770dbcbc999e0bff81b8643644cab20599a0c2e3
[linux-2.6-block.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 enum nvme_tcp_send_state {
24         NVME_TCP_SEND_CMD_PDU = 0,
25         NVME_TCP_SEND_H2C_PDU,
26         NVME_TCP_SEND_DATA,
27         NVME_TCP_SEND_DDGST,
28 };
29
30 struct nvme_tcp_request {
31         struct nvme_request     req;
32         void                    *pdu;
33         struct nvme_tcp_queue   *queue;
34         u32                     data_len;
35         u32                     pdu_len;
36         u32                     pdu_sent;
37         u16                     ttag;
38         struct list_head        entry;
39         __le32                  ddgst;
40
41         struct bio              *curr_bio;
42         struct iov_iter         iter;
43
44         /* send state */
45         size_t                  offset;
46         size_t                  data_sent;
47         enum nvme_tcp_send_state state;
48 };
49
50 enum nvme_tcp_queue_flags {
51         NVME_TCP_Q_ALLOCATED    = 0,
52         NVME_TCP_Q_LIVE         = 1,
53 };
54
55 enum nvme_tcp_recv_state {
56         NVME_TCP_RECV_PDU = 0,
57         NVME_TCP_RECV_DATA,
58         NVME_TCP_RECV_DDGST,
59 };
60
61 struct nvme_tcp_ctrl;
62 struct nvme_tcp_queue {
63         struct socket           *sock;
64         struct work_struct      io_work;
65         int                     io_cpu;
66
67         spinlock_t              lock;
68         struct list_head        send_list;
69
70         /* recv state */
71         void                    *pdu;
72         int                     pdu_remaining;
73         int                     pdu_offset;
74         size_t                  data_remaining;
75         size_t                  ddgst_remaining;
76         unsigned int            nr_cqe;
77
78         /* send state */
79         struct nvme_tcp_request *request;
80
81         int                     queue_size;
82         size_t                  cmnd_capsule_len;
83         struct nvme_tcp_ctrl    *ctrl;
84         unsigned long           flags;
85         bool                    rd_enabled;
86
87         bool                    hdr_digest;
88         bool                    data_digest;
89         struct ahash_request    *rcv_hash;
90         struct ahash_request    *snd_hash;
91         __le32                  exp_ddgst;
92         __le32                  recv_ddgst;
93
94         struct page_frag_cache  pf_cache;
95
96         void (*state_change)(struct sock *);
97         void (*data_ready)(struct sock *);
98         void (*write_space)(struct sock *);
99 };
100
101 struct nvme_tcp_ctrl {
102         /* read only in the hot path */
103         struct nvme_tcp_queue   *queues;
104         struct blk_mq_tag_set   tag_set;
105
106         /* other member variables */
107         struct list_head        list;
108         struct blk_mq_tag_set   admin_tag_set;
109         struct sockaddr_storage addr;
110         struct sockaddr_storage src_addr;
111         struct nvme_ctrl        ctrl;
112
113         struct work_struct      err_work;
114         struct delayed_work     connect_work;
115         struct nvme_tcp_request async_req;
116         u32                     io_queues[HCTX_MAX_TYPES];
117 };
118
119 static LIST_HEAD(nvme_tcp_ctrl_list);
120 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
121 static struct workqueue_struct *nvme_tcp_wq;
122 static struct blk_mq_ops nvme_tcp_mq_ops;
123 static struct blk_mq_ops nvme_tcp_admin_mq_ops;
124
125 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
126 {
127         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
128 }
129
130 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
131 {
132         return queue - queue->ctrl->queues;
133 }
134
135 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
136 {
137         u32 queue_idx = nvme_tcp_queue_id(queue);
138
139         if (queue_idx == 0)
140                 return queue->ctrl->admin_tag_set.tags[queue_idx];
141         return queue->ctrl->tag_set.tags[queue_idx - 1];
142 }
143
144 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
145 {
146         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
147 }
148
149 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
150 {
151         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
152 }
153
154 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
155 {
156         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
157 }
158
159 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
160 {
161         return req == &req->queue->ctrl->async_req;
162 }
163
164 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
165 {
166         struct request *rq;
167         unsigned int bytes;
168
169         if (unlikely(nvme_tcp_async_req(req)))
170                 return false; /* async events don't have a request */
171
172         rq = blk_mq_rq_from_pdu(req);
173         bytes = blk_rq_payload_bytes(rq);
174
175         return rq_data_dir(rq) == WRITE && bytes &&
176                 bytes <= nvme_tcp_inline_data_size(req->queue);
177 }
178
179 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
180 {
181         return req->iter.bvec->bv_page;
182 }
183
184 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
185 {
186         return req->iter.bvec->bv_offset + req->iter.iov_offset;
187 }
188
189 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
190 {
191         return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
192                         req->pdu_len - req->pdu_sent);
193 }
194
195 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
196 {
197         return req->iter.iov_offset;
198 }
199
200 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
201 {
202         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
203                         req->pdu_len - req->pdu_sent : 0;
204 }
205
206 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
207                 int len)
208 {
209         return nvme_tcp_pdu_data_left(req) <= len;
210 }
211
212 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
213                 unsigned int dir)
214 {
215         struct request *rq = blk_mq_rq_from_pdu(req);
216         struct bio_vec *vec;
217         unsigned int size;
218         int nsegs;
219         size_t offset;
220
221         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
222                 vec = &rq->special_vec;
223                 nsegs = 1;
224                 size = blk_rq_payload_bytes(rq);
225                 offset = 0;
226         } else {
227                 struct bio *bio = req->curr_bio;
228
229                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
230                 nsegs = bio_segments(bio);
231                 size = bio->bi_iter.bi_size;
232                 offset = bio->bi_iter.bi_bvec_done;
233         }
234
235         iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
236         req->iter.iov_offset = offset;
237 }
238
239 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
240                 int len)
241 {
242         req->data_sent += len;
243         req->pdu_sent += len;
244         iov_iter_advance(&req->iter, len);
245         if (!iov_iter_count(&req->iter) &&
246             req->data_sent < req->data_len) {
247                 req->curr_bio = req->curr_bio->bi_next;
248                 nvme_tcp_init_iter(req, WRITE);
249         }
250 }
251
252 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req)
253 {
254         struct nvme_tcp_queue *queue = req->queue;
255
256         spin_lock(&queue->lock);
257         list_add_tail(&req->entry, &queue->send_list);
258         spin_unlock(&queue->lock);
259
260         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
261 }
262
263 static inline struct nvme_tcp_request *
264 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
265 {
266         struct nvme_tcp_request *req;
267
268         spin_lock(&queue->lock);
269         req = list_first_entry_or_null(&queue->send_list,
270                         struct nvme_tcp_request, entry);
271         if (req)
272                 list_del(&req->entry);
273         spin_unlock(&queue->lock);
274
275         return req;
276 }
277
278 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
279                 __le32 *dgst)
280 {
281         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
282         crypto_ahash_final(hash);
283 }
284
285 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
286                 struct page *page, off_t off, size_t len)
287 {
288         struct scatterlist sg;
289
290         sg_init_marker(&sg, 1);
291         sg_set_page(&sg, page, len, off);
292         ahash_request_set_crypt(hash, &sg, NULL, len);
293         crypto_ahash_update(hash);
294 }
295
296 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
297                 void *pdu, size_t len)
298 {
299         struct scatterlist sg;
300
301         sg_init_one(&sg, pdu, len);
302         ahash_request_set_crypt(hash, &sg, pdu + len, len);
303         crypto_ahash_digest(hash);
304 }
305
306 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
307                 void *pdu, size_t pdu_len)
308 {
309         struct nvme_tcp_hdr *hdr = pdu;
310         __le32 recv_digest;
311         __le32 exp_digest;
312
313         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
314                 dev_err(queue->ctrl->ctrl.device,
315                         "queue %d: header digest flag is cleared\n",
316                         nvme_tcp_queue_id(queue));
317                 return -EPROTO;
318         }
319
320         recv_digest = *(__le32 *)(pdu + hdr->hlen);
321         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
322         exp_digest = *(__le32 *)(pdu + hdr->hlen);
323         if (recv_digest != exp_digest) {
324                 dev_err(queue->ctrl->ctrl.device,
325                         "header digest error: recv %#x expected %#x\n",
326                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
327                 return -EIO;
328         }
329
330         return 0;
331 }
332
333 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
334 {
335         struct nvme_tcp_hdr *hdr = pdu;
336         u8 digest_len = nvme_tcp_hdgst_len(queue);
337         u32 len;
338
339         len = le32_to_cpu(hdr->plen) - hdr->hlen -
340                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
341
342         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
343                 dev_err(queue->ctrl->ctrl.device,
344                         "queue %d: data digest flag is cleared\n",
345                 nvme_tcp_queue_id(queue));
346                 return -EPROTO;
347         }
348         crypto_ahash_init(queue->rcv_hash);
349
350         return 0;
351 }
352
353 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
354                 struct request *rq, unsigned int hctx_idx)
355 {
356         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
357
358         page_frag_free(req->pdu);
359 }
360
361 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
362                 struct request *rq, unsigned int hctx_idx,
363                 unsigned int numa_node)
364 {
365         struct nvme_tcp_ctrl *ctrl = set->driver_data;
366         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
367         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
368         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
369         u8 hdgst = nvme_tcp_hdgst_len(queue);
370
371         req->pdu = page_frag_alloc(&queue->pf_cache,
372                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
373                 GFP_KERNEL | __GFP_ZERO);
374         if (!req->pdu)
375                 return -ENOMEM;
376
377         req->queue = queue;
378         nvme_req(rq)->ctrl = &ctrl->ctrl;
379
380         return 0;
381 }
382
383 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384                 unsigned int hctx_idx)
385 {
386         struct nvme_tcp_ctrl *ctrl = data;
387         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
388
389         hctx->driver_data = queue;
390         return 0;
391 }
392
393 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
394                 unsigned int hctx_idx)
395 {
396         struct nvme_tcp_ctrl *ctrl = data;
397         struct nvme_tcp_queue *queue = &ctrl->queues[0];
398
399         hctx->driver_data = queue;
400         return 0;
401 }
402
403 static enum nvme_tcp_recv_state
404 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
405 {
406         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
407                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
408                 NVME_TCP_RECV_DATA;
409 }
410
411 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
412 {
413         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
414                                 nvme_tcp_hdgst_len(queue);
415         queue->pdu_offset = 0;
416         queue->data_remaining = -1;
417         queue->ddgst_remaining = 0;
418 }
419
420 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
421 {
422         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
423                 return;
424
425         queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work);
426 }
427
428 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
429                 struct nvme_completion *cqe)
430 {
431         struct request *rq;
432
433         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
434         if (!rq) {
435                 dev_err(queue->ctrl->ctrl.device,
436                         "queue %d tag 0x%x not found\n",
437                         nvme_tcp_queue_id(queue), cqe->command_id);
438                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
439                 return -EINVAL;
440         }
441
442         nvme_end_request(rq, cqe->status, cqe->result);
443         queue->nr_cqe++;
444
445         return 0;
446 }
447
448 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
449                 struct nvme_tcp_data_pdu *pdu)
450 {
451         struct request *rq;
452
453         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
454         if (!rq) {
455                 dev_err(queue->ctrl->ctrl.device,
456                         "queue %d tag %#x not found\n",
457                         nvme_tcp_queue_id(queue), pdu->command_id);
458                 return -ENOENT;
459         }
460
461         if (!blk_rq_payload_bytes(rq)) {
462                 dev_err(queue->ctrl->ctrl.device,
463                         "queue %d tag %#x unexpected data\n",
464                         nvme_tcp_queue_id(queue), rq->tag);
465                 return -EIO;
466         }
467
468         queue->data_remaining = le32_to_cpu(pdu->data_length);
469
470         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
471             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
472                 dev_err(queue->ctrl->ctrl.device,
473                         "queue %d tag %#x SUCCESS set but not last PDU\n",
474                         nvme_tcp_queue_id(queue), rq->tag);
475                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
476                 return -EPROTO;
477         }
478
479         return 0;
480 }
481
482 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
483                 struct nvme_tcp_rsp_pdu *pdu)
484 {
485         struct nvme_completion *cqe = &pdu->cqe;
486         int ret = 0;
487
488         /*
489          * AEN requests are special as they don't time out and can
490          * survive any kind of queue freeze and often don't respond to
491          * aborts.  We don't even bother to allocate a struct request
492          * for them but rather special case them here.
493          */
494         if (unlikely(nvme_tcp_queue_id(queue) == 0 &&
495             cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
496                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
497                                 &cqe->result);
498         else
499                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
500
501         return ret;
502 }
503
504 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
505                 struct nvme_tcp_r2t_pdu *pdu)
506 {
507         struct nvme_tcp_data_pdu *data = req->pdu;
508         struct nvme_tcp_queue *queue = req->queue;
509         struct request *rq = blk_mq_rq_from_pdu(req);
510         u8 hdgst = nvme_tcp_hdgst_len(queue);
511         u8 ddgst = nvme_tcp_ddgst_len(queue);
512
513         req->pdu_len = le32_to_cpu(pdu->r2t_length);
514         req->pdu_sent = 0;
515
516         if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
517                 dev_err(queue->ctrl->ctrl.device,
518                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
519                         rq->tag, req->pdu_len, req->data_len,
520                         req->data_sent);
521                 return -EPROTO;
522         }
523
524         if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
525                 dev_err(queue->ctrl->ctrl.device,
526                         "req %d unexpected r2t offset %u (expected %zu)\n",
527                         rq->tag, le32_to_cpu(pdu->r2t_offset),
528                         req->data_sent);
529                 return -EPROTO;
530         }
531
532         memset(data, 0, sizeof(*data));
533         data->hdr.type = nvme_tcp_h2c_data;
534         data->hdr.flags = NVME_TCP_F_DATA_LAST;
535         if (queue->hdr_digest)
536                 data->hdr.flags |= NVME_TCP_F_HDGST;
537         if (queue->data_digest)
538                 data->hdr.flags |= NVME_TCP_F_DDGST;
539         data->hdr.hlen = sizeof(*data);
540         data->hdr.pdo = data->hdr.hlen + hdgst;
541         data->hdr.plen =
542                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
543         data->ttag = pdu->ttag;
544         data->command_id = rq->tag;
545         data->data_offset = cpu_to_le32(req->data_sent);
546         data->data_length = cpu_to_le32(req->pdu_len);
547         return 0;
548 }
549
550 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
551                 struct nvme_tcp_r2t_pdu *pdu)
552 {
553         struct nvme_tcp_request *req;
554         struct request *rq;
555         int ret;
556
557         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
558         if (!rq) {
559                 dev_err(queue->ctrl->ctrl.device,
560                         "queue %d tag %#x not found\n",
561                         nvme_tcp_queue_id(queue), pdu->command_id);
562                 return -ENOENT;
563         }
564         req = blk_mq_rq_to_pdu(rq);
565
566         ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
567         if (unlikely(ret))
568                 return ret;
569
570         req->state = NVME_TCP_SEND_H2C_PDU;
571         req->offset = 0;
572
573         nvme_tcp_queue_request(req);
574
575         return 0;
576 }
577
578 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
579                 unsigned int *offset, size_t *len)
580 {
581         struct nvme_tcp_hdr *hdr;
582         char *pdu = queue->pdu;
583         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
584         int ret;
585
586         ret = skb_copy_bits(skb, *offset,
587                 &pdu[queue->pdu_offset], rcv_len);
588         if (unlikely(ret))
589                 return ret;
590
591         queue->pdu_remaining -= rcv_len;
592         queue->pdu_offset += rcv_len;
593         *offset += rcv_len;
594         *len -= rcv_len;
595         if (queue->pdu_remaining)
596                 return 0;
597
598         hdr = queue->pdu;
599         if (queue->hdr_digest) {
600                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
601                 if (unlikely(ret))
602                         return ret;
603         }
604
605
606         if (queue->data_digest) {
607                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
608                 if (unlikely(ret))
609                         return ret;
610         }
611
612         switch (hdr->type) {
613         case nvme_tcp_c2h_data:
614                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
615         case nvme_tcp_rsp:
616                 nvme_tcp_init_recv_ctx(queue);
617                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
618         case nvme_tcp_r2t:
619                 nvme_tcp_init_recv_ctx(queue);
620                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
621         default:
622                 dev_err(queue->ctrl->ctrl.device,
623                         "unsupported pdu type (%d)\n", hdr->type);
624                 return -EINVAL;
625         }
626 }
627
628 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
629 {
630         union nvme_result res = {};
631
632         nvme_end_request(rq, cpu_to_le16(status << 1), res);
633 }
634
635 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
636                               unsigned int *offset, size_t *len)
637 {
638         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
639         struct nvme_tcp_request *req;
640         struct request *rq;
641
642         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
643         if (!rq) {
644                 dev_err(queue->ctrl->ctrl.device,
645                         "queue %d tag %#x not found\n",
646                         nvme_tcp_queue_id(queue), pdu->command_id);
647                 return -ENOENT;
648         }
649         req = blk_mq_rq_to_pdu(rq);
650
651         while (true) {
652                 int recv_len, ret;
653
654                 recv_len = min_t(size_t, *len, queue->data_remaining);
655                 if (!recv_len)
656                         break;
657
658                 if (!iov_iter_count(&req->iter)) {
659                         req->curr_bio = req->curr_bio->bi_next;
660
661                         /*
662                          * If we don`t have any bios it means that controller
663                          * sent more data than we requested, hence error
664                          */
665                         if (!req->curr_bio) {
666                                 dev_err(queue->ctrl->ctrl.device,
667                                         "queue %d no space in request %#x",
668                                         nvme_tcp_queue_id(queue), rq->tag);
669                                 nvme_tcp_init_recv_ctx(queue);
670                                 return -EIO;
671                         }
672                         nvme_tcp_init_iter(req, READ);
673                 }
674
675                 /* we can read only from what is left in this bio */
676                 recv_len = min_t(size_t, recv_len,
677                                 iov_iter_count(&req->iter));
678
679                 if (queue->data_digest)
680                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
681                                 &req->iter, recv_len, queue->rcv_hash);
682                 else
683                         ret = skb_copy_datagram_iter(skb, *offset,
684                                         &req->iter, recv_len);
685                 if (ret) {
686                         dev_err(queue->ctrl->ctrl.device,
687                                 "queue %d failed to copy request %#x data",
688                                 nvme_tcp_queue_id(queue), rq->tag);
689                         return ret;
690                 }
691
692                 *len -= recv_len;
693                 *offset += recv_len;
694                 queue->data_remaining -= recv_len;
695         }
696
697         if (!queue->data_remaining) {
698                 if (queue->data_digest) {
699                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
700                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
701                 } else {
702                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
703                                 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
704                                 queue->nr_cqe++;
705                         }
706                         nvme_tcp_init_recv_ctx(queue);
707                 }
708         }
709
710         return 0;
711 }
712
713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
714                 struct sk_buff *skb, unsigned int *offset, size_t *len)
715 {
716         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
717         char *ddgst = (char *)&queue->recv_ddgst;
718         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
719         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
720         int ret;
721
722         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
723         if (unlikely(ret))
724                 return ret;
725
726         queue->ddgst_remaining -= recv_len;
727         *offset += recv_len;
728         *len -= recv_len;
729         if (queue->ddgst_remaining)
730                 return 0;
731
732         if (queue->recv_ddgst != queue->exp_ddgst) {
733                 dev_err(queue->ctrl->ctrl.device,
734                         "data digest error: recv %#x expected %#x\n",
735                         le32_to_cpu(queue->recv_ddgst),
736                         le32_to_cpu(queue->exp_ddgst));
737                 return -EIO;
738         }
739
740         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
741                 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
742                                                 pdu->command_id);
743
744                 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
745                 queue->nr_cqe++;
746         }
747
748         nvme_tcp_init_recv_ctx(queue);
749         return 0;
750 }
751
752 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
753                              unsigned int offset, size_t len)
754 {
755         struct nvme_tcp_queue *queue = desc->arg.data;
756         size_t consumed = len;
757         int result;
758
759         while (len) {
760                 switch (nvme_tcp_recv_state(queue)) {
761                 case NVME_TCP_RECV_PDU:
762                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
763                         break;
764                 case NVME_TCP_RECV_DATA:
765                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
766                         break;
767                 case NVME_TCP_RECV_DDGST:
768                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
769                         break;
770                 default:
771                         result = -EFAULT;
772                 }
773                 if (result) {
774                         dev_err(queue->ctrl->ctrl.device,
775                                 "receive failed:  %d\n", result);
776                         queue->rd_enabled = false;
777                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
778                         return result;
779                 }
780         }
781
782         return consumed;
783 }
784
785 static void nvme_tcp_data_ready(struct sock *sk)
786 {
787         struct nvme_tcp_queue *queue;
788
789         read_lock(&sk->sk_callback_lock);
790         queue = sk->sk_user_data;
791         if (likely(queue && queue->rd_enabled))
792                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
793         read_unlock(&sk->sk_callback_lock);
794 }
795
796 static void nvme_tcp_write_space(struct sock *sk)
797 {
798         struct nvme_tcp_queue *queue;
799
800         read_lock_bh(&sk->sk_callback_lock);
801         queue = sk->sk_user_data;
802         if (likely(queue && sk_stream_is_writeable(sk))) {
803                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
804                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
805         }
806         read_unlock_bh(&sk->sk_callback_lock);
807 }
808
809 static void nvme_tcp_state_change(struct sock *sk)
810 {
811         struct nvme_tcp_queue *queue;
812
813         read_lock(&sk->sk_callback_lock);
814         queue = sk->sk_user_data;
815         if (!queue)
816                 goto done;
817
818         switch (sk->sk_state) {
819         case TCP_CLOSE:
820         case TCP_CLOSE_WAIT:
821         case TCP_LAST_ACK:
822         case TCP_FIN_WAIT1:
823         case TCP_FIN_WAIT2:
824                 /* fallthrough */
825                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
826                 break;
827         default:
828                 dev_info(queue->ctrl->ctrl.device,
829                         "queue %d socket state %d\n",
830                         nvme_tcp_queue_id(queue), sk->sk_state);
831         }
832
833         queue->state_change(sk);
834 done:
835         read_unlock(&sk->sk_callback_lock);
836 }
837
838 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
839 {
840         queue->request = NULL;
841 }
842
843 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
844 {
845         nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
846 }
847
848 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
849 {
850         struct nvme_tcp_queue *queue = req->queue;
851
852         while (true) {
853                 struct page *page = nvme_tcp_req_cur_page(req);
854                 size_t offset = nvme_tcp_req_cur_offset(req);
855                 size_t len = nvme_tcp_req_cur_length(req);
856                 bool last = nvme_tcp_pdu_last_send(req, len);
857                 int ret, flags = MSG_DONTWAIT;
858
859                 if (last && !queue->data_digest)
860                         flags |= MSG_EOR;
861                 else
862                         flags |= MSG_MORE;
863
864                 /* can't zcopy slab pages */
865                 if (unlikely(PageSlab(page))) {
866                         ret = sock_no_sendpage(queue->sock, page, offset, len,
867                                         flags);
868                 } else {
869                         ret = kernel_sendpage(queue->sock, page, offset, len,
870                                         flags);
871                 }
872                 if (ret <= 0)
873                         return ret;
874
875                 nvme_tcp_advance_req(req, ret);
876                 if (queue->data_digest)
877                         nvme_tcp_ddgst_update(queue->snd_hash, page,
878                                         offset, ret);
879
880                 /* fully successful last write*/
881                 if (last && ret == len) {
882                         if (queue->data_digest) {
883                                 nvme_tcp_ddgst_final(queue->snd_hash,
884                                         &req->ddgst);
885                                 req->state = NVME_TCP_SEND_DDGST;
886                                 req->offset = 0;
887                         } else {
888                                 nvme_tcp_done_send_req(queue);
889                         }
890                         return 1;
891                 }
892         }
893         return -EAGAIN;
894 }
895
896 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
897 {
898         struct nvme_tcp_queue *queue = req->queue;
899         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
900         bool inline_data = nvme_tcp_has_inline_data(req);
901         int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR);
902         u8 hdgst = nvme_tcp_hdgst_len(queue);
903         int len = sizeof(*pdu) + hdgst - req->offset;
904         int ret;
905
906         if (queue->hdr_digest && !req->offset)
907                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
908
909         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
910                         offset_in_page(pdu) + req->offset, len,  flags);
911         if (unlikely(ret <= 0))
912                 return ret;
913
914         len -= ret;
915         if (!len) {
916                 if (inline_data) {
917                         req->state = NVME_TCP_SEND_DATA;
918                         if (queue->data_digest)
919                                 crypto_ahash_init(queue->snd_hash);
920                         nvme_tcp_init_iter(req, WRITE);
921                 } else {
922                         nvme_tcp_done_send_req(queue);
923                 }
924                 return 1;
925         }
926         req->offset += ret;
927
928         return -EAGAIN;
929 }
930
931 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
932 {
933         struct nvme_tcp_queue *queue = req->queue;
934         struct nvme_tcp_data_pdu *pdu = req->pdu;
935         u8 hdgst = nvme_tcp_hdgst_len(queue);
936         int len = sizeof(*pdu) - req->offset + hdgst;
937         int ret;
938
939         if (queue->hdr_digest && !req->offset)
940                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
941
942         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
943                         offset_in_page(pdu) + req->offset, len,
944                         MSG_DONTWAIT | MSG_MORE);
945         if (unlikely(ret <= 0))
946                 return ret;
947
948         len -= ret;
949         if (!len) {
950                 req->state = NVME_TCP_SEND_DATA;
951                 if (queue->data_digest)
952                         crypto_ahash_init(queue->snd_hash);
953                 if (!req->data_sent)
954                         nvme_tcp_init_iter(req, WRITE);
955                 return 1;
956         }
957         req->offset += ret;
958
959         return -EAGAIN;
960 }
961
962 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
963 {
964         struct nvme_tcp_queue *queue = req->queue;
965         int ret;
966         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
967         struct kvec iov = {
968                 .iov_base = &req->ddgst + req->offset,
969                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
970         };
971
972         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
973         if (unlikely(ret <= 0))
974                 return ret;
975
976         if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
977                 nvme_tcp_done_send_req(queue);
978                 return 1;
979         }
980
981         req->offset += ret;
982         return -EAGAIN;
983 }
984
985 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
986 {
987         struct nvme_tcp_request *req;
988         int ret = 1;
989
990         if (!queue->request) {
991                 queue->request = nvme_tcp_fetch_request(queue);
992                 if (!queue->request)
993                         return 0;
994         }
995         req = queue->request;
996
997         if (req->state == NVME_TCP_SEND_CMD_PDU) {
998                 ret = nvme_tcp_try_send_cmd_pdu(req);
999                 if (ret <= 0)
1000                         goto done;
1001                 if (!nvme_tcp_has_inline_data(req))
1002                         return ret;
1003         }
1004
1005         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1006                 ret = nvme_tcp_try_send_data_pdu(req);
1007                 if (ret <= 0)
1008                         goto done;
1009         }
1010
1011         if (req->state == NVME_TCP_SEND_DATA) {
1012                 ret = nvme_tcp_try_send_data(req);
1013                 if (ret <= 0)
1014                         goto done;
1015         }
1016
1017         if (req->state == NVME_TCP_SEND_DDGST)
1018                 ret = nvme_tcp_try_send_ddgst(req);
1019 done:
1020         if (ret == -EAGAIN)
1021                 ret = 0;
1022         return ret;
1023 }
1024
1025 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1026 {
1027         struct socket *sock = queue->sock;
1028         struct sock *sk = sock->sk;
1029         read_descriptor_t rd_desc;
1030         int consumed;
1031
1032         rd_desc.arg.data = queue;
1033         rd_desc.count = 1;
1034         lock_sock(sk);
1035         queue->nr_cqe = 0;
1036         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1037         release_sock(sk);
1038         return consumed;
1039 }
1040
1041 static void nvme_tcp_io_work(struct work_struct *w)
1042 {
1043         struct nvme_tcp_queue *queue =
1044                 container_of(w, struct nvme_tcp_queue, io_work);
1045         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1046
1047         do {
1048                 bool pending = false;
1049                 int result;
1050
1051                 result = nvme_tcp_try_send(queue);
1052                 if (result > 0) {
1053                         pending = true;
1054                 } else if (unlikely(result < 0)) {
1055                         dev_err(queue->ctrl->ctrl.device,
1056                                 "failed to send request %d\n", result);
1057                         if (result != -EPIPE)
1058                                 nvme_tcp_fail_request(queue->request);
1059                         nvme_tcp_done_send_req(queue);
1060                         return;
1061                 }
1062
1063                 result = nvme_tcp_try_recv(queue);
1064                 if (result > 0)
1065                         pending = true;
1066
1067                 if (!pending)
1068                         return;
1069
1070         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1071
1072         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1073 }
1074
1075 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1076 {
1077         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1078
1079         ahash_request_free(queue->rcv_hash);
1080         ahash_request_free(queue->snd_hash);
1081         crypto_free_ahash(tfm);
1082 }
1083
1084 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1085 {
1086         struct crypto_ahash *tfm;
1087
1088         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1089         if (IS_ERR(tfm))
1090                 return PTR_ERR(tfm);
1091
1092         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1093         if (!queue->snd_hash)
1094                 goto free_tfm;
1095         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1096
1097         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1098         if (!queue->rcv_hash)
1099                 goto free_snd_hash;
1100         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1101
1102         return 0;
1103 free_snd_hash:
1104         ahash_request_free(queue->snd_hash);
1105 free_tfm:
1106         crypto_free_ahash(tfm);
1107         return -ENOMEM;
1108 }
1109
1110 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1111 {
1112         struct nvme_tcp_request *async = &ctrl->async_req;
1113
1114         page_frag_free(async->pdu);
1115 }
1116
1117 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1118 {
1119         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1120         struct nvme_tcp_request *async = &ctrl->async_req;
1121         u8 hdgst = nvme_tcp_hdgst_len(queue);
1122
1123         async->pdu = page_frag_alloc(&queue->pf_cache,
1124                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1125                 GFP_KERNEL | __GFP_ZERO);
1126         if (!async->pdu)
1127                 return -ENOMEM;
1128
1129         async->queue = &ctrl->queues[0];
1130         return 0;
1131 }
1132
1133 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1134 {
1135         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1136         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1137
1138         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1139                 return;
1140
1141         if (queue->hdr_digest || queue->data_digest)
1142                 nvme_tcp_free_crypto(queue);
1143
1144         sock_release(queue->sock);
1145         kfree(queue->pdu);
1146 }
1147
1148 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1149 {
1150         struct nvme_tcp_icreq_pdu *icreq;
1151         struct nvme_tcp_icresp_pdu *icresp;
1152         struct msghdr msg = {};
1153         struct kvec iov;
1154         bool ctrl_hdgst, ctrl_ddgst;
1155         int ret;
1156
1157         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1158         if (!icreq)
1159                 return -ENOMEM;
1160
1161         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1162         if (!icresp) {
1163                 ret = -ENOMEM;
1164                 goto free_icreq;
1165         }
1166
1167         icreq->hdr.type = nvme_tcp_icreq;
1168         icreq->hdr.hlen = sizeof(*icreq);
1169         icreq->hdr.pdo = 0;
1170         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1171         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1172         icreq->maxr2t = 0; /* single inflight r2t supported */
1173         icreq->hpda = 0; /* no alignment constraint */
1174         if (queue->hdr_digest)
1175                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1176         if (queue->data_digest)
1177                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1178
1179         iov.iov_base = icreq;
1180         iov.iov_len = sizeof(*icreq);
1181         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1182         if (ret < 0)
1183                 goto free_icresp;
1184
1185         memset(&msg, 0, sizeof(msg));
1186         iov.iov_base = icresp;
1187         iov.iov_len = sizeof(*icresp);
1188         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1189                         iov.iov_len, msg.msg_flags);
1190         if (ret < 0)
1191                 goto free_icresp;
1192
1193         ret = -EINVAL;
1194         if (icresp->hdr.type != nvme_tcp_icresp) {
1195                 pr_err("queue %d: bad type returned %d\n",
1196                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1197                 goto free_icresp;
1198         }
1199
1200         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1201                 pr_err("queue %d: bad pdu length returned %d\n",
1202                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1203                 goto free_icresp;
1204         }
1205
1206         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1207                 pr_err("queue %d: bad pfv returned %d\n",
1208                         nvme_tcp_queue_id(queue), icresp->pfv);
1209                 goto free_icresp;
1210         }
1211
1212         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1213         if ((queue->data_digest && !ctrl_ddgst) ||
1214             (!queue->data_digest && ctrl_ddgst)) {
1215                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1216                         nvme_tcp_queue_id(queue),
1217                         queue->data_digest ? "enabled" : "disabled",
1218                         ctrl_ddgst ? "enabled" : "disabled");
1219                 goto free_icresp;
1220         }
1221
1222         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1223         if ((queue->hdr_digest && !ctrl_hdgst) ||
1224             (!queue->hdr_digest && ctrl_hdgst)) {
1225                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1226                         nvme_tcp_queue_id(queue),
1227                         queue->hdr_digest ? "enabled" : "disabled",
1228                         ctrl_hdgst ? "enabled" : "disabled");
1229                 goto free_icresp;
1230         }
1231
1232         if (icresp->cpda != 0) {
1233                 pr_err("queue %d: unsupported cpda returned %d\n",
1234                         nvme_tcp_queue_id(queue), icresp->cpda);
1235                 goto free_icresp;
1236         }
1237
1238         ret = 0;
1239 free_icresp:
1240         kfree(icresp);
1241 free_icreq:
1242         kfree(icreq);
1243         return ret;
1244 }
1245
1246 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1247                 int qid, size_t queue_size)
1248 {
1249         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1250         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1251         struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1252         int ret, opt, rcv_pdu_size, n;
1253
1254         queue->ctrl = ctrl;
1255         INIT_LIST_HEAD(&queue->send_list);
1256         spin_lock_init(&queue->lock);
1257         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1258         queue->queue_size = queue_size;
1259
1260         if (qid > 0)
1261                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1262         else
1263                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1264                                                 NVME_TCP_ADMIN_CCSZ;
1265
1266         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1267                         IPPROTO_TCP, &queue->sock);
1268         if (ret) {
1269                 dev_err(nctrl->device,
1270                         "failed to create socket: %d\n", ret);
1271                 return ret;
1272         }
1273
1274         /* Single syn retry */
1275         opt = 1;
1276         ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT,
1277                         (char *)&opt, sizeof(opt));
1278         if (ret) {
1279                 dev_err(nctrl->device,
1280                         "failed to set TCP_SYNCNT sock opt %d\n", ret);
1281                 goto err_sock;
1282         }
1283
1284         /* Set TCP no delay */
1285         opt = 1;
1286         ret = kernel_setsockopt(queue->sock, IPPROTO_TCP,
1287                         TCP_NODELAY, (char *)&opt, sizeof(opt));
1288         if (ret) {
1289                 dev_err(nctrl->device,
1290                         "failed to set TCP_NODELAY sock opt %d\n", ret);
1291                 goto err_sock;
1292         }
1293
1294         /*
1295          * Cleanup whatever is sitting in the TCP transmit queue on socket
1296          * close. This is done to prevent stale data from being sent should
1297          * the network connection be restored before TCP times out.
1298          */
1299         ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER,
1300                         (char *)&sol, sizeof(sol));
1301         if (ret) {
1302                 dev_err(nctrl->device,
1303                         "failed to set SO_LINGER sock opt %d\n", ret);
1304                 goto err_sock;
1305         }
1306
1307         /* Set socket type of service */
1308         if (nctrl->opts->tos >= 0) {
1309                 opt = nctrl->opts->tos;
1310                 ret = kernel_setsockopt(queue->sock, SOL_IP, IP_TOS,
1311                                 (char *)&opt, sizeof(opt));
1312                 if (ret) {
1313                         dev_err(nctrl->device,
1314                                 "failed to set IP_TOS sock opt %d\n", ret);
1315                         goto err_sock;
1316                 }
1317         }
1318
1319         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1320         if (!qid)
1321                 n = 0;
1322         else
1323                 n = (qid - 1) % num_online_cpus();
1324         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1325         queue->request = NULL;
1326         queue->data_remaining = 0;
1327         queue->ddgst_remaining = 0;
1328         queue->pdu_remaining = 0;
1329         queue->pdu_offset = 0;
1330         sk_set_memalloc(queue->sock->sk);
1331
1332         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1333                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1334                         sizeof(ctrl->src_addr));
1335                 if (ret) {
1336                         dev_err(nctrl->device,
1337                                 "failed to bind queue %d socket %d\n",
1338                                 qid, ret);
1339                         goto err_sock;
1340                 }
1341         }
1342
1343         queue->hdr_digest = nctrl->opts->hdr_digest;
1344         queue->data_digest = nctrl->opts->data_digest;
1345         if (queue->hdr_digest || queue->data_digest) {
1346                 ret = nvme_tcp_alloc_crypto(queue);
1347                 if (ret) {
1348                         dev_err(nctrl->device,
1349                                 "failed to allocate queue %d crypto\n", qid);
1350                         goto err_sock;
1351                 }
1352         }
1353
1354         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1355                         nvme_tcp_hdgst_len(queue);
1356         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1357         if (!queue->pdu) {
1358                 ret = -ENOMEM;
1359                 goto err_crypto;
1360         }
1361
1362         dev_dbg(nctrl->device, "connecting queue %d\n",
1363                         nvme_tcp_queue_id(queue));
1364
1365         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1366                 sizeof(ctrl->addr), 0);
1367         if (ret) {
1368                 dev_err(nctrl->device,
1369                         "failed to connect socket: %d\n", ret);
1370                 goto err_rcv_pdu;
1371         }
1372
1373         ret = nvme_tcp_init_connection(queue);
1374         if (ret)
1375                 goto err_init_connect;
1376
1377         queue->rd_enabled = true;
1378         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1379         nvme_tcp_init_recv_ctx(queue);
1380
1381         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1382         queue->sock->sk->sk_user_data = queue;
1383         queue->state_change = queue->sock->sk->sk_state_change;
1384         queue->data_ready = queue->sock->sk->sk_data_ready;
1385         queue->write_space = queue->sock->sk->sk_write_space;
1386         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1387         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1388         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1389 #ifdef CONFIG_NET_RX_BUSY_POLL
1390         queue->sock->sk->sk_ll_usec = 1;
1391 #endif
1392         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1393
1394         return 0;
1395
1396 err_init_connect:
1397         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1398 err_rcv_pdu:
1399         kfree(queue->pdu);
1400 err_crypto:
1401         if (queue->hdr_digest || queue->data_digest)
1402                 nvme_tcp_free_crypto(queue);
1403 err_sock:
1404         sock_release(queue->sock);
1405         queue->sock = NULL;
1406         return ret;
1407 }
1408
1409 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1410 {
1411         struct socket *sock = queue->sock;
1412
1413         write_lock_bh(&sock->sk->sk_callback_lock);
1414         sock->sk->sk_user_data  = NULL;
1415         sock->sk->sk_data_ready = queue->data_ready;
1416         sock->sk->sk_state_change = queue->state_change;
1417         sock->sk->sk_write_space  = queue->write_space;
1418         write_unlock_bh(&sock->sk->sk_callback_lock);
1419 }
1420
1421 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1422 {
1423         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1424         nvme_tcp_restore_sock_calls(queue);
1425         cancel_work_sync(&queue->io_work);
1426 }
1427
1428 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1429 {
1430         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1431         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1432
1433         if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1434                 return;
1435
1436         __nvme_tcp_stop_queue(queue);
1437 }
1438
1439 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1440 {
1441         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1442         int ret;
1443
1444         if (idx)
1445                 ret = nvmf_connect_io_queue(nctrl, idx, false);
1446         else
1447                 ret = nvmf_connect_admin_queue(nctrl);
1448
1449         if (!ret) {
1450                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1451         } else {
1452                 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1453                         __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1454                 dev_err(nctrl->device,
1455                         "failed to connect queue: %d ret=%d\n", idx, ret);
1456         }
1457         return ret;
1458 }
1459
1460 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1461                 bool admin)
1462 {
1463         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1464         struct blk_mq_tag_set *set;
1465         int ret;
1466
1467         if (admin) {
1468                 set = &ctrl->admin_tag_set;
1469                 memset(set, 0, sizeof(*set));
1470                 set->ops = &nvme_tcp_admin_mq_ops;
1471                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1472                 set->reserved_tags = 2; /* connect + keep-alive */
1473                 set->numa_node = NUMA_NO_NODE;
1474                 set->cmd_size = sizeof(struct nvme_tcp_request);
1475                 set->driver_data = ctrl;
1476                 set->nr_hw_queues = 1;
1477                 set->timeout = ADMIN_TIMEOUT;
1478         } else {
1479                 set = &ctrl->tag_set;
1480                 memset(set, 0, sizeof(*set));
1481                 set->ops = &nvme_tcp_mq_ops;
1482                 set->queue_depth = nctrl->sqsize + 1;
1483                 set->reserved_tags = 1; /* fabric connect */
1484                 set->numa_node = NUMA_NO_NODE;
1485                 set->flags = BLK_MQ_F_SHOULD_MERGE;
1486                 set->cmd_size = sizeof(struct nvme_tcp_request);
1487                 set->driver_data = ctrl;
1488                 set->nr_hw_queues = nctrl->queue_count - 1;
1489                 set->timeout = NVME_IO_TIMEOUT;
1490                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1491         }
1492
1493         ret = blk_mq_alloc_tag_set(set);
1494         if (ret)
1495                 return ERR_PTR(ret);
1496
1497         return set;
1498 }
1499
1500 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1501 {
1502         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1503                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1504                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1505         }
1506
1507         nvme_tcp_free_queue(ctrl, 0);
1508 }
1509
1510 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1511 {
1512         int i;
1513
1514         for (i = 1; i < ctrl->queue_count; i++)
1515                 nvme_tcp_free_queue(ctrl, i);
1516 }
1517
1518 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1519 {
1520         int i;
1521
1522         for (i = 1; i < ctrl->queue_count; i++)
1523                 nvme_tcp_stop_queue(ctrl, i);
1524 }
1525
1526 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1527 {
1528         int i, ret = 0;
1529
1530         for (i = 1; i < ctrl->queue_count; i++) {
1531                 ret = nvme_tcp_start_queue(ctrl, i);
1532                 if (ret)
1533                         goto out_stop_queues;
1534         }
1535
1536         return 0;
1537
1538 out_stop_queues:
1539         for (i--; i >= 1; i--)
1540                 nvme_tcp_stop_queue(ctrl, i);
1541         return ret;
1542 }
1543
1544 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1545 {
1546         int ret;
1547
1548         ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1549         if (ret)
1550                 return ret;
1551
1552         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1553         if (ret)
1554                 goto out_free_queue;
1555
1556         return 0;
1557
1558 out_free_queue:
1559         nvme_tcp_free_queue(ctrl, 0);
1560         return ret;
1561 }
1562
1563 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1564 {
1565         int i, ret;
1566
1567         for (i = 1; i < ctrl->queue_count; i++) {
1568                 ret = nvme_tcp_alloc_queue(ctrl, i,
1569                                 ctrl->sqsize + 1);
1570                 if (ret)
1571                         goto out_free_queues;
1572         }
1573
1574         return 0;
1575
1576 out_free_queues:
1577         for (i--; i >= 1; i--)
1578                 nvme_tcp_free_queue(ctrl, i);
1579
1580         return ret;
1581 }
1582
1583 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1584 {
1585         unsigned int nr_io_queues;
1586
1587         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1588         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1589         nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1590
1591         return nr_io_queues;
1592 }
1593
1594 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1595                 unsigned int nr_io_queues)
1596 {
1597         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1598         struct nvmf_ctrl_options *opts = nctrl->opts;
1599
1600         if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1601                 /*
1602                  * separate read/write queues
1603                  * hand out dedicated default queues only after we have
1604                  * sufficient read queues.
1605                  */
1606                 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1607                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1608                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1609                         min(opts->nr_write_queues, nr_io_queues);
1610                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1611         } else {
1612                 /*
1613                  * shared read/write queues
1614                  * either no write queues were requested, or we don't have
1615                  * sufficient queue count to have dedicated default queues.
1616                  */
1617                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1618                         min(opts->nr_io_queues, nr_io_queues);
1619                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1620         }
1621
1622         if (opts->nr_poll_queues && nr_io_queues) {
1623                 /* map dedicated poll queues only if we have queues left */
1624                 ctrl->io_queues[HCTX_TYPE_POLL] =
1625                         min(opts->nr_poll_queues, nr_io_queues);
1626         }
1627 }
1628
1629 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1630 {
1631         unsigned int nr_io_queues;
1632         int ret;
1633
1634         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1635         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1636         if (ret)
1637                 return ret;
1638
1639         ctrl->queue_count = nr_io_queues + 1;
1640         if (ctrl->queue_count < 2)
1641                 return 0;
1642
1643         dev_info(ctrl->device,
1644                 "creating %d I/O queues.\n", nr_io_queues);
1645
1646         nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1647
1648         return __nvme_tcp_alloc_io_queues(ctrl);
1649 }
1650
1651 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1652 {
1653         nvme_tcp_stop_io_queues(ctrl);
1654         if (remove) {
1655                 blk_cleanup_queue(ctrl->connect_q);
1656                 blk_mq_free_tag_set(ctrl->tagset);
1657         }
1658         nvme_tcp_free_io_queues(ctrl);
1659 }
1660
1661 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1662 {
1663         int ret;
1664
1665         ret = nvme_tcp_alloc_io_queues(ctrl);
1666         if (ret)
1667                 return ret;
1668
1669         if (new) {
1670                 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1671                 if (IS_ERR(ctrl->tagset)) {
1672                         ret = PTR_ERR(ctrl->tagset);
1673                         goto out_free_io_queues;
1674                 }
1675
1676                 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1677                 if (IS_ERR(ctrl->connect_q)) {
1678                         ret = PTR_ERR(ctrl->connect_q);
1679                         goto out_free_tag_set;
1680                 }
1681         } else {
1682                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1683                         ctrl->queue_count - 1);
1684         }
1685
1686         ret = nvme_tcp_start_io_queues(ctrl);
1687         if (ret)
1688                 goto out_cleanup_connect_q;
1689
1690         return 0;
1691
1692 out_cleanup_connect_q:
1693         if (new)
1694                 blk_cleanup_queue(ctrl->connect_q);
1695 out_free_tag_set:
1696         if (new)
1697                 blk_mq_free_tag_set(ctrl->tagset);
1698 out_free_io_queues:
1699         nvme_tcp_free_io_queues(ctrl);
1700         return ret;
1701 }
1702
1703 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1704 {
1705         nvme_tcp_stop_queue(ctrl, 0);
1706         if (remove) {
1707                 blk_cleanup_queue(ctrl->admin_q);
1708                 blk_cleanup_queue(ctrl->fabrics_q);
1709                 blk_mq_free_tag_set(ctrl->admin_tagset);
1710         }
1711         nvme_tcp_free_admin_queue(ctrl);
1712 }
1713
1714 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1715 {
1716         int error;
1717
1718         error = nvme_tcp_alloc_admin_queue(ctrl);
1719         if (error)
1720                 return error;
1721
1722         if (new) {
1723                 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1724                 if (IS_ERR(ctrl->admin_tagset)) {
1725                         error = PTR_ERR(ctrl->admin_tagset);
1726                         goto out_free_queue;
1727                 }
1728
1729                 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1730                 if (IS_ERR(ctrl->fabrics_q)) {
1731                         error = PTR_ERR(ctrl->fabrics_q);
1732                         goto out_free_tagset;
1733                 }
1734
1735                 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1736                 if (IS_ERR(ctrl->admin_q)) {
1737                         error = PTR_ERR(ctrl->admin_q);
1738                         goto out_cleanup_fabrics_q;
1739                 }
1740         }
1741
1742         error = nvme_tcp_start_queue(ctrl, 0);
1743         if (error)
1744                 goto out_cleanup_queue;
1745
1746         error = nvme_enable_ctrl(ctrl);
1747         if (error)
1748                 goto out_stop_queue;
1749
1750         blk_mq_unquiesce_queue(ctrl->admin_q);
1751
1752         error = nvme_init_identify(ctrl);
1753         if (error)
1754                 goto out_stop_queue;
1755
1756         return 0;
1757
1758 out_stop_queue:
1759         nvme_tcp_stop_queue(ctrl, 0);
1760 out_cleanup_queue:
1761         if (new)
1762                 blk_cleanup_queue(ctrl->admin_q);
1763 out_cleanup_fabrics_q:
1764         if (new)
1765                 blk_cleanup_queue(ctrl->fabrics_q);
1766 out_free_tagset:
1767         if (new)
1768                 blk_mq_free_tag_set(ctrl->admin_tagset);
1769 out_free_queue:
1770         nvme_tcp_free_admin_queue(ctrl);
1771         return error;
1772 }
1773
1774 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1775                 bool remove)
1776 {
1777         blk_mq_quiesce_queue(ctrl->admin_q);
1778         nvme_tcp_stop_queue(ctrl, 0);
1779         if (ctrl->admin_tagset) {
1780                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1781                         nvme_cancel_request, ctrl);
1782                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1783         }
1784         if (remove)
1785                 blk_mq_unquiesce_queue(ctrl->admin_q);
1786         nvme_tcp_destroy_admin_queue(ctrl, remove);
1787 }
1788
1789 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1790                 bool remove)
1791 {
1792         if (ctrl->queue_count <= 1)
1793                 return;
1794         nvme_stop_queues(ctrl);
1795         nvme_tcp_stop_io_queues(ctrl);
1796         if (ctrl->tagset) {
1797                 blk_mq_tagset_busy_iter(ctrl->tagset,
1798                         nvme_cancel_request, ctrl);
1799                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
1800         }
1801         if (remove)
1802                 nvme_start_queues(ctrl);
1803         nvme_tcp_destroy_io_queues(ctrl, remove);
1804 }
1805
1806 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1807 {
1808         /* If we are resetting/deleting then do nothing */
1809         if (ctrl->state != NVME_CTRL_CONNECTING) {
1810                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1811                         ctrl->state == NVME_CTRL_LIVE);
1812                 return;
1813         }
1814
1815         if (nvmf_should_reconnect(ctrl)) {
1816                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1817                         ctrl->opts->reconnect_delay);
1818                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1819                                 ctrl->opts->reconnect_delay * HZ);
1820         } else {
1821                 dev_info(ctrl->device, "Removing controller...\n");
1822                 nvme_delete_ctrl(ctrl);
1823         }
1824 }
1825
1826 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1827 {
1828         struct nvmf_ctrl_options *opts = ctrl->opts;
1829         int ret;
1830
1831         ret = nvme_tcp_configure_admin_queue(ctrl, new);
1832         if (ret)
1833                 return ret;
1834
1835         if (ctrl->icdoff) {
1836                 dev_err(ctrl->device, "icdoff is not supported!\n");
1837                 goto destroy_admin;
1838         }
1839
1840         if (opts->queue_size > ctrl->sqsize + 1)
1841                 dev_warn(ctrl->device,
1842                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1843                         opts->queue_size, ctrl->sqsize + 1);
1844
1845         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1846                 dev_warn(ctrl->device,
1847                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1848                         ctrl->sqsize + 1, ctrl->maxcmd);
1849                 ctrl->sqsize = ctrl->maxcmd - 1;
1850         }
1851
1852         if (ctrl->queue_count > 1) {
1853                 ret = nvme_tcp_configure_io_queues(ctrl, new);
1854                 if (ret)
1855                         goto destroy_admin;
1856         }
1857
1858         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1859                 /* state change failure is ok if we're in DELETING state */
1860                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1861                 ret = -EINVAL;
1862                 goto destroy_io;
1863         }
1864
1865         nvme_start_ctrl(ctrl);
1866         return 0;
1867
1868 destroy_io:
1869         if (ctrl->queue_count > 1)
1870                 nvme_tcp_destroy_io_queues(ctrl, new);
1871 destroy_admin:
1872         nvme_tcp_stop_queue(ctrl, 0);
1873         nvme_tcp_destroy_admin_queue(ctrl, new);
1874         return ret;
1875 }
1876
1877 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1878 {
1879         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1880                         struct nvme_tcp_ctrl, connect_work);
1881         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1882
1883         ++ctrl->nr_reconnects;
1884
1885         if (nvme_tcp_setup_ctrl(ctrl, false))
1886                 goto requeue;
1887
1888         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1889                         ctrl->nr_reconnects);
1890
1891         ctrl->nr_reconnects = 0;
1892
1893         return;
1894
1895 requeue:
1896         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1897                         ctrl->nr_reconnects);
1898         nvme_tcp_reconnect_or_remove(ctrl);
1899 }
1900
1901 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1902 {
1903         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1904                                 struct nvme_tcp_ctrl, err_work);
1905         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1906
1907         nvme_stop_keep_alive(ctrl);
1908         nvme_tcp_teardown_io_queues(ctrl, false);
1909         /* unquiesce to fail fast pending requests */
1910         nvme_start_queues(ctrl);
1911         nvme_tcp_teardown_admin_queue(ctrl, false);
1912         blk_mq_unquiesce_queue(ctrl->admin_q);
1913
1914         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1915                 /* state change failure is ok if we're in DELETING state */
1916                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1917                 return;
1918         }
1919
1920         nvme_tcp_reconnect_or_remove(ctrl);
1921 }
1922
1923 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1924 {
1925         cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1926         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
1927
1928         nvme_tcp_teardown_io_queues(ctrl, shutdown);
1929         blk_mq_quiesce_queue(ctrl->admin_q);
1930         if (shutdown)
1931                 nvme_shutdown_ctrl(ctrl);
1932         else
1933                 nvme_disable_ctrl(ctrl);
1934         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
1935 }
1936
1937 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
1938 {
1939         nvme_tcp_teardown_ctrl(ctrl, true);
1940 }
1941
1942 static void nvme_reset_ctrl_work(struct work_struct *work)
1943 {
1944         struct nvme_ctrl *ctrl =
1945                 container_of(work, struct nvme_ctrl, reset_work);
1946
1947         nvme_stop_ctrl(ctrl);
1948         nvme_tcp_teardown_ctrl(ctrl, false);
1949
1950         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1951                 /* state change failure is ok if we're in DELETING state */
1952                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1953                 return;
1954         }
1955
1956         if (nvme_tcp_setup_ctrl(ctrl, false))
1957                 goto out_fail;
1958
1959         return;
1960
1961 out_fail:
1962         ++ctrl->nr_reconnects;
1963         nvme_tcp_reconnect_or_remove(ctrl);
1964 }
1965
1966 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
1967 {
1968         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1969
1970         if (list_empty(&ctrl->list))
1971                 goto free_ctrl;
1972
1973         mutex_lock(&nvme_tcp_ctrl_mutex);
1974         list_del(&ctrl->list);
1975         mutex_unlock(&nvme_tcp_ctrl_mutex);
1976
1977         nvmf_free_options(nctrl->opts);
1978 free_ctrl:
1979         kfree(ctrl->queues);
1980         kfree(ctrl);
1981 }
1982
1983 static void nvme_tcp_set_sg_null(struct nvme_command *c)
1984 {
1985         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1986
1987         sg->addr = 0;
1988         sg->length = 0;
1989         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1990                         NVME_SGL_FMT_TRANSPORT_A;
1991 }
1992
1993 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
1994                 struct nvme_command *c, u32 data_len)
1995 {
1996         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1997
1998         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1999         sg->length = cpu_to_le32(data_len);
2000         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2001 }
2002
2003 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2004                 u32 data_len)
2005 {
2006         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2007
2008         sg->addr = 0;
2009         sg->length = cpu_to_le32(data_len);
2010         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2011                         NVME_SGL_FMT_TRANSPORT_A;
2012 }
2013
2014 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2015 {
2016         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2017         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2018         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2019         struct nvme_command *cmd = &pdu->cmd;
2020         u8 hdgst = nvme_tcp_hdgst_len(queue);
2021
2022         memset(pdu, 0, sizeof(*pdu));
2023         pdu->hdr.type = nvme_tcp_cmd;
2024         if (queue->hdr_digest)
2025                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2026         pdu->hdr.hlen = sizeof(*pdu);
2027         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2028
2029         cmd->common.opcode = nvme_admin_async_event;
2030         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2031         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2032         nvme_tcp_set_sg_null(cmd);
2033
2034         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2035         ctrl->async_req.offset = 0;
2036         ctrl->async_req.curr_bio = NULL;
2037         ctrl->async_req.data_len = 0;
2038
2039         nvme_tcp_queue_request(&ctrl->async_req);
2040 }
2041
2042 static enum blk_eh_timer_return
2043 nvme_tcp_timeout(struct request *rq, bool reserved)
2044 {
2045         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2046         struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2047         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2048
2049         /*
2050          * Restart the timer if a controller reset is already scheduled. Any
2051          * timed out commands would be handled before entering the connecting
2052          * state.
2053          */
2054         if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
2055                 return BLK_EH_RESET_TIMER;
2056
2057         dev_warn(ctrl->ctrl.device,
2058                 "queue %d: timeout request %#x type %d\n",
2059                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2060
2061         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2062                 /*
2063                  * Teardown immediately if controller times out while starting
2064                  * or we are already started error recovery. all outstanding
2065                  * requests are completed on shutdown, so we return BLK_EH_DONE.
2066                  */
2067                 flush_work(&ctrl->err_work);
2068                 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2069                 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2070                 return BLK_EH_DONE;
2071         }
2072
2073         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2074         nvme_tcp_error_recovery(&ctrl->ctrl);
2075
2076         return BLK_EH_RESET_TIMER;
2077 }
2078
2079 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2080                         struct request *rq)
2081 {
2082         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2083         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2084         struct nvme_command *c = &pdu->cmd;
2085
2086         c->common.flags |= NVME_CMD_SGL_METABUF;
2087
2088         if (rq_data_dir(rq) == WRITE && req->data_len &&
2089             req->data_len <= nvme_tcp_inline_data_size(queue))
2090                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2091         else
2092                 nvme_tcp_set_sg_host_data(c, req->data_len);
2093
2094         return 0;
2095 }
2096
2097 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2098                 struct request *rq)
2099 {
2100         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2101         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2102         struct nvme_tcp_queue *queue = req->queue;
2103         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2104         blk_status_t ret;
2105
2106         ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2107         if (ret)
2108                 return ret;
2109
2110         req->state = NVME_TCP_SEND_CMD_PDU;
2111         req->offset = 0;
2112         req->data_sent = 0;
2113         req->pdu_len = 0;
2114         req->pdu_sent = 0;
2115         req->data_len = blk_rq_payload_bytes(rq);
2116         req->curr_bio = rq->bio;
2117
2118         if (rq_data_dir(rq) == WRITE &&
2119             req->data_len <= nvme_tcp_inline_data_size(queue))
2120                 req->pdu_len = req->data_len;
2121         else if (req->curr_bio)
2122                 nvme_tcp_init_iter(req, READ);
2123
2124         pdu->hdr.type = nvme_tcp_cmd;
2125         pdu->hdr.flags = 0;
2126         if (queue->hdr_digest)
2127                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2128         if (queue->data_digest && req->pdu_len) {
2129                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2130                 ddgst = nvme_tcp_ddgst_len(queue);
2131         }
2132         pdu->hdr.hlen = sizeof(*pdu);
2133         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2134         pdu->hdr.plen =
2135                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2136
2137         ret = nvme_tcp_map_data(queue, rq);
2138         if (unlikely(ret)) {
2139                 nvme_cleanup_cmd(rq);
2140                 dev_err(queue->ctrl->ctrl.device,
2141                         "Failed to map data (%d)\n", ret);
2142                 return ret;
2143         }
2144
2145         return 0;
2146 }
2147
2148 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2149                 const struct blk_mq_queue_data *bd)
2150 {
2151         struct nvme_ns *ns = hctx->queue->queuedata;
2152         struct nvme_tcp_queue *queue = hctx->driver_data;
2153         struct request *rq = bd->rq;
2154         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2155         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2156         blk_status_t ret;
2157
2158         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2159                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2160
2161         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2162         if (unlikely(ret))
2163                 return ret;
2164
2165         blk_mq_start_request(rq);
2166
2167         nvme_tcp_queue_request(req);
2168
2169         return BLK_STS_OK;
2170 }
2171
2172 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2173 {
2174         struct nvme_tcp_ctrl *ctrl = set->driver_data;
2175         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2176
2177         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2178                 /* separate read/write queues */
2179                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2180                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2181                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2182                 set->map[HCTX_TYPE_READ].nr_queues =
2183                         ctrl->io_queues[HCTX_TYPE_READ];
2184                 set->map[HCTX_TYPE_READ].queue_offset =
2185                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2186         } else {
2187                 /* shared read/write queues */
2188                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2189                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2190                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2191                 set->map[HCTX_TYPE_READ].nr_queues =
2192                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2193                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2194         }
2195         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2196         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2197
2198         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2199                 /* map dedicated poll queues only if we have queues left */
2200                 set->map[HCTX_TYPE_POLL].nr_queues =
2201                                 ctrl->io_queues[HCTX_TYPE_POLL];
2202                 set->map[HCTX_TYPE_POLL].queue_offset =
2203                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2204                         ctrl->io_queues[HCTX_TYPE_READ];
2205                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2206         }
2207
2208         dev_info(ctrl->ctrl.device,
2209                 "mapped %d/%d/%d default/read/poll queues.\n",
2210                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2211                 ctrl->io_queues[HCTX_TYPE_READ],
2212                 ctrl->io_queues[HCTX_TYPE_POLL]);
2213
2214         return 0;
2215 }
2216
2217 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2218 {
2219         struct nvme_tcp_queue *queue = hctx->driver_data;
2220         struct sock *sk = queue->sock->sk;
2221
2222         if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue))
2223                 sk_busy_loop(sk, true);
2224         nvme_tcp_try_recv(queue);
2225         return queue->nr_cqe;
2226 }
2227
2228 static struct blk_mq_ops nvme_tcp_mq_ops = {
2229         .queue_rq       = nvme_tcp_queue_rq,
2230         .complete       = nvme_complete_rq,
2231         .init_request   = nvme_tcp_init_request,
2232         .exit_request   = nvme_tcp_exit_request,
2233         .init_hctx      = nvme_tcp_init_hctx,
2234         .timeout        = nvme_tcp_timeout,
2235         .map_queues     = nvme_tcp_map_queues,
2236         .poll           = nvme_tcp_poll,
2237 };
2238
2239 static struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2240         .queue_rq       = nvme_tcp_queue_rq,
2241         .complete       = nvme_complete_rq,
2242         .init_request   = nvme_tcp_init_request,
2243         .exit_request   = nvme_tcp_exit_request,
2244         .init_hctx      = nvme_tcp_init_admin_hctx,
2245         .timeout        = nvme_tcp_timeout,
2246 };
2247
2248 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2249         .name                   = "tcp",
2250         .module                 = THIS_MODULE,
2251         .flags                  = NVME_F_FABRICS,
2252         .reg_read32             = nvmf_reg_read32,
2253         .reg_read64             = nvmf_reg_read64,
2254         .reg_write32            = nvmf_reg_write32,
2255         .free_ctrl              = nvme_tcp_free_ctrl,
2256         .submit_async_event     = nvme_tcp_submit_async_event,
2257         .delete_ctrl            = nvme_tcp_delete_ctrl,
2258         .get_address            = nvmf_get_address,
2259 };
2260
2261 static bool
2262 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2263 {
2264         struct nvme_tcp_ctrl *ctrl;
2265         bool found = false;
2266
2267         mutex_lock(&nvme_tcp_ctrl_mutex);
2268         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2269                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2270                 if (found)
2271                         break;
2272         }
2273         mutex_unlock(&nvme_tcp_ctrl_mutex);
2274
2275         return found;
2276 }
2277
2278 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2279                 struct nvmf_ctrl_options *opts)
2280 {
2281         struct nvme_tcp_ctrl *ctrl;
2282         int ret;
2283
2284         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2285         if (!ctrl)
2286                 return ERR_PTR(-ENOMEM);
2287
2288         INIT_LIST_HEAD(&ctrl->list);
2289         ctrl->ctrl.opts = opts;
2290         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2291                                 opts->nr_poll_queues + 1;
2292         ctrl->ctrl.sqsize = opts->queue_size - 1;
2293         ctrl->ctrl.kato = opts->kato;
2294
2295         INIT_DELAYED_WORK(&ctrl->connect_work,
2296                         nvme_tcp_reconnect_ctrl_work);
2297         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2298         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2299
2300         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2301                 opts->trsvcid =
2302                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2303                 if (!opts->trsvcid) {
2304                         ret = -ENOMEM;
2305                         goto out_free_ctrl;
2306                 }
2307                 opts->mask |= NVMF_OPT_TRSVCID;
2308         }
2309
2310         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2311                         opts->traddr, opts->trsvcid, &ctrl->addr);
2312         if (ret) {
2313                 pr_err("malformed address passed: %s:%s\n",
2314                         opts->traddr, opts->trsvcid);
2315                 goto out_free_ctrl;
2316         }
2317
2318         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2319                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2320                         opts->host_traddr, NULL, &ctrl->src_addr);
2321                 if (ret) {
2322                         pr_err("malformed src address passed: %s\n",
2323                                opts->host_traddr);
2324                         goto out_free_ctrl;
2325                 }
2326         }
2327
2328         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2329                 ret = -EALREADY;
2330                 goto out_free_ctrl;
2331         }
2332
2333         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2334                                 GFP_KERNEL);
2335         if (!ctrl->queues) {
2336                 ret = -ENOMEM;
2337                 goto out_free_ctrl;
2338         }
2339
2340         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2341         if (ret)
2342                 goto out_kfree_queues;
2343
2344         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2345                 WARN_ON_ONCE(1);
2346                 ret = -EINTR;
2347                 goto out_uninit_ctrl;
2348         }
2349
2350         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2351         if (ret)
2352                 goto out_uninit_ctrl;
2353
2354         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2355                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2356
2357         nvme_get_ctrl(&ctrl->ctrl);
2358
2359         mutex_lock(&nvme_tcp_ctrl_mutex);
2360         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2361         mutex_unlock(&nvme_tcp_ctrl_mutex);
2362
2363         return &ctrl->ctrl;
2364
2365 out_uninit_ctrl:
2366         nvme_uninit_ctrl(&ctrl->ctrl);
2367         nvme_put_ctrl(&ctrl->ctrl);
2368         if (ret > 0)
2369                 ret = -EIO;
2370         return ERR_PTR(ret);
2371 out_kfree_queues:
2372         kfree(ctrl->queues);
2373 out_free_ctrl:
2374         kfree(ctrl);
2375         return ERR_PTR(ret);
2376 }
2377
2378 static struct nvmf_transport_ops nvme_tcp_transport = {
2379         .name           = "tcp",
2380         .module         = THIS_MODULE,
2381         .required_opts  = NVMF_OPT_TRADDR,
2382         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2383                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2384                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2385                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2386                           NVMF_OPT_TOS,
2387         .create_ctrl    = nvme_tcp_create_ctrl,
2388 };
2389
2390 static int __init nvme_tcp_init_module(void)
2391 {
2392         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2393                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2394         if (!nvme_tcp_wq)
2395                 return -ENOMEM;
2396
2397         nvmf_register_transport(&nvme_tcp_transport);
2398         return 0;
2399 }
2400
2401 static void __exit nvme_tcp_cleanup_module(void)
2402 {
2403         struct nvme_tcp_ctrl *ctrl;
2404
2405         nvmf_unregister_transport(&nvme_tcp_transport);
2406
2407         mutex_lock(&nvme_tcp_ctrl_mutex);
2408         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2409                 nvme_delete_ctrl(&ctrl->ctrl);
2410         mutex_unlock(&nvme_tcp_ctrl_mutex);
2411         flush_workqueue(nvme_delete_wq);
2412
2413         destroy_workqueue(nvme_tcp_wq);
2414 }
2415
2416 module_init(nvme_tcp_init_module);
2417 module_exit(nvme_tcp_cleanup_module);
2418
2419 MODULE_LICENSE("GPL v2");