 /*
1177                  * if there's an operation that's not a root replacement, we
1178                  * found the oldest version of our root. normally, we'll find a
1179                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1180                  */
1181                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1182                         break;
1183
1184                 found = tm;
1185                 root_logical = tm->old_root.logical;
1186                 looped = 1;
1187         }
1188
1189         /* if there's no old root to return, return what we found instead */
1190         if (!found)
1191                 found = tm;
1192
1193         return found;
1194 }
1195
1196 /*
1197  * tm is a pointer to the first operation to rewind within eb. then, all
1198  * previous operations will be rewound (until we reach something older than
1199  * time_seq).
1200  */
1201 static void
1202 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1203                       u64 time_seq, struct tree_mod_elem *first_tm)
1204 {
1205         u32 n;
1206         struct rb_node *next;
1207         struct tree_mod_elem *tm = first_tm;
1208         unsigned long o_dst;
1209         unsigned long o_src;
1210         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1211
1212         n = btrfs_header_nritems(eb);
1213         read_lock(&fs_info->tree_mod_log_lock);
1214         while (tm && tm->seq >= time_seq) {
1215                 /*
1216                  * all the operations are recorded with the operator used for
1217                  * the modification. as we're going backwards, we do the
1218                  * opposite of each operation here.
1219                  */
1220                 switch (tm->op) {
1221                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1222                         BUG_ON(tm->slot < n);
1223                         /* Fallthrough */
1224                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1225                 case MOD_LOG_KEY_REMOVE:
1226                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1227                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228                         btrfs_set_node_ptr_generation(eb, tm->slot,
1229                                                       tm->generation);
1230                         n++;
1231                         break;
1232                 case MOD_LOG_KEY_REPLACE:
1233                         BUG_ON(tm->slot >= n);
1234                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1235                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1236                         btrfs_set_node_ptr_generation(eb, tm->slot,
1237                                                       tm->generation);
1238                         break;
1239                 case MOD_LOG_KEY_ADD:
1240                         /* if a move operation is needed it's in the log */
1241                         n--;
1242                         break;
1243                 case MOD_LOG_MOVE_KEYS:
1244                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1245                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1246                         memmove_extent_buffer(eb, o_dst, o_src,
1247                                               tm->move.nr_items * p_size);
1248                         break;
1249                 case MOD_LOG_ROOT_REPLACE:
1250                         /*
1251                          * this operation is special. for roots, this must be
1252                          * handled explicitly before rewinding.
1253                          * for non-roots, this operation may exist if the node
1254                          * was a root: root A -> child B; then A gets empty and
1255                          * B is promoted to the new root. in the mod log, we'll
1256                          * have a root-replace operation for B, a tree block
1257                          * that is no root. we simply ignore that operation.
1258                          */
1259                         break;
1260                 }
1261                 next = rb_next(&tm->node);
1262                 if (!next)
1263                         break;
1264                 tm = rb_entry(next, struct tree_mod_elem, node);
1265                 if (tm->logical != first_tm->logical)
1266                         break;
1267         }
1268         read_unlock(&fs_info->tree_mod_log_lock);
1269         btrfs_set_header_nritems(eb, n);
1270 }
1271
1272 /*
1273  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1274  * is returned. If rewind operations happen, a fresh buffer is returned. The
1275  * returned buffer is always read-locked. If the returned buffer is not the
1276  * input buffer, the lock on the input buffer is released and the input buffer
1277  * is freed (its refcount is decremented).
1278  */
1279 static struct extent_buffer *
1280 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1281                     struct extent_buffer *eb, u64 time_seq)
1282 {
1283         struct extent_buffer *eb_rewin;
1284         struct tree_mod_elem *tm;
1285
1286         if (!time_seq)
1287                 return eb;
1288
1289         if (btrfs_header_level(eb) == 0)
1290                 return eb;
1291
1292         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1293         if (!tm)
1294                 return eb;
1295
1296         btrfs_set_path_blocking(path);
1297         btrfs_set_lock_blocking_read(eb);
1298
1299         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1300                 BUG_ON(tm->slot != 0);
1301                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1302                 if (!eb_rewin) {
1303                         btrfs_tree_read_unlock_blocking(eb);
1304                         free_extent_buffer(eb);
1305                         return NULL;
1306                 }
1307                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1308                 btrfs_set_header_backref_rev(eb_rewin,
1309                                              btrfs_header_backref_rev(eb));
1310                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1311                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1312         } else {
1313                 eb_rewin = btrfs_clone_extent_buffer(eb);
1314                 if (!eb_rewin) {
1315                         btrfs_tree_read_unlock_blocking(eb);
1316                         free_extent_buffer(eb);
1317                         return NULL;
1318                 }
1319         }
1320
1321         btrfs_tree_read_unlock_blocking(eb);
1322         free_extent_buffer(eb);
1323
1324         btrfs_tree_read_lock(eb_rewin);
1325         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1326         WARN_ON(btrfs_header_nritems(eb_rewin) >
1327                 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1328
1329         return eb_rewin;
1330 }
1331
1332 /*
1333  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1334  * value. If there are no changes, the current root->root_node is returned. If
1335  * anything changed in between, there's a fresh buffer allocated on which the
1336  * rewind operations are done. In any case, the returned buffer is read locked.
1337  * Returns NULL on error (with no locks held).
1338  */
1339 static inline struct extent_buffer *
1340 get_old_root(struct btrfs_root *root, u64 time_seq)
1341 {
1342         struct btrfs_fs_info *fs_info = root->fs_info;
1343         struct tree_mod_elem *tm;
1344         struct extent_buffer *eb = NULL;
1345         struct extent_buffer *eb_root;
1346         u64 eb_root_owner = 0;
1347         struct extent_buffer *old;
1348         struct tree_mod_root *old_root = NULL;
1349         u64 old_generation = 0;
1350         u64 logical;
1351         int level;
1352
1353         eb_root = btrfs_read_lock_root_node(root);
1354         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1355         if (!tm)
1356                 return eb_root;
1357
1358         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1359                 old_root = &tm->old_root;
1360                 old_generation = tm->generation;
1361                 logical = old_root->logical;
1362                 level = old_root->level;
1363         } else {
1364                 logical = eb_root->start;
1365                 level = btrfs_header_level(eb_root);
1366         }
1367
1368         tm = tree_mod_log_search(fs_info, logical, time_seq);
1369         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1370                 btrfs_tree_read_unlock(eb_root);
1371                 free_extent_buffer(eb_root);
1372                 old = read_tree_block(fs_info, logical, 0, level, NULL);
1373                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1374                         if (!IS_ERR(old))
1375                                 free_extent_buffer(old);
1376                         btrfs_warn(fs_info,
1377                                    "failed to read tree block %llu from get_old_root",
1378                                    logical);
1379                 } else {
1380                         eb = btrfs_clone_extent_buffer(old);
1381                         free_extent_buffer(old);
1382                 }
1383         } else if (old_root) {
1384                 eb_root_owner = btrfs_header_owner(eb_root);
1385                 btrfs_tree_read_unlock(eb_root);
1386                 free_extent_buffer(eb_root);
1387                 eb = alloc_dummy_extent_buffer(fs_info, logical);
1388         } else {
1389                 btrfs_set_lock_blocking_read(eb_root);
1390                 eb = btrfs_clone_extent_buffer(eb_root);
1391                 btrfs_tree_read_unlock_blocking(eb_root);
1392                 free_extent_buffer(eb_root);
1393         }
1394
1395         if (!eb)
1396                 return NULL;
1397         btrfs_tree_read_lock(eb);
1398         if (old_root) {
1399                 btrfs_set_header_bytenr(eb, eb->start);
1400                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1401                 btrfs_set_header_owner(eb, eb_root_owner);
1402                 btrfs_set_header_level(eb, old_root->level);
1403                 btrfs_set_header_generation(eb, old_generation);
1404         }
1405         if (tm)
1406                 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1407         else
1408                 WARN_ON(btrfs_header_level(eb) != 0);
1409         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1410
1411         return eb;
1412 }
1413
1414 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1415 {
1416         struct tree_mod_elem *tm;
1417         int level;
1418         struct extent_buffer *eb_root = btrfs_root_node(root);
1419
1420         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1421         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1422                 level = tm->old_root.level;
1423         } else {
1424                 level = btrfs_header_level(eb_root);
1425         }
1426         free_extent_buffer(eb_root);
1427
1428         return level;
1429 }
1430
1431 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1432                                    struct btrfs_root *root,
1433                                    struct extent_buffer *buf)
1434 {
1435         if (btrfs_is_testing(root->fs_info))
1436                 return 0;
1437
1438         /* Ensure we can see the FORCE_COW bit */
1439         smp_mb__before_atomic();
1440
1441         /*
1442          * We do not need to cow a block if
1443          * 1) this block is not created or changed in this transaction;
1444          * 2) this block does not belong to TREE_RELOC tree;
1445          * 3) the root is not forced COW.
1446          *
1447          * What is forced COW:
1448          *    when we create snapshot during committing the transaction,
1449          *    after we've finished copying src root, we must COW the shared
1450          *    block to ensure the metadata consistency.
1451          */
1452         if (btrfs_header_generation(buf) == trans->transid &&
1453             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1454             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1455               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1456             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1457                 return 0;
1458         return 1;
1459 }
1460
1461 /*
1462  * cows a single block, see __btrfs_cow_block for the real work.
1463  * This version of it has extra checks so that a block isn't COWed more than
1464  * once per transaction, as long as it hasn't been written yet
1465  */
1466 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1467                     struct btrfs_root *root, struct extent_buffer *buf,
1468                     struct extent_buffer *parent, int parent_slot,
1469                     struct extent_buffer **cow_ret)
1470 {
1471         struct btrfs_fs_info *fs_info = root->fs_info;
1472         u64 search_start;
1473         int ret;
1474
1475         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1476                 btrfs_err(fs_info,
1477                         "COW'ing blocks on a fs root that's being dropped");
1478
1479         if (trans->transaction != fs_info->running_transaction)
1480                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1481                        trans->transid,
1482                        fs_info->running_transaction->transid);
1483
1484         if (trans->transid != fs_info->generation)
1485                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1486                        trans->transid, fs_info->generation);
1487
1488         if (!should_cow_block(trans, root, buf)) {
1489                 trans->dirty = true;
1490                 *cow_ret = buf;
1491                 return 0;
1492         }
1493
1494         search_start = buf->start & ~((u64)SZ_1G - 1);
1495
1496         if (parent)
1497                 btrfs_set_lock_blocking_write(parent);
1498         btrfs_set_lock_blocking_write(buf);
1499
1500         /*
1501          * Before CoWing this block for later modification, check if it's
1502          * the subtree root and do the delayed subtree trace if needed.
1503          *
1504          * Also We don't care about the error, as it's handled internally.
1505          */
1506         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1507         ret = __btrfs_cow_block(trans, root, buf, parent,
1508                                  parent_slot, cow_ret, search_start, 0);
1509
1510         trace_btrfs_cow_block(root, buf, *cow_ret);
1511
1512         return ret;
1513 }
1514
1515 /*
1516  * helper function for defrag to decide if two blocks pointed to by a
1517  * node are actually close by
1518  */
1519 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1520 {
1521         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1522                 return 1;
1523         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1524                 return 1;
1525         return 0;
1526 }
1527
1528 /*
1529  * compare two keys in a memcmp fashion
1530  */
1531 static int comp_keys(const struct btrfs_disk_key *disk,
1532                      const struct btrfs_key *k2)
1533 {
1534         struct btrfs_key k1;
1535
1536         btrfs_disk_key_to_cpu(&k1, disk);
1537
1538         return btrfs_comp_cpu_keys(&k1, k2);
1539 }
1540
1541 /*
1542  * same as comp_keys only with two btrfs_key's
1543  */
1544 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1545 {
1546         if (k1->objectid > k2->objectid)
1547                 return 1;
1548         if (k1->objectid < k2->objectid)
1549                 return -1;
1550         if (k1->type > k2->type)
1551                 return 1;
1552         if (k1->type < k2->type)
1553                 return -1;
1554         if (k1->offset > k2->offset)
1555                 return 1;
1556         if (k1->offset < k2->offset)
1557                 return -1;
1558         return 0;
1559 }
1560
1561 /*
1562  * this is used by the defrag code to go through all the
1563  * leaves pointed to by a node and reallocate them so that
1564  * disk order is close to key order
1565  */
1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567                        struct btrfs_root *root, struct extent_buffer *parent,
1568                        int start_slot, u64 *last_ret,
1569                        struct btrfs_key *progress)
1570 {
1571         struct btrfs_fs_info *fs_info = root->fs_info;
1572         struct extent_buffer *cur;
1573         u64 blocknr;
1574         u64 gen;
1575         u64 search_start = *last_ret;
1576         u64 last_block = 0;
1577         u64 other;
1578         u32 parent_nritems;
1579         int end_slot;
1580         int i;
1581         int err = 0;
1582         int parent_level;
1583         int uptodate;
1584         u32 blocksize;
1585         int progress_passed = 0;
1586         struct btrfs_disk_key disk_key;
1587
1588         parent_level = btrfs_header_level(parent);
1589
1590         WARN_ON(trans->transaction != fs_info->running_transaction);
1591         WARN_ON(trans->transid != fs_info->generation);
1592
1593         parent_nritems = btrfs_header_nritems(parent);
1594         blocksize = fs_info->nodesize;
1595         end_slot = parent_nritems - 1;
1596
1597         if (parent_nritems <= 1)
1598                 return 0;
1599
1600         btrfs_set_lock_blocking_write(parent);
1601
1602         for (i = start_slot; i <= end_slot; i++) {
1603                 struct btrfs_key first_key;
1604                 int close = 1;
1605
1606                 btrfs_node_key(parent, &disk_key, i);
1607                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1608                         continue;
1609
1610                 progress_passed = 1;
1611                 blocknr = btrfs_node_blockptr(parent, i);
1612                 gen = btrfs_node_ptr_generation(parent, i);
1613                 btrfs_node_key_to_cpu(parent, &first_key, i);
1614                 if (last_block == 0)
1615                         last_block = blocknr;
1616
1617                 if (i > 0) {
1618                         other = btrfs_node_blockptr(parent, i - 1);
1619                         close = close_blocks(blocknr, other, blocksize);
1620                 }
1621                 if (!close && i < end_slot) {
1622                         other = btrfs_node_blockptr(parent, i + 1);
1623                         close = close_blocks(blocknr, other, blocksize);
1624                 }
1625                 if (close) {
1626                         last_block = blocknr;
1627                         continue;
1628                 }
1629
1630                 cur = find_extent_buffer(fs_info, blocknr);
1631                 if (cur)
1632                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1633                 else
1634                         uptodate = 0;
1635                 if (!cur || !uptodate) {
1636                         if (!cur) {
1637                                 cur = read_tree_block(fs_info, blocknr, gen,
1638                                                       parent_level - 1,
1639                                                       &first_key);
1640                                 if (IS_ERR(cur)) {
1641                                         return PTR_ERR(cur);
1642                                 } else if (!extent_buffer_uptodate(cur)) {
1643                                         free_extent_buffer(cur);
1644                                         return -EIO;
1645                                 }
1646                         } else if (!uptodate) {
1647                                 err = btrfs_read_buffer(cur, gen,
1648                                                 parent_level - 1,&first_key);
1649                                 if (err) {
1650                                         free_extent_buffer(cur);
1651                                         return err;
1652                                 }
1653                         }
1654                 }
1655                 if (search_start == 0)
1656                         search_start = last_block;
1657
1658                 btrfs_tree_lock(cur);
1659                 btrfs_set_lock_blocking_write(cur);
1660                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1661                                         &cur, search_start,
1662                                         min(16 * blocksize,
1663                                             (end_slot - i) * blocksize));
1664                 if (err) {
1665                         btrfs_tree_unlock(cur);
1666                         free_extent_buffer(cur);
1667                         break;
1668                 }
1669                 search_start = cur->start;
1670                 last_block = cur->start;
1671                 *last_ret = search_start;
1672                 btrfs_tree_unlock(cur);
1673                 free_extent_buffer(cur);
1674         }
1675         return err;
1676 }
1677
1678 /*
1679  * search for key in the extent_buffer.  The items start at offset p,
1680  * and they are item_size apart.  There are 'max' items in p.
1681  *
1682  * the slot in the array is returned via slot, and it points to
1683  * the place where you would insert key if it is not found in
1684  * the array.
1685  *
1686  * slot may point to max if the key is bigger than all of the keys
1687  */
1688 static noinline int generic_bin_search(struct extent_buffer *eb,
1689                                        unsigned long p, int item_size,
1690                                        const struct btrfs_key *key,
1691                                        int max, int *slot)
1692 {
1693         int low = 0;
1694         int high = max;
1695         int mid;
1696         int ret;
1697         struct btrfs_disk_key *tmp = NULL;
1698         struct btrfs_disk_key unaligned;
1699         unsigned long offset;
1700         char *kaddr = NULL;
1701         unsigned long map_start = 0;
1702         unsigned long map_len = 0;
1703         int err;
1704
1705         if (low > high) {
1706                 btrfs_err(eb->fs_info,
1707                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1708                           __func__, low, high, eb->start,
1709                           btrfs_header_owner(eb), btrfs_header_level(eb));
1710                 return -EINVAL;
1711         }
1712
1713         while (low < high) {
1714                 mid = (low + high) / 2;
1715                 offset = p + mid * item_size;
1716
1717                 if (!kaddr || offset < map_start ||
1718                     (offset + sizeof(struct btrfs_disk_key)) >
1719                     map_start + map_len) {
1720
1721                         err = map_private_extent_buffer(eb, offset,
1722                                                 sizeof(struct btrfs_disk_key),
1723                                                 &kaddr, &map_start, &map_len);
1724
1725                         if (!err) {
1726                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1727                                                         map_start);
1728                         } else if (err == 1) {
1729                                 read_extent_buffer(eb, &unaligned,
1730                                                    offset, sizeof(unaligned));
1731                                 tmp = &unaligned;
1732                         } else {
1733                                 return err;
1734                         }
1735
1736                 } else {
1737                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1738                                                         map_start);
1739                 }
1740                 ret = comp_keys(tmp, key);
1741
1742                 if (ret < 0)
1743                         low = mid + 1;
1744                 else if (ret > 0)
1745                         high = mid;
1746                 else {
1747                         *slot = mid;
1748                         return 0;
1749                 }
1750         }
1751         *slot = low;
1752         return 1;
1753 }
1754
1755 /*
1756  * simple bin_search frontend that does the right thing for
1757  * leaves vs nodes
1758  */
1759 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1760                      int level, int *slot)
1761 {
1762         if (level == 0)
1763                 return generic_bin_search(eb,
1764                                           offsetof(struct btrfs_leaf, items),
1765                                           sizeof(struct btrfs_item),
1766                                           key, btrfs_header_nritems(eb),
1767                                           slot);
1768         else
1769                 return generic_bin_search(eb,
1770                                           offsetof(struct btrfs_node, ptrs),
1771                                           sizeof(struct btrfs_key_ptr),
1772                                           key, btrfs_header_nritems(eb),
1773                                           slot);
1774 }
1775
1776 static void root_add_used(struct btrfs_root *root, u32 size)
1777 {
1778         spin_lock(&root->accounting_lock);
1779         btrfs_set_root_used(&root->root_item,
1780                             btrfs_root_used(&root->root_item) + size);
1781         spin_unlock(&root->accounting_lock);
1782 }
1783
1784 static void root_sub_used(struct btrfs_root *root, u32 size)
1785 {
1786         spin_lock(&root->accounting_lock);
1787         btrfs_set_root_used(&root->root_item,
1788                             btrfs_root_used(&root->root_item) - size);
1789         spin_unlock(&root->accounting_lock);
1790 }
1791
1792 /* given a node and slot number, this reads the blocks it points to.  The
1793  * extent buffer is returned with a reference taken (but unlocked).
1794  */
1795 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1796                                            int slot)
1797 {
1798         int level = btrfs_header_level(parent);
1799         struct extent_buffer *eb;
1800         struct btrfs_key first_key;
1801
1802         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1803                 return ERR_PTR(-ENOENT);
1804
1805         BUG_ON(level == 0);
1806
1807         btrfs_node_key_to_cpu(parent, &first_key, slot);
1808         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1809                              btrfs_node_ptr_generation(parent, slot),
1810                              level - 1, &first_key);
1811         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1812                 free_extent_buffer(eb);
1813                 eb = ERR_PTR(-EIO);
1814         }
1815
1816         return eb;
1817 }
1818
1819 /*
1820  * node level balancing, used to make sure nodes are in proper order for
1821  * item deletion.  We balance from the top down, so we have to make sure
1822  * that a deletion won't leave an node completely empty later on.
1823  */
1824 static noinline int balance_level(struct btrfs_trans_handle *trans,
1825                          struct btrfs_root *root,
1826                          struct btrfs_path *path, int level)
1827 {
1828         struct btrfs_fs_info *fs_info = root->fs_info;
1829         struct extent_buffer *right = NULL;
1830         struct extent_buffer *mid;
1831         struct extent_buffer *left = NULL;
1832         struct extent_buffer *parent = NULL;
1833         int ret = 0;
1834         int wret;
1835         int pslot;
1836         int orig_slot = path->slots[level];
1837         u64 orig_ptr;
1838
1839         ASSERT(level > 0);
1840
1841         mid = path->nodes[level];
1842
1843         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1844                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1845         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1846
1847         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1848
1849         if (level < BTRFS_MAX_LEVEL - 1) {
1850                 parent = path->nodes[level + 1];
1851                 pslot = path->slots[level + 1];
1852         }
1853
1854         /*
1855          * deal with the case where there is only one pointer in the root
1856          * by promoting the node below to a root
1857          */
1858         if (!parent) {
1859                 struct extent_buffer *child;
1860
1861                 if (btrfs_header_nritems(mid) != 1)
1862                         return 0;
1863
1864                 /* promote the child to a root */
1865                 child = btrfs_read_node_slot(mid, 0);
1866                 if (IS_ERR(child)) {
1867                         ret = PTR_ERR(child);
1868                         btrfs_handle_fs_error(fs_info, ret, NULL);
1869                         goto enospc;
1870                 }
1871
1872                 btrfs_tree_lock(child);
1873                 btrfs_set_lock_blocking_write(child);
1874                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1875                 if (ret) {
1876                         btrfs_tree_unlock(child);
1877                         free_extent_buffer(child);
1878                         goto enospc;
1879                 }
1880
1881                 ret = tree_mod_log_insert_root(root->node, child, 1);
1882                 BUG_ON(ret < 0);
1883                 rcu_assign_pointer(root->node, child);
1884
1885                 add_root_to_dirty_list(root);
1886                 btrfs_tree_unlock(child);
1887
1888                 path->locks[level] = 0;
1889                 path->nodes[level] = NULL;
1890                 btrfs_clean_tree_block(mid);
1891                 btrfs_tree_unlock(mid);
1892                 /* once for the path */
1893                 free_extent_buffer(mid);
1894
1895                 root_sub_used(root, mid->len);
1896                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1897                 /* once for the root ptr */
1898                 free_extent_buffer_stale(mid);
1899                 return 0;
1900         }
1901         if (btrfs_header_nritems(mid) >
1902             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1903                 return 0;
1904
1905         left = btrfs_read_node_slot(parent, pslot - 1);
1906         if (IS_ERR(left))
1907                 left = NULL;
1908
1909         if (left) {
1910                 btrfs_tree_lock(left);
1911                 btrfs_set_lock_blocking_write(left);
1912                 wret = btrfs_cow_block(trans, root, left,
1913                                        parent, pslot - 1, &left);
1914                 if (wret) {
1915                         ret = wret;
1916                         goto enospc;
1917                 }
1918         }
1919
1920         right = btrfs_read_node_slot(parent, pslot + 1);
1921         if (IS_ERR(right))
1922                 right = NULL;
1923
1924         if (right) {
1925                 btrfs_tree_lock(right);
1926                 btrfs_set_lock_blocking_write(right);
1927                 wret = btrfs_cow_block(trans, root, right,
1928                                        parent, pslot + 1, &right);
1929                 if (wret) {
1930                         ret = wret;
1931                         goto enospc;
1932                 }
1933         }
1934
1935         /* first, try to make some room in the middle buffer */
1936         if (left) {
1937                 orig_slot += btrfs_header_nritems(left);
1938                 wret = push_node_left(trans, left, mid, 1);
1939                 if (wret < 0)
1940                         ret = wret;
1941         }
1942
1943         /*
1944          * then try to empty the right most buffer into the middle
1945          */
1946         if (right) {
1947                 wret = push_node_left(trans, mid, right, 1);
1948                 if (wret < 0 && wret != -ENOSPC)
1949                         ret = wret;
1950                 if (btrfs_header_nritems(right) == 0) {
1951                         btrfs_clean_tree_block(right);
1952                         btrfs_tree_unlock(right);
1953                         del_ptr(root, path, level + 1, pslot + 1);
1954                         root_sub_used(root, right->len);
1955                         btrfs_free_tree_block(trans, root, right, 0, 1);
1956                         free_extent_buffer_stale(right);
1957                         right = NULL;
1958                 } else {
1959                         struct btrfs_disk_key right_key;
1960                         btrfs_node_key(right, &right_key, 0);
1961                         ret = tree_mod_log_insert_key(parent, pslot + 1,
1962                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1963                         BUG_ON(ret < 0);
1964                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1965                         btrfs_mark_buffer_dirty(parent);
1966                 }
1967         }
1968         if (btrfs_header_nritems(mid) == 1) {
1969                 /*
1970                  * we're not allowed to leave a node with one item in the
1971                  * tree during a delete.  A deletion from lower in the tree
1972                  * could try to delete the only pointer in this node.
1973                  * So, pull some keys from the left.
1974                  * There has to be a left pointer at this point because
1975                  * otherwise we would have pulled some pointers from the
1976                  * right
1977                  */
1978                 if (!left) {
1979                         ret = -EROFS;
1980                         btrfs_handle_fs_error(fs_info, ret, NULL);
1981                         goto enospc;
1982                 }
1983                 wret = balance_node_right(trans, mid, left);
1984                 if (wret < 0) {
1985                         ret = wret;
1986                         goto enospc;
1987                 }
1988                 if (wret == 1) {
1989                         wret = push_node_left(trans, left, mid, 1);
1990                         if (wret < 0)
1991                                 ret = wret;
1992                 }
1993                 BUG_ON(wret == 1);
1994         }
1995         if (btrfs_header_nritems(mid) == 0) {
1996                 btrfs_clean_tree_block(mid);
1997                 btrfs_tree_unlock(mid);
1998                 del_ptr(root, path, level + 1, pslot);
1999                 root_sub_used(root, mid->len);
2000                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2001                 free_extent_buffer_stale(mid);
2002                 mid = NULL;
2003         } else {
2004                 /* update the parent key to reflect our changes */
2005                 struct btrfs_disk_key mid_key;
2006                 btrfs_node_key(mid, &mid_key, 0);
2007                 ret = tree_mod_log_insert_key(parent, pslot,
2008                                 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2009                 BUG_ON(ret < 0);
2010                 btrfs_set_node_key(parent, &mid_key, pslot);
2011                 btrfs_mark_buffer_dirty(parent);
2012         }
2013
2014         /* update the path */
2015         if (left) {
2016                 if (btrfs_header_nritems(left) > orig_slot) {
2017                         extent_buffer_get(left);
2018                         /* left was locked after cow */
2019                         path->nodes[level] = left;
2020                         path->slots[level + 1] -= 1;
2021                         path->slots[level] = orig_slot;
2022                         if (mid) {
2023                                 btrfs_tree_unlock(mid);
2024                                 free_extent_buffer(mid);
2025                         }
2026                 } else {
2027                         orig_slot -= btrfs_header_nritems(left);
2028                         path->slots[level] = orig_slot;
2029                 }
2030         }
2031         /* double check we haven't messed things up */
2032         if (orig_ptr !=
2033             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2034                 BUG();
2035 enospc:
2036         if (right) {
2037                 btrfs_tree_unlock(right);
2038                 free_extent_buffer(right);
2039         }
2040         if (left) {
2041                 if (path->nodes[level] != left)
2042                         btrfs_tree_unlock(left);
2043                 free_extent_buffer(left);
2044         }
2045         return ret;
2046 }
2047
2048 /* Node balancing for insertion.  Here we only split or push nodes around
2049  * when they are completely full.  This is also done top down, so we
2050  * have to be pessimistic.
2051  */
2052 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2053                                           struct btrfs_root *root,
2054                                           struct btrfs_path *path, int level)
2055 {
2056         struct btrfs_fs_info *fs_info = root->fs_info;
2057         struct extent_buffer *right = NULL;
2058         struct extent_buffer *mid;
2059         struct extent_buffer *left = NULL;
2060         struct extent_buffer *parent = NULL;
2061         int ret = 0;
2062         int wret;
2063         int pslot;
2064         int orig_slot = path->slots[level];
2065
2066         if (level == 0)
2067                 return 1;
2068
2069         mid = path->nodes[level];
2070         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2071
2072         if (level < BTRFS_MAX_LEVEL - 1) {
2073                 parent = path->nodes[level + 1];
2074                 pslot = path->slots[level + 1];
2075         }
2076
2077         if (!parent)
2078                 return 1;
2079
2080         left = btrfs_read_node_slot(parent, pslot - 1);
2081         if (IS_ERR(left))
2082                 left = NULL;
2083
2084         /* first, try to make some room in the middle buffer */
2085         if (left) {
2086                 u32 left_nr;
2087
2088                 btrfs_tree_lock(left);
2089                 btrfs_set_lock_blocking_write(left);
2090
2091                 left_nr = btrfs_header_nritems(left);
2092                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2093                         wret = 1;
2094                 } else {
2095                         ret = btrfs_cow_block(trans, root, left, parent,
2096                                               pslot - 1, &left);
2097                         if (ret)
2098                                 wret = 1;
2099                         else {
2100                                 wret = push_node_left(trans, left, mid, 0);
2101                         }
2102                 }
2103                 if (wret < 0)
2104                         ret = wret;
2105                 if (wret == 0) {
2106                         struct btrfs_disk_key disk_key;
2107                         orig_slot += left_nr;
2108                         btrfs_node_key(mid, &disk_key, 0);
2109                         ret = tree_mod_log_insert_key(parent, pslot,
2110                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2111                         BUG_ON(ret < 0);
2112                         btrfs_set_node_key(parent, &disk_key, pslot);
2113                         btrfs_mark_buffer_dirty(parent);
2114                         if (btrfs_header_nritems(left) > orig_slot) {
2115                                 path->nodes[level] = left;
2116                                 path->slots[level + 1] -= 1;
2117                                 path->slots[level] = orig_slot;
2118                                 btrfs_tree_unlock(mid);
2119                                 free_extent_buffer(mid);
2120                         } else {
2121                                 orig_slot -=
2122                                         btrfs_header_nritems(left);
2123                                 path->slots[level] = orig_slot;
2124                                 btrfs_tree_unlock(left);
2125                                 free_extent_buffer(left);
2126                         }
2127                         return 0;
2128                 }
2129                 btrfs_tree_unlock(left);
2130                 free_extent_buffer(left);
2131         }
2132         right = btrfs_read_node_slot(parent, pslot + 1);
2133         if (IS_ERR(right))
2134                 right = NULL;
2135
2136         /*
2137          * then try to empty the right most buffer into the middle
2138          */
2139         if (right) {
2140                 u32 right_nr;
2141
2142                 btrfs_tree_lock(right);
2143                 btrfs_set_lock_blocking_write(right);
2144
2145                 right_nr = btrfs_header_nritems(right);
2146                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2147                         wret = 1;
2148                 } else {
2149                         ret = btrfs_cow_block(trans, root, right,
2150                                               parent, pslot + 1,
2151                                               &right);
2152                         if (ret)
2153                                 wret = 1;
2154                         else {
2155                                 wret = balance_node_right(trans, right, mid);
2156                         }
2157                 }
2158                 if (wret < 0)
2159                         ret = wret;
2160                 if (wret == 0) {
2161                         struct btrfs_disk_key disk_key;
2162
2163                         btrfs_node_key(right, &disk_key, 0);
2164                         ret = tree_mod_log_insert_key(parent, pslot + 1,
2165                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2166                         BUG_ON(ret < 0);
2167                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2168                         btrfs_mark_buffer_dirty(parent);
2169
2170                         if (btrfs_header_nritems(mid) <= orig_slot) {
2171                                 path->nodes[level] = right;
2172                                 path->slots[level + 1] += 1;
2173                                 path->slots[level] = orig_slot -
2174                                         btrfs_header_nritems(mid);
2175                                 btrfs_tree_unlock(mid);
2176                                 free_extent_buffer(mid);
2177                         } else {
2178                                 btrfs_tree_unlock(right);
2179                                 free_extent_buffer(right);
2180                         }
2181                         return 0;
2182                 }
2183                 btrfs_tree_unlock(right);
2184                 free_extent_buffer(right);
2185         }
2186         return 1;
2187 }
2188
2189 /*
2190  * readahead one full node of leaves, finding things that are close
2191  * to the block in 'slot', and triggering ra on them.
2192  */
2193 static void reada_for_search(struct btrfs_fs_info *fs_info,
2194                              struct btrfs_path *path,
2195                              int level, int slot, u64 objectid)
2196 {
2197         struct extent_buffer *node;
2198         struct btrfs_disk_key disk_key;
2199         u32 nritems;
2200         u64 search;
2201         u64 target;
2202         u64 nread = 0;
2203         struct extent_buffer *eb;
2204         u32 nr;
2205         u32 blocksize;
2206         u32 nscan = 0;
2207
2208         if (level != 1)
2209                 return;
2210
2211         if (!path->nodes[level])
2212                 return;
2213
2214         node = path->nodes[level];
2215
2216         search = btrfs_node_blockptr(node, slot);
2217         blocksize = fs_info->nodesize;
2218         eb = find_extent_buffer(fs_info, search);
2219         if (eb) {
2220                 free_extent_buffer(eb);
2221                 return;
2222         }
2223
2224         target = search;
2225
2226         nritems = btrfs_header_nritems(node);
2227         nr = slot;
2228
2229         while (1) {
2230                 if (path->reada == READA_BACK) {
2231                         if (nr == 0)
2232                                 break;
2233                         nr--;
2234                 } else if (path->reada == READA_FORWARD) {
2235                         nr++;
2236                         if (nr >= nritems)
2237                                 break;
2238                 }
2239                 if (path->reada == READA_BACK && objectid) {
2240                         btrfs_node_key(node, &disk_key, nr);
2241                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2242                                 break;
2243                 }
2244                 search = btrfs_node_blockptr(node, nr);
2245                 if ((search <= target && target - search <= 65536) ||
2246                     (search > target && search - target <= 65536)) {
2247                         readahead_tree_block(fs_info, search);
2248                         nread += blocksize;
2249                 }
2250                 nscan++;
2251                 if ((nread > 65536 || nscan > 32))
2252                         break;
2253         }
2254 }
2255
2256 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2257                                        struct btrfs_path *path, int level)
2258 {
2259         int slot;
2260         int nritems;
2261         struct extent_buffer *parent;
2262         struct extent_buffer *eb;
2263         u64 gen;
2264         u64 block1 = 0;
2265         u64 block2 = 0;
2266
2267         parent = path->nodes[level + 1];
2268         if (!parent)
2269                 return;
2270
2271         nritems = btrfs_header_nritems(parent);
2272         slot = path->slots[level + 1];
2273
2274         if (slot > 0) {
2275                 block1 = btrfs_node_blockptr(parent, slot - 1);
2276                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2277                 eb = find_extent_buffer(fs_info, block1);
2278                 /*
2279                  * if we get -eagain from btrfs_buffer_uptodate, we
2280                  * don't want to return eagain here.  That will loop
2281                  * forever
2282                  */
2283                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2284                         block1 = 0;
2285                 free_extent_buffer(eb);
2286         }
2287         if (slot + 1 < nritems) {
2288                 block2 = btrfs_node_blockptr(parent, slot + 1);
2289                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2290                 eb = find_extent_buffer(fs_info, block2);
2291                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2292                         block2 = 0;
2293                 free_extent_buffer(eb);
2294         }
2295
2296         if (block1)
2297                 readahead_tree_block(fs_info, block1);
2298         if (block2)
2299                 readahead_tree_block(fs_info, block2);
2300 }
2301
2302
2303 /*
2304  * when we walk down the tree, it is usually safe to unlock the higher layers
2305  * in the tree.  The exceptions are when our path goes through slot 0, because
2306  * operations on the tree might require changing key pointers higher up in the
2307  * tree.
2308  *
2309  * callers might also have set path->keep_locks, which tells this code to keep
2310  * the lock if the path points to the last slot in the block.  This is part of
2311  * walking through the tree, and selecting the next slot in the higher block.
2312  *
2313  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2314  * if lowest_unlock is 1, level 0 won't be unlocked
2315  */
2316 static noinline void unlock_up(struct btrfs_path *path, int level,
2317                                int lowest_unlock, int min_write_lock_level,
2318                                int *write_lock_level)
2319 {
2320         int i;
2321         int skip_level = level;
2322         int no_skips = 0;
2323         struct extent_buffer *t;
2324
2325         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2326                 if (!path->nodes[i])
2327                         break;
2328                 if (!path->locks[i])
2329                         break;
2330                 if (!no_skips && path->slots[i] == 0) {
2331                         skip_level = i + 1;
2332                         continue;
2333                 }
2334                 if (!no_skips && path->keep_locks) {
2335                         u32 nritems;
2336                         t = path->nodes[i];
2337                         nritems = btrfs_header_nritems(t);
2338                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2339                                 skip_level = i + 1;
2340                                 continue;
2341                         }
2342                 }
2343                 if (skip_level < i && i >= lowest_unlock)
2344                         no_skips = 1;
2345
2346                 t = path->nodes[i];
2347                 if (i >= lowest_unlock && i > skip_level) {
2348                         btrfs_tree_unlock_rw(t, path->locks[i]);
2349                         path->locks[i] = 0;
2350                         if (write_lock_level &&
2351                             i > min_write_lock_level &&
2352                             i <= *write_lock_level) {
2353                                 *write_lock_level = i - 1;
2354                         }
2355                 }
2356         }
2357 }
2358
2359 /*
2360  * This releases any locks held in the path starting at level and
2361  * going all the way up to the root.
2362  *
2363  * btrfs_search_slot will keep the lock held on higher nodes in a few
2364  * corner cases, such as COW of the block at slot zero in the node.  This
2365  * ignores those rules, and it should only be called when there are no
2366  * more updates to be done higher up in the tree.
2367  */
2368 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2369 {
2370         int i;
2371
2372         if (path->keep_locks)
2373                 return;
2374
2375         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2376                 if (!path->nodes[i])
2377                         continue;
2378                 if (!path->locks[i])
2379                         continue;
2380                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2381                 path->locks[i] = 0;
2382         }
2383 }
2384
2385 /*
2386  * helper function for btrfs_search_slot.  The goal is to find a block
2387  * in cache without setting the path to blocking.  If we find the block
2388  * we return zero and the path is unchanged.
2389  *
2390  * If we can't find the block, we set the path blocking and do some
2391  * reada.  -EAGAIN is returned and the search must be repeated.
2392  */
2393 static int
2394 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2395                       struct extent_buffer **eb_ret, int level, int slot,
2396                       const struct btrfs_key *key)
2397 {
2398         struct btrfs_fs_info *fs_info = root->fs_info;
2399         u64 blocknr;
2400         u64 gen;
2401         struct extent_buffer *b = *eb_ret;
2402         struct extent_buffer *tmp;
2403         struct btrfs_key first_key;
2404         int ret;
2405         int parent_level;
2406
2407         blocknr = btrfs_node_blockptr(b, slot);
2408         gen = btrfs_node_ptr_generation(b, slot);
2409         parent_level = btrfs_header_level(b);
2410         btrfs_node_key_to_cpu(b, &first_key, slot);
2411
2412         tmp = find_extent_buffer(fs_info, blocknr);
2413         if (tmp) {
2414                 /* first we do an atomic uptodate check */
2415                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2416                         /*
2417                          * Do extra check for first_key, eb can be stale due to
2418                          * being cached, read from scrub, or have multiple
2419                          * parents (shared tree blocks).
2420                          */
2421                         if (btrfs_verify_level_key(tmp,
2422                                         parent_level - 1, &first_key, gen)) {
2423                                 free_extent_buffer(tmp);
2424                                 return -EUCLEAN;
2425                         }
2426                         *eb_ret = tmp;
2427                         return 0;
2428                 }
2429
2430                 /* the pages were up to date, but we failed
2431                  * the generation number check.  Do a full
2432                  * read for the generation number that is correct.
2433                  * We must do this without dropping locks so
2434                  * we can trust our generation number
2435                  */
2436                 btrfs_set_path_blocking(p);
2437
2438                 /* now we're allowed to do a blocking uptodate check */
2439                 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2440                 if (!ret) {
2441                         *eb_ret = tmp;
2442                         return 0;
2443                 }
2444                 free_extent_buffer(tmp);
2445                 btrfs_release_path(p);
2446                 return -EIO;
2447         }
2448
2449         /*
2450          * reduce lock contention at high levels
2451          * of the btree by dropping locks before
2452          * we read.  Don't release the lock on the current
2453          * level because we need to walk this node to figure
2454          * out which blocks to read.
2455          */
2456         btrfs_unlock_up_safe(p, level + 1);
2457         btrfs_set_path_blocking(p);
2458
2459         if (p->reada != READA_NONE)
2460                 reada_for_search(fs_info, p, level, slot, key->objectid);
2461
2462         ret = -EAGAIN;
2463         tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2464                               &first_key);
2465         if (!IS_ERR(tmp)) {
2466                 /*
2467                  * If the read above didn't mark this buffer up to date,
2468                  * it will never end up being up to date.  Set ret to EIO now
2469                  * and give up so that our caller doesn't loop forever
2470                  * on our EAGAINs.
2471                  */
2472                 if (!extent_buffer_uptodate(tmp))
2473                         ret = -EIO;
2474                 free_extent_buffer(tmp);
2475         } else {
2476                 ret = PTR_ERR(tmp);
2477         }
2478
2479         btrfs_release_path(p);
2480         return ret;
2481 }
2482
2483 /*
2484  * helper function for btrfs_search_slot.  This does all of the checks
2485  * for node-level blocks and does any balancing required based on
2486  * the ins_len.
2487  *
2488  * If no extra work was required, zero is returned.  If we had to
2489  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2490  * start over
2491  */
2492 static int
2493 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2494                        struct btrfs_root *root, struct btrfs_path *p,
2495                        struct extent_buffer *b, int level, int ins_len,
2496                        int *write_lock_level)
2497 {
2498         struct btrfs_fs_info *fs_info = root->fs_info;
2499         int ret;
2500
2501         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2502             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2503                 int sret;
2504
2505                 if (*write_lock_level < level + 1) {
2506                         *write_lock_level = level + 1;
2507                         btrfs_release_path(p);
2508                         goto again;
2509                 }
2510
2511                 btrfs_set_path_blocking(p);
2512                 reada_for_balance(fs_info, p, level);
2513                 sret = split_node(trans, root, p, level);
2514
2515                 BUG_ON(sret > 0);
2516                 if (sret) {
2517                         ret = sret;
2518                         goto done;
2519                 }
2520                 b = p->nodes[level];
2521         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2522                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2523                 int sret;
2524
2525                 if (*write_lock_level < level + 1) {
2526                         *write_lock_level = level + 1;
2527                         btrfs_release_path(p);
2528                         goto again;
2529                 }
2530
2531                 btrfs_set_path_blocking(p);
2532                 reada_for_balance(fs_info, p, level);
2533                 sret = balance_level(trans, root, p, level);
2534
2535                 if (sret) {
2536                         ret = sret;
2537                         goto done;
2538                 }
2539                 b = p->nodes[level];
2540                 if (!b) {
2541                         btrfs_release_path(p);
2542                         goto again;
2543                 }
2544                 BUG_ON(btrfs_header_nritems(b) == 1);
2545         }
2546         return 0;
2547
2548 again:
2549         ret = -EAGAIN;
2550 done:
2551         return ret;
2552 }
2553
2554 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2555                       int level, int *prev_cmp, int *slot)
2556 {
2557         if (*prev_cmp != 0) {
2558                 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2559                 return *prev_cmp;
2560         }
2561
2562         *slot = 0;
2563
2564         return 0;
2565 }
2566
2567 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2568                 u64 iobjectid, u64 ioff, u8 key_type,
2569                 struct btrfs_key *found_key)
2570 {
2571         int ret;
2572         struct btrfs_key key;
2573         struct extent_buffer *eb;
2574
2575         ASSERT(path);
2576         ASSERT(found_key);
2577
2578         key.type = key_type;
2579         key.objectid = iobjectid;
2580         key.offset = ioff;
2581
2582         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2583         if (ret < 0)
2584                 return ret;
2585
2586         eb = path->nodes[0];
2587         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2588                 ret = btrfs_next_leaf(fs_root, path);
2589                 if (ret)
2590                         return ret;
2591                 eb = path->nodes[0];
2592         }
2593
2594         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2595         if (found_key->type != key.type ||
2596                         found_key->objectid != key.objectid)
2597                 return 1;
2598
2599         return 0;
2600 }
2601
2602 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2603                                                         struct btrfs_path *p,
2604                                                         int write_lock_level)
2605 {
2606         struct btrfs_fs_info *fs_info = root->fs_info;
2607         struct extent_buffer *b;
2608         int root_lock;
2609         int level = 0;
2610
2611         /* We try very hard to do read locks on the root */
2612         root_lock = BTRFS_READ_LOCK;
2613
2614         if (p->search_commit_root) {
2615                 /*
2616                  * The commit roots are read only so we always do read locks,
2617                  * and we always must hold the commit_root_sem when doing
2618                  * searches on them, the only exception is send where we don't
2619                  * want to block transaction commits for a long time, so
2620                  * we need to clone the commit root in order to avoid races
2621                  * with transaction commits that create a snapshot of one of
2622                  * the roots used by a send operation.
2623                  */
2624                 if (p->need_commit_sem) {
2625                         down_read(&fs_info->commit_root_sem);
2626                         b = btrfs_clone_extent_buffer(root->commit_root);
2627                         up_read(&fs_info->commit_root_sem);
2628                         if (!b)
2629                                 return ERR_PTR(-ENOMEM);
2630
2631                 } else {
2632                         b = root->commit_root;
2633                         extent_buffer_get(b);
2634                 }
2635                 level = btrfs_header_level(b);
2636                 /*
2637                  * Ensure that all callers have set skip_locking when
2638                  * p->search_commit_root = 1.
2639                  */
2640                 ASSERT(p->skip_locking == 1);
2641
2642                 goto out;
2643         }
2644
2645         if (p->skip_locking) {
2646                 b = btrfs_root_node(root);
2647                 level = btrfs_header_level(b);
2648                 goto out;
2649         }
2650
2651         /*
2652          * If the level is set to maximum, we can skip trying to get the read
2653          * lock.
2654          */
2655         if (write_lock_level < BTRFS_MAX_LEVEL) {
2656                 /*
2657                  * We don't know the level of the root node until we actually
2658                  * have it read locked
2659                  */
2660                 b = btrfs_read_lock_root_node(root);
2661                 level = btrfs_header_level(b);
2662                 if (level > write_lock_level)
2663                         goto out;
2664
2665                 /* Whoops, must trade for write lock */
2666                 btrfs_tree_read_unlock(b);
2667                 free_extent_buffer(b);
2668         }
2669
2670         b = btrfs_lock_root_node(root);
2671         root_lock = BTRFS_WRITE_LOCK;
2672
2673         /* The level might have changed, check again */
2674         level = btrfs_header_level(b);
2675
2676 out:
2677         p->nodes[level] = b;
2678         if (!p->skip_locking)
2679                 p->locks[level] = root_lock;
2680         /*
2681          * Callers are responsible for dropping b's references.
2682          */
2683         return b;
2684 }
2685
2686
2687 /*
2688  * btrfs_search_slot - look for a key in a tree and perform necessary
2689  * modifications to preserve tree invariants.
2690  *
2691  * @trans:      Handle of transaction, used when modifying the tree
2692  * @p:          Holds all btree nodes along the search path
2693  * @root:       The root node of the tree
2694  * @key:        The key we are looking for
2695  * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2696  *              deletions it's -1. 0 for plain searches
2697  * @cow:        boolean should CoW operations be performed. Must always be 1
2698  *              when modifying the tree.
2699  *
2700  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2701  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2702  *
2703  * If @key is found, 0 is returned and you can find the item in the leaf level
2704  * of the path (level 0)
2705  *
2706  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2707  * points to the slot where it should be inserted
2708  *
2709  * If an error is encountered while searching the tree a negative error number
2710  * is returned
2711  */
2712 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2713                       const struct btrfs_key *key, struct btrfs_path *p,
2714                       int ins_len, int cow)
2715 {
2716         struct extent_buffer *b;
2717         int slot;
2718         int ret;
2719         int err;
2720         int level;
2721         int lowest_unlock = 1;
2722         /* everything at write_lock_level or lower must be write locked */
2723         int write_lock_level = 0;
2724         u8 lowest_level = 0;
2725         int min_write_lock_level;
2726         int prev_cmp;
2727
2728         lowest_level = p->lowest_level;
2729         WARN_ON(lowest_level && ins_len > 0);
2730         WARN_ON(p->nodes[0] != NULL);
2731         BUG_ON(!cow && ins_len);
2732
2733         if (ins_len < 0) {
2734                 lowest_unlock = 2;
2735
2736                 /* when we are removing items, we might have to go up to level
2737                  * two as we update tree pointers  Make sure we keep write
2738                  * for those levels as well
2739                  */
2740                 write_lock_level = 2;
2741         } else if (ins_len > 0) {
2742                 /*
2743                  * for inserting items, make sure we have a write lock on
2744                  * level 1 so we can update keys
2745                  */
2746                 write_lock_level = 1;
2747         }
2748
2749         if (!cow)
2750                 write_lock_level = -1;
2751
2752         if (cow && (p->keep_locks || p->lowest_level))
2753                 write_lock_level = BTRFS_MAX_LEVEL;
2754
2755         min_write_lock_level = write_lock_level;
2756
2757 again:
2758         prev_cmp = -1;
2759         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2760         if (IS_ERR(b)) {
2761                 ret = PTR_ERR(b);
2762                 goto done;
2763         }
2764
2765         while (b) {
2766                 level = btrfs_header_level(b);
2767
2768                 /*
2769                  * setup the path here so we can release it under lock
2770                  * contention with the cow code
2771                  */
2772                 if (cow) {
2773                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2774
2775                         /*
2776                          * if we don't really need to cow this block
2777                          * then we don't want to set the path blocking,
2778                          * so we test it here
2779                          */
2780                         if (!should_cow_block(trans, root, b)) {
2781                                 trans->dirty = true;
2782                                 goto cow_done;
2783                         }
2784
2785                         /*
2786                          * must have write locks on this node and the
2787                          * parent
2788                          */
2789                         if (level > write_lock_level ||
2790                             (level + 1 > write_lock_level &&
2791                             level + 1 < BTRFS_MAX_LEVEL &&
2792                             p->nodes[level + 1])) {
2793                                 write_lock_level = level + 1;
2794                                 btrfs_release_path(p);
2795                                 goto again;
2796                         }
2797
2798                         btrfs_set_path_blocking(p);
2799                         if (last_level)
2800                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2801                                                       &b);
2802                         else
2803                                 err = btrfs_cow_block(trans, root, b,
2804                                                       p->nodes[level + 1],
2805                                                       p->slots[level + 1], &b);
2806                         if (err) {
2807                                 ret = err;
2808                                 goto done;
2809                         }
2810                 }
2811 cow_done:
2812                 p->nodes[level] = b;
2813                 /*
2814                  * Leave path with blocking locks to avoid massive
2815                  * lock context switch, this is made on purpose.
2816                  */
2817
2818                 /*
2819                  * we have a lock on b and as long as we aren't changing
2820                  * the tree, there is no way to for the items in b to change.
2821                  * It is safe to drop the lock on our parent before we
2822                  * go through the expensive btree search on b.
2823                  *
2824                  * If we're inserting or deleting (ins_len != 0), then we might
2825                  * be changing slot zero, which may require changing the parent.
2826                  * So, we can't drop the lock until after we know which slot
2827                  * we're operating on.
2828                  */
2829                 if (!ins_len && !p->keep_locks) {
2830                         int u = level + 1;
2831
2832                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2833                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2834                                 p->locks[u] = 0;
2835                         }
2836                 }
2837
2838                 ret = key_search(b, key, level, &prev_cmp, &slot);
2839                 if (ret < 0)
2840                         goto done;
2841
2842                 if (level != 0) {
2843                         int dec = 0;
2844                         if (ret && slot > 0) {
2845                                 dec = 1;
2846                                 slot -= 1;
2847                         }
2848                         p->slots[level] = slot;
2849                         err = setup_nodes_for_search(trans, root, p, b, level,
2850                                              ins_len, &write_lock_level);
2851                         if (err == -EAGAIN)
2852                                 goto again;
2853                         if (err) {
2854                                 ret = err;
2855                                 goto done;
2856                         }
2857                         b = p->nodes[level];
2858                         slot = p->slots[level];
2859
2860                         /*
2861                          * slot 0 is special, if we change the key
2862                          * we have to update the parent pointer
2863                          * which means we must have a write lock
2864                          * on the parent
2865                          */
2866                         if (slot == 0 && ins_len &&
2867                             write_lock_level < level + 1) {
2868                                 write_lock_level = level + 1;
2869                                 btrfs_release_path(p);
2870                                 goto again;
2871                         }
2872
2873                         unlock_up(p, level, lowest_unlock,
2874                                   min_write_lock_level, &write_lock_level);
2875
2876                         if (level == lowest_level) {
2877                                 if (dec)
2878                                         p->slots[level]++;
2879                                 goto done;
2880                         }
2881
2882                         err = read_block_for_search(root, p, &b, level,
2883                                                     slot, key);
2884                         if (err == -EAGAIN)
2885                                 goto again;
2886                         if (err) {
2887                                 ret = err;
2888                                 goto done;
2889                         }
2890
2891                         if (!p->skip_locking) {
2892                                 level = btrfs_header_level(b);
2893                                 if (level <= write_lock_level) {
2894                                         err = btrfs_try_tree_write_lock(b);
2895                                         if (!err) {
2896                                                 btrfs_set_path_blocking(p);
2897                                                 btrfs_tree_lock(b);
2898                                         }
2899                                         p->locks[level] = BTRFS_WRITE_LOCK;
2900                                 } else {
2901                                         err = btrfs_tree_read_lock_atomic(b);
2902                                         if (!err) {
2903                                                 btrfs_set_path_blocking(p);
2904                                                 btrfs_tree_read_lock(b);
2905                                         }
2906                                         p->locks[level] = BTRFS_READ_LOCK;
2907                                 }
2908                                 p->nodes[level] = b;
2909                         }
2910                 } else {
2911                         p->slots[level] = slot;
2912                         if (ins_len > 0 &&
2913                             btrfs_leaf_free_space(b) < ins_len) {
2914                                 if (write_lock_level < 1) {
2915                                         write_lock_level = 1;
2916                                         btrfs_release_path(p);
2917                                         goto again;
2918                                 }
2919
2920                                 btrfs_set_path_blocking(p);
2921                                 err = split_leaf(trans, root, key,
2922                                                  p, ins_len, ret == 0);
2923
2924                                 BUG_ON(err > 0);
2925                                 if (err) {
2926                                         ret = err;
2927                                         goto done;
2928                                 }
2929                         }
2930                         if (!p->search_for_split)
2931                                 unlock_up(p, level, lowest_unlock,
2932                                           min_write_lock_level, NULL);
2933                         goto done;
2934                 }
2935         }
2936         ret = 1;
2937 done:
2938         /*
2939          * we don't really know what they plan on doing with the path
2940          * from here on, so for now just mark it as blocking
2941          */
2942         if (!p->leave_spinning)
2943                 btrfs_set_path_blocking(p);
2944         if (ret < 0 && !p->skip_release_on_error)
2945                 btrfs_release_path(p);
2946         return ret;
2947 }
2948
2949 /*
2950  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2951  * current state of the tree together with the operations recorded in the tree
2952  * modification log to search for the key in a previous version of this tree, as
2953  * denoted by the time_seq parameter.
2954  *
2955  * Naturally, there is no support for insert, delete or cow operations.
2956  *
2957  * The resulting path and return value will be set up as if we called
2958  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2959  */
2960 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2961                           struct btrfs_path *p, u64 time_seq)
2962 {
2963         struct btrfs_fs_info *fs_info = root->fs_info;
2964         struct extent_buffer *b;
2965         int slot;
2966         int ret;
2967         int err;
2968         int level;
2969         int lowest_unlock = 1;
2970         u8 lowest_level = 0;
2971         int prev_cmp = -1;
2972
2973         lowest_level = p->lowest_level;
2974         WARN_ON(p->nodes[0] != NULL);
2975
2976         if (p->search_commit_root) {
2977                 BUG_ON(time_seq);
2978                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2979         }
2980
2981 again:
2982         b = get_old_root(root, time_seq);
2983         if (!b) {
2984                 ret = -EIO;
2985                 goto done;
2986         }
2987         level = btrfs_header_level(b);
2988         p->locks[level] = BTRFS_READ_LOCK;
2989
2990         while (b) {
2991                 level = btrfs_header_level(b);
2992                 p->nodes[level] = b;
2993
2994                 /*
2995                  * we have a lock on b and as long as we aren't changing
2996                  * the tree, there is no way to for the items in b to change.
2997                  * It is safe to drop the lock on our parent before we
2998                  * go through the expensive btree search on b.
2999                  */
3000                 btrfs_unlock_up_safe(p, level + 1);
3001
3002                 /*
3003                  * Since we can unwind ebs we want to do a real search every
3004                  * time.
3005                  */
3006                 prev_cmp = -1;
3007                 ret = key_search(b, key, level, &prev_cmp, &slot);
3008                 if (ret < 0)
3009                         goto done;
3010
3011                 if (level != 0) {
3012                         int dec = 0;
3013                         if (ret && slot > 0) {
3014                                 dec = 1;
3015                                 slot -= 1;
3016                         }
3017                         p->slots[level] = slot;
3018                         unlock_up(p, level, lowest_unlock, 0, NULL);
3019
3020                         if (level == lowest_level) {
3021                                 if (dec)
3022                                         p->slots[level]++;
3023                                 goto done;
3024                         }
3025
3026                         err = read_block_for_search(root, p, &b, level,
3027                                                     slot, key);
3028                         if (err == -EAGAIN)
3029                                 goto again;
3030                         if (err) {
3031                                 ret = err;
3032                                 goto done;
3033                         }
3034
3035                         level = btrfs_header_level(b);
3036                         err = btrfs_tree_read_lock_atomic(b);
3037                         if (!err) {
3038                                 btrfs_set_path_blocking(p);
3039                                 btrfs_tree_read_lock(b);
3040                         }
3041                         b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3042                         if (!b) {
3043                                 ret = -ENOMEM;
3044                                 goto done;
3045                         }
3046                         p->locks[level] = BTRFS_READ_LOCK;
3047                         p->nodes[level] = b;
3048                 } else {
3049                         p->slots[level] = slot;
3050                         unlock_up(p, level, lowest_unlock, 0, NULL);
3051                         goto done;
3052                 }
3053         }
3054         ret = 1;
3055 done:
3056         if (!p->leave_spinning)
3057                 btrfs_set_path_blocking(p);
3058         if (ret < 0)
3059                 btrfs_release_path(p);
3060
3061         return ret;
3062 }
3063
3064 /*
3065  * helper to use instead of search slot if no exact match is needed but
3066  * instead the next or previous item should be returned.
3067  * When find_higher is true, the next higher item is returned, the next lower
3068  * otherwise.
3069  * When return_any and find_higher are both true, and no higher item is found,
3070  * return the next lower instead.
3071  * When return_any is true and find_higher is false, and no lower item is found,
3072  * return the next higher instead.
3073  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3074  * < 0 on error
3075  */
3076 int btrfs_search_slot_for_read(struct btrfs_root *root,
3077                                const struct btrfs_key *key,
3078                                struct btrfs_path *p, int find_higher,
3079                                int return_any)
3080 {
3081         int ret;
3082         struct extent_buffer *leaf;
3083
3084 again:
3085         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3086         if (ret <= 0)
3087                 return ret;
3088         /*
3089          * a return value of 1 means the path is at the position where the
3090          * item should be inserted. Normally this is the next bigger item,
3091          * but in case the previous item is the last in a leaf, path points
3092          * to the first free slot in the previous leaf, i.e. at an invalid
3093          * item.
3094          */
3095         leaf = p->nodes[0];
3096
3097         if (find_higher) {
3098                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3099                         ret = btrfs_next_leaf(root, p);
3100                         if (ret <= 0)
3101                                 return ret;
3102                         if (!return_any)
3103                                 return 1;
3104                         /*
3105                          * no higher item found, return the next
3106                          * lower instead
3107                          */
3108                         return_any = 0;
3109                         find_higher = 0;
3110                         btrfs_release_path(p);
3111                         goto again;
3112                 }
3113         } else {
3114                 if (p->slots[0] == 0) {
3115                         ret = btrfs_prev_leaf(root, p);
3116                         if (ret < 0)
3117                                 return ret;
3118                         if (!ret) {
3119                                 leaf = p->nodes[0];
3120                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3121                                         p->slots[0]--;
3122                                 return 0;
3123                         }
3124                         if (!return_any)
3125                                 return 1;
3126                         /*
3127                          * no lower item found, return the next
3128                          * higher instead
3129                          */
3130                         return_any = 0;
3131                         find_higher = 1;
3132                         btrfs_release_path(p);
3133                         goto again;
3134                 } else {
3135                         --p->slots[0];
3136                 }
3137         }
3138         return 0;
3139 }
3140
3141 /*
3142  * adjust the pointers going up the tree, starting at level
3143  * making sure the right key of each node is points to 'key'.
3144  * This is used after shifting pointers to the left, so it stops
3145  * fixing up pointers when a given leaf/node is not in slot 0 of the
3146  * higher levels
3147  *
3148  */
3149 static void fixup_low_keys(struct btrfs_path *path,
3150                            struct btrfs_disk_key *key, int level)
3151 {
3152         int i;
3153         struct extent_buffer *t;
3154         int ret;
3155
3156         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3157                 int tslot = path->slots[i];
3158
3159                 if (!path->nodes[i])
3160                         break;
3161                 t = path->nodes[i];
3162                 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3163                                 GFP_ATOMIC);
3164                 BUG_ON(ret < 0);
3165                 btrfs_set_node_key(t, key, tslot);
3166                 btrfs_mark_buffer_dirty(path->nodes[i]);
3167                 if (tslot != 0)
3168                         break;
3169         }
3170 }
3171
3172 /*
3173  * update item key.
3174  *
3175  * This function isn't completely safe. It's the caller's responsibility
3176  * that the new key won't break the order
3177  */
3178 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3179                              struct btrfs_path *path,
3180                              const struct btrfs_key *new_key)
3181 {
3182         struct btrfs_disk_key disk_key;
3183         struct extent_buffer *eb;
3184         int slot;
3185
3186         eb = path->nodes[0];
3187         slot = path->slots[0];
3188         if (slot > 0) {
3189                 btrfs_item_key(eb, &disk_key, slot - 1);
3190                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3191                         btrfs_crit(fs_info,
3192                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3193                                    slot, btrfs_disk_key_objectid(&disk_key),
3194                                    btrfs_disk_key_type(&disk_key),
3195                                    btrfs_disk_key_offset(&disk_key),
3196                                    new_key->objectid, new_key->type,
3197                                    new_key->offset);
3198                         btrfs_print_leaf(eb);
3199                         BUG();
3200                 }
3201         }
3202         if (slot < btrfs_header_nritems(eb) - 1) {
3203                 btrfs_item_key(eb, &disk_key, slot + 1);
3204                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3205                         btrfs_crit(fs_info,
3206                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3207                                    slot, btrfs_disk_key_objectid(&disk_key),
3208                                    btrfs_disk_key_type(&disk_key),
3209                                    btrfs_disk_key_offset(&disk_key),
3210                                    new_key->objectid, new_key->type,
3211                                    new_key->offset);
3212                         btrfs_print_leaf(eb);
3213                         BUG();
3214                 }
3215         }
3216
3217         btrfs_cpu_key_to_disk(&disk_key, new_key);
3218         btrfs_set_item_key(eb, &disk_key, slot);
3219         btrfs_mark_buffer_dirty(eb);
3220         if (slot == 0)
3221                 fixup_low_keys(path, &disk_key, 1);
3222 }
3223
3224 /*
3225  * try to push data from one node into the next node left in the
3226  * tree.
3227  *
3228  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3229  * error, and > 0 if there was no room in the left hand block.
3230  */
3231 static int push_node_left(struct btrfs_trans_handle *trans,
3232                           struct extent_buffer *dst,
3233                           struct extent_buffer *src, int empty)
3234 {
3235         struct btrfs_fs_info *fs_info = trans->fs_info;
3236         int push_items = 0;
3237         int src_nritems;
3238         int dst_nritems;
3239         int ret = 0;
3240
3241         src_nritems = btrfs_header_nritems(src);
3242         dst_nritems = btrfs_header_nritems(dst);
3243         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3244         WARN_ON(btrfs_header_generation(src) != trans->transid);
3245         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3246
3247         if (!empty && src_nritems <= 8)
3248                 return 1;
3249
3250         if (push_items <= 0)
3251                 return 1;
3252
3253         if (empty) {
3254                 push_items = min(src_nritems, push_items);
3255                 if (push_items < src_nritems) {
3256                         /* leave at least 8 pointers in the node if
3257                          * we aren't going to empty it
3258                          */
3259                         if (src_nritems - push_items < 8) {
3260                                 if (push_items <= 8)
3261                                         return 1;
3262                                 push_items -= 8;
3263                         }
3264                 }
3265         } else
3266                 push_items = min(src_nritems - 8, push_items);
3267
3268         ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3269         if (ret) {
3270                 btrfs_abort_transaction(trans, ret);
3271                 return ret;
3272         }
3273         copy_extent_buffer(dst, src,
3274                            btrfs_node_key_ptr_offset(dst_nritems),
3275                            btrfs_node_key_ptr_offset(0),
3276                            push_items * sizeof(struct btrfs_key_ptr));
3277
3278         if (push_items < src_nritems) {
3279                 /*
3280                  * Don't call tree_mod_log_insert_move here, key removal was
3281                  * already fully logged by tree_mod_log_eb_copy above.
3282                  */
3283                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3284                                       btrfs_node_key_ptr_offset(push_items),
3285                                       (src_nritems - push_items) *
3286                                       sizeof(struct btrfs_key_ptr));
3287         }
3288         btrfs_set_header_nritems(src, src_nritems - push_items);
3289         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3290         btrfs_mark_buffer_dirty(src);
3291         btrfs_mark_buffer_dirty(dst);
3292
3293         return ret;
3294 }
3295
3296 /*
3297  * try to push data from one node into the next node right in the
3298  * tree.
3299  *
3300  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3301  * error, and > 0 if there was no room in the right hand block.
3302  *
3303  * this will  only push up to 1/2 the contents of the left node over
3304  */
3305 static int balance_node_right(struct btrfs_trans_handle *trans,
3306                               struct extent_buffer *dst,
3307                               struct extent_buffer *src)
3308 {
3309         struct btrfs_fs_info *fs_info = trans->fs_info;
3310         int push_items = 0;
3311         int max_push;
3312         int src_nritems;
3313         int dst_nritems;
3314         int ret = 0;
3315
3316         WARN_ON(btrfs_header_generation(src) != trans->transid);
3317         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3318
3319         src_nritems = btrfs_header_nritems(src);
3320         dst_nritems = btrfs_header_nritems(dst);
3321         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3322         if (push_items <= 0)
3323                 return 1;
3324
3325         if (src_nritems < 4)
3326                 return 1;
3327
3328         max_push = src_nritems / 2 + 1;
3329         /* don't try to empty the node */
3330         if (max_push >= src_nritems)
3331                 return 1;
3332
3333         if (max_push < push_items)
3334                 push_items = max_push;
3335
3336         ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3337         BUG_ON(ret < 0);
3338         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3339                                       btrfs_node_key_ptr_offset(0),
3340                                       (dst_nritems) *
3341                                       sizeof(struct btrfs_key_ptr));
3342
3343         ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3344                                    push_items);
3345         if (ret) {
3346                 btrfs_abort_transaction(trans, ret);
3347                 return ret;
3348         }
3349         copy_extent_buffer(dst, src,
3350                            btrfs_node_key_ptr_offset(0),
3351                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3352                            push_items * sizeof(struct btrfs_key_ptr));
3353
3354         btrfs_set_header_nritems(src, src_nritems - push_items);
3355         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3356
3357         btrfs_mark_buffer_dirty(src);
3358         btrfs_mark_buffer_dirty(dst);
3359
3360         return ret;
3361 }
3362
3363 /*
3364  * helper function to insert a new root level in the tree.
3365  * A new node is allocated, and a single item is inserted to
3366  * point to the existing root
3367  *
3368  * returns zero on success or < 0 on failure.
3369  */
3370 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3371                            struct btrfs_root *root,
3372                            struct btrfs_path *path, int level)
3373 {
3374         struct btrfs_fs_info *fs_info = root->fs_info;
3375         u64 lower_gen;
3376         struct extent_buffer *lower;
3377         struct extent_buffer *c;
3378         struct extent_buffer *old;
3379         struct btrfs_disk_key lower_key;
3380         int ret;
3381
3382         BUG_ON(path->nodes[level]);
3383         BUG_ON(path->nodes[level-1] != root->node);
3384
3385         lower = path->nodes[level-1];
3386         if (level == 1)
3387                 btrfs_item_key(lower, &lower_key, 0);
3388         else
3389                 btrfs_node_key(lower, &lower_key, 0);
3390
3391         c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3392                                          root->node->start, 0);
3393         if (IS_ERR(c))
3394                 return PTR_ERR(c);
3395
3396         root_add_used(root, fs_info->nodesize);
3397
3398         btrfs_set_header_nritems(c, 1);
3399         btrfs_set_node_key(c, &lower_key, 0);
3400         btrfs_set_node_blockptr(c, 0, lower->start);
3401         lower_gen = btrfs_header_generation(lower);
3402         WARN_ON(lower_gen != trans->transid);
3403
3404         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3405
3406         btrfs_mark_buffer_dirty(c);
3407
3408         old = root->node;
3409         ret = tree_mod_log_insert_root(root->node, c, 0);
3410         BUG_ON(ret < 0);
3411         rcu_assign_pointer(root->node, c);
3412
3413         /* the super has an extra ref to root->node */
3414         free_extent_buffer(old);
3415
3416         add_root_to_dirty_list(root);
3417         extent_buffer_get(c);
3418         path->nodes[level] = c;
3419         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3420         path->slots[level] = 0;
3421         return 0;
3422 }
3423
3424 /*
3425  * worker function to insert a single pointer in a node.
3426  * the node should have enough room for the pointer already
3427  *
3428  * slot and level indicate where you want the key to go, and
3429  * blocknr is the block the key points to.
3430  */
3431 static void insert_ptr(struct btrfs_trans_handle *trans,
3432                        struct btrfs_path *path,
3433                        struct btrfs_disk_key *key, u64 bytenr,
3434                        int slot, int level)
3435 {
3436         struct extent_buffer *lower;
3437         int nritems;
3438         int ret;
3439
3440         BUG_ON(!path->nodes[level]);
3441         btrfs_assert_tree_locked(path->nodes[level]);
3442         lower = path->nodes[level];
3443         nritems = btrfs_header_nritems(lower);
3444         BUG_ON(slot > nritems);
3445         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3446         if (slot != nritems) {
3447                 if (level) {
3448                         ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3449                                         nritems - slot);
3450                         BUG_ON(ret < 0);
3451                 }
3452                 memmove_extent_buffer(lower,
3453                               btrfs_node_key_ptr_offset(slot + 1),
3454                               btrfs_node_key_ptr_offset(slot),
3455                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3456         }
3457         if (level) {
3458                 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3459                                 GFP_NOFS);
3460                 BUG_ON(ret < 0);
3461         }
3462         btrfs_set_node_key(lower, key, slot);
3463         btrfs_set_node_blockptr(lower, slot, bytenr);
3464         WARN_ON(trans->transid == 0);
3465         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3466         btrfs_set_header_nritems(lower, nritems + 1);
3467         btrfs_mark_buffer_dirty(lower);
3468 }
3469
3470 /*
3471  * split the node at the specified level in path in two.
3472  * The path is corrected to point to the appropriate node after the split
3473  *
3474  * Before splitting this tries to make some room in the node by pushing
3475  * left and right, if either one works, it returns right away.
3476  *
3477  * returns 0 on success and < 0 on failure
3478  */
3479 static noinline int split_node(struct btrfs_trans_handle *trans,
3480                                struct btrfs_root *root,
3481                                struct btrfs_path *path, int level)
3482 {
3483         struct btrfs_fs_info *fs_info = root->fs_info;
3484         struct extent_buffer *c;
3485         struct extent_buffer *split;
3486         struct btrfs_disk_key disk_key;
3487         int mid;
3488         int ret;
3489         u32 c_nritems;
3490
3491         c = path->nodes[level];
3492         WARN_ON(btrfs_header_generation(c) != trans->transid);
3493         if (c == root->node) {
3494                 /*
3495                  * trying to split the root, lets make a new one
3496                  *
3497                  * tree mod log: We don't log_removal old root in
3498                  * insert_new_root, because that root buffer will be kept as a
3499                  * normal node. We are going to log removal of half of the
3500                  * elements below with tree_mod_log_eb_copy. We're holding a
3501                  * tree lock on the buffer, which is why we cannot race with
3502                  * other tree_mod_log users.
3503                  */
3504                 ret = insert_new_root(trans, root, path, level + 1);
3505                 if (ret)
3506                         return ret;
3507         } else {
3508                 ret = push_nodes_for_insert(trans, root, path, level);
3509                 c = path->nodes[level];
3510                 if (!ret && btrfs_header_nritems(c) <
3511                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3512                         return 0;
3513                 if (ret < 0)
3514                         return ret;
3515         }
3516
3517         c_nritems = btrfs_header_nritems(c);
3518         mid = (c_nritems + 1) / 2;
3519         btrfs_node_key(c, &disk_key, mid);
3520
3521         split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3522                                              c->start, 0);
3523         if (IS_ERR(split))
3524                 return PTR_ERR(split);
3525
3526         root_add_used(root, fs_info->nodesize);
3527         ASSERT(btrfs_header_level(c) == level);
3528
3529         ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3530         if (ret) {
3531                 btrfs_abort_transaction(trans, ret);
3532                 return ret;
3533         }
3534         copy_extent_buffer(split, c,
3535                            btrfs_node_key_ptr_offset(0),
3536                            btrfs_node_key_ptr_offset(mid),
3537                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3538         btrfs_set_header_nritems(split, c_nritems - mid);
3539         btrfs_set_header_nritems(c, mid);
3540         ret = 0;
3541
3542         btrfs_mark_buffer_dirty(c);
3543         btrfs_mark_buffer_dirty(split);
3544
3545         insert_ptr(trans, path, &disk_key, split->start,
3546                    path->slots[level + 1] + 1, level + 1);
3547
3548         if (path->slots[level] >= mid) {
3549                 path->slots[level] -= mid;
3550                 btrfs_tree_unlock(c);
3551                 free_extent_buffer(c);
3552                 path->nodes[level] = split;
3553                 path->slots[level + 1] += 1;
3554         } else {
3555                 btrfs_tree_unlock(split);
3556                 free_extent_buffer(split);
3557         }
3558         return ret;
3559 }
3560
3561 /*
3562  * how many bytes are required to store the items in a leaf.  start
3563  * and nr indicate which items in the leaf to check.  This totals up the
3564  * space used both by the item structs and the item data
3565  */
3566 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3567 {
3568         struct btrfs_item *start_item;
3569         struct btrfs_item *end_item;
3570         struct btrfs_map_token token;
3571         int data_len;
3572         int nritems = btrfs_header_nritems(l);
3573         int end = min(nritems, start + nr) - 1;
3574
3575         if (!nr)
3576                 return 0;
3577         btrfs_init_map_token(&token, l);
3578         start_item = btrfs_item_nr(start);
3579         end_item = btrfs_item_nr(end);
3580         data_len = btrfs_token_item_offset(l, start_item, &token) +
3581                 btrfs_token_item_size(l, start_item, &token);
3582         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3583         data_len += sizeof(struct btrfs_item) * nr;
3584         WARN_ON(data_len < 0);
3585         return data_len;
3586 }
3587
3588 /*
3589  * The space between the end of the leaf items and
3590  * the start of the leaf data.  IOW, how much room
3591  * the leaf has left for both items and data
3592  */
3593 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3594 {
3595         struct btrfs_fs_info *fs_info = leaf->fs_info;
3596         int nritems = btrfs_header_nritems(leaf);
3597         int ret;
3598
3599         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3600         if (ret < 0) {
3601                 btrfs_crit(fs_info,
3602                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3603                            ret,
3604                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3605                            leaf_space_used(leaf, 0, nritems), nritems);
3606         }
3607         return ret;
3608 }
3609
3610 /*
3611  * min slot controls the lowest index we're willing to push to the
3612  * right.  We'll push up to and including min_slot, but no lower
3613  */
3614 static noinline int __push_leaf_right(struct btrfs_path *path,
3615                                       int data_size, int empty,
3616                                       struct extent_buffer *right,
3617                                       int free_space, u32 left_nritems,
3618                                       u32 min_slot)
3619 {
3620         struct btrfs_fs_info *fs_info = right->fs_info;
3621         struct extent_buffer *left = path->nodes[0];
3622         struct extent_buffer *upper = path->nodes[1];
3623         struct btrfs_map_token token;
3624         struct btrfs_disk_key disk_key;
3625         int slot;
3626         u32 i;
3627         int push_space = 0;
3628         int push_items = 0;
3629         struct btrfs_item *item;
3630         u32 nr;
3631         u32 right_nritems;
3632         u32 data_end;
3633         u32 this_item_size;
3634
3635         if (empty)
3636                 nr = 0;
3637         else
3638                 nr = max_t(u32, 1, min_slot);
3639
3640         if (path->slots[0] >= left_nritems)
3641                 push_space += data_size;
3642
3643         slot = path->slots[1];
3644         i = left_nritems - 1;
3645         while (i >= nr) {
3646                 item = btrfs_item_nr(i);
3647
3648                 if (!empty && push_items > 0) {
3649                         if (path->slots[0] > i)
3650                                 break;
3651                         if (path->slots[0] == i) {
3652                                 int space = btrfs_leaf_free_space(left);
3653
3654                                 if (space + push_space * 2 > free_space)
3655                                         break;
3656                         }
3657                 }
3658
3659                 if (path->slots[0] == i)
3660                         push_space += data_size;
3661
3662                 this_item_size = btrfs_item_size(left, item);
3663                 if (this_item_size + sizeof(*item) + push_space > free_space)
3664                         break;
3665
3666                 push_items++;
3667                 push_space += this_item_size + sizeof(*item);
3668                 if (i == 0)
3669                         break;
3670                 i--;
3671         }
3672
3673         if (push_items == 0)
3674                 goto out_unlock;
3675
3676         WARN_ON(!empty && push_items == left_nritems);
3677
3678         /* push left to right */
3679         right_nritems = btrfs_header_nritems(right);
3680
3681         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3682         push_space -= leaf_data_end(left);
3683
3684         /* make room in the right data area */
3685         data_end = leaf_data_end(right);
3686         memmove_extent_buffer(right,
3687                               BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3688                               BTRFS_LEAF_DATA_OFFSET + data_end,
3689                               BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3690
3691         /* copy from the left data area */
3692         copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3693                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3694                      BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3695                      push_space);
3696
3697         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3698                               btrfs_item_nr_offset(0),
3699                               right_nritems * sizeof(struct btrfs_item));
3700
3701         /* copy the items from left to right */
3702         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3703                    btrfs_item_nr_offset(left_nritems - push_items),
3704                    push_items * sizeof(struct btrfs_item));
3705
3706         /* update the item pointers */
3707         btrfs_init_map_token(&token, right);
3708         right_nritems += push_items;
3709         btrfs_set_header_nritems(right, right_nritems);
3710         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3711         for (i = 0; i < right_nritems; i++) {
3712                 item = btrfs_item_nr(i);
3713                 push_space -= btrfs_token_item_size(right, item, &token);
3714                 btrfs_set_token_item_offset(right, item, push_space, &token);
3715         }
3716
3717         left_nritems -= push_items;
3718         btrfs_set_header_nritems(left, left_nritems);
3719
3720         if (left_nritems)
3721                 btrfs_mark_buffer_dirty(left);
3722         else
3723                 btrfs_clean_tree_block(left);
3724
3725         btrfs_mark_buffer_dirty(right);
3726
3727         btrfs_item_key(right, &disk_key, 0);
3728         btrfs_set_node_key(upper, &disk_key, slot + 1);
3729         btrfs_mark_buffer_dirty(upper);
3730
3731         /* then fixup the leaf pointer in the path */
3732         if (path->slots[0] >= left_nritems) {
3733                 path->slots[0] -= left_nritems;
3734                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3735                         btrfs_clean_tree_block(path->nodes[0]);
3736                 btrfs_tree_unlock(path->nodes[0]);
3737                 free_extent_buffer(path->nodes[0]);
3738                 path->nodes[0] = right;
3739                 path->slots[1] += 1;
3740         } else {
3741                 btrfs_tree_unlock(right);
3742                 free_extent_buffer(right);
3743         }
3744         return 0;
3745
3746 out_unlock:
3747         btrfs_tree_unlock(right);
3748         free_extent_buffer(right);
3749         return 1;
3750 }
3751
3752 /*
3753  * push some data in the path leaf to the right, trying to free up at
3754  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3755  *
3756  * returns 1 if the push failed because the other node didn't have enough
3757  * room, 0 if everything worked out and < 0 if there were major errors.
3758  *
3759  * this will push starting from min_slot to the end of the leaf.  It won't
3760  * push any slot lower than min_slot
3761  */
3762 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3763                            *root, struct btrfs_path *path,
3764                            int min_data_size, int data_size,
3765                            int empty, u32 min_slot)
3766 {
3767         struct extent_buffer *left = path->nodes[0];
3768         struct extent_buffer *right;
3769         struct extent_buffer *upper;
3770         int slot;
3771         int free_space;
3772         u32 left_nritems;
3773         int ret;
3774
3775         if (!path->nodes[1])
3776                 return 1;
3777
3778         slot = path->slots[1];
3779         upper = path->nodes[1];
3780         if (slot >= btrfs_header_nritems(upper) - 1)
3781                 return 1;
3782
3783         btrfs_assert_tree_locked(path->nodes[1]);
3784
3785         right = btrfs_read_node_slot(upper, slot + 1);
3786         /*
3787          * slot + 1 is not valid or we fail to read the right node,
3788          * no big deal, just return.
3789          */
3790         if (IS_ERR(right))
3791                 return 1;
3792
3793         btrfs_tree_lock(right);
3794         btrfs_set_lock_blocking_write(right);
3795
3796         free_space = btrfs_leaf_free_space(right);
3797         if (free_space < data_size)
3798                 goto out_unlock;
3799
3800         /* cow and double check */
3801         ret = btrfs_cow_block(trans, root, right, upper,
3802                               slot + 1, &right);
3803         if (ret)
3804                 goto out_unlock;
3805
3806         free_space = btrfs_leaf_free_space(right);
3807         if (free_space < data_size)
3808                 goto out_unlock;
3809
3810         left_nritems = btrfs_header_nritems(left);
3811         if (left_nritems == 0)
3812                 goto out_unlock;
3813
3814         if (path->slots[0] == left_nritems && !empty) {
3815                 /* Key greater than all keys in the leaf, right neighbor has
3816                  * enough room for it and we're not emptying our leaf to delete
3817                  * it, therefore use right neighbor to insert the new item and
3818                  * no need to touch/dirty our left leaf. */
3819                 btrfs_tree_unlock(left);
3820                 free_extent_buffer(left);
3821                 path->nodes[0] = right;
3822                 path->slots[0] = 0;
3823                 path->slots[1]++;
3824                 return 0;
3825         }
3826
3827         return __push_leaf_right(path, min_data_size, empty,
3828                                 right, free_space, left_nritems, min_slot);
3829 out_unlock:
3830         btrfs_tree_unlock(right);
3831         free_extent_buffer(right);
3832         return 1;
3833 }
3834
3835 /*
3836  * push some data in the path leaf to the left, trying to free up at
3837  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3838  *
3839  * max_slot can put a limit on how far into the leaf we'll push items.  The
3840  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3841  * items
3842  */
3843 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3844                                      int empty, struct extent_buffer *left,
3845                                      int free_space, u32 right_nritems,
3846                                      u32 max_slot)
3847 {
3848         struct btrfs_fs_info *fs_info = left->fs_info;
3849         struct btrfs_disk_key disk_key;
3850         struct extent_buffer *right = path->nodes[0];
3851         int i;
3852         int push_space = 0;
3853         int push_items = 0;
3854         struct btrfs_item *item;
3855         u32 old_left_nritems;
3856         u32 nr;
3857         int ret = 0;
3858         u32 this_item_size;
3859         u32 old_left_item_size;
3860         struct btrfs_map_token token;
3861
3862         if (empty)
3863                 nr = min(right_nritems, max_slot);
3864         else
3865                 nr = min(right_nritems - 1, max_slot);
3866
3867         for (i = 0; i < nr; i++) {
3868                 item = btrfs_item_nr(i);
3869
3870                 if (!empty && push_items > 0) {
3871                         if (path->slots[0] < i)
3872                                 break;
3873                         if (path->slots[0] == i) {
3874                                 int space = btrfs_leaf_free_space(right);
3875
3876                                 if (space + push_space * 2 > free_space)
3877                                         break;
3878                         }
3879                 }
3880
3881                 if (path->slots[0] == i)
3882                         push_space += data_size;
3883
3884                 this_item_size = btrfs_item_size(right, item);
3885                 if (this_item_size + sizeof(*item) + push_space > free_space)
3886                         break;
3887
3888                 push_items++;
3889                 push_space += this_item_size + sizeof(*item);
3890         }
3891
3892         if (push_items == 0) {
3893                 ret = 1;
3894                 goto out;
3895         }
3896         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3897
3898         /* push data from right to left */
3899         copy_extent_buffer(left, right,
3900                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3901                            btrfs_item_nr_offset(0),
3902                            push_items * sizeof(struct btrfs_item));
3903
3904         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3905                      btrfs_item_offset_nr(right, push_items - 1);
3906
3907         copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3908                      leaf_data_end(left) - push_space,
3909                      BTRFS_LEAF_DATA_OFFSET +
3910                      btrfs_item_offset_nr(right, push_items - 1),
3911                      push_space);
3912         old_left_nritems = btrfs_header_nritems(left);
3913         BUG_ON(old_left_nritems <= 0);
3914
3915         btrfs_init_map_token(&token, left);
3916         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3917         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3918                 u32 ioff;
3919
3920                 item = btrfs_item_nr(i);
3921
3922                 ioff = btrfs_token_item_offset(left, item, &token);
3923                 btrfs_set_token_item_offset(left, item,
3924                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3925                       &token);
3926         }
3927         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3928
3929         /* fixup right node */
3930         if (push_items > right_nritems)
3931                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3932                        right_nritems);
3933
3934         if (push_items < right_nritems) {
3935                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3936                                                   leaf_data_end(right);
3937                 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3938                                       BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3939                                       BTRFS_LEAF_DATA_OFFSET +
3940                                       leaf_data_end(right), push_space);
3941
3942                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3943                               btrfs_item_nr_offset(push_items),
3944                              (btrfs_header_nritems(right) - push_items) *
3945                              sizeof(struct btrfs_item));
3946         }
3947
3948         btrfs_init_map_token(&token, right);
3949         right_nritems -= push_items;
3950         btrfs_set_header_nritems(right, right_nritems);
3951         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3952         for (i = 0; i < right_nritems; i++) {
3953                 item = btrfs_item_nr(i);
3954
3955                 push_space = push_space - btrfs_token_item_size(right,
3956                                                                 item, &token);
3957                 btrfs_set_token_item_offset(right, item, push_space, &token);
3958         }
3959
3960         btrfs_mark_buffer_dirty(left);
3961         if (right_nritems)
3962                 btrfs_mark_buffer_dirty(right);
3963         else
3964                 btrfs_clean_tree_block(right);
3965
3966         btrfs_item_key(right, &disk_key, 0);
3967         fixup_low_keys(path, &disk_key, 1);
3968
3969         /* then fixup the leaf pointer in the path */
3970         if (path->slots[0] < push_items) {
3971                 path->slots[0] += old_left_nritems;
3972                 btrfs_tree_unlock(path->nodes[0]);
3973                 free_extent_buffer(path->nodes[0]);
3974                 path->nodes[0] = left;
3975                 path->slots[1] -= 1;
3976         } else {
3977                 btrfs_tree_unlock(left);
3978                 free_extent_buffer(left);
3979                 path->slots[0] -= push_items;
3980         }
3981         BUG_ON(path->slots[0] < 0);
3982         return ret;
3983 out:
3984         btrfs_tree_unlock(left);
3985         free_extent_buffer(left);
3986         return ret;
3987 }
3988
3989 /*
3990  * push some data in the path leaf to the left, trying to free up at
3991  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3992  *
3993  * max_slot can put a limit on how far into the leaf we'll push items.  The
3994  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3995  * items
3996  */
3997 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3998                           *root, struct btrfs_path *path, int min_data_size,
3999                           int data_size, int empty, u32 max_slot)
4000 {
4001         struct extent_buffer *right = path->nodes[0];
4002         struct extent_buffer *left;
4003         int slot;
4004         int free_space;
4005         u32 right_nritems;
4006         int ret = 0;
4007
4008         slot = path->slots[1];
4009         if (slot == 0)
4010                 return 1;
4011         if (!path->nodes[1])
4012                 return 1;
4013
4014         right_nritems = btrfs_header_nritems(right);
4015         if (right_nritems == 0)
4016                 return 1;
4017
4018         btrfs_assert_tree_locked(path->nodes[1]);
4019
4020         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4021         /*
4022          * slot - 1 is not valid or we fail to read the left node,
4023          * no big deal, just return.
4024          */
4025         if (IS_ERR(left))
4026                 return 1;
4027
4028         btrfs_tree_lock(left);
4029         btrfs_set_lock_blocking_write(left);
4030
4031         free_space = btrfs_leaf_free_space(left);
4032         if (free_space < data_size) {
4033                 ret = 1;
4034                 goto out;
4035         }
4036
4037         /* cow and double check */
4038         ret = btrfs_cow_block(trans, root, left,
4039                               path->nodes[1], slot - 1, &left);
4040         if (ret) {
4041                 /* we hit -ENOSPC, but it isn't fatal here */
4042                 if (ret == -ENOSPC)
4043                         ret = 1;
4044                 goto out;
4045         }
4046
4047         free_space = btrfs_leaf_free_space(left);
4048         if (free_space < data_size) {
4049                 ret = 1;
4050                 goto out;
4051         }
4052
4053         return __push_leaf_left(path, min_data_size,
4054                                empty, left, free_space, right_nritems,
4055                                max_slot);
4056 out:
4057         btrfs_tree_unlock(left);
4058         free_extent_buffer(left);
4059         return ret;
4060 }
4061
4062 /*
4063  * split the path's leaf in two, making sure there is at least data_size
4064  * available for the resulting leaf level of the path.
4065  */
4066 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4067                                     struct btrfs_path *path,
4068                                     struct extent_buffer *l,
4069                                     struct extent_buffer *right,
4070                                     int slot, int mid, int nritems)
4071 {
4072         struct btrfs_fs_info *fs_info = trans->fs_info;
4073         int data_copy_size;
4074         int rt_data_off;
4075         int i;
4076         struct btrfs_disk_key disk_key;
4077         struct btrfs_map_token token;
4078
4079         nritems = nritems - mid;
4080         btrfs_set_header_nritems(right, nritems);
4081         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4082
4083         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4084                            btrfs_item_nr_offset(mid),
4085                            nritems * sizeof(struct btrfs_item));
4086
4087         copy_extent_buffer(right, l,
4088                      BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4089                      data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4090                      leaf_data_end(l), data_copy_size);
4091
4092         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4093
4094         btrfs_init_map_token(&token, right);
4095         for (i = 0; i < nritems; i++) {
4096                 struct btrfs_item *item = btrfs_item_nr(i);
4097                 u32 ioff;
4098
4099                 ioff = btrfs_token_item_offset(right, item, &token);
4100                 btrfs_set_token_item_offset(right, item,
4101                                             ioff + rt_data_off, &token);
4102         }
4103
4104         btrfs_set_header_nritems(l, mid);
4105         btrfs_item_key(right, &disk_key, 0);
4106         insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4107
4108         btrfs_mark_buffer_dirty(right);
4109         btrfs_mark_buffer_dirty(l);
4110         BUG_ON(path->slots[0] != slot);
4111
4112         if (mid <= slot) {
4113                 btrfs_tree_unlock(path->nodes[0]);
4114                 free_extent_buffer(path->nodes[0]);
4115                 path->nodes[0] = right;
4116                 path->slots[0] -= mid;
4117                 path->slots[1] += 1;
4118         } else {
4119                 btrfs_tree_unlock(right);
4120                 free_extent_buffer(right);
4121         }
4122
4123         BUG_ON(path->slots[0] < 0);
4124 }
4125
4126 /*
4127  * double splits happen when we need to insert a big item in the middle
4128  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4129  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4130  *          A                 B                 C
4131  *
4132  * We avoid this by trying to push the items on either side of our target
4133  * into the adjacent leaves.  If all goes well we can avoid the double split
4134  * completely.
4135  */
4136 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4137                                           struct btrfs_root *root,
4138                                           struct btrfs_path *path,
4139                                           int data_size)
4140 {
4141         int ret;
4142         int progress = 0;
4143         int slot;
4144         u32 nritems;
4145         int space_needed = data_size;
4146
4147         slot = path->slots[0];
4148         if (slot < btrfs_header_nritems(path->nodes[0]))
4149                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4150
4151         /*
4152          * try to push all the items after our slot into the
4153          * right leaf
4154          */
4155         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4156         if (ret < 0)
4157                 return ret;
4158
4159         if (ret == 0)
4160                 progress++;
4161
4162         nritems = btrfs_header_nritems(path->nodes[0]);
4163         /*
4164          * our goal is to get our slot at the start or end of a leaf.  If
4165          * we've done so we're done
4166          */
4167         if (path->slots[0] == 0 || path->slots[0] == nritems)
4168                 return 0;
4169
4170         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4171                 return 0;
4172
4173         /* try to push all the items before our slot into the next leaf */
4174         slot = path->slots[0];
4175         space_needed = data_size;
4176         if (slot > 0)
4177                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4178         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4179         if (ret < 0)
4180                 return ret;
4181
4182         if (ret == 0)
4183                 progress++;
4184
4185         if (progress)
4186                 return 0;
4187         return 1;
4188 }
4189
4190 /*
4191  * split the path's leaf in two, making sure there is at least data_size
4192  * available for the resulting leaf level of the path.
4193  *
4194  * returns 0 if all went well and < 0 on failure.
4195  */
4196 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4197                                struct btrfs_root *root,
4198                                const struct btrfs_key *ins_key,
4199                                struct btrfs_path *path, int data_size,
4200                                int extend)
4201 {
4202         struct btrfs_disk_key disk_key;
4203         struct extent_buffer *l;
4204         u32 nritems;
4205         int mid;
4206         int slot;
4207         struct extent_buffer *right;
4208         struct btrfs_fs_info *fs_info = root->fs_info;
4209         int ret = 0;
4210         int wret;
4211         int split;
4212         int num_doubles = 0;
4213         int tried_avoid_double = 0;
4214
4215         l = path->nodes[0];
4216         slot = path->slots[0];
4217         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4218             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4219                 return -EOVERFLOW;
4220
4221         /* first try to make some room by pushing left and right */
4222         if (data_size && path->nodes[1]) {
4223                 int space_needed = data_size;
4224
4225                 if (slot < btrfs_header_nritems(l))
4226                         space_needed -= btrfs_leaf_free_space(l);
4227
4228                 wret = push_leaf_right(trans, root, path, space_needed,
4229                                        space_needed, 0, 0);
4230                 if (wret < 0)
4231                         return wret;
4232                 if (wret) {
4233                         space_needed = data_size;
4234                         if (slot > 0)
4235                                 space_needed -= btrfs_leaf_free_space(l);
4236                         wret = push_leaf_left(trans, root, path, space_needed,
4237                                               space_needed, 0, (u32)-1);
4238                         if (wret < 0)
4239                                 return wret;
4240                 }
4241                 l = path->nodes[0];
4242
4243                 /* did the pushes work? */
4244                 if (btrfs_leaf_free_space(l) >= data_size)
4245                         return 0;
4246         }
4247
4248         if (!path->nodes[1]) {
4249                 ret = insert_new_root(trans, root, path, 1);
4250                 if (ret)
4251                         return ret;
4252         }
4253 again:
4254         split = 1;
4255         l = path->nodes[0];
4256         slot = path->slots[0];
4257         nritems = btrfs_header_nritems(l);
4258         mid = (nritems + 1) / 2;
4259
4260         if (mid <= slot) {
4261                 if (nritems == 1 ||
4262                     leaf_space_used(l, mid, nritems - mid) + data_size >
4263                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4264                         if (slot >= nritems) {
4265                                 split = 0;
4266                         } else {
4267                                 mid = slot;
4268                                 if (mid != nritems &&
4269                                     leaf_space_used(l, mid, nritems - mid) +
4270                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271                                         if (data_size && !tried_avoid_double)
4272                                                 goto push_for_double;
4273                                         split = 2;
4274                                 }
4275                         }
4276                 }
4277         } else {
4278                 if (leaf_space_used(l, 0, mid) + data_size >
4279                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4280                         if (!extend && data_size && slot == 0) {
4281                                 split = 0;
4282                         } else if ((extend || !data_size) && slot == 0) {
4283                                 mid = 1;
4284                         } else {
4285                                 mid = slot;
4286                                 if (mid != nritems &&
4287                                     leaf_space_used(l, mid, nritems - mid) +
4288                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4289                                         if (data_size && !tried_avoid_double)
4290                                                 goto push_for_double;
4291                                         split = 2;
4292                                 }
4293                         }
4294                 }
4295         }
4296
4297         if (split == 0)
4298                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4299         else
4300                 btrfs_item_key(l, &disk_key, mid);
4301
4302         right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4303                                              l->start, 0);
4304         if (IS_ERR(right))
4305                 return PTR_ERR(right);
4306
4307         root_add_used(root, fs_info->nodesize);
4308
4309         if (split == 0) {
4310                 if (mid <= slot) {
4311                         btrfs_set_header_nritems(right, 0);
4312                         insert_ptr(trans, path, &disk_key,
4313                                    right->start, path->slots[1] + 1, 1);
4314                         btrfs_tree_unlock(path->nodes[0]);
4315                         free_extent_buffer(path->nodes[0]);
4316                         path->nodes[0] = right;
4317                         path->slots[0] = 0;
4318                         path->slots[1] += 1;
4319                 } else {
4320                         btrfs_set_header_nritems(right, 0);
4321                         insert_ptr(trans, path, &disk_key,
4322                                    right->start, path->slots[1], 1);
4323                         btrfs_tree_unlock(path->nodes[0]);
4324                         free_extent_buffer(path->nodes[0]);
4325                         path->nodes[0] = right;
4326                         path->slots[0] = 0;
4327                         if (path->slots[1] == 0)
4328                                 fixup_low_keys(path, &disk_key, 1);
4329                 }
4330                 /*
4331                  * We create a new leaf 'right' for the required ins_len and
4332                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4333                  * the content of ins_len to 'right'.
4334                  */
4335                 return ret;
4336         }
4337
4338         copy_for_split(trans, path, l, right, slot, mid, nritems);
4339
4340         if (split == 2) {
4341                 BUG_ON(num_doubles != 0);
4342                 num_doubles++;
4343                 goto again;
4344         }
4345
4346         return 0;
4347
4348 push_for_double:
4349         push_for_double_split(trans, root, path, data_size);
4350         tried_avoid_double = 1;
4351         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4352                 return 0;
4353         goto again;
4354 }
4355
4356 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4357                                          struct btrfs_root *root,
4358                                          struct btrfs_path *path, int ins_len)
4359 {
4360         struct btrfs_key key;
4361         struct extent_buffer *leaf;
4362         struct btrfs_file_extent_item *fi;
4363         u64 extent_len = 0;
4364         u32 item_size;
4365         int ret;
4366
4367         leaf = path->nodes[0];
4368         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4369
4370         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4371                key.type != BTRFS_EXTENT_CSUM_KEY);
4372
4373         if (btrfs_leaf_free_space(leaf) >= ins_len)
4374                 return 0;
4375
4376         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4377         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4378                 fi = btrfs_item_ptr(leaf, path->slots[0],
4379                                     struct btrfs_file_extent_item);
4380                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4381         }
4382         btrfs_release_path(path);
4383
4384         path->keep_locks = 1;
4385         path->search_for_split = 1;
4386         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4387         path->search_for_split = 0;
4388         if (ret > 0)
4389                 ret = -EAGAIN;
4390         if (ret < 0)
4391                 goto err;
4392
4393         ret = -EAGAIN;
4394         leaf = path->nodes[0];
4395         /* if our item isn't there, return now */
4396         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4397                 goto err;
4398
4399         /* the leaf has  changed, it now has room.  return now */
4400         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4401                 goto err;
4402
4403         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4404                 fi = btrfs_item_ptr(leaf, path->slots[0],
4405                                     struct btrfs_file_extent_item);
4406                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4407                         goto err;
4408         }
4409
4410         btrfs_set_path_blocking(path);
4411         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4412         if (ret)
4413                 goto err;
4414
4415         path->keep_locks = 0;
4416         btrfs_unlock_up_safe(path, 1);
4417         return 0;
4418 err:
4419         path->keep_locks = 0;
4420         return ret;
4421 }
4422
4423 static noinline int split_item(struct btrfs_path *path,
4424                                const struct btrfs_key *new_key,
4425                                unsigned long split_offset)
4426 {
4427         struct extent_buffer *leaf;
4428         struct btrfs_item *item;
4429         struct btrfs_item *new_item;
4430         int slot;
4431         char *buf;
4432         u32 nritems;
4433         u32 item_size;
4434         u32 orig_offset;
4435         struct btrfs_disk_key disk_key;
4436
4437         leaf = path->nodes[0];
4438         BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4439
4440         btrfs_set_path_blocking(path);
4441
4442         item = btrfs_item_nr(path->slots[0]);
4443         orig_offset = btrfs_item_offset(leaf, item);
4444         item_size = btrfs_item_size(leaf, item);
4445
4446         buf = kmalloc(item_size, GFP_NOFS);
4447         if (!buf)
4448                 return -ENOMEM;
4449
4450         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4451                             path->slots[0]), item_size);
4452
4453         slot = path->slots[0] + 1;
4454         nritems = btrfs_header_nritems(leaf);
4455         if (slot != nritems) {
4456                 /* shift the items */
4457                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4458                                 btrfs_item_nr_offset(slot),
4459                                 (nritems - slot) * sizeof(struct btrfs_item));
4460         }
4461
4462         btrfs_cpu_key_to_disk(&disk_key, new_key);
4463         btrfs_set_item_key(leaf, &disk_key, slot);
4464
4465         new_item = btrfs_item_nr(slot);
4466
4467         btrfs_set_item_offset(leaf, new_item, orig_offset);
4468         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4469
4470         btrfs_set_item_offset(leaf, item,
4471                               orig_offset + item_size - split_offset);
4472         btrfs_set_item_size(leaf, item, split_offset);
4473
4474         btrfs_set_header_nritems(leaf, nritems + 1);
4475
4476         /* write the data for the start of the original item */
4477         write_extent_buffer(leaf, buf,
4478                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4479                             split_offset);
4480
4481         /* write the data for the new item */
4482         write_extent_buffer(leaf, buf + split_offset,
4483                             btrfs_item_ptr_offset(leaf, slot),
4484                             item_size - split_offset);
4485         btrfs_mark_buffer_dirty(leaf);
4486
4487         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4488         kfree(buf);
4489         return 0;
4490 }
4491
4492 /*
4493  * This function splits a single item into two items,
4494  * giving 'new_key' to the new item and splitting the
4495  * old one at split_offset (from the start of the item).
4496  *
4497  * The path may be released by this operation.  After
4498  * the split, the path is pointing to the old item.  The
4499  * new item is going to be in the same node as the old one.
4500  *
4501  * Note, the item being split must be smaller enough to live alone on
4502  * a tree block with room for one extra struct btrfs_item
4503  *
4504  * This allows us to split the item in place, keeping a lock on the
4505  * leaf the entire time.
4506  */
4507 int btrfs_split_item(struct btrfs_trans_handle *trans,
4508                      struct btrfs_root *root,
4509                      struct btrfs_path *path,
4510                      const struct btrfs_key *new_key,
4511                      unsigned long split_offset)
4512 {
4513         int ret;
4514         ret = setup_leaf_for_split(trans, root, path,
4515                                    sizeof(struct btrfs_item));
4516         if (ret)
4517                 return ret;
4518
4519         ret = split_item(path, new_key, split_offset);
4520         return ret;
4521 }
4522
4523 /*
4524  * This function duplicate a item, giving 'new_key' to the new item.
4525  * It guarantees both items live in the same tree leaf and the new item
4526  * is contiguous with the original item.
4527  *
4528  * This allows us to split file extent in place, keeping a lock on the
4529  * leaf the entire time.
4530  */
4531 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4532                          struct btrfs_root *root,
4533                          struct btrfs_path *path,
4534                          const struct btrfs_key *new_key)
4535 {
4536         struct extent_buffer *leaf;
4537         int ret;
4538         u32 item_size;
4539
4540         leaf = path->nodes[0];
4541         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4542         ret = setup_leaf_for_split(trans, root, path,
4543                                    item_size + sizeof(struct btrfs_item));
4544         if (ret)
4545                 return ret;
4546
4547         path->slots[0]++;
4548         setup_items_for_insert(root, path, new_key, &item_size,
4549                                item_size, item_size +
4550                                sizeof(struct btrfs_item), 1);
4551         leaf = path->nodes[0];
4552         memcpy_extent_buffer(leaf,
4553                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4554                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4555                              item_size);
4556         return 0;
4557 }
4558
4559 /*
4560  * make the item pointed to by the path smaller.  new_size indicates
4561  * how small to make it, and from_end tells us if we just chop bytes
4562  * off the end of the item or if we shift the item to chop bytes off
4563  * the front.
4564  */
4565 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4566 {
4567         int slot;
4568         struct extent_buffer *leaf;
4569         struct btrfs_item *item;
4570         u32 nritems;
4571         unsigned int data_end;
4572         unsigned int old_data_start;
4573         unsigned int old_size;
4574         unsigned int size_diff;
4575         int i;
4576         struct btrfs_map_token token;
4577
4578         leaf = path->nodes[0];
4579         slot = path->slots[0];
4580
4581         old_size = btrfs_item_size_nr(leaf, slot);
4582         if (old_size == new_size)
4583                 return;
4584
4585         nritems = btrfs_header_nritems(leaf);
4586         data_end = leaf_data_end(leaf);
4587
4588         old_data_start = btrfs_item_offset_nr(leaf, slot);
4589
4590         size_diff = old_size - new_size;
4591
4592         BUG_ON(slot < 0);
4593         BUG_ON(slot >= nritems);
4594
4595         /*
4596          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4597          */
4598         /* first correct the data pointers */
4599         btrfs_init_map_token(&token, leaf);
4600         for (i = slot; i < nritems; i++) {
4601                 u32 ioff;
4602                 item = btrfs_item_nr(i);
4603
4604                 ioff = btrfs_token_item_offset(leaf, item, &token);
4605                 btrfs_set_token_item_offset(leaf, item,
4606                                             ioff + size_diff, &token);
4607         }
4608
4609         /* shift the data */
4610         if (from_end) {
4611                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4612                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4613                               data_end, old_data_start + new_size - data_end);
4614         } else {
4615                 struct btrfs_disk_key disk_key;
4616                 u64 offset;
4617
4618                 btrfs_item_key(leaf, &disk_key, slot);
4619
4620                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4621                         unsigned long ptr;
4622                         struct btrfs_file_extent_item *fi;
4623
4624                         fi = btrfs_item_ptr(leaf, slot,
4625                                             struct btrfs_file_extent_item);
4626                         fi = (struct btrfs_file_extent_item *)(
4627                              (unsigned long)fi - size_diff);
4628
4629                         if (btrfs_file_extent_type(leaf, fi) ==
4630                             BTRFS_FILE_EXTENT_INLINE) {
4631                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4632                                 memmove_extent_buffer(leaf, ptr,
4633                                       (unsigned long)fi,
4634                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4635                         }
4636                 }
4637
4638                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4639                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4640                               data_end, old_data_start - data_end);
4641
4642                 offset = btrfs_disk_key_offset(&disk_key);
4643                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4644                 btrfs_set_item_key(leaf, &disk_key, slot);
4645                 if (slot == 0)
4646                         fixup_low_keys(path, &disk_key, 1);
4647         }
4648
4649         item = btrfs_item_nr(slot);
4650         btrfs_set_item_size(leaf, item, new_size);
4651         btrfs_mark_buffer_dirty(leaf);
4652
4653         if (btrfs_leaf_free_space(leaf) < 0) {
4654                 btrfs_print_leaf(leaf);
4655                 BUG();
4656         }
4657 }
4658
4659 /*
4660  * make the item pointed to by the path bigger, data_size is the added size.
4661  */
4662 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4663 {
4664         int slot;
4665         struct extent_buffer *leaf;
4666         struct btrfs_item *item;
4667         u32 nritems;
4668         unsigned int data_end;
4669         unsigned int old_data;
4670         unsigned int old_size;
4671         int i;
4672         struct btrfs_map_token token;
4673
4674         leaf = path->nodes[0];
4675
4676         nritems = btrfs_header_nritems(leaf);
4677         data_end = leaf_data_end(leaf);
4678
4679         if (btrfs_leaf_free_space(leaf) < data_size) {
4680                 btrfs_print_leaf(leaf);
4681                 BUG();
4682         }
4683         slot = path->slots[0];
4684         old_data = btrfs_item_end_nr(leaf, slot);
4685
4686         BUG_ON(slot < 0);
4687         if (slot >= nritems) {
4688                 btrfs_print_leaf(leaf);
4689                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4690                            slot, nritems);
4691                 BUG();
4692         }
4693
4694         /*
4695          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4696          */
4697         /* first correct the data pointers */
4698         btrfs_init_map_token(&token, leaf);
4699         for (i = slot; i < nritems; i++) {
4700                 u32 ioff;
4701                 item = btrfs_item_nr(i);
4702
4703                 ioff = btrfs_token_item_offset(leaf, item, &token);
4704                 btrfs_set_token_item_offset(leaf, item,
4705                                             ioff - data_size, &token);
4706         }
4707
4708         /* shift the data */
4709         memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4710                       data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4711                       data_end, old_data - data_end);
4712
4713         data_end = old_data;
4714         old_size = btrfs_item_size_nr(leaf, slot);
4715         item = btrfs_item_nr(slot);
4716         btrfs_set_item_size(leaf, item, old_size + data_size);
4717         btrfs_mark_buffer_dirty(leaf);
4718
4719         if (btrfs_leaf_free_space(leaf) < 0) {
4720                 btrfs_print_leaf(leaf);
4721                 BUG();
4722         }
4723 }
4724
4725 /*
4726  * this is a helper for btrfs_insert_empty_items, the main goal here is
4727  * to save stack depth by doing the bulk of the work in a function
4728  * that doesn't call btrfs_search_slot
4729  */
4730 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4731                             const struct btrfs_key *cpu_key, u32 *data_size,
4732                             u32 total_data, u32 total_size, int nr)
4733 {
4734         struct btrfs_fs_info *fs_info = root->fs_info;
4735         struct btrfs_item *item;
4736         int i;
4737         u32 nritems;
4738         unsigned int data_end;
4739         struct btrfs_disk_key disk_key;
4740         struct extent_buffer *leaf;
4741         int slot;
4742         struct btrfs_map_token token;
4743
4744         if (path->slots[0] == 0) {
4745                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4746                 fixup_low_keys(path, &disk_key, 1);
4747         }
4748         btrfs_unlock_up_safe(path, 1);
4749
4750         leaf = path->nodes[0];
4751         slot = path->slots[0];
4752
4753         nritems = btrfs_header_nritems(leaf);
4754         data_end = leaf_data_end(leaf);
4755
4756         if (btrfs_leaf_free_space(leaf) < total_size) {
4757                 btrfs_print_leaf(leaf);
4758                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4759                            total_size, btrfs_leaf_free_space(leaf));
4760                 BUG();
4761         }
4762
4763         btrfs_init_map_token(&token, leaf);
4764         if (slot != nritems) {
4765                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4766
4767                 if (old_data < data_end) {
4768                         btrfs_print_leaf(leaf);
4769                         btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4770                                    slot, old_data, data_end);
4771                         BUG();
4772                 }
4773                 /*
4774                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4775                  */
4776                 /* first correct the data pointers */
4777                 for (i = slot; i < nritems; i++) {
4778                         u32 ioff;
4779
4780                         item = btrfs_item_nr(i);
4781                         ioff = btrfs_token_item_offset(leaf, item, &token);
4782                         btrfs_set_token_item_offset(leaf, item,
4783                                                     ioff - total_data, &token);
4784                 }
4785                 /* shift the items */
4786                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4787                               btrfs_item_nr_offset(slot),
4788                               (nritems - slot) * sizeof(struct btrfs_item));
4789
4790                 /* shift the data */
4791                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4792                               data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4793                               data_end, old_data - data_end);
4794                 data_end = old_data;
4795         }
4796
4797         /* setup the item for the new data */
4798         for (i = 0; i < nr; i++) {
4799                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4800                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4801                 item = btrfs_item_nr(slot + i);
4802                 btrfs_set_token_item_offset(leaf, item,
4803                                             data_end - data_size[i], &token);
4804                 data_end -= data_size[i];
4805                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4806         }
4807
4808         btrfs_set_header_nritems(leaf, nritems + nr);
4809         btrfs_mark_buffer_dirty(leaf);
4810
4811         if (btrfs_leaf_free_space(leaf) < 0) {
4812                 btrfs_print_leaf(leaf);
4813                 BUG();
4814         }
4815 }
4816
4817 /*
4818  * Given a key and some data, insert items into the tree.
4819  * This does all the path init required, making room in the tree if needed.
4820  */
4821 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4822                             struct btrfs_root *root,
4823                             struct btrfs_path *path,
4824                             const struct btrfs_key *cpu_key, u32 *data_size,
4825                             int nr)
4826 {
4827         int ret = 0;
4828         int slot;
4829         int i;
4830         u32 total_size = 0;
4831         u32 total_data = 0;
4832
4833         for (i = 0; i < nr; i++)
4834                 total_data += data_size[i];
4835
4836         total_size = total_data + (nr * sizeof(struct btrfs_item));
4837         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4838         if (ret == 0)
4839                 return -EEXIST;
4840         if (ret < 0)
4841                 return ret;
4842
4843         slot = path->slots[0];
4844         BUG_ON(slot < 0);
4845
4846         setup_items_for_insert(root, path, cpu_key, data_size,
4847                                total_data, total_size, nr);
4848         return 0;
4849 }
4850
4851 /*
4852  * Given a key and some data, insert an item into the tree.
4853  * This does all the path init required, making room in the tree if needed.
4854  */
4855 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4856                       const struct btrfs_key *cpu_key, void *data,
4857                       u32 data_size)
4858 {
4859         int ret = 0;
4860         struct btrfs_path *path;
4861         struct extent_buffer *leaf;
4862         unsigned long ptr;
4863
4864         path = btrfs_alloc_path();
4865         if (!path)
4866                 return -ENOMEM;
4867         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4868         if (!ret) {
4869                 leaf = path->nodes[0];
4870                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4871                 write_extent_buffer(leaf, data, ptr, data_size);
4872                 btrfs_mark_buffer_dirty(leaf);
4873         }
4874         btrfs_free_path(path);
4875         return ret;
4876 }
4877
4878 /*
4879  * delete the pointer from a given node.
4880  *
4881  * the tree should have been previously balanced so the deletion does not
4882  * empty a node.
4883  */
4884 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4885                     int level, int slot)
4886 {
4887         struct extent_buffer *parent = path->nodes[level];
4888         u32 nritems;
4889         int ret;
4890
4891         nritems = btrfs_header_nritems(parent);
4892         if (slot != nritems - 1) {
4893                 if (level) {
4894                         ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4895                                         nritems - slot - 1);
4896                         BUG_ON(ret < 0);
4897                 }
4898                 memmove_extent_buffer(parent,
4899                               btrfs_node_key_ptr_offset(slot),
4900                               btrfs_node_key_ptr_offset(slot + 1),
4901                               sizeof(struct btrfs_key_ptr) *
4902                               (nritems - slot - 1));
4903         } else if (level) {
4904                 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4905                                 GFP_NOFS);
4906                 BUG_ON(ret < 0);
4907         }
4908
4909         nritems--;
4910         btrfs_set_header_nritems(parent, nritems);
4911         if (nritems == 0 && parent == root->node) {
4912                 BUG_ON(btrfs_header_level(root->node) != 1);
4913                 /* just turn the root into a leaf and break */
4914                 btrfs_set_header_level(root->node, 0);
4915         } else if (slot == 0) {
4916                 struct btrfs_disk_key disk_key;
4917
4918                 btrfs_node_key(parent, &disk_key, 0);
4919                 fixup_low_keys(path, &disk_key, level + 1);
4920         }
4921         btrfs_mark_buffer_dirty(parent);
4922 }
4923
4924 /*
4925  * a helper function to delete the leaf pointed to by path->slots[1] and
4926  * path->nodes[1].
4927  *
4928  * This deletes the pointer in path->nodes[1] and frees the leaf
4929  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4930  *
4931  * The path must have already been setup for deleting the leaf, including
4932  * all the proper balancing.  path->nodes[1] must be locked.
4933  */
4934 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4935                                     struct btrfs_root *root,
4936                                     struct btrfs_path *path,
4937                                     struct extent_buffer *leaf)
4938 {
4939         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4940         del_ptr(root, path, 1, path->slots[1]);
4941
4942         /*
4943          * btrfs_free_extent is expensive, we want to make sure we
4944          * aren't holding any locks when we call it
4945          */
4946         btrfs_unlock_up_safe(path, 0);
4947
4948         root_sub_used(root, leaf->len);
4949
4950         extent_buffer_get(leaf);
4951         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4952         free_extent_buffer_stale(leaf);
4953 }
4954 /*
4955  * delete the item at the leaf level in path.  If that empties
4956  * the leaf, remove it from the tree
4957  */
4958 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4959                     struct btrfs_path *path, int slot, int nr)
4960 {
4961         struct btrfs_fs_info *fs_info = root->fs_info;
4962         struct extent_buffer *leaf;
4963         struct btrfs_item *item;
4964         u32 last_off;
4965         u32 dsize = 0;
4966         int ret = 0;
4967         int wret;
4968         int i;
4969         u32 nritems;
4970
4971         leaf = path->nodes[0];
4972         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4973
4974         for (i = 0; i < nr; i++)
4975                 dsize += btrfs_item_size_nr(leaf, slot + i);
4976
4977         nritems = btrfs_header_nritems(leaf);
4978
4979         if (slot + nr != nritems) {
4980                 int data_end = leaf_data_end(leaf);
4981                 struct btrfs_map_token token;
4982
4983                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4984                               data_end + dsize,
4985                               BTRFS_LEAF_DATA_OFFSET + data_end,
4986                               last_off - data_end);
4987
4988                 btrfs_init_map_token(&token, leaf);
4989                 for (i = slot + nr; i < nritems; i++) {
4990                         u32 ioff;
4991
4992                         item = btrfs_item_nr(i);
4993                         ioff = btrfs_token_item_offset(leaf, item, &token);
4994                         btrfs_set_token_item_offset(leaf, item,
4995                                                     ioff + dsize, &token);
4996                 }
4997
4998                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4999                               btrfs_item_nr_offset(slot + nr),
5000                               sizeof(struct btrfs_item) *
5001                               (nritems - slot - nr));
5002         }
5003         btrfs_set_header_nritems(leaf, nritems - nr);
5004         nritems -= nr;
5005
5006         /* delete the leaf if we've emptied it */
5007         if (nritems == 0) {
5008                 if (leaf == root->node) {
5009                         btrfs_set_header_level(leaf, 0);
5010                 } else {
5011                         btrfs_set_path_blocking(path);
5012                         btrfs_clean_tree_block(leaf);
5013                         btrfs_del_leaf(trans, root, path, leaf);
5014                 }
5015         } else {
5016                 int used = leaf_space_used(leaf, 0, nritems);
5017                 if (slot == 0) {
5018                         struct btrfs_disk_key disk_key;
5019
5020                         btrfs_item_key(leaf, &disk_key, 0);
5021                         fixup_low_keys(path, &disk_key, 1);
5022                 }
5023
5024                 /* delete the leaf if it is mostly empty */
5025                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5026                         /* push_leaf_left fixes the path.
5027                          * make sure the path still points to our leaf
5028                          * for possible call to del_ptr below
5029                          */
5030                         slot = path->slots[1];
5031                         extent_buffer_get(leaf);
5032
5033                         btrfs_set_path_blocking(path);
5034                         wret = push_leaf_left(trans, root, path, 1, 1,
5035                                               1, (u32)-1);
5036                         if (wret < 0 && wret != -ENOSPC)
5037                                 ret = wret;
5038
5039                         if (path->nodes[0] == leaf &&
5040                             btrfs_header_nritems(leaf)) {
5041                                 wret = push_leaf_right(trans, root, path, 1,
5042                                                        1, 1, 0);
5043                                 if (wret < 0 && wret != -ENOSPC)
5044                                         ret = wret;
5045                         }
5046
5047                         if (btrfs_header_nritems(leaf) == 0) {
5048                                 path->slots[1] = slot;
5049                                 btrfs_del_leaf(trans, root, path, leaf);
5050                                 free_extent_buffer(leaf);
5051                                 ret = 0;
5052                         } else {
5053                                 /* if we're still in the path, make sure
5054                                  * we're dirty.  Otherwise, one of the
5055                                  * push_leaf functions must have already
5056                                  * dirtied this buffer
5057                                  */
5058                                 if (path->nodes[0] == leaf)
5059                                         btrfs_mark_buffer_dirty(leaf);
5060                                 free_extent_buffer(leaf);
5061                         }
5062                 } else {
5063                         btrfs_mark_buffer_dirty(leaf);
5064                 }
5065         }
5066         return ret;
5067 }
5068
5069 /*
5070  * search the tree again to find a leaf with lesser keys
5071  * returns 0 if it found something or 1 if there are no lesser leaves.
5072  * returns < 0 on io errors.
5073  *
5074  * This may release the path, and so you may lose any locks held at the
5075  * time you call it.
5076  */
5077 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5078 {
5079         struct btrfs_key key;
5080         struct btrfs_disk_key found_key;
5081         int ret;
5082
5083         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5084
5085         if (key.offset > 0) {
5086                 key.offset--;
5087         } else if (key.type > 0) {
5088                 key.type--;
5089                 key.offset = (u64)-1;
5090         } else if (key.objectid > 0) {
5091                 key.objectid--;
5092                 key.type = (u8)-1;
5093                 key.offset = (u64)-1;
5094         } else {
5095                 return 1;
5096         }
5097
5098         btrfs_release_path(path);
5099         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5100         if (ret < 0)
5101                 return ret;
5102         btrfs_item_key(path->nodes[0], &found_key, 0);
5103         ret = comp_keys(&found_key, &key);
5104         /*
5105          * We might have had an item with the previous key in the tree right
5106          * before we released our path. And after we released our path, that
5107          * item might have been pushed to the first slot (0) of the leaf we
5108          * were holding due to a tree balance. Alternatively, an item with the
5109          * previous key can exist as the only element of a leaf (big fat item).
5110          * Therefore account for these 2 cases, so that our callers (like
5111          * btrfs_previous_item) don't miss an existing item with a key matching
5112          * the previous key we computed above.
5113          */
5114         if (ret <= 0)
5115                 return 0;
5116         return 1;
5117 }
5118
5119 /*
5120  * A helper function to walk down the tree starting at min_key, and looking
5121  * for nodes or leaves that are have a minimum transaction id.
5122  * This is used by the btree defrag code, and tree logging
5123  *
5124  * This does not cow, but it does stuff the starting key it finds back
5125  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5126  * key and get a writable path.
5127  *
5128  * This honors path->lowest_level to prevent descent past a given level
5129  * of the tree.
5130  *
5131  * min_trans indicates the oldest transaction that you are interested
5132  * in walking through.  Any nodes or leaves older than min_trans are
5133  * skipped over (without reading them).
5134  *
5135  * returns zero if something useful was found, < 0 on error and 1 if there
5136  * was nothing in the tree that matched the search criteria.
5137  */
5138 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5139                          struct btrfs_path *path,
5140                          u64 min_trans)
5141 {
5142         struct extent_buffer *cur;
5143         struct btrfs_key found_key;
5144         int slot;
5145         int sret;
5146         u32 nritems;
5147         int level;
5148         int ret = 1;
5149         int keep_locks = path->keep_locks;
5150
5151         path->keep_locks = 1;
5152 again:
5153         cur = btrfs_read_lock_root_node(root);
5154         level = btrfs_header_level(cur);
5155         WARN_ON(path->nodes[level]);
5156         path->nodes[level] = cur;
5157         path->locks[level] = BTRFS_READ_LOCK;
5158
5159         if (btrfs_header_generation(cur) < min_trans) {
5160                 ret = 1;
5161                 goto out;
5162         }
5163         while (1) {
5164                 nritems = btrfs_header_nritems(cur);
5165                 level = btrfs_header_level(cur);
5166                 sret = btrfs_bin_search(cur, min_key, level, &slot);
5167                 if (sret < 0) {
5168                         ret = sret;
5169                         goto out;
5170                 }
5171
5172                 /* at the lowest level, we're done, setup the path and exit */
5173                 if (level == path->lowest_level) {
5174                         if (slot >= nritems)
5175                                 goto find_next_key;
5176                         ret = 0;
5177                         path->slots[level] = slot;
5178                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5179                         goto out;
5180                 }
5181                 if (sret && slot > 0)
5182                         slot--;
5183                 /*
5184                  * check this node pointer against the min_trans parameters.
5185                  * If it is too old, old, skip to the next one.
5186                  */
5187                 while (slot < nritems) {
5188                         u64 gen;
5189
5190                         gen = btrfs_node_ptr_generation(cur, slot);
5191                         if (gen < min_trans) {
5192                                 slot++;
5193                                 continue;
5194                         }
5195                         break;
5196                 }
5197 find_next_key:
5198                 /*
5199                  * we didn't find a candidate key in this node, walk forward
5200                  * and find another one
5201                  */
5202                 if (slot >= nritems) {
5203                         path->slots[level] = slot;
5204                         btrfs_set_path_blocking(path);
5205                         sret = btrfs_find_next_key(root, path, min_key, level,
5206                                                   min_trans);
5207                         if (sret == 0) {
5208                                 btrfs_release_path(path);
5209                                 goto again;
5210                         } else {
5211                                 goto out;
5212                         }
5213                 }
5214                 /* save our key for returning back */
5215                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5216                 path->slots[level] = slot;
5217                 if (level == path->lowest_level) {
5218                         ret = 0;
5219                         goto out;
5220                 }
5221                 btrfs_set_path_blocking(path);
5222                 cur = btrfs_read_node_slot(cur, slot);
5223                 if (IS_ERR(cur)) {
5224                         ret = PTR_ERR(cur);
5225                         goto out;
5226                 }
5227
5228                 btrfs_tree_read_lock(cur);
5229
5230                 path->locks[level - 1] = BTRFS_READ_LOCK;
5231                 path->nodes[level - 1] = cur;
5232                 unlock_up(path, level, 1, 0, NULL);
5233         }
5234 out:
5235         path->keep_locks = keep_locks;
5236         if (ret == 0) {
5237                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5238                 btrfs_set_path_blocking(path);
5239                 memcpy(min_key, &found_key, sizeof(found_key));
5240         }
5241         return ret;
5242 }
5243
5244 /*
5245  * this is similar to btrfs_next_leaf, but does not try to preserve
5246  * and fixup the path.  It looks for and returns the next key in the
5247  * tree based on the current path and the min_trans parameters.
5248  *
5249  * 0 is returned if another key is found, < 0 if there are any errors
5250  * and 1 is returned if there are no higher keys in the tree
5251  *
5252  * path->keep_locks should be set to 1 on the search made before
5253  * calling this function.
5254  */
5255 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5256                         struct btrfs_key *key, int level, u64 min_trans)
5257 {
5258         int slot;
5259         struct extent_buffer *c;
5260
5261         WARN_ON(!path->keep_locks && !path->skip_locking);
5262         while (level < BTRFS_MAX_LEVEL) {
5263                 if (!path->nodes[level])
5264                         return 1;
5265
5266                 slot = path->slots[level] + 1;
5267                 c = path->nodes[level];
5268 next:
5269                 if (slot >= btrfs_header_nritems(c)) {
5270                         int ret;
5271                         int orig_lowest;
5272                         struct btrfs_key cur_key;
5273                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5274                             !path->nodes[level + 1])
5275                                 return 1;
5276
5277                         if (path->locks[level + 1] || path->skip_locking) {
5278                                 level++;
5279                                 continue;
5280                         }
5281
5282                         slot = btrfs_header_nritems(c) - 1;
5283                         if (level == 0)
5284                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5285                         else
5286                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5287
5288                         orig_lowest = path->lowest_level;
5289                         btrfs_release_path(path);
5290                         path->lowest_level = level;
5291                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5292                                                 0, 0);
5293                         path->lowest_level = orig_lowest;
5294                         if (ret < 0)
5295                                 return ret;
5296
5297                         c = path->nodes[level];
5298                         slot = path->slots[level];
5299                         if (ret == 0)
5300                                 slot++;
5301                         goto next;
5302                 }
5303
5304                 if (level == 0)
5305                         btrfs_item_key_to_cpu(c, key, slot);
5306                 else {
5307                         u64 gen = btrfs_node_ptr_generation(c, slot);
5308
5309                         if (gen < min_trans) {
5310                                 slot++;
5311                                 goto next;
5312                         }
5313                         btrfs_node_key_to_cpu(c, key, slot);
5314                 }
5315                 return 0;
5316         }
5317         return 1;
5318 }
5319
5320 /*
5321  * search the tree again to find a leaf with greater keys
5322  * returns 0 if it found something or 1 if there are no greater leaves.
5323  * returns < 0 on io errors.
5324  */
5325 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5326 {
5327         return btrfs_next_old_leaf(root, path, 0);
5328 }
5329
5330 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5331                         u64 time_seq)
5332 {
5333         int slot;
5334         int level;
5335         struct extent_buffer *c;
5336         struct extent_buffer *next;
5337         struct btrfs_key key;
5338         u32 nritems;
5339         int ret;
5340         int old_spinning = path->leave_spinning;
5341         int next_rw_lock = 0;
5342
5343         nritems = btrfs_header_nritems(path->nodes[0]);
5344         if (nritems == 0)
5345                 return 1;
5346
5347         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5348 again:
5349         level = 1;
5350         next = NULL;
5351         next_rw_lock = 0;
5352         btrfs_release_path(path);
5353
5354         path->keep_locks = 1;
5355         path->leave_spinning = 1;
5356
5357         if (time_seq)
5358                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5359         else
5360                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5361         path->keep_locks = 0;
5362
5363         if (ret < 0)
5364                 return ret;
5365
5366         nritems = btrfs_header_nritems(path->nodes[0]);
5367         /*
5368          * by releasing the path above we dropped all our locks.  A balance
5369          * could have added more items next to the key that used to be
5370          * at the very end of the block.  So, check again here and
5371          * advance the path if there are now more items available.
5372          */
5373         if (nritems > 0 && path->slots[0] < nritems - 1) {
5374                 if (ret == 0)
5375                         path->slots[0]++;
5376                 ret = 0;
5377                 goto done;
5378         }
5379         /*
5380          * So the above check misses one case:
5381          * - after releasing the path above, someone has removed the item that
5382          *   used to be at the very end of the block, and balance between leafs
5383          *   gets another one with bigger key.offset to replace it.
5384          *
5385          * This one should be returned as well, or we can get leaf corruption
5386          * later(esp. in __btrfs_drop_extents()).
5387          *
5388          * And a bit more explanation about this check,
5389          * with ret > 0, the key isn't found, the path points to the slot
5390          * where it should be inserted, so the path->slots[0] item must be the
5391          * bigger one.
5392          */
5393         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5394                 ret = 0;
5395                 goto done;
5396         }
5397
5398         while (level < BTRFS_MAX_LEVEL) {
5399                 if (!path->nodes[level]) {
5400                         ret = 1;
5401                         goto done;
5402                 }
5403
5404                 slot = path->slots[level] + 1;
5405                 c = path->nodes[level];
5406                 if (slot >= btrfs_header_nritems(c)) {
5407                         level++;
5408                         if (level == BTRFS_MAX_LEVEL) {
5409                                 ret = 1;
5410                                 goto done;
5411                         }
5412                         continue;
5413                 }
5414
5415                 if (next) {
5416                         btrfs_tree_unlock_rw(next, next_rw_lock);
5417                         free_extent_buffer(next);
5418                 }
5419
5420                 next = c;
5421                 next_rw_lock = path->locks[level];
5422                 ret = read_block_for_search(root, path, &next, level,
5423                                             slot, &key);
5424                 if (ret == -EAGAIN)
5425                         goto again;
5426
5427                 if (ret < 0) {
5428                         btrfs_release_path(path);
5429                         goto done;
5430                 }
5431
5432                 if (!path->skip_locking) {
5433                         ret = btrfs_try_tree_read_lock(next);
5434                         if (!ret && time_seq) {
5435                                 /*
5436                                  * If we don't get the lock, we may be racing
5437                                  * with push_leaf_left, holding that lock while
5438                                  * itself waiting for the leaf we've currently
5439                                  * locked. To solve this situation, we give up
5440                                  * on our lock and cycle.
5441                                  */
5442                                 free_extent_buffer(next);
5443                                 btrfs_release_path(path);
5444                                 cond_resched();
5445                                 goto again;
5446                         }
5447                         if (!ret) {
5448                                 btrfs_set_path_blocking(path);
5449                                 btrfs_tree_read_lock(next);
5450                         }
5451                         next_rw_lock = BTRFS_READ_LOCK;
5452                 }
5453                 break;
5454         }
5455         path->slots[level] = slot;
5456         while (1) {
5457                 level--;
5458                 c = path->nodes[level];
5459                 if (path->locks[level])
5460                         btrfs_tree_unlock_rw(c, path->locks[level]);
5461
5462                 free_extent_buffer(c);
5463                 path->nodes[level] = next;
5464                 path->slots[level] = 0;
5465                 if (!path->skip_locking)
5466                         path->locks[level] = next_rw_lock;
5467                 if (!level)
5468                         break;
5469
5470                 ret = read_block_for_search(root, path, &next, level,
5471                                             0, &key);
5472                 if (ret == -EAGAIN)
5473                         goto again;
5474
5475                 if (ret < 0) {
5476                         btrfs_release_path(path);
5477                         goto done;
5478                 }
5479
5480                 if (!path->skip_locking) {
5481                         ret = btrfs_try_tree_read_lock(next);
5482                         if (!ret) {
5483                                 btrfs_set_path_blocking(path);
5484                                 btrfs_tree_read_lock(next);
5485                         }
5486                         next_rw_lock = BTRFS_READ_LOCK;
5487                 }
5488         }
5489         ret = 0;
5490 done:
5491         unlock_up(path, 0, 1, 0, NULL);
5492         path->leave_spinning = old_spinning;
5493         if (!old_spinning)
5494                 btrfs_set_path_blocking(path);
5495
5496         return ret;
5497 }
5498
5499 /*
5500  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5501  * searching until it gets past min_objectid or finds an item of 'type'
5502  *
5503  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5504  */
5505 int btrfs_previous_item(struct btrfs_root *root,
5506                         struct btrfs_path *path, u64 min_objectid,
5507                         int type)
5508 {
5509         struct btrfs_key found_key;
5510         struct extent_buffer *leaf;
5511         u32 nritems;
5512         int ret;
5513
5514         while (1) {
5515                 if (path->slots[0] == 0) {
5516                         btrfs_set_path_blocking(path);
5517                         ret = btrfs_prev_leaf(root, path);
5518                         if (ret != 0)
5519                                 return ret;
5520                 } else {
5521                         path->slots[0]--;
5522                 }
5523                 leaf = path->nodes[0];
5524                 nritems = btrfs_header_nritems(leaf);
5525                 if (nritems == 0)
5526                         return 1;
5527                 if (path->slots[0] == nritems)
5528                         path->slots[0]--;
5529
5530                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5531                 if (found_key.objectid < min_objectid)
5532                         break;
5533                 if (found_key.type == type)
5534                         return 0;
5535                 if (found_key.objectid == min_objectid &&
5536                     found_key.type < type)
5537                         break;
5538         }
5539         return 1;
5540 }
5541
5542 /*
5543  * search in extent tree to find a previous Metadata/Data extent item with
5544  * min objecitd.
5545  *
5546  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5547  */
5548 int btrfs_previous_extent_item(struct btrfs_root *root,
5549                         struct btrfs_path *path, u64 min_objectid)
5550 {
5551         struct btrfs_key found_key;
5552         struct extent_buffer *leaf;
5553         u32 nritems;
5554         int ret;
5555
5556         while (1) {
5557                 if (path->slots[0] == 0) {
5558                         btrfs_set_path_blocking(path);
5559                         ret = btrfs_prev_leaf(root, path);
5560                         if (ret != 0)
5561                                 return ret;
5562                 } else {
5563                         path->slots[0]--;
5564                 }
5565                 leaf = path->nodes[0];
5566                 nritems = btrfs_header_nritems(leaf);
5567                 if (nritems == 0)
5568                         return 1;
5569                 if (path->slots[0] == nritems)
5570                         path->slots[0]--;
5571
5572                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5573                 if (found_key.objectid < min_objectid)
5574                         break;
5575                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5576                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5577                         return 0;
5578                 if (found_key.objectid == min_objectid &&
5579                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5580                         break;
5581         }
5582         return 1;
5583 }