iw_cxgb4: gracefully handle unknown CQE status errors
[linux-2.6-block.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
38 #define NETCP_MAX_MCAST_ADDR    16
39
40 #define NETCP_EFUSE_REG_INDEX   0
41
42 #define NETCP_MOD_PROBE_SKIPPED 1
43 #define NETCP_MOD_PROBE_FAILED  2
44
45 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
46                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
47                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
48                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
49                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
50                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
51                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
52                     NETIF_MSG_RX_STATUS)
53
54 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
55                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
56
57 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
58                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
59                                         (unsigned long)NULL)
60
61 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
62                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
63                                         (unsigned long)NULL)
64
65 #define knav_queue_get_count(q) knav_queue_device_control(q, \
66                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
67
68 #define for_each_netcp_module(module)                   \
69         list_for_each_entry(module, &netcp_modules, module_list)
70
71 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
72         list_for_each_entry(inst_modpriv, \
73                 &((netcp_device)->modpriv_head), inst_list)
74
75 #define for_each_module(netcp, intf_modpriv)                    \
76         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
77
78 /* Module management structures */
79 struct netcp_device {
80         struct list_head        device_list;
81         struct list_head        interface_head;
82         struct list_head        modpriv_head;
83         struct device           *device;
84 };
85
86 struct netcp_inst_modpriv {
87         struct netcp_device     *netcp_device;
88         struct netcp_module     *netcp_module;
89         struct list_head        inst_list;
90         void                    *module_priv;
91 };
92
93 struct netcp_intf_modpriv {
94         struct netcp_intf       *netcp_priv;
95         struct netcp_module     *netcp_module;
96         struct list_head        intf_list;
97         void                    *module_priv;
98 };
99
100 static LIST_HEAD(netcp_devices);
101 static LIST_HEAD(netcp_modules);
102 static DEFINE_MUTEX(netcp_modules_lock);
103
104 static int netcp_debug_level = -1;
105 module_param(netcp_debug_level, int, 0);
106 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
107
108 /* Helper functions - Get/Set */
109 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
110                          struct knav_dma_desc *desc)
111 {
112         *buff_len = desc->buff_len;
113         *buff = desc->buff;
114         *ndesc = desc->next_desc;
115 }
116
117 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
118 {
119         *pad0 = desc->pad[0];
120         *pad1 = desc->pad[1];
121 }
122
123 static void get_org_pkt_info(u32 *buff, u32 *buff_len,
124                              struct knav_dma_desc *desc)
125 {
126         *buff = desc->orig_buff;
127         *buff_len = desc->orig_len;
128 }
129
130 static void get_words(u32 *words, int num_words, u32 *desc)
131 {
132         int i;
133
134         for (i = 0; i < num_words; i++)
135                 words[i] = desc[i];
136 }
137
138 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
139                          struct knav_dma_desc *desc)
140 {
141         desc->buff_len = buff_len;
142         desc->buff = buff;
143         desc->next_desc = ndesc;
144 }
145
146 static void set_desc_info(u32 desc_info, u32 pkt_info,
147                           struct knav_dma_desc *desc)
148 {
149         desc->desc_info = desc_info;
150         desc->packet_info = pkt_info;
151 }
152
153 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
154 {
155         desc->pad[0] = pad0;
156         desc->pad[1] = pad1;
157 }
158
159 static void set_org_pkt_info(u32 buff, u32 buff_len,
160                              struct knav_dma_desc *desc)
161 {
162         desc->orig_buff = buff;
163         desc->orig_len = buff_len;
164 }
165
166 static void set_words(u32 *words, int num_words, u32 *desc)
167 {
168         int i;
169
170         for (i = 0; i < num_words; i++)
171                 desc[i] = words[i];
172 }
173
174 /* Read the e-fuse value as 32 bit values to be endian independent */
175 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac)
176 {
177         unsigned int addr0, addr1;
178
179         addr1 = readl(efuse_mac + 4);
180         addr0 = readl(efuse_mac);
181
182         x[0] = (addr1 & 0x0000ff00) >> 8;
183         x[1] = addr1 & 0x000000ff;
184         x[2] = (addr0 & 0xff000000) >> 24;
185         x[3] = (addr0 & 0x00ff0000) >> 16;
186         x[4] = (addr0 & 0x0000ff00) >> 8;
187         x[5] = addr0 & 0x000000ff;
188
189         return 0;
190 }
191
192 static const char *netcp_node_name(struct device_node *node)
193 {
194         const char *name;
195
196         if (of_property_read_string(node, "label", &name) < 0)
197                 name = node->name;
198         if (!name)
199                 name = "unknown";
200         return name;
201 }
202
203 /* Module management routines */
204 static int netcp_register_interface(struct netcp_intf *netcp)
205 {
206         int ret;
207
208         ret = register_netdev(netcp->ndev);
209         if (!ret)
210                 netcp->netdev_registered = true;
211         return ret;
212 }
213
214 static int netcp_module_probe(struct netcp_device *netcp_device,
215                               struct netcp_module *module)
216 {
217         struct device *dev = netcp_device->device;
218         struct device_node *devices, *interface, *node = dev->of_node;
219         struct device_node *child;
220         struct netcp_inst_modpriv *inst_modpriv;
221         struct netcp_intf *netcp_intf;
222         struct netcp_module *tmp;
223         bool primary_module_registered = false;
224         int ret;
225
226         /* Find this module in the sub-tree for this device */
227         devices = of_get_child_by_name(node, "netcp-devices");
228         if (!devices) {
229                 dev_err(dev, "could not find netcp-devices node\n");
230                 return NETCP_MOD_PROBE_SKIPPED;
231         }
232
233         for_each_available_child_of_node(devices, child) {
234                 const char *name = netcp_node_name(child);
235
236                 if (!strcasecmp(module->name, name))
237                         break;
238         }
239
240         of_node_put(devices);
241         /* If module not used for this device, skip it */
242         if (!child) {
243                 dev_warn(dev, "module(%s) not used for device\n", module->name);
244                 return NETCP_MOD_PROBE_SKIPPED;
245         }
246
247         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
248         if (!inst_modpriv) {
249                 of_node_put(child);
250                 return -ENOMEM;
251         }
252
253         inst_modpriv->netcp_device = netcp_device;
254         inst_modpriv->netcp_module = module;
255         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
256
257         ret = module->probe(netcp_device, dev, child,
258                             &inst_modpriv->module_priv);
259         of_node_put(child);
260         if (ret) {
261                 dev_err(dev, "Probe of module(%s) failed with %d\n",
262                         module->name, ret);
263                 list_del(&inst_modpriv->inst_list);
264                 devm_kfree(dev, inst_modpriv);
265                 return NETCP_MOD_PROBE_FAILED;
266         }
267
268         /* Attach modules only if the primary module is probed */
269         for_each_netcp_module(tmp) {
270                 if (tmp->primary)
271                         primary_module_registered = true;
272         }
273
274         if (!primary_module_registered)
275                 return 0;
276
277         /* Attach module to interfaces */
278         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
279                             interface_list) {
280                 struct netcp_intf_modpriv *intf_modpriv;
281
282                 /* If interface not registered then register now */
283                 if (!netcp_intf->netdev_registered)
284                         ret = netcp_register_interface(netcp_intf);
285
286                 if (ret)
287                         return -ENODEV;
288
289                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
290                                             GFP_KERNEL);
291                 if (!intf_modpriv)
292                         return -ENOMEM;
293
294                 interface = of_parse_phandle(netcp_intf->node_interface,
295                                              module->name, 0);
296
297                 intf_modpriv->netcp_priv = netcp_intf;
298                 intf_modpriv->netcp_module = module;
299                 list_add_tail(&intf_modpriv->intf_list,
300                               &netcp_intf->module_head);
301
302                 ret = module->attach(inst_modpriv->module_priv,
303                                      netcp_intf->ndev, interface,
304                                      &intf_modpriv->module_priv);
305                 of_node_put(interface);
306                 if (ret) {
307                         dev_dbg(dev, "Attach of module %s declined with %d\n",
308                                 module->name, ret);
309                         list_del(&intf_modpriv->intf_list);
310                         devm_kfree(dev, intf_modpriv);
311                         continue;
312                 }
313         }
314         return 0;
315 }
316
317 int netcp_register_module(struct netcp_module *module)
318 {
319         struct netcp_device *netcp_device;
320         struct netcp_module *tmp;
321         int ret;
322
323         if (!module->name) {
324                 WARN(1, "error registering netcp module: no name\n");
325                 return -EINVAL;
326         }
327
328         if (!module->probe) {
329                 WARN(1, "error registering netcp module: no probe\n");
330                 return -EINVAL;
331         }
332
333         mutex_lock(&netcp_modules_lock);
334
335         for_each_netcp_module(tmp) {
336                 if (!strcasecmp(tmp->name, module->name)) {
337                         mutex_unlock(&netcp_modules_lock);
338                         return -EEXIST;
339                 }
340         }
341         list_add_tail(&module->module_list, &netcp_modules);
342
343         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
344                 ret = netcp_module_probe(netcp_device, module);
345                 if (ret < 0)
346                         goto fail;
347         }
348
349         mutex_unlock(&netcp_modules_lock);
350         return 0;
351
352 fail:
353         mutex_unlock(&netcp_modules_lock);
354         netcp_unregister_module(module);
355         return ret;
356 }
357 EXPORT_SYMBOL_GPL(netcp_register_module);
358
359 static void netcp_release_module(struct netcp_device *netcp_device,
360                                  struct netcp_module *module)
361 {
362         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
363         struct netcp_intf *netcp_intf, *netcp_tmp;
364         struct device *dev = netcp_device->device;
365
366         /* Release the module from each interface */
367         list_for_each_entry_safe(netcp_intf, netcp_tmp,
368                                  &netcp_device->interface_head,
369                                  interface_list) {
370                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
371
372                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
373                                          &netcp_intf->module_head,
374                                          intf_list) {
375                         if (intf_modpriv->netcp_module == module) {
376                                 module->release(intf_modpriv->module_priv);
377                                 list_del(&intf_modpriv->intf_list);
378                                 devm_kfree(dev, intf_modpriv);
379                                 break;
380                         }
381                 }
382         }
383
384         /* Remove the module from each instance */
385         list_for_each_entry_safe(inst_modpriv, inst_tmp,
386                                  &netcp_device->modpriv_head, inst_list) {
387                 if (inst_modpriv->netcp_module == module) {
388                         module->remove(netcp_device,
389                                        inst_modpriv->module_priv);
390                         list_del(&inst_modpriv->inst_list);
391                         devm_kfree(dev, inst_modpriv);
392                         break;
393                 }
394         }
395 }
396
397 void netcp_unregister_module(struct netcp_module *module)
398 {
399         struct netcp_device *netcp_device;
400         struct netcp_module *module_tmp;
401
402         mutex_lock(&netcp_modules_lock);
403
404         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
405                 netcp_release_module(netcp_device, module);
406         }
407
408         /* Remove the module from the module list */
409         for_each_netcp_module(module_tmp) {
410                 if (module == module_tmp) {
411                         list_del(&module->module_list);
412                         break;
413                 }
414         }
415
416         mutex_unlock(&netcp_modules_lock);
417 }
418 EXPORT_SYMBOL_GPL(netcp_unregister_module);
419
420 void *netcp_module_get_intf_data(struct netcp_module *module,
421                                  struct netcp_intf *intf)
422 {
423         struct netcp_intf_modpriv *intf_modpriv;
424
425         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
426                 if (intf_modpriv->netcp_module == module)
427                         return intf_modpriv->module_priv;
428         return NULL;
429 }
430 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
431
432 /* Module TX and RX Hook management */
433 struct netcp_hook_list {
434         struct list_head         list;
435         netcp_hook_rtn          *hook_rtn;
436         void                    *hook_data;
437         int                      order;
438 };
439
440 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
441                           netcp_hook_rtn *hook_rtn, void *hook_data)
442 {
443         struct netcp_hook_list *entry;
444         struct netcp_hook_list *next;
445         unsigned long flags;
446
447         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
448         if (!entry)
449                 return -ENOMEM;
450
451         entry->hook_rtn  = hook_rtn;
452         entry->hook_data = hook_data;
453         entry->order     = order;
454
455         spin_lock_irqsave(&netcp_priv->lock, flags);
456         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
457                 if (next->order > order)
458                         break;
459         }
460         __list_add(&entry->list, next->list.prev, &next->list);
461         spin_unlock_irqrestore(&netcp_priv->lock, flags);
462
463         return 0;
464 }
465 EXPORT_SYMBOL_GPL(netcp_register_txhook);
466
467 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
468                             netcp_hook_rtn *hook_rtn, void *hook_data)
469 {
470         struct netcp_hook_list *next, *n;
471         unsigned long flags;
472
473         spin_lock_irqsave(&netcp_priv->lock, flags);
474         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
475                 if ((next->order     == order) &&
476                     (next->hook_rtn  == hook_rtn) &&
477                     (next->hook_data == hook_data)) {
478                         list_del(&next->list);
479                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
480                         devm_kfree(netcp_priv->dev, next);
481                         return 0;
482                 }
483         }
484         spin_unlock_irqrestore(&netcp_priv->lock, flags);
485         return -ENOENT;
486 }
487 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
488
489 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
490                           netcp_hook_rtn *hook_rtn, void *hook_data)
491 {
492         struct netcp_hook_list *entry;
493         struct netcp_hook_list *next;
494         unsigned long flags;
495
496         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
497         if (!entry)
498                 return -ENOMEM;
499
500         entry->hook_rtn  = hook_rtn;
501         entry->hook_data = hook_data;
502         entry->order     = order;
503
504         spin_lock_irqsave(&netcp_priv->lock, flags);
505         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
506                 if (next->order > order)
507                         break;
508         }
509         __list_add(&entry->list, next->list.prev, &next->list);
510         spin_unlock_irqrestore(&netcp_priv->lock, flags);
511
512         return 0;
513 }
514
515 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
516                             netcp_hook_rtn *hook_rtn, void *hook_data)
517 {
518         struct netcp_hook_list *next, *n;
519         unsigned long flags;
520
521         spin_lock_irqsave(&netcp_priv->lock, flags);
522         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
523                 if ((next->order     == order) &&
524                     (next->hook_rtn  == hook_rtn) &&
525                     (next->hook_data == hook_data)) {
526                         list_del(&next->list);
527                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
528                         devm_kfree(netcp_priv->dev, next);
529                         return 0;
530                 }
531         }
532         spin_unlock_irqrestore(&netcp_priv->lock, flags);
533
534         return -ENOENT;
535 }
536
537 static void netcp_frag_free(bool is_frag, void *ptr)
538 {
539         if (is_frag)
540                 skb_free_frag(ptr);
541         else
542                 kfree(ptr);
543 }
544
545 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
546                                      struct knav_dma_desc *desc)
547 {
548         struct knav_dma_desc *ndesc;
549         dma_addr_t dma_desc, dma_buf;
550         unsigned int buf_len, dma_sz = sizeof(*ndesc);
551         void *buf_ptr;
552         u32 tmp;
553
554         get_words(&dma_desc, 1, &desc->next_desc);
555
556         while (dma_desc) {
557                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
558                 if (unlikely(!ndesc)) {
559                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
560                         break;
561                 }
562                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
563                 get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
564                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
565                 __free_page(buf_ptr);
566                 knav_pool_desc_put(netcp->rx_pool, desc);
567         }
568
569         get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
570         if (buf_ptr)
571                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
572         knav_pool_desc_put(netcp->rx_pool, desc);
573 }
574
575 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
576 {
577         struct knav_dma_desc *desc;
578         unsigned int dma_sz;
579         dma_addr_t dma;
580
581         for (; ;) {
582                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
583                 if (!dma)
584                         break;
585
586                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
587                 if (unlikely(!desc)) {
588                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
589                                 __func__);
590                         netcp->ndev->stats.rx_errors++;
591                         continue;
592                 }
593                 netcp_free_rx_desc_chain(netcp, desc);
594                 netcp->ndev->stats.rx_dropped++;
595         }
596 }
597
598 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
599 {
600         unsigned int dma_sz, buf_len, org_buf_len;
601         struct knav_dma_desc *desc, *ndesc;
602         unsigned int pkt_sz = 0, accum_sz;
603         struct netcp_hook_list *rx_hook;
604         dma_addr_t dma_desc, dma_buff;
605         struct netcp_packet p_info;
606         struct sk_buff *skb;
607         void *org_buf_ptr;
608         u32 tmp;
609
610         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
611         if (!dma_desc)
612                 return -1;
613
614         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
615         if (unlikely(!desc)) {
616                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
617                 return 0;
618         }
619
620         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
621         get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
622
623         if (unlikely(!org_buf_ptr)) {
624                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
625                 goto free_desc;
626         }
627
628         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
629         accum_sz = buf_len;
630         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
631
632         /* Build a new sk_buff for the primary buffer */
633         skb = build_skb(org_buf_ptr, org_buf_len);
634         if (unlikely(!skb)) {
635                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
636                 goto free_desc;
637         }
638
639         /* update data, tail and len */
640         skb_reserve(skb, NETCP_SOP_OFFSET);
641         __skb_put(skb, buf_len);
642
643         /* Fill in the page fragment list */
644         while (dma_desc) {
645                 struct page *page;
646
647                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
648                 if (unlikely(!ndesc)) {
649                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
650                         goto free_desc;
651                 }
652
653                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
654                 get_pad_info((u32 *)&page, &tmp, ndesc);
655
656                 if (likely(dma_buff && buf_len && page)) {
657                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
658                                        DMA_FROM_DEVICE);
659                 } else {
660                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
661                                 (void *)dma_buff, buf_len, page);
662                         goto free_desc;
663                 }
664
665                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
666                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
667                 accum_sz += buf_len;
668
669                 /* Free the descriptor */
670                 knav_pool_desc_put(netcp->rx_pool, ndesc);
671         }
672
673         /* Free the primary descriptor */
674         knav_pool_desc_put(netcp->rx_pool, desc);
675
676         /* check for packet len and warn */
677         if (unlikely(pkt_sz != accum_sz))
678                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
679                         pkt_sz, accum_sz);
680
681         /* Remove ethernet FCS from the packet */
682         __pskb_trim(skb, skb->len - ETH_FCS_LEN);
683
684         /* Call each of the RX hooks */
685         p_info.skb = skb;
686         p_info.rxtstamp_complete = false;
687         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
688                 int ret;
689
690                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
691                                         &p_info);
692                 if (unlikely(ret)) {
693                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
694                                 rx_hook->order, ret);
695                         netcp->ndev->stats.rx_errors++;
696                         dev_kfree_skb(skb);
697                         return 0;
698                 }
699         }
700
701         netcp->ndev->stats.rx_packets++;
702         netcp->ndev->stats.rx_bytes += skb->len;
703
704         /* push skb up the stack */
705         skb->protocol = eth_type_trans(skb, netcp->ndev);
706         netif_receive_skb(skb);
707         return 0;
708
709 free_desc:
710         netcp_free_rx_desc_chain(netcp, desc);
711         netcp->ndev->stats.rx_errors++;
712         return 0;
713 }
714
715 static int netcp_process_rx_packets(struct netcp_intf *netcp,
716                                     unsigned int budget)
717 {
718         int i;
719
720         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
721                 ;
722         return i;
723 }
724
725 /* Release descriptors and attached buffers from Rx FDQ */
726 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
727 {
728         struct knav_dma_desc *desc;
729         unsigned int buf_len, dma_sz;
730         dma_addr_t dma;
731         void *buf_ptr;
732         u32 tmp;
733
734         /* Allocate descriptor */
735         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
736                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
737                 if (unlikely(!desc)) {
738                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
739                         continue;
740                 }
741
742                 get_org_pkt_info(&dma, &buf_len, desc);
743                 get_pad_info((u32 *)&buf_ptr, &tmp, desc);
744
745                 if (unlikely(!dma)) {
746                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
747                         knav_pool_desc_put(netcp->rx_pool, desc);
748                         continue;
749                 }
750
751                 if (unlikely(!buf_ptr)) {
752                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
753                         knav_pool_desc_put(netcp->rx_pool, desc);
754                         continue;
755                 }
756
757                 if (fdq == 0) {
758                         dma_unmap_single(netcp->dev, dma, buf_len,
759                                          DMA_FROM_DEVICE);
760                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
761                 } else {
762                         dma_unmap_page(netcp->dev, dma, buf_len,
763                                        DMA_FROM_DEVICE);
764                         __free_page(buf_ptr);
765                 }
766
767                 knav_pool_desc_put(netcp->rx_pool, desc);
768         }
769 }
770
771 static void netcp_rxpool_free(struct netcp_intf *netcp)
772 {
773         int i;
774
775         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
776              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
777                 netcp_free_rx_buf(netcp, i);
778
779         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
780                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
781                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
782
783         knav_pool_destroy(netcp->rx_pool);
784         netcp->rx_pool = NULL;
785 }
786
787 static void netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
788 {
789         struct knav_dma_desc *hwdesc;
790         unsigned int buf_len, dma_sz;
791         u32 desc_info, pkt_info;
792         struct page *page;
793         dma_addr_t dma;
794         void *bufptr;
795         u32 pad[2];
796
797         /* Allocate descriptor */
798         hwdesc = knav_pool_desc_get(netcp->rx_pool);
799         if (IS_ERR_OR_NULL(hwdesc)) {
800                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
801                 return;
802         }
803
804         if (likely(fdq == 0)) {
805                 unsigned int primary_buf_len;
806                 /* Allocate a primary receive queue entry */
807                 buf_len = netcp->rx_buffer_sizes[0] + NETCP_SOP_OFFSET;
808                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
809                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
810
811                 if (primary_buf_len <= PAGE_SIZE) {
812                         bufptr = netdev_alloc_frag(primary_buf_len);
813                         pad[1] = primary_buf_len;
814                 } else {
815                         bufptr = kmalloc(primary_buf_len, GFP_ATOMIC |
816                                          GFP_DMA32 | __GFP_COLD);
817                         pad[1] = 0;
818                 }
819
820                 if (unlikely(!bufptr)) {
821                         dev_warn_ratelimited(netcp->ndev_dev, "Primary RX buffer alloc failed\n");
822                         goto fail;
823                 }
824                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
825                                      DMA_TO_DEVICE);
826                 pad[0] = (u32)bufptr;
827
828         } else {
829                 /* Allocate a secondary receive queue entry */
830                 page = alloc_page(GFP_ATOMIC | GFP_DMA32 | __GFP_COLD);
831                 if (unlikely(!page)) {
832                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
833                         goto fail;
834                 }
835                 buf_len = PAGE_SIZE;
836                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
837                 pad[0] = (u32)page;
838                 pad[1] = 0;
839         }
840
841         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
842         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
843         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
844         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
845         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
846                     KNAV_DMA_DESC_RETQ_SHIFT;
847         set_org_pkt_info(dma, buf_len, hwdesc);
848         set_pad_info(pad[0], pad[1], hwdesc);
849         set_desc_info(desc_info, pkt_info, hwdesc);
850
851         /* Push to FDQs */
852         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
853                            &dma_sz);
854         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
855         return;
856
857 fail:
858         knav_pool_desc_put(netcp->rx_pool, hwdesc);
859 }
860
861 /* Refill Rx FDQ with descriptors & attached buffers */
862 static void netcp_rxpool_refill(struct netcp_intf *netcp)
863 {
864         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
865         int i;
866
867         /* Calculate the FDQ deficit and refill */
868         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
869                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
870                                  knav_queue_get_count(netcp->rx_fdq[i]);
871
872                 while (fdq_deficit[i]--)
873                         netcp_allocate_rx_buf(netcp, i);
874         } /* end for fdqs */
875 }
876
877 /* NAPI poll */
878 static int netcp_rx_poll(struct napi_struct *napi, int budget)
879 {
880         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
881                                                 rx_napi);
882         unsigned int packets;
883
884         packets = netcp_process_rx_packets(netcp, budget);
885
886         if (packets < budget) {
887                 napi_complete(&netcp->rx_napi);
888                 knav_queue_enable_notify(netcp->rx_queue);
889         }
890
891         netcp_rxpool_refill(netcp);
892         return packets;
893 }
894
895 static void netcp_rx_notify(void *arg)
896 {
897         struct netcp_intf *netcp = arg;
898
899         knav_queue_disable_notify(netcp->rx_queue);
900         napi_schedule(&netcp->rx_napi);
901 }
902
903 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
904                                      struct knav_dma_desc *desc,
905                                      unsigned int desc_sz)
906 {
907         struct knav_dma_desc *ndesc = desc;
908         dma_addr_t dma_desc, dma_buf;
909         unsigned int buf_len;
910
911         while (ndesc) {
912                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
913
914                 if (dma_buf && buf_len)
915                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
916                                          DMA_TO_DEVICE);
917                 else
918                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
919                                  (void *)dma_buf, buf_len);
920
921                 knav_pool_desc_put(netcp->tx_pool, ndesc);
922                 ndesc = NULL;
923                 if (dma_desc) {
924                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
925                                                      desc_sz);
926                         if (!ndesc)
927                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
928                 }
929         }
930 }
931
932 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
933                                           unsigned int budget)
934 {
935         struct knav_dma_desc *desc;
936         struct sk_buff *skb;
937         unsigned int dma_sz;
938         dma_addr_t dma;
939         int pkts = 0;
940         u32 tmp;
941
942         while (budget--) {
943                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
944                 if (!dma)
945                         break;
946                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
947                 if (unlikely(!desc)) {
948                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
949                         netcp->ndev->stats.tx_errors++;
950                         continue;
951                 }
952
953                 get_pad_info((u32 *)&skb, &tmp, desc);
954                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
955                 if (!skb) {
956                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
957                         netcp->ndev->stats.tx_errors++;
958                         continue;
959                 }
960
961                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
962                     netif_running(netcp->ndev) &&
963                     (knav_pool_count(netcp->tx_pool) >
964                     netcp->tx_resume_threshold)) {
965                         u16 subqueue = skb_get_queue_mapping(skb);
966
967                         netif_wake_subqueue(netcp->ndev, subqueue);
968                 }
969
970                 netcp->ndev->stats.tx_packets++;
971                 netcp->ndev->stats.tx_bytes += skb->len;
972                 dev_kfree_skb(skb);
973                 pkts++;
974         }
975         return pkts;
976 }
977
978 static int netcp_tx_poll(struct napi_struct *napi, int budget)
979 {
980         int packets;
981         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
982                                                 tx_napi);
983
984         packets = netcp_process_tx_compl_packets(netcp, budget);
985         if (packets < budget) {
986                 napi_complete(&netcp->tx_napi);
987                 knav_queue_enable_notify(netcp->tx_compl_q);
988         }
989
990         return packets;
991 }
992
993 static void netcp_tx_notify(void *arg)
994 {
995         struct netcp_intf *netcp = arg;
996
997         knav_queue_disable_notify(netcp->tx_compl_q);
998         napi_schedule(&netcp->tx_napi);
999 }
1000
1001 static struct knav_dma_desc*
1002 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1003 {
1004         struct knav_dma_desc *desc, *ndesc, *pdesc;
1005         unsigned int pkt_len = skb_headlen(skb);
1006         struct device *dev = netcp->dev;
1007         dma_addr_t dma_addr;
1008         unsigned int dma_sz;
1009         int i;
1010
1011         /* Map the linear buffer */
1012         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1013         if (unlikely(!dma_addr)) {
1014                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1015                 return NULL;
1016         }
1017
1018         desc = knav_pool_desc_get(netcp->tx_pool);
1019         if (unlikely(IS_ERR_OR_NULL(desc))) {
1020                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1021                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1022                 return NULL;
1023         }
1024
1025         set_pkt_info(dma_addr, pkt_len, 0, desc);
1026         if (skb_is_nonlinear(skb)) {
1027                 prefetchw(skb_shinfo(skb));
1028         } else {
1029                 desc->next_desc = 0;
1030                 goto upd_pkt_len;
1031         }
1032
1033         pdesc = desc;
1034
1035         /* Handle the case where skb is fragmented in pages */
1036         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1037                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1038                 struct page *page = skb_frag_page(frag);
1039                 u32 page_offset = frag->page_offset;
1040                 u32 buf_len = skb_frag_size(frag);
1041                 dma_addr_t desc_dma;
1042                 u32 pkt_info;
1043
1044                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1045                                         DMA_TO_DEVICE);
1046                 if (unlikely(!dma_addr)) {
1047                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1048                         goto free_descs;
1049                 }
1050
1051                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1052                 if (unlikely(IS_ERR_OR_NULL(ndesc))) {
1053                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1054                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1055                         goto free_descs;
1056                 }
1057
1058                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
1059                                                       (void *)ndesc);
1060                 pkt_info =
1061                         (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1062                                 KNAV_DMA_DESC_RETQ_SHIFT;
1063                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1064                 set_words(&desc_dma, 1, &pdesc->next_desc);
1065                 pkt_len += buf_len;
1066                 if (pdesc != desc)
1067                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1068                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1069                 pdesc = ndesc;
1070         }
1071         if (pdesc != desc)
1072                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1073                                    &dma_addr, &dma_sz);
1074
1075         /* frag list based linkage is not supported for now. */
1076         if (skb_shinfo(skb)->frag_list) {
1077                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1078                 goto free_descs;
1079         }
1080
1081 upd_pkt_len:
1082         WARN_ON(pkt_len != skb->len);
1083
1084         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1085         set_words(&pkt_len, 1, &desc->desc_info);
1086         return desc;
1087
1088 free_descs:
1089         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1090         return NULL;
1091 }
1092
1093 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1094                                struct sk_buff *skb,
1095                                struct knav_dma_desc *desc)
1096 {
1097         struct netcp_tx_pipe *tx_pipe = NULL;
1098         struct netcp_hook_list *tx_hook;
1099         struct netcp_packet p_info;
1100         unsigned int dma_sz;
1101         dma_addr_t dma;
1102         u32 tmp = 0;
1103         int ret = 0;
1104
1105         p_info.netcp = netcp;
1106         p_info.skb = skb;
1107         p_info.tx_pipe = NULL;
1108         p_info.psdata_len = 0;
1109         p_info.ts_context = NULL;
1110         p_info.txtstamp_complete = NULL;
1111         p_info.epib = desc->epib;
1112         p_info.psdata = desc->psdata;
1113         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
1114
1115         /* Find out where to inject the packet for transmission */
1116         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1117                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1118                                         &p_info);
1119                 if (unlikely(ret != 0)) {
1120                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1121                                 tx_hook->order, ret);
1122                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1123                         goto out;
1124                 }
1125         }
1126
1127         /* Make sure some TX hook claimed the packet */
1128         tx_pipe = p_info.tx_pipe;
1129         if (!tx_pipe) {
1130                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1131                 ret = -ENXIO;
1132                 goto out;
1133         }
1134
1135         /* update descriptor */
1136         if (p_info.psdata_len) {
1137                 u32 *psdata = p_info.psdata;
1138
1139                 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1140                         p_info.psdata_len);
1141                 set_words(psdata, p_info.psdata_len, psdata);
1142                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1143                         KNAV_DMA_DESC_PSLEN_SHIFT;
1144         }
1145
1146         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1147                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1148                 KNAV_DMA_DESC_RETQ_SHIFT);
1149
1150         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1151                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1152                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1153         }
1154
1155         set_words(&tmp, 1, &desc->packet_info);
1156         set_words((u32 *)&skb, 1, &desc->pad[0]);
1157
1158         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1159                 tmp = tx_pipe->switch_to_port;
1160                 set_words((u32 *)&tmp, 1, &desc->tag_info);
1161         }
1162
1163         /* submit packet descriptor */
1164         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1165                                  &dma_sz);
1166         if (unlikely(ret)) {
1167                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1168                 ret = -ENOMEM;
1169                 goto out;
1170         }
1171         skb_tx_timestamp(skb);
1172         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1173
1174 out:
1175         return ret;
1176 }
1177
1178 /* Submit the packet */
1179 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1180 {
1181         struct netcp_intf *netcp = netdev_priv(ndev);
1182         int subqueue = skb_get_queue_mapping(skb);
1183         struct knav_dma_desc *desc;
1184         int desc_count, ret = 0;
1185
1186         if (unlikely(skb->len <= 0)) {
1187                 dev_kfree_skb(skb);
1188                 return NETDEV_TX_OK;
1189         }
1190
1191         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1192                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1193                 if (ret < 0) {
1194                         /* If we get here, the skb has already been dropped */
1195                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1196                                  ret);
1197                         ndev->stats.tx_dropped++;
1198                         return ret;
1199                 }
1200                 skb->len = NETCP_MIN_PACKET_SIZE;
1201         }
1202
1203         desc = netcp_tx_map_skb(skb, netcp);
1204         if (unlikely(!desc)) {
1205                 netif_stop_subqueue(ndev, subqueue);
1206                 ret = -ENOBUFS;
1207                 goto drop;
1208         }
1209
1210         ret = netcp_tx_submit_skb(netcp, skb, desc);
1211         if (ret)
1212                 goto drop;
1213
1214         ndev->trans_start = jiffies;
1215
1216         /* Check Tx pool count & stop subqueue if needed */
1217         desc_count = knav_pool_count(netcp->tx_pool);
1218         if (desc_count < netcp->tx_pause_threshold) {
1219                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1220                 netif_stop_subqueue(ndev, subqueue);
1221         }
1222         return NETDEV_TX_OK;
1223
1224 drop:
1225         ndev->stats.tx_dropped++;
1226         if (desc)
1227                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1228         dev_kfree_skb(skb);
1229         return ret;
1230 }
1231
1232 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1233 {
1234         if (tx_pipe->dma_channel) {
1235                 knav_dma_close_channel(tx_pipe->dma_channel);
1236                 tx_pipe->dma_channel = NULL;
1237         }
1238         return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1241
1242 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1243 {
1244         struct device *dev = tx_pipe->netcp_device->device;
1245         struct knav_dma_cfg config;
1246         int ret = 0;
1247         u8 name[16];
1248
1249         memset(&config, 0, sizeof(config));
1250         config.direction = DMA_MEM_TO_DEV;
1251         config.u.tx.filt_einfo = false;
1252         config.u.tx.filt_pswords = false;
1253         config.u.tx.priority = DMA_PRIO_MED_L;
1254
1255         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1256                                 tx_pipe->dma_chan_name, &config);
1257         if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1258                 dev_err(dev, "failed opening tx chan(%s)\n",
1259                         tx_pipe->dma_chan_name);
1260                 goto err;
1261         }
1262
1263         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1264         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1265                                              KNAV_QUEUE_SHARED);
1266         if (IS_ERR(tx_pipe->dma_queue)) {
1267                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1268                         name, ret);
1269                 ret = PTR_ERR(tx_pipe->dma_queue);
1270                 goto err;
1271         }
1272
1273         dev_dbg(dev, "opened tx pipe %s\n", name);
1274         return 0;
1275
1276 err:
1277         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1278                 knav_dma_close_channel(tx_pipe->dma_channel);
1279         tx_pipe->dma_channel = NULL;
1280         return ret;
1281 }
1282 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1283
1284 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1285                       struct netcp_device *netcp_device,
1286                       const char *dma_chan_name, unsigned int dma_queue_id)
1287 {
1288         memset(tx_pipe, 0, sizeof(*tx_pipe));
1289         tx_pipe->netcp_device = netcp_device;
1290         tx_pipe->dma_chan_name = dma_chan_name;
1291         tx_pipe->dma_queue_id = dma_queue_id;
1292         return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1295
1296 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1297                                           const u8 *addr,
1298                                           enum netcp_addr_type type)
1299 {
1300         struct netcp_addr *naddr;
1301
1302         list_for_each_entry(naddr, &netcp->addr_list, node) {
1303                 if (naddr->type != type)
1304                         continue;
1305                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1306                         continue;
1307                 return naddr;
1308         }
1309
1310         return NULL;
1311 }
1312
1313 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1314                                          const u8 *addr,
1315                                          enum netcp_addr_type type)
1316 {
1317         struct netcp_addr *naddr;
1318
1319         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1320         if (!naddr)
1321                 return NULL;
1322
1323         naddr->type = type;
1324         naddr->flags = 0;
1325         naddr->netcp = netcp;
1326         if (addr)
1327                 ether_addr_copy(naddr->addr, addr);
1328         else
1329                 eth_zero_addr(naddr->addr);
1330         list_add_tail(&naddr->node, &netcp->addr_list);
1331
1332         return naddr;
1333 }
1334
1335 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1336 {
1337         list_del(&naddr->node);
1338         devm_kfree(netcp->dev, naddr);
1339 }
1340
1341 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1342 {
1343         struct netcp_addr *naddr;
1344
1345         list_for_each_entry(naddr, &netcp->addr_list, node)
1346                 naddr->flags = 0;
1347 }
1348
1349 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1350                                 enum netcp_addr_type type)
1351 {
1352         struct netcp_addr *naddr;
1353
1354         naddr = netcp_addr_find(netcp, addr, type);
1355         if (naddr) {
1356                 naddr->flags |= ADDR_VALID;
1357                 return;
1358         }
1359
1360         naddr = netcp_addr_add(netcp, addr, type);
1361         if (!WARN_ON(!naddr))
1362                 naddr->flags |= ADDR_NEW;
1363 }
1364
1365 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1366 {
1367         struct netcp_addr *naddr, *tmp;
1368         struct netcp_intf_modpriv *priv;
1369         struct netcp_module *module;
1370         int error;
1371
1372         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1373                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1374                         continue;
1375                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1376                         naddr->addr, naddr->type);
1377                 mutex_lock(&netcp_modules_lock);
1378                 for_each_module(netcp, priv) {
1379                         module = priv->netcp_module;
1380                         if (!module->del_addr)
1381                                 continue;
1382                         error = module->del_addr(priv->module_priv,
1383                                                  naddr);
1384                         WARN_ON(error);
1385                 }
1386                 mutex_unlock(&netcp_modules_lock);
1387                 netcp_addr_del(netcp, naddr);
1388         }
1389 }
1390
1391 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1392 {
1393         struct netcp_addr *naddr, *tmp;
1394         struct netcp_intf_modpriv *priv;
1395         struct netcp_module *module;
1396         int error;
1397
1398         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1399                 if (!(naddr->flags & ADDR_NEW))
1400                         continue;
1401                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1402                         naddr->addr, naddr->type);
1403                 mutex_lock(&netcp_modules_lock);
1404                 for_each_module(netcp, priv) {
1405                         module = priv->netcp_module;
1406                         if (!module->add_addr)
1407                                 continue;
1408                         error = module->add_addr(priv->module_priv, naddr);
1409                         WARN_ON(error);
1410                 }
1411                 mutex_unlock(&netcp_modules_lock);
1412         }
1413 }
1414
1415 static void netcp_set_rx_mode(struct net_device *ndev)
1416 {
1417         struct netcp_intf *netcp = netdev_priv(ndev);
1418         struct netdev_hw_addr *ndev_addr;
1419         bool promisc;
1420
1421         promisc = (ndev->flags & IFF_PROMISC ||
1422                    ndev->flags & IFF_ALLMULTI ||
1423                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1424
1425         /* first clear all marks */
1426         netcp_addr_clear_mark(netcp);
1427
1428         /* next add new entries, mark existing ones */
1429         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1430         for_each_dev_addr(ndev, ndev_addr)
1431                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1432         netdev_for_each_uc_addr(ndev_addr, ndev)
1433                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1434         netdev_for_each_mc_addr(ndev_addr, ndev)
1435                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1436
1437         if (promisc)
1438                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1439
1440         /* finally sweep and callout into modules */
1441         netcp_addr_sweep_del(netcp);
1442         netcp_addr_sweep_add(netcp);
1443 }
1444
1445 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1446 {
1447         int i;
1448
1449         if (netcp->rx_channel) {
1450                 knav_dma_close_channel(netcp->rx_channel);
1451                 netcp->rx_channel = NULL;
1452         }
1453
1454         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1455                 netcp_rxpool_free(netcp);
1456
1457         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1458                 knav_queue_close(netcp->rx_queue);
1459                 netcp->rx_queue = NULL;
1460         }
1461
1462         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1463              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1464                 knav_queue_close(netcp->rx_fdq[i]);
1465                 netcp->rx_fdq[i] = NULL;
1466         }
1467
1468         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1469                 knav_queue_close(netcp->tx_compl_q);
1470                 netcp->tx_compl_q = NULL;
1471         }
1472
1473         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1474                 knav_pool_destroy(netcp->tx_pool);
1475                 netcp->tx_pool = NULL;
1476         }
1477 }
1478
1479 static int netcp_setup_navigator_resources(struct net_device *ndev)
1480 {
1481         struct netcp_intf *netcp = netdev_priv(ndev);
1482         struct knav_queue_notify_config notify_cfg;
1483         struct knav_dma_cfg config;
1484         u32 last_fdq = 0;
1485         u8 name[16];
1486         int ret;
1487         int i;
1488
1489         /* Create Rx/Tx descriptor pools */
1490         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1491         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1492                                                 netcp->rx_pool_region_id);
1493         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1494                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1495                 ret = PTR_ERR(netcp->rx_pool);
1496                 goto fail;
1497         }
1498
1499         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1500         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1501                                                 netcp->tx_pool_region_id);
1502         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1503                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1504                 ret = PTR_ERR(netcp->tx_pool);
1505                 goto fail;
1506         }
1507
1508         /* open Tx completion queue */
1509         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1510         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1511         if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1512                 ret = PTR_ERR(netcp->tx_compl_q);
1513                 goto fail;
1514         }
1515         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1516
1517         /* Set notification for Tx completion */
1518         notify_cfg.fn = netcp_tx_notify;
1519         notify_cfg.fn_arg = netcp;
1520         ret = knav_queue_device_control(netcp->tx_compl_q,
1521                                         KNAV_QUEUE_SET_NOTIFIER,
1522                                         (unsigned long)&notify_cfg);
1523         if (ret)
1524                 goto fail;
1525
1526         knav_queue_disable_notify(netcp->tx_compl_q);
1527
1528         /* open Rx completion queue */
1529         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1530         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1531         if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1532                 ret = PTR_ERR(netcp->rx_queue);
1533                 goto fail;
1534         }
1535         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1536
1537         /* Set notification for Rx completion */
1538         notify_cfg.fn = netcp_rx_notify;
1539         notify_cfg.fn_arg = netcp;
1540         ret = knav_queue_device_control(netcp->rx_queue,
1541                                         KNAV_QUEUE_SET_NOTIFIER,
1542                                         (unsigned long)&notify_cfg);
1543         if (ret)
1544                 goto fail;
1545
1546         knav_queue_disable_notify(netcp->rx_queue);
1547
1548         /* open Rx FDQs */
1549         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1550              netcp->rx_queue_depths[i] && netcp->rx_buffer_sizes[i]; ++i) {
1551                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1552                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1553                 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1554                         ret = PTR_ERR(netcp->rx_fdq[i]);
1555                         goto fail;
1556                 }
1557         }
1558
1559         memset(&config, 0, sizeof(config));
1560         config.direction                = DMA_DEV_TO_MEM;
1561         config.u.rx.einfo_present       = true;
1562         config.u.rx.psinfo_present      = true;
1563         config.u.rx.err_mode            = DMA_DROP;
1564         config.u.rx.desc_type           = DMA_DESC_HOST;
1565         config.u.rx.psinfo_at_sop       = false;
1566         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1567         config.u.rx.dst_q               = netcp->rx_queue_id;
1568         config.u.rx.thresh              = DMA_THRESH_NONE;
1569
1570         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1571                 if (netcp->rx_fdq[i])
1572                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1573                 config.u.rx.fdq[i] = last_fdq;
1574         }
1575
1576         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1577                                         netcp->dma_chan_name, &config);
1578         if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1579                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1580                         netcp->dma_chan_name);
1581                 goto fail;
1582         }
1583
1584         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1585         return 0;
1586
1587 fail:
1588         netcp_free_navigator_resources(netcp);
1589         return ret;
1590 }
1591
1592 /* Open the device */
1593 static int netcp_ndo_open(struct net_device *ndev)
1594 {
1595         struct netcp_intf *netcp = netdev_priv(ndev);
1596         struct netcp_intf_modpriv *intf_modpriv;
1597         struct netcp_module *module;
1598         int ret;
1599
1600         netif_carrier_off(ndev);
1601         ret = netcp_setup_navigator_resources(ndev);
1602         if (ret) {
1603                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1604                 goto fail;
1605         }
1606
1607         mutex_lock(&netcp_modules_lock);
1608         for_each_module(netcp, intf_modpriv) {
1609                 module = intf_modpriv->netcp_module;
1610                 if (module->open) {
1611                         ret = module->open(intf_modpriv->module_priv, ndev);
1612                         if (ret != 0) {
1613                                 dev_err(netcp->ndev_dev, "module open failed\n");
1614                                 goto fail_open;
1615                         }
1616                 }
1617         }
1618         mutex_unlock(&netcp_modules_lock);
1619
1620         netcp_rxpool_refill(netcp);
1621         napi_enable(&netcp->rx_napi);
1622         napi_enable(&netcp->tx_napi);
1623         knav_queue_enable_notify(netcp->tx_compl_q);
1624         knav_queue_enable_notify(netcp->rx_queue);
1625         netif_tx_wake_all_queues(ndev);
1626         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1627         return 0;
1628
1629 fail_open:
1630         for_each_module(netcp, intf_modpriv) {
1631                 module = intf_modpriv->netcp_module;
1632                 if (module->close)
1633                         module->close(intf_modpriv->module_priv, ndev);
1634         }
1635         mutex_unlock(&netcp_modules_lock);
1636
1637 fail:
1638         netcp_free_navigator_resources(netcp);
1639         return ret;
1640 }
1641
1642 /* Close the device */
1643 static int netcp_ndo_stop(struct net_device *ndev)
1644 {
1645         struct netcp_intf *netcp = netdev_priv(ndev);
1646         struct netcp_intf_modpriv *intf_modpriv;
1647         struct netcp_module *module;
1648         int err = 0;
1649
1650         netif_tx_stop_all_queues(ndev);
1651         netif_carrier_off(ndev);
1652         netcp_addr_clear_mark(netcp);
1653         netcp_addr_sweep_del(netcp);
1654         knav_queue_disable_notify(netcp->rx_queue);
1655         knav_queue_disable_notify(netcp->tx_compl_q);
1656         napi_disable(&netcp->rx_napi);
1657         napi_disable(&netcp->tx_napi);
1658
1659         mutex_lock(&netcp_modules_lock);
1660         for_each_module(netcp, intf_modpriv) {
1661                 module = intf_modpriv->netcp_module;
1662                 if (module->close) {
1663                         err = module->close(intf_modpriv->module_priv, ndev);
1664                         if (err != 0)
1665                                 dev_err(netcp->ndev_dev, "Close failed\n");
1666                 }
1667         }
1668         mutex_unlock(&netcp_modules_lock);
1669
1670         /* Recycle Rx descriptors from completion queue */
1671         netcp_empty_rx_queue(netcp);
1672
1673         /* Recycle Tx descriptors from completion queue */
1674         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1675
1676         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1677                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1678                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1679
1680         netcp_free_navigator_resources(netcp);
1681         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1682         return 0;
1683 }
1684
1685 static int netcp_ndo_ioctl(struct net_device *ndev,
1686                            struct ifreq *req, int cmd)
1687 {
1688         struct netcp_intf *netcp = netdev_priv(ndev);
1689         struct netcp_intf_modpriv *intf_modpriv;
1690         struct netcp_module *module;
1691         int ret = -1, err = -EOPNOTSUPP;
1692
1693         if (!netif_running(ndev))
1694                 return -EINVAL;
1695
1696         mutex_lock(&netcp_modules_lock);
1697         for_each_module(netcp, intf_modpriv) {
1698                 module = intf_modpriv->netcp_module;
1699                 if (!module->ioctl)
1700                         continue;
1701
1702                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1703                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1704                         ret = err;
1705                         goto out;
1706                 }
1707                 if (err == 0)
1708                         ret = err;
1709         }
1710
1711 out:
1712         mutex_unlock(&netcp_modules_lock);
1713         return (ret == 0) ? 0 : err;
1714 }
1715
1716 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1717 {
1718         struct netcp_intf *netcp = netdev_priv(ndev);
1719
1720         /* MTU < 68 is an error for IPv4 traffic */
1721         if ((new_mtu < 68) ||
1722             (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1723                 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1724                 return -EINVAL;
1725         }
1726
1727         ndev->mtu = new_mtu;
1728         return 0;
1729 }
1730
1731 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1732 {
1733         struct netcp_intf *netcp = netdev_priv(ndev);
1734         unsigned int descs = knav_pool_count(netcp->tx_pool);
1735
1736         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1737         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1738         ndev->trans_start = jiffies;
1739         netif_tx_wake_all_queues(ndev);
1740 }
1741
1742 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1743 {
1744         struct netcp_intf *netcp = netdev_priv(ndev);
1745         struct netcp_intf_modpriv *intf_modpriv;
1746         struct netcp_module *module;
1747         int err = 0;
1748
1749         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1750
1751         mutex_lock(&netcp_modules_lock);
1752         for_each_module(netcp, intf_modpriv) {
1753                 module = intf_modpriv->netcp_module;
1754                 if ((module->add_vid) && (vid != 0)) {
1755                         err = module->add_vid(intf_modpriv->module_priv, vid);
1756                         if (err != 0) {
1757                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1758                                         vid);
1759                                 break;
1760                         }
1761                 }
1762         }
1763         mutex_unlock(&netcp_modules_lock);
1764         return err;
1765 }
1766
1767 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1768 {
1769         struct netcp_intf *netcp = netdev_priv(ndev);
1770         struct netcp_intf_modpriv *intf_modpriv;
1771         struct netcp_module *module;
1772         int err = 0;
1773
1774         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1775
1776         mutex_lock(&netcp_modules_lock);
1777         for_each_module(netcp, intf_modpriv) {
1778                 module = intf_modpriv->netcp_module;
1779                 if (module->del_vid) {
1780                         err = module->del_vid(intf_modpriv->module_priv, vid);
1781                         if (err != 0) {
1782                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1783                                         vid);
1784                                 break;
1785                         }
1786                 }
1787         }
1788         mutex_unlock(&netcp_modules_lock);
1789         return err;
1790 }
1791
1792 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1793                               void *accel_priv,
1794                               select_queue_fallback_t fallback)
1795 {
1796         return 0;
1797 }
1798
1799 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1800 {
1801         int i;
1802
1803         /* setup tc must be called under rtnl lock */
1804         ASSERT_RTNL();
1805
1806         /* Sanity-check the number of traffic classes requested */
1807         if ((dev->real_num_tx_queues <= 1) ||
1808             (dev->real_num_tx_queues < num_tc))
1809                 return -EINVAL;
1810
1811         /* Configure traffic class to queue mappings */
1812         if (num_tc) {
1813                 netdev_set_num_tc(dev, num_tc);
1814                 for (i = 0; i < num_tc; i++)
1815                         netdev_set_tc_queue(dev, i, 1, i);
1816         } else {
1817                 netdev_reset_tc(dev);
1818         }
1819
1820         return 0;
1821 }
1822
1823 static const struct net_device_ops netcp_netdev_ops = {
1824         .ndo_open               = netcp_ndo_open,
1825         .ndo_stop               = netcp_ndo_stop,
1826         .ndo_start_xmit         = netcp_ndo_start_xmit,
1827         .ndo_set_rx_mode        = netcp_set_rx_mode,
1828         .ndo_do_ioctl           = netcp_ndo_ioctl,
1829         .ndo_change_mtu         = netcp_ndo_change_mtu,
1830         .ndo_set_mac_address    = eth_mac_addr,
1831         .ndo_validate_addr      = eth_validate_addr,
1832         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1833         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1834         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1835         .ndo_select_queue       = netcp_select_queue,
1836         .ndo_setup_tc           = netcp_setup_tc,
1837 };
1838
1839 static int netcp_create_interface(struct netcp_device *netcp_device,
1840                                   struct device_node *node_interface)
1841 {
1842         struct device *dev = netcp_device->device;
1843         struct device_node *node = dev->of_node;
1844         struct netcp_intf *netcp;
1845         struct net_device *ndev;
1846         resource_size_t size;
1847         struct resource res;
1848         void __iomem *efuse = NULL;
1849         u32 efuse_mac = 0;
1850         const void *mac_addr;
1851         u8 efuse_mac_addr[6];
1852         u32 temp[2];
1853         int ret = 0;
1854
1855         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1856         if (!ndev) {
1857                 dev_err(dev, "Error allocating netdev\n");
1858                 return -ENOMEM;
1859         }
1860
1861         ndev->features |= NETIF_F_SG;
1862         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1863         ndev->hw_features = ndev->features;
1864         ndev->vlan_features |=  NETIF_F_SG;
1865
1866         netcp = netdev_priv(ndev);
1867         spin_lock_init(&netcp->lock);
1868         INIT_LIST_HEAD(&netcp->module_head);
1869         INIT_LIST_HEAD(&netcp->txhook_list_head);
1870         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1871         INIT_LIST_HEAD(&netcp->addr_list);
1872         netcp->netcp_device = netcp_device;
1873         netcp->dev = netcp_device->device;
1874         netcp->ndev = ndev;
1875         netcp->ndev_dev  = &ndev->dev;
1876         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1877         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1878         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1879         netcp->node_interface = node_interface;
1880
1881         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1882         if (efuse_mac) {
1883                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1884                         dev_err(dev, "could not find efuse-mac reg resource\n");
1885                         ret = -ENODEV;
1886                         goto quit;
1887                 }
1888                 size = resource_size(&res);
1889
1890                 if (!devm_request_mem_region(dev, res.start, size,
1891                                              dev_name(dev))) {
1892                         dev_err(dev, "could not reserve resource\n");
1893                         ret = -ENOMEM;
1894                         goto quit;
1895                 }
1896
1897                 efuse = devm_ioremap_nocache(dev, res.start, size);
1898                 if (!efuse) {
1899                         dev_err(dev, "could not map resource\n");
1900                         devm_release_mem_region(dev, res.start, size);
1901                         ret = -ENOMEM;
1902                         goto quit;
1903                 }
1904
1905                 emac_arch_get_mac_addr(efuse_mac_addr, efuse);
1906                 if (is_valid_ether_addr(efuse_mac_addr))
1907                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1908                 else
1909                         random_ether_addr(ndev->dev_addr);
1910
1911                 devm_iounmap(dev, efuse);
1912                 devm_release_mem_region(dev, res.start, size);
1913         } else {
1914                 mac_addr = of_get_mac_address(node_interface);
1915                 if (mac_addr)
1916                         ether_addr_copy(ndev->dev_addr, mac_addr);
1917                 else
1918                         random_ether_addr(ndev->dev_addr);
1919         }
1920
1921         ret = of_property_read_string(node_interface, "rx-channel",
1922                                       &netcp->dma_chan_name);
1923         if (ret < 0) {
1924                 dev_err(dev, "missing \"rx-channel\" parameter\n");
1925                 ret = -ENODEV;
1926                 goto quit;
1927         }
1928
1929         ret = of_property_read_u32(node_interface, "rx-queue",
1930                                    &netcp->rx_queue_id);
1931         if (ret < 0) {
1932                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
1933                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1934         }
1935
1936         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1937                                          netcp->rx_queue_depths,
1938                                          KNAV_DMA_FDQ_PER_CHAN);
1939         if (ret < 0) {
1940                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1941                 netcp->rx_queue_depths[0] = 128;
1942         }
1943
1944         ret = of_property_read_u32_array(node_interface, "rx-buffer-size",
1945                                          netcp->rx_buffer_sizes,
1946                                          KNAV_DMA_FDQ_PER_CHAN);
1947         if (ret) {
1948                 dev_err(dev, "missing \"rx-buffer-size\" parameter\n");
1949                 netcp->rx_buffer_sizes[0] = 1536;
1950         }
1951
1952         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
1953         if (ret < 0) {
1954                 dev_err(dev, "missing \"rx-pool\" parameter\n");
1955                 ret = -ENODEV;
1956                 goto quit;
1957         }
1958         netcp->rx_pool_size = temp[0];
1959         netcp->rx_pool_region_id = temp[1];
1960
1961         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
1962         if (ret < 0) {
1963                 dev_err(dev, "missing \"tx-pool\" parameter\n");
1964                 ret = -ENODEV;
1965                 goto quit;
1966         }
1967         netcp->tx_pool_size = temp[0];
1968         netcp->tx_pool_region_id = temp[1];
1969
1970         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
1971                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
1972                         MAX_SKB_FRAGS);
1973                 ret = -ENODEV;
1974                 goto quit;
1975         }
1976
1977         ret = of_property_read_u32(node_interface, "tx-completion-queue",
1978                                    &netcp->tx_compl_qid);
1979         if (ret < 0) {
1980                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
1981                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
1982         }
1983
1984         /* NAPI register */
1985         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
1986         netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
1987
1988         /* Register the network device */
1989         ndev->dev_id            = 0;
1990         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
1991         ndev->netdev_ops        = &netcp_netdev_ops;
1992         SET_NETDEV_DEV(ndev, dev);
1993
1994         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
1995         return 0;
1996
1997 quit:
1998         free_netdev(ndev);
1999         return ret;
2000 }
2001
2002 static void netcp_delete_interface(struct netcp_device *netcp_device,
2003                                    struct net_device *ndev)
2004 {
2005         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2006         struct netcp_intf *netcp = netdev_priv(ndev);
2007         struct netcp_module *module;
2008
2009         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2010                 ndev->name);
2011
2012         /* Notify each of the modules that the interface is going away */
2013         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2014                                  intf_list) {
2015                 module = intf_modpriv->netcp_module;
2016                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2017                         module->name);
2018                 if (module->release)
2019                         module->release(intf_modpriv->module_priv);
2020                 list_del(&intf_modpriv->intf_list);
2021                 kfree(intf_modpriv);
2022         }
2023         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2024              ndev->name);
2025
2026         list_del(&netcp->interface_list);
2027
2028         of_node_put(netcp->node_interface);
2029         unregister_netdev(ndev);
2030         netif_napi_del(&netcp->rx_napi);
2031         free_netdev(ndev);
2032 }
2033
2034 static int netcp_probe(struct platform_device *pdev)
2035 {
2036         struct device_node *node = pdev->dev.of_node;
2037         struct netcp_intf *netcp_intf, *netcp_tmp;
2038         struct device_node *child, *interfaces;
2039         struct netcp_device *netcp_device;
2040         struct device *dev = &pdev->dev;
2041         struct netcp_module *module;
2042         int ret;
2043
2044         if (!node) {
2045                 dev_err(dev, "could not find device info\n");
2046                 return -ENODEV;
2047         }
2048
2049         /* Allocate a new NETCP device instance */
2050         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2051         if (!netcp_device)
2052                 return -ENOMEM;
2053
2054         pm_runtime_enable(&pdev->dev);
2055         ret = pm_runtime_get_sync(&pdev->dev);
2056         if (ret < 0) {
2057                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2058                 pm_runtime_disable(&pdev->dev);
2059                 return ret;
2060         }
2061
2062         /* Initialize the NETCP device instance */
2063         INIT_LIST_HEAD(&netcp_device->interface_head);
2064         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2065         netcp_device->device = dev;
2066         platform_set_drvdata(pdev, netcp_device);
2067
2068         /* create interfaces */
2069         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2070         if (!interfaces) {
2071                 dev_err(dev, "could not find netcp-interfaces node\n");
2072                 ret = -ENODEV;
2073                 goto probe_quit;
2074         }
2075
2076         for_each_available_child_of_node(interfaces, child) {
2077                 ret = netcp_create_interface(netcp_device, child);
2078                 if (ret) {
2079                         dev_err(dev, "could not create interface(%s)\n",
2080                                 child->name);
2081                         goto probe_quit_interface;
2082                 }
2083         }
2084
2085         /* Add the device instance to the list */
2086         list_add_tail(&netcp_device->device_list, &netcp_devices);
2087
2088         /* Probe & attach any modules already registered */
2089         mutex_lock(&netcp_modules_lock);
2090         for_each_netcp_module(module) {
2091                 ret = netcp_module_probe(netcp_device, module);
2092                 if (ret < 0)
2093                         dev_err(dev, "module(%s) probe failed\n", module->name);
2094         }
2095         mutex_unlock(&netcp_modules_lock);
2096         return 0;
2097
2098 probe_quit_interface:
2099         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2100                                  &netcp_device->interface_head,
2101                                  interface_list) {
2102                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2103         }
2104
2105 probe_quit:
2106         pm_runtime_put_sync(&pdev->dev);
2107         pm_runtime_disable(&pdev->dev);
2108         platform_set_drvdata(pdev, NULL);
2109         return ret;
2110 }
2111
2112 static int netcp_remove(struct platform_device *pdev)
2113 {
2114         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2115         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2116         struct netcp_module *module;
2117
2118         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2119                                  inst_list) {
2120                 module = inst_modpriv->netcp_module;
2121                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2122                 module->remove(netcp_device, inst_modpriv->module_priv);
2123                 list_del(&inst_modpriv->inst_list);
2124                 kfree(inst_modpriv);
2125         }
2126         WARN(!list_empty(&netcp_device->interface_head), "%s interface list not empty!\n",
2127              pdev->name);
2128
2129         devm_kfree(&pdev->dev, netcp_device);
2130         pm_runtime_put_sync(&pdev->dev);
2131         pm_runtime_disable(&pdev->dev);
2132         platform_set_drvdata(pdev, NULL);
2133         return 0;
2134 }
2135
2136 static const struct of_device_id of_match[] = {
2137         { .compatible = "ti,netcp-1.0", },
2138         {},
2139 };
2140 MODULE_DEVICE_TABLE(of, of_match);
2141
2142 static struct platform_driver netcp_driver = {
2143         .driver = {
2144                 .name           = "netcp-1.0",
2145                 .owner          = THIS_MODULE,
2146                 .of_match_table = of_match,
2147         },
2148         .probe = netcp_probe,
2149         .remove = netcp_remove,
2150 };
2151 module_platform_driver(netcp_driver);
2152
2153 MODULE_LICENSE("GPL v2");
2154 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2155 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");