9ff0eb3a625e283bc43f11e4f4d6869fbe46c475
[linux-2.6-block.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
38
39 #define NVME_RDMA_MAX_SEGMENT_SIZE      0xffffff        /* 24-bit SGL field */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
44
45 /*
46  * We handle AEN commands ourselves and don't even let the
47  * block layer know about them.
48  */
49 #define NVME_RDMA_NR_AEN_COMMANDS      1
50 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
51         (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
52
53 struct nvme_rdma_device {
54         struct ib_device       *dev;
55         struct ib_pd           *pd;
56         struct kref             ref;
57         struct list_head        entry;
58 };
59
60 struct nvme_rdma_qe {
61         struct ib_cqe           cqe;
62         void                    *data;
63         u64                     dma;
64 };
65
66 struct nvme_rdma_queue;
67 struct nvme_rdma_request {
68         struct nvme_request     req;
69         struct ib_mr            *mr;
70         struct nvme_rdma_qe     sqe;
71         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72         u32                     num_sge;
73         int                     nents;
74         bool                    inline_data;
75         struct ib_reg_wr        reg_wr;
76         struct ib_cqe           reg_cqe;
77         struct nvme_rdma_queue  *queue;
78         struct sg_table         sg_table;
79         struct scatterlist      first_sgl[];
80 };
81
82 enum nvme_rdma_queue_flags {
83         NVME_RDMA_Q_LIVE                = 0,
84         NVME_RDMA_Q_DELETING            = 1,
85 };
86
87 struct nvme_rdma_queue {
88         struct nvme_rdma_qe     *rsp_ring;
89         atomic_t                sig_count;
90         int                     queue_size;
91         size_t                  cmnd_capsule_len;
92         struct nvme_rdma_ctrl   *ctrl;
93         struct nvme_rdma_device *device;
94         struct ib_cq            *ib_cq;
95         struct ib_qp            *qp;
96
97         unsigned long           flags;
98         struct rdma_cm_id       *cm_id;
99         int                     cm_error;
100         struct completion       cm_done;
101 };
102
103 struct nvme_rdma_ctrl {
104         /* read only in the hot path */
105         struct nvme_rdma_queue  *queues;
106
107         /* other member variables */
108         struct blk_mq_tag_set   tag_set;
109         struct work_struct      delete_work;
110         struct work_struct      err_work;
111
112         struct nvme_rdma_qe     async_event_sqe;
113
114         struct delayed_work     reconnect_work;
115
116         struct list_head        list;
117
118         struct blk_mq_tag_set   admin_tag_set;
119         struct nvme_rdma_device *device;
120
121         u32                     max_fr_pages;
122
123         struct sockaddr_storage addr;
124         struct sockaddr_storage src_addr;
125
126         struct nvme_ctrl        ctrl;
127 };
128
129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
130 {
131         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
132 }
133
134 static LIST_HEAD(device_list);
135 static DEFINE_MUTEX(device_list_mutex);
136
137 static LIST_HEAD(nvme_rdma_ctrl_list);
138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
139
140 /*
141  * Disabling this option makes small I/O goes faster, but is fundamentally
142  * unsafe.  With it turned off we will have to register a global rkey that
143  * allows read and write access to all physical memory.
144  */
145 static bool register_always = true;
146 module_param(register_always, bool, 0444);
147 MODULE_PARM_DESC(register_always,
148          "Use memory registration even for contiguous memory regions");
149
150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
151                 struct rdma_cm_event *event);
152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
153
154 /* XXX: really should move to a generic header sooner or later.. */
155 static inline void put_unaligned_le24(u32 val, u8 *p)
156 {
157         *p++ = val;
158         *p++ = val >> 8;
159         *p++ = val >> 16;
160 }
161
162 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
163 {
164         return queue - queue->ctrl->queues;
165 }
166
167 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
168 {
169         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
170 }
171
172 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
173                 size_t capsule_size, enum dma_data_direction dir)
174 {
175         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
176         kfree(qe->data);
177 }
178
179 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
180                 size_t capsule_size, enum dma_data_direction dir)
181 {
182         qe->data = kzalloc(capsule_size, GFP_KERNEL);
183         if (!qe->data)
184                 return -ENOMEM;
185
186         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
187         if (ib_dma_mapping_error(ibdev, qe->dma)) {
188                 kfree(qe->data);
189                 return -ENOMEM;
190         }
191
192         return 0;
193 }
194
195 static void nvme_rdma_free_ring(struct ib_device *ibdev,
196                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
197                 size_t capsule_size, enum dma_data_direction dir)
198 {
199         int i;
200
201         for (i = 0; i < ib_queue_size; i++)
202                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
203         kfree(ring);
204 }
205
206 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
207                 size_t ib_queue_size, size_t capsule_size,
208                 enum dma_data_direction dir)
209 {
210         struct nvme_rdma_qe *ring;
211         int i;
212
213         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
214         if (!ring)
215                 return NULL;
216
217         for (i = 0; i < ib_queue_size; i++) {
218                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
219                         goto out_free_ring;
220         }
221
222         return ring;
223
224 out_free_ring:
225         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
226         return NULL;
227 }
228
229 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
230 {
231         pr_debug("QP event %s (%d)\n",
232                  ib_event_msg(event->event), event->event);
233
234 }
235
236 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
237 {
238         wait_for_completion_interruptible_timeout(&queue->cm_done,
239                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
240         return queue->cm_error;
241 }
242
243 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
244 {
245         struct nvme_rdma_device *dev = queue->device;
246         struct ib_qp_init_attr init_attr;
247         int ret;
248
249         memset(&init_attr, 0, sizeof(init_attr));
250         init_attr.event_handler = nvme_rdma_qp_event;
251         /* +1 for drain */
252         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
253         /* +1 for drain */
254         init_attr.cap.max_recv_wr = queue->queue_size + 1;
255         init_attr.cap.max_recv_sge = 1;
256         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
257         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
258         init_attr.qp_type = IB_QPT_RC;
259         init_attr.send_cq = queue->ib_cq;
260         init_attr.recv_cq = queue->ib_cq;
261
262         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
263
264         queue->qp = queue->cm_id->qp;
265         return ret;
266 }
267
268 static int nvme_rdma_reinit_request(void *data, struct request *rq)
269 {
270         struct nvme_rdma_ctrl *ctrl = data;
271         struct nvme_rdma_device *dev = ctrl->device;
272         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
273         int ret = 0;
274
275         ib_dereg_mr(req->mr);
276
277         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
278                         ctrl->max_fr_pages);
279         if (IS_ERR(req->mr)) {
280                 ret = PTR_ERR(req->mr);
281                 req->mr = NULL;
282                 goto out;
283         }
284
285         req->mr->need_inval = false;
286
287 out:
288         return ret;
289 }
290
291 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
292                 struct request *rq, unsigned int hctx_idx)
293 {
294         struct nvme_rdma_ctrl *ctrl = set->driver_data;
295         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
296         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
297         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
298         struct nvme_rdma_device *dev = queue->device;
299
300         if (req->mr)
301                 ib_dereg_mr(req->mr);
302
303         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
304                         DMA_TO_DEVICE);
305 }
306
307 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
308                 struct request *rq, unsigned int hctx_idx,
309                 unsigned int numa_node)
310 {
311         struct nvme_rdma_ctrl *ctrl = set->driver_data;
312         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
313         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
314         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
315         struct nvme_rdma_device *dev = queue->device;
316         struct ib_device *ibdev = dev->dev;
317         int ret;
318
319         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
320                         DMA_TO_DEVICE);
321         if (ret)
322                 return ret;
323
324         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
325                         ctrl->max_fr_pages);
326         if (IS_ERR(req->mr)) {
327                 ret = PTR_ERR(req->mr);
328                 goto out_free_qe;
329         }
330
331         req->queue = queue;
332
333         return 0;
334
335 out_free_qe:
336         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
337                         DMA_TO_DEVICE);
338         return -ENOMEM;
339 }
340
341 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
342                 unsigned int hctx_idx)
343 {
344         struct nvme_rdma_ctrl *ctrl = data;
345         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
346
347         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
348
349         hctx->driver_data = queue;
350         return 0;
351 }
352
353 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
354                 unsigned int hctx_idx)
355 {
356         struct nvme_rdma_ctrl *ctrl = data;
357         struct nvme_rdma_queue *queue = &ctrl->queues[0];
358
359         BUG_ON(hctx_idx != 0);
360
361         hctx->driver_data = queue;
362         return 0;
363 }
364
365 static void nvme_rdma_free_dev(struct kref *ref)
366 {
367         struct nvme_rdma_device *ndev =
368                 container_of(ref, struct nvme_rdma_device, ref);
369
370         mutex_lock(&device_list_mutex);
371         list_del(&ndev->entry);
372         mutex_unlock(&device_list_mutex);
373
374         ib_dealloc_pd(ndev->pd);
375         kfree(ndev);
376 }
377
378 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
379 {
380         kref_put(&dev->ref, nvme_rdma_free_dev);
381 }
382
383 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
384 {
385         return kref_get_unless_zero(&dev->ref);
386 }
387
388 static struct nvme_rdma_device *
389 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
390 {
391         struct nvme_rdma_device *ndev;
392
393         mutex_lock(&device_list_mutex);
394         list_for_each_entry(ndev, &device_list, entry) {
395                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
396                     nvme_rdma_dev_get(ndev))
397                         goto out_unlock;
398         }
399
400         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
401         if (!ndev)
402                 goto out_err;
403
404         ndev->dev = cm_id->device;
405         kref_init(&ndev->ref);
406
407         ndev->pd = ib_alloc_pd(ndev->dev,
408                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
409         if (IS_ERR(ndev->pd))
410                 goto out_free_dev;
411
412         if (!(ndev->dev->attrs.device_cap_flags &
413               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
414                 dev_err(&ndev->dev->dev,
415                         "Memory registrations not supported.\n");
416                 goto out_free_pd;
417         }
418
419         list_add(&ndev->entry, &device_list);
420 out_unlock:
421         mutex_unlock(&device_list_mutex);
422         return ndev;
423
424 out_free_pd:
425         ib_dealloc_pd(ndev->pd);
426 out_free_dev:
427         kfree(ndev);
428 out_err:
429         mutex_unlock(&device_list_mutex);
430         return NULL;
431 }
432
433 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
434 {
435         struct nvme_rdma_device *dev;
436         struct ib_device *ibdev;
437
438         dev = queue->device;
439         ibdev = dev->dev;
440         rdma_destroy_qp(queue->cm_id);
441         ib_free_cq(queue->ib_cq);
442
443         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
444                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
445
446         nvme_rdma_dev_put(dev);
447 }
448
449 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
450 {
451         struct ib_device *ibdev;
452         const int send_wr_factor = 3;                   /* MR, SEND, INV */
453         const int cq_factor = send_wr_factor + 1;       /* + RECV */
454         int comp_vector, idx = nvme_rdma_queue_idx(queue);
455         int ret;
456
457         queue->device = nvme_rdma_find_get_device(queue->cm_id);
458         if (!queue->device) {
459                 dev_err(queue->cm_id->device->dev.parent,
460                         "no client data found!\n");
461                 return -ECONNREFUSED;
462         }
463         ibdev = queue->device->dev;
464
465         /*
466          * The admin queue is barely used once the controller is live, so don't
467          * bother to spread it out.
468          */
469         if (idx == 0)
470                 comp_vector = 0;
471         else
472                 comp_vector = idx % ibdev->num_comp_vectors;
473
474
475         /* +1 for ib_stop_cq */
476         queue->ib_cq = ib_alloc_cq(ibdev, queue,
477                                 cq_factor * queue->queue_size + 1,
478                                 comp_vector, IB_POLL_SOFTIRQ);
479         if (IS_ERR(queue->ib_cq)) {
480                 ret = PTR_ERR(queue->ib_cq);
481                 goto out_put_dev;
482         }
483
484         ret = nvme_rdma_create_qp(queue, send_wr_factor);
485         if (ret)
486                 goto out_destroy_ib_cq;
487
488         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
489                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
490         if (!queue->rsp_ring) {
491                 ret = -ENOMEM;
492                 goto out_destroy_qp;
493         }
494
495         return 0;
496
497 out_destroy_qp:
498         ib_destroy_qp(queue->qp);
499 out_destroy_ib_cq:
500         ib_free_cq(queue->ib_cq);
501 out_put_dev:
502         nvme_rdma_dev_put(queue->device);
503         return ret;
504 }
505
506 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
507                 int idx, size_t queue_size)
508 {
509         struct nvme_rdma_queue *queue;
510         struct sockaddr *src_addr = NULL;
511         int ret;
512
513         queue = &ctrl->queues[idx];
514         queue->ctrl = ctrl;
515         init_completion(&queue->cm_done);
516
517         if (idx > 0)
518                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
519         else
520                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
521
522         queue->queue_size = queue_size;
523         atomic_set(&queue->sig_count, 0);
524
525         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
526                         RDMA_PS_TCP, IB_QPT_RC);
527         if (IS_ERR(queue->cm_id)) {
528                 dev_info(ctrl->ctrl.device,
529                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
530                 return PTR_ERR(queue->cm_id);
531         }
532
533         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
534                 src_addr = (struct sockaddr *)&ctrl->src_addr;
535
536         queue->cm_error = -ETIMEDOUT;
537         ret = rdma_resolve_addr(queue->cm_id, src_addr,
538                         (struct sockaddr *)&ctrl->addr,
539                         NVME_RDMA_CONNECT_TIMEOUT_MS);
540         if (ret) {
541                 dev_info(ctrl->ctrl.device,
542                         "rdma_resolve_addr failed (%d).\n", ret);
543                 goto out_destroy_cm_id;
544         }
545
546         ret = nvme_rdma_wait_for_cm(queue);
547         if (ret) {
548                 dev_info(ctrl->ctrl.device,
549                         "rdma_resolve_addr wait failed (%d).\n", ret);
550                 goto out_destroy_cm_id;
551         }
552
553         clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
554
555         return 0;
556
557 out_destroy_cm_id:
558         rdma_destroy_id(queue->cm_id);
559         return ret;
560 }
561
562 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
563 {
564         rdma_disconnect(queue->cm_id);
565         ib_drain_qp(queue->qp);
566 }
567
568 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
569 {
570         nvme_rdma_destroy_queue_ib(queue);
571         rdma_destroy_id(queue->cm_id);
572 }
573
574 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
575 {
576         if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
577                 return;
578         nvme_rdma_stop_queue(queue);
579         nvme_rdma_free_queue(queue);
580 }
581
582 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
583 {
584         int i;
585
586         for (i = 1; i < ctrl->ctrl.queue_count; i++)
587                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
588 }
589
590 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
591 {
592         int i, ret = 0;
593
594         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
595                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
596                 if (ret) {
597                         dev_info(ctrl->ctrl.device,
598                                 "failed to connect i/o queue: %d\n", ret);
599                         goto out_free_queues;
600                 }
601                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
602         }
603
604         return 0;
605
606 out_free_queues:
607         nvme_rdma_free_io_queues(ctrl);
608         return ret;
609 }
610
611 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
612 {
613         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
614         unsigned int nr_io_queues;
615         int i, ret;
616
617         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
618         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
619         if (ret)
620                 return ret;
621
622         ctrl->ctrl.queue_count = nr_io_queues + 1;
623         if (ctrl->ctrl.queue_count < 2)
624                 return 0;
625
626         dev_info(ctrl->ctrl.device,
627                 "creating %d I/O queues.\n", nr_io_queues);
628
629         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
630                 ret = nvme_rdma_init_queue(ctrl, i,
631                                            ctrl->ctrl.opts->queue_size);
632                 if (ret) {
633                         dev_info(ctrl->ctrl.device,
634                                 "failed to initialize i/o queue: %d\n", ret);
635                         goto out_free_queues;
636                 }
637         }
638
639         return 0;
640
641 out_free_queues:
642         for (i--; i >= 1; i--)
643                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
644
645         return ret;
646 }
647
648 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
649 {
650         nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
651                         sizeof(struct nvme_command), DMA_TO_DEVICE);
652         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
653         blk_cleanup_queue(ctrl->ctrl.admin_q);
654         blk_mq_free_tag_set(&ctrl->admin_tag_set);
655         nvme_rdma_dev_put(ctrl->device);
656 }
657
658 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
659 {
660         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
661
662         if (list_empty(&ctrl->list))
663                 goto free_ctrl;
664
665         mutex_lock(&nvme_rdma_ctrl_mutex);
666         list_del(&ctrl->list);
667         mutex_unlock(&nvme_rdma_ctrl_mutex);
668
669         kfree(ctrl->queues);
670         nvmf_free_options(nctrl->opts);
671 free_ctrl:
672         kfree(ctrl);
673 }
674
675 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
676 {
677         /* If we are resetting/deleting then do nothing */
678         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
679                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
680                         ctrl->ctrl.state == NVME_CTRL_LIVE);
681                 return;
682         }
683
684         if (nvmf_should_reconnect(&ctrl->ctrl)) {
685                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
686                         ctrl->ctrl.opts->reconnect_delay);
687                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
688                                 ctrl->ctrl.opts->reconnect_delay * HZ);
689         } else {
690                 dev_info(ctrl->ctrl.device, "Removing controller...\n");
691                 queue_work(nvme_wq, &ctrl->delete_work);
692         }
693 }
694
695 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
696 {
697         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
698                         struct nvme_rdma_ctrl, reconnect_work);
699         bool changed;
700         int ret;
701
702         ++ctrl->ctrl.nr_reconnects;
703
704         if (ctrl->ctrl.queue_count > 1) {
705                 nvme_rdma_free_io_queues(ctrl);
706
707                 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
708                                            nvme_rdma_reinit_request);
709                 if (ret)
710                         goto requeue;
711         }
712
713         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
714
715         ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
716                                    nvme_rdma_reinit_request);
717         if (ret)
718                 goto requeue;
719
720         ret = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
721         if (ret)
722                 goto requeue;
723
724         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
725         if (ret)
726                 goto requeue;
727
728         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
729
730         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
731         if (ret)
732                 goto requeue;
733
734         if (ctrl->ctrl.queue_count > 1) {
735                 ret = nvme_rdma_init_io_queues(ctrl);
736                 if (ret)
737                         goto requeue;
738
739                 ret = nvme_rdma_connect_io_queues(ctrl);
740                 if (ret)
741                         goto requeue;
742
743                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
744                                 ctrl->ctrl.queue_count - 1);
745         }
746
747         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
748         WARN_ON_ONCE(!changed);
749         ctrl->ctrl.nr_reconnects = 0;
750
751         nvme_start_ctrl(&ctrl->ctrl);
752
753         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
754
755         return;
756
757 requeue:
758         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
759                         ctrl->ctrl.nr_reconnects);
760         nvme_rdma_reconnect_or_remove(ctrl);
761 }
762
763 static void nvme_rdma_error_recovery_work(struct work_struct *work)
764 {
765         struct nvme_rdma_ctrl *ctrl = container_of(work,
766                         struct nvme_rdma_ctrl, err_work);
767         int i;
768
769         nvme_stop_ctrl(&ctrl->ctrl);
770
771         for (i = 0; i < ctrl->ctrl.queue_count; i++)
772                 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
773
774         if (ctrl->ctrl.queue_count > 1)
775                 nvme_stop_queues(&ctrl->ctrl);
776         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
777
778         /* We must take care of fastfail/requeue all our inflight requests */
779         if (ctrl->ctrl.queue_count > 1)
780                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
781                                         nvme_cancel_request, &ctrl->ctrl);
782         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
783                                 nvme_cancel_request, &ctrl->ctrl);
784
785         /*
786          * queues are not a live anymore, so restart the queues to fail fast
787          * new IO
788          */
789         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
790         nvme_start_queues(&ctrl->ctrl);
791
792         nvme_rdma_reconnect_or_remove(ctrl);
793 }
794
795 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
796 {
797         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
798                 return;
799
800         queue_work(nvme_wq, &ctrl->err_work);
801 }
802
803 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
804                 const char *op)
805 {
806         struct nvme_rdma_queue *queue = cq->cq_context;
807         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
808
809         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
810                 dev_info(ctrl->ctrl.device,
811                              "%s for CQE 0x%p failed with status %s (%d)\n",
812                              op, wc->wr_cqe,
813                              ib_wc_status_msg(wc->status), wc->status);
814         nvme_rdma_error_recovery(ctrl);
815 }
816
817 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
818 {
819         if (unlikely(wc->status != IB_WC_SUCCESS))
820                 nvme_rdma_wr_error(cq, wc, "MEMREG");
821 }
822
823 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
824 {
825         if (unlikely(wc->status != IB_WC_SUCCESS))
826                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
827 }
828
829 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
830                 struct nvme_rdma_request *req)
831 {
832         struct ib_send_wr *bad_wr;
833         struct ib_send_wr wr = {
834                 .opcode             = IB_WR_LOCAL_INV,
835                 .next               = NULL,
836                 .num_sge            = 0,
837                 .send_flags         = 0,
838                 .ex.invalidate_rkey = req->mr->rkey,
839         };
840
841         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
842         wr.wr_cqe = &req->reg_cqe;
843
844         return ib_post_send(queue->qp, &wr, &bad_wr);
845 }
846
847 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
848                 struct request *rq)
849 {
850         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
851         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
852         struct nvme_rdma_device *dev = queue->device;
853         struct ib_device *ibdev = dev->dev;
854         int res;
855
856         if (!blk_rq_bytes(rq))
857                 return;
858
859         if (req->mr->need_inval) {
860                 res = nvme_rdma_inv_rkey(queue, req);
861                 if (res < 0) {
862                         dev_err(ctrl->ctrl.device,
863                                 "Queueing INV WR for rkey %#x failed (%d)\n",
864                                 req->mr->rkey, res);
865                         nvme_rdma_error_recovery(queue->ctrl);
866                 }
867         }
868
869         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
870                         req->nents, rq_data_dir(rq) ==
871                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
872
873         nvme_cleanup_cmd(rq);
874         sg_free_table_chained(&req->sg_table, true);
875 }
876
877 static int nvme_rdma_set_sg_null(struct nvme_command *c)
878 {
879         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
880
881         sg->addr = 0;
882         put_unaligned_le24(0, sg->length);
883         put_unaligned_le32(0, sg->key);
884         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
885         return 0;
886 }
887
888 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
889                 struct nvme_rdma_request *req, struct nvme_command *c)
890 {
891         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
892
893         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
894         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
895         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
896
897         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
898         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
899         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
900
901         req->inline_data = true;
902         req->num_sge++;
903         return 0;
904 }
905
906 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
907                 struct nvme_rdma_request *req, struct nvme_command *c)
908 {
909         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
910
911         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
912         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
913         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
914         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
915         return 0;
916 }
917
918 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
919                 struct nvme_rdma_request *req, struct nvme_command *c,
920                 int count)
921 {
922         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
923         int nr;
924
925         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
926         if (nr < count) {
927                 if (nr < 0)
928                         return nr;
929                 return -EINVAL;
930         }
931
932         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
933
934         req->reg_cqe.done = nvme_rdma_memreg_done;
935         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
936         req->reg_wr.wr.opcode = IB_WR_REG_MR;
937         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
938         req->reg_wr.wr.num_sge = 0;
939         req->reg_wr.mr = req->mr;
940         req->reg_wr.key = req->mr->rkey;
941         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
942                              IB_ACCESS_REMOTE_READ |
943                              IB_ACCESS_REMOTE_WRITE;
944
945         req->mr->need_inval = true;
946
947         sg->addr = cpu_to_le64(req->mr->iova);
948         put_unaligned_le24(req->mr->length, sg->length);
949         put_unaligned_le32(req->mr->rkey, sg->key);
950         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
951                         NVME_SGL_FMT_INVALIDATE;
952
953         return 0;
954 }
955
956 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
957                 struct request *rq, struct nvme_command *c)
958 {
959         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
960         struct nvme_rdma_device *dev = queue->device;
961         struct ib_device *ibdev = dev->dev;
962         int count, ret;
963
964         req->num_sge = 1;
965         req->inline_data = false;
966         req->mr->need_inval = false;
967
968         c->common.flags |= NVME_CMD_SGL_METABUF;
969
970         if (!blk_rq_bytes(rq))
971                 return nvme_rdma_set_sg_null(c);
972
973         req->sg_table.sgl = req->first_sgl;
974         ret = sg_alloc_table_chained(&req->sg_table,
975                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
976         if (ret)
977                 return -ENOMEM;
978
979         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
980
981         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
982                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
983         if (unlikely(count <= 0)) {
984                 sg_free_table_chained(&req->sg_table, true);
985                 return -EIO;
986         }
987
988         if (count == 1) {
989                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
990                     blk_rq_payload_bytes(rq) <=
991                                 nvme_rdma_inline_data_size(queue))
992                         return nvme_rdma_map_sg_inline(queue, req, c);
993
994                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
995                         return nvme_rdma_map_sg_single(queue, req, c);
996         }
997
998         return nvme_rdma_map_sg_fr(queue, req, c, count);
999 }
1000
1001 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1002 {
1003         if (unlikely(wc->status != IB_WC_SUCCESS))
1004                 nvme_rdma_wr_error(cq, wc, "SEND");
1005 }
1006
1007 /*
1008  * We want to signal completion at least every queue depth/2.  This returns the
1009  * largest power of two that is not above half of (queue size + 1) to optimize
1010  * (avoid divisions).
1011  */
1012 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1013 {
1014         int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1015
1016         return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1017 }
1018
1019 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1020                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1021                 struct ib_send_wr *first, bool flush)
1022 {
1023         struct ib_send_wr wr, *bad_wr;
1024         int ret;
1025
1026         sge->addr   = qe->dma;
1027         sge->length = sizeof(struct nvme_command),
1028         sge->lkey   = queue->device->pd->local_dma_lkey;
1029
1030         qe->cqe.done = nvme_rdma_send_done;
1031
1032         wr.next       = NULL;
1033         wr.wr_cqe     = &qe->cqe;
1034         wr.sg_list    = sge;
1035         wr.num_sge    = num_sge;
1036         wr.opcode     = IB_WR_SEND;
1037         wr.send_flags = 0;
1038
1039         /*
1040          * Unsignalled send completions are another giant desaster in the
1041          * IB Verbs spec:  If we don't regularly post signalled sends
1042          * the send queue will fill up and only a QP reset will rescue us.
1043          * Would have been way to obvious to handle this in hardware or
1044          * at least the RDMA stack..
1045          *
1046          * Always signal the flushes. The magic request used for the flush
1047          * sequencer is not allocated in our driver's tagset and it's
1048          * triggered to be freed by blk_cleanup_queue(). So we need to
1049          * always mark it as signaled to ensure that the "wr_cqe", which is
1050          * embedded in request's payload, is not freed when __ib_process_cq()
1051          * calls wr_cqe->done().
1052          */
1053         if (nvme_rdma_queue_sig_limit(queue) || flush)
1054                 wr.send_flags |= IB_SEND_SIGNALED;
1055
1056         if (first)
1057                 first->next = &wr;
1058         else
1059                 first = &wr;
1060
1061         ret = ib_post_send(queue->qp, first, &bad_wr);
1062         if (ret) {
1063                 dev_err(queue->ctrl->ctrl.device,
1064                              "%s failed with error code %d\n", __func__, ret);
1065         }
1066         return ret;
1067 }
1068
1069 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1070                 struct nvme_rdma_qe *qe)
1071 {
1072         struct ib_recv_wr wr, *bad_wr;
1073         struct ib_sge list;
1074         int ret;
1075
1076         list.addr   = qe->dma;
1077         list.length = sizeof(struct nvme_completion);
1078         list.lkey   = queue->device->pd->local_dma_lkey;
1079
1080         qe->cqe.done = nvme_rdma_recv_done;
1081
1082         wr.next     = NULL;
1083         wr.wr_cqe   = &qe->cqe;
1084         wr.sg_list  = &list;
1085         wr.num_sge  = 1;
1086
1087         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1088         if (ret) {
1089                 dev_err(queue->ctrl->ctrl.device,
1090                         "%s failed with error code %d\n", __func__, ret);
1091         }
1092         return ret;
1093 }
1094
1095 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1096 {
1097         u32 queue_idx = nvme_rdma_queue_idx(queue);
1098
1099         if (queue_idx == 0)
1100                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1101         return queue->ctrl->tag_set.tags[queue_idx - 1];
1102 }
1103
1104 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1105 {
1106         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1107         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1108         struct ib_device *dev = queue->device->dev;
1109         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1110         struct nvme_command *cmd = sqe->data;
1111         struct ib_sge sge;
1112         int ret;
1113
1114         if (WARN_ON_ONCE(aer_idx != 0))
1115                 return;
1116
1117         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1118
1119         memset(cmd, 0, sizeof(*cmd));
1120         cmd->common.opcode = nvme_admin_async_event;
1121         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1122         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1123         nvme_rdma_set_sg_null(cmd);
1124
1125         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1126                         DMA_TO_DEVICE);
1127
1128         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1129         WARN_ON_ONCE(ret);
1130 }
1131
1132 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1133                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1134 {
1135         struct request *rq;
1136         struct nvme_rdma_request *req;
1137         int ret = 0;
1138
1139         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1140         if (!rq) {
1141                 dev_err(queue->ctrl->ctrl.device,
1142                         "tag 0x%x on QP %#x not found\n",
1143                         cqe->command_id, queue->qp->qp_num);
1144                 nvme_rdma_error_recovery(queue->ctrl);
1145                 return ret;
1146         }
1147         req = blk_mq_rq_to_pdu(rq);
1148
1149         if (rq->tag == tag)
1150                 ret = 1;
1151
1152         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1153             wc->ex.invalidate_rkey == req->mr->rkey)
1154                 req->mr->need_inval = false;
1155
1156         nvme_end_request(rq, cqe->status, cqe->result);
1157         return ret;
1158 }
1159
1160 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1161 {
1162         struct nvme_rdma_qe *qe =
1163                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1164         struct nvme_rdma_queue *queue = cq->cq_context;
1165         struct ib_device *ibdev = queue->device->dev;
1166         struct nvme_completion *cqe = qe->data;
1167         const size_t len = sizeof(struct nvme_completion);
1168         int ret = 0;
1169
1170         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1171                 nvme_rdma_wr_error(cq, wc, "RECV");
1172                 return 0;
1173         }
1174
1175         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1176         /*
1177          * AEN requests are special as they don't time out and can
1178          * survive any kind of queue freeze and often don't respond to
1179          * aborts.  We don't even bother to allocate a struct request
1180          * for them but rather special case them here.
1181          */
1182         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1183                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1184                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1185                                 &cqe->result);
1186         else
1187                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1188         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1189
1190         nvme_rdma_post_recv(queue, qe);
1191         return ret;
1192 }
1193
1194 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1195 {
1196         __nvme_rdma_recv_done(cq, wc, -1);
1197 }
1198
1199 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1200 {
1201         int ret, i;
1202
1203         for (i = 0; i < queue->queue_size; i++) {
1204                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1205                 if (ret)
1206                         goto out_destroy_queue_ib;
1207         }
1208
1209         return 0;
1210
1211 out_destroy_queue_ib:
1212         nvme_rdma_destroy_queue_ib(queue);
1213         return ret;
1214 }
1215
1216 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1217                 struct rdma_cm_event *ev)
1218 {
1219         struct rdma_cm_id *cm_id = queue->cm_id;
1220         int status = ev->status;
1221         const char *rej_msg;
1222         const struct nvme_rdma_cm_rej *rej_data;
1223         u8 rej_data_len;
1224
1225         rej_msg = rdma_reject_msg(cm_id, status);
1226         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1227
1228         if (rej_data && rej_data_len >= sizeof(u16)) {
1229                 u16 sts = le16_to_cpu(rej_data->sts);
1230
1231                 dev_err(queue->ctrl->ctrl.device,
1232                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1233                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1234         } else {
1235                 dev_err(queue->ctrl->ctrl.device,
1236                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1237         }
1238
1239         return -ECONNRESET;
1240 }
1241
1242 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1243 {
1244         int ret;
1245
1246         ret = nvme_rdma_create_queue_ib(queue);
1247         if (ret)
1248                 return ret;
1249
1250         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1251         if (ret) {
1252                 dev_err(queue->ctrl->ctrl.device,
1253                         "rdma_resolve_route failed (%d).\n",
1254                         queue->cm_error);
1255                 goto out_destroy_queue;
1256         }
1257
1258         return 0;
1259
1260 out_destroy_queue:
1261         nvme_rdma_destroy_queue_ib(queue);
1262         return ret;
1263 }
1264
1265 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1266 {
1267         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1268         struct rdma_conn_param param = { };
1269         struct nvme_rdma_cm_req priv = { };
1270         int ret;
1271
1272         param.qp_num = queue->qp->qp_num;
1273         param.flow_control = 1;
1274
1275         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1276         /* maximum retry count */
1277         param.retry_count = 7;
1278         param.rnr_retry_count = 7;
1279         param.private_data = &priv;
1280         param.private_data_len = sizeof(priv);
1281
1282         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1283         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1284         /*
1285          * set the admin queue depth to the minimum size
1286          * specified by the Fabrics standard.
1287          */
1288         if (priv.qid == 0) {
1289                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1290                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1291         } else {
1292                 /*
1293                  * current interpretation of the fabrics spec
1294                  * is at minimum you make hrqsize sqsize+1, or a
1295                  * 1's based representation of sqsize.
1296                  */
1297                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1298                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1299         }
1300
1301         ret = rdma_connect(queue->cm_id, &param);
1302         if (ret) {
1303                 dev_err(ctrl->ctrl.device,
1304                         "rdma_connect failed (%d).\n", ret);
1305                 goto out_destroy_queue_ib;
1306         }
1307
1308         return 0;
1309
1310 out_destroy_queue_ib:
1311         nvme_rdma_destroy_queue_ib(queue);
1312         return ret;
1313 }
1314
1315 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1316                 struct rdma_cm_event *ev)
1317 {
1318         struct nvme_rdma_queue *queue = cm_id->context;
1319         int cm_error = 0;
1320
1321         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1322                 rdma_event_msg(ev->event), ev->event,
1323                 ev->status, cm_id);
1324
1325         switch (ev->event) {
1326         case RDMA_CM_EVENT_ADDR_RESOLVED:
1327                 cm_error = nvme_rdma_addr_resolved(queue);
1328                 break;
1329         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1330                 cm_error = nvme_rdma_route_resolved(queue);
1331                 break;
1332         case RDMA_CM_EVENT_ESTABLISHED:
1333                 queue->cm_error = nvme_rdma_conn_established(queue);
1334                 /* complete cm_done regardless of success/failure */
1335                 complete(&queue->cm_done);
1336                 return 0;
1337         case RDMA_CM_EVENT_REJECTED:
1338                 nvme_rdma_destroy_queue_ib(queue);
1339                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1340                 break;
1341         case RDMA_CM_EVENT_ROUTE_ERROR:
1342         case RDMA_CM_EVENT_CONNECT_ERROR:
1343         case RDMA_CM_EVENT_UNREACHABLE:
1344                 nvme_rdma_destroy_queue_ib(queue);
1345         case RDMA_CM_EVENT_ADDR_ERROR:
1346                 dev_dbg(queue->ctrl->ctrl.device,
1347                         "CM error event %d\n", ev->event);
1348                 cm_error = -ECONNRESET;
1349                 break;
1350         case RDMA_CM_EVENT_DISCONNECTED:
1351         case RDMA_CM_EVENT_ADDR_CHANGE:
1352         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1353                 dev_dbg(queue->ctrl->ctrl.device,
1354                         "disconnect received - connection closed\n");
1355                 nvme_rdma_error_recovery(queue->ctrl);
1356                 break;
1357         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1358                 /* device removal is handled via the ib_client API */
1359                 break;
1360         default:
1361                 dev_err(queue->ctrl->ctrl.device,
1362                         "Unexpected RDMA CM event (%d)\n", ev->event);
1363                 nvme_rdma_error_recovery(queue->ctrl);
1364                 break;
1365         }
1366
1367         if (cm_error) {
1368                 queue->cm_error = cm_error;
1369                 complete(&queue->cm_done);
1370         }
1371
1372         return 0;
1373 }
1374
1375 static enum blk_eh_timer_return
1376 nvme_rdma_timeout(struct request *rq, bool reserved)
1377 {
1378         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1379
1380         /* queue error recovery */
1381         nvme_rdma_error_recovery(req->queue->ctrl);
1382
1383         /* fail with DNR on cmd timeout */
1384         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1385
1386         return BLK_EH_HANDLED;
1387 }
1388
1389 /*
1390  * We cannot accept any other command until the Connect command has completed.
1391  */
1392 static inline blk_status_t
1393 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1394 {
1395         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1396                 struct nvme_command *cmd = nvme_req(rq)->cmd;
1397
1398                 if (!blk_rq_is_passthrough(rq) ||
1399                     cmd->common.opcode != nvme_fabrics_command ||
1400                     cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1401                         /*
1402                          * reconnecting state means transport disruption, which
1403                          * can take a long time and even might fail permanently,
1404                          * so we can't let incoming I/O be requeued forever.
1405                          * fail it fast to allow upper layers a chance to
1406                          * failover.
1407                          */
1408                         if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1409                                 return BLK_STS_IOERR;
1410                         return BLK_STS_RESOURCE; /* try again later */
1411                 }
1412         }
1413
1414         return 0;
1415 }
1416
1417 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1418                 const struct blk_mq_queue_data *bd)
1419 {
1420         struct nvme_ns *ns = hctx->queue->queuedata;
1421         struct nvme_rdma_queue *queue = hctx->driver_data;
1422         struct request *rq = bd->rq;
1423         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1424         struct nvme_rdma_qe *sqe = &req->sqe;
1425         struct nvme_command *c = sqe->data;
1426         bool flush = false;
1427         struct ib_device *dev;
1428         blk_status_t ret;
1429         int err;
1430
1431         WARN_ON_ONCE(rq->tag < 0);
1432
1433         ret = nvme_rdma_queue_is_ready(queue, rq);
1434         if (unlikely(ret))
1435                 return ret;
1436
1437         dev = queue->device->dev;
1438         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1439                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1440
1441         ret = nvme_setup_cmd(ns, rq, c);
1442         if (ret)
1443                 return ret;
1444
1445         blk_mq_start_request(rq);
1446
1447         err = nvme_rdma_map_data(queue, rq, c);
1448         if (err < 0) {
1449                 dev_err(queue->ctrl->ctrl.device,
1450                              "Failed to map data (%d)\n", err);
1451                 nvme_cleanup_cmd(rq);
1452                 goto err;
1453         }
1454
1455         ib_dma_sync_single_for_device(dev, sqe->dma,
1456                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1457
1458         if (req_op(rq) == REQ_OP_FLUSH)
1459                 flush = true;
1460         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1461                         req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1462         if (err) {
1463                 nvme_rdma_unmap_data(queue, rq);
1464                 goto err;
1465         }
1466
1467         return BLK_STS_OK;
1468 err:
1469         if (err == -ENOMEM || err == -EAGAIN)
1470                 return BLK_STS_RESOURCE;
1471         return BLK_STS_IOERR;
1472 }
1473
1474 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1475 {
1476         struct nvme_rdma_queue *queue = hctx->driver_data;
1477         struct ib_cq *cq = queue->ib_cq;
1478         struct ib_wc wc;
1479         int found = 0;
1480
1481         while (ib_poll_cq(cq, 1, &wc) > 0) {
1482                 struct ib_cqe *cqe = wc.wr_cqe;
1483
1484                 if (cqe) {
1485                         if (cqe->done == nvme_rdma_recv_done)
1486                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1487                         else
1488                                 cqe->done(cq, &wc);
1489                 }
1490         }
1491
1492         return found;
1493 }
1494
1495 static void nvme_rdma_complete_rq(struct request *rq)
1496 {
1497         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1498
1499         nvme_rdma_unmap_data(req->queue, rq);
1500         nvme_complete_rq(rq);
1501 }
1502
1503 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1504         .queue_rq       = nvme_rdma_queue_rq,
1505         .complete       = nvme_rdma_complete_rq,
1506         .init_request   = nvme_rdma_init_request,
1507         .exit_request   = nvme_rdma_exit_request,
1508         .init_hctx      = nvme_rdma_init_hctx,
1509         .poll           = nvme_rdma_poll,
1510         .timeout        = nvme_rdma_timeout,
1511 };
1512
1513 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1514         .queue_rq       = nvme_rdma_queue_rq,
1515         .complete       = nvme_rdma_complete_rq,
1516         .init_request   = nvme_rdma_init_request,
1517         .exit_request   = nvme_rdma_exit_request,
1518         .init_hctx      = nvme_rdma_init_admin_hctx,
1519         .timeout        = nvme_rdma_timeout,
1520 };
1521
1522 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1523 {
1524         int error;
1525
1526         error = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
1527         if (error)
1528                 return error;
1529
1530         ctrl->device = ctrl->queues[0].device;
1531
1532         /*
1533          * We need a reference on the device as long as the tag_set is alive,
1534          * as the MRs in the request structures need a valid ib_device.
1535          */
1536         error = -EINVAL;
1537         if (!nvme_rdma_dev_get(ctrl->device))
1538                 goto out_free_queue;
1539
1540         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1541                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1542
1543         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1544         ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1545         ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1546         ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1547         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1548         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1549                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1550         ctrl->admin_tag_set.driver_data = ctrl;
1551         ctrl->admin_tag_set.nr_hw_queues = 1;
1552         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1553
1554         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1555         if (error)
1556                 goto out_put_dev;
1557
1558         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1559         if (IS_ERR(ctrl->ctrl.admin_q)) {
1560                 error = PTR_ERR(ctrl->ctrl.admin_q);
1561                 goto out_free_tagset;
1562         }
1563
1564         error = nvmf_connect_admin_queue(&ctrl->ctrl);
1565         if (error)
1566                 goto out_cleanup_queue;
1567
1568         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1569
1570         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP,
1571                         &ctrl->ctrl.cap);
1572         if (error) {
1573                 dev_err(ctrl->ctrl.device,
1574                         "prop_get NVME_REG_CAP failed\n");
1575                 goto out_cleanup_queue;
1576         }
1577
1578         ctrl->ctrl.sqsize =
1579                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
1580
1581         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1582         if (error)
1583                 goto out_cleanup_queue;
1584
1585         ctrl->ctrl.max_hw_sectors =
1586                 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1587
1588         error = nvme_init_identify(&ctrl->ctrl);
1589         if (error)
1590                 goto out_cleanup_queue;
1591
1592         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1593                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
1594                         DMA_TO_DEVICE);
1595         if (error)
1596                 goto out_cleanup_queue;
1597
1598         return 0;
1599
1600 out_cleanup_queue:
1601         blk_cleanup_queue(ctrl->ctrl.admin_q);
1602 out_free_tagset:
1603         /* disconnect and drain the queue before freeing the tagset */
1604         nvme_rdma_stop_queue(&ctrl->queues[0]);
1605         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1606 out_put_dev:
1607         nvme_rdma_dev_put(ctrl->device);
1608 out_free_queue:
1609         nvme_rdma_free_queue(&ctrl->queues[0]);
1610         return error;
1611 }
1612
1613 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1614 {
1615         cancel_work_sync(&ctrl->err_work);
1616         cancel_delayed_work_sync(&ctrl->reconnect_work);
1617
1618         if (ctrl->ctrl.queue_count > 1) {
1619                 nvme_stop_queues(&ctrl->ctrl);
1620                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1621                                         nvme_cancel_request, &ctrl->ctrl);
1622                 nvme_rdma_free_io_queues(ctrl);
1623         }
1624
1625         if (test_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags))
1626                 nvme_shutdown_ctrl(&ctrl->ctrl);
1627
1628         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1629         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1630                                 nvme_cancel_request, &ctrl->ctrl);
1631         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1632         nvme_rdma_destroy_admin_queue(ctrl);
1633 }
1634
1635 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1636 {
1637         nvme_stop_ctrl(&ctrl->ctrl);
1638         nvme_remove_namespaces(&ctrl->ctrl);
1639         if (shutdown)
1640                 nvme_rdma_shutdown_ctrl(ctrl);
1641
1642         nvme_uninit_ctrl(&ctrl->ctrl);
1643         if (ctrl->ctrl.tagset) {
1644                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1645                 blk_mq_free_tag_set(&ctrl->tag_set);
1646                 nvme_rdma_dev_put(ctrl->device);
1647         }
1648
1649         nvme_put_ctrl(&ctrl->ctrl);
1650 }
1651
1652 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1653 {
1654         struct nvme_rdma_ctrl *ctrl = container_of(work,
1655                                 struct nvme_rdma_ctrl, delete_work);
1656
1657         __nvme_rdma_remove_ctrl(ctrl, true);
1658 }
1659
1660 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1661 {
1662         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1663                 return -EBUSY;
1664
1665         if (!queue_work(nvme_wq, &ctrl->delete_work))
1666                 return -EBUSY;
1667
1668         return 0;
1669 }
1670
1671 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1672 {
1673         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1674         int ret = 0;
1675
1676         /*
1677          * Keep a reference until all work is flushed since
1678          * __nvme_rdma_del_ctrl can free the ctrl mem
1679          */
1680         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1681                 return -EBUSY;
1682         ret = __nvme_rdma_del_ctrl(ctrl);
1683         if (!ret)
1684                 flush_work(&ctrl->delete_work);
1685         nvme_put_ctrl(&ctrl->ctrl);
1686         return ret;
1687 }
1688
1689 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1690 {
1691         struct nvme_rdma_ctrl *ctrl = container_of(work,
1692                                 struct nvme_rdma_ctrl, delete_work);
1693
1694         __nvme_rdma_remove_ctrl(ctrl, false);
1695 }
1696
1697 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1698 {
1699         struct nvme_rdma_ctrl *ctrl =
1700                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1701         int ret;
1702         bool changed;
1703
1704         nvme_stop_ctrl(&ctrl->ctrl);
1705         nvme_rdma_shutdown_ctrl(ctrl);
1706
1707         ret = nvme_rdma_configure_admin_queue(ctrl);
1708         if (ret) {
1709                 /* ctrl is already shutdown, just remove the ctrl */
1710                 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1711                 goto del_dead_ctrl;
1712         }
1713
1714         if (ctrl->ctrl.queue_count > 1) {
1715                 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
1716                                            nvme_rdma_reinit_request);
1717                 if (ret)
1718                         goto del_dead_ctrl;
1719
1720                 ret = nvme_rdma_init_io_queues(ctrl);
1721                 if (ret)
1722                         goto del_dead_ctrl;
1723
1724                 ret = nvme_rdma_connect_io_queues(ctrl);
1725                 if (ret)
1726                         goto del_dead_ctrl;
1727
1728                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
1729                                 ctrl->ctrl.queue_count - 1);
1730         }
1731
1732         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1733         WARN_ON_ONCE(!changed);
1734
1735         nvme_start_ctrl(&ctrl->ctrl);
1736
1737         return;
1738
1739 del_dead_ctrl:
1740         /* Deleting this dead controller... */
1741         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1742         WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work));
1743 }
1744
1745 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1746         .name                   = "rdma",
1747         .module                 = THIS_MODULE,
1748         .flags                  = NVME_F_FABRICS,
1749         .reg_read32             = nvmf_reg_read32,
1750         .reg_read64             = nvmf_reg_read64,
1751         .reg_write32            = nvmf_reg_write32,
1752         .free_ctrl              = nvme_rdma_free_ctrl,
1753         .submit_async_event     = nvme_rdma_submit_async_event,
1754         .delete_ctrl            = nvme_rdma_del_ctrl,
1755         .get_address            = nvmf_get_address,
1756 };
1757
1758 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1759 {
1760         int ret;
1761
1762         ret = nvme_rdma_init_io_queues(ctrl);
1763         if (ret)
1764                 return ret;
1765
1766         /*
1767          * We need a reference on the device as long as the tag_set is alive,
1768          * as the MRs in the request structures need a valid ib_device.
1769          */
1770         ret = -EINVAL;
1771         if (!nvme_rdma_dev_get(ctrl->device))
1772                 goto out_free_io_queues;
1773
1774         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1775         ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1776         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1777         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1778         ctrl->tag_set.numa_node = NUMA_NO_NODE;
1779         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1780         ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1781                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1782         ctrl->tag_set.driver_data = ctrl;
1783         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
1784         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1785
1786         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1787         if (ret)
1788                 goto out_put_dev;
1789         ctrl->ctrl.tagset = &ctrl->tag_set;
1790
1791         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1792         if (IS_ERR(ctrl->ctrl.connect_q)) {
1793                 ret = PTR_ERR(ctrl->ctrl.connect_q);
1794                 goto out_free_tag_set;
1795         }
1796
1797         ret = nvme_rdma_connect_io_queues(ctrl);
1798         if (ret)
1799                 goto out_cleanup_connect_q;
1800
1801         return 0;
1802
1803 out_cleanup_connect_q:
1804         blk_cleanup_queue(ctrl->ctrl.connect_q);
1805 out_free_tag_set:
1806         blk_mq_free_tag_set(&ctrl->tag_set);
1807 out_put_dev:
1808         nvme_rdma_dev_put(ctrl->device);
1809 out_free_io_queues:
1810         nvme_rdma_free_io_queues(ctrl);
1811         return ret;
1812 }
1813
1814 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1815                 struct nvmf_ctrl_options *opts)
1816 {
1817         struct nvme_rdma_ctrl *ctrl;
1818         int ret;
1819         bool changed;
1820         char *port;
1821
1822         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1823         if (!ctrl)
1824                 return ERR_PTR(-ENOMEM);
1825         ctrl->ctrl.opts = opts;
1826         INIT_LIST_HEAD(&ctrl->list);
1827
1828         if (opts->mask & NVMF_OPT_TRSVCID)
1829                 port = opts->trsvcid;
1830         else
1831                 port = __stringify(NVME_RDMA_IP_PORT);
1832
1833         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1834                         opts->traddr, port, &ctrl->addr);
1835         if (ret) {
1836                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1837                 goto out_free_ctrl;
1838         }
1839
1840         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1841                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1842                         opts->host_traddr, NULL, &ctrl->src_addr);
1843                 if (ret) {
1844                         pr_err("malformed src address passed: %s\n",
1845                                opts->host_traddr);
1846                         goto out_free_ctrl;
1847                 }
1848         }
1849
1850         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1851                                 0 /* no quirks, we're perfect! */);
1852         if (ret)
1853                 goto out_free_ctrl;
1854
1855         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1856                         nvme_rdma_reconnect_ctrl_work);
1857         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1858         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1859         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1860
1861         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1862         ctrl->ctrl.sqsize = opts->queue_size - 1;
1863         ctrl->ctrl.kato = opts->kato;
1864
1865         ret = -ENOMEM;
1866         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1867                                 GFP_KERNEL);
1868         if (!ctrl->queues)
1869                 goto out_uninit_ctrl;
1870
1871         ret = nvme_rdma_configure_admin_queue(ctrl);
1872         if (ret)
1873                 goto out_kfree_queues;
1874
1875         /* sanity check icdoff */
1876         if (ctrl->ctrl.icdoff) {
1877                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1878                 ret = -EINVAL;
1879                 goto out_remove_admin_queue;
1880         }
1881
1882         /* sanity check keyed sgls */
1883         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1884                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1885                 ret = -EINVAL;
1886                 goto out_remove_admin_queue;
1887         }
1888
1889         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1890                 /* warn if maxcmd is lower than queue_size */
1891                 dev_warn(ctrl->ctrl.device,
1892                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1893                         opts->queue_size, ctrl->ctrl.maxcmd);
1894                 opts->queue_size = ctrl->ctrl.maxcmd;
1895         }
1896
1897         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1898                 /* warn if sqsize is lower than queue_size */
1899                 dev_warn(ctrl->ctrl.device,
1900                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1901                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1902                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1903         }
1904
1905         if (opts->nr_io_queues) {
1906                 ret = nvme_rdma_create_io_queues(ctrl);
1907                 if (ret)
1908                         goto out_remove_admin_queue;
1909         }
1910
1911         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1912         WARN_ON_ONCE(!changed);
1913
1914         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1915                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1916
1917         kref_get(&ctrl->ctrl.kref);
1918
1919         mutex_lock(&nvme_rdma_ctrl_mutex);
1920         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1921         mutex_unlock(&nvme_rdma_ctrl_mutex);
1922
1923         nvme_start_ctrl(&ctrl->ctrl);
1924
1925         return &ctrl->ctrl;
1926
1927 out_remove_admin_queue:
1928         nvme_rdma_destroy_admin_queue(ctrl);
1929 out_kfree_queues:
1930         kfree(ctrl->queues);
1931 out_uninit_ctrl:
1932         nvme_uninit_ctrl(&ctrl->ctrl);
1933         nvme_put_ctrl(&ctrl->ctrl);
1934         if (ret > 0)
1935                 ret = -EIO;
1936         return ERR_PTR(ret);
1937 out_free_ctrl:
1938         kfree(ctrl);
1939         return ERR_PTR(ret);
1940 }
1941
1942 static struct nvmf_transport_ops nvme_rdma_transport = {
1943         .name           = "rdma",
1944         .required_opts  = NVMF_OPT_TRADDR,
1945         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1946                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1947         .create_ctrl    = nvme_rdma_create_ctrl,
1948 };
1949
1950 static void nvme_rdma_add_one(struct ib_device *ib_device)
1951 {
1952 }
1953
1954 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1955 {
1956         struct nvme_rdma_ctrl *ctrl;
1957
1958         /* Delete all controllers using this device */
1959         mutex_lock(&nvme_rdma_ctrl_mutex);
1960         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1961                 if (ctrl->device->dev != ib_device)
1962                         continue;
1963                 dev_info(ctrl->ctrl.device,
1964                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
1965                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1966                 __nvme_rdma_del_ctrl(ctrl);
1967         }
1968         mutex_unlock(&nvme_rdma_ctrl_mutex);
1969
1970         flush_workqueue(nvme_wq);
1971 }
1972
1973 static struct ib_client nvme_rdma_ib_client = {
1974         .name   = "nvme_rdma",
1975         .add = nvme_rdma_add_one,
1976         .remove = nvme_rdma_remove_one
1977 };
1978
1979 static int __init nvme_rdma_init_module(void)
1980 {
1981         int ret;
1982
1983         ret = ib_register_client(&nvme_rdma_ib_client);
1984         if (ret)
1985                 return ret;
1986
1987         ret = nvmf_register_transport(&nvme_rdma_transport);
1988         if (ret)
1989                 goto err_unreg_client;
1990
1991         return 0;
1992
1993 err_unreg_client:
1994         ib_unregister_client(&nvme_rdma_ib_client);
1995         return ret;
1996 }
1997
1998 static void __exit nvme_rdma_cleanup_module(void)
1999 {
2000         nvmf_unregister_transport(&nvme_rdma_transport);
2001         ib_unregister_client(&nvme_rdma_ib_client);
2002 }
2003
2004 module_init(nvme_rdma_init_module);
2005 module_exit(nvme_rdma_cleanup_module);
2006
2007 MODULE_LICENSE("GPL v2");