Merge tag 'compat-ioctl-5.5' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd...
[linux-2.6-block.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *       - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 
24  *         <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS       16
103 #else
104 #define SD_MINORS       0
105 #endif
106
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
126 static void sd_print_result(const struct scsi_disk *, const char *, int);
127
128 static DEFINE_IDA(sd_index_ida);
129
130 /* This semaphore is used to mediate the 0->1 reference get in the
131  * face of object destruction (i.e. we can't allow a get on an
132  * object after last put) */
133 static DEFINE_MUTEX(sd_ref_mutex);
134
135 static struct kmem_cache *sd_cdb_cache;
136 static mempool_t *sd_cdb_pool;
137 static mempool_t *sd_page_pool;
138
139 static const char *sd_cache_types[] = {
140         "write through", "none", "write back",
141         "write back, no read (daft)"
142 };
143
144 static void sd_set_flush_flag(struct scsi_disk *sdkp)
145 {
146         bool wc = false, fua = false;
147
148         if (sdkp->WCE) {
149                 wc = true;
150                 if (sdkp->DPOFUA)
151                         fua = true;
152         }
153
154         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
155 }
156
157 static ssize_t
158 cache_type_store(struct device *dev, struct device_attribute *attr,
159                  const char *buf, size_t count)
160 {
161         int ct, rcd, wce, sp;
162         struct scsi_disk *sdkp = to_scsi_disk(dev);
163         struct scsi_device *sdp = sdkp->device;
164         char buffer[64];
165         char *buffer_data;
166         struct scsi_mode_data data;
167         struct scsi_sense_hdr sshdr;
168         static const char temp[] = "temporary ";
169         int len;
170
171         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
172                 /* no cache control on RBC devices; theoretically they
173                  * can do it, but there's probably so many exceptions
174                  * it's not worth the risk */
175                 return -EINVAL;
176
177         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
178                 buf += sizeof(temp) - 1;
179                 sdkp->cache_override = 1;
180         } else {
181                 sdkp->cache_override = 0;
182         }
183
184         ct = sysfs_match_string(sd_cache_types, buf);
185         if (ct < 0)
186                 return -EINVAL;
187
188         rcd = ct & 0x01 ? 1 : 0;
189         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190
191         if (sdkp->cache_override) {
192                 sdkp->WCE = wce;
193                 sdkp->RCD = rcd;
194                 sd_set_flush_flag(sdkp);
195                 return count;
196         }
197
198         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199                             SD_MAX_RETRIES, &data, NULL))
200                 return -EINVAL;
201         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202                   data.block_descriptor_length);
203         buffer_data = buffer + data.header_length +
204                 data.block_descriptor_length;
205         buffer_data[2] &= ~0x05;
206         buffer_data[2] |= wce << 2 | rcd;
207         sp = buffer_data[0] & 0x80 ? 1 : 0;
208         buffer_data[0] &= ~0x80;
209
210         /*
211          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
212          * received mode parameter buffer before doing MODE SELECT.
213          */
214         data.device_specific = 0;
215
216         if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
217                              SD_MAX_RETRIES, &data, &sshdr)) {
218                 if (scsi_sense_valid(&sshdr))
219                         sd_print_sense_hdr(sdkp, &sshdr);
220                 return -EINVAL;
221         }
222         revalidate_disk(sdkp->disk);
223         return count;
224 }
225
226 static ssize_t
227 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
228                        char *buf)
229 {
230         struct scsi_disk *sdkp = to_scsi_disk(dev);
231         struct scsi_device *sdp = sdkp->device;
232
233         return sprintf(buf, "%u\n", sdp->manage_start_stop);
234 }
235
236 static ssize_t
237 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
238                         const char *buf, size_t count)
239 {
240         struct scsi_disk *sdkp = to_scsi_disk(dev);
241         struct scsi_device *sdp = sdkp->device;
242         bool v;
243
244         if (!capable(CAP_SYS_ADMIN))
245                 return -EACCES;
246
247         if (kstrtobool(buf, &v))
248                 return -EINVAL;
249
250         sdp->manage_start_stop = v;
251
252         return count;
253 }
254 static DEVICE_ATTR_RW(manage_start_stop);
255
256 static ssize_t
257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
258 {
259         struct scsi_disk *sdkp = to_scsi_disk(dev);
260
261         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
262 }
263
264 static ssize_t
265 allow_restart_store(struct device *dev, struct device_attribute *attr,
266                     const char *buf, size_t count)
267 {
268         bool v;
269         struct scsi_disk *sdkp = to_scsi_disk(dev);
270         struct scsi_device *sdp = sdkp->device;
271
272         if (!capable(CAP_SYS_ADMIN))
273                 return -EACCES;
274
275         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
276                 return -EINVAL;
277
278         if (kstrtobool(buf, &v))
279                 return -EINVAL;
280
281         sdp->allow_restart = v;
282
283         return count;
284 }
285 static DEVICE_ATTR_RW(allow_restart);
286
287 static ssize_t
288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
289 {
290         struct scsi_disk *sdkp = to_scsi_disk(dev);
291         int ct = sdkp->RCD + 2*sdkp->WCE;
292
293         return sprintf(buf, "%s\n", sd_cache_types[ct]);
294 }
295 static DEVICE_ATTR_RW(cache_type);
296
297 static ssize_t
298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
299 {
300         struct scsi_disk *sdkp = to_scsi_disk(dev);
301
302         return sprintf(buf, "%u\n", sdkp->DPOFUA);
303 }
304 static DEVICE_ATTR_RO(FUA);
305
306 static ssize_t
307 protection_type_show(struct device *dev, struct device_attribute *attr,
308                      char *buf)
309 {
310         struct scsi_disk *sdkp = to_scsi_disk(dev);
311
312         return sprintf(buf, "%u\n", sdkp->protection_type);
313 }
314
315 static ssize_t
316 protection_type_store(struct device *dev, struct device_attribute *attr,
317                       const char *buf, size_t count)
318 {
319         struct scsi_disk *sdkp = to_scsi_disk(dev);
320         unsigned int val;
321         int err;
322
323         if (!capable(CAP_SYS_ADMIN))
324                 return -EACCES;
325
326         err = kstrtouint(buf, 10, &val);
327
328         if (err)
329                 return err;
330
331         if (val <= T10_PI_TYPE3_PROTECTION)
332                 sdkp->protection_type = val;
333
334         return count;
335 }
336 static DEVICE_ATTR_RW(protection_type);
337
338 static ssize_t
339 protection_mode_show(struct device *dev, struct device_attribute *attr,
340                      char *buf)
341 {
342         struct scsi_disk *sdkp = to_scsi_disk(dev);
343         struct scsi_device *sdp = sdkp->device;
344         unsigned int dif, dix;
345
346         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
347         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
348
349         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
350                 dif = 0;
351                 dix = 1;
352         }
353
354         if (!dif && !dix)
355                 return sprintf(buf, "none\n");
356
357         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
358 }
359 static DEVICE_ATTR_RO(protection_mode);
360
361 static ssize_t
362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
363 {
364         struct scsi_disk *sdkp = to_scsi_disk(dev);
365
366         return sprintf(buf, "%u\n", sdkp->ATO);
367 }
368 static DEVICE_ATTR_RO(app_tag_own);
369
370 static ssize_t
371 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
372                        char *buf)
373 {
374         struct scsi_disk *sdkp = to_scsi_disk(dev);
375
376         return sprintf(buf, "%u\n", sdkp->lbpme);
377 }
378 static DEVICE_ATTR_RO(thin_provisioning);
379
380 /* sysfs_match_string() requires dense arrays */
381 static const char *lbp_mode[] = {
382         [SD_LBP_FULL]           = "full",
383         [SD_LBP_UNMAP]          = "unmap",
384         [SD_LBP_WS16]           = "writesame_16",
385         [SD_LBP_WS10]           = "writesame_10",
386         [SD_LBP_ZERO]           = "writesame_zero",
387         [SD_LBP_DISABLE]        = "disabled",
388 };
389
390 static ssize_t
391 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
392                        char *buf)
393 {
394         struct scsi_disk *sdkp = to_scsi_disk(dev);
395
396         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
397 }
398
399 static ssize_t
400 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
401                         const char *buf, size_t count)
402 {
403         struct scsi_disk *sdkp = to_scsi_disk(dev);
404         struct scsi_device *sdp = sdkp->device;
405         int mode;
406
407         if (!capable(CAP_SYS_ADMIN))
408                 return -EACCES;
409
410         if (sd_is_zoned(sdkp)) {
411                 sd_config_discard(sdkp, SD_LBP_DISABLE);
412                 return count;
413         }
414
415         if (sdp->type != TYPE_DISK)
416                 return -EINVAL;
417
418         mode = sysfs_match_string(lbp_mode, buf);
419         if (mode < 0)
420                 return -EINVAL;
421
422         sd_config_discard(sdkp, mode);
423
424         return count;
425 }
426 static DEVICE_ATTR_RW(provisioning_mode);
427
428 /* sysfs_match_string() requires dense arrays */
429 static const char *zeroing_mode[] = {
430         [SD_ZERO_WRITE]         = "write",
431         [SD_ZERO_WS]            = "writesame",
432         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
433         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
434 };
435
436 static ssize_t
437 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
438                   char *buf)
439 {
440         struct scsi_disk *sdkp = to_scsi_disk(dev);
441
442         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
443 }
444
445 static ssize_t
446 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
447                    const char *buf, size_t count)
448 {
449         struct scsi_disk *sdkp = to_scsi_disk(dev);
450         int mode;
451
452         if (!capable(CAP_SYS_ADMIN))
453                 return -EACCES;
454
455         mode = sysfs_match_string(zeroing_mode, buf);
456         if (mode < 0)
457                 return -EINVAL;
458
459         sdkp->zeroing_mode = mode;
460
461         return count;
462 }
463 static DEVICE_ATTR_RW(zeroing_mode);
464
465 static ssize_t
466 max_medium_access_timeouts_show(struct device *dev,
467                                 struct device_attribute *attr, char *buf)
468 {
469         struct scsi_disk *sdkp = to_scsi_disk(dev);
470
471         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
472 }
473
474 static ssize_t
475 max_medium_access_timeouts_store(struct device *dev,
476                                  struct device_attribute *attr, const char *buf,
477                                  size_t count)
478 {
479         struct scsi_disk *sdkp = to_scsi_disk(dev);
480         int err;
481
482         if (!capable(CAP_SYS_ADMIN))
483                 return -EACCES;
484
485         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
486
487         return err ? err : count;
488 }
489 static DEVICE_ATTR_RW(max_medium_access_timeouts);
490
491 static ssize_t
492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
493                            char *buf)
494 {
495         struct scsi_disk *sdkp = to_scsi_disk(dev);
496
497         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
498 }
499
500 static ssize_t
501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
502                             const char *buf, size_t count)
503 {
504         struct scsi_disk *sdkp = to_scsi_disk(dev);
505         struct scsi_device *sdp = sdkp->device;
506         unsigned long max;
507         int err;
508
509         if (!capable(CAP_SYS_ADMIN))
510                 return -EACCES;
511
512         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
513                 return -EINVAL;
514
515         err = kstrtoul(buf, 10, &max);
516
517         if (err)
518                 return err;
519
520         if (max == 0)
521                 sdp->no_write_same = 1;
522         else if (max <= SD_MAX_WS16_BLOCKS) {
523                 sdp->no_write_same = 0;
524                 sdkp->max_ws_blocks = max;
525         }
526
527         sd_config_write_same(sdkp);
528
529         return count;
530 }
531 static DEVICE_ATTR_RW(max_write_same_blocks);
532
533 static struct attribute *sd_disk_attrs[] = {
534         &dev_attr_cache_type.attr,
535         &dev_attr_FUA.attr,
536         &dev_attr_allow_restart.attr,
537         &dev_attr_manage_start_stop.attr,
538         &dev_attr_protection_type.attr,
539         &dev_attr_protection_mode.attr,
540         &dev_attr_app_tag_own.attr,
541         &dev_attr_thin_provisioning.attr,
542         &dev_attr_provisioning_mode.attr,
543         &dev_attr_zeroing_mode.attr,
544         &dev_attr_max_write_same_blocks.attr,
545         &dev_attr_max_medium_access_timeouts.attr,
546         NULL,
547 };
548 ATTRIBUTE_GROUPS(sd_disk);
549
550 static struct class sd_disk_class = {
551         .name           = "scsi_disk",
552         .owner          = THIS_MODULE,
553         .dev_release    = scsi_disk_release,
554         .dev_groups     = sd_disk_groups,
555 };
556
557 static const struct dev_pm_ops sd_pm_ops = {
558         .suspend                = sd_suspend_system,
559         .resume                 = sd_resume,
560         .poweroff               = sd_suspend_system,
561         .restore                = sd_resume,
562         .runtime_suspend        = sd_suspend_runtime,
563         .runtime_resume         = sd_resume,
564 };
565
566 static struct scsi_driver sd_template = {
567         .gendrv = {
568                 .name           = "sd",
569                 .owner          = THIS_MODULE,
570                 .probe          = sd_probe,
571                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
572                 .remove         = sd_remove,
573                 .shutdown       = sd_shutdown,
574                 .pm             = &sd_pm_ops,
575         },
576         .rescan                 = sd_rescan,
577         .init_command           = sd_init_command,
578         .uninit_command         = sd_uninit_command,
579         .done                   = sd_done,
580         .eh_action              = sd_eh_action,
581         .eh_reset               = sd_eh_reset,
582 };
583
584 /*
585  * Dummy kobj_map->probe function.
586  * The default ->probe function will call modprobe, which is
587  * pointless as this module is already loaded.
588  */
589 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
590 {
591         return NULL;
592 }
593
594 /*
595  * Device no to disk mapping:
596  * 
597  *       major         disc2     disc  p1
598  *   |............|.............|....|....| <- dev_t
599  *    31        20 19          8 7  4 3  0
600  * 
601  * Inside a major, we have 16k disks, however mapped non-
602  * contiguously. The first 16 disks are for major0, the next
603  * ones with major1, ... Disk 256 is for major0 again, disk 272 
604  * for major1, ... 
605  * As we stay compatible with our numbering scheme, we can reuse 
606  * the well-know SCSI majors 8, 65--71, 136--143.
607  */
608 static int sd_major(int major_idx)
609 {
610         switch (major_idx) {
611         case 0:
612                 return SCSI_DISK0_MAJOR;
613         case 1 ... 7:
614                 return SCSI_DISK1_MAJOR + major_idx - 1;
615         case 8 ... 15:
616                 return SCSI_DISK8_MAJOR + major_idx - 8;
617         default:
618                 BUG();
619                 return 0;       /* shut up gcc */
620         }
621 }
622
623 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
624 {
625         struct scsi_disk *sdkp = NULL;
626
627         mutex_lock(&sd_ref_mutex);
628
629         if (disk->private_data) {
630                 sdkp = scsi_disk(disk);
631                 if (scsi_device_get(sdkp->device) == 0)
632                         get_device(&sdkp->dev);
633                 else
634                         sdkp = NULL;
635         }
636         mutex_unlock(&sd_ref_mutex);
637         return sdkp;
638 }
639
640 static void scsi_disk_put(struct scsi_disk *sdkp)
641 {
642         struct scsi_device *sdev = sdkp->device;
643
644         mutex_lock(&sd_ref_mutex);
645         put_device(&sdkp->dev);
646         scsi_device_put(sdev);
647         mutex_unlock(&sd_ref_mutex);
648 }
649
650 #ifdef CONFIG_BLK_SED_OPAL
651 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
652                 size_t len, bool send)
653 {
654         struct scsi_device *sdev = data;
655         u8 cdb[12] = { 0, };
656         int ret;
657
658         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
659         cdb[1] = secp;
660         put_unaligned_be16(spsp, &cdb[2]);
661         put_unaligned_be32(len, &cdb[6]);
662
663         ret = scsi_execute_req(sdev, cdb,
664                         send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
665                         buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
666         return ret <= 0 ? ret : -EIO;
667 }
668 #endif /* CONFIG_BLK_SED_OPAL */
669
670 /*
671  * Look up the DIX operation based on whether the command is read or
672  * write and whether dix and dif are enabled.
673  */
674 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
675 {
676         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
677         static const unsigned int ops[] = {     /* wrt dix dif */
678                 SCSI_PROT_NORMAL,               /*  0   0   0  */
679                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
680                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
681                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
682                 SCSI_PROT_NORMAL,               /*  1   0   0  */
683                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
684                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
685                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
686         };
687
688         return ops[write << 2 | dix << 1 | dif];
689 }
690
691 /*
692  * Returns a mask of the protection flags that are valid for a given DIX
693  * operation.
694  */
695 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
696 {
697         static const unsigned int flag_mask[] = {
698                 [SCSI_PROT_NORMAL]              = 0,
699
700                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
701                                                   SCSI_PROT_GUARD_CHECK |
702                                                   SCSI_PROT_REF_CHECK |
703                                                   SCSI_PROT_REF_INCREMENT,
704
705                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
706                                                   SCSI_PROT_IP_CHECKSUM,
707
708                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
709                                                   SCSI_PROT_GUARD_CHECK |
710                                                   SCSI_PROT_REF_CHECK |
711                                                   SCSI_PROT_REF_INCREMENT |
712                                                   SCSI_PROT_IP_CHECKSUM,
713
714                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
715                                                   SCSI_PROT_REF_INCREMENT,
716
717                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
718                                                   SCSI_PROT_REF_CHECK |
719                                                   SCSI_PROT_REF_INCREMENT |
720                                                   SCSI_PROT_IP_CHECKSUM,
721
722                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
723                                                   SCSI_PROT_GUARD_CHECK |
724                                                   SCSI_PROT_REF_CHECK |
725                                                   SCSI_PROT_REF_INCREMENT |
726                                                   SCSI_PROT_IP_CHECKSUM,
727         };
728
729         return flag_mask[prot_op];
730 }
731
732 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
733                                            unsigned int dix, unsigned int dif)
734 {
735         struct bio *bio = scmd->request->bio;
736         unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
737         unsigned int protect = 0;
738
739         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
740                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
741                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
742
743                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
744                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
745         }
746
747         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
748                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
749
750                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
751                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
752         }
753
754         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
755                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
756
757                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
758                         protect = 3 << 5;       /* Disable target PI checking */
759                 else
760                         protect = 1 << 5;       /* Enable target PI checking */
761         }
762
763         scsi_set_prot_op(scmd, prot_op);
764         scsi_set_prot_type(scmd, dif);
765         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
766
767         return protect;
768 }
769
770 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
771 {
772         struct request_queue *q = sdkp->disk->queue;
773         unsigned int logical_block_size = sdkp->device->sector_size;
774         unsigned int max_blocks = 0;
775
776         q->limits.discard_alignment =
777                 sdkp->unmap_alignment * logical_block_size;
778         q->limits.discard_granularity =
779                 max(sdkp->physical_block_size,
780                     sdkp->unmap_granularity * logical_block_size);
781         sdkp->provisioning_mode = mode;
782
783         switch (mode) {
784
785         case SD_LBP_FULL:
786         case SD_LBP_DISABLE:
787                 blk_queue_max_discard_sectors(q, 0);
788                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
789                 return;
790
791         case SD_LBP_UNMAP:
792                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
793                                           (u32)SD_MAX_WS16_BLOCKS);
794                 break;
795
796         case SD_LBP_WS16:
797                 if (sdkp->device->unmap_limit_for_ws)
798                         max_blocks = sdkp->max_unmap_blocks;
799                 else
800                         max_blocks = sdkp->max_ws_blocks;
801
802                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
803                 break;
804
805         case SD_LBP_WS10:
806                 if (sdkp->device->unmap_limit_for_ws)
807                         max_blocks = sdkp->max_unmap_blocks;
808                 else
809                         max_blocks = sdkp->max_ws_blocks;
810
811                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
812                 break;
813
814         case SD_LBP_ZERO:
815                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
816                                           (u32)SD_MAX_WS10_BLOCKS);
817                 break;
818         }
819
820         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
821         blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
822 }
823
824 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
825 {
826         struct scsi_device *sdp = cmd->device;
827         struct request *rq = cmd->request;
828         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
829         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
830         unsigned int data_len = 24;
831         char *buf;
832
833         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
834         if (!rq->special_vec.bv_page)
835                 return BLK_STS_RESOURCE;
836         clear_highpage(rq->special_vec.bv_page);
837         rq->special_vec.bv_offset = 0;
838         rq->special_vec.bv_len = data_len;
839         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
840
841         cmd->cmd_len = 10;
842         cmd->cmnd[0] = UNMAP;
843         cmd->cmnd[8] = 24;
844
845         buf = page_address(rq->special_vec.bv_page);
846         put_unaligned_be16(6 + 16, &buf[0]);
847         put_unaligned_be16(16, &buf[2]);
848         put_unaligned_be64(lba, &buf[8]);
849         put_unaligned_be32(nr_blocks, &buf[16]);
850
851         cmd->allowed = SD_MAX_RETRIES;
852         cmd->transfersize = data_len;
853         rq->timeout = SD_TIMEOUT;
854
855         return scsi_init_io(cmd);
856 }
857
858 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
859                 bool unmap)
860 {
861         struct scsi_device *sdp = cmd->device;
862         struct request *rq = cmd->request;
863         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
864         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
865         u32 data_len = sdp->sector_size;
866
867         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
868         if (!rq->special_vec.bv_page)
869                 return BLK_STS_RESOURCE;
870         clear_highpage(rq->special_vec.bv_page);
871         rq->special_vec.bv_offset = 0;
872         rq->special_vec.bv_len = data_len;
873         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
874
875         cmd->cmd_len = 16;
876         cmd->cmnd[0] = WRITE_SAME_16;
877         if (unmap)
878                 cmd->cmnd[1] = 0x8; /* UNMAP */
879         put_unaligned_be64(lba, &cmd->cmnd[2]);
880         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
881
882         cmd->allowed = SD_MAX_RETRIES;
883         cmd->transfersize = data_len;
884         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
885
886         return scsi_init_io(cmd);
887 }
888
889 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
890                 bool unmap)
891 {
892         struct scsi_device *sdp = cmd->device;
893         struct request *rq = cmd->request;
894         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896         u32 data_len = sdp->sector_size;
897
898         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
899         if (!rq->special_vec.bv_page)
900                 return BLK_STS_RESOURCE;
901         clear_highpage(rq->special_vec.bv_page);
902         rq->special_vec.bv_offset = 0;
903         rq->special_vec.bv_len = data_len;
904         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
905
906         cmd->cmd_len = 10;
907         cmd->cmnd[0] = WRITE_SAME;
908         if (unmap)
909                 cmd->cmnd[1] = 0x8; /* UNMAP */
910         put_unaligned_be32(lba, &cmd->cmnd[2]);
911         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
912
913         cmd->allowed = SD_MAX_RETRIES;
914         cmd->transfersize = data_len;
915         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
916
917         return scsi_init_io(cmd);
918 }
919
920 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
921 {
922         struct request *rq = cmd->request;
923         struct scsi_device *sdp = cmd->device;
924         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
925         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927
928         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
929                 switch (sdkp->zeroing_mode) {
930                 case SD_ZERO_WS16_UNMAP:
931                         return sd_setup_write_same16_cmnd(cmd, true);
932                 case SD_ZERO_WS10_UNMAP:
933                         return sd_setup_write_same10_cmnd(cmd, true);
934                 }
935         }
936
937         if (sdp->no_write_same)
938                 return BLK_STS_TARGET;
939
940         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
941                 return sd_setup_write_same16_cmnd(cmd, false);
942
943         return sd_setup_write_same10_cmnd(cmd, false);
944 }
945
946 static void sd_config_write_same(struct scsi_disk *sdkp)
947 {
948         struct request_queue *q = sdkp->disk->queue;
949         unsigned int logical_block_size = sdkp->device->sector_size;
950
951         if (sdkp->device->no_write_same) {
952                 sdkp->max_ws_blocks = 0;
953                 goto out;
954         }
955
956         /* Some devices can not handle block counts above 0xffff despite
957          * supporting WRITE SAME(16). Consequently we default to 64k
958          * blocks per I/O unless the device explicitly advertises a
959          * bigger limit.
960          */
961         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
962                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
963                                                    (u32)SD_MAX_WS16_BLOCKS);
964         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
965                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
966                                                    (u32)SD_MAX_WS10_BLOCKS);
967         else {
968                 sdkp->device->no_write_same = 1;
969                 sdkp->max_ws_blocks = 0;
970         }
971
972         if (sdkp->lbprz && sdkp->lbpws)
973                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
974         else if (sdkp->lbprz && sdkp->lbpws10)
975                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
976         else if (sdkp->max_ws_blocks)
977                 sdkp->zeroing_mode = SD_ZERO_WS;
978         else
979                 sdkp->zeroing_mode = SD_ZERO_WRITE;
980
981         if (sdkp->max_ws_blocks &&
982             sdkp->physical_block_size > logical_block_size) {
983                 /*
984                  * Reporting a maximum number of blocks that is not aligned
985                  * on the device physical size would cause a large write same
986                  * request to be split into physically unaligned chunks by
987                  * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
988                  * even if the caller of these functions took care to align the
989                  * large request. So make sure the maximum reported is aligned
990                  * to the device physical block size. This is only an optional
991                  * optimization for regular disks, but this is mandatory to
992                  * avoid failure of large write same requests directed at
993                  * sequential write required zones of host-managed ZBC disks.
994                  */
995                 sdkp->max_ws_blocks =
996                         round_down(sdkp->max_ws_blocks,
997                                    bytes_to_logical(sdkp->device,
998                                                     sdkp->physical_block_size));
999         }
1000
1001 out:
1002         blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1003                                          (logical_block_size >> 9));
1004         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1005                                          (logical_block_size >> 9));
1006 }
1007
1008 /**
1009  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1010  * @cmd: command to prepare
1011  *
1012  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1013  * the preference indicated by the target device.
1014  **/
1015 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1016 {
1017         struct request *rq = cmd->request;
1018         struct scsi_device *sdp = cmd->device;
1019         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1020         struct bio *bio = rq->bio;
1021         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1022         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1023         blk_status_t ret;
1024
1025         if (sdkp->device->no_write_same)
1026                 return BLK_STS_TARGET;
1027
1028         BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1029
1030         rq->timeout = SD_WRITE_SAME_TIMEOUT;
1031
1032         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1033                 cmd->cmd_len = 16;
1034                 cmd->cmnd[0] = WRITE_SAME_16;
1035                 put_unaligned_be64(lba, &cmd->cmnd[2]);
1036                 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1037         } else {
1038                 cmd->cmd_len = 10;
1039                 cmd->cmnd[0] = WRITE_SAME;
1040                 put_unaligned_be32(lba, &cmd->cmnd[2]);
1041                 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042         }
1043
1044         cmd->transfersize = sdp->sector_size;
1045         cmd->allowed = SD_MAX_RETRIES;
1046
1047         /*
1048          * For WRITE SAME the data transferred via the DATA OUT buffer is
1049          * different from the amount of data actually written to the target.
1050          *
1051          * We set up __data_len to the amount of data transferred via the
1052          * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1053          * to transfer a single sector of data first, but then reset it to
1054          * the amount of data to be written right after so that the I/O path
1055          * knows how much to actually write.
1056          */
1057         rq->__data_len = sdp->sector_size;
1058         ret = scsi_init_io(cmd);
1059         rq->__data_len = blk_rq_bytes(rq);
1060
1061         return ret;
1062 }
1063
1064 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1065 {
1066         struct request *rq = cmd->request;
1067
1068         /* flush requests don't perform I/O, zero the S/G table */
1069         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070
1071         cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1072         cmd->cmd_len = 10;
1073         cmd->transfersize = 0;
1074         cmd->allowed = SD_MAX_RETRIES;
1075
1076         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1077         return BLK_STS_OK;
1078 }
1079
1080 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1081                                        sector_t lba, unsigned int nr_blocks,
1082                                        unsigned char flags)
1083 {
1084         cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1085         if (unlikely(cmd->cmnd == NULL))
1086                 return BLK_STS_RESOURCE;
1087
1088         cmd->cmd_len = SD_EXT_CDB_SIZE;
1089         memset(cmd->cmnd, 0, cmd->cmd_len);
1090
1091         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1092         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1093         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1094         cmd->cmnd[10] = flags;
1095         put_unaligned_be64(lba, &cmd->cmnd[12]);
1096         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1097         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1098
1099         return BLK_STS_OK;
1100 }
1101
1102 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1103                                        sector_t lba, unsigned int nr_blocks,
1104                                        unsigned char flags)
1105 {
1106         cmd->cmd_len  = 16;
1107         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1108         cmd->cmnd[1]  = flags;
1109         cmd->cmnd[14] = 0;
1110         cmd->cmnd[15] = 0;
1111         put_unaligned_be64(lba, &cmd->cmnd[2]);
1112         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1113
1114         return BLK_STS_OK;
1115 }
1116
1117 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1118                                        sector_t lba, unsigned int nr_blocks,
1119                                        unsigned char flags)
1120 {
1121         cmd->cmd_len = 10;
1122         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1123         cmd->cmnd[1] = flags;
1124         cmd->cmnd[6] = 0;
1125         cmd->cmnd[9] = 0;
1126         put_unaligned_be32(lba, &cmd->cmnd[2]);
1127         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1128
1129         return BLK_STS_OK;
1130 }
1131
1132 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1133                                       sector_t lba, unsigned int nr_blocks,
1134                                       unsigned char flags)
1135 {
1136         /* Avoid that 0 blocks gets translated into 256 blocks. */
1137         if (WARN_ON_ONCE(nr_blocks == 0))
1138                 return BLK_STS_IOERR;
1139
1140         if (unlikely(flags & 0x8)) {
1141                 /*
1142                  * This happens only if this drive failed 10byte rw
1143                  * command with ILLEGAL_REQUEST during operation and
1144                  * thus turned off use_10_for_rw.
1145                  */
1146                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1147                 return BLK_STS_IOERR;
1148         }
1149
1150         cmd->cmd_len = 6;
1151         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1152         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1153         cmd->cmnd[2] = (lba >> 8) & 0xff;
1154         cmd->cmnd[3] = lba & 0xff;
1155         cmd->cmnd[4] = nr_blocks;
1156         cmd->cmnd[5] = 0;
1157
1158         return BLK_STS_OK;
1159 }
1160
1161 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1162 {
1163         struct request *rq = cmd->request;
1164         struct scsi_device *sdp = cmd->device;
1165         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1166         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1167         sector_t threshold;
1168         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1169         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1170         bool write = rq_data_dir(rq) == WRITE;
1171         unsigned char protect, fua;
1172         blk_status_t ret;
1173         unsigned int dif;
1174         bool dix;
1175
1176         ret = scsi_init_io(cmd);
1177         if (ret != BLK_STS_OK)
1178                 return ret;
1179
1180         if (!scsi_device_online(sdp) || sdp->changed) {
1181                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1182                 return BLK_STS_IOERR;
1183         }
1184
1185         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1186                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1187                 return BLK_STS_IOERR;
1188         }
1189
1190         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1191                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1192                 return BLK_STS_IOERR;
1193         }
1194
1195         /*
1196          * Some SD card readers can't handle accesses which touch the
1197          * last one or two logical blocks. Split accesses as needed.
1198          */
1199         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1200
1201         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1202                 if (lba < threshold) {
1203                         /* Access up to the threshold but not beyond */
1204                         nr_blocks = threshold - lba;
1205                 } else {
1206                         /* Access only a single logical block */
1207                         nr_blocks = 1;
1208                 }
1209         }
1210
1211         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1212         dix = scsi_prot_sg_count(cmd);
1213         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1214
1215         if (dif || dix)
1216                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1217         else
1218                 protect = 0;
1219
1220         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1221                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1222                                          protect | fua);
1223         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1224                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1225                                          protect | fua);
1226         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1227                    sdp->use_10_for_rw || protect) {
1228                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1229                                          protect | fua);
1230         } else {
1231                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1232                                         protect | fua);
1233         }
1234
1235         if (unlikely(ret != BLK_STS_OK))
1236                 return ret;
1237
1238         /*
1239          * We shouldn't disconnect in the middle of a sector, so with a dumb
1240          * host adapter, it's safe to assume that we can at least transfer
1241          * this many bytes between each connect / disconnect.
1242          */
1243         cmd->transfersize = sdp->sector_size;
1244         cmd->underflow = nr_blocks << 9;
1245         cmd->allowed = SD_MAX_RETRIES;
1246         cmd->sdb.length = nr_blocks * sdp->sector_size;
1247
1248         SCSI_LOG_HLQUEUE(1,
1249                          scmd_printk(KERN_INFO, cmd,
1250                                      "%s: block=%llu, count=%d\n", __func__,
1251                                      (unsigned long long)blk_rq_pos(rq),
1252                                      blk_rq_sectors(rq)));
1253         SCSI_LOG_HLQUEUE(2,
1254                          scmd_printk(KERN_INFO, cmd,
1255                                      "%s %d/%u 512 byte blocks.\n",
1256                                      write ? "writing" : "reading", nr_blocks,
1257                                      blk_rq_sectors(rq)));
1258
1259         /*
1260          * This indicates that the command is ready from our end to be
1261          * queued.
1262          */
1263         return BLK_STS_OK;
1264 }
1265
1266 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1267 {
1268         struct request *rq = cmd->request;
1269
1270         switch (req_op(rq)) {
1271         case REQ_OP_DISCARD:
1272                 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1273                 case SD_LBP_UNMAP:
1274                         return sd_setup_unmap_cmnd(cmd);
1275                 case SD_LBP_WS16:
1276                         return sd_setup_write_same16_cmnd(cmd, true);
1277                 case SD_LBP_WS10:
1278                         return sd_setup_write_same10_cmnd(cmd, true);
1279                 case SD_LBP_ZERO:
1280                         return sd_setup_write_same10_cmnd(cmd, false);
1281                 default:
1282                         return BLK_STS_TARGET;
1283                 }
1284         case REQ_OP_WRITE_ZEROES:
1285                 return sd_setup_write_zeroes_cmnd(cmd);
1286         case REQ_OP_WRITE_SAME:
1287                 return sd_setup_write_same_cmnd(cmd);
1288         case REQ_OP_FLUSH:
1289                 return sd_setup_flush_cmnd(cmd);
1290         case REQ_OP_READ:
1291         case REQ_OP_WRITE:
1292                 return sd_setup_read_write_cmnd(cmd);
1293         case REQ_OP_ZONE_RESET:
1294                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1295                                                    false);
1296         case REQ_OP_ZONE_RESET_ALL:
1297                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1298                                                    true);
1299         case REQ_OP_ZONE_OPEN:
1300                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1301         case REQ_OP_ZONE_CLOSE:
1302                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1303         case REQ_OP_ZONE_FINISH:
1304                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1305         default:
1306                 WARN_ON_ONCE(1);
1307                 return BLK_STS_NOTSUPP;
1308         }
1309 }
1310
1311 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1312 {
1313         struct request *rq = SCpnt->request;
1314         u8 *cmnd;
1315
1316         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1317                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1318
1319         if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1320                 cmnd = SCpnt->cmnd;
1321                 SCpnt->cmnd = NULL;
1322                 SCpnt->cmd_len = 0;
1323                 mempool_free(cmnd, sd_cdb_pool);
1324         }
1325 }
1326
1327 /**
1328  *      sd_open - open a scsi disk device
1329  *      @bdev: Block device of the scsi disk to open
1330  *      @mode: FMODE_* mask
1331  *
1332  *      Returns 0 if successful. Returns a negated errno value in case 
1333  *      of error.
1334  *
1335  *      Note: This can be called from a user context (e.g. fsck(1) )
1336  *      or from within the kernel (e.g. as a result of a mount(1) ).
1337  *      In the latter case @inode and @filp carry an abridged amount
1338  *      of information as noted above.
1339  *
1340  *      Locking: called with bdev->bd_mutex held.
1341  **/
1342 static int sd_open(struct block_device *bdev, fmode_t mode)
1343 {
1344         struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1345         struct scsi_device *sdev;
1346         int retval;
1347
1348         if (!sdkp)
1349                 return -ENXIO;
1350
1351         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1352
1353         sdev = sdkp->device;
1354
1355         /*
1356          * If the device is in error recovery, wait until it is done.
1357          * If the device is offline, then disallow any access to it.
1358          */
1359         retval = -ENXIO;
1360         if (!scsi_block_when_processing_errors(sdev))
1361                 goto error_out;
1362
1363         if (sdev->removable || sdkp->write_prot)
1364                 check_disk_change(bdev);
1365
1366         /*
1367          * If the drive is empty, just let the open fail.
1368          */
1369         retval = -ENOMEDIUM;
1370         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1371                 goto error_out;
1372
1373         /*
1374          * If the device has the write protect tab set, have the open fail
1375          * if the user expects to be able to write to the thing.
1376          */
1377         retval = -EROFS;
1378         if (sdkp->write_prot && (mode & FMODE_WRITE))
1379                 goto error_out;
1380
1381         /*
1382          * It is possible that the disk changing stuff resulted in
1383          * the device being taken offline.  If this is the case,
1384          * report this to the user, and don't pretend that the
1385          * open actually succeeded.
1386          */
1387         retval = -ENXIO;
1388         if (!scsi_device_online(sdev))
1389                 goto error_out;
1390
1391         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1392                 if (scsi_block_when_processing_errors(sdev))
1393                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1394         }
1395
1396         return 0;
1397
1398 error_out:
1399         scsi_disk_put(sdkp);
1400         return retval;  
1401 }
1402
1403 /**
1404  *      sd_release - invoked when the (last) close(2) is called on this
1405  *      scsi disk.
1406  *      @disk: disk to release
1407  *      @mode: FMODE_* mask
1408  *
1409  *      Returns 0. 
1410  *
1411  *      Note: may block (uninterruptible) if error recovery is underway
1412  *      on this disk.
1413  *
1414  *      Locking: called with bdev->bd_mutex held.
1415  **/
1416 static void sd_release(struct gendisk *disk, fmode_t mode)
1417 {
1418         struct scsi_disk *sdkp = scsi_disk(disk);
1419         struct scsi_device *sdev = sdkp->device;
1420
1421         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1422
1423         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1424                 if (scsi_block_when_processing_errors(sdev))
1425                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1426         }
1427
1428         scsi_disk_put(sdkp);
1429 }
1430
1431 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1432 {
1433         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1434         struct scsi_device *sdp = sdkp->device;
1435         struct Scsi_Host *host = sdp->host;
1436         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1437         int diskinfo[4];
1438
1439         /* default to most commonly used values */
1440         diskinfo[0] = 0x40;     /* 1 << 6 */
1441         diskinfo[1] = 0x20;     /* 1 << 5 */
1442         diskinfo[2] = capacity >> 11;
1443
1444         /* override with calculated, extended default, or driver values */
1445         if (host->hostt->bios_param)
1446                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1447         else
1448                 scsicam_bios_param(bdev, capacity, diskinfo);
1449
1450         geo->heads = diskinfo[0];
1451         geo->sectors = diskinfo[1];
1452         geo->cylinders = diskinfo[2];
1453         return 0;
1454 }
1455
1456 /**
1457  *      sd_ioctl - process an ioctl
1458  *      @bdev: target block device
1459  *      @mode: FMODE_* mask
1460  *      @cmd: ioctl command number
1461  *      @arg: this is third argument given to ioctl(2) system call.
1462  *      Often contains a pointer.
1463  *
1464  *      Returns 0 if successful (some ioctls return positive numbers on
1465  *      success as well). Returns a negated errno value in case of error.
1466  *
1467  *      Note: most ioctls are forward onto the block subsystem or further
1468  *      down in the scsi subsystem.
1469  **/
1470 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1471                     unsigned int cmd, unsigned long arg)
1472 {
1473         struct gendisk *disk = bdev->bd_disk;
1474         struct scsi_disk *sdkp = scsi_disk(disk);
1475         struct scsi_device *sdp = sdkp->device;
1476         void __user *p = (void __user *)arg;
1477         int error;
1478     
1479         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1480                                     "cmd=0x%x\n", disk->disk_name, cmd));
1481
1482         error = scsi_verify_blk_ioctl(bdev, cmd);
1483         if (error < 0)
1484                 return error;
1485
1486         /*
1487          * If we are in the middle of error recovery, don't let anyone
1488          * else try and use this device.  Also, if error recovery fails, it
1489          * may try and take the device offline, in which case all further
1490          * access to the device is prohibited.
1491          */
1492         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1493                         (mode & FMODE_NDELAY) != 0);
1494         if (error)
1495                 goto out;
1496
1497         if (is_sed_ioctl(cmd))
1498                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1499
1500         /*
1501          * Send SCSI addressing ioctls directly to mid level, send other
1502          * ioctls to block level and then onto mid level if they can't be
1503          * resolved.
1504          */
1505         switch (cmd) {
1506                 case SCSI_IOCTL_GET_IDLUN:
1507                 case SCSI_IOCTL_GET_BUS_NUMBER:
1508                         error = scsi_ioctl(sdp, cmd, p);
1509                         break;
1510                 default:
1511                         error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1512                         if (error != -ENOTTY)
1513                                 break;
1514                         error = scsi_ioctl(sdp, cmd, p);
1515                         break;
1516         }
1517 out:
1518         return error;
1519 }
1520
1521 static void set_media_not_present(struct scsi_disk *sdkp)
1522 {
1523         if (sdkp->media_present)
1524                 sdkp->device->changed = 1;
1525
1526         if (sdkp->device->removable) {
1527                 sdkp->media_present = 0;
1528                 sdkp->capacity = 0;
1529         }
1530 }
1531
1532 static int media_not_present(struct scsi_disk *sdkp,
1533                              struct scsi_sense_hdr *sshdr)
1534 {
1535         if (!scsi_sense_valid(sshdr))
1536                 return 0;
1537
1538         /* not invoked for commands that could return deferred errors */
1539         switch (sshdr->sense_key) {
1540         case UNIT_ATTENTION:
1541         case NOT_READY:
1542                 /* medium not present */
1543                 if (sshdr->asc == 0x3A) {
1544                         set_media_not_present(sdkp);
1545                         return 1;
1546                 }
1547         }
1548         return 0;
1549 }
1550
1551 /**
1552  *      sd_check_events - check media events
1553  *      @disk: kernel device descriptor
1554  *      @clearing: disk events currently being cleared
1555  *
1556  *      Returns mask of DISK_EVENT_*.
1557  *
1558  *      Note: this function is invoked from the block subsystem.
1559  **/
1560 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1561 {
1562         struct scsi_disk *sdkp = scsi_disk_get(disk);
1563         struct scsi_device *sdp;
1564         int retval;
1565
1566         if (!sdkp)
1567                 return 0;
1568
1569         sdp = sdkp->device;
1570         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1571
1572         /*
1573          * If the device is offline, don't send any commands - just pretend as
1574          * if the command failed.  If the device ever comes back online, we
1575          * can deal with it then.  It is only because of unrecoverable errors
1576          * that we would ever take a device offline in the first place.
1577          */
1578         if (!scsi_device_online(sdp)) {
1579                 set_media_not_present(sdkp);
1580                 goto out;
1581         }
1582
1583         /*
1584          * Using TEST_UNIT_READY enables differentiation between drive with
1585          * no cartridge loaded - NOT READY, drive with changed cartridge -
1586          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1587          *
1588          * Drives that auto spin down. eg iomega jaz 1G, will be started
1589          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1590          * sd_revalidate() is called.
1591          */
1592         if (scsi_block_when_processing_errors(sdp)) {
1593                 struct scsi_sense_hdr sshdr = { 0, };
1594
1595                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1596                                               &sshdr);
1597
1598                 /* failed to execute TUR, assume media not present */
1599                 if (host_byte(retval)) {
1600                         set_media_not_present(sdkp);
1601                         goto out;
1602                 }
1603
1604                 if (media_not_present(sdkp, &sshdr))
1605                         goto out;
1606         }
1607
1608         /*
1609          * For removable scsi disk we have to recognise the presence
1610          * of a disk in the drive.
1611          */
1612         if (!sdkp->media_present)
1613                 sdp->changed = 1;
1614         sdkp->media_present = 1;
1615 out:
1616         /*
1617          * sdp->changed is set under the following conditions:
1618          *
1619          *      Medium present state has changed in either direction.
1620          *      Device has indicated UNIT_ATTENTION.
1621          */
1622         retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1623         sdp->changed = 0;
1624         scsi_disk_put(sdkp);
1625         return retval;
1626 }
1627
1628 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1629 {
1630         int retries, res;
1631         struct scsi_device *sdp = sdkp->device;
1632         const int timeout = sdp->request_queue->rq_timeout
1633                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1634         struct scsi_sense_hdr my_sshdr;
1635
1636         if (!scsi_device_online(sdp))
1637                 return -ENODEV;
1638
1639         /* caller might not be interested in sense, but we need it */
1640         if (!sshdr)
1641                 sshdr = &my_sshdr;
1642
1643         for (retries = 3; retries > 0; --retries) {
1644                 unsigned char cmd[10] = { 0 };
1645
1646                 cmd[0] = SYNCHRONIZE_CACHE;
1647                 /*
1648                  * Leave the rest of the command zero to indicate
1649                  * flush everything.
1650                  */
1651                 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1652                                 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1653                 if (res == 0)
1654                         break;
1655         }
1656
1657         if (res) {
1658                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1659
1660                 if (driver_byte(res) == DRIVER_SENSE)
1661                         sd_print_sense_hdr(sdkp, sshdr);
1662
1663                 /* we need to evaluate the error return  */
1664                 if (scsi_sense_valid(sshdr) &&
1665                         (sshdr->asc == 0x3a ||  /* medium not present */
1666                          sshdr->asc == 0x20 ||  /* invalid command */
1667                          (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))  /* drive is password locked */
1668                                 /* this is no error here */
1669                                 return 0;
1670
1671                 switch (host_byte(res)) {
1672                 /* ignore errors due to racing a disconnection */
1673                 case DID_BAD_TARGET:
1674                 case DID_NO_CONNECT:
1675                         return 0;
1676                 /* signal the upper layer it might try again */
1677                 case DID_BUS_BUSY:
1678                 case DID_IMM_RETRY:
1679                 case DID_REQUEUE:
1680                 case DID_SOFT_ERROR:
1681                         return -EBUSY;
1682                 default:
1683                         return -EIO;
1684                 }
1685         }
1686         return 0;
1687 }
1688
1689 static void sd_rescan(struct device *dev)
1690 {
1691         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1692
1693         revalidate_disk(sdkp->disk);
1694 }
1695
1696
1697 #ifdef CONFIG_COMPAT
1698 /* 
1699  * This gets directly called from VFS. When the ioctl 
1700  * is not recognized we go back to the other translation paths. 
1701  */
1702 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1703                            unsigned int cmd, unsigned long arg)
1704 {
1705         struct gendisk *disk = bdev->bd_disk;
1706         struct scsi_disk *sdkp = scsi_disk(disk);
1707         struct scsi_device *sdev = sdkp->device;
1708         void __user *p = compat_ptr(arg);
1709         int error;
1710
1711         error = scsi_verify_blk_ioctl(bdev, cmd);
1712         if (error < 0)
1713                 return error;
1714
1715         error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1716                         (mode & FMODE_NDELAY) != 0);
1717         if (error)
1718                 return error;
1719
1720         if (is_sed_ioctl(cmd))
1721                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1722                
1723         /* 
1724          * Let the static ioctl translation table take care of it.
1725          */
1726         if (!sdev->host->hostt->compat_ioctl)
1727                 return -ENOIOCTLCMD; 
1728         return sdev->host->hostt->compat_ioctl(sdev, cmd, p);
1729 }
1730 #endif
1731
1732 static char sd_pr_type(enum pr_type type)
1733 {
1734         switch (type) {
1735         case PR_WRITE_EXCLUSIVE:
1736                 return 0x01;
1737         case PR_EXCLUSIVE_ACCESS:
1738                 return 0x03;
1739         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1740                 return 0x05;
1741         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1742                 return 0x06;
1743         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1744                 return 0x07;
1745         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1746                 return 0x08;
1747         default:
1748                 return 0;
1749         }
1750 };
1751
1752 static int sd_pr_command(struct block_device *bdev, u8 sa,
1753                 u64 key, u64 sa_key, u8 type, u8 flags)
1754 {
1755         struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1756         struct scsi_sense_hdr sshdr;
1757         int result;
1758         u8 cmd[16] = { 0, };
1759         u8 data[24] = { 0, };
1760
1761         cmd[0] = PERSISTENT_RESERVE_OUT;
1762         cmd[1] = sa;
1763         cmd[2] = type;
1764         put_unaligned_be32(sizeof(data), &cmd[5]);
1765
1766         put_unaligned_be64(key, &data[0]);
1767         put_unaligned_be64(sa_key, &data[8]);
1768         data[20] = flags;
1769
1770         result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1771                         &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1772
1773         if (driver_byte(result) == DRIVER_SENSE &&
1774             scsi_sense_valid(&sshdr)) {
1775                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1776                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1777         }
1778
1779         return result;
1780 }
1781
1782 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1783                 u32 flags)
1784 {
1785         if (flags & ~PR_FL_IGNORE_KEY)
1786                 return -EOPNOTSUPP;
1787         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1788                         old_key, new_key, 0,
1789                         (1 << 0) /* APTPL */);
1790 }
1791
1792 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1793                 u32 flags)
1794 {
1795         if (flags)
1796                 return -EOPNOTSUPP;
1797         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1798 }
1799
1800 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1801 {
1802         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1803 }
1804
1805 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1806                 enum pr_type type, bool abort)
1807 {
1808         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1809                              sd_pr_type(type), 0);
1810 }
1811
1812 static int sd_pr_clear(struct block_device *bdev, u64 key)
1813 {
1814         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1815 }
1816
1817 static const struct pr_ops sd_pr_ops = {
1818         .pr_register    = sd_pr_register,
1819         .pr_reserve     = sd_pr_reserve,
1820         .pr_release     = sd_pr_release,
1821         .pr_preempt     = sd_pr_preempt,
1822         .pr_clear       = sd_pr_clear,
1823 };
1824
1825 static const struct block_device_operations sd_fops = {
1826         .owner                  = THIS_MODULE,
1827         .open                   = sd_open,
1828         .release                = sd_release,
1829         .ioctl                  = sd_ioctl,
1830         .getgeo                 = sd_getgeo,
1831 #ifdef CONFIG_COMPAT
1832         .compat_ioctl           = sd_compat_ioctl,
1833 #endif
1834         .check_events           = sd_check_events,
1835         .revalidate_disk        = sd_revalidate_disk,
1836         .unlock_native_capacity = sd_unlock_native_capacity,
1837         .report_zones           = sd_zbc_report_zones,
1838         .pr_ops                 = &sd_pr_ops,
1839 };
1840
1841 /**
1842  *      sd_eh_reset - reset error handling callback
1843  *      @scmd:          sd-issued command that has failed
1844  *
1845  *      This function is called by the SCSI midlayer before starting
1846  *      SCSI EH. When counting medium access failures we have to be
1847  *      careful to register it only only once per device and SCSI EH run;
1848  *      there might be several timed out commands which will cause the
1849  *      'max_medium_access_timeouts' counter to trigger after the first
1850  *      SCSI EH run already and set the device to offline.
1851  *      So this function resets the internal counter before starting SCSI EH.
1852  **/
1853 static void sd_eh_reset(struct scsi_cmnd *scmd)
1854 {
1855         struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1856
1857         /* New SCSI EH run, reset gate variable */
1858         sdkp->ignore_medium_access_errors = false;
1859 }
1860
1861 /**
1862  *      sd_eh_action - error handling callback
1863  *      @scmd:          sd-issued command that has failed
1864  *      @eh_disp:       The recovery disposition suggested by the midlayer
1865  *
1866  *      This function is called by the SCSI midlayer upon completion of an
1867  *      error test command (currently TEST UNIT READY). The result of sending
1868  *      the eh command is passed in eh_disp.  We're looking for devices that
1869  *      fail medium access commands but are OK with non access commands like
1870  *      test unit ready (so wrongly see the device as having a successful
1871  *      recovery)
1872  **/
1873 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1874 {
1875         struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1876         struct scsi_device *sdev = scmd->device;
1877
1878         if (!scsi_device_online(sdev) ||
1879             !scsi_medium_access_command(scmd) ||
1880             host_byte(scmd->result) != DID_TIME_OUT ||
1881             eh_disp != SUCCESS)
1882                 return eh_disp;
1883
1884         /*
1885          * The device has timed out executing a medium access command.
1886          * However, the TEST UNIT READY command sent during error
1887          * handling completed successfully. Either the device is in the
1888          * process of recovering or has it suffered an internal failure
1889          * that prevents access to the storage medium.
1890          */
1891         if (!sdkp->ignore_medium_access_errors) {
1892                 sdkp->medium_access_timed_out++;
1893                 sdkp->ignore_medium_access_errors = true;
1894         }
1895
1896         /*
1897          * If the device keeps failing read/write commands but TEST UNIT
1898          * READY always completes successfully we assume that medium
1899          * access is no longer possible and take the device offline.
1900          */
1901         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1902                 scmd_printk(KERN_ERR, scmd,
1903                             "Medium access timeout failure. Offlining disk!\n");
1904                 mutex_lock(&sdev->state_mutex);
1905                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1906                 mutex_unlock(&sdev->state_mutex);
1907
1908                 return SUCCESS;
1909         }
1910
1911         return eh_disp;
1912 }
1913
1914 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1915 {
1916         struct request *req = scmd->request;
1917         struct scsi_device *sdev = scmd->device;
1918         unsigned int transferred, good_bytes;
1919         u64 start_lba, end_lba, bad_lba;
1920
1921         /*
1922          * Some commands have a payload smaller than the device logical
1923          * block size (e.g. INQUIRY on a 4K disk).
1924          */
1925         if (scsi_bufflen(scmd) <= sdev->sector_size)
1926                 return 0;
1927
1928         /* Check if we have a 'bad_lba' information */
1929         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1930                                      SCSI_SENSE_BUFFERSIZE,
1931                                      &bad_lba))
1932                 return 0;
1933
1934         /*
1935          * If the bad lba was reported incorrectly, we have no idea where
1936          * the error is.
1937          */
1938         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1939         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1940         if (bad_lba < start_lba || bad_lba >= end_lba)
1941                 return 0;
1942
1943         /*
1944          * resid is optional but mostly filled in.  When it's unused,
1945          * its value is zero, so we assume the whole buffer transferred
1946          */
1947         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1948
1949         /* This computation should always be done in terms of the
1950          * resolution of the device's medium.
1951          */
1952         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1953
1954         return min(good_bytes, transferred);
1955 }
1956
1957 /**
1958  *      sd_done - bottom half handler: called when the lower level
1959  *      driver has completed (successfully or otherwise) a scsi command.
1960  *      @SCpnt: mid-level's per command structure.
1961  *
1962  *      Note: potentially run from within an ISR. Must not block.
1963  **/
1964 static int sd_done(struct scsi_cmnd *SCpnt)
1965 {
1966         int result = SCpnt->result;
1967         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1968         unsigned int sector_size = SCpnt->device->sector_size;
1969         unsigned int resid;
1970         struct scsi_sense_hdr sshdr;
1971         struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1972         struct request *req = SCpnt->request;
1973         int sense_valid = 0;
1974         int sense_deferred = 0;
1975
1976         switch (req_op(req)) {
1977         case REQ_OP_DISCARD:
1978         case REQ_OP_WRITE_ZEROES:
1979         case REQ_OP_WRITE_SAME:
1980         case REQ_OP_ZONE_RESET:
1981         case REQ_OP_ZONE_RESET_ALL:
1982         case REQ_OP_ZONE_OPEN:
1983         case REQ_OP_ZONE_CLOSE:
1984         case REQ_OP_ZONE_FINISH:
1985                 if (!result) {
1986                         good_bytes = blk_rq_bytes(req);
1987                         scsi_set_resid(SCpnt, 0);
1988                 } else {
1989                         good_bytes = 0;
1990                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
1991                 }
1992                 break;
1993         default:
1994                 /*
1995                  * In case of bogus fw or device, we could end up having
1996                  * an unaligned partial completion. Check this here and force
1997                  * alignment.
1998                  */
1999                 resid = scsi_get_resid(SCpnt);
2000                 if (resid & (sector_size - 1)) {
2001                         sd_printk(KERN_INFO, sdkp,
2002                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2003                                 resid, sector_size);
2004                         scsi_print_command(SCpnt);
2005                         resid = min(scsi_bufflen(SCpnt),
2006                                     round_up(resid, sector_size));
2007                         scsi_set_resid(SCpnt, resid);
2008                 }
2009         }
2010
2011         if (result) {
2012                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2013                 if (sense_valid)
2014                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2015         }
2016         sdkp->medium_access_timed_out = 0;
2017
2018         if (driver_byte(result) != DRIVER_SENSE &&
2019             (!sense_valid || sense_deferred))
2020                 goto out;
2021
2022         switch (sshdr.sense_key) {
2023         case HARDWARE_ERROR:
2024         case MEDIUM_ERROR:
2025                 good_bytes = sd_completed_bytes(SCpnt);
2026                 break;
2027         case RECOVERED_ERROR:
2028                 good_bytes = scsi_bufflen(SCpnt);
2029                 break;
2030         case NO_SENSE:
2031                 /* This indicates a false check condition, so ignore it.  An
2032                  * unknown amount of data was transferred so treat it as an
2033                  * error.
2034                  */
2035                 SCpnt->result = 0;
2036                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2037                 break;
2038         case ABORTED_COMMAND:
2039                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2040                         good_bytes = sd_completed_bytes(SCpnt);
2041                 break;
2042         case ILLEGAL_REQUEST:
2043                 switch (sshdr.asc) {
2044                 case 0x10:      /* DIX: Host detected corruption */
2045                         good_bytes = sd_completed_bytes(SCpnt);
2046                         break;
2047                 case 0x20:      /* INVALID COMMAND OPCODE */
2048                 case 0x24:      /* INVALID FIELD IN CDB */
2049                         switch (SCpnt->cmnd[0]) {
2050                         case UNMAP:
2051                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2052                                 break;
2053                         case WRITE_SAME_16:
2054                         case WRITE_SAME:
2055                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2056                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2057                                 } else {
2058                                         sdkp->device->no_write_same = 1;
2059                                         sd_config_write_same(sdkp);
2060                                         req->rq_flags |= RQF_QUIET;
2061                                 }
2062                                 break;
2063                         }
2064                 }
2065                 break;
2066         default:
2067                 break;
2068         }
2069
2070  out:
2071         if (sd_is_zoned(sdkp))
2072                 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2073
2074         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2075                                            "sd_done: completed %d of %d bytes\n",
2076                                            good_bytes, scsi_bufflen(SCpnt)));
2077
2078         return good_bytes;
2079 }
2080
2081 /*
2082  * spinup disk - called only in sd_revalidate_disk()
2083  */
2084 static void
2085 sd_spinup_disk(struct scsi_disk *sdkp)
2086 {
2087         unsigned char cmd[10];
2088         unsigned long spintime_expire = 0;
2089         int retries, spintime;
2090         unsigned int the_result;
2091         struct scsi_sense_hdr sshdr;
2092         int sense_valid = 0;
2093
2094         spintime = 0;
2095
2096         /* Spin up drives, as required.  Only do this at boot time */
2097         /* Spinup needs to be done for module loads too. */
2098         do {
2099                 retries = 0;
2100
2101                 do {
2102                         cmd[0] = TEST_UNIT_READY;
2103                         memset((void *) &cmd[1], 0, 9);
2104
2105                         the_result = scsi_execute_req(sdkp->device, cmd,
2106                                                       DMA_NONE, NULL, 0,
2107                                                       &sshdr, SD_TIMEOUT,
2108                                                       SD_MAX_RETRIES, NULL);
2109
2110                         /*
2111                          * If the drive has indicated to us that it
2112                          * doesn't have any media in it, don't bother
2113                          * with any more polling.
2114                          */
2115                         if (media_not_present(sdkp, &sshdr))
2116                                 return;
2117
2118                         if (the_result)
2119                                 sense_valid = scsi_sense_valid(&sshdr);
2120                         retries++;
2121                 } while (retries < 3 && 
2122                          (!scsi_status_is_good(the_result) ||
2123                           ((driver_byte(the_result) == DRIVER_SENSE) &&
2124                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2125
2126                 if (driver_byte(the_result) != DRIVER_SENSE) {
2127                         /* no sense, TUR either succeeded or failed
2128                          * with a status error */
2129                         if(!spintime && !scsi_status_is_good(the_result)) {
2130                                 sd_print_result(sdkp, "Test Unit Ready failed",
2131                                                 the_result);
2132                         }
2133                         break;
2134                 }
2135
2136                 /*
2137                  * The device does not want the automatic start to be issued.
2138                  */
2139                 if (sdkp->device->no_start_on_add)
2140                         break;
2141
2142                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2143                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2144                                 break;  /* manual intervention required */
2145                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2146                                 break;  /* standby */
2147                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2148                                 break;  /* unavailable */
2149                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2150                                 break;  /* sanitize in progress */
2151                         /*
2152                          * Issue command to spin up drive when not ready
2153                          */
2154                         if (!spintime) {
2155                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2156                                 cmd[0] = START_STOP;
2157                                 cmd[1] = 1;     /* Return immediately */
2158                                 memset((void *) &cmd[2], 0, 8);
2159                                 cmd[4] = 1;     /* Start spin cycle */
2160                                 if (sdkp->device->start_stop_pwr_cond)
2161                                         cmd[4] |= 1 << 4;
2162                                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2163                                                  NULL, 0, &sshdr,
2164                                                  SD_TIMEOUT, SD_MAX_RETRIES,
2165                                                  NULL);
2166                                 spintime_expire = jiffies + 100 * HZ;
2167                                 spintime = 1;
2168                         }
2169                         /* Wait 1 second for next try */
2170                         msleep(1000);
2171                         printk(KERN_CONT ".");
2172
2173                 /*
2174                  * Wait for USB flash devices with slow firmware.
2175                  * Yes, this sense key/ASC combination shouldn't
2176                  * occur here.  It's characteristic of these devices.
2177                  */
2178                 } else if (sense_valid &&
2179                                 sshdr.sense_key == UNIT_ATTENTION &&
2180                                 sshdr.asc == 0x28) {
2181                         if (!spintime) {
2182                                 spintime_expire = jiffies + 5 * HZ;
2183                                 spintime = 1;
2184                         }
2185                         /* Wait 1 second for next try */
2186                         msleep(1000);
2187                 } else {
2188                         /* we don't understand the sense code, so it's
2189                          * probably pointless to loop */
2190                         if(!spintime) {
2191                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2192                                 sd_print_sense_hdr(sdkp, &sshdr);
2193                         }
2194                         break;
2195                 }
2196                                 
2197         } while (spintime && time_before_eq(jiffies, spintime_expire));
2198
2199         if (spintime) {
2200                 if (scsi_status_is_good(the_result))
2201                         printk(KERN_CONT "ready\n");
2202                 else
2203                         printk(KERN_CONT "not responding...\n");
2204         }
2205 }
2206
2207 /*
2208  * Determine whether disk supports Data Integrity Field.
2209  */
2210 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2211 {
2212         struct scsi_device *sdp = sdkp->device;
2213         u8 type;
2214         int ret = 0;
2215
2216         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2217                 return ret;
2218
2219         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2220
2221         if (type > T10_PI_TYPE3_PROTECTION)
2222                 ret = -ENODEV;
2223         else if (scsi_host_dif_capable(sdp->host, type))
2224                 ret = 1;
2225
2226         if (sdkp->first_scan || type != sdkp->protection_type)
2227                 switch (ret) {
2228                 case -ENODEV:
2229                         sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2230                                   " protection type %u. Disabling disk!\n",
2231                                   type);
2232                         break;
2233                 case 1:
2234                         sd_printk(KERN_NOTICE, sdkp,
2235                                   "Enabling DIF Type %u protection\n", type);
2236                         break;
2237                 case 0:
2238                         sd_printk(KERN_NOTICE, sdkp,
2239                                   "Disabling DIF Type %u protection\n", type);
2240                         break;
2241                 }
2242
2243         sdkp->protection_type = type;
2244
2245         return ret;
2246 }
2247
2248 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2249                         struct scsi_sense_hdr *sshdr, int sense_valid,
2250                         int the_result)
2251 {
2252         if (driver_byte(the_result) == DRIVER_SENSE)
2253                 sd_print_sense_hdr(sdkp, sshdr);
2254         else
2255                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2256
2257         /*
2258          * Set dirty bit for removable devices if not ready -
2259          * sometimes drives will not report this properly.
2260          */
2261         if (sdp->removable &&
2262             sense_valid && sshdr->sense_key == NOT_READY)
2263                 set_media_not_present(sdkp);
2264
2265         /*
2266          * We used to set media_present to 0 here to indicate no media
2267          * in the drive, but some drives fail read capacity even with
2268          * media present, so we can't do that.
2269          */
2270         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2271 }
2272
2273 #define RC16_LEN 32
2274 #if RC16_LEN > SD_BUF_SIZE
2275 #error RC16_LEN must not be more than SD_BUF_SIZE
2276 #endif
2277
2278 #define READ_CAPACITY_RETRIES_ON_RESET  10
2279
2280 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2281                                                 unsigned char *buffer)
2282 {
2283         unsigned char cmd[16];
2284         struct scsi_sense_hdr sshdr;
2285         int sense_valid = 0;
2286         int the_result;
2287         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2288         unsigned int alignment;
2289         unsigned long long lba;
2290         unsigned sector_size;
2291
2292         if (sdp->no_read_capacity_16)
2293                 return -EINVAL;
2294
2295         do {
2296                 memset(cmd, 0, 16);
2297                 cmd[0] = SERVICE_ACTION_IN_16;
2298                 cmd[1] = SAI_READ_CAPACITY_16;
2299                 cmd[13] = RC16_LEN;
2300                 memset(buffer, 0, RC16_LEN);
2301
2302                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2303                                         buffer, RC16_LEN, &sshdr,
2304                                         SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2305
2306                 if (media_not_present(sdkp, &sshdr))
2307                         return -ENODEV;
2308
2309                 if (the_result) {
2310                         sense_valid = scsi_sense_valid(&sshdr);
2311                         if (sense_valid &&
2312                             sshdr.sense_key == ILLEGAL_REQUEST &&
2313                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2314                             sshdr.ascq == 0x00)
2315                                 /* Invalid Command Operation Code or
2316                                  * Invalid Field in CDB, just retry
2317                                  * silently with RC10 */
2318                                 return -EINVAL;
2319                         if (sense_valid &&
2320                             sshdr.sense_key == UNIT_ATTENTION &&
2321                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2322                                 /* Device reset might occur several times,
2323                                  * give it one more chance */
2324                                 if (--reset_retries > 0)
2325                                         continue;
2326                 }
2327                 retries--;
2328
2329         } while (the_result && retries);
2330
2331         if (the_result) {
2332                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2333                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2334                 return -EINVAL;
2335         }
2336
2337         sector_size = get_unaligned_be32(&buffer[8]);
2338         lba = get_unaligned_be64(&buffer[0]);
2339
2340         if (sd_read_protection_type(sdkp, buffer) < 0) {
2341                 sdkp->capacity = 0;
2342                 return -ENODEV;
2343         }
2344
2345         /* Logical blocks per physical block exponent */
2346         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2347
2348         /* RC basis */
2349         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2350
2351         /* Lowest aligned logical block */
2352         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2353         blk_queue_alignment_offset(sdp->request_queue, alignment);
2354         if (alignment && sdkp->first_scan)
2355                 sd_printk(KERN_NOTICE, sdkp,
2356                           "physical block alignment offset: %u\n", alignment);
2357
2358         if (buffer[14] & 0x80) { /* LBPME */
2359                 sdkp->lbpme = 1;
2360
2361                 if (buffer[14] & 0x40) /* LBPRZ */
2362                         sdkp->lbprz = 1;
2363
2364                 sd_config_discard(sdkp, SD_LBP_WS16);
2365         }
2366
2367         sdkp->capacity = lba + 1;
2368         return sector_size;
2369 }
2370
2371 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2372                                                 unsigned char *buffer)
2373 {
2374         unsigned char cmd[16];
2375         struct scsi_sense_hdr sshdr;
2376         int sense_valid = 0;
2377         int the_result;
2378         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2379         sector_t lba;
2380         unsigned sector_size;
2381
2382         do {
2383                 cmd[0] = READ_CAPACITY;
2384                 memset(&cmd[1], 0, 9);
2385                 memset(buffer, 0, 8);
2386
2387                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2388                                         buffer, 8, &sshdr,
2389                                         SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2390
2391                 if (media_not_present(sdkp, &sshdr))
2392                         return -ENODEV;
2393
2394                 if (the_result) {
2395                         sense_valid = scsi_sense_valid(&sshdr);
2396                         if (sense_valid &&
2397                             sshdr.sense_key == UNIT_ATTENTION &&
2398                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2399                                 /* Device reset might occur several times,
2400                                  * give it one more chance */
2401                                 if (--reset_retries > 0)
2402                                         continue;
2403                 }
2404                 retries--;
2405
2406         } while (the_result && retries);
2407
2408         if (the_result) {
2409                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2410                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2411                 return -EINVAL;
2412         }
2413
2414         sector_size = get_unaligned_be32(&buffer[4]);
2415         lba = get_unaligned_be32(&buffer[0]);
2416
2417         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2418                 /* Some buggy (usb cardreader) devices return an lba of
2419                    0xffffffff when the want to report a size of 0 (with
2420                    which they really mean no media is present) */
2421                 sdkp->capacity = 0;
2422                 sdkp->physical_block_size = sector_size;
2423                 return sector_size;
2424         }
2425
2426         sdkp->capacity = lba + 1;
2427         sdkp->physical_block_size = sector_size;
2428         return sector_size;
2429 }
2430
2431 static int sd_try_rc16_first(struct scsi_device *sdp)
2432 {
2433         if (sdp->host->max_cmd_len < 16)
2434                 return 0;
2435         if (sdp->try_rc_10_first)
2436                 return 0;
2437         if (sdp->scsi_level > SCSI_SPC_2)
2438                 return 1;
2439         if (scsi_device_protection(sdp))
2440                 return 1;
2441         return 0;
2442 }
2443
2444 /*
2445  * read disk capacity
2446  */
2447 static void
2448 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2449 {
2450         int sector_size;
2451         struct scsi_device *sdp = sdkp->device;
2452
2453         if (sd_try_rc16_first(sdp)) {
2454                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2455                 if (sector_size == -EOVERFLOW)
2456                         goto got_data;
2457                 if (sector_size == -ENODEV)
2458                         return;
2459                 if (sector_size < 0)
2460                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2461                 if (sector_size < 0)
2462                         return;
2463         } else {
2464                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2465                 if (sector_size == -EOVERFLOW)
2466                         goto got_data;
2467                 if (sector_size < 0)
2468                         return;
2469                 if ((sizeof(sdkp->capacity) > 4) &&
2470                     (sdkp->capacity > 0xffffffffULL)) {
2471                         int old_sector_size = sector_size;
2472                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2473                                         "Trying to use READ CAPACITY(16).\n");
2474                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2475                         if (sector_size < 0) {
2476                                 sd_printk(KERN_NOTICE, sdkp,
2477                                         "Using 0xffffffff as device size\n");
2478                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2479                                 sector_size = old_sector_size;
2480                                 goto got_data;
2481                         }
2482                         /* Remember that READ CAPACITY(16) succeeded */
2483                         sdp->try_rc_10_first = 0;
2484                 }
2485         }
2486
2487         /* Some devices are known to return the total number of blocks,
2488          * not the highest block number.  Some devices have versions
2489          * which do this and others which do not.  Some devices we might
2490          * suspect of doing this but we don't know for certain.
2491          *
2492          * If we know the reported capacity is wrong, decrement it.  If
2493          * we can only guess, then assume the number of blocks is even
2494          * (usually true but not always) and err on the side of lowering
2495          * the capacity.
2496          */
2497         if (sdp->fix_capacity ||
2498             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2499                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2500                                 "from its reported value: %llu\n",
2501                                 (unsigned long long) sdkp->capacity);
2502                 --sdkp->capacity;
2503         }
2504
2505 got_data:
2506         if (sector_size == 0) {
2507                 sector_size = 512;
2508                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2509                           "assuming 512.\n");
2510         }
2511
2512         if (sector_size != 512 &&
2513             sector_size != 1024 &&
2514             sector_size != 2048 &&
2515             sector_size != 4096) {
2516                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2517                           sector_size);
2518                 /*
2519                  * The user might want to re-format the drive with
2520                  * a supported sectorsize.  Once this happens, it
2521                  * would be relatively trivial to set the thing up.
2522                  * For this reason, we leave the thing in the table.
2523                  */
2524                 sdkp->capacity = 0;
2525                 /*
2526                  * set a bogus sector size so the normal read/write
2527                  * logic in the block layer will eventually refuse any
2528                  * request on this device without tripping over power
2529                  * of two sector size assumptions
2530                  */
2531                 sector_size = 512;
2532         }
2533         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2534         blk_queue_physical_block_size(sdp->request_queue,
2535                                       sdkp->physical_block_size);
2536         sdkp->device->sector_size = sector_size;
2537
2538         if (sdkp->capacity > 0xffffffff)
2539                 sdp->use_16_for_rw = 1;
2540
2541 }
2542
2543 /*
2544  * Print disk capacity
2545  */
2546 static void
2547 sd_print_capacity(struct scsi_disk *sdkp,
2548                   sector_t old_capacity)
2549 {
2550         int sector_size = sdkp->device->sector_size;
2551         char cap_str_2[10], cap_str_10[10];
2552
2553         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2554                 return;
2555
2556         string_get_size(sdkp->capacity, sector_size,
2557                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2558         string_get_size(sdkp->capacity, sector_size,
2559                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2560
2561         sd_printk(KERN_NOTICE, sdkp,
2562                   "%llu %d-byte logical blocks: (%s/%s)\n",
2563                   (unsigned long long)sdkp->capacity,
2564                   sector_size, cap_str_10, cap_str_2);
2565
2566         if (sdkp->physical_block_size != sector_size)
2567                 sd_printk(KERN_NOTICE, sdkp,
2568                           "%u-byte physical blocks\n",
2569                           sdkp->physical_block_size);
2570
2571         sd_zbc_print_zones(sdkp);
2572 }
2573
2574 /* called with buffer of length 512 */
2575 static inline int
2576 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2577                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2578                  struct scsi_sense_hdr *sshdr)
2579 {
2580         return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2581                                SD_TIMEOUT, SD_MAX_RETRIES, data,
2582                                sshdr);
2583 }
2584
2585 /*
2586  * read write protect setting, if possible - called only in sd_revalidate_disk()
2587  * called with buffer of length SD_BUF_SIZE
2588  */
2589 static void
2590 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2591 {
2592         int res;
2593         struct scsi_device *sdp = sdkp->device;
2594         struct scsi_mode_data data;
2595         int old_wp = sdkp->write_prot;
2596
2597         set_disk_ro(sdkp->disk, 0);
2598         if (sdp->skip_ms_page_3f) {
2599                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2600                 return;
2601         }
2602
2603         if (sdp->use_192_bytes_for_3f) {
2604                 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2605         } else {
2606                 /*
2607                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2608                  * We have to start carefully: some devices hang if we ask
2609                  * for more than is available.
2610                  */
2611                 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2612
2613                 /*
2614                  * Second attempt: ask for page 0 When only page 0 is
2615                  * implemented, a request for page 3F may return Sense Key
2616                  * 5: Illegal Request, Sense Code 24: Invalid field in
2617                  * CDB.
2618                  */
2619                 if (!scsi_status_is_good(res))
2620                         res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2621
2622                 /*
2623                  * Third attempt: ask 255 bytes, as we did earlier.
2624                  */
2625                 if (!scsi_status_is_good(res))
2626                         res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2627                                                &data, NULL);
2628         }
2629
2630         if (!scsi_status_is_good(res)) {
2631                 sd_first_printk(KERN_WARNING, sdkp,
2632                           "Test WP failed, assume Write Enabled\n");
2633         } else {
2634                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2635                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2636                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2637                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2638                                   sdkp->write_prot ? "on" : "off");
2639                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2640                 }
2641         }
2642 }
2643
2644 /*
2645  * sd_read_cache_type - called only from sd_revalidate_disk()
2646  * called with buffer of length SD_BUF_SIZE
2647  */
2648 static void
2649 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2650 {
2651         int len = 0, res;
2652         struct scsi_device *sdp = sdkp->device;
2653
2654         int dbd;
2655         int modepage;
2656         int first_len;
2657         struct scsi_mode_data data;
2658         struct scsi_sense_hdr sshdr;
2659         int old_wce = sdkp->WCE;
2660         int old_rcd = sdkp->RCD;
2661         int old_dpofua = sdkp->DPOFUA;
2662
2663
2664         if (sdkp->cache_override)
2665                 return;
2666
2667         first_len = 4;
2668         if (sdp->skip_ms_page_8) {
2669                 if (sdp->type == TYPE_RBC)
2670                         goto defaults;
2671                 else {
2672                         if (sdp->skip_ms_page_3f)
2673                                 goto defaults;
2674                         modepage = 0x3F;
2675                         if (sdp->use_192_bytes_for_3f)
2676                                 first_len = 192;
2677                         dbd = 0;
2678                 }
2679         } else if (sdp->type == TYPE_RBC) {
2680                 modepage = 6;
2681                 dbd = 8;
2682         } else {
2683                 modepage = 8;
2684                 dbd = 0;
2685         }
2686
2687         /* cautiously ask */
2688         res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2689                         &data, &sshdr);
2690
2691         if (!scsi_status_is_good(res))
2692                 goto bad_sense;
2693
2694         if (!data.header_length) {
2695                 modepage = 6;
2696                 first_len = 0;
2697                 sd_first_printk(KERN_ERR, sdkp,
2698                                 "Missing header in MODE_SENSE response\n");
2699         }
2700
2701         /* that went OK, now ask for the proper length */
2702         len = data.length;
2703
2704         /*
2705          * We're only interested in the first three bytes, actually.
2706          * But the data cache page is defined for the first 20.
2707          */
2708         if (len < 3)
2709                 goto bad_sense;
2710         else if (len > SD_BUF_SIZE) {
2711                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2712                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2713                 len = SD_BUF_SIZE;
2714         }
2715         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2716                 len = 192;
2717
2718         /* Get the data */
2719         if (len > first_len)
2720                 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2721                                 &data, &sshdr);
2722
2723         if (scsi_status_is_good(res)) {
2724                 int offset = data.header_length + data.block_descriptor_length;
2725
2726                 while (offset < len) {
2727                         u8 page_code = buffer[offset] & 0x3F;
2728                         u8 spf       = buffer[offset] & 0x40;
2729
2730                         if (page_code == 8 || page_code == 6) {
2731                                 /* We're interested only in the first 3 bytes.
2732                                  */
2733                                 if (len - offset <= 2) {
2734                                         sd_first_printk(KERN_ERR, sdkp,
2735                                                 "Incomplete mode parameter "
2736                                                         "data\n");
2737                                         goto defaults;
2738                                 } else {
2739                                         modepage = page_code;
2740                                         goto Page_found;
2741                                 }
2742                         } else {
2743                                 /* Go to the next page */
2744                                 if (spf && len - offset > 3)
2745                                         offset += 4 + (buffer[offset+2] << 8) +
2746                                                 buffer[offset+3];
2747                                 else if (!spf && len - offset > 1)
2748                                         offset += 2 + buffer[offset+1];
2749                                 else {
2750                                         sd_first_printk(KERN_ERR, sdkp,
2751                                                         "Incomplete mode "
2752                                                         "parameter data\n");
2753                                         goto defaults;
2754                                 }
2755                         }
2756                 }
2757
2758                 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2759                 goto defaults;
2760
2761         Page_found:
2762                 if (modepage == 8) {
2763                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2764                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2765                 } else {
2766                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2767                         sdkp->RCD = 0;
2768                 }
2769
2770                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2771                 if (sdp->broken_fua) {
2772                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2773                         sdkp->DPOFUA = 0;
2774                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2775                            !sdkp->device->use_16_for_rw) {
2776                         sd_first_printk(KERN_NOTICE, sdkp,
2777                                   "Uses READ/WRITE(6), disabling FUA\n");
2778                         sdkp->DPOFUA = 0;
2779                 }
2780
2781                 /* No cache flush allowed for write protected devices */
2782                 if (sdkp->WCE && sdkp->write_prot)
2783                         sdkp->WCE = 0;
2784
2785                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2786                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2787                         sd_printk(KERN_NOTICE, sdkp,
2788                                   "Write cache: %s, read cache: %s, %s\n",
2789                                   sdkp->WCE ? "enabled" : "disabled",
2790                                   sdkp->RCD ? "disabled" : "enabled",
2791                                   sdkp->DPOFUA ? "supports DPO and FUA"
2792                                   : "doesn't support DPO or FUA");
2793
2794                 return;
2795         }
2796
2797 bad_sense:
2798         if (scsi_sense_valid(&sshdr) &&
2799             sshdr.sense_key == ILLEGAL_REQUEST &&
2800             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2801                 /* Invalid field in CDB */
2802                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2803         else
2804                 sd_first_printk(KERN_ERR, sdkp,
2805                                 "Asking for cache data failed\n");
2806
2807 defaults:
2808         if (sdp->wce_default_on) {
2809                 sd_first_printk(KERN_NOTICE, sdkp,
2810                                 "Assuming drive cache: write back\n");
2811                 sdkp->WCE = 1;
2812         } else {
2813                 sd_first_printk(KERN_ERR, sdkp,
2814                                 "Assuming drive cache: write through\n");
2815                 sdkp->WCE = 0;
2816         }
2817         sdkp->RCD = 0;
2818         sdkp->DPOFUA = 0;
2819 }
2820
2821 /*
2822  * The ATO bit indicates whether the DIF application tag is available
2823  * for use by the operating system.
2824  */
2825 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2826 {
2827         int res, offset;
2828         struct scsi_device *sdp = sdkp->device;
2829         struct scsi_mode_data data;
2830         struct scsi_sense_hdr sshdr;
2831
2832         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2833                 return;
2834
2835         if (sdkp->protection_type == 0)
2836                 return;
2837
2838         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2839                               SD_MAX_RETRIES, &data, &sshdr);
2840
2841         if (!scsi_status_is_good(res) || !data.header_length ||
2842             data.length < 6) {
2843                 sd_first_printk(KERN_WARNING, sdkp,
2844                           "getting Control mode page failed, assume no ATO\n");
2845
2846                 if (scsi_sense_valid(&sshdr))
2847                         sd_print_sense_hdr(sdkp, &sshdr);
2848
2849                 return;
2850         }
2851
2852         offset = data.header_length + data.block_descriptor_length;
2853
2854         if ((buffer[offset] & 0x3f) != 0x0a) {
2855                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2856                 return;
2857         }
2858
2859         if ((buffer[offset + 5] & 0x80) == 0)
2860                 return;
2861
2862         sdkp->ATO = 1;
2863
2864         return;
2865 }
2866
2867 /**
2868  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2869  * @sdkp: disk to query
2870  */
2871 static void sd_read_block_limits(struct scsi_disk *sdkp)
2872 {
2873         unsigned int sector_sz = sdkp->device->sector_size;
2874         const int vpd_len = 64;
2875         unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2876
2877         if (!buffer ||
2878             /* Block Limits VPD */
2879             scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2880                 goto out;
2881
2882         blk_queue_io_min(sdkp->disk->queue,
2883                          get_unaligned_be16(&buffer[6]) * sector_sz);
2884
2885         sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2886         sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2887
2888         if (buffer[3] == 0x3c) {
2889                 unsigned int lba_count, desc_count;
2890
2891                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2892
2893                 if (!sdkp->lbpme)
2894                         goto out;
2895
2896                 lba_count = get_unaligned_be32(&buffer[20]);
2897                 desc_count = get_unaligned_be32(&buffer[24]);
2898
2899                 if (lba_count && desc_count)
2900                         sdkp->max_unmap_blocks = lba_count;
2901
2902                 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2903
2904                 if (buffer[32] & 0x80)
2905                         sdkp->unmap_alignment =
2906                                 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2907
2908                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2909
2910                         if (sdkp->max_unmap_blocks)
2911                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2912                         else
2913                                 sd_config_discard(sdkp, SD_LBP_WS16);
2914
2915                 } else {        /* LBP VPD page tells us what to use */
2916                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2917                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2918                         else if (sdkp->lbpws)
2919                                 sd_config_discard(sdkp, SD_LBP_WS16);
2920                         else if (sdkp->lbpws10)
2921                                 sd_config_discard(sdkp, SD_LBP_WS10);
2922                         else
2923                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2924                 }
2925         }
2926
2927  out:
2928         kfree(buffer);
2929 }
2930
2931 /**
2932  * sd_read_block_characteristics - Query block dev. characteristics
2933  * @sdkp: disk to query
2934  */
2935 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2936 {
2937         struct request_queue *q = sdkp->disk->queue;
2938         unsigned char *buffer;
2939         u16 rot;
2940         const int vpd_len = 64;
2941
2942         buffer = kmalloc(vpd_len, GFP_KERNEL);
2943
2944         if (!buffer ||
2945             /* Block Device Characteristics VPD */
2946             scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2947                 goto out;
2948
2949         rot = get_unaligned_be16(&buffer[4]);
2950
2951         if (rot == 1) {
2952                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2953                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2954         }
2955
2956         if (sdkp->device->type == TYPE_ZBC) {
2957                 /* Host-managed */
2958                 q->limits.zoned = BLK_ZONED_HM;
2959         } else {
2960                 sdkp->zoned = (buffer[8] >> 4) & 3;
2961                 if (sdkp->zoned == 1)
2962                         /* Host-aware */
2963                         q->limits.zoned = BLK_ZONED_HA;
2964                 else
2965                         /*
2966                          * Treat drive-managed devices as
2967                          * regular block devices.
2968                          */
2969                         q->limits.zoned = BLK_ZONED_NONE;
2970         }
2971         if (blk_queue_is_zoned(q) && sdkp->first_scan)
2972                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2973                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2974
2975  out:
2976         kfree(buffer);
2977 }
2978
2979 /**
2980  * sd_read_block_provisioning - Query provisioning VPD page
2981  * @sdkp: disk to query
2982  */
2983 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2984 {
2985         unsigned char *buffer;
2986         const int vpd_len = 8;
2987
2988         if (sdkp->lbpme == 0)
2989                 return;
2990
2991         buffer = kmalloc(vpd_len, GFP_KERNEL);
2992
2993         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2994                 goto out;
2995
2996         sdkp->lbpvpd    = 1;
2997         sdkp->lbpu      = (buffer[5] >> 7) & 1; /* UNMAP */
2998         sdkp->lbpws     = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2999         sdkp->lbpws10   = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3000
3001  out:
3002         kfree(buffer);
3003 }
3004
3005 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3006 {
3007         struct scsi_device *sdev = sdkp->device;
3008
3009         if (sdev->host->no_write_same) {
3010                 sdev->no_write_same = 1;
3011
3012                 return;
3013         }
3014
3015         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3016                 /* too large values might cause issues with arcmsr */
3017                 int vpd_buf_len = 64;
3018
3019                 sdev->no_report_opcodes = 1;
3020
3021                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3022                  * CODES is unsupported and the device has an ATA
3023                  * Information VPD page (SAT).
3024                  */
3025                 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3026                         sdev->no_write_same = 1;
3027         }
3028
3029         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3030                 sdkp->ws16 = 1;
3031
3032         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3033                 sdkp->ws10 = 1;
3034 }
3035
3036 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3037 {
3038         struct scsi_device *sdev = sdkp->device;
3039
3040         if (!sdev->security_supported)
3041                 return;
3042
3043         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3044                         SECURITY_PROTOCOL_IN) == 1 &&
3045             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3046                         SECURITY_PROTOCOL_OUT) == 1)
3047                 sdkp->security = 1;
3048 }
3049
3050 /*
3051  * Determine the device's preferred I/O size for reads and writes
3052  * unless the reported value is unreasonably small, large, not a
3053  * multiple of the physical block size, or simply garbage.
3054  */
3055 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3056                                       unsigned int dev_max)
3057 {
3058         struct scsi_device *sdp = sdkp->device;
3059         unsigned int opt_xfer_bytes =
3060                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3061
3062         if (sdkp->opt_xfer_blocks == 0)
3063                 return false;
3064
3065         if (sdkp->opt_xfer_blocks > dev_max) {
3066                 sd_first_printk(KERN_WARNING, sdkp,
3067                                 "Optimal transfer size %u logical blocks " \
3068                                 "> dev_max (%u logical blocks)\n",
3069                                 sdkp->opt_xfer_blocks, dev_max);
3070                 return false;
3071         }
3072
3073         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3074                 sd_first_printk(KERN_WARNING, sdkp,
3075                                 "Optimal transfer size %u logical blocks " \
3076                                 "> sd driver limit (%u logical blocks)\n",
3077                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3078                 return false;
3079         }
3080
3081         if (opt_xfer_bytes < PAGE_SIZE) {
3082                 sd_first_printk(KERN_WARNING, sdkp,
3083                                 "Optimal transfer size %u bytes < " \
3084                                 "PAGE_SIZE (%u bytes)\n",
3085                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3086                 return false;
3087         }
3088
3089         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3090                 sd_first_printk(KERN_WARNING, sdkp,
3091                                 "Optimal transfer size %u bytes not a " \
3092                                 "multiple of physical block size (%u bytes)\n",
3093                                 opt_xfer_bytes, sdkp->physical_block_size);
3094                 return false;
3095         }
3096
3097         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3098                         opt_xfer_bytes);
3099         return true;
3100 }
3101
3102 /**
3103  *      sd_revalidate_disk - called the first time a new disk is seen,
3104  *      performs disk spin up, read_capacity, etc.
3105  *      @disk: struct gendisk we care about
3106  **/
3107 static int sd_revalidate_disk(struct gendisk *disk)
3108 {
3109         struct scsi_disk *sdkp = scsi_disk(disk);
3110         struct scsi_device *sdp = sdkp->device;
3111         struct request_queue *q = sdkp->disk->queue;
3112         sector_t old_capacity = sdkp->capacity;
3113         unsigned char *buffer;
3114         unsigned int dev_max, rw_max;
3115
3116         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3117                                       "sd_revalidate_disk\n"));
3118
3119         /*
3120          * If the device is offline, don't try and read capacity or any
3121          * of the other niceties.
3122          */
3123         if (!scsi_device_online(sdp))
3124                 goto out;
3125
3126         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3127         if (!buffer) {
3128                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3129                           "allocation failure.\n");
3130                 goto out;
3131         }
3132
3133         sd_spinup_disk(sdkp);
3134
3135         /*
3136          * Without media there is no reason to ask; moreover, some devices
3137          * react badly if we do.
3138          */
3139         if (sdkp->media_present) {
3140                 sd_read_capacity(sdkp, buffer);
3141
3142                 /*
3143                  * set the default to rotational.  All non-rotational devices
3144                  * support the block characteristics VPD page, which will
3145                  * cause this to be updated correctly and any device which
3146                  * doesn't support it should be treated as rotational.
3147                  */
3148                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3149                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3150
3151                 if (scsi_device_supports_vpd(sdp)) {
3152                         sd_read_block_provisioning(sdkp);
3153                         sd_read_block_limits(sdkp);
3154                         sd_read_block_characteristics(sdkp);
3155                         sd_zbc_read_zones(sdkp, buffer);
3156                 }
3157
3158                 sd_print_capacity(sdkp, old_capacity);
3159
3160                 sd_read_write_protect_flag(sdkp, buffer);
3161                 sd_read_cache_type(sdkp, buffer);
3162                 sd_read_app_tag_own(sdkp, buffer);
3163                 sd_read_write_same(sdkp, buffer);
3164                 sd_read_security(sdkp, buffer);
3165         }
3166
3167         /*
3168          * We now have all cache related info, determine how we deal
3169          * with flush requests.
3170          */
3171         sd_set_flush_flag(sdkp);
3172
3173         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3174         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3175
3176         /* Some devices report a maximum block count for READ/WRITE requests. */
3177         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3178         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3179
3180         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3181                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3182                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3183         } else
3184                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3185                                       (sector_t)BLK_DEF_MAX_SECTORS);
3186
3187         /* Do not exceed controller limit */
3188         rw_max = min(rw_max, queue_max_hw_sectors(q));
3189
3190         /*
3191          * Only update max_sectors if previously unset or if the current value
3192          * exceeds the capabilities of the hardware.
3193          */
3194         if (sdkp->first_scan ||
3195             q->limits.max_sectors > q->limits.max_dev_sectors ||
3196             q->limits.max_sectors > q->limits.max_hw_sectors)
3197                 q->limits.max_sectors = rw_max;
3198
3199         sdkp->first_scan = 0;
3200
3201         set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3202         sd_config_write_same(sdkp);
3203         kfree(buffer);
3204
3205  out:
3206         return 0;
3207 }
3208
3209 /**
3210  *      sd_unlock_native_capacity - unlock native capacity
3211  *      @disk: struct gendisk to set capacity for
3212  *
3213  *      Block layer calls this function if it detects that partitions
3214  *      on @disk reach beyond the end of the device.  If the SCSI host
3215  *      implements ->unlock_native_capacity() method, it's invoked to
3216  *      give it a chance to adjust the device capacity.
3217  *
3218  *      CONTEXT:
3219  *      Defined by block layer.  Might sleep.
3220  */
3221 static void sd_unlock_native_capacity(struct gendisk *disk)
3222 {
3223         struct scsi_device *sdev = scsi_disk(disk)->device;
3224
3225         if (sdev->host->hostt->unlock_native_capacity)
3226                 sdev->host->hostt->unlock_native_capacity(sdev);
3227 }
3228
3229 /**
3230  *      sd_format_disk_name - format disk name
3231  *      @prefix: name prefix - ie. "sd" for SCSI disks
3232  *      @index: index of the disk to format name for
3233  *      @buf: output buffer
3234  *      @buflen: length of the output buffer
3235  *
3236  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3237  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3238  *      which is followed by sdaaa.
3239  *
3240  *      This is basically 26 base counting with one extra 'nil' entry
3241  *      at the beginning from the second digit on and can be
3242  *      determined using similar method as 26 base conversion with the
3243  *      index shifted -1 after each digit is computed.
3244  *
3245  *      CONTEXT:
3246  *      Don't care.
3247  *
3248  *      RETURNS:
3249  *      0 on success, -errno on failure.
3250  */
3251 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3252 {
3253         const int base = 'z' - 'a' + 1;
3254         char *begin = buf + strlen(prefix);
3255         char *end = buf + buflen;
3256         char *p;
3257         int unit;
3258
3259         p = end - 1;
3260         *p = '\0';
3261         unit = base;
3262         do {
3263                 if (p == begin)
3264                         return -EINVAL;
3265                 *--p = 'a' + (index % unit);
3266                 index = (index / unit) - 1;
3267         } while (index >= 0);
3268
3269         memmove(begin, p, end - p);
3270         memcpy(buf, prefix, strlen(prefix));
3271
3272         return 0;
3273 }
3274
3275 /**
3276  *      sd_probe - called during driver initialization and whenever a
3277  *      new scsi device is attached to the system. It is called once
3278  *      for each scsi device (not just disks) present.
3279  *      @dev: pointer to device object
3280  *
3281  *      Returns 0 if successful (or not interested in this scsi device 
3282  *      (e.g. scanner)); 1 when there is an error.
3283  *
3284  *      Note: this function is invoked from the scsi mid-level.
3285  *      This function sets up the mapping between a given 
3286  *      <host,channel,id,lun> (found in sdp) and new device name 
3287  *      (e.g. /dev/sda). More precisely it is the block device major 
3288  *      and minor number that is chosen here.
3289  *
3290  *      Assume sd_probe is not re-entrant (for time being)
3291  *      Also think about sd_probe() and sd_remove() running coincidentally.
3292  **/
3293 static int sd_probe(struct device *dev)
3294 {
3295         struct scsi_device *sdp = to_scsi_device(dev);
3296         struct scsi_disk *sdkp;
3297         struct gendisk *gd;
3298         int index;
3299         int error;
3300
3301         scsi_autopm_get_device(sdp);
3302         error = -ENODEV;
3303         if (sdp->type != TYPE_DISK &&
3304             sdp->type != TYPE_ZBC &&
3305             sdp->type != TYPE_MOD &&
3306             sdp->type != TYPE_RBC)
3307                 goto out;
3308
3309 #ifndef CONFIG_BLK_DEV_ZONED
3310         if (sdp->type == TYPE_ZBC)
3311                 goto out;
3312 #endif
3313         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3314                                         "sd_probe\n"));
3315
3316         error = -ENOMEM;
3317         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3318         if (!sdkp)
3319                 goto out;
3320
3321         gd = alloc_disk(SD_MINORS);
3322         if (!gd)
3323                 goto out_free;
3324
3325         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3326         if (index < 0) {
3327                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3328                 goto out_put;
3329         }
3330
3331         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3332         if (error) {
3333                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3334                 goto out_free_index;
3335         }
3336
3337         sdkp->device = sdp;
3338         sdkp->driver = &sd_template;
3339         sdkp->disk = gd;
3340         sdkp->index = index;
3341         atomic_set(&sdkp->openers, 0);
3342         atomic_set(&sdkp->device->ioerr_cnt, 0);
3343
3344         if (!sdp->request_queue->rq_timeout) {
3345                 if (sdp->type != TYPE_MOD)
3346                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3347                 else
3348                         blk_queue_rq_timeout(sdp->request_queue,
3349                                              SD_MOD_TIMEOUT);
3350         }
3351
3352         device_initialize(&sdkp->dev);
3353         sdkp->dev.parent = dev;
3354         sdkp->dev.class = &sd_disk_class;
3355         dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3356
3357         error = device_add(&sdkp->dev);
3358         if (error)
3359                 goto out_free_index;
3360
3361         get_device(dev);
3362         dev_set_drvdata(dev, sdkp);
3363
3364         gd->major = sd_major((index & 0xf0) >> 4);
3365         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3366
3367         gd->fops = &sd_fops;
3368         gd->private_data = &sdkp->driver;
3369         gd->queue = sdkp->device->request_queue;
3370
3371         /* defaults, until the device tells us otherwise */
3372         sdp->sector_size = 512;
3373         sdkp->capacity = 0;
3374         sdkp->media_present = 1;
3375         sdkp->write_prot = 0;
3376         sdkp->cache_override = 0;
3377         sdkp->WCE = 0;
3378         sdkp->RCD = 0;
3379         sdkp->ATO = 0;
3380         sdkp->first_scan = 1;
3381         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3382
3383         sd_revalidate_disk(gd);
3384
3385         gd->flags = GENHD_FL_EXT_DEVT;
3386         if (sdp->removable) {
3387                 gd->flags |= GENHD_FL_REMOVABLE;
3388                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3389                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3390         }
3391
3392         blk_pm_runtime_init(sdp->request_queue, dev);
3393         device_add_disk(dev, gd, NULL);
3394         if (sdkp->capacity)
3395                 sd_dif_config_host(sdkp);
3396
3397         sd_revalidate_disk(gd);
3398
3399         if (sdkp->security) {
3400                 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3401                 if (sdkp->opal_dev)
3402                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3403         }
3404
3405         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3406                   sdp->removable ? "removable " : "");
3407         scsi_autopm_put_device(sdp);
3408
3409         return 0;
3410
3411  out_free_index:
3412         ida_free(&sd_index_ida, index);
3413  out_put:
3414         put_disk(gd);
3415  out_free:
3416         kfree(sdkp);
3417  out:
3418         scsi_autopm_put_device(sdp);
3419         return error;
3420 }
3421
3422 /**
3423  *      sd_remove - called whenever a scsi disk (previously recognized by
3424  *      sd_probe) is detached from the system. It is called (potentially
3425  *      multiple times) during sd module unload.
3426  *      @dev: pointer to device object
3427  *
3428  *      Note: this function is invoked from the scsi mid-level.
3429  *      This function potentially frees up a device name (e.g. /dev/sdc)
3430  *      that could be re-used by a subsequent sd_probe().
3431  *      This function is not called when the built-in sd driver is "exit-ed".
3432  **/
3433 static int sd_remove(struct device *dev)
3434 {
3435         struct scsi_disk *sdkp;
3436         dev_t devt;
3437
3438         sdkp = dev_get_drvdata(dev);
3439         devt = disk_devt(sdkp->disk);
3440         scsi_autopm_get_device(sdkp->device);
3441
3442         async_synchronize_full_domain(&scsi_sd_pm_domain);
3443         device_del(&sdkp->dev);
3444         del_gendisk(sdkp->disk);
3445         sd_shutdown(dev);
3446
3447         free_opal_dev(sdkp->opal_dev);
3448
3449         blk_register_region(devt, SD_MINORS, NULL,
3450                             sd_default_probe, NULL, NULL);
3451
3452         mutex_lock(&sd_ref_mutex);
3453         dev_set_drvdata(dev, NULL);
3454         put_device(&sdkp->dev);
3455         mutex_unlock(&sd_ref_mutex);
3456
3457         return 0;
3458 }
3459
3460 /**
3461  *      scsi_disk_release - Called to free the scsi_disk structure
3462  *      @dev: pointer to embedded class device
3463  *
3464  *      sd_ref_mutex must be held entering this routine.  Because it is
3465  *      called on last put, you should always use the scsi_disk_get()
3466  *      scsi_disk_put() helpers which manipulate the semaphore directly
3467  *      and never do a direct put_device.
3468  **/
3469 static void scsi_disk_release(struct device *dev)
3470 {
3471         struct scsi_disk *sdkp = to_scsi_disk(dev);
3472         struct gendisk *disk = sdkp->disk;
3473         struct request_queue *q = disk->queue;
3474
3475         ida_free(&sd_index_ida, sdkp->index);
3476
3477         /*
3478          * Wait until all requests that are in progress have completed.
3479          * This is necessary to avoid that e.g. scsi_end_request() crashes
3480          * due to clearing the disk->private_data pointer. Wait from inside
3481          * scsi_disk_release() instead of from sd_release() to avoid that
3482          * freezing and unfreezing the request queue affects user space I/O
3483          * in case multiple processes open a /dev/sd... node concurrently.
3484          */
3485         blk_mq_freeze_queue(q);
3486         blk_mq_unfreeze_queue(q);
3487
3488         disk->private_data = NULL;
3489         put_disk(disk);
3490         put_device(&sdkp->device->sdev_gendev);
3491
3492         kfree(sdkp);
3493 }
3494
3495 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3496 {
3497         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3498         struct scsi_sense_hdr sshdr;
3499         struct scsi_device *sdp = sdkp->device;
3500         int res;
3501
3502         if (start)
3503                 cmd[4] |= 1;    /* START */
3504
3505         if (sdp->start_stop_pwr_cond)
3506                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3507
3508         if (!scsi_device_online(sdp))
3509                 return -ENODEV;
3510
3511         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3512                         SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3513         if (res) {
3514                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3515                 if (driver_byte(res) == DRIVER_SENSE)
3516                         sd_print_sense_hdr(sdkp, &sshdr);
3517                 if (scsi_sense_valid(&sshdr) &&
3518                         /* 0x3a is medium not present */
3519                         sshdr.asc == 0x3a)
3520                         res = 0;
3521         }
3522
3523         /* SCSI error codes must not go to the generic layer */
3524         if (res)
3525                 return -EIO;
3526
3527         return 0;
3528 }
3529
3530 /*
3531  * Send a SYNCHRONIZE CACHE instruction down to the device through
3532  * the normal SCSI command structure.  Wait for the command to
3533  * complete.
3534  */
3535 static void sd_shutdown(struct device *dev)
3536 {
3537         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3538
3539         if (!sdkp)
3540                 return;         /* this can happen */
3541
3542         if (pm_runtime_suspended(dev))
3543                 return;
3544
3545         if (sdkp->WCE && sdkp->media_present) {
3546                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3547                 sd_sync_cache(sdkp, NULL);
3548         }
3549
3550         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3551                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3552                 sd_start_stop_device(sdkp, 0);
3553         }
3554 }
3555
3556 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3557 {
3558         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3559         struct scsi_sense_hdr sshdr;
3560         int ret = 0;
3561
3562         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3563                 return 0;
3564
3565         if (sdkp->WCE && sdkp->media_present) {
3566                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3567                 ret = sd_sync_cache(sdkp, &sshdr);
3568
3569                 if (ret) {
3570                         /* ignore OFFLINE device */
3571                         if (ret == -ENODEV)
3572                                 return 0;
3573
3574                         if (!scsi_sense_valid(&sshdr) ||
3575                             sshdr.sense_key != ILLEGAL_REQUEST)
3576                                 return ret;
3577
3578                         /*
3579                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3580                          * doesn't support sync. There's not much to do and
3581                          * suspend shouldn't fail.
3582                          */
3583                         ret = 0;
3584                 }
3585         }
3586
3587         if (sdkp->device->manage_start_stop) {
3588                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3589                 /* an error is not worth aborting a system sleep */
3590                 ret = sd_start_stop_device(sdkp, 0);
3591                 if (ignore_stop_errors)
3592                         ret = 0;
3593         }
3594
3595         return ret;
3596 }
3597
3598 static int sd_suspend_system(struct device *dev)
3599 {
3600         return sd_suspend_common(dev, true);
3601 }
3602
3603 static int sd_suspend_runtime(struct device *dev)
3604 {
3605         return sd_suspend_common(dev, false);
3606 }
3607
3608 static int sd_resume(struct device *dev)
3609 {
3610         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3611         int ret;
3612
3613         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3614                 return 0;
3615
3616         if (!sdkp->device->manage_start_stop)
3617                 return 0;
3618
3619         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3620         ret = sd_start_stop_device(sdkp, 1);
3621         if (!ret)
3622                 opal_unlock_from_suspend(sdkp->opal_dev);
3623         return ret;
3624 }
3625
3626 /**
3627  *      init_sd - entry point for this driver (both when built in or when
3628  *      a module).
3629  *
3630  *      Note: this function registers this driver with the scsi mid-level.
3631  **/
3632 static int __init init_sd(void)
3633 {
3634         int majors = 0, i, err;
3635
3636         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3637
3638         for (i = 0; i < SD_MAJORS; i++) {
3639                 if (register_blkdev(sd_major(i), "sd") != 0)
3640                         continue;
3641                 majors++;
3642                 blk_register_region(sd_major(i), SD_MINORS, NULL,
3643                                     sd_default_probe, NULL, NULL);
3644         }
3645
3646         if (!majors)
3647                 return -ENODEV;
3648
3649         err = class_register(&sd_disk_class);
3650         if (err)
3651                 goto err_out;
3652
3653         sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3654                                          0, 0, NULL);
3655         if (!sd_cdb_cache) {
3656                 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3657                 err = -ENOMEM;
3658                 goto err_out_class;
3659         }
3660
3661         sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3662         if (!sd_cdb_pool) {
3663                 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3664                 err = -ENOMEM;
3665                 goto err_out_cache;
3666         }
3667
3668         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3669         if (!sd_page_pool) {
3670                 printk(KERN_ERR "sd: can't init discard page pool\n");
3671                 err = -ENOMEM;
3672                 goto err_out_ppool;
3673         }
3674
3675         err = scsi_register_driver(&sd_template.gendrv);
3676         if (err)
3677                 goto err_out_driver;
3678
3679         return 0;
3680
3681 err_out_driver:
3682         mempool_destroy(sd_page_pool);
3683
3684 err_out_ppool:
3685         mempool_destroy(sd_cdb_pool);
3686
3687 err_out_cache:
3688         kmem_cache_destroy(sd_cdb_cache);
3689
3690 err_out_class:
3691         class_unregister(&sd_disk_class);
3692 err_out:
3693         for (i = 0; i < SD_MAJORS; i++)
3694                 unregister_blkdev(sd_major(i), "sd");
3695         return err;
3696 }
3697
3698 /**
3699  *      exit_sd - exit point for this driver (when it is a module).
3700  *
3701  *      Note: this function unregisters this driver from the scsi mid-level.
3702  **/
3703 static void __exit exit_sd(void)
3704 {
3705         int i;
3706
3707         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3708
3709         scsi_unregister_driver(&sd_template.gendrv);
3710         mempool_destroy(sd_cdb_pool);
3711         mempool_destroy(sd_page_pool);
3712         kmem_cache_destroy(sd_cdb_cache);
3713
3714         class_unregister(&sd_disk_class);
3715
3716         for (i = 0; i < SD_MAJORS; i++) {
3717                 blk_unregister_region(sd_major(i), SD_MINORS);
3718                 unregister_blkdev(sd_major(i), "sd");
3719         }
3720 }
3721
3722 module_init(init_sd);
3723 module_exit(exit_sd);
3724
3725 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3726                                struct scsi_sense_hdr *sshdr)
3727 {
3728         scsi_print_sense_hdr(sdkp->device,
3729                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3730 }
3731
3732 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3733                             int result)
3734 {
3735         const char *hb_string = scsi_hostbyte_string(result);
3736         const char *db_string = scsi_driverbyte_string(result);
3737
3738         if (hb_string || db_string)
3739                 sd_printk(KERN_INFO, sdkp,
3740                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3741                           hb_string ? hb_string : "invalid",
3742                           db_string ? db_string : "invalid");
3743         else
3744                 sd_printk(KERN_INFO, sdkp,
3745                           "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3746                           msg, host_byte(result), driver_byte(result));
3747 }
3748