tty: Fix tty_send_xchar() lock order inversion
[linux-2.6-block.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)      tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)      do { } while (0)
113 #endif
114
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117
118 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
119         .c_iflag = ICRNL | IXON,
120         .c_oflag = OPOST | ONLCR,
121         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
122         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123                    ECHOCTL | ECHOKE | IEXTEN,
124         .c_cc = INIT_C_CC,
125         .c_ispeed = 38400,
126         .c_ospeed = 38400
127 };
128
129 EXPORT_SYMBOL(tty_std_termios);
130
131 /* This list gets poked at by procfs and various bits of boot up code. This
132    could do with some rationalisation such as pulling the tty proc function
133    into this file */
134
135 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
136
137 /* Mutex to protect creating and releasing a tty. This is shared with
138    vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148                                                         size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154                                 unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161
162 /**
163  *      free_tty_struct         -       free a disused tty
164  *      @tty: tty struct to free
165  *
166  *      Free the write buffers, tty queue and tty memory itself.
167  *
168  *      Locking: none. Must be called after tty is definitely unused
169  */
170
171 void free_tty_struct(struct tty_struct *tty)
172 {
173         if (!tty)
174                 return;
175         put_device(tty->dev);
176         kfree(tty->write_buf);
177         tty->magic = 0xDEADDEAD;
178         kfree(tty);
179 }
180
181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183         return ((struct tty_file_private *)file->private_data)->tty;
184 }
185
186 int tty_alloc_file(struct file *file)
187 {
188         struct tty_file_private *priv;
189
190         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191         if (!priv)
192                 return -ENOMEM;
193
194         file->private_data = priv;
195
196         return 0;
197 }
198
199 /* Associate a new file with the tty structure */
200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202         struct tty_file_private *priv = file->private_data;
203
204         priv->tty = tty;
205         priv->file = file;
206
207         spin_lock(&tty_files_lock);
208         list_add(&priv->list, &tty->tty_files);
209         spin_unlock(&tty_files_lock);
210 }
211
212 /**
213  * tty_free_file - free file->private_data
214  *
215  * This shall be used only for fail path handling when tty_add_file was not
216  * called yet.
217  */
218 void tty_free_file(struct file *file)
219 {
220         struct tty_file_private *priv = file->private_data;
221
222         file->private_data = NULL;
223         kfree(priv);
224 }
225
226 /* Delete file from its tty */
227 static void tty_del_file(struct file *file)
228 {
229         struct tty_file_private *priv = file->private_data;
230
231         spin_lock(&tty_files_lock);
232         list_del(&priv->list);
233         spin_unlock(&tty_files_lock);
234         tty_free_file(file);
235 }
236
237
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239
240 /**
241  *      tty_name        -       return tty naming
242  *      @tty: tty structure
243  *
244  *      Convert a tty structure into a name. The name reflects the kernel
245  *      naming policy and if udev is in use may not reflect user space
246  *
247  *      Locking: none
248  */
249
250 const char *tty_name(const struct tty_struct *tty)
251 {
252         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
253                 return "NULL tty";
254         return tty->name;
255 }
256
257 EXPORT_SYMBOL(tty_name);
258
259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260                               const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263         if (!tty) {
264                 printk(KERN_WARNING
265                         "null TTY for (%d:%d) in %s\n",
266                         imajor(inode), iminor(inode), routine);
267                 return 1;
268         }
269         if (tty->magic != TTY_MAGIC) {
270                 printk(KERN_WARNING
271                         "bad magic number for tty struct (%d:%d) in %s\n",
272                         imajor(inode), iminor(inode), routine);
273                 return 1;
274         }
275 #endif
276         return 0;
277 }
278
279 /* Caller must hold tty_lock */
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283         struct list_head *p;
284         int count = 0;
285
286         spin_lock(&tty_files_lock);
287         list_for_each(p, &tty->tty_files) {
288                 count++;
289         }
290         spin_unlock(&tty_files_lock);
291         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292             tty->driver->subtype == PTY_TYPE_SLAVE &&
293             tty->link && tty->link->count)
294                 count++;
295         if (tty->count != count) {
296                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297                                     "!= #fd's(%d) in %s\n",
298                        tty->name, tty->count, count, routine);
299                 return count;
300         }
301 #endif
302         return 0;
303 }
304
305 /**
306  *      get_tty_driver          -       find device of a tty
307  *      @dev_t: device identifier
308  *      @index: returns the index of the tty
309  *
310  *      This routine returns a tty driver structure, given a device number
311  *      and also passes back the index number.
312  *
313  *      Locking: caller must hold tty_mutex
314  */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318         struct tty_driver *p;
319
320         list_for_each_entry(p, &tty_drivers, tty_drivers) {
321                 dev_t base = MKDEV(p->major, p->minor_start);
322                 if (device < base || device >= base + p->num)
323                         continue;
324                 *index = device - base;
325                 return tty_driver_kref_get(p);
326         }
327         return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333  *      tty_find_polling_driver -       find device of a polled tty
334  *      @name: name string to match
335  *      @line: pointer to resulting tty line nr
336  *
337  *      This routine returns a tty driver structure, given a name
338  *      and the condition that the tty driver is capable of polled
339  *      operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343         struct tty_driver *p, *res = NULL;
344         int tty_line = 0;
345         int len;
346         char *str, *stp;
347
348         for (str = name; *str; str++)
349                 if ((*str >= '0' && *str <= '9') || *str == ',')
350                         break;
351         if (!*str)
352                 return NULL;
353
354         len = str - name;
355         tty_line = simple_strtoul(str, &str, 10);
356
357         mutex_lock(&tty_mutex);
358         /* Search through the tty devices to look for a match */
359         list_for_each_entry(p, &tty_drivers, tty_drivers) {
360                 if (strncmp(name, p->name, len) != 0)
361                         continue;
362                 stp = str;
363                 if (*stp == ',')
364                         stp++;
365                 if (*stp == '\0')
366                         stp = NULL;
367
368                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370                         res = tty_driver_kref_get(p);
371                         *line = tty_line;
372                         break;
373                 }
374         }
375         mutex_unlock(&tty_mutex);
376
377         return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 /**
383  *      tty_check_change        -       check for POSIX terminal changes
384  *      @tty: tty to check
385  *
386  *      If we try to write to, or set the state of, a terminal and we're
387  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *      Locking: ctrl_lock
391  */
392
393 int __tty_check_change(struct tty_struct *tty, int sig)
394 {
395         unsigned long flags;
396         struct pid *pgrp, *tty_pgrp;
397         int ret = 0;
398
399         if (current->signal->tty != tty)
400                 return 0;
401
402         rcu_read_lock();
403         pgrp = task_pgrp(current);
404
405         spin_lock_irqsave(&tty->ctrl_lock, flags);
406         tty_pgrp = tty->pgrp;
407         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408
409         if (tty_pgrp && pgrp != tty->pgrp) {
410                 if (is_ignored(sig)) {
411                         if (sig == SIGTTIN)
412                                 ret = -EIO;
413                 } else if (is_current_pgrp_orphaned())
414                         ret = -EIO;
415                 else {
416                         kill_pgrp(pgrp, sig, 1);
417                         set_thread_flag(TIF_SIGPENDING);
418                         ret = -ERESTARTSYS;
419                 }
420         }
421         rcu_read_unlock();
422
423         if (!tty_pgrp) {
424                 pr_warn("%s: tty_check_change: sig=%d, tty->pgrp == NULL!\n",
425                         tty_name(tty), sig);
426         }
427
428         return ret;
429 }
430
431 int tty_check_change(struct tty_struct *tty)
432 {
433         return __tty_check_change(tty, SIGTTOU);
434 }
435 EXPORT_SYMBOL(tty_check_change);
436
437 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
438                                 size_t count, loff_t *ppos)
439 {
440         return 0;
441 }
442
443 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
444                                  size_t count, loff_t *ppos)
445 {
446         return -EIO;
447 }
448
449 /* No kernel lock held - none needed ;) */
450 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
451 {
452         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
453 }
454
455 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
456                 unsigned long arg)
457 {
458         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459 }
460
461 static long hung_up_tty_compat_ioctl(struct file *file,
462                                      unsigned int cmd, unsigned long arg)
463 {
464         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466
467 static const struct file_operations tty_fops = {
468         .llseek         = no_llseek,
469         .read           = tty_read,
470         .write          = tty_write,
471         .poll           = tty_poll,
472         .unlocked_ioctl = tty_ioctl,
473         .compat_ioctl   = tty_compat_ioctl,
474         .open           = tty_open,
475         .release        = tty_release,
476         .fasync         = tty_fasync,
477 };
478
479 static const struct file_operations console_fops = {
480         .llseek         = no_llseek,
481         .read           = tty_read,
482         .write          = redirected_tty_write,
483         .poll           = tty_poll,
484         .unlocked_ioctl = tty_ioctl,
485         .compat_ioctl   = tty_compat_ioctl,
486         .open           = tty_open,
487         .release        = tty_release,
488         .fasync         = tty_fasync,
489 };
490
491 static const struct file_operations hung_up_tty_fops = {
492         .llseek         = no_llseek,
493         .read           = hung_up_tty_read,
494         .write          = hung_up_tty_write,
495         .poll           = hung_up_tty_poll,
496         .unlocked_ioctl = hung_up_tty_ioctl,
497         .compat_ioctl   = hung_up_tty_compat_ioctl,
498         .release        = tty_release,
499 };
500
501 static DEFINE_SPINLOCK(redirect_lock);
502 static struct file *redirect;
503
504
505 void proc_clear_tty(struct task_struct *p)
506 {
507         unsigned long flags;
508         struct tty_struct *tty;
509         spin_lock_irqsave(&p->sighand->siglock, flags);
510         tty = p->signal->tty;
511         p->signal->tty = NULL;
512         spin_unlock_irqrestore(&p->sighand->siglock, flags);
513         tty_kref_put(tty);
514 }
515
516 /**
517  * proc_set_tty -  set the controlling terminal
518  *
519  * Only callable by the session leader and only if it does not already have
520  * a controlling terminal.
521  *
522  * Caller must hold:  tty_lock()
523  *                    a readlock on tasklist_lock
524  *                    sighand lock
525  */
526 static void __proc_set_tty(struct tty_struct *tty)
527 {
528         unsigned long flags;
529
530         spin_lock_irqsave(&tty->ctrl_lock, flags);
531         /*
532          * The session and fg pgrp references will be non-NULL if
533          * tiocsctty() is stealing the controlling tty
534          */
535         put_pid(tty->session);
536         put_pid(tty->pgrp);
537         tty->pgrp = get_pid(task_pgrp(current));
538         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
539         tty->session = get_pid(task_session(current));
540         if (current->signal->tty) {
541                 tty_debug(tty, "current tty %s not NULL!!\n",
542                           current->signal->tty->name);
543                 tty_kref_put(current->signal->tty);
544         }
545         put_pid(current->signal->tty_old_pgrp);
546         current->signal->tty = tty_kref_get(tty);
547         current->signal->tty_old_pgrp = NULL;
548 }
549
550 static void proc_set_tty(struct tty_struct *tty)
551 {
552         spin_lock_irq(&current->sighand->siglock);
553         __proc_set_tty(tty);
554         spin_unlock_irq(&current->sighand->siglock);
555 }
556
557 struct tty_struct *get_current_tty(void)
558 {
559         struct tty_struct *tty;
560         unsigned long flags;
561
562         spin_lock_irqsave(&current->sighand->siglock, flags);
563         tty = tty_kref_get(current->signal->tty);
564         spin_unlock_irqrestore(&current->sighand->siglock, flags);
565         return tty;
566 }
567 EXPORT_SYMBOL_GPL(get_current_tty);
568
569 static void session_clear_tty(struct pid *session)
570 {
571         struct task_struct *p;
572         do_each_pid_task(session, PIDTYPE_SID, p) {
573                 proc_clear_tty(p);
574         } while_each_pid_task(session, PIDTYPE_SID, p);
575 }
576
577 /**
578  *      tty_wakeup      -       request more data
579  *      @tty: terminal
580  *
581  *      Internal and external helper for wakeups of tty. This function
582  *      informs the line discipline if present that the driver is ready
583  *      to receive more output data.
584  */
585
586 void tty_wakeup(struct tty_struct *tty)
587 {
588         struct tty_ldisc *ld;
589
590         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
591                 ld = tty_ldisc_ref(tty);
592                 if (ld) {
593                         if (ld->ops->write_wakeup)
594                                 ld->ops->write_wakeup(tty);
595                         tty_ldisc_deref(ld);
596                 }
597         }
598         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
599 }
600
601 EXPORT_SYMBOL_GPL(tty_wakeup);
602
603 /**
604  *      tty_signal_session_leader       - sends SIGHUP to session leader
605  *      @tty            controlling tty
606  *      @exit_session   if non-zero, signal all foreground group processes
607  *
608  *      Send SIGHUP and SIGCONT to the session leader and its process group.
609  *      Optionally, signal all processes in the foreground process group.
610  *
611  *      Returns the number of processes in the session with this tty
612  *      as their controlling terminal. This value is used to drop
613  *      tty references for those processes.
614  */
615 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
616 {
617         struct task_struct *p;
618         int refs = 0;
619         struct pid *tty_pgrp = NULL;
620
621         read_lock(&tasklist_lock);
622         if (tty->session) {
623                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
624                         spin_lock_irq(&p->sighand->siglock);
625                         if (p->signal->tty == tty) {
626                                 p->signal->tty = NULL;
627                                 /* We defer the dereferences outside fo
628                                    the tasklist lock */
629                                 refs++;
630                         }
631                         if (!p->signal->leader) {
632                                 spin_unlock_irq(&p->sighand->siglock);
633                                 continue;
634                         }
635                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
636                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
637                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
638                         spin_lock(&tty->ctrl_lock);
639                         tty_pgrp = get_pid(tty->pgrp);
640                         if (tty->pgrp)
641                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
642                         spin_unlock(&tty->ctrl_lock);
643                         spin_unlock_irq(&p->sighand->siglock);
644                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
645         }
646         read_unlock(&tasklist_lock);
647
648         if (tty_pgrp) {
649                 if (exit_session)
650                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
651                 put_pid(tty_pgrp);
652         }
653
654         return refs;
655 }
656
657 /**
658  *      __tty_hangup            -       actual handler for hangup events
659  *      @work: tty device
660  *
661  *      This can be called by a "kworker" kernel thread.  That is process
662  *      synchronous but doesn't hold any locks, so we need to make sure we
663  *      have the appropriate locks for what we're doing.
664  *
665  *      The hangup event clears any pending redirections onto the hung up
666  *      device. It ensures future writes will error and it does the needed
667  *      line discipline hangup and signal delivery. The tty object itself
668  *      remains intact.
669  *
670  *      Locking:
671  *              BTM
672  *                redirect lock for undoing redirection
673  *                file list lock for manipulating list of ttys
674  *                tty_ldiscs_lock from called functions
675  *                termios_rwsem resetting termios data
676  *                tasklist_lock to walk task list for hangup event
677  *                  ->siglock to protect ->signal/->sighand
678  */
679 static void __tty_hangup(struct tty_struct *tty, int exit_session)
680 {
681         struct file *cons_filp = NULL;
682         struct file *filp, *f = NULL;
683         struct tty_file_private *priv;
684         int    closecount = 0, n;
685         int refs;
686
687         if (!tty)
688                 return;
689
690
691         spin_lock(&redirect_lock);
692         if (redirect && file_tty(redirect) == tty) {
693                 f = redirect;
694                 redirect = NULL;
695         }
696         spin_unlock(&redirect_lock);
697
698         tty_lock(tty);
699
700         if (test_bit(TTY_HUPPED, &tty->flags)) {
701                 tty_unlock(tty);
702                 return;
703         }
704
705         /* inuse_filps is protected by the single tty lock,
706            this really needs to change if we want to flush the
707            workqueue with the lock held */
708         check_tty_count(tty, "tty_hangup");
709
710         spin_lock(&tty_files_lock);
711         /* This breaks for file handles being sent over AF_UNIX sockets ? */
712         list_for_each_entry(priv, &tty->tty_files, list) {
713                 filp = priv->file;
714                 if (filp->f_op->write == redirected_tty_write)
715                         cons_filp = filp;
716                 if (filp->f_op->write != tty_write)
717                         continue;
718                 closecount++;
719                 __tty_fasync(-1, filp, 0);      /* can't block */
720                 filp->f_op = &hung_up_tty_fops;
721         }
722         spin_unlock(&tty_files_lock);
723
724         refs = tty_signal_session_leader(tty, exit_session);
725         /* Account for the p->signal references we killed */
726         while (refs--)
727                 tty_kref_put(tty);
728
729         tty_ldisc_hangup(tty);
730
731         spin_lock_irq(&tty->ctrl_lock);
732         clear_bit(TTY_THROTTLED, &tty->flags);
733         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
734         put_pid(tty->session);
735         put_pid(tty->pgrp);
736         tty->session = NULL;
737         tty->pgrp = NULL;
738         tty->ctrl_status = 0;
739         spin_unlock_irq(&tty->ctrl_lock);
740
741         /*
742          * If one of the devices matches a console pointer, we
743          * cannot just call hangup() because that will cause
744          * tty->count and state->count to go out of sync.
745          * So we just call close() the right number of times.
746          */
747         if (cons_filp) {
748                 if (tty->ops->close)
749                         for (n = 0; n < closecount; n++)
750                                 tty->ops->close(tty, cons_filp);
751         } else if (tty->ops->hangup)
752                 tty->ops->hangup(tty);
753         /*
754          * We don't want to have driver/ldisc interactions beyond
755          * the ones we did here. The driver layer expects no
756          * calls after ->hangup() from the ldisc side. However we
757          * can't yet guarantee all that.
758          */
759         set_bit(TTY_HUPPED, &tty->flags);
760         tty_unlock(tty);
761
762         if (f)
763                 fput(f);
764 }
765
766 static void do_tty_hangup(struct work_struct *work)
767 {
768         struct tty_struct *tty =
769                 container_of(work, struct tty_struct, hangup_work);
770
771         __tty_hangup(tty, 0);
772 }
773
774 /**
775  *      tty_hangup              -       trigger a hangup event
776  *      @tty: tty to hangup
777  *
778  *      A carrier loss (virtual or otherwise) has occurred on this like
779  *      schedule a hangup sequence to run after this event.
780  */
781
782 void tty_hangup(struct tty_struct *tty)
783 {
784         tty_debug_hangup(tty, "\n");
785         schedule_work(&tty->hangup_work);
786 }
787
788 EXPORT_SYMBOL(tty_hangup);
789
790 /**
791  *      tty_vhangup             -       process vhangup
792  *      @tty: tty to hangup
793  *
794  *      The user has asked via system call for the terminal to be hung up.
795  *      We do this synchronously so that when the syscall returns the process
796  *      is complete. That guarantee is necessary for security reasons.
797  */
798
799 void tty_vhangup(struct tty_struct *tty)
800 {
801         tty_debug_hangup(tty, "\n");
802         __tty_hangup(tty, 0);
803 }
804
805 EXPORT_SYMBOL(tty_vhangup);
806
807
808 /**
809  *      tty_vhangup_self        -       process vhangup for own ctty
810  *
811  *      Perform a vhangup on the current controlling tty
812  */
813
814 void tty_vhangup_self(void)
815 {
816         struct tty_struct *tty;
817
818         tty = get_current_tty();
819         if (tty) {
820                 tty_vhangup(tty);
821                 tty_kref_put(tty);
822         }
823 }
824
825 /**
826  *      tty_vhangup_session             -       hangup session leader exit
827  *      @tty: tty to hangup
828  *
829  *      The session leader is exiting and hanging up its controlling terminal.
830  *      Every process in the foreground process group is signalled SIGHUP.
831  *
832  *      We do this synchronously so that when the syscall returns the process
833  *      is complete. That guarantee is necessary for security reasons.
834  */
835
836 static void tty_vhangup_session(struct tty_struct *tty)
837 {
838         tty_debug_hangup(tty, "\n");
839         __tty_hangup(tty, 1);
840 }
841
842 /**
843  *      tty_hung_up_p           -       was tty hung up
844  *      @filp: file pointer of tty
845  *
846  *      Return true if the tty has been subject to a vhangup or a carrier
847  *      loss
848  */
849
850 int tty_hung_up_p(struct file *filp)
851 {
852         return (filp->f_op == &hung_up_tty_fops);
853 }
854
855 EXPORT_SYMBOL(tty_hung_up_p);
856
857 /**
858  *      disassociate_ctty       -       disconnect controlling tty
859  *      @on_exit: true if exiting so need to "hang up" the session
860  *
861  *      This function is typically called only by the session leader, when
862  *      it wants to disassociate itself from its controlling tty.
863  *
864  *      It performs the following functions:
865  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
866  *      (2)  Clears the tty from being controlling the session
867  *      (3)  Clears the controlling tty for all processes in the
868  *              session group.
869  *
870  *      The argument on_exit is set to 1 if called when a process is
871  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
872  *
873  *      Locking:
874  *              BTM is taken for hysterical raisins, and held when
875  *                called from no_tty().
876  *                tty_mutex is taken to protect tty
877  *                ->siglock is taken to protect ->signal/->sighand
878  *                tasklist_lock is taken to walk process list for sessions
879  *                  ->siglock is taken to protect ->signal/->sighand
880  */
881
882 void disassociate_ctty(int on_exit)
883 {
884         struct tty_struct *tty;
885
886         if (!current->signal->leader)
887                 return;
888
889         tty = get_current_tty();
890         if (tty) {
891                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
892                         tty_vhangup_session(tty);
893                 } else {
894                         struct pid *tty_pgrp = tty_get_pgrp(tty);
895                         if (tty_pgrp) {
896                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
897                                 if (!on_exit)
898                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
899                                 put_pid(tty_pgrp);
900                         }
901                 }
902                 tty_kref_put(tty);
903
904         } else if (on_exit) {
905                 struct pid *old_pgrp;
906                 spin_lock_irq(&current->sighand->siglock);
907                 old_pgrp = current->signal->tty_old_pgrp;
908                 current->signal->tty_old_pgrp = NULL;
909                 spin_unlock_irq(&current->sighand->siglock);
910                 if (old_pgrp) {
911                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
912                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
913                         put_pid(old_pgrp);
914                 }
915                 return;
916         }
917
918         spin_lock_irq(&current->sighand->siglock);
919         put_pid(current->signal->tty_old_pgrp);
920         current->signal->tty_old_pgrp = NULL;
921
922         tty = tty_kref_get(current->signal->tty);
923         if (tty) {
924                 unsigned long flags;
925                 spin_lock_irqsave(&tty->ctrl_lock, flags);
926                 put_pid(tty->session);
927                 put_pid(tty->pgrp);
928                 tty->session = NULL;
929                 tty->pgrp = NULL;
930                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
931                 tty_kref_put(tty);
932         } else
933                 tty_debug_hangup(tty, "no current tty\n");
934
935         spin_unlock_irq(&current->sighand->siglock);
936         /* Now clear signal->tty under the lock */
937         read_lock(&tasklist_lock);
938         session_clear_tty(task_session(current));
939         read_unlock(&tasklist_lock);
940 }
941
942 /**
943  *
944  *      no_tty  - Ensure the current process does not have a controlling tty
945  */
946 void no_tty(void)
947 {
948         /* FIXME: Review locking here. The tty_lock never covered any race
949            between a new association and proc_clear_tty but possible we need
950            to protect against this anyway */
951         struct task_struct *tsk = current;
952         disassociate_ctty(0);
953         proc_clear_tty(tsk);
954 }
955
956
957 /**
958  *      stop_tty        -       propagate flow control
959  *      @tty: tty to stop
960  *
961  *      Perform flow control to the driver. May be called
962  *      on an already stopped device and will not re-call the driver
963  *      method.
964  *
965  *      This functionality is used by both the line disciplines for
966  *      halting incoming flow and by the driver. It may therefore be
967  *      called from any context, may be under the tty atomic_write_lock
968  *      but not always.
969  *
970  *      Locking:
971  *              flow_lock
972  */
973
974 void __stop_tty(struct tty_struct *tty)
975 {
976         if (tty->stopped)
977                 return;
978         tty->stopped = 1;
979         if (tty->ops->stop)
980                 tty->ops->stop(tty);
981 }
982
983 void stop_tty(struct tty_struct *tty)
984 {
985         unsigned long flags;
986
987         spin_lock_irqsave(&tty->flow_lock, flags);
988         __stop_tty(tty);
989         spin_unlock_irqrestore(&tty->flow_lock, flags);
990 }
991 EXPORT_SYMBOL(stop_tty);
992
993 /**
994  *      start_tty       -       propagate flow control
995  *      @tty: tty to start
996  *
997  *      Start a tty that has been stopped if at all possible. If this
998  *      tty was previous stopped and is now being started, the driver
999  *      start method is invoked and the line discipline woken.
1000  *
1001  *      Locking:
1002  *              flow_lock
1003  */
1004
1005 void __start_tty(struct tty_struct *tty)
1006 {
1007         if (!tty->stopped || tty->flow_stopped)
1008                 return;
1009         tty->stopped = 0;
1010         if (tty->ops->start)
1011                 tty->ops->start(tty);
1012         tty_wakeup(tty);
1013 }
1014
1015 void start_tty(struct tty_struct *tty)
1016 {
1017         unsigned long flags;
1018
1019         spin_lock_irqsave(&tty->flow_lock, flags);
1020         __start_tty(tty);
1021         spin_unlock_irqrestore(&tty->flow_lock, flags);
1022 }
1023 EXPORT_SYMBOL(start_tty);
1024
1025 static void tty_update_time(struct timespec *time)
1026 {
1027         unsigned long sec = get_seconds();
1028
1029         /*
1030          * We only care if the two values differ in anything other than the
1031          * lower three bits (i.e every 8 seconds).  If so, then we can update
1032          * the time of the tty device, otherwise it could be construded as a
1033          * security leak to let userspace know the exact timing of the tty.
1034          */
1035         if ((sec ^ time->tv_sec) & ~7)
1036                 time->tv_sec = sec;
1037 }
1038
1039 /**
1040  *      tty_read        -       read method for tty device files
1041  *      @file: pointer to tty file
1042  *      @buf: user buffer
1043  *      @count: size of user buffer
1044  *      @ppos: unused
1045  *
1046  *      Perform the read system call function on this terminal device. Checks
1047  *      for hung up devices before calling the line discipline method.
1048  *
1049  *      Locking:
1050  *              Locks the line discipline internally while needed. Multiple
1051  *      read calls may be outstanding in parallel.
1052  */
1053
1054 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1055                         loff_t *ppos)
1056 {
1057         int i;
1058         struct inode *inode = file_inode(file);
1059         struct tty_struct *tty = file_tty(file);
1060         struct tty_ldisc *ld;
1061
1062         if (tty_paranoia_check(tty, inode, "tty_read"))
1063                 return -EIO;
1064         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1065                 return -EIO;
1066
1067         /* We want to wait for the line discipline to sort out in this
1068            situation */
1069         ld = tty_ldisc_ref_wait(tty);
1070         if (ld->ops->read)
1071                 i = ld->ops->read(tty, file, buf, count);
1072         else
1073                 i = -EIO;
1074         tty_ldisc_deref(ld);
1075
1076         if (i > 0)
1077                 tty_update_time(&inode->i_atime);
1078
1079         return i;
1080 }
1081
1082 static void tty_write_unlock(struct tty_struct *tty)
1083 {
1084         mutex_unlock(&tty->atomic_write_lock);
1085         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1086 }
1087
1088 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1089 {
1090         if (!mutex_trylock(&tty->atomic_write_lock)) {
1091                 if (ndelay)
1092                         return -EAGAIN;
1093                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1094                         return -ERESTARTSYS;
1095         }
1096         return 0;
1097 }
1098
1099 /*
1100  * Split writes up in sane blocksizes to avoid
1101  * denial-of-service type attacks
1102  */
1103 static inline ssize_t do_tty_write(
1104         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1105         struct tty_struct *tty,
1106         struct file *file,
1107         const char __user *buf,
1108         size_t count)
1109 {
1110         ssize_t ret, written = 0;
1111         unsigned int chunk;
1112
1113         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1114         if (ret < 0)
1115                 return ret;
1116
1117         /*
1118          * We chunk up writes into a temporary buffer. This
1119          * simplifies low-level drivers immensely, since they
1120          * don't have locking issues and user mode accesses.
1121          *
1122          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1123          * big chunk-size..
1124          *
1125          * The default chunk-size is 2kB, because the NTTY
1126          * layer has problems with bigger chunks. It will
1127          * claim to be able to handle more characters than
1128          * it actually does.
1129          *
1130          * FIXME: This can probably go away now except that 64K chunks
1131          * are too likely to fail unless switched to vmalloc...
1132          */
1133         chunk = 2048;
1134         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1135                 chunk = 65536;
1136         if (count < chunk)
1137                 chunk = count;
1138
1139         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1140         if (tty->write_cnt < chunk) {
1141                 unsigned char *buf_chunk;
1142
1143                 if (chunk < 1024)
1144                         chunk = 1024;
1145
1146                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1147                 if (!buf_chunk) {
1148                         ret = -ENOMEM;
1149                         goto out;
1150                 }
1151                 kfree(tty->write_buf);
1152                 tty->write_cnt = chunk;
1153                 tty->write_buf = buf_chunk;
1154         }
1155
1156         /* Do the write .. */
1157         for (;;) {
1158                 size_t size = count;
1159                 if (size > chunk)
1160                         size = chunk;
1161                 ret = -EFAULT;
1162                 if (copy_from_user(tty->write_buf, buf, size))
1163                         break;
1164                 ret = write(tty, file, tty->write_buf, size);
1165                 if (ret <= 0)
1166                         break;
1167                 written += ret;
1168                 buf += ret;
1169                 count -= ret;
1170                 if (!count)
1171                         break;
1172                 ret = -ERESTARTSYS;
1173                 if (signal_pending(current))
1174                         break;
1175                 cond_resched();
1176         }
1177         if (written) {
1178                 tty_update_time(&file_inode(file)->i_mtime);
1179                 ret = written;
1180         }
1181 out:
1182         tty_write_unlock(tty);
1183         return ret;
1184 }
1185
1186 /**
1187  * tty_write_message - write a message to a certain tty, not just the console.
1188  * @tty: the destination tty_struct
1189  * @msg: the message to write
1190  *
1191  * This is used for messages that need to be redirected to a specific tty.
1192  * We don't put it into the syslog queue right now maybe in the future if
1193  * really needed.
1194  *
1195  * We must still hold the BTM and test the CLOSING flag for the moment.
1196  */
1197
1198 void tty_write_message(struct tty_struct *tty, char *msg)
1199 {
1200         if (tty) {
1201                 mutex_lock(&tty->atomic_write_lock);
1202                 tty_lock(tty);
1203                 if (tty->ops->write && tty->count > 0)
1204                         tty->ops->write(tty, msg, strlen(msg));
1205                 tty_unlock(tty);
1206                 tty_write_unlock(tty);
1207         }
1208         return;
1209 }
1210
1211
1212 /**
1213  *      tty_write               -       write method for tty device file
1214  *      @file: tty file pointer
1215  *      @buf: user data to write
1216  *      @count: bytes to write
1217  *      @ppos: unused
1218  *
1219  *      Write data to a tty device via the line discipline.
1220  *
1221  *      Locking:
1222  *              Locks the line discipline as required
1223  *              Writes to the tty driver are serialized by the atomic_write_lock
1224  *      and are then processed in chunks to the device. The line discipline
1225  *      write method will not be invoked in parallel for each device.
1226  */
1227
1228 static ssize_t tty_write(struct file *file, const char __user *buf,
1229                                                 size_t count, loff_t *ppos)
1230 {
1231         struct tty_struct *tty = file_tty(file);
1232         struct tty_ldisc *ld;
1233         ssize_t ret;
1234
1235         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1236                 return -EIO;
1237         if (!tty || !tty->ops->write ||
1238                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1239                         return -EIO;
1240         /* Short term debug to catch buggy drivers */
1241         if (tty->ops->write_room == NULL)
1242                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1243                         tty->driver->name);
1244         ld = tty_ldisc_ref_wait(tty);
1245         if (!ld->ops->write)
1246                 ret = -EIO;
1247         else
1248                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1249         tty_ldisc_deref(ld);
1250         return ret;
1251 }
1252
1253 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1254                                                 size_t count, loff_t *ppos)
1255 {
1256         struct file *p = NULL;
1257
1258         spin_lock(&redirect_lock);
1259         if (redirect)
1260                 p = get_file(redirect);
1261         spin_unlock(&redirect_lock);
1262
1263         if (p) {
1264                 ssize_t res;
1265                 res = vfs_write(p, buf, count, &p->f_pos);
1266                 fput(p);
1267                 return res;
1268         }
1269         return tty_write(file, buf, count, ppos);
1270 }
1271
1272 /**
1273  *      tty_send_xchar  -       send priority character
1274  *
1275  *      Send a high priority character to the tty even if stopped
1276  *
1277  *      Locking: none for xchar method, write ordering for write method.
1278  */
1279
1280 int tty_send_xchar(struct tty_struct *tty, char ch)
1281 {
1282         int     was_stopped = tty->stopped;
1283
1284         if (tty->ops->send_xchar) {
1285                 down_read(&tty->termios_rwsem);
1286                 tty->ops->send_xchar(tty, ch);
1287                 up_read(&tty->termios_rwsem);
1288                 return 0;
1289         }
1290
1291         if (tty_write_lock(tty, 0) < 0)
1292                 return -ERESTARTSYS;
1293
1294         down_read(&tty->termios_rwsem);
1295         if (was_stopped)
1296                 start_tty(tty);
1297         tty->ops->write(tty, &ch, 1);
1298         if (was_stopped)
1299                 stop_tty(tty);
1300         up_read(&tty->termios_rwsem);
1301         tty_write_unlock(tty);
1302         return 0;
1303 }
1304
1305 static char ptychar[] = "pqrstuvwxyzabcde";
1306
1307 /**
1308  *      pty_line_name   -       generate name for a pty
1309  *      @driver: the tty driver in use
1310  *      @index: the minor number
1311  *      @p: output buffer of at least 6 bytes
1312  *
1313  *      Generate a name from a driver reference and write it to the output
1314  *      buffer.
1315  *
1316  *      Locking: None
1317  */
1318 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1319 {
1320         int i = index + driver->name_base;
1321         /* ->name is initialized to "ttyp", but "tty" is expected */
1322         sprintf(p, "%s%c%x",
1323                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1324                 ptychar[i >> 4 & 0xf], i & 0xf);
1325 }
1326
1327 /**
1328  *      tty_line_name   -       generate name for a tty
1329  *      @driver: the tty driver in use
1330  *      @index: the minor number
1331  *      @p: output buffer of at least 7 bytes
1332  *
1333  *      Generate a name from a driver reference and write it to the output
1334  *      buffer.
1335  *
1336  *      Locking: None
1337  */
1338 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1339 {
1340         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1341                 return sprintf(p, "%s", driver->name);
1342         else
1343                 return sprintf(p, "%s%d", driver->name,
1344                                index + driver->name_base);
1345 }
1346
1347 /**
1348  *      tty_driver_lookup_tty() - find an existing tty, if any
1349  *      @driver: the driver for the tty
1350  *      @idx:    the minor number
1351  *
1352  *      Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1353  *      driver lookup() method returns an error.
1354  *
1355  *      Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1356  */
1357 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1358                 struct inode *inode, int idx)
1359 {
1360         struct tty_struct *tty;
1361
1362         if (driver->ops->lookup)
1363                 tty = driver->ops->lookup(driver, inode, idx);
1364         else
1365                 tty = driver->ttys[idx];
1366
1367         if (!IS_ERR(tty))
1368                 tty_kref_get(tty);
1369         return tty;
1370 }
1371
1372 /**
1373  *      tty_init_termios        -  helper for termios setup
1374  *      @tty: the tty to set up
1375  *
1376  *      Initialise the termios structures for this tty. Thus runs under
1377  *      the tty_mutex currently so we can be relaxed about ordering.
1378  */
1379
1380 int tty_init_termios(struct tty_struct *tty)
1381 {
1382         struct ktermios *tp;
1383         int idx = tty->index;
1384
1385         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1386                 tty->termios = tty->driver->init_termios;
1387         else {
1388                 /* Check for lazy saved data */
1389                 tp = tty->driver->termios[idx];
1390                 if (tp != NULL)
1391                         tty->termios = *tp;
1392                 else
1393                         tty->termios = tty->driver->init_termios;
1394         }
1395         /* Compatibility until drivers always set this */
1396         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1397         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(tty_init_termios);
1401
1402 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1403 {
1404         int ret = tty_init_termios(tty);
1405         if (ret)
1406                 return ret;
1407
1408         tty_driver_kref_get(driver);
1409         tty->count++;
1410         driver->ttys[tty->index] = tty;
1411         return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(tty_standard_install);
1414
1415 /**
1416  *      tty_driver_install_tty() - install a tty entry in the driver
1417  *      @driver: the driver for the tty
1418  *      @tty: the tty
1419  *
1420  *      Install a tty object into the driver tables. The tty->index field
1421  *      will be set by the time this is called. This method is responsible
1422  *      for ensuring any need additional structures are allocated and
1423  *      configured.
1424  *
1425  *      Locking: tty_mutex for now
1426  */
1427 static int tty_driver_install_tty(struct tty_driver *driver,
1428                                                 struct tty_struct *tty)
1429 {
1430         return driver->ops->install ? driver->ops->install(driver, tty) :
1431                 tty_standard_install(driver, tty);
1432 }
1433
1434 /**
1435  *      tty_driver_remove_tty() - remove a tty from the driver tables
1436  *      @driver: the driver for the tty
1437  *      @idx:    the minor number
1438  *
1439  *      Remvoe a tty object from the driver tables. The tty->index field
1440  *      will be set by the time this is called.
1441  *
1442  *      Locking: tty_mutex for now
1443  */
1444 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1445 {
1446         if (driver->ops->remove)
1447                 driver->ops->remove(driver, tty);
1448         else
1449                 driver->ttys[tty->index] = NULL;
1450 }
1451
1452 /*
1453  *      tty_reopen()    - fast re-open of an open tty
1454  *      @tty    - the tty to open
1455  *
1456  *      Return 0 on success, -errno on error.
1457  *      Re-opens on master ptys are not allowed and return -EIO.
1458  *
1459  *      Locking: Caller must hold tty_lock
1460  */
1461 static int tty_reopen(struct tty_struct *tty)
1462 {
1463         struct tty_driver *driver = tty->driver;
1464
1465         if (!tty->count)
1466                 return -EIO;
1467
1468         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1469             driver->subtype == PTY_TYPE_MASTER)
1470                 return -EIO;
1471
1472         if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1473                 return -EBUSY;
1474
1475         tty->count++;
1476
1477         WARN_ON(!tty->ldisc);
1478
1479         return 0;
1480 }
1481
1482 /**
1483  *      tty_init_dev            -       initialise a tty device
1484  *      @driver: tty driver we are opening a device on
1485  *      @idx: device index
1486  *      @ret_tty: returned tty structure
1487  *
1488  *      Prepare a tty device. This may not be a "new" clean device but
1489  *      could also be an active device. The pty drivers require special
1490  *      handling because of this.
1491  *
1492  *      Locking:
1493  *              The function is called under the tty_mutex, which
1494  *      protects us from the tty struct or driver itself going away.
1495  *
1496  *      On exit the tty device has the line discipline attached and
1497  *      a reference count of 1. If a pair was created for pty/tty use
1498  *      and the other was a pty master then it too has a reference count of 1.
1499  *
1500  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1501  * failed open.  The new code protects the open with a mutex, so it's
1502  * really quite straightforward.  The mutex locking can probably be
1503  * relaxed for the (most common) case of reopening a tty.
1504  */
1505
1506 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1507 {
1508         struct tty_struct *tty;
1509         int retval;
1510
1511         /*
1512          * First time open is complex, especially for PTY devices.
1513          * This code guarantees that either everything succeeds and the
1514          * TTY is ready for operation, or else the table slots are vacated
1515          * and the allocated memory released.  (Except that the termios
1516          * and locked termios may be retained.)
1517          */
1518
1519         if (!try_module_get(driver->owner))
1520                 return ERR_PTR(-ENODEV);
1521
1522         tty = alloc_tty_struct(driver, idx);
1523         if (!tty) {
1524                 retval = -ENOMEM;
1525                 goto err_module_put;
1526         }
1527
1528         tty_lock(tty);
1529         retval = tty_driver_install_tty(driver, tty);
1530         if (retval < 0)
1531                 goto err_deinit_tty;
1532
1533         if (!tty->port)
1534                 tty->port = driver->ports[idx];
1535
1536         WARN_RATELIMIT(!tty->port,
1537                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1538                         __func__, tty->driver->name);
1539
1540         tty->port->itty = tty;
1541
1542         /*
1543          * Structures all installed ... call the ldisc open routines.
1544          * If we fail here just call release_tty to clean up.  No need
1545          * to decrement the use counts, as release_tty doesn't care.
1546          */
1547         retval = tty_ldisc_setup(tty, tty->link);
1548         if (retval)
1549                 goto err_release_tty;
1550         /* Return the tty locked so that it cannot vanish under the caller */
1551         return tty;
1552
1553 err_deinit_tty:
1554         tty_unlock(tty);
1555         deinitialize_tty_struct(tty);
1556         free_tty_struct(tty);
1557 err_module_put:
1558         module_put(driver->owner);
1559         return ERR_PTR(retval);
1560
1561         /* call the tty release_tty routine to clean out this slot */
1562 err_release_tty:
1563         tty_unlock(tty);
1564         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1565                                  "clearing slot %d\n", idx);
1566         release_tty(tty, idx);
1567         return ERR_PTR(retval);
1568 }
1569
1570 void tty_free_termios(struct tty_struct *tty)
1571 {
1572         struct ktermios *tp;
1573         int idx = tty->index;
1574
1575         /* If the port is going to reset then it has no termios to save */
1576         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1577                 return;
1578
1579         /* Stash the termios data */
1580         tp = tty->driver->termios[idx];
1581         if (tp == NULL) {
1582                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1583                 if (tp == NULL) {
1584                         pr_warn("tty: no memory to save termios state.\n");
1585                         return;
1586                 }
1587                 tty->driver->termios[idx] = tp;
1588         }
1589         *tp = tty->termios;
1590 }
1591 EXPORT_SYMBOL(tty_free_termios);
1592
1593 /**
1594  *      tty_flush_works         -       flush all works of a tty/pty pair
1595  *      @tty: tty device to flush works for (or either end of a pty pair)
1596  *
1597  *      Sync flush all works belonging to @tty (and the 'other' tty).
1598  */
1599 static void tty_flush_works(struct tty_struct *tty)
1600 {
1601         flush_work(&tty->SAK_work);
1602         flush_work(&tty->hangup_work);
1603         if (tty->link) {
1604                 flush_work(&tty->link->SAK_work);
1605                 flush_work(&tty->link->hangup_work);
1606         }
1607 }
1608
1609 /**
1610  *      release_one_tty         -       release tty structure memory
1611  *      @kref: kref of tty we are obliterating
1612  *
1613  *      Releases memory associated with a tty structure, and clears out the
1614  *      driver table slots. This function is called when a device is no longer
1615  *      in use. It also gets called when setup of a device fails.
1616  *
1617  *      Locking:
1618  *              takes the file list lock internally when working on the list
1619  *      of ttys that the driver keeps.
1620  *
1621  *      This method gets called from a work queue so that the driver private
1622  *      cleanup ops can sleep (needed for USB at least)
1623  */
1624 static void release_one_tty(struct work_struct *work)
1625 {
1626         struct tty_struct *tty =
1627                 container_of(work, struct tty_struct, hangup_work);
1628         struct tty_driver *driver = tty->driver;
1629         struct module *owner = driver->owner;
1630
1631         if (tty->ops->cleanup)
1632                 tty->ops->cleanup(tty);
1633
1634         tty->magic = 0;
1635         tty_driver_kref_put(driver);
1636         module_put(owner);
1637
1638         spin_lock(&tty_files_lock);
1639         list_del_init(&tty->tty_files);
1640         spin_unlock(&tty_files_lock);
1641
1642         put_pid(tty->pgrp);
1643         put_pid(tty->session);
1644         free_tty_struct(tty);
1645 }
1646
1647 static void queue_release_one_tty(struct kref *kref)
1648 {
1649         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1650
1651         /* The hangup queue is now free so we can reuse it rather than
1652            waste a chunk of memory for each port */
1653         INIT_WORK(&tty->hangup_work, release_one_tty);
1654         schedule_work(&tty->hangup_work);
1655 }
1656
1657 /**
1658  *      tty_kref_put            -       release a tty kref
1659  *      @tty: tty device
1660  *
1661  *      Release a reference to a tty device and if need be let the kref
1662  *      layer destruct the object for us
1663  */
1664
1665 void tty_kref_put(struct tty_struct *tty)
1666 {
1667         if (tty)
1668                 kref_put(&tty->kref, queue_release_one_tty);
1669 }
1670 EXPORT_SYMBOL(tty_kref_put);
1671
1672 /**
1673  *      release_tty             -       release tty structure memory
1674  *
1675  *      Release both @tty and a possible linked partner (think pty pair),
1676  *      and decrement the refcount of the backing module.
1677  *
1678  *      Locking:
1679  *              tty_mutex
1680  *              takes the file list lock internally when working on the list
1681  *      of ttys that the driver keeps.
1682  *
1683  */
1684 static void release_tty(struct tty_struct *tty, int idx)
1685 {
1686         /* This should always be true but check for the moment */
1687         WARN_ON(tty->index != idx);
1688         WARN_ON(!mutex_is_locked(&tty_mutex));
1689         if (tty->ops->shutdown)
1690                 tty->ops->shutdown(tty);
1691         tty_free_termios(tty);
1692         tty_driver_remove_tty(tty->driver, tty);
1693         tty->port->itty = NULL;
1694         if (tty->link)
1695                 tty->link->port->itty = NULL;
1696         tty_buffer_cancel_work(tty->port);
1697
1698         tty_kref_put(tty->link);
1699         tty_kref_put(tty);
1700 }
1701
1702 /**
1703  *      tty_release_checks - check a tty before real release
1704  *      @tty: tty to check
1705  *      @o_tty: link of @tty (if any)
1706  *      @idx: index of the tty
1707  *
1708  *      Performs some paranoid checking before true release of the @tty.
1709  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1710  */
1711 static int tty_release_checks(struct tty_struct *tty, int idx)
1712 {
1713 #ifdef TTY_PARANOIA_CHECK
1714         if (idx < 0 || idx >= tty->driver->num) {
1715                 tty_debug(tty, "bad idx %d\n", idx);
1716                 return -1;
1717         }
1718
1719         /* not much to check for devpts */
1720         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1721                 return 0;
1722
1723         if (tty != tty->driver->ttys[idx]) {
1724                 tty_debug(tty, "bad driver table[%d] = %p\n",
1725                           idx, tty->driver->ttys[idx]);
1726                 return -1;
1727         }
1728         if (tty->driver->other) {
1729                 struct tty_struct *o_tty = tty->link;
1730
1731                 if (o_tty != tty->driver->other->ttys[idx]) {
1732                         tty_debug(tty, "bad other table[%d] = %p\n",
1733                                   idx, tty->driver->other->ttys[idx]);
1734                         return -1;
1735                 }
1736                 if (o_tty->link != tty) {
1737                         tty_debug(tty, "bad link = %p\n", o_tty->link);
1738                         return -1;
1739                 }
1740         }
1741 #endif
1742         return 0;
1743 }
1744
1745 /**
1746  *      tty_release             -       vfs callback for close
1747  *      @inode: inode of tty
1748  *      @filp: file pointer for handle to tty
1749  *
1750  *      Called the last time each file handle is closed that references
1751  *      this tty. There may however be several such references.
1752  *
1753  *      Locking:
1754  *              Takes bkl. See tty_release_dev
1755  *
1756  * Even releasing the tty structures is a tricky business.. We have
1757  * to be very careful that the structures are all released at the
1758  * same time, as interrupts might otherwise get the wrong pointers.
1759  *
1760  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1761  * lead to double frees or releasing memory still in use.
1762  */
1763
1764 int tty_release(struct inode *inode, struct file *filp)
1765 {
1766         struct tty_struct *tty = file_tty(filp);
1767         struct tty_struct *o_tty = NULL;
1768         int     do_sleep, final;
1769         int     idx;
1770         long    timeout = 0;
1771         int     once = 1;
1772
1773         if (tty_paranoia_check(tty, inode, __func__))
1774                 return 0;
1775
1776         tty_lock(tty);
1777         check_tty_count(tty, __func__);
1778
1779         __tty_fasync(-1, filp, 0);
1780
1781         idx = tty->index;
1782         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1783             tty->driver->subtype == PTY_TYPE_MASTER)
1784                 o_tty = tty->link;
1785
1786         if (tty_release_checks(tty, idx)) {
1787                 tty_unlock(tty);
1788                 return 0;
1789         }
1790
1791         tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1792
1793         if (tty->ops->close)
1794                 tty->ops->close(tty, filp);
1795
1796         /* If tty is pty master, lock the slave pty (stable lock order) */
1797         tty_lock_slave(o_tty);
1798
1799         /*
1800          * Sanity check: if tty->count is going to zero, there shouldn't be
1801          * any waiters on tty->read_wait or tty->write_wait.  We test the
1802          * wait queues and kick everyone out _before_ actually starting to
1803          * close.  This ensures that we won't block while releasing the tty
1804          * structure.
1805          *
1806          * The test for the o_tty closing is necessary, since the master and
1807          * slave sides may close in any order.  If the slave side closes out
1808          * first, its count will be one, since the master side holds an open.
1809          * Thus this test wouldn't be triggered at the time the slave closed,
1810          * so we do it now.
1811          */
1812         while (1) {
1813                 do_sleep = 0;
1814
1815                 if (tty->count <= 1) {
1816                         if (waitqueue_active(&tty->read_wait)) {
1817                                 wake_up_poll(&tty->read_wait, POLLIN);
1818                                 do_sleep++;
1819                         }
1820                         if (waitqueue_active(&tty->write_wait)) {
1821                                 wake_up_poll(&tty->write_wait, POLLOUT);
1822                                 do_sleep++;
1823                         }
1824                 }
1825                 if (o_tty && o_tty->count <= 1) {
1826                         if (waitqueue_active(&o_tty->read_wait)) {
1827                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1828                                 do_sleep++;
1829                         }
1830                         if (waitqueue_active(&o_tty->write_wait)) {
1831                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1832                                 do_sleep++;
1833                         }
1834                 }
1835                 if (!do_sleep)
1836                         break;
1837
1838                 if (once) {
1839                         once = 0;
1840                         printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1841                                __func__, tty_name(tty));
1842                 }
1843                 schedule_timeout_killable(timeout);
1844                 if (timeout < 120 * HZ)
1845                         timeout = 2 * timeout + 1;
1846                 else
1847                         timeout = MAX_SCHEDULE_TIMEOUT;
1848         }
1849
1850         if (o_tty) {
1851                 if (--o_tty->count < 0) {
1852                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1853                                 __func__, o_tty->count, tty_name(o_tty));
1854                         o_tty->count = 0;
1855                 }
1856         }
1857         if (--tty->count < 0) {
1858                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1859                                 __func__, tty->count, tty_name(tty));
1860                 tty->count = 0;
1861         }
1862
1863         /*
1864          * We've decremented tty->count, so we need to remove this file
1865          * descriptor off the tty->tty_files list; this serves two
1866          * purposes:
1867          *  - check_tty_count sees the correct number of file descriptors
1868          *    associated with this tty.
1869          *  - do_tty_hangup no longer sees this file descriptor as
1870          *    something that needs to be handled for hangups.
1871          */
1872         tty_del_file(filp);
1873
1874         /*
1875          * Perform some housekeeping before deciding whether to return.
1876          *
1877          * If _either_ side is closing, make sure there aren't any
1878          * processes that still think tty or o_tty is their controlling
1879          * tty.
1880          */
1881         if (!tty->count) {
1882                 read_lock(&tasklist_lock);
1883                 session_clear_tty(tty->session);
1884                 if (o_tty)
1885                         session_clear_tty(o_tty->session);
1886                 read_unlock(&tasklist_lock);
1887         }
1888
1889         /* check whether both sides are closing ... */
1890         final = !tty->count && !(o_tty && o_tty->count);
1891
1892         tty_unlock_slave(o_tty);
1893         tty_unlock(tty);
1894
1895         /* At this point, the tty->count == 0 should ensure a dead tty
1896            cannot be re-opened by a racing opener */
1897
1898         if (!final)
1899                 return 0;
1900
1901         tty_debug_hangup(tty, "final close\n");
1902         /*
1903          * Ask the line discipline code to release its structures
1904          */
1905         tty_ldisc_release(tty);
1906
1907         /* Wait for pending work before tty destruction commmences */
1908         tty_flush_works(tty);
1909
1910         tty_debug_hangup(tty, "freeing structure...\n");
1911         /*
1912          * The release_tty function takes care of the details of clearing
1913          * the slots and preserving the termios structure. The tty_unlock_pair
1914          * should be safe as we keep a kref while the tty is locked (so the
1915          * unlock never unlocks a freed tty).
1916          */
1917         mutex_lock(&tty_mutex);
1918         release_tty(tty, idx);
1919         mutex_unlock(&tty_mutex);
1920
1921         return 0;
1922 }
1923
1924 /**
1925  *      tty_open_current_tty - get locked tty of current task
1926  *      @device: device number
1927  *      @filp: file pointer to tty
1928  *      @return: locked tty of the current task iff @device is /dev/tty
1929  *
1930  *      Performs a re-open of the current task's controlling tty.
1931  *
1932  *      We cannot return driver and index like for the other nodes because
1933  *      devpts will not work then. It expects inodes to be from devpts FS.
1934  */
1935 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1936 {
1937         struct tty_struct *tty;
1938         int retval;
1939
1940         if (device != MKDEV(TTYAUX_MAJOR, 0))
1941                 return NULL;
1942
1943         tty = get_current_tty();
1944         if (!tty)
1945                 return ERR_PTR(-ENXIO);
1946
1947         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1948         /* noctty = 1; */
1949         tty_lock(tty);
1950         tty_kref_put(tty);      /* safe to drop the kref now */
1951
1952         retval = tty_reopen(tty);
1953         if (retval < 0) {
1954                 tty_unlock(tty);
1955                 tty = ERR_PTR(retval);
1956         }
1957         return tty;
1958 }
1959
1960 /**
1961  *      tty_lookup_driver - lookup a tty driver for a given device file
1962  *      @device: device number
1963  *      @filp: file pointer to tty
1964  *      @noctty: set if the device should not become a controlling tty
1965  *      @index: index for the device in the @return driver
1966  *      @return: driver for this inode (with increased refcount)
1967  *
1968  *      If @return is not erroneous, the caller is responsible to decrement the
1969  *      refcount by tty_driver_kref_put.
1970  *
1971  *      Locking: tty_mutex protects get_tty_driver
1972  */
1973 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1974                 int *noctty, int *index)
1975 {
1976         struct tty_driver *driver;
1977
1978         switch (device) {
1979 #ifdef CONFIG_VT
1980         case MKDEV(TTY_MAJOR, 0): {
1981                 extern struct tty_driver *console_driver;
1982                 driver = tty_driver_kref_get(console_driver);
1983                 *index = fg_console;
1984                 *noctty = 1;
1985                 break;
1986         }
1987 #endif
1988         case MKDEV(TTYAUX_MAJOR, 1): {
1989                 struct tty_driver *console_driver = console_device(index);
1990                 if (console_driver) {
1991                         driver = tty_driver_kref_get(console_driver);
1992                         if (driver) {
1993                                 /* Don't let /dev/console block */
1994                                 filp->f_flags |= O_NONBLOCK;
1995                                 *noctty = 1;
1996                                 break;
1997                         }
1998                 }
1999                 return ERR_PTR(-ENODEV);
2000         }
2001         default:
2002                 driver = get_tty_driver(device, index);
2003                 if (!driver)
2004                         return ERR_PTR(-ENODEV);
2005                 break;
2006         }
2007         return driver;
2008 }
2009
2010 /**
2011  *      tty_open                -       open a tty device
2012  *      @inode: inode of device file
2013  *      @filp: file pointer to tty
2014  *
2015  *      tty_open and tty_release keep up the tty count that contains the
2016  *      number of opens done on a tty. We cannot use the inode-count, as
2017  *      different inodes might point to the same tty.
2018  *
2019  *      Open-counting is needed for pty masters, as well as for keeping
2020  *      track of serial lines: DTR is dropped when the last close happens.
2021  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2022  *
2023  *      The termios state of a pty is reset on first open so that
2024  *      settings don't persist across reuse.
2025  *
2026  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2027  *               tty->count should protect the rest.
2028  *               ->siglock protects ->signal/->sighand
2029  *
2030  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2031  *      tty_mutex
2032  */
2033
2034 static int tty_open(struct inode *inode, struct file *filp)
2035 {
2036         struct tty_struct *tty;
2037         int noctty, retval;
2038         struct tty_driver *driver = NULL;
2039         int index;
2040         dev_t device = inode->i_rdev;
2041         unsigned saved_flags = filp->f_flags;
2042
2043         nonseekable_open(inode, filp);
2044
2045 retry_open:
2046         retval = tty_alloc_file(filp);
2047         if (retval)
2048                 return -ENOMEM;
2049
2050         noctty = filp->f_flags & O_NOCTTY;
2051         index  = -1;
2052         retval = 0;
2053
2054         tty = tty_open_current_tty(device, filp);
2055         if (!tty) {
2056                 mutex_lock(&tty_mutex);
2057                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2058                 if (IS_ERR(driver)) {
2059                         retval = PTR_ERR(driver);
2060                         goto err_unlock;
2061                 }
2062
2063                 /* check whether we're reopening an existing tty */
2064                 tty = tty_driver_lookup_tty(driver, inode, index);
2065                 if (IS_ERR(tty)) {
2066                         retval = PTR_ERR(tty);
2067                         goto err_unlock;
2068                 }
2069
2070                 if (tty) {
2071                         mutex_unlock(&tty_mutex);
2072                         tty_lock(tty);
2073                         /* safe to drop the kref from tty_driver_lookup_tty() */
2074                         tty_kref_put(tty);
2075                         retval = tty_reopen(tty);
2076                         if (retval < 0) {
2077                                 tty_unlock(tty);
2078                                 tty = ERR_PTR(retval);
2079                         }
2080                 } else { /* Returns with the tty_lock held for now */
2081                         tty = tty_init_dev(driver, index);
2082                         mutex_unlock(&tty_mutex);
2083                 }
2084
2085                 tty_driver_kref_put(driver);
2086         }
2087
2088         if (IS_ERR(tty)) {
2089                 retval = PTR_ERR(tty);
2090                 goto err_file;
2091         }
2092
2093         tty_add_file(tty, filp);
2094
2095         check_tty_count(tty, __func__);
2096         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2097             tty->driver->subtype == PTY_TYPE_MASTER)
2098                 noctty = 1;
2099
2100         tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2101
2102         if (tty->ops->open)
2103                 retval = tty->ops->open(tty, filp);
2104         else
2105                 retval = -ENODEV;
2106         filp->f_flags = saved_flags;
2107
2108         if (retval) {
2109                 tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2110
2111                 tty_unlock(tty); /* need to call tty_release without BTM */
2112                 tty_release(inode, filp);
2113                 if (retval != -ERESTARTSYS)
2114                         return retval;
2115
2116                 if (signal_pending(current))
2117                         return retval;
2118
2119                 schedule();
2120                 /*
2121                  * Need to reset f_op in case a hangup happened.
2122                  */
2123                 if (tty_hung_up_p(filp))
2124                         filp->f_op = &tty_fops;
2125                 goto retry_open;
2126         }
2127         clear_bit(TTY_HUPPED, &tty->flags);
2128
2129
2130         read_lock(&tasklist_lock);
2131         spin_lock_irq(&current->sighand->siglock);
2132         if (!noctty &&
2133             current->signal->leader &&
2134             !current->signal->tty &&
2135             tty->session == NULL) {
2136                 /*
2137                  * Don't let a process that only has write access to the tty
2138                  * obtain the privileges associated with having a tty as
2139                  * controlling terminal (being able to reopen it with full
2140                  * access through /dev/tty, being able to perform pushback).
2141                  * Many distributions set the group of all ttys to "tty" and
2142                  * grant write-only access to all terminals for setgid tty
2143                  * binaries, which should not imply full privileges on all ttys.
2144                  *
2145                  * This could theoretically break old code that performs open()
2146                  * on a write-only file descriptor. In that case, it might be
2147                  * necessary to also permit this if
2148                  * inode_permission(inode, MAY_READ) == 0.
2149                  */
2150                 if (filp->f_mode & FMODE_READ)
2151                         __proc_set_tty(tty);
2152         }
2153         spin_unlock_irq(&current->sighand->siglock);
2154         read_unlock(&tasklist_lock);
2155         tty_unlock(tty);
2156         return 0;
2157 err_unlock:
2158         mutex_unlock(&tty_mutex);
2159         /* after locks to avoid deadlock */
2160         if (!IS_ERR_OR_NULL(driver))
2161                 tty_driver_kref_put(driver);
2162 err_file:
2163         tty_free_file(filp);
2164         return retval;
2165 }
2166
2167
2168
2169 /**
2170  *      tty_poll        -       check tty status
2171  *      @filp: file being polled
2172  *      @wait: poll wait structures to update
2173  *
2174  *      Call the line discipline polling method to obtain the poll
2175  *      status of the device.
2176  *
2177  *      Locking: locks called line discipline but ldisc poll method
2178  *      may be re-entered freely by other callers.
2179  */
2180
2181 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2182 {
2183         struct tty_struct *tty = file_tty(filp);
2184         struct tty_ldisc *ld;
2185         int ret = 0;
2186
2187         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2188                 return 0;
2189
2190         ld = tty_ldisc_ref_wait(tty);
2191         if (ld->ops->poll)
2192                 ret = ld->ops->poll(tty, filp, wait);
2193         tty_ldisc_deref(ld);
2194         return ret;
2195 }
2196
2197 static int __tty_fasync(int fd, struct file *filp, int on)
2198 {
2199         struct tty_struct *tty = file_tty(filp);
2200         struct tty_ldisc *ldisc;
2201         unsigned long flags;
2202         int retval = 0;
2203
2204         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2205                 goto out;
2206
2207         retval = fasync_helper(fd, filp, on, &tty->fasync);
2208         if (retval <= 0)
2209                 goto out;
2210
2211         ldisc = tty_ldisc_ref(tty);
2212         if (ldisc) {
2213                 if (ldisc->ops->fasync)
2214                         ldisc->ops->fasync(tty, on);
2215                 tty_ldisc_deref(ldisc);
2216         }
2217
2218         if (on) {
2219                 enum pid_type type;
2220                 struct pid *pid;
2221
2222                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2223                 if (tty->pgrp) {
2224                         pid = tty->pgrp;
2225                         type = PIDTYPE_PGID;
2226                 } else {
2227                         pid = task_pid(current);
2228                         type = PIDTYPE_PID;
2229                 }
2230                 get_pid(pid);
2231                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2232                 __f_setown(filp, pid, type, 0);
2233                 put_pid(pid);
2234                 retval = 0;
2235         }
2236 out:
2237         return retval;
2238 }
2239
2240 static int tty_fasync(int fd, struct file *filp, int on)
2241 {
2242         struct tty_struct *tty = file_tty(filp);
2243         int retval;
2244
2245         tty_lock(tty);
2246         retval = __tty_fasync(fd, filp, on);
2247         tty_unlock(tty);
2248
2249         return retval;
2250 }
2251
2252 /**
2253  *      tiocsti                 -       fake input character
2254  *      @tty: tty to fake input into
2255  *      @p: pointer to character
2256  *
2257  *      Fake input to a tty device. Does the necessary locking and
2258  *      input management.
2259  *
2260  *      FIXME: does not honour flow control ??
2261  *
2262  *      Locking:
2263  *              Called functions take tty_ldiscs_lock
2264  *              current->signal->tty check is safe without locks
2265  *
2266  *      FIXME: may race normal receive processing
2267  */
2268
2269 static int tiocsti(struct tty_struct *tty, char __user *p)
2270 {
2271         char ch, mbz = 0;
2272         struct tty_ldisc *ld;
2273
2274         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2275                 return -EPERM;
2276         if (get_user(ch, p))
2277                 return -EFAULT;
2278         tty_audit_tiocsti(tty, ch);
2279         ld = tty_ldisc_ref_wait(tty);
2280         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2281         tty_ldisc_deref(ld);
2282         return 0;
2283 }
2284
2285 /**
2286  *      tiocgwinsz              -       implement window query ioctl
2287  *      @tty; tty
2288  *      @arg: user buffer for result
2289  *
2290  *      Copies the kernel idea of the window size into the user buffer.
2291  *
2292  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2293  *              is consistent.
2294  */
2295
2296 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2297 {
2298         int err;
2299
2300         mutex_lock(&tty->winsize_mutex);
2301         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2302         mutex_unlock(&tty->winsize_mutex);
2303
2304         return err ? -EFAULT: 0;
2305 }
2306
2307 /**
2308  *      tty_do_resize           -       resize event
2309  *      @tty: tty being resized
2310  *      @rows: rows (character)
2311  *      @cols: cols (character)
2312  *
2313  *      Update the termios variables and send the necessary signals to
2314  *      peform a terminal resize correctly
2315  */
2316
2317 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2318 {
2319         struct pid *pgrp;
2320
2321         /* Lock the tty */
2322         mutex_lock(&tty->winsize_mutex);
2323         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2324                 goto done;
2325
2326         /* Signal the foreground process group */
2327         pgrp = tty_get_pgrp(tty);
2328         if (pgrp)
2329                 kill_pgrp(pgrp, SIGWINCH, 1);
2330         put_pid(pgrp);
2331
2332         tty->winsize = *ws;
2333 done:
2334         mutex_unlock(&tty->winsize_mutex);
2335         return 0;
2336 }
2337 EXPORT_SYMBOL(tty_do_resize);
2338
2339 /**
2340  *      tiocswinsz              -       implement window size set ioctl
2341  *      @tty; tty side of tty
2342  *      @arg: user buffer for result
2343  *
2344  *      Copies the user idea of the window size to the kernel. Traditionally
2345  *      this is just advisory information but for the Linux console it
2346  *      actually has driver level meaning and triggers a VC resize.
2347  *
2348  *      Locking:
2349  *              Driver dependent. The default do_resize method takes the
2350  *      tty termios mutex and ctrl_lock. The console takes its own lock
2351  *      then calls into the default method.
2352  */
2353
2354 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2355 {
2356         struct winsize tmp_ws;
2357         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2358                 return -EFAULT;
2359
2360         if (tty->ops->resize)
2361                 return tty->ops->resize(tty, &tmp_ws);
2362         else
2363                 return tty_do_resize(tty, &tmp_ws);
2364 }
2365
2366 /**
2367  *      tioccons        -       allow admin to move logical console
2368  *      @file: the file to become console
2369  *
2370  *      Allow the administrator to move the redirected console device
2371  *
2372  *      Locking: uses redirect_lock to guard the redirect information
2373  */
2374
2375 static int tioccons(struct file *file)
2376 {
2377         if (!capable(CAP_SYS_ADMIN))
2378                 return -EPERM;
2379         if (file->f_op->write == redirected_tty_write) {
2380                 struct file *f;
2381                 spin_lock(&redirect_lock);
2382                 f = redirect;
2383                 redirect = NULL;
2384                 spin_unlock(&redirect_lock);
2385                 if (f)
2386                         fput(f);
2387                 return 0;
2388         }
2389         spin_lock(&redirect_lock);
2390         if (redirect) {
2391                 spin_unlock(&redirect_lock);
2392                 return -EBUSY;
2393         }
2394         redirect = get_file(file);
2395         spin_unlock(&redirect_lock);
2396         return 0;
2397 }
2398
2399 /**
2400  *      fionbio         -       non blocking ioctl
2401  *      @file: file to set blocking value
2402  *      @p: user parameter
2403  *
2404  *      Historical tty interfaces had a blocking control ioctl before
2405  *      the generic functionality existed. This piece of history is preserved
2406  *      in the expected tty API of posix OS's.
2407  *
2408  *      Locking: none, the open file handle ensures it won't go away.
2409  */
2410
2411 static int fionbio(struct file *file, int __user *p)
2412 {
2413         int nonblock;
2414
2415         if (get_user(nonblock, p))
2416                 return -EFAULT;
2417
2418         spin_lock(&file->f_lock);
2419         if (nonblock)
2420                 file->f_flags |= O_NONBLOCK;
2421         else
2422                 file->f_flags &= ~O_NONBLOCK;
2423         spin_unlock(&file->f_lock);
2424         return 0;
2425 }
2426
2427 /**
2428  *      tiocsctty       -       set controlling tty
2429  *      @tty: tty structure
2430  *      @arg: user argument
2431  *
2432  *      This ioctl is used to manage job control. It permits a session
2433  *      leader to set this tty as the controlling tty for the session.
2434  *
2435  *      Locking:
2436  *              Takes tty_lock() to serialize proc_set_tty() for this tty
2437  *              Takes tasklist_lock internally to walk sessions
2438  *              Takes ->siglock() when updating signal->tty
2439  */
2440
2441 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2442 {
2443         int ret = 0;
2444
2445         tty_lock(tty);
2446         read_lock(&tasklist_lock);
2447
2448         if (current->signal->leader && (task_session(current) == tty->session))
2449                 goto unlock;
2450
2451         /*
2452          * The process must be a session leader and
2453          * not have a controlling tty already.
2454          */
2455         if (!current->signal->leader || current->signal->tty) {
2456                 ret = -EPERM;
2457                 goto unlock;
2458         }
2459
2460         if (tty->session) {
2461                 /*
2462                  * This tty is already the controlling
2463                  * tty for another session group!
2464                  */
2465                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2466                         /*
2467                          * Steal it away
2468                          */
2469                         session_clear_tty(tty->session);
2470                 } else {
2471                         ret = -EPERM;
2472                         goto unlock;
2473                 }
2474         }
2475
2476         /* See the comment in tty_open(). */
2477         if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2478                 ret = -EPERM;
2479                 goto unlock;
2480         }
2481
2482         proc_set_tty(tty);
2483 unlock:
2484         read_unlock(&tasklist_lock);
2485         tty_unlock(tty);
2486         return ret;
2487 }
2488
2489 /**
2490  *      tty_get_pgrp    -       return a ref counted pgrp pid
2491  *      @tty: tty to read
2492  *
2493  *      Returns a refcounted instance of the pid struct for the process
2494  *      group controlling the tty.
2495  */
2496
2497 struct pid *tty_get_pgrp(struct tty_struct *tty)
2498 {
2499         unsigned long flags;
2500         struct pid *pgrp;
2501
2502         spin_lock_irqsave(&tty->ctrl_lock, flags);
2503         pgrp = get_pid(tty->pgrp);
2504         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2505
2506         return pgrp;
2507 }
2508 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2509
2510 /*
2511  * This checks not only the pgrp, but falls back on the pid if no
2512  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2513  * without this...
2514  *
2515  * The caller must hold rcu lock or the tasklist lock.
2516  */
2517 static struct pid *session_of_pgrp(struct pid *pgrp)
2518 {
2519         struct task_struct *p;
2520         struct pid *sid = NULL;
2521
2522         p = pid_task(pgrp, PIDTYPE_PGID);
2523         if (p == NULL)
2524                 p = pid_task(pgrp, PIDTYPE_PID);
2525         if (p != NULL)
2526                 sid = task_session(p);
2527
2528         return sid;
2529 }
2530
2531 /**
2532  *      tiocgpgrp               -       get process group
2533  *      @tty: tty passed by user
2534  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2535  *      @p: returned pid
2536  *
2537  *      Obtain the process group of the tty. If there is no process group
2538  *      return an error.
2539  *
2540  *      Locking: none. Reference to current->signal->tty is safe.
2541  */
2542
2543 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2544 {
2545         struct pid *pid;
2546         int ret;
2547         /*
2548          * (tty == real_tty) is a cheap way of
2549          * testing if the tty is NOT a master pty.
2550          */
2551         if (tty == real_tty && current->signal->tty != real_tty)
2552                 return -ENOTTY;
2553         pid = tty_get_pgrp(real_tty);
2554         ret =  put_user(pid_vnr(pid), p);
2555         put_pid(pid);
2556         return ret;
2557 }
2558
2559 /**
2560  *      tiocspgrp               -       attempt to set process group
2561  *      @tty: tty passed by user
2562  *      @real_tty: tty side device matching tty passed by user
2563  *      @p: pid pointer
2564  *
2565  *      Set the process group of the tty to the session passed. Only
2566  *      permitted where the tty session is our session.
2567  *
2568  *      Locking: RCU, ctrl lock
2569  */
2570
2571 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2572 {
2573         struct pid *pgrp;
2574         pid_t pgrp_nr;
2575         int retval = tty_check_change(real_tty);
2576
2577         if (retval == -EIO)
2578                 return -ENOTTY;
2579         if (retval)
2580                 return retval;
2581         if (!current->signal->tty ||
2582             (current->signal->tty != real_tty) ||
2583             (real_tty->session != task_session(current)))
2584                 return -ENOTTY;
2585         if (get_user(pgrp_nr, p))
2586                 return -EFAULT;
2587         if (pgrp_nr < 0)
2588                 return -EINVAL;
2589         rcu_read_lock();
2590         pgrp = find_vpid(pgrp_nr);
2591         retval = -ESRCH;
2592         if (!pgrp)
2593                 goto out_unlock;
2594         retval = -EPERM;
2595         if (session_of_pgrp(pgrp) != task_session(current))
2596                 goto out_unlock;
2597         retval = 0;
2598         spin_lock_irq(&tty->ctrl_lock);
2599         put_pid(real_tty->pgrp);
2600         real_tty->pgrp = get_pid(pgrp);
2601         spin_unlock_irq(&tty->ctrl_lock);
2602 out_unlock:
2603         rcu_read_unlock();
2604         return retval;
2605 }
2606
2607 /**
2608  *      tiocgsid                -       get session id
2609  *      @tty: tty passed by user
2610  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2611  *      @p: pointer to returned session id
2612  *
2613  *      Obtain the session id of the tty. If there is no session
2614  *      return an error.
2615  *
2616  *      Locking: none. Reference to current->signal->tty is safe.
2617  */
2618
2619 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2620 {
2621         /*
2622          * (tty == real_tty) is a cheap way of
2623          * testing if the tty is NOT a master pty.
2624         */
2625         if (tty == real_tty && current->signal->tty != real_tty)
2626                 return -ENOTTY;
2627         if (!real_tty->session)
2628                 return -ENOTTY;
2629         return put_user(pid_vnr(real_tty->session), p);
2630 }
2631
2632 /**
2633  *      tiocsetd        -       set line discipline
2634  *      @tty: tty device
2635  *      @p: pointer to user data
2636  *
2637  *      Set the line discipline according to user request.
2638  *
2639  *      Locking: see tty_set_ldisc, this function is just a helper
2640  */
2641
2642 static int tiocsetd(struct tty_struct *tty, int __user *p)
2643 {
2644         int ldisc;
2645         int ret;
2646
2647         if (get_user(ldisc, p))
2648                 return -EFAULT;
2649
2650         ret = tty_set_ldisc(tty, ldisc);
2651
2652         return ret;
2653 }
2654
2655 /**
2656  *      send_break      -       performed time break
2657  *      @tty: device to break on
2658  *      @duration: timeout in mS
2659  *
2660  *      Perform a timed break on hardware that lacks its own driver level
2661  *      timed break functionality.
2662  *
2663  *      Locking:
2664  *              atomic_write_lock serializes
2665  *
2666  */
2667
2668 static int send_break(struct tty_struct *tty, unsigned int duration)
2669 {
2670         int retval;
2671
2672         if (tty->ops->break_ctl == NULL)
2673                 return 0;
2674
2675         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2676                 retval = tty->ops->break_ctl(tty, duration);
2677         else {
2678                 /* Do the work ourselves */
2679                 if (tty_write_lock(tty, 0) < 0)
2680                         return -EINTR;
2681                 retval = tty->ops->break_ctl(tty, -1);
2682                 if (retval)
2683                         goto out;
2684                 if (!signal_pending(current))
2685                         msleep_interruptible(duration);
2686                 retval = tty->ops->break_ctl(tty, 0);
2687 out:
2688                 tty_write_unlock(tty);
2689                 if (signal_pending(current))
2690                         retval = -EINTR;
2691         }
2692         return retval;
2693 }
2694
2695 /**
2696  *      tty_tiocmget            -       get modem status
2697  *      @tty: tty device
2698  *      @file: user file pointer
2699  *      @p: pointer to result
2700  *
2701  *      Obtain the modem status bits from the tty driver if the feature
2702  *      is supported. Return -EINVAL if it is not available.
2703  *
2704  *      Locking: none (up to the driver)
2705  */
2706
2707 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2708 {
2709         int retval = -EINVAL;
2710
2711         if (tty->ops->tiocmget) {
2712                 retval = tty->ops->tiocmget(tty);
2713
2714                 if (retval >= 0)
2715                         retval = put_user(retval, p);
2716         }
2717         return retval;
2718 }
2719
2720 /**
2721  *      tty_tiocmset            -       set modem status
2722  *      @tty: tty device
2723  *      @cmd: command - clear bits, set bits or set all
2724  *      @p: pointer to desired bits
2725  *
2726  *      Set the modem status bits from the tty driver if the feature
2727  *      is supported. Return -EINVAL if it is not available.
2728  *
2729  *      Locking: none (up to the driver)
2730  */
2731
2732 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2733              unsigned __user *p)
2734 {
2735         int retval;
2736         unsigned int set, clear, val;
2737
2738         if (tty->ops->tiocmset == NULL)
2739                 return -EINVAL;
2740
2741         retval = get_user(val, p);
2742         if (retval)
2743                 return retval;
2744         set = clear = 0;
2745         switch (cmd) {
2746         case TIOCMBIS:
2747                 set = val;
2748                 break;
2749         case TIOCMBIC:
2750                 clear = val;
2751                 break;
2752         case TIOCMSET:
2753                 set = val;
2754                 clear = ~val;
2755                 break;
2756         }
2757         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2758         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2759         return tty->ops->tiocmset(tty, set, clear);
2760 }
2761
2762 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2763 {
2764         int retval = -EINVAL;
2765         struct serial_icounter_struct icount;
2766         memset(&icount, 0, sizeof(icount));
2767         if (tty->ops->get_icount)
2768                 retval = tty->ops->get_icount(tty, &icount);
2769         if (retval != 0)
2770                 return retval;
2771         if (copy_to_user(arg, &icount, sizeof(icount)))
2772                 return -EFAULT;
2773         return 0;
2774 }
2775
2776 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2777 {
2778         static DEFINE_RATELIMIT_STATE(depr_flags,
2779                         DEFAULT_RATELIMIT_INTERVAL,
2780                         DEFAULT_RATELIMIT_BURST);
2781         char comm[TASK_COMM_LEN];
2782         int flags;
2783
2784         if (get_user(flags, &ss->flags))
2785                 return;
2786
2787         flags &= ASYNC_DEPRECATED;
2788
2789         if (flags && __ratelimit(&depr_flags))
2790                 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2791                                 __func__, get_task_comm(comm, current), flags);
2792 }
2793
2794 /*
2795  * if pty, return the slave side (real_tty)
2796  * otherwise, return self
2797  */
2798 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2799 {
2800         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2801             tty->driver->subtype == PTY_TYPE_MASTER)
2802                 tty = tty->link;
2803         return tty;
2804 }
2805
2806 /*
2807  * Split this up, as gcc can choke on it otherwise..
2808  */
2809 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2810 {
2811         struct tty_struct *tty = file_tty(file);
2812         struct tty_struct *real_tty;
2813         void __user *p = (void __user *)arg;
2814         int retval;
2815         struct tty_ldisc *ld;
2816
2817         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2818                 return -EINVAL;
2819
2820         real_tty = tty_pair_get_tty(tty);
2821
2822         /*
2823          * Factor out some common prep work
2824          */
2825         switch (cmd) {
2826         case TIOCSETD:
2827         case TIOCSBRK:
2828         case TIOCCBRK:
2829         case TCSBRK:
2830         case TCSBRKP:
2831                 retval = tty_check_change(tty);
2832                 if (retval)
2833                         return retval;
2834                 if (cmd != TIOCCBRK) {
2835                         tty_wait_until_sent(tty, 0);
2836                         if (signal_pending(current))
2837                                 return -EINTR;
2838                 }
2839                 break;
2840         }
2841
2842         /*
2843          *      Now do the stuff.
2844          */
2845         switch (cmd) {
2846         case TIOCSTI:
2847                 return tiocsti(tty, p);
2848         case TIOCGWINSZ:
2849                 return tiocgwinsz(real_tty, p);
2850         case TIOCSWINSZ:
2851                 return tiocswinsz(real_tty, p);
2852         case TIOCCONS:
2853                 return real_tty != tty ? -EINVAL : tioccons(file);
2854         case FIONBIO:
2855                 return fionbio(file, p);
2856         case TIOCEXCL:
2857                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2858                 return 0;
2859         case TIOCNXCL:
2860                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2861                 return 0;
2862         case TIOCGEXCL:
2863         {
2864                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2865                 return put_user(excl, (int __user *)p);
2866         }
2867         case TIOCNOTTY:
2868                 if (current->signal->tty != tty)
2869                         return -ENOTTY;
2870                 no_tty();
2871                 return 0;
2872         case TIOCSCTTY:
2873                 return tiocsctty(tty, file, arg);
2874         case TIOCGPGRP:
2875                 return tiocgpgrp(tty, real_tty, p);
2876         case TIOCSPGRP:
2877                 return tiocspgrp(tty, real_tty, p);
2878         case TIOCGSID:
2879                 return tiocgsid(tty, real_tty, p);
2880         case TIOCGETD:
2881                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2882         case TIOCSETD:
2883                 return tiocsetd(tty, p);
2884         case TIOCVHANGUP:
2885                 if (!capable(CAP_SYS_ADMIN))
2886                         return -EPERM;
2887                 tty_vhangup(tty);
2888                 return 0;
2889         case TIOCGDEV:
2890         {
2891                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2892                 return put_user(ret, (unsigned int __user *)p);
2893         }
2894         /*
2895          * Break handling
2896          */
2897         case TIOCSBRK:  /* Turn break on, unconditionally */
2898                 if (tty->ops->break_ctl)
2899                         return tty->ops->break_ctl(tty, -1);
2900                 return 0;
2901         case TIOCCBRK:  /* Turn break off, unconditionally */
2902                 if (tty->ops->break_ctl)
2903                         return tty->ops->break_ctl(tty, 0);
2904                 return 0;
2905         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2906                 /* non-zero arg means wait for all output data
2907                  * to be sent (performed above) but don't send break.
2908                  * This is used by the tcdrain() termios function.
2909                  */
2910                 if (!arg)
2911                         return send_break(tty, 250);
2912                 return 0;
2913         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2914                 return send_break(tty, arg ? arg*100 : 250);
2915
2916         case TIOCMGET:
2917                 return tty_tiocmget(tty, p);
2918         case TIOCMSET:
2919         case TIOCMBIC:
2920         case TIOCMBIS:
2921                 return tty_tiocmset(tty, cmd, p);
2922         case TIOCGICOUNT:
2923                 retval = tty_tiocgicount(tty, p);
2924                 /* For the moment allow fall through to the old method */
2925                 if (retval != -EINVAL)
2926                         return retval;
2927                 break;
2928         case TCFLSH:
2929                 switch (arg) {
2930                 case TCIFLUSH:
2931                 case TCIOFLUSH:
2932                 /* flush tty buffer and allow ldisc to process ioctl */
2933                         tty_buffer_flush(tty, NULL);
2934                         break;
2935                 }
2936                 break;
2937         case TIOCSSERIAL:
2938                 tty_warn_deprecated_flags(p);
2939                 break;
2940         }
2941         if (tty->ops->ioctl) {
2942                 retval = tty->ops->ioctl(tty, cmd, arg);
2943                 if (retval != -ENOIOCTLCMD)
2944                         return retval;
2945         }
2946         ld = tty_ldisc_ref_wait(tty);
2947         retval = -EINVAL;
2948         if (ld->ops->ioctl) {
2949                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2950                 if (retval == -ENOIOCTLCMD)
2951                         retval = -ENOTTY;
2952         }
2953         tty_ldisc_deref(ld);
2954         return retval;
2955 }
2956
2957 #ifdef CONFIG_COMPAT
2958 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2959                                 unsigned long arg)
2960 {
2961         struct tty_struct *tty = file_tty(file);
2962         struct tty_ldisc *ld;
2963         int retval = -ENOIOCTLCMD;
2964
2965         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2966                 return -EINVAL;
2967
2968         if (tty->ops->compat_ioctl) {
2969                 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2970                 if (retval != -ENOIOCTLCMD)
2971                         return retval;
2972         }
2973
2974         ld = tty_ldisc_ref_wait(tty);
2975         if (ld->ops->compat_ioctl)
2976                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2977         else
2978                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2979         tty_ldisc_deref(ld);
2980
2981         return retval;
2982 }
2983 #endif
2984
2985 static int this_tty(const void *t, struct file *file, unsigned fd)
2986 {
2987         if (likely(file->f_op->read != tty_read))
2988                 return 0;
2989         return file_tty(file) != t ? 0 : fd + 1;
2990 }
2991         
2992 /*
2993  * This implements the "Secure Attention Key" ---  the idea is to
2994  * prevent trojan horses by killing all processes associated with this
2995  * tty when the user hits the "Secure Attention Key".  Required for
2996  * super-paranoid applications --- see the Orange Book for more details.
2997  *
2998  * This code could be nicer; ideally it should send a HUP, wait a few
2999  * seconds, then send a INT, and then a KILL signal.  But you then
3000  * have to coordinate with the init process, since all processes associated
3001  * with the current tty must be dead before the new getty is allowed
3002  * to spawn.
3003  *
3004  * Now, if it would be correct ;-/ The current code has a nasty hole -
3005  * it doesn't catch files in flight. We may send the descriptor to ourselves
3006  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3007  *
3008  * Nasty bug: do_SAK is being called in interrupt context.  This can
3009  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3010  */
3011 void __do_SAK(struct tty_struct *tty)
3012 {
3013 #ifdef TTY_SOFT_SAK
3014         tty_hangup(tty);
3015 #else
3016         struct task_struct *g, *p;
3017         struct pid *session;
3018         int             i;
3019
3020         if (!tty)
3021                 return;
3022         session = tty->session;
3023
3024         tty_ldisc_flush(tty);
3025
3026         tty_driver_flush_buffer(tty);
3027
3028         read_lock(&tasklist_lock);
3029         /* Kill the entire session */
3030         do_each_pid_task(session, PIDTYPE_SID, p) {
3031                 printk(KERN_NOTICE "SAK: killed process %d"
3032                         " (%s): task_session(p)==tty->session\n",
3033                         task_pid_nr(p), p->comm);
3034                 send_sig(SIGKILL, p, 1);
3035         } while_each_pid_task(session, PIDTYPE_SID, p);
3036         /* Now kill any processes that happen to have the
3037          * tty open.
3038          */
3039         do_each_thread(g, p) {
3040                 if (p->signal->tty == tty) {
3041                         printk(KERN_NOTICE "SAK: killed process %d"
3042                             " (%s): task_session(p)==tty->session\n",
3043                             task_pid_nr(p), p->comm);
3044                         send_sig(SIGKILL, p, 1);
3045                         continue;
3046                 }
3047                 task_lock(p);
3048                 i = iterate_fd(p->files, 0, this_tty, tty);
3049                 if (i != 0) {
3050                         printk(KERN_NOTICE "SAK: killed process %d"
3051                             " (%s): fd#%d opened to the tty\n",
3052                                     task_pid_nr(p), p->comm, i - 1);
3053                         force_sig(SIGKILL, p);
3054                 }
3055                 task_unlock(p);
3056         } while_each_thread(g, p);
3057         read_unlock(&tasklist_lock);
3058 #endif
3059 }
3060
3061 static void do_SAK_work(struct work_struct *work)
3062 {
3063         struct tty_struct *tty =
3064                 container_of(work, struct tty_struct, SAK_work);
3065         __do_SAK(tty);
3066 }
3067
3068 /*
3069  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3070  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3071  * the values which we write to it will be identical to the values which it
3072  * already has. --akpm
3073  */
3074 void do_SAK(struct tty_struct *tty)
3075 {
3076         if (!tty)
3077                 return;
3078         schedule_work(&tty->SAK_work);
3079 }
3080
3081 EXPORT_SYMBOL(do_SAK);
3082
3083 static int dev_match_devt(struct device *dev, const void *data)
3084 {
3085         const dev_t *devt = data;
3086         return dev->devt == *devt;
3087 }
3088
3089 /* Must put_device() after it's unused! */
3090 static struct device *tty_get_device(struct tty_struct *tty)
3091 {
3092         dev_t devt = tty_devnum(tty);
3093         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3094 }
3095
3096
3097 /**
3098  *      alloc_tty_struct
3099  *
3100  *      This subroutine allocates and initializes a tty structure.
3101  *
3102  *      Locking: none - tty in question is not exposed at this point
3103  */
3104
3105 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3106 {
3107         struct tty_struct *tty;
3108
3109         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3110         if (!tty)
3111                 return NULL;
3112
3113         kref_init(&tty->kref);
3114         tty->magic = TTY_MAGIC;
3115         tty_ldisc_init(tty);
3116         tty->session = NULL;
3117         tty->pgrp = NULL;
3118         mutex_init(&tty->legacy_mutex);
3119         mutex_init(&tty->throttle_mutex);
3120         init_rwsem(&tty->termios_rwsem);
3121         mutex_init(&tty->winsize_mutex);
3122         init_ldsem(&tty->ldisc_sem);
3123         init_waitqueue_head(&tty->write_wait);
3124         init_waitqueue_head(&tty->read_wait);
3125         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3126         mutex_init(&tty->atomic_write_lock);
3127         spin_lock_init(&tty->ctrl_lock);
3128         spin_lock_init(&tty->flow_lock);
3129         INIT_LIST_HEAD(&tty->tty_files);
3130         INIT_WORK(&tty->SAK_work, do_SAK_work);
3131
3132         tty->driver = driver;
3133         tty->ops = driver->ops;
3134         tty->index = idx;
3135         tty_line_name(driver, idx, tty->name);
3136         tty->dev = tty_get_device(tty);
3137
3138         return tty;
3139 }
3140
3141 /**
3142  *      deinitialize_tty_struct
3143  *      @tty: tty to deinitialize
3144  *
3145  *      This subroutine deinitializes a tty structure that has been newly
3146  *      allocated but tty_release cannot be called on that yet.
3147  *
3148  *      Locking: none - tty in question must not be exposed at this point
3149  */
3150 void deinitialize_tty_struct(struct tty_struct *tty)
3151 {
3152         tty_ldisc_deinit(tty);
3153 }
3154
3155 /**
3156  *      tty_put_char    -       write one character to a tty
3157  *      @tty: tty
3158  *      @ch: character
3159  *
3160  *      Write one byte to the tty using the provided put_char method
3161  *      if present. Returns the number of characters successfully output.
3162  *
3163  *      Note: the specific put_char operation in the driver layer may go
3164  *      away soon. Don't call it directly, use this method
3165  */
3166
3167 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3168 {
3169         if (tty->ops->put_char)
3170                 return tty->ops->put_char(tty, ch);
3171         return tty->ops->write(tty, &ch, 1);
3172 }
3173 EXPORT_SYMBOL_GPL(tty_put_char);
3174
3175 struct class *tty_class;
3176
3177 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3178                 unsigned int index, unsigned int count)
3179 {
3180         int err;
3181
3182         /* init here, since reused cdevs cause crashes */
3183         driver->cdevs[index] = cdev_alloc();
3184         if (!driver->cdevs[index])
3185                 return -ENOMEM;
3186         driver->cdevs[index]->ops = &tty_fops;
3187         driver->cdevs[index]->owner = driver->owner;
3188         err = cdev_add(driver->cdevs[index], dev, count);
3189         if (err)
3190                 kobject_put(&driver->cdevs[index]->kobj);
3191         return err;
3192 }
3193
3194 /**
3195  *      tty_register_device - register a tty device
3196  *      @driver: the tty driver that describes the tty device
3197  *      @index: the index in the tty driver for this tty device
3198  *      @device: a struct device that is associated with this tty device.
3199  *              This field is optional, if there is no known struct device
3200  *              for this tty device it can be set to NULL safely.
3201  *
3202  *      Returns a pointer to the struct device for this tty device
3203  *      (or ERR_PTR(-EFOO) on error).
3204  *
3205  *      This call is required to be made to register an individual tty device
3206  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3207  *      that bit is not set, this function should not be called by a tty
3208  *      driver.
3209  *
3210  *      Locking: ??
3211  */
3212
3213 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3214                                    struct device *device)
3215 {
3216         return tty_register_device_attr(driver, index, device, NULL, NULL);
3217 }
3218 EXPORT_SYMBOL(tty_register_device);
3219
3220 static void tty_device_create_release(struct device *dev)
3221 {
3222         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3223         kfree(dev);
3224 }
3225
3226 /**
3227  *      tty_register_device_attr - register a tty device
3228  *      @driver: the tty driver that describes the tty device
3229  *      @index: the index in the tty driver for this tty device
3230  *      @device: a struct device that is associated with this tty device.
3231  *              This field is optional, if there is no known struct device
3232  *              for this tty device it can be set to NULL safely.
3233  *      @drvdata: Driver data to be set to device.
3234  *      @attr_grp: Attribute group to be set on device.
3235  *
3236  *      Returns a pointer to the struct device for this tty device
3237  *      (or ERR_PTR(-EFOO) on error).
3238  *
3239  *      This call is required to be made to register an individual tty device
3240  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3241  *      that bit is not set, this function should not be called by a tty
3242  *      driver.
3243  *
3244  *      Locking: ??
3245  */
3246 struct device *tty_register_device_attr(struct tty_driver *driver,
3247                                    unsigned index, struct device *device,
3248                                    void *drvdata,
3249                                    const struct attribute_group **attr_grp)
3250 {
3251         char name[64];
3252         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3253         struct device *dev = NULL;
3254         int retval = -ENODEV;
3255         bool cdev = false;
3256
3257         if (index >= driver->num) {
3258                 printk(KERN_ERR "Attempt to register invalid tty line number "
3259                        " (%d).\n", index);
3260                 return ERR_PTR(-EINVAL);
3261         }
3262
3263         if (driver->type == TTY_DRIVER_TYPE_PTY)
3264                 pty_line_name(driver, index, name);
3265         else
3266                 tty_line_name(driver, index, name);
3267
3268         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3269                 retval = tty_cdev_add(driver, devt, index, 1);
3270                 if (retval)
3271                         goto error;
3272                 cdev = true;
3273         }
3274
3275         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3276         if (!dev) {
3277                 retval = -ENOMEM;
3278                 goto error;
3279         }
3280
3281         dev->devt = devt;
3282         dev->class = tty_class;
3283         dev->parent = device;
3284         dev->release = tty_device_create_release;
3285         dev_set_name(dev, "%s", name);
3286         dev->groups = attr_grp;
3287         dev_set_drvdata(dev, drvdata);
3288
3289         retval = device_register(dev);
3290         if (retval)
3291                 goto error;
3292
3293         return dev;
3294
3295 error:
3296         put_device(dev);
3297         if (cdev) {
3298                 cdev_del(driver->cdevs[index]);
3299                 driver->cdevs[index] = NULL;
3300         }
3301         return ERR_PTR(retval);
3302 }
3303 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3304
3305 /**
3306  *      tty_unregister_device - unregister a tty device
3307  *      @driver: the tty driver that describes the tty device
3308  *      @index: the index in the tty driver for this tty device
3309  *
3310  *      If a tty device is registered with a call to tty_register_device() then
3311  *      this function must be called when the tty device is gone.
3312  *
3313  *      Locking: ??
3314  */
3315
3316 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3317 {
3318         device_destroy(tty_class,
3319                 MKDEV(driver->major, driver->minor_start) + index);
3320         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3321                 cdev_del(driver->cdevs[index]);
3322                 driver->cdevs[index] = NULL;
3323         }
3324 }
3325 EXPORT_SYMBOL(tty_unregister_device);
3326
3327 /**
3328  * __tty_alloc_driver -- allocate tty driver
3329  * @lines: count of lines this driver can handle at most
3330  * @owner: module which is repsonsible for this driver
3331  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3332  *
3333  * This should not be called directly, some of the provided macros should be
3334  * used instead. Use IS_ERR and friends on @retval.
3335  */
3336 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3337                 unsigned long flags)
3338 {
3339         struct tty_driver *driver;
3340         unsigned int cdevs = 1;
3341         int err;
3342
3343         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3344                 return ERR_PTR(-EINVAL);
3345
3346         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3347         if (!driver)
3348                 return ERR_PTR(-ENOMEM);
3349
3350         kref_init(&driver->kref);
3351         driver->magic = TTY_DRIVER_MAGIC;
3352         driver->num = lines;
3353         driver->owner = owner;
3354         driver->flags = flags;
3355
3356         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3357                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3358                                 GFP_KERNEL);
3359                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3360                                 GFP_KERNEL);
3361                 if (!driver->ttys || !driver->termios) {
3362                         err = -ENOMEM;
3363                         goto err_free_all;
3364                 }
3365         }
3366
3367         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3368                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3369                                 GFP_KERNEL);
3370                 if (!driver->ports) {
3371                         err = -ENOMEM;
3372                         goto err_free_all;
3373                 }
3374                 cdevs = lines;
3375         }
3376
3377         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3378         if (!driver->cdevs) {
3379                 err = -ENOMEM;
3380                 goto err_free_all;
3381         }
3382
3383         return driver;
3384 err_free_all:
3385         kfree(driver->ports);
3386         kfree(driver->ttys);
3387         kfree(driver->termios);
3388         kfree(driver->cdevs);
3389         kfree(driver);
3390         return ERR_PTR(err);
3391 }
3392 EXPORT_SYMBOL(__tty_alloc_driver);
3393
3394 static void destruct_tty_driver(struct kref *kref)
3395 {
3396         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3397         int i;
3398         struct ktermios *tp;
3399
3400         if (driver->flags & TTY_DRIVER_INSTALLED) {
3401                 /*
3402                  * Free the termios and termios_locked structures because
3403                  * we don't want to get memory leaks when modular tty
3404                  * drivers are removed from the kernel.
3405                  */
3406                 for (i = 0; i < driver->num; i++) {
3407                         tp = driver->termios[i];
3408                         if (tp) {
3409                                 driver->termios[i] = NULL;
3410                                 kfree(tp);
3411                         }
3412                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3413                                 tty_unregister_device(driver, i);
3414                 }
3415                 proc_tty_unregister_driver(driver);
3416                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3417                         cdev_del(driver->cdevs[0]);
3418         }
3419         kfree(driver->cdevs);
3420         kfree(driver->ports);
3421         kfree(driver->termios);
3422         kfree(driver->ttys);
3423         kfree(driver);
3424 }
3425
3426 void tty_driver_kref_put(struct tty_driver *driver)
3427 {
3428         kref_put(&driver->kref, destruct_tty_driver);
3429 }
3430 EXPORT_SYMBOL(tty_driver_kref_put);
3431
3432 void tty_set_operations(struct tty_driver *driver,
3433                         const struct tty_operations *op)
3434 {
3435         driver->ops = op;
3436 };
3437 EXPORT_SYMBOL(tty_set_operations);
3438
3439 void put_tty_driver(struct tty_driver *d)
3440 {
3441         tty_driver_kref_put(d);
3442 }
3443 EXPORT_SYMBOL(put_tty_driver);
3444
3445 /*
3446  * Called by a tty driver to register itself.
3447  */
3448 int tty_register_driver(struct tty_driver *driver)
3449 {
3450         int error;
3451         int i;
3452         dev_t dev;
3453         struct device *d;
3454
3455         if (!driver->major) {
3456                 error = alloc_chrdev_region(&dev, driver->minor_start,
3457                                                 driver->num, driver->name);
3458                 if (!error) {
3459                         driver->major = MAJOR(dev);
3460                         driver->minor_start = MINOR(dev);
3461                 }
3462         } else {
3463                 dev = MKDEV(driver->major, driver->minor_start);
3464                 error = register_chrdev_region(dev, driver->num, driver->name);
3465         }
3466         if (error < 0)
3467                 goto err;
3468
3469         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3470                 error = tty_cdev_add(driver, dev, 0, driver->num);
3471                 if (error)
3472                         goto err_unreg_char;
3473         }
3474
3475         mutex_lock(&tty_mutex);
3476         list_add(&driver->tty_drivers, &tty_drivers);
3477         mutex_unlock(&tty_mutex);
3478
3479         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3480                 for (i = 0; i < driver->num; i++) {
3481                         d = tty_register_device(driver, i, NULL);
3482                         if (IS_ERR(d)) {
3483                                 error = PTR_ERR(d);
3484                                 goto err_unreg_devs;
3485                         }
3486                 }
3487         }
3488         proc_tty_register_driver(driver);
3489         driver->flags |= TTY_DRIVER_INSTALLED;
3490         return 0;
3491
3492 err_unreg_devs:
3493         for (i--; i >= 0; i--)
3494                 tty_unregister_device(driver, i);
3495
3496         mutex_lock(&tty_mutex);
3497         list_del(&driver->tty_drivers);
3498         mutex_unlock(&tty_mutex);
3499
3500 err_unreg_char:
3501         unregister_chrdev_region(dev, driver->num);
3502 err:
3503         return error;
3504 }
3505 EXPORT_SYMBOL(tty_register_driver);
3506
3507 /*
3508  * Called by a tty driver to unregister itself.
3509  */
3510 int tty_unregister_driver(struct tty_driver *driver)
3511 {
3512 #if 0
3513         /* FIXME */
3514         if (driver->refcount)
3515                 return -EBUSY;
3516 #endif
3517         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3518                                 driver->num);
3519         mutex_lock(&tty_mutex);
3520         list_del(&driver->tty_drivers);
3521         mutex_unlock(&tty_mutex);
3522         return 0;
3523 }
3524
3525 EXPORT_SYMBOL(tty_unregister_driver);
3526
3527 dev_t tty_devnum(struct tty_struct *tty)
3528 {
3529         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3530 }
3531 EXPORT_SYMBOL(tty_devnum);
3532
3533 void tty_default_fops(struct file_operations *fops)
3534 {
3535         *fops = tty_fops;
3536 }
3537
3538 /*
3539  * Initialize the console device. This is called *early*, so
3540  * we can't necessarily depend on lots of kernel help here.
3541  * Just do some early initializations, and do the complex setup
3542  * later.
3543  */
3544 void __init console_init(void)
3545 {
3546         initcall_t *call;
3547
3548         /* Setup the default TTY line discipline. */
3549         tty_ldisc_begin();
3550
3551         /*
3552          * set up the console device so that later boot sequences can
3553          * inform about problems etc..
3554          */
3555         call = __con_initcall_start;
3556         while (call < __con_initcall_end) {
3557                 (*call)();
3558                 call++;
3559         }
3560 }
3561
3562 static char *tty_devnode(struct device *dev, umode_t *mode)
3563 {
3564         if (!mode)
3565                 return NULL;
3566         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3567             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3568                 *mode = 0666;
3569         return NULL;
3570 }
3571
3572 static int __init tty_class_init(void)
3573 {
3574         tty_class = class_create(THIS_MODULE, "tty");
3575         if (IS_ERR(tty_class))
3576                 return PTR_ERR(tty_class);
3577         tty_class->devnode = tty_devnode;
3578         return 0;
3579 }
3580
3581 postcore_initcall(tty_class_init);
3582
3583 /* 3/2004 jmc: why do these devices exist? */
3584 static struct cdev tty_cdev, console_cdev;
3585
3586 static ssize_t show_cons_active(struct device *dev,
3587                                 struct device_attribute *attr, char *buf)
3588 {
3589         struct console *cs[16];
3590         int i = 0;
3591         struct console *c;
3592         ssize_t count = 0;
3593
3594         console_lock();
3595         for_each_console(c) {
3596                 if (!c->device)
3597                         continue;
3598                 if (!c->write)
3599                         continue;
3600                 if ((c->flags & CON_ENABLED) == 0)
3601                         continue;
3602                 cs[i++] = c;
3603                 if (i >= ARRAY_SIZE(cs))
3604                         break;
3605         }
3606         while (i--) {
3607                 int index = cs[i]->index;
3608                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3609
3610                 /* don't resolve tty0 as some programs depend on it */
3611                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3612                         count += tty_line_name(drv, index, buf + count);
3613                 else
3614                         count += sprintf(buf + count, "%s%d",
3615                                          cs[i]->name, cs[i]->index);
3616
3617                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3618         }
3619         console_unlock();
3620
3621         return count;
3622 }
3623 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3624
3625 static struct attribute *cons_dev_attrs[] = {
3626         &dev_attr_active.attr,
3627         NULL
3628 };
3629
3630 ATTRIBUTE_GROUPS(cons_dev);
3631
3632 static struct device *consdev;
3633
3634 void console_sysfs_notify(void)
3635 {
3636         if (consdev)
3637                 sysfs_notify(&consdev->kobj, NULL, "active");
3638 }
3639
3640 /*
3641  * Ok, now we can initialize the rest of the tty devices and can count
3642  * on memory allocations, interrupts etc..
3643  */
3644 int __init tty_init(void)
3645 {
3646         cdev_init(&tty_cdev, &tty_fops);
3647         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3648             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3649                 panic("Couldn't register /dev/tty driver\n");
3650         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3651
3652         cdev_init(&console_cdev, &console_fops);
3653         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3654             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3655                 panic("Couldn't register /dev/console driver\n");
3656         consdev = device_create_with_groups(tty_class, NULL,
3657                                             MKDEV(TTYAUX_MAJOR, 1), NULL,
3658                                             cons_dev_groups, "console");
3659         if (IS_ERR(consdev))
3660                 consdev = NULL;
3661
3662 #ifdef CONFIG_VT
3663         vty_init(&console_fops);
3664 #endif
3665         return 0;
3666 }
3667