nvme: move AER handling to common code
[linux-2.6-block.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH            1024
49 #define NVME_AQ_DEPTH           256
50 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
52                 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
58
59 static int use_threaded_interrupts;
60 module_param(use_threaded_interrupts, int, 0);
61
62 static bool use_cmb_sqes = true;
63 module_param(use_cmb_sqes, bool, 0644);
64 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65
66 static struct workqueue_struct *nvme_workq;
67
68 struct nvme_dev;
69 struct nvme_queue;
70
71 static int nvme_reset(struct nvme_dev *dev);
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79         struct nvme_queue **queues;
80         struct blk_mq_tag_set tagset;
81         struct blk_mq_tag_set admin_tagset;
82         u32 __iomem *dbs;
83         struct device *dev;
84         struct dma_pool *prp_page_pool;
85         struct dma_pool *prp_small_pool;
86         unsigned queue_count;
87         unsigned online_queues;
88         unsigned max_qid;
89         int q_depth;
90         u32 db_stride;
91         struct msix_entry *entry;
92         void __iomem *bar;
93         struct work_struct reset_work;
94         struct work_struct remove_work;
95         struct timer_list watchdog_timer;
96         struct mutex shutdown_lock;
97         bool subsystem;
98         void __iomem *cmb;
99         dma_addr_t cmb_dma_addr;
100         u64 cmb_size;
101         u32 cmbsz;
102         struct nvme_ctrl ctrl;
103         struct completion ioq_wait;
104 };
105
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108         return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110
111 /*
112  * An NVM Express queue.  Each device has at least two (one for admin
113  * commands and one for I/O commands).
114  */
115 struct nvme_queue {
116         struct device *q_dmadev;
117         struct nvme_dev *dev;
118         char irqname[24];       /* nvme4294967295-65535\0 */
119         spinlock_t q_lock;
120         struct nvme_command *sq_cmds;
121         struct nvme_command __iomem *sq_cmds_io;
122         volatile struct nvme_completion *cqes;
123         struct blk_mq_tags **tags;
124         dma_addr_t sq_dma_addr;
125         dma_addr_t cq_dma_addr;
126         u32 __iomem *q_db;
127         u16 q_depth;
128         s16 cq_vector;
129         u16 sq_tail;
130         u16 cq_head;
131         u16 qid;
132         u8 cq_phase;
133         u8 cqe_seen;
134 };
135
136 /*
137  * The nvme_iod describes the data in an I/O, including the list of PRP
138  * entries.  You can't see it in this data structure because C doesn't let
139  * me express that.  Use nvme_init_iod to ensure there's enough space
140  * allocated to store the PRP list.
141  */
142 struct nvme_iod {
143         struct nvme_queue *nvmeq;
144         int aborted;
145         int npages;             /* In the PRP list. 0 means small pool in use */
146         int nents;              /* Used in scatterlist */
147         int length;             /* Of data, in bytes */
148         dma_addr_t first_dma;
149         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150         struct scatterlist *sg;
151         struct scatterlist inline_sg[0];
152 };
153
154 /*
155  * Check we didin't inadvertently grow the command struct
156  */
157 static inline void _nvme_check_size(void)
158 {
159         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172
173 /*
174  * Max size of iod being embedded in the request payload
175  */
176 #define NVME_INT_PAGES          2
177 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
178
179 /*
180  * Will slightly overestimate the number of pages needed.  This is OK
181  * as it only leads to a small amount of wasted memory for the lifetime of
182  * the I/O.
183  */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187                                       dev->ctrl.page_size);
188         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192                 unsigned int size, unsigned int nseg)
193 {
194         return sizeof(__le64 *) * nvme_npages(size, dev) +
195                         sizeof(struct scatterlist) * nseg;
196 }
197
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200         return sizeof(struct nvme_iod) +
201                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203
204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205                                 unsigned int hctx_idx)
206 {
207         struct nvme_dev *dev = data;
208         struct nvme_queue *nvmeq = dev->queues[0];
209
210         WARN_ON(hctx_idx != 0);
211         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212         WARN_ON(nvmeq->tags);
213
214         hctx->driver_data = nvmeq;
215         nvmeq->tags = &dev->admin_tagset.tags[0];
216         return 0;
217 }
218
219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220 {
221         struct nvme_queue *nvmeq = hctx->driver_data;
222
223         nvmeq->tags = NULL;
224 }
225
226 static int nvme_admin_init_request(void *data, struct request *req,
227                                 unsigned int hctx_idx, unsigned int rq_idx,
228                                 unsigned int numa_node)
229 {
230         struct nvme_dev *dev = data;
231         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
232         struct nvme_queue *nvmeq = dev->queues[0];
233
234         BUG_ON(!nvmeq);
235         iod->nvmeq = nvmeq;
236         return 0;
237 }
238
239 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240                           unsigned int hctx_idx)
241 {
242         struct nvme_dev *dev = data;
243         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
244
245         if (!nvmeq->tags)
246                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
247
248         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
249         hctx->driver_data = nvmeq;
250         return 0;
251 }
252
253 static int nvme_init_request(void *data, struct request *req,
254                                 unsigned int hctx_idx, unsigned int rq_idx,
255                                 unsigned int numa_node)
256 {
257         struct nvme_dev *dev = data;
258         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
259         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260
261         BUG_ON(!nvmeq);
262         iod->nvmeq = nvmeq;
263         return 0;
264 }
265
266 /**
267  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
268  * @nvmeq: The queue to use
269  * @cmd: The command to send
270  *
271  * Safe to use from interrupt context
272  */
273 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274                                                 struct nvme_command *cmd)
275 {
276         u16 tail = nvmeq->sq_tail;
277
278         if (nvmeq->sq_cmds_io)
279                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280         else
281                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282
283         if (++tail == nvmeq->q_depth)
284                 tail = 0;
285         writel(tail, nvmeq->q_db);
286         nvmeq->sq_tail = tail;
287 }
288
289 static __le64 **iod_list(struct request *req)
290 {
291         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292         return (__le64 **)(iod->sg + req->nr_phys_segments);
293 }
294
295 static int nvme_init_iod(struct request *rq, unsigned size,
296                 struct nvme_dev *dev)
297 {
298         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299         int nseg = rq->nr_phys_segments;
300
301         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303                 if (!iod->sg)
304                         return BLK_MQ_RQ_QUEUE_BUSY;
305         } else {
306                 iod->sg = iod->inline_sg;
307         }
308
309         iod->aborted = 0;
310         iod->npages = -1;
311         iod->nents = 0;
312         iod->length = size;
313         return 0;
314 }
315
316 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
317 {
318         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
319         const int last_prp = dev->ctrl.page_size / 8 - 1;
320         int i;
321         __le64 **list = iod_list(req);
322         dma_addr_t prp_dma = iod->first_dma;
323
324         if (req->cmd_flags & REQ_DISCARD)
325                 kfree(req->completion_data);
326
327         if (iod->npages == 0)
328                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
329         for (i = 0; i < iod->npages; i++) {
330                 __le64 *prp_list = list[i];
331                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
332                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
333                 prp_dma = next_prp_dma;
334         }
335
336         if (iod->sg != iod->inline_sg)
337                 kfree(iod->sg);
338 }
339
340 #ifdef CONFIG_BLK_DEV_INTEGRITY
341 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
342 {
343         if (be32_to_cpu(pi->ref_tag) == v)
344                 pi->ref_tag = cpu_to_be32(p);
345 }
346
347 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
348 {
349         if (be32_to_cpu(pi->ref_tag) == p)
350                 pi->ref_tag = cpu_to_be32(v);
351 }
352
353 /**
354  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
355  *
356  * The virtual start sector is the one that was originally submitted by the
357  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
358  * start sector may be different. Remap protection information to match the
359  * physical LBA on writes, and back to the original seed on reads.
360  *
361  * Type 0 and 3 do not have a ref tag, so no remapping required.
362  */
363 static void nvme_dif_remap(struct request *req,
364                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
365 {
366         struct nvme_ns *ns = req->rq_disk->private_data;
367         struct bio_integrity_payload *bip;
368         struct t10_pi_tuple *pi;
369         void *p, *pmap;
370         u32 i, nlb, ts, phys, virt;
371
372         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
373                 return;
374
375         bip = bio_integrity(req->bio);
376         if (!bip)
377                 return;
378
379         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
380
381         p = pmap;
382         virt = bip_get_seed(bip);
383         phys = nvme_block_nr(ns, blk_rq_pos(req));
384         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
385         ts = ns->disk->queue->integrity.tuple_size;
386
387         for (i = 0; i < nlb; i++, virt++, phys++) {
388                 pi = (struct t10_pi_tuple *)p;
389                 dif_swap(phys, virt, pi);
390                 p += ts;
391         }
392         kunmap_atomic(pmap);
393 }
394 #else /* CONFIG_BLK_DEV_INTEGRITY */
395 static void nvme_dif_remap(struct request *req,
396                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
397 {
398 }
399 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
400 {
401 }
402 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
403 {
404 }
405 #endif
406
407 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
408                 int total_len)
409 {
410         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
411         struct dma_pool *pool;
412         int length = total_len;
413         struct scatterlist *sg = iod->sg;
414         int dma_len = sg_dma_len(sg);
415         u64 dma_addr = sg_dma_address(sg);
416         u32 page_size = dev->ctrl.page_size;
417         int offset = dma_addr & (page_size - 1);
418         __le64 *prp_list;
419         __le64 **list = iod_list(req);
420         dma_addr_t prp_dma;
421         int nprps, i;
422
423         length -= (page_size - offset);
424         if (length <= 0)
425                 return true;
426
427         dma_len -= (page_size - offset);
428         if (dma_len) {
429                 dma_addr += (page_size - offset);
430         } else {
431                 sg = sg_next(sg);
432                 dma_addr = sg_dma_address(sg);
433                 dma_len = sg_dma_len(sg);
434         }
435
436         if (length <= page_size) {
437                 iod->first_dma = dma_addr;
438                 return true;
439         }
440
441         nprps = DIV_ROUND_UP(length, page_size);
442         if (nprps <= (256 / 8)) {
443                 pool = dev->prp_small_pool;
444                 iod->npages = 0;
445         } else {
446                 pool = dev->prp_page_pool;
447                 iod->npages = 1;
448         }
449
450         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
451         if (!prp_list) {
452                 iod->first_dma = dma_addr;
453                 iod->npages = -1;
454                 return false;
455         }
456         list[0] = prp_list;
457         iod->first_dma = prp_dma;
458         i = 0;
459         for (;;) {
460                 if (i == page_size >> 3) {
461                         __le64 *old_prp_list = prp_list;
462                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
463                         if (!prp_list)
464                                 return false;
465                         list[iod->npages++] = prp_list;
466                         prp_list[0] = old_prp_list[i - 1];
467                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
468                         i = 1;
469                 }
470                 prp_list[i++] = cpu_to_le64(dma_addr);
471                 dma_len -= page_size;
472                 dma_addr += page_size;
473                 length -= page_size;
474                 if (length <= 0)
475                         break;
476                 if (dma_len > 0)
477                         continue;
478                 BUG_ON(dma_len < 0);
479                 sg = sg_next(sg);
480                 dma_addr = sg_dma_address(sg);
481                 dma_len = sg_dma_len(sg);
482         }
483
484         return true;
485 }
486
487 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
488                 unsigned size, struct nvme_command *cmnd)
489 {
490         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
491         struct request_queue *q = req->q;
492         enum dma_data_direction dma_dir = rq_data_dir(req) ?
493                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
494         int ret = BLK_MQ_RQ_QUEUE_ERROR;
495
496         sg_init_table(iod->sg, req->nr_phys_segments);
497         iod->nents = blk_rq_map_sg(q, req, iod->sg);
498         if (!iod->nents)
499                 goto out;
500
501         ret = BLK_MQ_RQ_QUEUE_BUSY;
502         if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
503                 goto out;
504
505         if (!nvme_setup_prps(dev, req, size))
506                 goto out_unmap;
507
508         ret = BLK_MQ_RQ_QUEUE_ERROR;
509         if (blk_integrity_rq(req)) {
510                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
511                         goto out_unmap;
512
513                 sg_init_table(&iod->meta_sg, 1);
514                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
515                         goto out_unmap;
516
517                 if (rq_data_dir(req))
518                         nvme_dif_remap(req, nvme_dif_prep);
519
520                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
521                         goto out_unmap;
522         }
523
524         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
525         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
526         if (blk_integrity_rq(req))
527                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
528         return BLK_MQ_RQ_QUEUE_OK;
529
530 out_unmap:
531         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
532 out:
533         return ret;
534 }
535
536 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
537 {
538         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
539         enum dma_data_direction dma_dir = rq_data_dir(req) ?
540                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
541
542         if (iod->nents) {
543                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
544                 if (blk_integrity_rq(req)) {
545                         if (!rq_data_dir(req))
546                                 nvme_dif_remap(req, nvme_dif_complete);
547                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
548                 }
549         }
550
551         nvme_free_iod(dev, req);
552 }
553
554 /*
555  * NOTE: ns is NULL when called on the admin queue.
556  */
557 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
558                          const struct blk_mq_queue_data *bd)
559 {
560         struct nvme_ns *ns = hctx->queue->queuedata;
561         struct nvme_queue *nvmeq = hctx->driver_data;
562         struct nvme_dev *dev = nvmeq->dev;
563         struct request *req = bd->rq;
564         struct nvme_command cmnd;
565         unsigned map_len;
566         int ret = BLK_MQ_RQ_QUEUE_OK;
567
568         /*
569          * If formated with metadata, require the block layer provide a buffer
570          * unless this namespace is formated such that the metadata can be
571          * stripped/generated by the controller with PRACT=1.
572          */
573         if (ns && ns->ms && !blk_integrity_rq(req)) {
574                 if (!(ns->pi_type && ns->ms == 8) &&
575                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
576                         blk_mq_end_request(req, -EFAULT);
577                         return BLK_MQ_RQ_QUEUE_OK;
578                 }
579         }
580
581         map_len = nvme_map_len(req);
582         ret = nvme_init_iod(req, map_len, dev);
583         if (ret)
584                 return ret;
585
586         ret = nvme_setup_cmd(ns, req, &cmnd);
587         if (ret)
588                 goto out;
589
590         if (req->nr_phys_segments)
591                 ret = nvme_map_data(dev, req, map_len, &cmnd);
592
593         if (ret)
594                 goto out;
595
596         cmnd.common.command_id = req->tag;
597         blk_mq_start_request(req);
598
599         spin_lock_irq(&nvmeq->q_lock);
600         if (unlikely(nvmeq->cq_vector < 0)) {
601                 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
602                         ret = BLK_MQ_RQ_QUEUE_BUSY;
603                 else
604                         ret = BLK_MQ_RQ_QUEUE_ERROR;
605                 spin_unlock_irq(&nvmeq->q_lock);
606                 goto out;
607         }
608         __nvme_submit_cmd(nvmeq, &cmnd);
609         nvme_process_cq(nvmeq);
610         spin_unlock_irq(&nvmeq->q_lock);
611         return BLK_MQ_RQ_QUEUE_OK;
612 out:
613         nvme_free_iod(dev, req);
614         return ret;
615 }
616
617 static void nvme_complete_rq(struct request *req)
618 {
619         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
620         struct nvme_dev *dev = iod->nvmeq->dev;
621         int error = 0;
622
623         nvme_unmap_data(dev, req);
624
625         if (unlikely(req->errors)) {
626                 if (nvme_req_needs_retry(req, req->errors)) {
627                         nvme_requeue_req(req);
628                         return;
629                 }
630
631                 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
632                         error = req->errors;
633                 else
634                         error = nvme_error_status(req->errors);
635         }
636
637         if (unlikely(iod->aborted)) {
638                 dev_warn(dev->ctrl.device,
639                         "completing aborted command with status: %04x\n",
640                         req->errors);
641         }
642
643         blk_mq_end_request(req, error);
644 }
645
646 /* We read the CQE phase first to check if the rest of the entry is valid */
647 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
648                 u16 phase)
649 {
650         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
651 }
652
653 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
654 {
655         u16 head, phase;
656
657         head = nvmeq->cq_head;
658         phase = nvmeq->cq_phase;
659
660         while (nvme_cqe_valid(nvmeq, head, phase)) {
661                 struct nvme_completion cqe = nvmeq->cqes[head];
662                 struct request *req;
663
664                 if (++head == nvmeq->q_depth) {
665                         head = 0;
666                         phase = !phase;
667                 }
668
669                 if (tag && *tag == cqe.command_id)
670                         *tag = -1;
671
672                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
673                         dev_warn(nvmeq->dev->ctrl.device,
674                                 "invalid id %d completed on queue %d\n",
675                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
676                         continue;
677                 }
678
679                 /*
680                  * AEN requests are special as they don't time out and can
681                  * survive any kind of queue freeze and often don't respond to
682                  * aborts.  We don't even bother to allocate a struct request
683                  * for them but rather special case them here.
684                  */
685                 if (unlikely(nvmeq->qid == 0 &&
686                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
687                         nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
688                         continue;
689                 }
690
691                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
692                 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
693                         memcpy(req->special, &cqe, sizeof(cqe));
694                 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
695
696         }
697
698         /* If the controller ignores the cq head doorbell and continuously
699          * writes to the queue, it is theoretically possible to wrap around
700          * the queue twice and mistakenly return IRQ_NONE.  Linux only
701          * requires that 0.1% of your interrupts are handled, so this isn't
702          * a big problem.
703          */
704         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
705                 return;
706
707         if (likely(nvmeq->cq_vector >= 0))
708                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
709         nvmeq->cq_head = head;
710         nvmeq->cq_phase = phase;
711
712         nvmeq->cqe_seen = 1;
713 }
714
715 static void nvme_process_cq(struct nvme_queue *nvmeq)
716 {
717         __nvme_process_cq(nvmeq, NULL);
718 }
719
720 static irqreturn_t nvme_irq(int irq, void *data)
721 {
722         irqreturn_t result;
723         struct nvme_queue *nvmeq = data;
724         spin_lock(&nvmeq->q_lock);
725         nvme_process_cq(nvmeq);
726         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
727         nvmeq->cqe_seen = 0;
728         spin_unlock(&nvmeq->q_lock);
729         return result;
730 }
731
732 static irqreturn_t nvme_irq_check(int irq, void *data)
733 {
734         struct nvme_queue *nvmeq = data;
735         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
736                 return IRQ_WAKE_THREAD;
737         return IRQ_NONE;
738 }
739
740 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
741 {
742         struct nvme_queue *nvmeq = hctx->driver_data;
743
744         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
745                 spin_lock_irq(&nvmeq->q_lock);
746                 __nvme_process_cq(nvmeq, &tag);
747                 spin_unlock_irq(&nvmeq->q_lock);
748
749                 if (tag == -1)
750                         return 1;
751         }
752
753         return 0;
754 }
755
756 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
757 {
758         struct nvme_dev *dev = to_nvme_dev(ctrl);
759         struct nvme_queue *nvmeq = dev->queues[0];
760         struct nvme_command c;
761
762         memset(&c, 0, sizeof(c));
763         c.common.opcode = nvme_admin_async_event;
764         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
765
766         spin_lock_irq(&nvmeq->q_lock);
767         __nvme_submit_cmd(nvmeq, &c);
768         spin_unlock_irq(&nvmeq->q_lock);
769 }
770
771 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
772 {
773         struct nvme_command c;
774
775         memset(&c, 0, sizeof(c));
776         c.delete_queue.opcode = opcode;
777         c.delete_queue.qid = cpu_to_le16(id);
778
779         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
780 }
781
782 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
783                                                 struct nvme_queue *nvmeq)
784 {
785         struct nvme_command c;
786         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
787
788         /*
789          * Note: we (ab)use the fact the the prp fields survive if no data
790          * is attached to the request.
791          */
792         memset(&c, 0, sizeof(c));
793         c.create_cq.opcode = nvme_admin_create_cq;
794         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
795         c.create_cq.cqid = cpu_to_le16(qid);
796         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
797         c.create_cq.cq_flags = cpu_to_le16(flags);
798         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
799
800         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
801 }
802
803 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
804                                                 struct nvme_queue *nvmeq)
805 {
806         struct nvme_command c;
807         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
808
809         /*
810          * Note: we (ab)use the fact the the prp fields survive if no data
811          * is attached to the request.
812          */
813         memset(&c, 0, sizeof(c));
814         c.create_sq.opcode = nvme_admin_create_sq;
815         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
816         c.create_sq.sqid = cpu_to_le16(qid);
817         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
818         c.create_sq.sq_flags = cpu_to_le16(flags);
819         c.create_sq.cqid = cpu_to_le16(qid);
820
821         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
822 }
823
824 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
825 {
826         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
827 }
828
829 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
830 {
831         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
832 }
833
834 static void abort_endio(struct request *req, int error)
835 {
836         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
837         struct nvme_queue *nvmeq = iod->nvmeq;
838         u16 status = req->errors;
839
840         dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
841         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
842         blk_mq_free_request(req);
843 }
844
845 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
846 {
847         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
848         struct nvme_queue *nvmeq = iod->nvmeq;
849         struct nvme_dev *dev = nvmeq->dev;
850         struct request *abort_req;
851         struct nvme_command cmd;
852
853         /*
854          * Shutdown immediately if controller times out while starting. The
855          * reset work will see the pci device disabled when it gets the forced
856          * cancellation error. All outstanding requests are completed on
857          * shutdown, so we return BLK_EH_HANDLED.
858          */
859         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
860                 dev_warn(dev->ctrl.device,
861                          "I/O %d QID %d timeout, disable controller\n",
862                          req->tag, nvmeq->qid);
863                 nvme_dev_disable(dev, false);
864                 req->errors = NVME_SC_CANCELLED;
865                 return BLK_EH_HANDLED;
866         }
867
868         /*
869          * Shutdown the controller immediately and schedule a reset if the
870          * command was already aborted once before and still hasn't been
871          * returned to the driver, or if this is the admin queue.
872          */
873         if (!nvmeq->qid || iod->aborted) {
874                 dev_warn(dev->ctrl.device,
875                          "I/O %d QID %d timeout, reset controller\n",
876                          req->tag, nvmeq->qid);
877                 nvme_dev_disable(dev, false);
878                 queue_work(nvme_workq, &dev->reset_work);
879
880                 /*
881                  * Mark the request as handled, since the inline shutdown
882                  * forces all outstanding requests to complete.
883                  */
884                 req->errors = NVME_SC_CANCELLED;
885                 return BLK_EH_HANDLED;
886         }
887
888         iod->aborted = 1;
889
890         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
891                 atomic_inc(&dev->ctrl.abort_limit);
892                 return BLK_EH_RESET_TIMER;
893         }
894
895         memset(&cmd, 0, sizeof(cmd));
896         cmd.abort.opcode = nvme_admin_abort_cmd;
897         cmd.abort.cid = req->tag;
898         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
899
900         dev_warn(nvmeq->dev->ctrl.device,
901                 "I/O %d QID %d timeout, aborting\n",
902                  req->tag, nvmeq->qid);
903
904         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
905                         BLK_MQ_REQ_NOWAIT);
906         if (IS_ERR(abort_req)) {
907                 atomic_inc(&dev->ctrl.abort_limit);
908                 return BLK_EH_RESET_TIMER;
909         }
910
911         abort_req->timeout = ADMIN_TIMEOUT;
912         abort_req->end_io_data = NULL;
913         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
914
915         /*
916          * The aborted req will be completed on receiving the abort req.
917          * We enable the timer again. If hit twice, it'll cause a device reset,
918          * as the device then is in a faulty state.
919          */
920         return BLK_EH_RESET_TIMER;
921 }
922
923 static void nvme_cancel_io(struct request *req, void *data, bool reserved)
924 {
925         int status;
926
927         if (!blk_mq_request_started(req))
928                 return;
929
930         dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
931                                 "Cancelling I/O %d", req->tag);
932
933         status = NVME_SC_ABORT_REQ;
934         if (blk_queue_dying(req->q))
935                 status |= NVME_SC_DNR;
936         blk_mq_complete_request(req, status);
937 }
938
939 static void nvme_free_queue(struct nvme_queue *nvmeq)
940 {
941         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
942                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
943         if (nvmeq->sq_cmds)
944                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
945                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
946         kfree(nvmeq);
947 }
948
949 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
950 {
951         int i;
952
953         for (i = dev->queue_count - 1; i >= lowest; i--) {
954                 struct nvme_queue *nvmeq = dev->queues[i];
955                 dev->queue_count--;
956                 dev->queues[i] = NULL;
957                 nvme_free_queue(nvmeq);
958         }
959 }
960
961 /**
962  * nvme_suspend_queue - put queue into suspended state
963  * @nvmeq - queue to suspend
964  */
965 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
966 {
967         int vector;
968
969         spin_lock_irq(&nvmeq->q_lock);
970         if (nvmeq->cq_vector == -1) {
971                 spin_unlock_irq(&nvmeq->q_lock);
972                 return 1;
973         }
974         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
975         nvmeq->dev->online_queues--;
976         nvmeq->cq_vector = -1;
977         spin_unlock_irq(&nvmeq->q_lock);
978
979         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
980                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
981
982         irq_set_affinity_hint(vector, NULL);
983         free_irq(vector, nvmeq);
984
985         return 0;
986 }
987
988 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
989 {
990         struct nvme_queue *nvmeq = dev->queues[0];
991
992         if (!nvmeq)
993                 return;
994         if (nvme_suspend_queue(nvmeq))
995                 return;
996
997         if (shutdown)
998                 nvme_shutdown_ctrl(&dev->ctrl);
999         else
1000                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1001                                                 dev->bar + NVME_REG_CAP));
1002
1003         spin_lock_irq(&nvmeq->q_lock);
1004         nvme_process_cq(nvmeq);
1005         spin_unlock_irq(&nvmeq->q_lock);
1006 }
1007
1008 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1009                                 int entry_size)
1010 {
1011         int q_depth = dev->q_depth;
1012         unsigned q_size_aligned = roundup(q_depth * entry_size,
1013                                           dev->ctrl.page_size);
1014
1015         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1016                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1017                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1018                 q_depth = div_u64(mem_per_q, entry_size);
1019
1020                 /*
1021                  * Ensure the reduced q_depth is above some threshold where it
1022                  * would be better to map queues in system memory with the
1023                  * original depth
1024                  */
1025                 if (q_depth < 64)
1026                         return -ENOMEM;
1027         }
1028
1029         return q_depth;
1030 }
1031
1032 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1033                                 int qid, int depth)
1034 {
1035         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1036                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1037                                                       dev->ctrl.page_size);
1038                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1039                 nvmeq->sq_cmds_io = dev->cmb + offset;
1040         } else {
1041                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1042                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1043                 if (!nvmeq->sq_cmds)
1044                         return -ENOMEM;
1045         }
1046
1047         return 0;
1048 }
1049
1050 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1051                                                         int depth)
1052 {
1053         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1054         if (!nvmeq)
1055                 return NULL;
1056
1057         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1058                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1059         if (!nvmeq->cqes)
1060                 goto free_nvmeq;
1061
1062         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1063                 goto free_cqdma;
1064
1065         nvmeq->q_dmadev = dev->dev;
1066         nvmeq->dev = dev;
1067         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1068                         dev->ctrl.instance, qid);
1069         spin_lock_init(&nvmeq->q_lock);
1070         nvmeq->cq_head = 0;
1071         nvmeq->cq_phase = 1;
1072         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1073         nvmeq->q_depth = depth;
1074         nvmeq->qid = qid;
1075         nvmeq->cq_vector = -1;
1076         dev->queues[qid] = nvmeq;
1077         dev->queue_count++;
1078
1079         return nvmeq;
1080
1081  free_cqdma:
1082         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1083                                                         nvmeq->cq_dma_addr);
1084  free_nvmeq:
1085         kfree(nvmeq);
1086         return NULL;
1087 }
1088
1089 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1090                                                         const char *name)
1091 {
1092         if (use_threaded_interrupts)
1093                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1094                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1095                                         name, nvmeq);
1096         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1097                                 IRQF_SHARED, name, nvmeq);
1098 }
1099
1100 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1101 {
1102         struct nvme_dev *dev = nvmeq->dev;
1103
1104         spin_lock_irq(&nvmeq->q_lock);
1105         nvmeq->sq_tail = 0;
1106         nvmeq->cq_head = 0;
1107         nvmeq->cq_phase = 1;
1108         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1109         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1110         dev->online_queues++;
1111         spin_unlock_irq(&nvmeq->q_lock);
1112 }
1113
1114 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1115 {
1116         struct nvme_dev *dev = nvmeq->dev;
1117         int result;
1118
1119         nvmeq->cq_vector = qid - 1;
1120         result = adapter_alloc_cq(dev, qid, nvmeq);
1121         if (result < 0)
1122                 return result;
1123
1124         result = adapter_alloc_sq(dev, qid, nvmeq);
1125         if (result < 0)
1126                 goto release_cq;
1127
1128         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1129         if (result < 0)
1130                 goto release_sq;
1131
1132         nvme_init_queue(nvmeq, qid);
1133         return result;
1134
1135  release_sq:
1136         adapter_delete_sq(dev, qid);
1137  release_cq:
1138         adapter_delete_cq(dev, qid);
1139         return result;
1140 }
1141
1142 static struct blk_mq_ops nvme_mq_admin_ops = {
1143         .queue_rq       = nvme_queue_rq,
1144         .complete       = nvme_complete_rq,
1145         .map_queue      = blk_mq_map_queue,
1146         .init_hctx      = nvme_admin_init_hctx,
1147         .exit_hctx      = nvme_admin_exit_hctx,
1148         .init_request   = nvme_admin_init_request,
1149         .timeout        = nvme_timeout,
1150 };
1151
1152 static struct blk_mq_ops nvme_mq_ops = {
1153         .queue_rq       = nvme_queue_rq,
1154         .complete       = nvme_complete_rq,
1155         .map_queue      = blk_mq_map_queue,
1156         .init_hctx      = nvme_init_hctx,
1157         .init_request   = nvme_init_request,
1158         .timeout        = nvme_timeout,
1159         .poll           = nvme_poll,
1160 };
1161
1162 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1163 {
1164         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1165                 /*
1166                  * If the controller was reset during removal, it's possible
1167                  * user requests may be waiting on a stopped queue. Start the
1168                  * queue to flush these to completion.
1169                  */
1170                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1171                 blk_cleanup_queue(dev->ctrl.admin_q);
1172                 blk_mq_free_tag_set(&dev->admin_tagset);
1173         }
1174 }
1175
1176 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1177 {
1178         if (!dev->ctrl.admin_q) {
1179                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1180                 dev->admin_tagset.nr_hw_queues = 1;
1181
1182                 /*
1183                  * Subtract one to leave an empty queue entry for 'Full Queue'
1184                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1185                  */
1186                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1187                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1188                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1189                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1190                 dev->admin_tagset.driver_data = dev;
1191
1192                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1193                         return -ENOMEM;
1194
1195                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1196                 if (IS_ERR(dev->ctrl.admin_q)) {
1197                         blk_mq_free_tag_set(&dev->admin_tagset);
1198                         return -ENOMEM;
1199                 }
1200                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1201                         nvme_dev_remove_admin(dev);
1202                         dev->ctrl.admin_q = NULL;
1203                         return -ENODEV;
1204                 }
1205         } else
1206                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1207
1208         return 0;
1209 }
1210
1211 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1212 {
1213         int result;
1214         u32 aqa;
1215         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1216         struct nvme_queue *nvmeq;
1217
1218         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1219                                                 NVME_CAP_NSSRC(cap) : 0;
1220
1221         if (dev->subsystem &&
1222             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1223                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1224
1225         result = nvme_disable_ctrl(&dev->ctrl, cap);
1226         if (result < 0)
1227                 return result;
1228
1229         nvmeq = dev->queues[0];
1230         if (!nvmeq) {
1231                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1232                 if (!nvmeq)
1233                         return -ENOMEM;
1234         }
1235
1236         aqa = nvmeq->q_depth - 1;
1237         aqa |= aqa << 16;
1238
1239         writel(aqa, dev->bar + NVME_REG_AQA);
1240         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1241         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1242
1243         result = nvme_enable_ctrl(&dev->ctrl, cap);
1244         if (result)
1245                 goto free_nvmeq;
1246
1247         nvmeq->cq_vector = 0;
1248         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1249         if (result) {
1250                 nvmeq->cq_vector = -1;
1251                 goto free_nvmeq;
1252         }
1253
1254         return result;
1255
1256  free_nvmeq:
1257         nvme_free_queues(dev, 0);
1258         return result;
1259 }
1260
1261 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1262 {
1263
1264         /* If true, indicates loss of adapter communication, possibly by a
1265          * NVMe Subsystem reset.
1266          */
1267         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1268
1269         /* If there is a reset ongoing, we shouldn't reset again. */
1270         if (work_busy(&dev->reset_work))
1271                 return false;
1272
1273         /* We shouldn't reset unless the controller is on fatal error state
1274          * _or_ if we lost the communication with it.
1275          */
1276         if (!(csts & NVME_CSTS_CFS) && !nssro)
1277                 return false;
1278
1279         /* If PCI error recovery process is happening, we cannot reset or
1280          * the recovery mechanism will surely fail.
1281          */
1282         if (pci_channel_offline(to_pci_dev(dev->dev)))
1283                 return false;
1284
1285         return true;
1286 }
1287
1288 static void nvme_watchdog_timer(unsigned long data)
1289 {
1290         struct nvme_dev *dev = (struct nvme_dev *)data;
1291         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1292
1293         /* Skip controllers under certain specific conditions. */
1294         if (nvme_should_reset(dev, csts)) {
1295                 if (queue_work(nvme_workq, &dev->reset_work))
1296                         dev_warn(dev->dev,
1297                                 "Failed status: 0x%x, reset controller.\n",
1298                                 csts);
1299                 return;
1300         }
1301
1302         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1303 }
1304
1305 static int nvme_create_io_queues(struct nvme_dev *dev)
1306 {
1307         unsigned i, max;
1308         int ret = 0;
1309
1310         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1311                 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1312                         ret = -ENOMEM;
1313                         break;
1314                 }
1315         }
1316
1317         max = min(dev->max_qid, dev->queue_count - 1);
1318         for (i = dev->online_queues; i <= max; i++) {
1319                 ret = nvme_create_queue(dev->queues[i], i);
1320                 if (ret) {
1321                         nvme_free_queues(dev, i);
1322                         break;
1323                 }
1324         }
1325
1326         /*
1327          * Ignore failing Create SQ/CQ commands, we can continue with less
1328          * than the desired aount of queues, and even a controller without
1329          * I/O queues an still be used to issue admin commands.  This might
1330          * be useful to upgrade a buggy firmware for example.
1331          */
1332         return ret >= 0 ? 0 : ret;
1333 }
1334
1335 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1336 {
1337         u64 szu, size, offset;
1338         u32 cmbloc;
1339         resource_size_t bar_size;
1340         struct pci_dev *pdev = to_pci_dev(dev->dev);
1341         void __iomem *cmb;
1342         dma_addr_t dma_addr;
1343
1344         if (!use_cmb_sqes)
1345                 return NULL;
1346
1347         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1348         if (!(NVME_CMB_SZ(dev->cmbsz)))
1349                 return NULL;
1350
1351         cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1352
1353         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1354         size = szu * NVME_CMB_SZ(dev->cmbsz);
1355         offset = szu * NVME_CMB_OFST(cmbloc);
1356         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1357
1358         if (offset > bar_size)
1359                 return NULL;
1360
1361         /*
1362          * Controllers may support a CMB size larger than their BAR,
1363          * for example, due to being behind a bridge. Reduce the CMB to
1364          * the reported size of the BAR
1365          */
1366         if (size > bar_size - offset)
1367                 size = bar_size - offset;
1368
1369         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1370         cmb = ioremap_wc(dma_addr, size);
1371         if (!cmb)
1372                 return NULL;
1373
1374         dev->cmb_dma_addr = dma_addr;
1375         dev->cmb_size = size;
1376         return cmb;
1377 }
1378
1379 static inline void nvme_release_cmb(struct nvme_dev *dev)
1380 {
1381         if (dev->cmb) {
1382                 iounmap(dev->cmb);
1383                 dev->cmb = NULL;
1384         }
1385 }
1386
1387 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1388 {
1389         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1390 }
1391
1392 static int nvme_setup_io_queues(struct nvme_dev *dev)
1393 {
1394         struct nvme_queue *adminq = dev->queues[0];
1395         struct pci_dev *pdev = to_pci_dev(dev->dev);
1396         int result, i, vecs, nr_io_queues, size;
1397
1398         nr_io_queues = num_possible_cpus();
1399         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1400         if (result < 0)
1401                 return result;
1402
1403         /*
1404          * Degraded controllers might return an error when setting the queue
1405          * count.  We still want to be able to bring them online and offer
1406          * access to the admin queue, as that might be only way to fix them up.
1407          */
1408         if (result > 0) {
1409                 dev_err(dev->ctrl.device,
1410                         "Could not set queue count (%d)\n", result);
1411                 return 0;
1412         }
1413
1414         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1415                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1416                                 sizeof(struct nvme_command));
1417                 if (result > 0)
1418                         dev->q_depth = result;
1419                 else
1420                         nvme_release_cmb(dev);
1421         }
1422
1423         size = db_bar_size(dev, nr_io_queues);
1424         if (size > 8192) {
1425                 iounmap(dev->bar);
1426                 do {
1427                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1428                         if (dev->bar)
1429                                 break;
1430                         if (!--nr_io_queues)
1431                                 return -ENOMEM;
1432                         size = db_bar_size(dev, nr_io_queues);
1433                 } while (1);
1434                 dev->dbs = dev->bar + 4096;
1435                 adminq->q_db = dev->dbs;
1436         }
1437
1438         /* Deregister the admin queue's interrupt */
1439         free_irq(dev->entry[0].vector, adminq);
1440
1441         /*
1442          * If we enable msix early due to not intx, disable it again before
1443          * setting up the full range we need.
1444          */
1445         if (pdev->msi_enabled)
1446                 pci_disable_msi(pdev);
1447         else if (pdev->msix_enabled)
1448                 pci_disable_msix(pdev);
1449
1450         for (i = 0; i < nr_io_queues; i++)
1451                 dev->entry[i].entry = i;
1452         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1453         if (vecs < 0) {
1454                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1455                 if (vecs < 0) {
1456                         vecs = 1;
1457                 } else {
1458                         for (i = 0; i < vecs; i++)
1459                                 dev->entry[i].vector = i + pdev->irq;
1460                 }
1461         }
1462
1463         /*
1464          * Should investigate if there's a performance win from allocating
1465          * more queues than interrupt vectors; it might allow the submission
1466          * path to scale better, even if the receive path is limited by the
1467          * number of interrupts.
1468          */
1469         nr_io_queues = vecs;
1470         dev->max_qid = nr_io_queues;
1471
1472         result = queue_request_irq(dev, adminq, adminq->irqname);
1473         if (result) {
1474                 adminq->cq_vector = -1;
1475                 goto free_queues;
1476         }
1477         return nvme_create_io_queues(dev);
1478
1479  free_queues:
1480         nvme_free_queues(dev, 1);
1481         return result;
1482 }
1483
1484 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1485 {
1486         struct nvme_dev *dev = to_nvme_dev(ctrl);
1487         struct nvme_queue *nvmeq;
1488         int i;
1489
1490         for (i = 0; i < dev->online_queues; i++) {
1491                 nvmeq = dev->queues[i];
1492
1493                 if (!nvmeq->tags || !(*nvmeq->tags))
1494                         continue;
1495
1496                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1497                                         blk_mq_tags_cpumask(*nvmeq->tags));
1498         }
1499 }
1500
1501 static void nvme_del_queue_end(struct request *req, int error)
1502 {
1503         struct nvme_queue *nvmeq = req->end_io_data;
1504
1505         blk_mq_free_request(req);
1506         complete(&nvmeq->dev->ioq_wait);
1507 }
1508
1509 static void nvme_del_cq_end(struct request *req, int error)
1510 {
1511         struct nvme_queue *nvmeq = req->end_io_data;
1512
1513         if (!error) {
1514                 unsigned long flags;
1515
1516                 /*
1517                  * We might be called with the AQ q_lock held
1518                  * and the I/O queue q_lock should always
1519                  * nest inside the AQ one.
1520                  */
1521                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1522                                         SINGLE_DEPTH_NESTING);
1523                 nvme_process_cq(nvmeq);
1524                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1525         }
1526
1527         nvme_del_queue_end(req, error);
1528 }
1529
1530 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1531 {
1532         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1533         struct request *req;
1534         struct nvme_command cmd;
1535
1536         memset(&cmd, 0, sizeof(cmd));
1537         cmd.delete_queue.opcode = opcode;
1538         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1539
1540         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1541         if (IS_ERR(req))
1542                 return PTR_ERR(req);
1543
1544         req->timeout = ADMIN_TIMEOUT;
1545         req->end_io_data = nvmeq;
1546
1547         blk_execute_rq_nowait(q, NULL, req, false,
1548                         opcode == nvme_admin_delete_cq ?
1549                                 nvme_del_cq_end : nvme_del_queue_end);
1550         return 0;
1551 }
1552
1553 static void nvme_disable_io_queues(struct nvme_dev *dev)
1554 {
1555         int pass;
1556         unsigned long timeout;
1557         u8 opcode = nvme_admin_delete_sq;
1558
1559         for (pass = 0; pass < 2; pass++) {
1560                 int sent = 0, i = dev->queue_count - 1;
1561
1562                 reinit_completion(&dev->ioq_wait);
1563  retry:
1564                 timeout = ADMIN_TIMEOUT;
1565                 for (; i > 0; i--) {
1566                         struct nvme_queue *nvmeq = dev->queues[i];
1567
1568                         if (!pass)
1569                                 nvme_suspend_queue(nvmeq);
1570                         if (nvme_delete_queue(nvmeq, opcode))
1571                                 break;
1572                         ++sent;
1573                 }
1574                 while (sent--) {
1575                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1576                         if (timeout == 0)
1577                                 return;
1578                         if (i)
1579                                 goto retry;
1580                 }
1581                 opcode = nvme_admin_delete_cq;
1582         }
1583 }
1584
1585 /*
1586  * Return: error value if an error occurred setting up the queues or calling
1587  * Identify Device.  0 if these succeeded, even if adding some of the
1588  * namespaces failed.  At the moment, these failures are silent.  TBD which
1589  * failures should be reported.
1590  */
1591 static int nvme_dev_add(struct nvme_dev *dev)
1592 {
1593         if (!dev->ctrl.tagset) {
1594                 dev->tagset.ops = &nvme_mq_ops;
1595                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1596                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1597                 dev->tagset.numa_node = dev_to_node(dev->dev);
1598                 dev->tagset.queue_depth =
1599                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1600                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1601                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1602                 dev->tagset.driver_data = dev;
1603
1604                 if (blk_mq_alloc_tag_set(&dev->tagset))
1605                         return 0;
1606                 dev->ctrl.tagset = &dev->tagset;
1607         } else {
1608                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1609
1610                 /* Free previously allocated queues that are no longer usable */
1611                 nvme_free_queues(dev, dev->online_queues);
1612         }
1613
1614         return 0;
1615 }
1616
1617 static int nvme_pci_enable(struct nvme_dev *dev)
1618 {
1619         u64 cap;
1620         int result = -ENOMEM;
1621         struct pci_dev *pdev = to_pci_dev(dev->dev);
1622
1623         if (pci_enable_device_mem(pdev))
1624                 return result;
1625
1626         pci_set_master(pdev);
1627
1628         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1629             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1630                 goto disable;
1631
1632         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1633                 result = -ENODEV;
1634                 goto disable;
1635         }
1636
1637         /*
1638          * Some devices and/or platforms don't advertise or work with INTx
1639          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1640          * adjust this later.
1641          */
1642         if (pci_enable_msix(pdev, dev->entry, 1)) {
1643                 pci_enable_msi(pdev);
1644                 dev->entry[0].vector = pdev->irq;
1645         }
1646
1647         if (!dev->entry[0].vector) {
1648                 result = -ENODEV;
1649                 goto disable;
1650         }
1651
1652         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1653
1654         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1655         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1656         dev->dbs = dev->bar + 4096;
1657
1658         /*
1659          * Temporary fix for the Apple controller found in the MacBook8,1 and
1660          * some MacBook7,1 to avoid controller resets and data loss.
1661          */
1662         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1663                 dev->q_depth = 2;
1664                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1665                         "queue depth=%u to work around controller resets\n",
1666                         dev->q_depth);
1667         }
1668
1669         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1670                 dev->cmb = nvme_map_cmb(dev);
1671
1672         pci_enable_pcie_error_reporting(pdev);
1673         pci_save_state(pdev);
1674         return 0;
1675
1676  disable:
1677         pci_disable_device(pdev);
1678         return result;
1679 }
1680
1681 static void nvme_dev_unmap(struct nvme_dev *dev)
1682 {
1683         if (dev->bar)
1684                 iounmap(dev->bar);
1685         pci_release_regions(to_pci_dev(dev->dev));
1686 }
1687
1688 static void nvme_pci_disable(struct nvme_dev *dev)
1689 {
1690         struct pci_dev *pdev = to_pci_dev(dev->dev);
1691
1692         if (pdev->msi_enabled)
1693                 pci_disable_msi(pdev);
1694         else if (pdev->msix_enabled)
1695                 pci_disable_msix(pdev);
1696
1697         if (pci_is_enabled(pdev)) {
1698                 pci_disable_pcie_error_reporting(pdev);
1699                 pci_disable_device(pdev);
1700         }
1701 }
1702
1703 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1704 {
1705         int i;
1706         u32 csts = -1;
1707
1708         del_timer_sync(&dev->watchdog_timer);
1709
1710         mutex_lock(&dev->shutdown_lock);
1711         if (pci_is_enabled(to_pci_dev(dev->dev))) {
1712                 nvme_stop_queues(&dev->ctrl);
1713                 csts = readl(dev->bar + NVME_REG_CSTS);
1714         }
1715         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1716                 for (i = dev->queue_count - 1; i >= 0; i--) {
1717                         struct nvme_queue *nvmeq = dev->queues[i];
1718                         nvme_suspend_queue(nvmeq);
1719                 }
1720         } else {
1721                 nvme_disable_io_queues(dev);
1722                 nvme_disable_admin_queue(dev, shutdown);
1723         }
1724         nvme_pci_disable(dev);
1725
1726         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
1727         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
1728         mutex_unlock(&dev->shutdown_lock);
1729 }
1730
1731 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1732 {
1733         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1734                                                 PAGE_SIZE, PAGE_SIZE, 0);
1735         if (!dev->prp_page_pool)
1736                 return -ENOMEM;
1737
1738         /* Optimisation for I/Os between 4k and 128k */
1739         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1740                                                 256, 256, 0);
1741         if (!dev->prp_small_pool) {
1742                 dma_pool_destroy(dev->prp_page_pool);
1743                 return -ENOMEM;
1744         }
1745         return 0;
1746 }
1747
1748 static void nvme_release_prp_pools(struct nvme_dev *dev)
1749 {
1750         dma_pool_destroy(dev->prp_page_pool);
1751         dma_pool_destroy(dev->prp_small_pool);
1752 }
1753
1754 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1755 {
1756         struct nvme_dev *dev = to_nvme_dev(ctrl);
1757
1758         put_device(dev->dev);
1759         if (dev->tagset.tags)
1760                 blk_mq_free_tag_set(&dev->tagset);
1761         if (dev->ctrl.admin_q)
1762                 blk_put_queue(dev->ctrl.admin_q);
1763         kfree(dev->queues);
1764         kfree(dev->entry);
1765         kfree(dev);
1766 }
1767
1768 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1769 {
1770         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1771
1772         kref_get(&dev->ctrl.kref);
1773         nvme_dev_disable(dev, false);
1774         if (!schedule_work(&dev->remove_work))
1775                 nvme_put_ctrl(&dev->ctrl);
1776 }
1777
1778 static void nvme_reset_work(struct work_struct *work)
1779 {
1780         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1781         int result = -ENODEV;
1782
1783         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1784                 goto out;
1785
1786         /*
1787          * If we're called to reset a live controller first shut it down before
1788          * moving on.
1789          */
1790         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1791                 nvme_dev_disable(dev, false);
1792
1793         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1794                 goto out;
1795
1796         result = nvme_pci_enable(dev);
1797         if (result)
1798                 goto out;
1799
1800         result = nvme_configure_admin_queue(dev);
1801         if (result)
1802                 goto out;
1803
1804         nvme_init_queue(dev->queues[0], 0);
1805         result = nvme_alloc_admin_tags(dev);
1806         if (result)
1807                 goto out;
1808
1809         result = nvme_init_identify(&dev->ctrl);
1810         if (result)
1811                 goto out;
1812
1813         result = nvme_setup_io_queues(dev);
1814         if (result)
1815                 goto out;
1816
1817         /*
1818          * A controller that can not execute IO typically requires user
1819          * intervention to correct. For such degraded controllers, the driver
1820          * should not submit commands the user did not request, so skip
1821          * registering for asynchronous event notification on this condition.
1822          */
1823         if (dev->online_queues > 1)
1824                 nvme_queue_async_events(&dev->ctrl);
1825
1826         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1827
1828         /*
1829          * Keep the controller around but remove all namespaces if we don't have
1830          * any working I/O queue.
1831          */
1832         if (dev->online_queues < 2) {
1833                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1834                 nvme_kill_queues(&dev->ctrl);
1835                 nvme_remove_namespaces(&dev->ctrl);
1836         } else {
1837                 nvme_start_queues(&dev->ctrl);
1838                 nvme_dev_add(dev);
1839         }
1840
1841         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1842                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1843                 goto out;
1844         }
1845
1846         if (dev->online_queues > 1)
1847                 nvme_queue_scan(&dev->ctrl);
1848         return;
1849
1850  out:
1851         nvme_remove_dead_ctrl(dev, result);
1852 }
1853
1854 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1855 {
1856         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1857         struct pci_dev *pdev = to_pci_dev(dev->dev);
1858
1859         nvme_kill_queues(&dev->ctrl);
1860         if (pci_get_drvdata(pdev))
1861                 pci_stop_and_remove_bus_device_locked(pdev);
1862         nvme_put_ctrl(&dev->ctrl);
1863 }
1864
1865 static int nvme_reset(struct nvme_dev *dev)
1866 {
1867         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1868                 return -ENODEV;
1869
1870         if (!queue_work(nvme_workq, &dev->reset_work))
1871                 return -EBUSY;
1872
1873         flush_work(&dev->reset_work);
1874         return 0;
1875 }
1876
1877 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1878 {
1879         *val = readl(to_nvme_dev(ctrl)->bar + off);
1880         return 0;
1881 }
1882
1883 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1884 {
1885         writel(val, to_nvme_dev(ctrl)->bar + off);
1886         return 0;
1887 }
1888
1889 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1890 {
1891         *val = readq(to_nvme_dev(ctrl)->bar + off);
1892         return 0;
1893 }
1894
1895 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1896 {
1897         return nvme_reset(to_nvme_dev(ctrl));
1898 }
1899
1900 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1901         .module                 = THIS_MODULE,
1902         .reg_read32             = nvme_pci_reg_read32,
1903         .reg_write32            = nvme_pci_reg_write32,
1904         .reg_read64             = nvme_pci_reg_read64,
1905         .reset_ctrl             = nvme_pci_reset_ctrl,
1906         .free_ctrl              = nvme_pci_free_ctrl,
1907         .post_scan              = nvme_pci_post_scan,
1908         .submit_async_event     = nvme_pci_submit_async_event,
1909 };
1910
1911 static int nvme_dev_map(struct nvme_dev *dev)
1912 {
1913         int bars;
1914         struct pci_dev *pdev = to_pci_dev(dev->dev);
1915
1916         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1917         if (!bars)
1918                 return -ENODEV;
1919         if (pci_request_selected_regions(pdev, bars, "nvme"))
1920                 return -ENODEV;
1921
1922         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1923         if (!dev->bar)
1924                 goto release;
1925
1926        return 0;
1927   release:
1928        pci_release_regions(pdev);
1929        return -ENODEV;
1930 }
1931
1932 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1933 {
1934         int node, result = -ENOMEM;
1935         struct nvme_dev *dev;
1936
1937         node = dev_to_node(&pdev->dev);
1938         if (node == NUMA_NO_NODE)
1939                 set_dev_node(&pdev->dev, 0);
1940
1941         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1942         if (!dev)
1943                 return -ENOMEM;
1944         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1945                                                         GFP_KERNEL, node);
1946         if (!dev->entry)
1947                 goto free;
1948         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1949                                                         GFP_KERNEL, node);
1950         if (!dev->queues)
1951                 goto free;
1952
1953         dev->dev = get_device(&pdev->dev);
1954         pci_set_drvdata(pdev, dev);
1955
1956         result = nvme_dev_map(dev);
1957         if (result)
1958                 goto free;
1959
1960         INIT_WORK(&dev->reset_work, nvme_reset_work);
1961         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1962         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1963                 (unsigned long)dev);
1964         mutex_init(&dev->shutdown_lock);
1965         init_completion(&dev->ioq_wait);
1966
1967         result = nvme_setup_prp_pools(dev);
1968         if (result)
1969                 goto put_pci;
1970
1971         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1972                         id->driver_data);
1973         if (result)
1974                 goto release_pools;
1975
1976         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1977
1978         queue_work(nvme_workq, &dev->reset_work);
1979         return 0;
1980
1981  release_pools:
1982         nvme_release_prp_pools(dev);
1983  put_pci:
1984         put_device(dev->dev);
1985         nvme_dev_unmap(dev);
1986  free:
1987         kfree(dev->queues);
1988         kfree(dev->entry);
1989         kfree(dev);
1990         return result;
1991 }
1992
1993 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1994 {
1995         struct nvme_dev *dev = pci_get_drvdata(pdev);
1996
1997         if (prepare)
1998                 nvme_dev_disable(dev, false);
1999         else
2000                 queue_work(nvme_workq, &dev->reset_work);
2001 }
2002
2003 static void nvme_shutdown(struct pci_dev *pdev)
2004 {
2005         struct nvme_dev *dev = pci_get_drvdata(pdev);
2006         nvme_dev_disable(dev, true);
2007 }
2008
2009 /*
2010  * The driver's remove may be called on a device in a partially initialized
2011  * state. This function must not have any dependencies on the device state in
2012  * order to proceed.
2013  */
2014 static void nvme_remove(struct pci_dev *pdev)
2015 {
2016         struct nvme_dev *dev = pci_get_drvdata(pdev);
2017
2018         del_timer_sync(&dev->watchdog_timer);
2019
2020         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2021
2022         pci_set_drvdata(pdev, NULL);
2023         nvme_uninit_ctrl(&dev->ctrl);
2024         nvme_dev_disable(dev, true);
2025         flush_work(&dev->reset_work);
2026         nvme_dev_remove_admin(dev);
2027         nvme_free_queues(dev, 0);
2028         nvme_release_cmb(dev);
2029         nvme_release_prp_pools(dev);
2030         nvme_dev_unmap(dev);
2031         nvme_put_ctrl(&dev->ctrl);
2032 }
2033
2034 #ifdef CONFIG_PM_SLEEP
2035 static int nvme_suspend(struct device *dev)
2036 {
2037         struct pci_dev *pdev = to_pci_dev(dev);
2038         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2039
2040         nvme_dev_disable(ndev, true);
2041         return 0;
2042 }
2043
2044 static int nvme_resume(struct device *dev)
2045 {
2046         struct pci_dev *pdev = to_pci_dev(dev);
2047         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2048
2049         queue_work(nvme_workq, &ndev->reset_work);
2050         return 0;
2051 }
2052 #endif
2053
2054 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2055
2056 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2057                                                 pci_channel_state_t state)
2058 {
2059         struct nvme_dev *dev = pci_get_drvdata(pdev);
2060
2061         /*
2062          * A frozen channel requires a reset. When detected, this method will
2063          * shutdown the controller to quiesce. The controller will be restarted
2064          * after the slot reset through driver's slot_reset callback.
2065          */
2066         dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2067         switch (state) {
2068         case pci_channel_io_normal:
2069                 return PCI_ERS_RESULT_CAN_RECOVER;
2070         case pci_channel_io_frozen:
2071                 nvme_dev_disable(dev, false);
2072                 return PCI_ERS_RESULT_NEED_RESET;
2073         case pci_channel_io_perm_failure:
2074                 return PCI_ERS_RESULT_DISCONNECT;
2075         }
2076         return PCI_ERS_RESULT_NEED_RESET;
2077 }
2078
2079 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2080 {
2081         struct nvme_dev *dev = pci_get_drvdata(pdev);
2082
2083         dev_info(dev->ctrl.device, "restart after slot reset\n");
2084         pci_restore_state(pdev);
2085         queue_work(nvme_workq, &dev->reset_work);
2086         return PCI_ERS_RESULT_RECOVERED;
2087 }
2088
2089 static void nvme_error_resume(struct pci_dev *pdev)
2090 {
2091         pci_cleanup_aer_uncorrect_error_status(pdev);
2092 }
2093
2094 static const struct pci_error_handlers nvme_err_handler = {
2095         .error_detected = nvme_error_detected,
2096         .slot_reset     = nvme_slot_reset,
2097         .resume         = nvme_error_resume,
2098         .reset_notify   = nvme_reset_notify,
2099 };
2100
2101 /* Move to pci_ids.h later */
2102 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2103
2104 static const struct pci_device_id nvme_id_table[] = {
2105         { PCI_VDEVICE(INTEL, 0x0953),
2106                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2107                                 NVME_QUIRK_DISCARD_ZEROES, },
2108         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2109                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2110         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2111         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2112         { 0, }
2113 };
2114 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2115
2116 static struct pci_driver nvme_driver = {
2117         .name           = "nvme",
2118         .id_table       = nvme_id_table,
2119         .probe          = nvme_probe,
2120         .remove         = nvme_remove,
2121         .shutdown       = nvme_shutdown,
2122         .driver         = {
2123                 .pm     = &nvme_dev_pm_ops,
2124         },
2125         .err_handler    = &nvme_err_handler,
2126 };
2127
2128 static int __init nvme_init(void)
2129 {
2130         int result;
2131
2132         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2133         if (!nvme_workq)
2134                 return -ENOMEM;
2135
2136         result = pci_register_driver(&nvme_driver);
2137         if (result)
2138                 destroy_workqueue(nvme_workq);
2139         return result;
2140 }
2141
2142 static void __exit nvme_exit(void)
2143 {
2144         pci_unregister_driver(&nvme_driver);
2145         destroy_workqueue(nvme_workq);
2146         _nvme_check_size();
2147 }
2148
2149 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2150 MODULE_LICENSE("GPL");
2151 MODULE_VERSION("1.0");
2152 module_init(nvme_init);
2153 module_exit(nvme_exit);