Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                                     struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                                     struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                                     struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                                     struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148                                          struct e1000_rx_ring *rx_ring,
149                                          int cleaned_count)
150 {
151 }
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153                                    struct e1000_rx_ring *rx_ring,
154                                    int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156                                          struct e1000_rx_ring *rx_ring,
157                                          int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160                            int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167                                        struct sk_buff *skb);
168
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171                             netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173                                      bool filter_on);
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175                                  __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177                                   __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
185
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
190
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195         "Maximum size of packet that is copied to a new buffer on receive");
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                                                 pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static const struct pci_error_handlers e1000_err_handler = {
203         .error_detected = e1000_io_error_detected,
204         .slot_reset = e1000_io_slot_reset,
205         .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209         .name     = e1000_driver_name,
210         .id_table = e1000_pci_tbl,
211         .probe    = e1000_probe,
212         .remove   = e1000_remove,
213 #ifdef CONFIG_PM
214         /* Power Management Hooks */
215         .suspend  = e1000_suspend,
216         .resume   = e1000_resume,
217 #endif
218         .shutdown = e1000_shutdown,
219         .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232 /**
233  * e1000_get_hw_dev - return device
234  * used by hardware layer to print debugging information
235  *
236  **/
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238 {
239         struct e1000_adapter *adapter = hw->back;
240         return adapter->netdev;
241 }
242
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249 static int __init e1000_init_module(void)
250 {
251         int ret;
252         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254         pr_info("%s\n", e1000_copyright);
255
256         ret = pci_register_driver(&e1000_driver);
257         if (copybreak != COPYBREAK_DEFAULT) {
258                 if (copybreak == 0)
259                         pr_info("copybreak disabled\n");
260                 else
261                         pr_info("copybreak enabled for "
262                                    "packets <= %u bytes\n", copybreak);
263         }
264         return ret;
265 }
266
267 module_init(e1000_init_module);
268
269 /**
270  * e1000_exit_module - Driver Exit Cleanup Routine
271  *
272  * e1000_exit_module is called just before the driver is removed
273  * from memory.
274  **/
275 static void __exit e1000_exit_module(void)
276 {
277         pci_unregister_driver(&e1000_driver);
278 }
279
280 module_exit(e1000_exit_module);
281
282 static int e1000_request_irq(struct e1000_adapter *adapter)
283 {
284         struct net_device *netdev = adapter->netdev;
285         irq_handler_t handler = e1000_intr;
286         int irq_flags = IRQF_SHARED;
287         int err;
288
289         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290                           netdev);
291         if (err) {
292                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293         }
294
295         return err;
296 }
297
298 static void e1000_free_irq(struct e1000_adapter *adapter)
299 {
300         struct net_device *netdev = adapter->netdev;
301
302         free_irq(adapter->pdev->irq, netdev);
303 }
304
305 /**
306  * e1000_irq_disable - Mask off interrupt generation on the NIC
307  * @adapter: board private structure
308  **/
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMC, ~0);
314         E1000_WRITE_FLUSH();
315         synchronize_irq(adapter->pdev->irq);
316 }
317
318 /**
319  * e1000_irq_enable - Enable default interrupt generation settings
320  * @adapter: board private structure
321  **/
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
323 {
324         struct e1000_hw *hw = &adapter->hw;
325
326         ew32(IMS, IMS_ENABLE_MASK);
327         E1000_WRITE_FLUSH();
328 }
329
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332         struct e1000_hw *hw = &adapter->hw;
333         struct net_device *netdev = adapter->netdev;
334         u16 vid = hw->mng_cookie.vlan_id;
335         u16 old_vid = adapter->mng_vlan_id;
336
337         if (!e1000_vlan_used(adapter))
338                 return;
339
340         if (!test_bit(vid, adapter->active_vlans)) {
341                 if (hw->mng_cookie.status &
342                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343                         e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344                         adapter->mng_vlan_id = vid;
345                 } else {
346                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347                 }
348                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349                     (vid != old_vid) &&
350                     !test_bit(old_vid, adapter->active_vlans))
351                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352                                                old_vid);
353         } else {
354                 adapter->mng_vlan_id = vid;
355         }
356 }
357
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
359 {
360         struct e1000_hw *hw = &adapter->hw;
361
362         if (adapter->en_mng_pt) {
363                 u32 manc = er32(MANC);
364
365                 /* disable hardware interception of ARP */
366                 manc &= ~(E1000_MANC_ARP_EN);
367
368                 ew32(MANC, manc);
369         }
370 }
371
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
373 {
374         struct e1000_hw *hw = &adapter->hw;
375
376         if (adapter->en_mng_pt) {
377                 u32 manc = er32(MANC);
378
379                 /* re-enable hardware interception of ARP */
380                 manc |= E1000_MANC_ARP_EN;
381
382                 ew32(MANC, manc);
383         }
384 }
385
386 /**
387  * e1000_configure - configure the hardware for RX and TX
388  * @adapter = private board structure
389  **/
390 static void e1000_configure(struct e1000_adapter *adapter)
391 {
392         struct net_device *netdev = adapter->netdev;
393         int i;
394
395         e1000_set_rx_mode(netdev);
396
397         e1000_restore_vlan(adapter);
398         e1000_init_manageability(adapter);
399
400         e1000_configure_tx(adapter);
401         e1000_setup_rctl(adapter);
402         e1000_configure_rx(adapter);
403         /* call E1000_DESC_UNUSED which always leaves
404          * at least 1 descriptor unused to make sure
405          * next_to_use != next_to_clean
406          */
407         for (i = 0; i < adapter->num_rx_queues; i++) {
408                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409                 adapter->alloc_rx_buf(adapter, ring,
410                                       E1000_DESC_UNUSED(ring));
411         }
412 }
413
414 int e1000_up(struct e1000_adapter *adapter)
415 {
416         struct e1000_hw *hw = &adapter->hw;
417
418         /* hardware has been reset, we need to reload some things */
419         e1000_configure(adapter);
420
421         clear_bit(__E1000_DOWN, &adapter->flags);
422
423         napi_enable(&adapter->napi);
424
425         e1000_irq_enable(adapter);
426
427         netif_wake_queue(adapter->netdev);
428
429         /* fire a link change interrupt to start the watchdog */
430         ew32(ICS, E1000_ICS_LSC);
431         return 0;
432 }
433
434 /**
435  * e1000_power_up_phy - restore link in case the phy was powered down
436  * @adapter: address of board private structure
437  *
438  * The phy may be powered down to save power and turn off link when the
439  * driver is unloaded and wake on lan is not enabled (among others)
440  * *** this routine MUST be followed by a call to e1000_reset ***
441  **/
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
443 {
444         struct e1000_hw *hw = &adapter->hw;
445         u16 mii_reg = 0;
446
447         /* Just clear the power down bit to wake the phy back up */
448         if (hw->media_type == e1000_media_type_copper) {
449                 /* according to the manual, the phy will retain its
450                  * settings across a power-down/up cycle
451                  */
452                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453                 mii_reg &= ~MII_CR_POWER_DOWN;
454                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455         }
456 }
457
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
459 {
460         struct e1000_hw *hw = &adapter->hw;
461
462         /* Power down the PHY so no link is implied when interface is down *
463          * The PHY cannot be powered down if any of the following is true *
464          * (a) WoL is enabled
465          * (b) AMT is active
466          * (c) SoL/IDER session is active
467          */
468         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469            hw->media_type == e1000_media_type_copper) {
470                 u16 mii_reg = 0;
471
472                 switch (hw->mac_type) {
473                 case e1000_82540:
474                 case e1000_82545:
475                 case e1000_82545_rev_3:
476                 case e1000_82546:
477                 case e1000_ce4100:
478                 case e1000_82546_rev_3:
479                 case e1000_82541:
480                 case e1000_82541_rev_2:
481                 case e1000_82547:
482                 case e1000_82547_rev_2:
483                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
484                                 goto out;
485                         break;
486                 default:
487                         goto out;
488                 }
489                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490                 mii_reg |= MII_CR_POWER_DOWN;
491                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492                 msleep(1);
493         }
494 out:
495         return;
496 }
497
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
499 {
500         set_bit(__E1000_DOWN, &adapter->flags);
501
502         cancel_delayed_work_sync(&adapter->watchdog_task);
503
504         /*
505          * Since the watchdog task can reschedule other tasks, we should cancel
506          * it first, otherwise we can run into the situation when a work is
507          * still running after the adapter has been turned down.
508          */
509
510         cancel_delayed_work_sync(&adapter->phy_info_task);
511         cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513         /* Only kill reset task if adapter is not resetting */
514         if (!test_bit(__E1000_RESETTING, &adapter->flags))
515                 cancel_work_sync(&adapter->reset_task);
516 }
517
518 void e1000_down(struct e1000_adapter *adapter)
519 {
520         struct e1000_hw *hw = &adapter->hw;
521         struct net_device *netdev = adapter->netdev;
522         u32 rctl, tctl;
523
524         netif_carrier_off(netdev);
525
526         /* disable receives in the hardware */
527         rctl = er32(RCTL);
528         ew32(RCTL, rctl & ~E1000_RCTL_EN);
529         /* flush and sleep below */
530
531         netif_tx_disable(netdev);
532
533         /* disable transmits in the hardware */
534         tctl = er32(TCTL);
535         tctl &= ~E1000_TCTL_EN;
536         ew32(TCTL, tctl);
537         /* flush both disables and wait for them to finish */
538         E1000_WRITE_FLUSH();
539         msleep(10);
540
541         napi_disable(&adapter->napi);
542
543         e1000_irq_disable(adapter);
544
545         /* Setting DOWN must be after irq_disable to prevent
546          * a screaming interrupt.  Setting DOWN also prevents
547          * tasks from rescheduling.
548          */
549         e1000_down_and_stop(adapter);
550
551         adapter->link_speed = 0;
552         adapter->link_duplex = 0;
553
554         e1000_reset(adapter);
555         e1000_clean_all_tx_rings(adapter);
556         e1000_clean_all_rx_rings(adapter);
557 }
558
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561         WARN_ON(in_interrupt());
562         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563                 msleep(1);
564         e1000_down(adapter);
565         e1000_up(adapter);
566         clear_bit(__E1000_RESETTING, &adapter->flags);
567 }
568
569 void e1000_reset(struct e1000_adapter *adapter)
570 {
571         struct e1000_hw *hw = &adapter->hw;
572         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573         bool legacy_pba_adjust = false;
574         u16 hwm;
575
576         /* Repartition Pba for greater than 9k mtu
577          * To take effect CTRL.RST is required.
578          */
579
580         switch (hw->mac_type) {
581         case e1000_82542_rev2_0:
582         case e1000_82542_rev2_1:
583         case e1000_82543:
584         case e1000_82544:
585         case e1000_82540:
586         case e1000_82541:
587         case e1000_82541_rev_2:
588                 legacy_pba_adjust = true;
589                 pba = E1000_PBA_48K;
590                 break;
591         case e1000_82545:
592         case e1000_82545_rev_3:
593         case e1000_82546:
594         case e1000_ce4100:
595         case e1000_82546_rev_3:
596                 pba = E1000_PBA_48K;
597                 break;
598         case e1000_82547:
599         case e1000_82547_rev_2:
600                 legacy_pba_adjust = true;
601                 pba = E1000_PBA_30K;
602                 break;
603         case e1000_undefined:
604         case e1000_num_macs:
605                 break;
606         }
607
608         if (legacy_pba_adjust) {
609                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610                         pba -= 8; /* allocate more FIFO for Tx */
611
612                 if (hw->mac_type == e1000_82547) {
613                         adapter->tx_fifo_head = 0;
614                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615                         adapter->tx_fifo_size =
616                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617                         atomic_set(&adapter->tx_fifo_stall, 0);
618                 }
619         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
620                 /* adjust PBA for jumbo frames */
621                 ew32(PBA, pba);
622
623                 /* To maintain wire speed transmits, the Tx FIFO should be
624                  * large enough to accommodate two full transmit packets,
625                  * rounded up to the next 1KB and expressed in KB.  Likewise,
626                  * the Rx FIFO should be large enough to accommodate at least
627                  * one full receive packet and is similarly rounded up and
628                  * expressed in KB.
629                  */
630                 pba = er32(PBA);
631                 /* upper 16 bits has Tx packet buffer allocation size in KB */
632                 tx_space = pba >> 16;
633                 /* lower 16 bits has Rx packet buffer allocation size in KB */
634                 pba &= 0xffff;
635                 /* the Tx fifo also stores 16 bytes of information about the Tx
636                  * but don't include ethernet FCS because hardware appends it
637                  */
638                 min_tx_space = (hw->max_frame_size +
639                                 sizeof(struct e1000_tx_desc) -
640                                 ETH_FCS_LEN) * 2;
641                 min_tx_space = ALIGN(min_tx_space, 1024);
642                 min_tx_space >>= 10;
643                 /* software strips receive CRC, so leave room for it */
644                 min_rx_space = hw->max_frame_size;
645                 min_rx_space = ALIGN(min_rx_space, 1024);
646                 min_rx_space >>= 10;
647
648                 /* If current Tx allocation is less than the min Tx FIFO size,
649                  * and the min Tx FIFO size is less than the current Rx FIFO
650                  * allocation, take space away from current Rx allocation
651                  */
652                 if (tx_space < min_tx_space &&
653                     ((min_tx_space - tx_space) < pba)) {
654                         pba = pba - (min_tx_space - tx_space);
655
656                         /* PCI/PCIx hardware has PBA alignment constraints */
657                         switch (hw->mac_type) {
658                         case e1000_82545 ... e1000_82546_rev_3:
659                                 pba &= ~(E1000_PBA_8K - 1);
660                                 break;
661                         default:
662                                 break;
663                         }
664
665                         /* if short on Rx space, Rx wins and must trump Tx
666                          * adjustment or use Early Receive if available
667                          */
668                         if (pba < min_rx_space)
669                                 pba = min_rx_space;
670                 }
671         }
672
673         ew32(PBA, pba);
674
675         /* flow control settings:
676          * The high water mark must be low enough to fit one full frame
677          * (or the size used for early receive) above it in the Rx FIFO.
678          * Set it to the lower of:
679          * - 90% of the Rx FIFO size, and
680          * - the full Rx FIFO size minus the early receive size (for parts
681          *   with ERT support assuming ERT set to E1000_ERT_2048), or
682          * - the full Rx FIFO size minus one full frame
683          */
684         hwm = min(((pba << 10) * 9 / 10),
685                   ((pba << 10) - hw->max_frame_size));
686
687         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
688         hw->fc_low_water = hw->fc_high_water - 8;
689         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690         hw->fc_send_xon = 1;
691         hw->fc = hw->original_fc;
692
693         /* Allow time for pending master requests to run */
694         e1000_reset_hw(hw);
695         if (hw->mac_type >= e1000_82544)
696                 ew32(WUC, 0);
697
698         if (e1000_init_hw(hw))
699                 e_dev_err("Hardware Error\n");
700         e1000_update_mng_vlan(adapter);
701
702         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703         if (hw->mac_type >= e1000_82544 &&
704             hw->autoneg == 1 &&
705             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706                 u32 ctrl = er32(CTRL);
707                 /* clear phy power management bit if we are in gig only mode,
708                  * which if enabled will attempt negotiation to 100Mb, which
709                  * can cause a loss of link at power off or driver unload
710                  */
711                 ctrl &= ~E1000_CTRL_SWDPIN3;
712                 ew32(CTRL, ctrl);
713         }
714
715         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718         e1000_reset_adaptive(hw);
719         e1000_phy_get_info(hw, &adapter->phy_info);
720
721         e1000_release_manageability(adapter);
722 }
723
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727         struct net_device *netdev = adapter->netdev;
728         struct ethtool_eeprom eeprom;
729         const struct ethtool_ops *ops = netdev->ethtool_ops;
730         u8 *data;
731         int i;
732         u16 csum_old, csum_new = 0;
733
734         eeprom.len = ops->get_eeprom_len(netdev);
735         eeprom.offset = 0;
736
737         data = kmalloc(eeprom.len, GFP_KERNEL);
738         if (!data)
739                 return;
740
741         ops->get_eeprom(netdev, &eeprom, data);
742
743         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746                 csum_new += data[i] + (data[i + 1] << 8);
747         csum_new = EEPROM_SUM - csum_new;
748
749         pr_err("/*********************/\n");
750         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751         pr_err("Calculated              : 0x%04x\n", csum_new);
752
753         pr_err("Offset    Values\n");
754         pr_err("========  ======\n");
755         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757         pr_err("Include this output when contacting your support provider.\n");
758         pr_err("This is not a software error! Something bad happened to\n");
759         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760         pr_err("result in further problems, possibly loss of data,\n");
761         pr_err("corruption or system hangs!\n");
762         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763         pr_err("which is invalid and requires you to set the proper MAC\n");
764         pr_err("address manually before continuing to enable this network\n");
765         pr_err("device. Please inspect the EEPROM dump and report the\n");
766         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767         pr_err("/*********************/\n");
768
769         kfree(data);
770 }
771
772 /**
773  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774  * @pdev: PCI device information struct
775  *
776  * Return true if an adapter needs ioport resources
777  **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780         switch (pdev->device) {
781         case E1000_DEV_ID_82540EM:
782         case E1000_DEV_ID_82540EM_LOM:
783         case E1000_DEV_ID_82540EP:
784         case E1000_DEV_ID_82540EP_LOM:
785         case E1000_DEV_ID_82540EP_LP:
786         case E1000_DEV_ID_82541EI:
787         case E1000_DEV_ID_82541EI_MOBILE:
788         case E1000_DEV_ID_82541ER:
789         case E1000_DEV_ID_82541ER_LOM:
790         case E1000_DEV_ID_82541GI:
791         case E1000_DEV_ID_82541GI_LF:
792         case E1000_DEV_ID_82541GI_MOBILE:
793         case E1000_DEV_ID_82544EI_COPPER:
794         case E1000_DEV_ID_82544EI_FIBER:
795         case E1000_DEV_ID_82544GC_COPPER:
796         case E1000_DEV_ID_82544GC_LOM:
797         case E1000_DEV_ID_82545EM_COPPER:
798         case E1000_DEV_ID_82545EM_FIBER:
799         case E1000_DEV_ID_82546EB_COPPER:
800         case E1000_DEV_ID_82546EB_FIBER:
801         case E1000_DEV_ID_82546EB_QUAD_COPPER:
802                 return true;
803         default:
804                 return false;
805         }
806 }
807
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809         netdev_features_t features)
810 {
811         /* Since there is no support for separate Rx/Tx vlan accel
812          * enable/disable make sure Tx flag is always in same state as Rx.
813          */
814         if (features & NETIF_F_HW_VLAN_CTAG_RX)
815                 features |= NETIF_F_HW_VLAN_CTAG_TX;
816         else
817                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819         return features;
820 }
821
822 static int e1000_set_features(struct net_device *netdev,
823         netdev_features_t features)
824 {
825         struct e1000_adapter *adapter = netdev_priv(netdev);
826         netdev_features_t changed = features ^ netdev->features;
827
828         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829                 e1000_vlan_mode(netdev, features);
830
831         if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832                 return 0;
833
834         netdev->features = features;
835         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837         if (netif_running(netdev))
838                 e1000_reinit_locked(adapter);
839         else
840                 e1000_reset(adapter);
841
842         return 0;
843 }
844
845 static const struct net_device_ops e1000_netdev_ops = {
846         .ndo_open               = e1000_open,
847         .ndo_stop               = e1000_close,
848         .ndo_start_xmit         = e1000_xmit_frame,
849         .ndo_get_stats          = e1000_get_stats,
850         .ndo_set_rx_mode        = e1000_set_rx_mode,
851         .ndo_set_mac_address    = e1000_set_mac,
852         .ndo_tx_timeout         = e1000_tx_timeout,
853         .ndo_change_mtu         = e1000_change_mtu,
854         .ndo_do_ioctl           = e1000_ioctl,
855         .ndo_validate_addr      = eth_validate_addr,
856         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
857         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859         .ndo_poll_controller    = e1000_netpoll,
860 #endif
861         .ndo_fix_features       = e1000_fix_features,
862         .ndo_set_features       = e1000_set_features,
863 };
864
865 /**
866  * e1000_init_hw_struct - initialize members of hw struct
867  * @adapter: board private struct
868  * @hw: structure used by e1000_hw.c
869  *
870  * Factors out initialization of the e1000_hw struct to its own function
871  * that can be called very early at init (just after struct allocation).
872  * Fields are initialized based on PCI device information and
873  * OS network device settings (MTU size).
874  * Returns negative error codes if MAC type setup fails.
875  */
876 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877                                 struct e1000_hw *hw)
878 {
879         struct pci_dev *pdev = adapter->pdev;
880
881         /* PCI config space info */
882         hw->vendor_id = pdev->vendor;
883         hw->device_id = pdev->device;
884         hw->subsystem_vendor_id = pdev->subsystem_vendor;
885         hw->subsystem_id = pdev->subsystem_device;
886         hw->revision_id = pdev->revision;
887
888         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890         hw->max_frame_size = adapter->netdev->mtu +
891                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894         /* identify the MAC */
895         if (e1000_set_mac_type(hw)) {
896                 e_err(probe, "Unknown MAC Type\n");
897                 return -EIO;
898         }
899
900         switch (hw->mac_type) {
901         default:
902                 break;
903         case e1000_82541:
904         case e1000_82547:
905         case e1000_82541_rev_2:
906         case e1000_82547_rev_2:
907                 hw->phy_init_script = 1;
908                 break;
909         }
910
911         e1000_set_media_type(hw);
912         e1000_get_bus_info(hw);
913
914         hw->wait_autoneg_complete = false;
915         hw->tbi_compatibility_en = true;
916         hw->adaptive_ifs = true;
917
918         /* Copper options */
919
920         if (hw->media_type == e1000_media_type_copper) {
921                 hw->mdix = AUTO_ALL_MODES;
922                 hw->disable_polarity_correction = false;
923                 hw->master_slave = E1000_MASTER_SLAVE;
924         }
925
926         return 0;
927 }
928
929 /**
930  * e1000_probe - Device Initialization Routine
931  * @pdev: PCI device information struct
932  * @ent: entry in e1000_pci_tbl
933  *
934  * Returns 0 on success, negative on failure
935  *
936  * e1000_probe initializes an adapter identified by a pci_dev structure.
937  * The OS initialization, configuring of the adapter private structure,
938  * and a hardware reset occur.
939  **/
940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941 {
942         struct net_device *netdev;
943         struct e1000_adapter *adapter;
944         struct e1000_hw *hw;
945
946         static int cards_found;
947         static int global_quad_port_a; /* global ksp3 port a indication */
948         int i, err, pci_using_dac;
949         u16 eeprom_data = 0;
950         u16 tmp = 0;
951         u16 eeprom_apme_mask = E1000_EEPROM_APME;
952         int bars, need_ioport;
953
954         /* do not allocate ioport bars when not needed */
955         need_ioport = e1000_is_need_ioport(pdev);
956         if (need_ioport) {
957                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958                 err = pci_enable_device(pdev);
959         } else {
960                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961                 err = pci_enable_device_mem(pdev);
962         }
963         if (err)
964                 return err;
965
966         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967         if (err)
968                 goto err_pci_reg;
969
970         pci_set_master(pdev);
971         err = pci_save_state(pdev);
972         if (err)
973                 goto err_alloc_etherdev;
974
975         err = -ENOMEM;
976         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977         if (!netdev)
978                 goto err_alloc_etherdev;
979
980         SET_NETDEV_DEV(netdev, &pdev->dev);
981
982         pci_set_drvdata(pdev, netdev);
983         adapter = netdev_priv(netdev);
984         adapter->netdev = netdev;
985         adapter->pdev = pdev;
986         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987         adapter->bars = bars;
988         adapter->need_ioport = need_ioport;
989
990         hw = &adapter->hw;
991         hw->back = adapter;
992
993         err = -EIO;
994         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995         if (!hw->hw_addr)
996                 goto err_ioremap;
997
998         if (adapter->need_ioport) {
999                 for (i = BAR_1; i <= BAR_5; i++) {
1000                         if (pci_resource_len(pdev, i) == 0)
1001                                 continue;
1002                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003                                 hw->io_base = pci_resource_start(pdev, i);
1004                                 break;
1005                         }
1006                 }
1007         }
1008
1009         /* make ready for any if (hw->...) below */
1010         err = e1000_init_hw_struct(adapter, hw);
1011         if (err)
1012                 goto err_sw_init;
1013
1014         /* there is a workaround being applied below that limits
1015          * 64-bit DMA addresses to 64-bit hardware.  There are some
1016          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017          */
1018         pci_using_dac = 0;
1019         if ((hw->bus_type == e1000_bus_type_pcix) &&
1020             !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021                 pci_using_dac = 1;
1022         } else {
1023                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024                 if (err) {
1025                         pr_err("No usable DMA config, aborting\n");
1026                         goto err_dma;
1027                 }
1028         }
1029
1030         netdev->netdev_ops = &e1000_netdev_ops;
1031         e1000_set_ethtool_ops(netdev);
1032         netdev->watchdog_timeo = 5 * HZ;
1033         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037         adapter->bd_number = cards_found;
1038
1039         /* setup the private structure */
1040
1041         err = e1000_sw_init(adapter);
1042         if (err)
1043                 goto err_sw_init;
1044
1045         err = -EIO;
1046         if (hw->mac_type == e1000_ce4100) {
1047                 hw->ce4100_gbe_mdio_base_virt =
1048                                         ioremap(pci_resource_start(pdev, BAR_1),
1049                                                 pci_resource_len(pdev, BAR_1));
1050
1051                 if (!hw->ce4100_gbe_mdio_base_virt)
1052                         goto err_mdio_ioremap;
1053         }
1054
1055         if (hw->mac_type >= e1000_82543) {
1056                 netdev->hw_features = NETIF_F_SG |
1057                                    NETIF_F_HW_CSUM |
1058                                    NETIF_F_HW_VLAN_CTAG_RX;
1059                 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060                                    NETIF_F_HW_VLAN_CTAG_FILTER;
1061         }
1062
1063         if ((hw->mac_type >= e1000_82544) &&
1064            (hw->mac_type != e1000_82547))
1065                 netdev->hw_features |= NETIF_F_TSO;
1066
1067         netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069         netdev->features |= netdev->hw_features;
1070         netdev->hw_features |= (NETIF_F_RXCSUM |
1071                                 NETIF_F_RXALL |
1072                                 NETIF_F_RXFCS);
1073
1074         if (pci_using_dac) {
1075                 netdev->features |= NETIF_F_HIGHDMA;
1076                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077         }
1078
1079         netdev->vlan_features |= (NETIF_F_TSO |
1080                                   NETIF_F_HW_CSUM |
1081                                   NETIF_F_SG);
1082
1083         /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084         if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085             hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086                 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090         /* initialize eeprom parameters */
1091         if (e1000_init_eeprom_params(hw)) {
1092                 e_err(probe, "EEPROM initialization failed\n");
1093                 goto err_eeprom;
1094         }
1095
1096         /* before reading the EEPROM, reset the controller to
1097          * put the device in a known good starting state
1098          */
1099
1100         e1000_reset_hw(hw);
1101
1102         /* make sure the EEPROM is good */
1103         if (e1000_validate_eeprom_checksum(hw) < 0) {
1104                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105                 e1000_dump_eeprom(adapter);
1106                 /* set MAC address to all zeroes to invalidate and temporary
1107                  * disable this device for the user. This blocks regular
1108                  * traffic while still permitting ethtool ioctls from reaching
1109                  * the hardware as well as allowing the user to run the
1110                  * interface after manually setting a hw addr using
1111                  * `ip set address`
1112                  */
1113                 memset(hw->mac_addr, 0, netdev->addr_len);
1114         } else {
1115                 /* copy the MAC address out of the EEPROM */
1116                 if (e1000_read_mac_addr(hw))
1117                         e_err(probe, "EEPROM Read Error\n");
1118         }
1119         /* don't block initialization here due to bad MAC address */
1120         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122         if (!is_valid_ether_addr(netdev->dev_addr))
1123                 e_err(probe, "Invalid MAC Address\n");
1124
1125
1126         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128                           e1000_82547_tx_fifo_stall_task);
1129         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132         e1000_check_options(adapter);
1133
1134         /* Initial Wake on LAN setting
1135          * If APM wake is enabled in the EEPROM,
1136          * enable the ACPI Magic Packet filter
1137          */
1138
1139         switch (hw->mac_type) {
1140         case e1000_82542_rev2_0:
1141         case e1000_82542_rev2_1:
1142         case e1000_82543:
1143                 break;
1144         case e1000_82544:
1145                 e1000_read_eeprom(hw,
1146                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148                 break;
1149         case e1000_82546:
1150         case e1000_82546_rev_3:
1151                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152                         e1000_read_eeprom(hw,
1153                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154                         break;
1155                 }
1156                 /* Fall Through */
1157         default:
1158                 e1000_read_eeprom(hw,
1159                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160                 break;
1161         }
1162         if (eeprom_data & eeprom_apme_mask)
1163                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165         /* now that we have the eeprom settings, apply the special cases
1166          * where the eeprom may be wrong or the board simply won't support
1167          * wake on lan on a particular port
1168          */
1169         switch (pdev->device) {
1170         case E1000_DEV_ID_82546GB_PCIE:
1171                 adapter->eeprom_wol = 0;
1172                 break;
1173         case E1000_DEV_ID_82546EB_FIBER:
1174         case E1000_DEV_ID_82546GB_FIBER:
1175                 /* Wake events only supported on port A for dual fiber
1176                  * regardless of eeprom setting
1177                  */
1178                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179                         adapter->eeprom_wol = 0;
1180                 break;
1181         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182                 /* if quad port adapter, disable WoL on all but port A */
1183                 if (global_quad_port_a != 0)
1184                         adapter->eeprom_wol = 0;
1185                 else
1186                         adapter->quad_port_a = true;
1187                 /* Reset for multiple quad port adapters */
1188                 if (++global_quad_port_a == 4)
1189                         global_quad_port_a = 0;
1190                 break;
1191         }
1192
1193         /* initialize the wol settings based on the eeprom settings */
1194         adapter->wol = adapter->eeprom_wol;
1195         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197         /* Auto detect PHY address */
1198         if (hw->mac_type == e1000_ce4100) {
1199                 for (i = 0; i < 32; i++) {
1200                         hw->phy_addr = i;
1201                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202
1203                         if (tmp != 0 && tmp != 0xFF)
1204                                 break;
1205                 }
1206
1207                 if (i >= 32)
1208                         goto err_eeprom;
1209         }
1210
1211         /* reset the hardware with the new settings */
1212         e1000_reset(adapter);
1213
1214         strcpy(netdev->name, "eth%d");
1215         err = register_netdev(netdev);
1216         if (err)
1217                 goto err_register;
1218
1219         e1000_vlan_filter_on_off(adapter, false);
1220
1221         /* print bus type/speed/width info */
1222         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229                netdev->dev_addr);
1230
1231         /* carrier off reporting is important to ethtool even BEFORE open */
1232         netif_carrier_off(netdev);
1233
1234         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236         cards_found++;
1237         return 0;
1238
1239 err_register:
1240 err_eeprom:
1241         e1000_phy_hw_reset(hw);
1242
1243         if (hw->flash_address)
1244                 iounmap(hw->flash_address);
1245         kfree(adapter->tx_ring);
1246         kfree(adapter->rx_ring);
1247 err_dma:
1248 err_sw_init:
1249 err_mdio_ioremap:
1250         iounmap(hw->ce4100_gbe_mdio_base_virt);
1251         iounmap(hw->hw_addr);
1252 err_ioremap:
1253         free_netdev(netdev);
1254 err_alloc_etherdev:
1255         pci_release_selected_regions(pdev, bars);
1256 err_pci_reg:
1257         pci_disable_device(pdev);
1258         return err;
1259 }
1260
1261 /**
1262  * e1000_remove - Device Removal Routine
1263  * @pdev: PCI device information struct
1264  *
1265  * e1000_remove is called by the PCI subsystem to alert the driver
1266  * that it should release a PCI device. That could be caused by a
1267  * Hot-Plug event, or because the driver is going to be removed from
1268  * memory.
1269  **/
1270 static void e1000_remove(struct pci_dev *pdev)
1271 {
1272         struct net_device *netdev = pci_get_drvdata(pdev);
1273         struct e1000_adapter *adapter = netdev_priv(netdev);
1274         struct e1000_hw *hw = &adapter->hw;
1275
1276         e1000_down_and_stop(adapter);
1277         e1000_release_manageability(adapter);
1278
1279         unregister_netdev(netdev);
1280
1281         e1000_phy_hw_reset(hw);
1282
1283         kfree(adapter->tx_ring);
1284         kfree(adapter->rx_ring);
1285
1286         if (hw->mac_type == e1000_ce4100)
1287                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288         iounmap(hw->hw_addr);
1289         if (hw->flash_address)
1290                 iounmap(hw->flash_address);
1291         pci_release_selected_regions(pdev, adapter->bars);
1292
1293         free_netdev(netdev);
1294
1295         pci_disable_device(pdev);
1296 }
1297
1298 /**
1299  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300  * @adapter: board private structure to initialize
1301  *
1302  * e1000_sw_init initializes the Adapter private data structure.
1303  * e1000_init_hw_struct MUST be called before this function
1304  **/
1305 static int e1000_sw_init(struct e1000_adapter *adapter)
1306 {
1307         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309         adapter->num_tx_queues = 1;
1310         adapter->num_rx_queues = 1;
1311
1312         if (e1000_alloc_queues(adapter)) {
1313                 e_err(probe, "Unable to allocate memory for queues\n");
1314                 return -ENOMEM;
1315         }
1316
1317         /* Explicitly disable IRQ since the NIC can be in any state. */
1318         e1000_irq_disable(adapter);
1319
1320         spin_lock_init(&adapter->stats_lock);
1321
1322         set_bit(__E1000_DOWN, &adapter->flags);
1323
1324         return 0;
1325 }
1326
1327 /**
1328  * e1000_alloc_queues - Allocate memory for all rings
1329  * @adapter: board private structure to initialize
1330  *
1331  * We allocate one ring per queue at run-time since we don't know the
1332  * number of queues at compile-time.
1333  **/
1334 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335 {
1336         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338         if (!adapter->tx_ring)
1339                 return -ENOMEM;
1340
1341         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343         if (!adapter->rx_ring) {
1344                 kfree(adapter->tx_ring);
1345                 return -ENOMEM;
1346         }
1347
1348         return E1000_SUCCESS;
1349 }
1350
1351 /**
1352  * e1000_open - Called when a network interface is made active
1353  * @netdev: network interface device structure
1354  *
1355  * Returns 0 on success, negative value on failure
1356  *
1357  * The open entry point is called when a network interface is made
1358  * active by the system (IFF_UP).  At this point all resources needed
1359  * for transmit and receive operations are allocated, the interrupt
1360  * handler is registered with the OS, the watchdog task is started,
1361  * and the stack is notified that the interface is ready.
1362  **/
1363 static int e1000_open(struct net_device *netdev)
1364 {
1365         struct e1000_adapter *adapter = netdev_priv(netdev);
1366         struct e1000_hw *hw = &adapter->hw;
1367         int err;
1368
1369         /* disallow open during test */
1370         if (test_bit(__E1000_TESTING, &adapter->flags))
1371                 return -EBUSY;
1372
1373         netif_carrier_off(netdev);
1374
1375         /* allocate transmit descriptors */
1376         err = e1000_setup_all_tx_resources(adapter);
1377         if (err)
1378                 goto err_setup_tx;
1379
1380         /* allocate receive descriptors */
1381         err = e1000_setup_all_rx_resources(adapter);
1382         if (err)
1383                 goto err_setup_rx;
1384
1385         e1000_power_up_phy(adapter);
1386
1387         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388         if ((hw->mng_cookie.status &
1389                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390                 e1000_update_mng_vlan(adapter);
1391         }
1392
1393         /* before we allocate an interrupt, we must be ready to handle it.
1394          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395          * as soon as we call pci_request_irq, so we have to setup our
1396          * clean_rx handler before we do so.
1397          */
1398         e1000_configure(adapter);
1399
1400         err = e1000_request_irq(adapter);
1401         if (err)
1402                 goto err_req_irq;
1403
1404         /* From here on the code is the same as e1000_up() */
1405         clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407         napi_enable(&adapter->napi);
1408
1409         e1000_irq_enable(adapter);
1410
1411         netif_start_queue(netdev);
1412
1413         /* fire a link status change interrupt to start the watchdog */
1414         ew32(ICS, E1000_ICS_LSC);
1415
1416         return E1000_SUCCESS;
1417
1418 err_req_irq:
1419         e1000_power_down_phy(adapter);
1420         e1000_free_all_rx_resources(adapter);
1421 err_setup_rx:
1422         e1000_free_all_tx_resources(adapter);
1423 err_setup_tx:
1424         e1000_reset(adapter);
1425
1426         return err;
1427 }
1428
1429 /**
1430  * e1000_close - Disables a network interface
1431  * @netdev: network interface device structure
1432  *
1433  * Returns 0, this is not allowed to fail
1434  *
1435  * The close entry point is called when an interface is de-activated
1436  * by the OS.  The hardware is still under the drivers control, but
1437  * needs to be disabled.  A global MAC reset is issued to stop the
1438  * hardware, and all transmit and receive resources are freed.
1439  **/
1440 static int e1000_close(struct net_device *netdev)
1441 {
1442         struct e1000_adapter *adapter = netdev_priv(netdev);
1443         struct e1000_hw *hw = &adapter->hw;
1444         int count = E1000_CHECK_RESET_COUNT;
1445
1446         while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447                 usleep_range(10000, 20000);
1448
1449         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450         e1000_down(adapter);
1451         e1000_power_down_phy(adapter);
1452         e1000_free_irq(adapter);
1453
1454         e1000_free_all_tx_resources(adapter);
1455         e1000_free_all_rx_resources(adapter);
1456
1457         /* kill manageability vlan ID if supported, but not if a vlan with
1458          * the same ID is registered on the host OS (let 8021q kill it)
1459          */
1460         if ((hw->mng_cookie.status &
1461              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462             !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464                                        adapter->mng_vlan_id);
1465         }
1466
1467         return 0;
1468 }
1469
1470 /**
1471  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472  * @adapter: address of board private structure
1473  * @start: address of beginning of memory
1474  * @len: length of memory
1475  **/
1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477                                   unsigned long len)
1478 {
1479         struct e1000_hw *hw = &adapter->hw;
1480         unsigned long begin = (unsigned long)start;
1481         unsigned long end = begin + len;
1482
1483         /* First rev 82545 and 82546 need to not allow any memory
1484          * write location to cross 64k boundary due to errata 23
1485          */
1486         if (hw->mac_type == e1000_82545 ||
1487             hw->mac_type == e1000_ce4100 ||
1488             hw->mac_type == e1000_82546) {
1489                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490         }
1491
1492         return true;
1493 }
1494
1495 /**
1496  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497  * @adapter: board private structure
1498  * @txdr:    tx descriptor ring (for a specific queue) to setup
1499  *
1500  * Return 0 on success, negative on failure
1501  **/
1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503                                     struct e1000_tx_ring *txdr)
1504 {
1505         struct pci_dev *pdev = adapter->pdev;
1506         int size;
1507
1508         size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509         txdr->buffer_info = vzalloc(size);
1510         if (!txdr->buffer_info)
1511                 return -ENOMEM;
1512
1513         /* round up to nearest 4K */
1514
1515         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516         txdr->size = ALIGN(txdr->size, 4096);
1517
1518         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519                                         GFP_KERNEL);
1520         if (!txdr->desc) {
1521 setup_tx_desc_die:
1522                 vfree(txdr->buffer_info);
1523                 return -ENOMEM;
1524         }
1525
1526         /* Fix for errata 23, can't cross 64kB boundary */
1527         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528                 void *olddesc = txdr->desc;
1529                 dma_addr_t olddma = txdr->dma;
1530                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531                       txdr->size, txdr->desc);
1532                 /* Try again, without freeing the previous */
1533                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534                                                 &txdr->dma, GFP_KERNEL);
1535                 /* Failed allocation, critical failure */
1536                 if (!txdr->desc) {
1537                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538                                           olddma);
1539                         goto setup_tx_desc_die;
1540                 }
1541
1542                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543                         /* give up */
1544                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545                                           txdr->dma);
1546                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547                                           olddma);
1548                         e_err(probe, "Unable to allocate aligned memory "
1549                               "for the transmit descriptor ring\n");
1550                         vfree(txdr->buffer_info);
1551                         return -ENOMEM;
1552                 } else {
1553                         /* Free old allocation, new allocation was successful */
1554                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555                                           olddma);
1556                 }
1557         }
1558         memset(txdr->desc, 0, txdr->size);
1559
1560         txdr->next_to_use = 0;
1561         txdr->next_to_clean = 0;
1562
1563         return 0;
1564 }
1565
1566 /**
1567  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568  *                                (Descriptors) for all queues
1569  * @adapter: board private structure
1570  *
1571  * Return 0 on success, negative on failure
1572  **/
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574 {
1575         int i, err = 0;
1576
1577         for (i = 0; i < adapter->num_tx_queues; i++) {
1578                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579                 if (err) {
1580                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581                         for (i-- ; i >= 0; i--)
1582                                 e1000_free_tx_resources(adapter,
1583                                                         &adapter->tx_ring[i]);
1584                         break;
1585                 }
1586         }
1587
1588         return err;
1589 }
1590
1591 /**
1592  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593  * @adapter: board private structure
1594  *
1595  * Configure the Tx unit of the MAC after a reset.
1596  **/
1597 static void e1000_configure_tx(struct e1000_adapter *adapter)
1598 {
1599         u64 tdba;
1600         struct e1000_hw *hw = &adapter->hw;
1601         u32 tdlen, tctl, tipg;
1602         u32 ipgr1, ipgr2;
1603
1604         /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606         switch (adapter->num_tx_queues) {
1607         case 1:
1608         default:
1609                 tdba = adapter->tx_ring[0].dma;
1610                 tdlen = adapter->tx_ring[0].count *
1611                         sizeof(struct e1000_tx_desc);
1612                 ew32(TDLEN, tdlen);
1613                 ew32(TDBAH, (tdba >> 32));
1614                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615                 ew32(TDT, 0);
1616                 ew32(TDH, 0);
1617                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618                                            E1000_TDH : E1000_82542_TDH);
1619                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620                                            E1000_TDT : E1000_82542_TDT);
1621                 break;
1622         }
1623
1624         /* Set the default values for the Tx Inter Packet Gap timer */
1625         if ((hw->media_type == e1000_media_type_fiber ||
1626              hw->media_type == e1000_media_type_internal_serdes))
1627                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628         else
1629                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631         switch (hw->mac_type) {
1632         case e1000_82542_rev2_0:
1633         case e1000_82542_rev2_1:
1634                 tipg = DEFAULT_82542_TIPG_IPGT;
1635                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637                 break;
1638         default:
1639                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641                 break;
1642         }
1643         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645         ew32(TIPG, tipg);
1646
1647         /* Set the Tx Interrupt Delay register */
1648
1649         ew32(TIDV, adapter->tx_int_delay);
1650         if (hw->mac_type >= e1000_82540)
1651                 ew32(TADV, adapter->tx_abs_int_delay);
1652
1653         /* Program the Transmit Control Register */
1654
1655         tctl = er32(TCTL);
1656         tctl &= ~E1000_TCTL_CT;
1657         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660         e1000_config_collision_dist(hw);
1661
1662         /* Setup Transmit Descriptor Settings for eop descriptor */
1663         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665         /* only set IDE if we are delaying interrupts using the timers */
1666         if (adapter->tx_int_delay)
1667                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669         if (hw->mac_type < e1000_82543)
1670                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671         else
1672                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674         /* Cache if we're 82544 running in PCI-X because we'll
1675          * need this to apply a workaround later in the send path.
1676          */
1677         if (hw->mac_type == e1000_82544 &&
1678             hw->bus_type == e1000_bus_type_pcix)
1679                 adapter->pcix_82544 = true;
1680
1681         ew32(TCTL, tctl);
1682
1683 }
1684
1685 /**
1686  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689  *
1690  * Returns 0 on success, negative on failure
1691  **/
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693                                     struct e1000_rx_ring *rxdr)
1694 {
1695         struct pci_dev *pdev = adapter->pdev;
1696         int size, desc_len;
1697
1698         size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699         rxdr->buffer_info = vzalloc(size);
1700         if (!rxdr->buffer_info)
1701                 return -ENOMEM;
1702
1703         desc_len = sizeof(struct e1000_rx_desc);
1704
1705         /* Round up to nearest 4K */
1706
1707         rxdr->size = rxdr->count * desc_len;
1708         rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711                                         GFP_KERNEL);
1712         if (!rxdr->desc) {
1713 setup_rx_desc_die:
1714                 vfree(rxdr->buffer_info);
1715                 return -ENOMEM;
1716         }
1717
1718         /* Fix for errata 23, can't cross 64kB boundary */
1719         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720                 void *olddesc = rxdr->desc;
1721                 dma_addr_t olddma = rxdr->dma;
1722                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723                       rxdr->size, rxdr->desc);
1724                 /* Try again, without freeing the previous */
1725                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726                                                 &rxdr->dma, GFP_KERNEL);
1727                 /* Failed allocation, critical failure */
1728                 if (!rxdr->desc) {
1729                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730                                           olddma);
1731                         goto setup_rx_desc_die;
1732                 }
1733
1734                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735                         /* give up */
1736                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737                                           rxdr->dma);
1738                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739                                           olddma);
1740                         e_err(probe, "Unable to allocate aligned memory for "
1741                               "the Rx descriptor ring\n");
1742                         goto setup_rx_desc_die;
1743                 } else {
1744                         /* Free old allocation, new allocation was successful */
1745                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746                                           olddma);
1747                 }
1748         }
1749         memset(rxdr->desc, 0, rxdr->size);
1750
1751         rxdr->next_to_clean = 0;
1752         rxdr->next_to_use = 0;
1753         rxdr->rx_skb_top = NULL;
1754
1755         return 0;
1756 }
1757
1758 /**
1759  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760  *                                (Descriptors) for all queues
1761  * @adapter: board private structure
1762  *
1763  * Return 0 on success, negative on failure
1764  **/
1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766 {
1767         int i, err = 0;
1768
1769         for (i = 0; i < adapter->num_rx_queues; i++) {
1770                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771                 if (err) {
1772                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773                         for (i-- ; i >= 0; i--)
1774                                 e1000_free_rx_resources(adapter,
1775                                                         &adapter->rx_ring[i]);
1776                         break;
1777                 }
1778         }
1779
1780         return err;
1781 }
1782
1783 /**
1784  * e1000_setup_rctl - configure the receive control registers
1785  * @adapter: Board private structure
1786  **/
1787 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788 {
1789         struct e1000_hw *hw = &adapter->hw;
1790         u32 rctl;
1791
1792         rctl = er32(RCTL);
1793
1794         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797                 E1000_RCTL_RDMTS_HALF |
1798                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800         if (hw->tbi_compatibility_on == 1)
1801                 rctl |= E1000_RCTL_SBP;
1802         else
1803                 rctl &= ~E1000_RCTL_SBP;
1804
1805         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806                 rctl &= ~E1000_RCTL_LPE;
1807         else
1808                 rctl |= E1000_RCTL_LPE;
1809
1810         /* Setup buffer sizes */
1811         rctl &= ~E1000_RCTL_SZ_4096;
1812         rctl |= E1000_RCTL_BSEX;
1813         switch (adapter->rx_buffer_len) {
1814         case E1000_RXBUFFER_2048:
1815         default:
1816                 rctl |= E1000_RCTL_SZ_2048;
1817                 rctl &= ~E1000_RCTL_BSEX;
1818                 break;
1819         case E1000_RXBUFFER_4096:
1820                 rctl |= E1000_RCTL_SZ_4096;
1821                 break;
1822         case E1000_RXBUFFER_8192:
1823                 rctl |= E1000_RCTL_SZ_8192;
1824                 break;
1825         case E1000_RXBUFFER_16384:
1826                 rctl |= E1000_RCTL_SZ_16384;
1827                 break;
1828         }
1829
1830         /* This is useful for sniffing bad packets. */
1831         if (adapter->netdev->features & NETIF_F_RXALL) {
1832                 /* UPE and MPE will be handled by normal PROMISC logic
1833                  * in e1000e_set_rx_mode
1834                  */
1835                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840                           E1000_RCTL_DPF | /* Allow filtered pause */
1841                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843                  * and that breaks VLANs.
1844                  */
1845         }
1846
1847         ew32(RCTL, rctl);
1848 }
1849
1850 /**
1851  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852  * @adapter: board private structure
1853  *
1854  * Configure the Rx unit of the MAC after a reset.
1855  **/
1856 static void e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858         u64 rdba;
1859         struct e1000_hw *hw = &adapter->hw;
1860         u32 rdlen, rctl, rxcsum;
1861
1862         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863                 rdlen = adapter->rx_ring[0].count *
1864                         sizeof(struct e1000_rx_desc);
1865                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867         } else {
1868                 rdlen = adapter->rx_ring[0].count *
1869                         sizeof(struct e1000_rx_desc);
1870                 adapter->clean_rx = e1000_clean_rx_irq;
1871                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872         }
1873
1874         /* disable receives while setting up the descriptors */
1875         rctl = er32(RCTL);
1876         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878         /* set the Receive Delay Timer Register */
1879         ew32(RDTR, adapter->rx_int_delay);
1880
1881         if (hw->mac_type >= e1000_82540) {
1882                 ew32(RADV, adapter->rx_abs_int_delay);
1883                 if (adapter->itr_setting != 0)
1884                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1885         }
1886
1887         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888          * the Base and Length of the Rx Descriptor Ring
1889          */
1890         switch (adapter->num_rx_queues) {
1891         case 1:
1892         default:
1893                 rdba = adapter->rx_ring[0].dma;
1894                 ew32(RDLEN, rdlen);
1895                 ew32(RDBAH, (rdba >> 32));
1896                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897                 ew32(RDT, 0);
1898                 ew32(RDH, 0);
1899                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900                                            E1000_RDH : E1000_82542_RDH);
1901                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902                                            E1000_RDT : E1000_82542_RDT);
1903                 break;
1904         }
1905
1906         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907         if (hw->mac_type >= e1000_82543) {
1908                 rxcsum = er32(RXCSUM);
1909                 if (adapter->rx_csum)
1910                         rxcsum |= E1000_RXCSUM_TUOFL;
1911                 else
1912                         /* don't need to clear IPPCSE as it defaults to 0 */
1913                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1914                 ew32(RXCSUM, rxcsum);
1915         }
1916
1917         /* Enable Receives */
1918         ew32(RCTL, rctl | E1000_RCTL_EN);
1919 }
1920
1921 /**
1922  * e1000_free_tx_resources - Free Tx Resources per Queue
1923  * @adapter: board private structure
1924  * @tx_ring: Tx descriptor ring for a specific queue
1925  *
1926  * Free all transmit software resources
1927  **/
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929                                     struct e1000_tx_ring *tx_ring)
1930 {
1931         struct pci_dev *pdev = adapter->pdev;
1932
1933         e1000_clean_tx_ring(adapter, tx_ring);
1934
1935         vfree(tx_ring->buffer_info);
1936         tx_ring->buffer_info = NULL;
1937
1938         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939                           tx_ring->dma);
1940
1941         tx_ring->desc = NULL;
1942 }
1943
1944 /**
1945  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946  * @adapter: board private structure
1947  *
1948  * Free all transmit software resources
1949  **/
1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951 {
1952         int i;
1953
1954         for (i = 0; i < adapter->num_tx_queues; i++)
1955                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956 }
1957
1958 static void
1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960                                  struct e1000_tx_buffer *buffer_info)
1961 {
1962         if (buffer_info->dma) {
1963                 if (buffer_info->mapped_as_page)
1964                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965                                        buffer_info->length, DMA_TO_DEVICE);
1966                 else
1967                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968                                          buffer_info->length,
1969                                          DMA_TO_DEVICE);
1970                 buffer_info->dma = 0;
1971         }
1972         if (buffer_info->skb) {
1973                 dev_kfree_skb_any(buffer_info->skb);
1974                 buffer_info->skb = NULL;
1975         }
1976         buffer_info->time_stamp = 0;
1977         /* buffer_info must be completely set up in the transmit path */
1978 }
1979
1980 /**
1981  * e1000_clean_tx_ring - Free Tx Buffers
1982  * @adapter: board private structure
1983  * @tx_ring: ring to be cleaned
1984  **/
1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986                                 struct e1000_tx_ring *tx_ring)
1987 {
1988         struct e1000_hw *hw = &adapter->hw;
1989         struct e1000_tx_buffer *buffer_info;
1990         unsigned long size;
1991         unsigned int i;
1992
1993         /* Free all the Tx ring sk_buffs */
1994
1995         for (i = 0; i < tx_ring->count; i++) {
1996                 buffer_info = &tx_ring->buffer_info[i];
1997                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998         }
1999
2000         netdev_reset_queue(adapter->netdev);
2001         size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002         memset(tx_ring->buffer_info, 0, size);
2003
2004         /* Zero out the descriptor ring */
2005
2006         memset(tx_ring->desc, 0, tx_ring->size);
2007
2008         tx_ring->next_to_use = 0;
2009         tx_ring->next_to_clean = 0;
2010         tx_ring->last_tx_tso = false;
2011
2012         writel(0, hw->hw_addr + tx_ring->tdh);
2013         writel(0, hw->hw_addr + tx_ring->tdt);
2014 }
2015
2016 /**
2017  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018  * @adapter: board private structure
2019  **/
2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021 {
2022         int i;
2023
2024         for (i = 0; i < adapter->num_tx_queues; i++)
2025                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026 }
2027
2028 /**
2029  * e1000_free_rx_resources - Free Rx Resources
2030  * @adapter: board private structure
2031  * @rx_ring: ring to clean the resources from
2032  *
2033  * Free all receive software resources
2034  **/
2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036                                     struct e1000_rx_ring *rx_ring)
2037 {
2038         struct pci_dev *pdev = adapter->pdev;
2039
2040         e1000_clean_rx_ring(adapter, rx_ring);
2041
2042         vfree(rx_ring->buffer_info);
2043         rx_ring->buffer_info = NULL;
2044
2045         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046                           rx_ring->dma);
2047
2048         rx_ring->desc = NULL;
2049 }
2050
2051 /**
2052  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053  * @adapter: board private structure
2054  *
2055  * Free all receive software resources
2056  **/
2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058 {
2059         int i;
2060
2061         for (i = 0; i < adapter->num_rx_queues; i++)
2062                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063 }
2064
2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067 {
2068         return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070 }
2071
2072 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073 {
2074         unsigned int len = e1000_frag_len(a);
2075         u8 *data = netdev_alloc_frag(len);
2076
2077         if (likely(data))
2078                 data += E1000_HEADROOM;
2079         return data;
2080 }
2081
2082 /**
2083  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084  * @adapter: board private structure
2085  * @rx_ring: ring to free buffers from
2086  **/
2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088                                 struct e1000_rx_ring *rx_ring)
2089 {
2090         struct e1000_hw *hw = &adapter->hw;
2091         struct e1000_rx_buffer *buffer_info;
2092         struct pci_dev *pdev = adapter->pdev;
2093         unsigned long size;
2094         unsigned int i;
2095
2096         /* Free all the Rx netfrags */
2097         for (i = 0; i < rx_ring->count; i++) {
2098                 buffer_info = &rx_ring->buffer_info[i];
2099                 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100                         if (buffer_info->dma)
2101                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102                                                  adapter->rx_buffer_len,
2103                                                  DMA_FROM_DEVICE);
2104                         if (buffer_info->rxbuf.data) {
2105                                 skb_free_frag(buffer_info->rxbuf.data);
2106                                 buffer_info->rxbuf.data = NULL;
2107                         }
2108                 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109                         if (buffer_info->dma)
2110                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111                                                adapter->rx_buffer_len,
2112                                                DMA_FROM_DEVICE);
2113                         if (buffer_info->rxbuf.page) {
2114                                 put_page(buffer_info->rxbuf.page);
2115                                 buffer_info->rxbuf.page = NULL;
2116                         }
2117                 }
2118
2119                 buffer_info->dma = 0;
2120         }
2121
2122         /* there also may be some cached data from a chained receive */
2123         napi_free_frags(&adapter->napi);
2124         rx_ring->rx_skb_top = NULL;
2125
2126         size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127         memset(rx_ring->buffer_info, 0, size);
2128
2129         /* Zero out the descriptor ring */
2130         memset(rx_ring->desc, 0, rx_ring->size);
2131
2132         rx_ring->next_to_clean = 0;
2133         rx_ring->next_to_use = 0;
2134
2135         writel(0, hw->hw_addr + rx_ring->rdh);
2136         writel(0, hw->hw_addr + rx_ring->rdt);
2137 }
2138
2139 /**
2140  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141  * @adapter: board private structure
2142  **/
2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144 {
2145         int i;
2146
2147         for (i = 0; i < adapter->num_rx_queues; i++)
2148                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149 }
2150
2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152  * and memory write and invalidate disabled for certain operations
2153  */
2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155 {
2156         struct e1000_hw *hw = &adapter->hw;
2157         struct net_device *netdev = adapter->netdev;
2158         u32 rctl;
2159
2160         e1000_pci_clear_mwi(hw);
2161
2162         rctl = er32(RCTL);
2163         rctl |= E1000_RCTL_RST;
2164         ew32(RCTL, rctl);
2165         E1000_WRITE_FLUSH();
2166         mdelay(5);
2167
2168         if (netif_running(netdev))
2169                 e1000_clean_all_rx_rings(adapter);
2170 }
2171
2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173 {
2174         struct e1000_hw *hw = &adapter->hw;
2175         struct net_device *netdev = adapter->netdev;
2176         u32 rctl;
2177
2178         rctl = er32(RCTL);
2179         rctl &= ~E1000_RCTL_RST;
2180         ew32(RCTL, rctl);
2181         E1000_WRITE_FLUSH();
2182         mdelay(5);
2183
2184         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185                 e1000_pci_set_mwi(hw);
2186
2187         if (netif_running(netdev)) {
2188                 /* No need to loop, because 82542 supports only 1 queue */
2189                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190                 e1000_configure_rx(adapter);
2191                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192         }
2193 }
2194
2195 /**
2196  * e1000_set_mac - Change the Ethernet Address of the NIC
2197  * @netdev: network interface device structure
2198  * @p: pointer to an address structure
2199  *
2200  * Returns 0 on success, negative on failure
2201  **/
2202 static int e1000_set_mac(struct net_device *netdev, void *p)
2203 {
2204         struct e1000_adapter *adapter = netdev_priv(netdev);
2205         struct e1000_hw *hw = &adapter->hw;
2206         struct sockaddr *addr = p;
2207
2208         if (!is_valid_ether_addr(addr->sa_data))
2209                 return -EADDRNOTAVAIL;
2210
2211         /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213         if (hw->mac_type == e1000_82542_rev2_0)
2214                 e1000_enter_82542_rst(adapter);
2215
2216         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219         e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221         if (hw->mac_type == e1000_82542_rev2_0)
2222                 e1000_leave_82542_rst(adapter);
2223
2224         return 0;
2225 }
2226
2227 /**
2228  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229  * @netdev: network interface device structure
2230  *
2231  * The set_rx_mode entry point is called whenever the unicast or multicast
2232  * address lists or the network interface flags are updated. This routine is
2233  * responsible for configuring the hardware for proper unicast, multicast,
2234  * promiscuous mode, and all-multi behavior.
2235  **/
2236 static void e1000_set_rx_mode(struct net_device *netdev)
2237 {
2238         struct e1000_adapter *adapter = netdev_priv(netdev);
2239         struct e1000_hw *hw = &adapter->hw;
2240         struct netdev_hw_addr *ha;
2241         bool use_uc = false;
2242         u32 rctl;
2243         u32 hash_value;
2244         int i, rar_entries = E1000_RAR_ENTRIES;
2245         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248         if (!mcarray)
2249                 return;
2250
2251         /* Check for Promiscuous and All Multicast modes */
2252
2253         rctl = er32(RCTL);
2254
2255         if (netdev->flags & IFF_PROMISC) {
2256                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257                 rctl &= ~E1000_RCTL_VFE;
2258         } else {
2259                 if (netdev->flags & IFF_ALLMULTI)
2260                         rctl |= E1000_RCTL_MPE;
2261                 else
2262                         rctl &= ~E1000_RCTL_MPE;
2263                 /* Enable VLAN filter if there is a VLAN */
2264                 if (e1000_vlan_used(adapter))
2265                         rctl |= E1000_RCTL_VFE;
2266         }
2267
2268         if (netdev_uc_count(netdev) > rar_entries - 1) {
2269                 rctl |= E1000_RCTL_UPE;
2270         } else if (!(netdev->flags & IFF_PROMISC)) {
2271                 rctl &= ~E1000_RCTL_UPE;
2272                 use_uc = true;
2273         }
2274
2275         ew32(RCTL, rctl);
2276
2277         /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279         if (hw->mac_type == e1000_82542_rev2_0)
2280                 e1000_enter_82542_rst(adapter);
2281
2282         /* load the first 14 addresses into the exact filters 1-14. Unicast
2283          * addresses take precedence to avoid disabling unicast filtering
2284          * when possible.
2285          *
2286          * RAR 0 is used for the station MAC address
2287          * if there are not 14 addresses, go ahead and clear the filters
2288          */
2289         i = 1;
2290         if (use_uc)
2291                 netdev_for_each_uc_addr(ha, netdev) {
2292                         if (i == rar_entries)
2293                                 break;
2294                         e1000_rar_set(hw, ha->addr, i++);
2295                 }
2296
2297         netdev_for_each_mc_addr(ha, netdev) {
2298                 if (i == rar_entries) {
2299                         /* load any remaining addresses into the hash table */
2300                         u32 hash_reg, hash_bit, mta;
2301                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302                         hash_reg = (hash_value >> 5) & 0x7F;
2303                         hash_bit = hash_value & 0x1F;
2304                         mta = (1 << hash_bit);
2305                         mcarray[hash_reg] |= mta;
2306                 } else {
2307                         e1000_rar_set(hw, ha->addr, i++);
2308                 }
2309         }
2310
2311         for (; i < rar_entries; i++) {
2312                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313                 E1000_WRITE_FLUSH();
2314                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315                 E1000_WRITE_FLUSH();
2316         }
2317
2318         /* write the hash table completely, write from bottom to avoid
2319          * both stupid write combining chipsets, and flushing each write
2320          */
2321         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322                 /* If we are on an 82544 has an errata where writing odd
2323                  * offsets overwrites the previous even offset, but writing
2324                  * backwards over the range solves the issue by always
2325                  * writing the odd offset first
2326                  */
2327                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328         }
2329         E1000_WRITE_FLUSH();
2330
2331         if (hw->mac_type == e1000_82542_rev2_0)
2332                 e1000_leave_82542_rst(adapter);
2333
2334         kfree(mcarray);
2335 }
2336
2337 /**
2338  * e1000_update_phy_info_task - get phy info
2339  * @work: work struct contained inside adapter struct
2340  *
2341  * Need to wait a few seconds after link up to get diagnostic information from
2342  * the phy
2343  */
2344 static void e1000_update_phy_info_task(struct work_struct *work)
2345 {
2346         struct e1000_adapter *adapter = container_of(work,
2347                                                      struct e1000_adapter,
2348                                                      phy_info_task.work);
2349
2350         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351 }
2352
2353 /**
2354  * e1000_82547_tx_fifo_stall_task - task to complete work
2355  * @work: work struct contained inside adapter struct
2356  **/
2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358 {
2359         struct e1000_adapter *adapter = container_of(work,
2360                                                      struct e1000_adapter,
2361                                                      fifo_stall_task.work);
2362         struct e1000_hw *hw = &adapter->hw;
2363         struct net_device *netdev = adapter->netdev;
2364         u32 tctl;
2365
2366         if (atomic_read(&adapter->tx_fifo_stall)) {
2367                 if ((er32(TDT) == er32(TDH)) &&
2368                    (er32(TDFT) == er32(TDFH)) &&
2369                    (er32(TDFTS) == er32(TDFHS))) {
2370                         tctl = er32(TCTL);
2371                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372                         ew32(TDFT, adapter->tx_head_addr);
2373                         ew32(TDFH, adapter->tx_head_addr);
2374                         ew32(TDFTS, adapter->tx_head_addr);
2375                         ew32(TDFHS, adapter->tx_head_addr);
2376                         ew32(TCTL, tctl);
2377                         E1000_WRITE_FLUSH();
2378
2379                         adapter->tx_fifo_head = 0;
2380                         atomic_set(&adapter->tx_fifo_stall, 0);
2381                         netif_wake_queue(netdev);
2382                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384                 }
2385         }
2386 }
2387
2388 bool e1000_has_link(struct e1000_adapter *adapter)
2389 {
2390         struct e1000_hw *hw = &adapter->hw;
2391         bool link_active = false;
2392
2393         /* get_link_status is set on LSC (link status) interrupt or rx
2394          * sequence error interrupt (except on intel ce4100).
2395          * get_link_status will stay false until the
2396          * e1000_check_for_link establishes link for copper adapters
2397          * ONLY
2398          */
2399         switch (hw->media_type) {
2400         case e1000_media_type_copper:
2401                 if (hw->mac_type == e1000_ce4100)
2402                         hw->get_link_status = 1;
2403                 if (hw->get_link_status) {
2404                         e1000_check_for_link(hw);
2405                         link_active = !hw->get_link_status;
2406                 } else {
2407                         link_active = true;
2408                 }
2409                 break;
2410         case e1000_media_type_fiber:
2411                 e1000_check_for_link(hw);
2412                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413                 break;
2414         case e1000_media_type_internal_serdes:
2415                 e1000_check_for_link(hw);
2416                 link_active = hw->serdes_has_link;
2417                 break;
2418         default:
2419                 break;
2420         }
2421
2422         return link_active;
2423 }
2424
2425 /**
2426  * e1000_watchdog - work function
2427  * @work: work struct contained inside adapter struct
2428  **/
2429 static void e1000_watchdog(struct work_struct *work)
2430 {
2431         struct e1000_adapter *adapter = container_of(work,
2432                                                      struct e1000_adapter,
2433                                                      watchdog_task.work);
2434         struct e1000_hw *hw = &adapter->hw;
2435         struct net_device *netdev = adapter->netdev;
2436         struct e1000_tx_ring *txdr = adapter->tx_ring;
2437         u32 link, tctl;
2438
2439         link = e1000_has_link(adapter);
2440         if ((netif_carrier_ok(netdev)) && link)
2441                 goto link_up;
2442
2443         if (link) {
2444                 if (!netif_carrier_ok(netdev)) {
2445                         u32 ctrl;
2446                         bool txb2b = true;
2447                         /* update snapshot of PHY registers on LSC */
2448                         e1000_get_speed_and_duplex(hw,
2449                                                    &adapter->link_speed,
2450                                                    &adapter->link_duplex);
2451
2452                         ctrl = er32(CTRL);
2453                         pr_info("%s NIC Link is Up %d Mbps %s, "
2454                                 "Flow Control: %s\n",
2455                                 netdev->name,
2456                                 adapter->link_speed,
2457                                 adapter->link_duplex == FULL_DUPLEX ?
2458                                 "Full Duplex" : "Half Duplex",
2459                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464                         /* adjust timeout factor according to speed/duplex */
2465                         adapter->tx_timeout_factor = 1;
2466                         switch (adapter->link_speed) {
2467                         case SPEED_10:
2468                                 txb2b = false;
2469                                 adapter->tx_timeout_factor = 16;
2470                                 break;
2471                         case SPEED_100:
2472                                 txb2b = false;
2473                                 /* maybe add some timeout factor ? */
2474                                 break;
2475                         }
2476
2477                         /* enable transmits in the hardware */
2478                         tctl = er32(TCTL);
2479                         tctl |= E1000_TCTL_EN;
2480                         ew32(TCTL, tctl);
2481
2482                         netif_carrier_on(netdev);
2483                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2484                                 schedule_delayed_work(&adapter->phy_info_task,
2485                                                       2 * HZ);
2486                         adapter->smartspeed = 0;
2487                 }
2488         } else {
2489                 if (netif_carrier_ok(netdev)) {
2490                         adapter->link_speed = 0;
2491                         adapter->link_duplex = 0;
2492                         pr_info("%s NIC Link is Down\n",
2493                                 netdev->name);
2494                         netif_carrier_off(netdev);
2495
2496                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2497                                 schedule_delayed_work(&adapter->phy_info_task,
2498                                                       2 * HZ);
2499                 }
2500
2501                 e1000_smartspeed(adapter);
2502         }
2503
2504 link_up:
2505         e1000_update_stats(adapter);
2506
2507         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508         adapter->tpt_old = adapter->stats.tpt;
2509         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510         adapter->colc_old = adapter->stats.colc;
2511
2512         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513         adapter->gorcl_old = adapter->stats.gorcl;
2514         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515         adapter->gotcl_old = adapter->stats.gotcl;
2516
2517         e1000_update_adaptive(hw);
2518
2519         if (!netif_carrier_ok(netdev)) {
2520                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521                         /* We've lost link, so the controller stops DMA,
2522                          * but we've got queued Tx work that's never going
2523                          * to get done, so reset controller to flush Tx.
2524                          * (Do the reset outside of interrupt context).
2525                          */
2526                         adapter->tx_timeout_count++;
2527                         schedule_work(&adapter->reset_task);
2528                         /* exit immediately since reset is imminent */
2529                         return;
2530                 }
2531         }
2532
2533         /* Simple mode for Interrupt Throttle Rate (ITR) */
2534         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536                  * Total asymmetrical Tx or Rx gets ITR=8000;
2537                  * everyone else is between 2000-8000.
2538                  */
2539                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541                             adapter->gotcl - adapter->gorcl :
2542                             adapter->gorcl - adapter->gotcl) / 10000;
2543                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545                 ew32(ITR, 1000000000 / (itr * 256));
2546         }
2547
2548         /* Cause software interrupt to ensure rx ring is cleaned */
2549         ew32(ICS, E1000_ICS_RXDMT0);
2550
2551         /* Force detection of hung controller every watchdog period */
2552         adapter->detect_tx_hung = true;
2553
2554         /* Reschedule the task */
2555         if (!test_bit(__E1000_DOWN, &adapter->flags))
2556                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557 }
2558
2559 enum latency_range {
2560         lowest_latency = 0,
2561         low_latency = 1,
2562         bulk_latency = 2,
2563         latency_invalid = 255
2564 };
2565
2566 /**
2567  * e1000_update_itr - update the dynamic ITR value based on statistics
2568  * @adapter: pointer to adapter
2569  * @itr_setting: current adapter->itr
2570  * @packets: the number of packets during this measurement interval
2571  * @bytes: the number of bytes during this measurement interval
2572  *
2573  *      Stores a new ITR value based on packets and byte
2574  *      counts during the last interrupt.  The advantage of per interrupt
2575  *      computation is faster updates and more accurate ITR for the current
2576  *      traffic pattern.  Constants in this function were computed
2577  *      based on theoretical maximum wire speed and thresholds were set based
2578  *      on testing data as well as attempting to minimize response time
2579  *      while increasing bulk throughput.
2580  *      this functionality is controlled by the InterruptThrottleRate module
2581  *      parameter (see e1000_param.c)
2582  **/
2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584                                      u16 itr_setting, int packets, int bytes)
2585 {
2586         unsigned int retval = itr_setting;
2587         struct e1000_hw *hw = &adapter->hw;
2588
2589         if (unlikely(hw->mac_type < e1000_82540))
2590                 goto update_itr_done;
2591
2592         if (packets == 0)
2593                 goto update_itr_done;
2594
2595         switch (itr_setting) {
2596         case lowest_latency:
2597                 /* jumbo frames get bulk treatment*/
2598                 if (bytes/packets > 8000)
2599                         retval = bulk_latency;
2600                 else if ((packets < 5) && (bytes > 512))
2601                         retval = low_latency;
2602                 break;
2603         case low_latency:  /* 50 usec aka 20000 ints/s */
2604                 if (bytes > 10000) {
2605                         /* jumbo frames need bulk latency setting */
2606                         if (bytes/packets > 8000)
2607                                 retval = bulk_latency;
2608                         else if ((packets < 10) || ((bytes/packets) > 1200))
2609                                 retval = bulk_latency;
2610                         else if ((packets > 35))
2611                                 retval = lowest_latency;
2612                 } else if (bytes/packets > 2000)
2613                         retval = bulk_latency;
2614                 else if (packets <= 2 && bytes < 512)
2615                         retval = lowest_latency;
2616                 break;
2617         case bulk_latency: /* 250 usec aka 4000 ints/s */
2618                 if (bytes > 25000) {
2619                         if (packets > 35)
2620                                 retval = low_latency;
2621                 } else if (bytes < 6000) {
2622                         retval = low_latency;
2623                 }
2624                 break;
2625         }
2626
2627 update_itr_done:
2628         return retval;
2629 }
2630
2631 static void e1000_set_itr(struct e1000_adapter *adapter)
2632 {
2633         struct e1000_hw *hw = &adapter->hw;
2634         u16 current_itr;
2635         u32 new_itr = adapter->itr;
2636
2637         if (unlikely(hw->mac_type < e1000_82540))
2638                 return;
2639
2640         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641         if (unlikely(adapter->link_speed != SPEED_1000)) {
2642                 current_itr = 0;
2643                 new_itr = 4000;
2644                 goto set_itr_now;
2645         }
2646
2647         adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648                                            adapter->total_tx_packets,
2649                                            adapter->total_tx_bytes);
2650         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652                 adapter->tx_itr = low_latency;
2653
2654         adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655                                            adapter->total_rx_packets,
2656                                            adapter->total_rx_bytes);
2657         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659                 adapter->rx_itr = low_latency;
2660
2661         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663         switch (current_itr) {
2664         /* counts and packets in update_itr are dependent on these numbers */
2665         case lowest_latency:
2666                 new_itr = 70000;
2667                 break;
2668         case low_latency:
2669                 new_itr = 20000; /* aka hwitr = ~200 */
2670                 break;
2671         case bulk_latency:
2672                 new_itr = 4000;
2673                 break;
2674         default:
2675                 break;
2676         }
2677
2678 set_itr_now:
2679         if (new_itr != adapter->itr) {
2680                 /* this attempts to bias the interrupt rate towards Bulk
2681                  * by adding intermediate steps when interrupt rate is
2682                  * increasing
2683                  */
2684                 new_itr = new_itr > adapter->itr ?
2685                           min(adapter->itr + (new_itr >> 2), new_itr) :
2686                           new_itr;
2687                 adapter->itr = new_itr;
2688                 ew32(ITR, 1000000000 / (new_itr * 256));
2689         }
2690 }
2691
2692 #define E1000_TX_FLAGS_CSUM             0x00000001
2693 #define E1000_TX_FLAGS_VLAN             0x00000002
2694 #define E1000_TX_FLAGS_TSO              0x00000004
2695 #define E1000_TX_FLAGS_IPV4             0x00000008
2696 #define E1000_TX_FLAGS_NO_FCS           0x00000010
2697 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2698 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2699
2700 static int e1000_tso(struct e1000_adapter *adapter,
2701                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702                      __be16 protocol)
2703 {
2704         struct e1000_context_desc *context_desc;
2705         struct e1000_tx_buffer *buffer_info;
2706         unsigned int i;
2707         u32 cmd_length = 0;
2708         u16 ipcse = 0, tucse, mss;
2709         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711         if (skb_is_gso(skb)) {
2712                 int err;
2713
2714                 err = skb_cow_head(skb, 0);
2715                 if (err < 0)
2716                         return err;
2717
2718                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719                 mss = skb_shinfo(skb)->gso_size;
2720                 if (protocol == htons(ETH_P_IP)) {
2721                         struct iphdr *iph = ip_hdr(skb);
2722                         iph->tot_len = 0;
2723                         iph->check = 0;
2724                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725                                                                  iph->daddr, 0,
2726                                                                  IPPROTO_TCP,
2727                                                                  0);
2728                         cmd_length = E1000_TXD_CMD_IP;
2729                         ipcse = skb_transport_offset(skb) - 1;
2730                 } else if (skb_is_gso_v6(skb)) {
2731                         ipv6_hdr(skb)->payload_len = 0;
2732                         tcp_hdr(skb)->check =
2733                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734                                                  &ipv6_hdr(skb)->daddr,
2735                                                  0, IPPROTO_TCP, 0);
2736                         ipcse = 0;
2737                 }
2738                 ipcss = skb_network_offset(skb);
2739                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740                 tucss = skb_transport_offset(skb);
2741                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742                 tucse = 0;
2743
2744                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747                 i = tx_ring->next_to_use;
2748                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749                 buffer_info = &tx_ring->buffer_info[i];
2750
2751                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2752                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2753                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2754                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2758                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761                 buffer_info->time_stamp = jiffies;
2762                 buffer_info->next_to_watch = i;
2763
2764                 if (++i == tx_ring->count)
2765                         i = 0;
2766
2767                 tx_ring->next_to_use = i;
2768
2769                 return true;
2770         }
2771         return false;
2772 }
2773
2774 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776                           __be16 protocol)
2777 {
2778         struct e1000_context_desc *context_desc;
2779         struct e1000_tx_buffer *buffer_info;
2780         unsigned int i;
2781         u8 css;
2782         u32 cmd_len = E1000_TXD_CMD_DEXT;
2783
2784         if (skb->ip_summed != CHECKSUM_PARTIAL)
2785                 return false;
2786
2787         switch (protocol) {
2788         case cpu_to_be16(ETH_P_IP):
2789                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790                         cmd_len |= E1000_TXD_CMD_TCP;
2791                 break;
2792         case cpu_to_be16(ETH_P_IPV6):
2793                 /* XXX not handling all IPV6 headers */
2794                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795                         cmd_len |= E1000_TXD_CMD_TCP;
2796                 break;
2797         default:
2798                 if (unlikely(net_ratelimit()))
2799                         e_warn(drv, "checksum_partial proto=%x!\n",
2800                                skb->protocol);
2801                 break;
2802         }
2803
2804         css = skb_checksum_start_offset(skb);
2805
2806         i = tx_ring->next_to_use;
2807         buffer_info = &tx_ring->buffer_info[i];
2808         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2809
2810         context_desc->lower_setup.ip_config = 0;
2811         context_desc->upper_setup.tcp_fields.tucss = css;
2812         context_desc->upper_setup.tcp_fields.tucso =
2813                 css + skb->csum_offset;
2814         context_desc->upper_setup.tcp_fields.tucse = 0;
2815         context_desc->tcp_seg_setup.data = 0;
2816         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2817
2818         buffer_info->time_stamp = jiffies;
2819         buffer_info->next_to_watch = i;
2820
2821         if (unlikely(++i == tx_ring->count))
2822                 i = 0;
2823
2824         tx_ring->next_to_use = i;
2825
2826         return true;
2827 }
2828
2829 #define E1000_MAX_TXD_PWR       12
2830 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2831
2832 static int e1000_tx_map(struct e1000_adapter *adapter,
2833                         struct e1000_tx_ring *tx_ring,
2834                         struct sk_buff *skb, unsigned int first,
2835                         unsigned int max_per_txd, unsigned int nr_frags,
2836                         unsigned int mss)
2837 {
2838         struct e1000_hw *hw = &adapter->hw;
2839         struct pci_dev *pdev = adapter->pdev;
2840         struct e1000_tx_buffer *buffer_info;
2841         unsigned int len = skb_headlen(skb);
2842         unsigned int offset = 0, size, count = 0, i;
2843         unsigned int f, bytecount, segs;
2844
2845         i = tx_ring->next_to_use;
2846
2847         while (len) {
2848                 buffer_info = &tx_ring->buffer_info[i];
2849                 size = min(len, max_per_txd);
2850                 /* Workaround for Controller erratum --
2851                  * descriptor for non-tso packet in a linear SKB that follows a
2852                  * tso gets written back prematurely before the data is fully
2853                  * DMA'd to the controller
2854                  */
2855                 if (!skb->data_len && tx_ring->last_tx_tso &&
2856                     !skb_is_gso(skb)) {
2857                         tx_ring->last_tx_tso = false;
2858                         size -= 4;
2859                 }
2860
2861                 /* Workaround for premature desc write-backs
2862                  * in TSO mode.  Append 4-byte sentinel desc
2863                  */
2864                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2865                         size -= 4;
2866                 /* work-around for errata 10 and it applies
2867                  * to all controllers in PCI-X mode
2868                  * The fix is to make sure that the first descriptor of a
2869                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870                  */
2871                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872                              (size > 2015) && count == 0))
2873                         size = 2015;
2874
2875                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2876                  * terminating buffers within evenly-aligned dwords.
2877                  */
2878                 if (unlikely(adapter->pcix_82544 &&
2879                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880                    size > 4))
2881                         size -= 4;
2882
2883                 buffer_info->length = size;
2884                 /* set time_stamp *before* dma to help avoid a possible race */
2885                 buffer_info->time_stamp = jiffies;
2886                 buffer_info->mapped_as_page = false;
2887                 buffer_info->dma = dma_map_single(&pdev->dev,
2888                                                   skb->data + offset,
2889                                                   size, DMA_TO_DEVICE);
2890                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2891                         goto dma_error;
2892                 buffer_info->next_to_watch = i;
2893
2894                 len -= size;
2895                 offset += size;
2896                 count++;
2897                 if (len) {
2898                         i++;
2899                         if (unlikely(i == tx_ring->count))
2900                                 i = 0;
2901                 }
2902         }
2903
2904         for (f = 0; f < nr_frags; f++) {
2905                 const struct skb_frag_struct *frag;
2906
2907                 frag = &skb_shinfo(skb)->frags[f];
2908                 len = skb_frag_size(frag);
2909                 offset = 0;
2910
2911                 while (len) {
2912                         unsigned long bufend;
2913                         i++;
2914                         if (unlikely(i == tx_ring->count))
2915                                 i = 0;
2916
2917                         buffer_info = &tx_ring->buffer_info[i];
2918                         size = min(len, max_per_txd);
2919                         /* Workaround for premature desc write-backs
2920                          * in TSO mode.  Append 4-byte sentinel desc
2921                          */
2922                         if (unlikely(mss && f == (nr_frags-1) &&
2923                             size == len && size > 8))
2924                                 size -= 4;
2925                         /* Workaround for potential 82544 hang in PCI-X.
2926                          * Avoid terminating buffers within evenly-aligned
2927                          * dwords.
2928                          */
2929                         bufend = (unsigned long)
2930                                 page_to_phys(skb_frag_page(frag));
2931                         bufend += offset + size - 1;
2932                         if (unlikely(adapter->pcix_82544 &&
2933                                      !(bufend & 4) &&
2934                                      size > 4))
2935                                 size -= 4;
2936
2937                         buffer_info->length = size;
2938                         buffer_info->time_stamp = jiffies;
2939                         buffer_info->mapped_as_page = true;
2940                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941                                                 offset, size, DMA_TO_DEVICE);
2942                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2943                                 goto dma_error;
2944                         buffer_info->next_to_watch = i;
2945
2946                         len -= size;
2947                         offset += size;
2948                         count++;
2949                 }
2950         }
2951
2952         segs = skb_shinfo(skb)->gso_segs ?: 1;
2953         /* multiply data chunks by size of headers */
2954         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
2956         tx_ring->buffer_info[i].skb = skb;
2957         tx_ring->buffer_info[i].segs = segs;
2958         tx_ring->buffer_info[i].bytecount = bytecount;
2959         tx_ring->buffer_info[first].next_to_watch = i;
2960
2961         return count;
2962
2963 dma_error:
2964         dev_err(&pdev->dev, "TX DMA map failed\n");
2965         buffer_info->dma = 0;
2966         if (count)
2967                 count--;
2968
2969         while (count--) {
2970                 if (i == 0)
2971                         i += tx_ring->count;
2972                 i--;
2973                 buffer_info = &tx_ring->buffer_info[i];
2974                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975         }
2976
2977         return 0;
2978 }
2979
2980 static void e1000_tx_queue(struct e1000_adapter *adapter,
2981                            struct e1000_tx_ring *tx_ring, int tx_flags,
2982                            int count)
2983 {
2984         struct e1000_tx_desc *tx_desc = NULL;
2985         struct e1000_tx_buffer *buffer_info;
2986         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2987         unsigned int i;
2988
2989         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2991                              E1000_TXD_CMD_TSE;
2992                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
2994                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2996         }
2997
2998         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001         }
3002
3003         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004                 txd_lower |= E1000_TXD_CMD_VLE;
3005                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006         }
3007
3008         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
3011         i = tx_ring->next_to_use;
3012
3013         while (count--) {
3014                 buffer_info = &tx_ring->buffer_info[i];
3015                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3016                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017                 tx_desc->lower.data =
3018                         cpu_to_le32(txd_lower | buffer_info->length);
3019                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3020                 if (unlikely(++i == tx_ring->count))
3021                         i = 0;
3022         }
3023
3024         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030         /* Force memory writes to complete before letting h/w
3031          * know there are new descriptors to fetch.  (Only
3032          * applicable for weak-ordered memory model archs,
3033          * such as IA-64).
3034          */
3035         wmb();
3036
3037         tx_ring->next_to_use = i;
3038 }
3039
3040 /* 82547 workaround to avoid controller hang in half-duplex environment.
3041  * The workaround is to avoid queuing a large packet that would span
3042  * the internal Tx FIFO ring boundary by notifying the stack to resend
3043  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3044  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3045  * to the beginning of the Tx FIFO.
3046  */
3047
3048 #define E1000_FIFO_HDR                  0x10
3049 #define E1000_82547_PAD_LEN             0x3E0
3050
3051 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052                                        struct sk_buff *skb)
3053 {
3054         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059         if (adapter->link_duplex != HALF_DUPLEX)
3060                 goto no_fifo_stall_required;
3061
3062         if (atomic_read(&adapter->tx_fifo_stall))
3063                 return 1;
3064
3065         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066                 atomic_set(&adapter->tx_fifo_stall, 1);
3067                 return 1;
3068         }
3069
3070 no_fifo_stall_required:
3071         adapter->tx_fifo_head += skb_fifo_len;
3072         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074         return 0;
3075 }
3076
3077 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078 {
3079         struct e1000_adapter *adapter = netdev_priv(netdev);
3080         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082         netif_stop_queue(netdev);
3083         /* Herbert's original patch had:
3084          *  smp_mb__after_netif_stop_queue();
3085          * but since that doesn't exist yet, just open code it.
3086          */
3087         smp_mb();
3088
3089         /* We need to check again in a case another CPU has just
3090          * made room available.
3091          */
3092         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093                 return -EBUSY;
3094
3095         /* A reprieve! */
3096         netif_start_queue(netdev);
3097         ++adapter->restart_queue;
3098         return 0;
3099 }
3100
3101 static int e1000_maybe_stop_tx(struct net_device *netdev,
3102                                struct e1000_tx_ring *tx_ring, int size)
3103 {
3104         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105                 return 0;
3106         return __e1000_maybe_stop_tx(netdev, size);
3107 }
3108
3109 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3110 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111                                     struct net_device *netdev)
3112 {
3113         struct e1000_adapter *adapter = netdev_priv(netdev);
3114         struct e1000_hw *hw = &adapter->hw;
3115         struct e1000_tx_ring *tx_ring;
3116         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118         unsigned int tx_flags = 0;
3119         unsigned int len = skb_headlen(skb);
3120         unsigned int nr_frags;
3121         unsigned int mss;
3122         int count = 0;
3123         int tso;
3124         unsigned int f;
3125         __be16 protocol = vlan_get_protocol(skb);
3126
3127         /* This goes back to the question of how to logically map a Tx queue
3128          * to a flow.  Right now, performance is impacted slightly negatively
3129          * if using multiple Tx queues.  If the stack breaks away from a
3130          * single qdisc implementation, we can look at this again.
3131          */
3132         tx_ring = adapter->tx_ring;
3133
3134         /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135          * packets may get corrupted during padding by HW.
3136          * To WA this issue, pad all small packets manually.
3137          */
3138         if (eth_skb_pad(skb))
3139                 return NETDEV_TX_OK;
3140
3141         mss = skb_shinfo(skb)->gso_size;
3142         /* The controller does a simple calculation to
3143          * make sure there is enough room in the FIFO before
3144          * initiating the DMA for each buffer.  The calc is:
3145          * 4 = ceil(buffer len/mss).  To make sure we don't
3146          * overrun the FIFO, adjust the max buffer len if mss
3147          * drops.
3148          */
3149         if (mss) {
3150                 u8 hdr_len;
3151                 max_per_txd = min(mss << 2, max_per_txd);
3152                 max_txd_pwr = fls(max_per_txd) - 1;
3153
3154                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155                 if (skb->data_len && hdr_len == len) {
3156                         switch (hw->mac_type) {
3157                                 unsigned int pull_size;
3158                         case e1000_82544:
3159                                 /* Make sure we have room to chop off 4 bytes,
3160                                  * and that the end alignment will work out to
3161                                  * this hardware's requirements
3162                                  * NOTE: this is a TSO only workaround
3163                                  * if end byte alignment not correct move us
3164                                  * into the next dword
3165                                  */
3166                                 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167                                     & 4)
3168                                         break;
3169                                 /* fall through */
3170                                 pull_size = min((unsigned int)4, skb->data_len);
3171                                 if (!__pskb_pull_tail(skb, pull_size)) {
3172                                         e_err(drv, "__pskb_pull_tail "
3173                                               "failed.\n");
3174                                         dev_kfree_skb_any(skb);
3175                                         return NETDEV_TX_OK;
3176                                 }
3177                                 len = skb_headlen(skb);
3178                                 break;
3179                         default:
3180                                 /* do nothing */
3181                                 break;
3182                         }
3183                 }
3184         }
3185
3186         /* reserve a descriptor for the offload context */
3187         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188                 count++;
3189         count++;
3190
3191         /* Controller Erratum workaround */
3192         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193                 count++;
3194
3195         count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197         if (adapter->pcix_82544)
3198                 count++;
3199
3200         /* work-around for errata 10 and it applies to all controllers
3201          * in PCI-X mode, so add one more descriptor to the count
3202          */
3203         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204                         (len > 2015)))
3205                 count++;
3206
3207         nr_frags = skb_shinfo(skb)->nr_frags;
3208         for (f = 0; f < nr_frags; f++)
3209                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210                                        max_txd_pwr);
3211         if (adapter->pcix_82544)
3212                 count += nr_frags;
3213
3214         /* need: count + 2 desc gap to keep tail from touching
3215          * head, otherwise try next time
3216          */
3217         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218                 return NETDEV_TX_BUSY;
3219
3220         if (unlikely((hw->mac_type == e1000_82547) &&
3221                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3222                 netif_stop_queue(netdev);
3223                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3224                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225                 return NETDEV_TX_BUSY;
3226         }
3227
3228         if (skb_vlan_tag_present(skb)) {
3229                 tx_flags |= E1000_TX_FLAGS_VLAN;
3230                 tx_flags |= (skb_vlan_tag_get(skb) <<
3231                              E1000_TX_FLAGS_VLAN_SHIFT);
3232         }
3233
3234         first = tx_ring->next_to_use;
3235
3236         tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237         if (tso < 0) {
3238                 dev_kfree_skb_any(skb);
3239                 return NETDEV_TX_OK;
3240         }
3241
3242         if (likely(tso)) {
3243                 if (likely(hw->mac_type != e1000_82544))
3244                         tx_ring->last_tx_tso = true;
3245                 tx_flags |= E1000_TX_FLAGS_TSO;
3246         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247                 tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249         if (protocol == htons(ETH_P_IP))
3250                 tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252         if (unlikely(skb->no_fcs))
3253                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256                              nr_frags, mss);
3257
3258         if (count) {
3259                 /* The descriptors needed is higher than other Intel drivers
3260                  * due to a number of workarounds.  The breakdown is below:
3261                  * Data descriptors: MAX_SKB_FRAGS + 1
3262                  * Context Descriptor: 1
3263                  * Keep head from touching tail: 2
3264                  * Workarounds: 3
3265                  */
3266                 int desc_needed = MAX_SKB_FRAGS + 7;
3267
3268                 netdev_sent_queue(netdev, skb->len);
3269                 skb_tx_timestamp(skb);
3270
3271                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3272
3273                 /* 82544 potentially requires twice as many data descriptors
3274                  * in order to guarantee buffers don't end on evenly-aligned
3275                  * dwords
3276                  */
3277                 if (adapter->pcix_82544)
3278                         desc_needed += MAX_SKB_FRAGS + 1;
3279
3280                 /* Make sure there is space in the ring for the next send. */
3281                 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3282
3283                 if (!skb->xmit_more ||
3284                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285                         writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286                         /* we need this if more than one processor can write to
3287                          * our tail at a time, it synchronizes IO on IA64/Altix
3288                          * systems
3289                          */
3290                         mmiowb();
3291                 }
3292         } else {
3293                 dev_kfree_skb_any(skb);
3294                 tx_ring->buffer_info[first].time_stamp = 0;
3295                 tx_ring->next_to_use = first;
3296         }
3297
3298         return NETDEV_TX_OK;
3299 }
3300
3301 #define NUM_REGS 38 /* 1 based count */
3302 static void e1000_regdump(struct e1000_adapter *adapter)
3303 {
3304         struct e1000_hw *hw = &adapter->hw;
3305         u32 regs[NUM_REGS];
3306         u32 *regs_buff = regs;
3307         int i = 0;
3308
3309         static const char * const reg_name[] = {
3310                 "CTRL",  "STATUS",
3311                 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312                 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313                 "TIDV", "TXDCTL", "TADV", "TARC0",
3314                 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3315                 "TXDCTL1", "TARC1",
3316                 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317                 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318                 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3319         };
3320
3321         regs_buff[0]  = er32(CTRL);
3322         regs_buff[1]  = er32(STATUS);
3323
3324         regs_buff[2]  = er32(RCTL);
3325         regs_buff[3]  = er32(RDLEN);
3326         regs_buff[4]  = er32(RDH);
3327         regs_buff[5]  = er32(RDT);
3328         regs_buff[6]  = er32(RDTR);
3329
3330         regs_buff[7]  = er32(TCTL);
3331         regs_buff[8]  = er32(TDBAL);
3332         regs_buff[9]  = er32(TDBAH);
3333         regs_buff[10] = er32(TDLEN);
3334         regs_buff[11] = er32(TDH);
3335         regs_buff[12] = er32(TDT);
3336         regs_buff[13] = er32(TIDV);
3337         regs_buff[14] = er32(TXDCTL);
3338         regs_buff[15] = er32(TADV);
3339         regs_buff[16] = er32(TARC0);
3340
3341         regs_buff[17] = er32(TDBAL1);
3342         regs_buff[18] = er32(TDBAH1);
3343         regs_buff[19] = er32(TDLEN1);
3344         regs_buff[20] = er32(TDH1);
3345         regs_buff[21] = er32(TDT1);
3346         regs_buff[22] = er32(TXDCTL1);
3347         regs_buff[23] = er32(TARC1);
3348         regs_buff[24] = er32(CTRL_EXT);
3349         regs_buff[25] = er32(ERT);
3350         regs_buff[26] = er32(RDBAL0);
3351         regs_buff[27] = er32(RDBAH0);
3352         regs_buff[28] = er32(TDFH);
3353         regs_buff[29] = er32(TDFT);
3354         regs_buff[30] = er32(TDFHS);
3355         regs_buff[31] = er32(TDFTS);
3356         regs_buff[32] = er32(TDFPC);
3357         regs_buff[33] = er32(RDFH);
3358         regs_buff[34] = er32(RDFT);
3359         regs_buff[35] = er32(RDFHS);
3360         regs_buff[36] = er32(RDFTS);
3361         regs_buff[37] = er32(RDFPC);
3362
3363         pr_info("Register dump\n");
3364         for (i = 0; i < NUM_REGS; i++)
3365                 pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3366 }
3367
3368 /*
3369  * e1000_dump: Print registers, tx ring and rx ring
3370  */
3371 static void e1000_dump(struct e1000_adapter *adapter)
3372 {
3373         /* this code doesn't handle multiple rings */
3374         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375         struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3376         int i;
3377
3378         if (!netif_msg_hw(adapter))
3379                 return;
3380
3381         /* Print Registers */
3382         e1000_regdump(adapter);
3383
3384         /* transmit dump */
3385         pr_info("TX Desc ring0 dump\n");
3386
3387         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3388          *
3389          * Legacy Transmit Descriptor
3390          *   +--------------------------------------------------------------+
3391          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3392          *   +--------------------------------------------------------------+
3393          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3394          *   +--------------------------------------------------------------+
3395          *   63       48 47        36 35    32 31     24 23    16 15        0
3396          *
3397          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398          *   63      48 47    40 39       32 31             16 15    8 7      0
3399          *   +----------------------------------------------------------------+
3400          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3401          *   +----------------------------------------------------------------+
3402          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3403          *   +----------------------------------------------------------------+
3404          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3405          *
3406          * Extended Data Descriptor (DTYP=0x1)
3407          *   +----------------------------------------------------------------+
3408          * 0 |                     Buffer Address [63:0]                      |
3409          *   +----------------------------------------------------------------+
3410          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3411          *   +----------------------------------------------------------------+
3412          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3413          */
3414         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3415         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3416
3417         if (!netif_msg_tx_done(adapter))
3418                 goto rx_ring_summary;
3419
3420         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3422                 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3423                 struct my_u { __le64 a; __le64 b; };
3424                 struct my_u *u = (struct my_u *)tx_desc;
3425                 const char *type;
3426
3427                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3428                         type = "NTC/U";
3429                 else if (i == tx_ring->next_to_use)
3430                         type = "NTU";
3431                 else if (i == tx_ring->next_to_clean)
3432                         type = "NTC";
3433                 else
3434                         type = "";
3435
3436                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3437                         ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438                         le64_to_cpu(u->a), le64_to_cpu(u->b),
3439                         (u64)buffer_info->dma, buffer_info->length,
3440                         buffer_info->next_to_watch,
3441                         (u64)buffer_info->time_stamp, buffer_info->skb, type);
3442         }
3443
3444 rx_ring_summary:
3445         /* receive dump */
3446         pr_info("\nRX Desc ring dump\n");
3447
3448         /* Legacy Receive Descriptor Format
3449          *
3450          * +-----------------------------------------------------+
3451          * |                Buffer Address [63:0]                |
3452          * +-----------------------------------------------------+
3453          * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454          * +-----------------------------------------------------+
3455          * 63       48 47    40 39      32 31         16 15      0
3456          */
3457         pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3458
3459         if (!netif_msg_rx_status(adapter))
3460                 goto exit;
3461
3462         for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3464                 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3465                 struct my_u { __le64 a; __le64 b; };
3466                 struct my_u *u = (struct my_u *)rx_desc;
3467                 const char *type;
3468
3469                 if (i == rx_ring->next_to_use)
3470                         type = "NTU";
3471                 else if (i == rx_ring->next_to_clean)
3472                         type = "NTC";
3473                 else
3474                         type = "";
3475
3476                 pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3477                         i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3478                         (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3479         } /* for */
3480
3481         /* dump the descriptor caches */
3482         /* rx */
3483         pr_info("Rx descriptor cache in 64bit format\n");
3484         for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3485                 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3486                         i,
3487                         readl(adapter->hw.hw_addr + i+4),
3488                         readl(adapter->hw.hw_addr + i),
3489                         readl(adapter->hw.hw_addr + i+12),
3490                         readl(adapter->hw.hw_addr + i+8));
3491         }
3492         /* tx */
3493         pr_info("Tx descriptor cache in 64bit format\n");
3494         for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3495                 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3496                         i,
3497                         readl(adapter->hw.hw_addr + i+4),
3498                         readl(adapter->hw.hw_addr + i),
3499                         readl(adapter->hw.hw_addr + i+12),
3500                         readl(adapter->hw.hw_addr + i+8));
3501         }
3502 exit:
3503         return;
3504 }
3505
3506 /**
3507  * e1000_tx_timeout - Respond to a Tx Hang
3508  * @netdev: network interface device structure
3509  **/
3510 static void e1000_tx_timeout(struct net_device *netdev)
3511 {
3512         struct e1000_adapter *adapter = netdev_priv(netdev);
3513
3514         /* Do the reset outside of interrupt context */
3515         adapter->tx_timeout_count++;
3516         schedule_work(&adapter->reset_task);
3517 }
3518
3519 static void e1000_reset_task(struct work_struct *work)
3520 {
3521         struct e1000_adapter *adapter =
3522                 container_of(work, struct e1000_adapter, reset_task);
3523
3524         e_err(drv, "Reset adapter\n");
3525         e1000_reinit_locked(adapter);
3526 }
3527
3528 /**
3529  * e1000_get_stats - Get System Network Statistics
3530  * @netdev: network interface device structure
3531  *
3532  * Returns the address of the device statistics structure.
3533  * The statistics are actually updated from the watchdog.
3534  **/
3535 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3536 {
3537         /* only return the current stats */
3538         return &netdev->stats;
3539 }
3540
3541 /**
3542  * e1000_change_mtu - Change the Maximum Transfer Unit
3543  * @netdev: network interface device structure
3544  * @new_mtu: new value for maximum frame size
3545  *
3546  * Returns 0 on success, negative on failure
3547  **/
3548 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3549 {
3550         struct e1000_adapter *adapter = netdev_priv(netdev);
3551         struct e1000_hw *hw = &adapter->hw;
3552         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553
3554         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556                 e_err(probe, "Invalid MTU setting\n");
3557                 return -EINVAL;
3558         }
3559
3560         /* Adapter-specific max frame size limits. */
3561         switch (hw->mac_type) {
3562         case e1000_undefined ... e1000_82542_rev2_1:
3563                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564                         e_err(probe, "Jumbo Frames not supported.\n");
3565                         return -EINVAL;
3566                 }
3567                 break;
3568         default:
3569                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570                 break;
3571         }
3572
3573         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574                 msleep(1);
3575         /* e1000_down has a dependency on max_frame_size */
3576         hw->max_frame_size = max_frame;
3577         if (netif_running(netdev)) {
3578                 /* prevent buffers from being reallocated */
3579                 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3580                 e1000_down(adapter);
3581         }
3582
3583         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584          * means we reserve 2 more, this pushes us to allocate from the next
3585          * larger slab size.
3586          * i.e. RXBUFFER_2048 --> size-4096 slab
3587          * however with the new *_jumbo_rx* routines, jumbo receives will use
3588          * fragmented skbs
3589          */
3590
3591         if (max_frame <= E1000_RXBUFFER_2048)
3592                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3593         else
3594 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3595                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3596 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597                 adapter->rx_buffer_len = PAGE_SIZE;
3598 #endif
3599
3600         /* adjust allocation if LPE protects us, and we aren't using SBP */
3601         if (!hw->tbi_compatibility_on &&
3602             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3603              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3605
3606         pr_info("%s changing MTU from %d to %d\n",
3607                 netdev->name, netdev->mtu, new_mtu);
3608         netdev->mtu = new_mtu;
3609
3610         if (netif_running(netdev))
3611                 e1000_up(adapter);
3612         else
3613                 e1000_reset(adapter);
3614
3615         clear_bit(__E1000_RESETTING, &adapter->flags);
3616
3617         return 0;
3618 }
3619
3620 /**
3621  * e1000_update_stats - Update the board statistics counters
3622  * @adapter: board private structure
3623  **/
3624 void e1000_update_stats(struct e1000_adapter *adapter)
3625 {
3626         struct net_device *netdev = adapter->netdev;
3627         struct e1000_hw *hw = &adapter->hw;
3628         struct pci_dev *pdev = adapter->pdev;
3629         unsigned long flags;
3630         u16 phy_tmp;
3631
3632 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3633
3634         /* Prevent stats update while adapter is being reset, or if the pci
3635          * connection is down.
3636          */
3637         if (adapter->link_speed == 0)
3638                 return;
3639         if (pci_channel_offline(pdev))
3640                 return;
3641
3642         spin_lock_irqsave(&adapter->stats_lock, flags);
3643
3644         /* these counters are modified from e1000_tbi_adjust_stats,
3645          * called from the interrupt context, so they must only
3646          * be written while holding adapter->stats_lock
3647          */
3648
3649         adapter->stats.crcerrs += er32(CRCERRS);
3650         adapter->stats.gprc += er32(GPRC);
3651         adapter->stats.gorcl += er32(GORCL);
3652         adapter->stats.gorch += er32(GORCH);
3653         adapter->stats.bprc += er32(BPRC);
3654         adapter->stats.mprc += er32(MPRC);
3655         adapter->stats.roc += er32(ROC);
3656
3657         adapter->stats.prc64 += er32(PRC64);
3658         adapter->stats.prc127 += er32(PRC127);
3659         adapter->stats.prc255 += er32(PRC255);
3660         adapter->stats.prc511 += er32(PRC511);
3661         adapter->stats.prc1023 += er32(PRC1023);
3662         adapter->stats.prc1522 += er32(PRC1522);
3663
3664         adapter->stats.symerrs += er32(SYMERRS);
3665         adapter->stats.mpc += er32(MPC);
3666         adapter->stats.scc += er32(SCC);
3667         adapter->stats.ecol += er32(ECOL);
3668         adapter->stats.mcc += er32(MCC);
3669         adapter->stats.latecol += er32(LATECOL);
3670         adapter->stats.dc += er32(DC);
3671         adapter->stats.sec += er32(SEC);
3672         adapter->stats.rlec += er32(RLEC);
3673         adapter->stats.xonrxc += er32(XONRXC);
3674         adapter->stats.xontxc += er32(XONTXC);
3675         adapter->stats.xoffrxc += er32(XOFFRXC);
3676         adapter->stats.xofftxc += er32(XOFFTXC);
3677         adapter->stats.fcruc += er32(FCRUC);
3678         adapter->stats.gptc += er32(GPTC);
3679         adapter->stats.gotcl += er32(GOTCL);
3680         adapter->stats.gotch += er32(GOTCH);
3681         adapter->stats.rnbc += er32(RNBC);
3682         adapter->stats.ruc += er32(RUC);
3683         adapter->stats.rfc += er32(RFC);
3684         adapter->stats.rjc += er32(RJC);
3685         adapter->stats.torl += er32(TORL);
3686         adapter->stats.torh += er32(TORH);
3687         adapter->stats.totl += er32(TOTL);
3688         adapter->stats.toth += er32(TOTH);
3689         adapter->stats.tpr += er32(TPR);
3690
3691         adapter->stats.ptc64 += er32(PTC64);
3692         adapter->stats.ptc127 += er32(PTC127);
3693         adapter->stats.ptc255 += er32(PTC255);
3694         adapter->stats.ptc511 += er32(PTC511);
3695         adapter->stats.ptc1023 += er32(PTC1023);
3696         adapter->stats.ptc1522 += er32(PTC1522);
3697
3698         adapter->stats.mptc += er32(MPTC);
3699         adapter->stats.bptc += er32(BPTC);
3700
3701         /* used for adaptive IFS */
3702
3703         hw->tx_packet_delta = er32(TPT);
3704         adapter->stats.tpt += hw->tx_packet_delta;
3705         hw->collision_delta = er32(COLC);
3706         adapter->stats.colc += hw->collision_delta;
3707
3708         if (hw->mac_type >= e1000_82543) {
3709                 adapter->stats.algnerrc += er32(ALGNERRC);
3710                 adapter->stats.rxerrc += er32(RXERRC);
3711                 adapter->stats.tncrs += er32(TNCRS);
3712                 adapter->stats.cexterr += er32(CEXTERR);
3713                 adapter->stats.tsctc += er32(TSCTC);
3714                 adapter->stats.tsctfc += er32(TSCTFC);
3715         }
3716
3717         /* Fill out the OS statistics structure */
3718         netdev->stats.multicast = adapter->stats.mprc;
3719         netdev->stats.collisions = adapter->stats.colc;
3720
3721         /* Rx Errors */
3722
3723         /* RLEC on some newer hardware can be incorrect so build
3724          * our own version based on RUC and ROC
3725          */
3726         netdev->stats.rx_errors = adapter->stats.rxerrc +
3727                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3728                 adapter->stats.ruc + adapter->stats.roc +
3729                 adapter->stats.cexterr;
3730         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3731         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3735
3736         /* Tx Errors */
3737         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3738         netdev->stats.tx_errors = adapter->stats.txerrc;
3739         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740         netdev->stats.tx_window_errors = adapter->stats.latecol;
3741         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3742         if (hw->bad_tx_carr_stats_fd &&
3743             adapter->link_duplex == FULL_DUPLEX) {
3744                 netdev->stats.tx_carrier_errors = 0;
3745                 adapter->stats.tncrs = 0;
3746         }
3747
3748         /* Tx Dropped needs to be maintained elsewhere */
3749
3750         /* Phy Stats */
3751         if (hw->media_type == e1000_media_type_copper) {
3752                 if ((adapter->link_speed == SPEED_1000) &&
3753                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755                         adapter->phy_stats.idle_errors += phy_tmp;
3756                 }
3757
3758                 if ((hw->mac_type <= e1000_82546) &&
3759                    (hw->phy_type == e1000_phy_m88) &&
3760                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761                         adapter->phy_stats.receive_errors += phy_tmp;
3762         }
3763
3764         /* Management Stats */
3765         if (hw->has_smbus) {
3766                 adapter->stats.mgptc += er32(MGTPTC);
3767                 adapter->stats.mgprc += er32(MGTPRC);
3768                 adapter->stats.mgpdc += er32(MGTPDC);
3769         }
3770
3771         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3772 }
3773
3774 /**
3775  * e1000_intr - Interrupt Handler
3776  * @irq: interrupt number
3777  * @data: pointer to a network interface device structure
3778  **/
3779 static irqreturn_t e1000_intr(int irq, void *data)
3780 {
3781         struct net_device *netdev = data;
3782         struct e1000_adapter *adapter = netdev_priv(netdev);
3783         struct e1000_hw *hw = &adapter->hw;
3784         u32 icr = er32(ICR);
3785
3786         if (unlikely((!icr)))
3787                 return IRQ_NONE;  /* Not our interrupt */
3788
3789         /* we might have caused the interrupt, but the above
3790          * read cleared it, and just in case the driver is
3791          * down there is nothing to do so return handled
3792          */
3793         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794                 return IRQ_HANDLED;
3795
3796         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797                 hw->get_link_status = 1;
3798                 /* guard against interrupt when we're going down */
3799                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3800                         schedule_delayed_work(&adapter->watchdog_task, 1);
3801         }
3802
3803         /* disable interrupts, without the synchronize_irq bit */
3804         ew32(IMC, ~0);
3805         E1000_WRITE_FLUSH();
3806
3807         if (likely(napi_schedule_prep(&adapter->napi))) {
3808                 adapter->total_tx_bytes = 0;
3809                 adapter->total_tx_packets = 0;
3810                 adapter->total_rx_bytes = 0;
3811                 adapter->total_rx_packets = 0;
3812                 __napi_schedule(&adapter->napi);
3813         } else {
3814                 /* this really should not happen! if it does it is basically a
3815                  * bug, but not a hard error, so enable ints and continue
3816                  */
3817                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3818                         e1000_irq_enable(adapter);
3819         }
3820
3821         return IRQ_HANDLED;
3822 }
3823
3824 /**
3825  * e1000_clean - NAPI Rx polling callback
3826  * @adapter: board private structure
3827  **/
3828 static int e1000_clean(struct napi_struct *napi, int budget)
3829 {
3830         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3831                                                      napi);
3832         int tx_clean_complete = 0, work_done = 0;
3833
3834         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3835
3836         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3837
3838         if (!tx_clean_complete)
3839                 work_done = budget;
3840
3841         /* If budget not fully consumed, exit the polling mode */
3842         if (work_done < budget) {
3843                 if (likely(adapter->itr_setting & 3))
3844                         e1000_set_itr(adapter);
3845                 napi_complete_done(napi, work_done);
3846                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3847                         e1000_irq_enable(adapter);
3848         }
3849
3850         return work_done;
3851 }
3852
3853 /**
3854  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855  * @adapter: board private structure
3856  **/
3857 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858                                struct e1000_tx_ring *tx_ring)
3859 {
3860         struct e1000_hw *hw = &adapter->hw;
3861         struct net_device *netdev = adapter->netdev;
3862         struct e1000_tx_desc *tx_desc, *eop_desc;
3863         struct e1000_tx_buffer *buffer_info;
3864         unsigned int i, eop;
3865         unsigned int count = 0;
3866         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3867         unsigned int bytes_compl = 0, pkts_compl = 0;
3868
3869         i = tx_ring->next_to_clean;
3870         eop = tx_ring->buffer_info[i].next_to_watch;
3871         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872
3873         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874                (count < tx_ring->count)) {
3875                 bool cleaned = false;
3876                 dma_rmb();      /* read buffer_info after eop_desc */
3877                 for ( ; !cleaned; count++) {
3878                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3879                         buffer_info = &tx_ring->buffer_info[i];
3880                         cleaned = (i == eop);
3881
3882                         if (cleaned) {
3883                                 total_tx_packets += buffer_info->segs;
3884                                 total_tx_bytes += buffer_info->bytecount;
3885                                 if (buffer_info->skb) {
3886                                         bytes_compl += buffer_info->skb->len;
3887                                         pkts_compl++;
3888                                 }
3889
3890                         }
3891                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3892                         tx_desc->upper.data = 0;
3893
3894                         if (unlikely(++i == tx_ring->count))
3895                                 i = 0;
3896                 }
3897
3898                 eop = tx_ring->buffer_info[i].next_to_watch;
3899                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900         }
3901
3902         /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903          * which will reuse the cleaned buffers.
3904          */
3905         smp_store_release(&tx_ring->next_to_clean, i);
3906
3907         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3908
3909 #define TX_WAKE_THRESHOLD 32
3910         if (unlikely(count && netif_carrier_ok(netdev) &&
3911                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912                 /* Make sure that anybody stopping the queue after this
3913                  * sees the new next_to_clean.
3914                  */
3915                 smp_mb();
3916
3917                 if (netif_queue_stopped(netdev) &&
3918                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3919                         netif_wake_queue(netdev);
3920                         ++adapter->restart_queue;
3921                 }
3922         }
3923
3924         if (adapter->detect_tx_hung) {
3925                 /* Detect a transmit hang in hardware, this serializes the
3926                  * check with the clearing of time_stamp and movement of i
3927                  */
3928                 adapter->detect_tx_hung = false;
3929                 if (tx_ring->buffer_info[eop].time_stamp &&
3930                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3931                                (adapter->tx_timeout_factor * HZ)) &&
3932                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3933
3934                         /* detected Tx unit hang */
3935                         e_err(drv, "Detected Tx Unit Hang\n"
3936                               "  Tx Queue             <%lu>\n"
3937                               "  TDH                  <%x>\n"
3938                               "  TDT                  <%x>\n"
3939                               "  next_to_use          <%x>\n"
3940                               "  next_to_clean        <%x>\n"
3941                               "buffer_info[next_to_clean]\n"
3942                               "  time_stamp           <%lx>\n"
3943                               "  next_to_watch        <%x>\n"
3944                               "  jiffies              <%lx>\n"
3945                               "  next_to_watch.status <%x>\n",
3946                                 (unsigned long)(tx_ring - adapter->tx_ring),
3947                                 readl(hw->hw_addr + tx_ring->tdh),
3948                                 readl(hw->hw_addr + tx_ring->tdt),
3949                                 tx_ring->next_to_use,
3950                                 tx_ring->next_to_clean,
3951                                 tx_ring->buffer_info[eop].time_stamp,
3952                                 eop,
3953                                 jiffies,
3954                                 eop_desc->upper.fields.status);
3955                         e1000_dump(adapter);
3956                         netif_stop_queue(netdev);
3957                 }
3958         }
3959         adapter->total_tx_bytes += total_tx_bytes;
3960         adapter->total_tx_packets += total_tx_packets;
3961         netdev->stats.tx_bytes += total_tx_bytes;
3962         netdev->stats.tx_packets += total_tx_packets;
3963         return count < tx_ring->count;
3964 }
3965
3966 /**
3967  * e1000_rx_checksum - Receive Checksum Offload for 82543
3968  * @adapter:     board private structure
3969  * @status_err:  receive descriptor status and error fields
3970  * @csum:        receive descriptor csum field
3971  * @sk_buff:     socket buffer with received data
3972  **/
3973 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974                               u32 csum, struct sk_buff *skb)
3975 {
3976         struct e1000_hw *hw = &adapter->hw;
3977         u16 status = (u16)status_err;
3978         u8 errors = (u8)(status_err >> 24);
3979
3980         skb_checksum_none_assert(skb);
3981
3982         /* 82543 or newer only */
3983         if (unlikely(hw->mac_type < e1000_82543))
3984                 return;
3985         /* Ignore Checksum bit is set */
3986         if (unlikely(status & E1000_RXD_STAT_IXSM))
3987                 return;
3988         /* TCP/UDP checksum error bit is set */
3989         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3990                 /* let the stack verify checksum errors */
3991                 adapter->hw_csum_err++;
3992                 return;
3993         }
3994         /* TCP/UDP Checksum has not been calculated */
3995         if (!(status & E1000_RXD_STAT_TCPCS))
3996                 return;
3997
3998         /* It must be a TCP or UDP packet with a valid checksum */
3999         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4000                 /* TCP checksum is good */
4001                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4002         }
4003         adapter->hw_csum_good++;
4004 }
4005
4006 /**
4007  * e1000_consume_page - helper function for jumbo Rx path
4008  **/
4009 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4010                                u16 length)
4011 {
4012         bi->rxbuf.page = NULL;
4013         skb->len += length;
4014         skb->data_len += length;
4015         skb->truesize += PAGE_SIZE;
4016 }
4017
4018 /**
4019  * e1000_receive_skb - helper function to handle rx indications
4020  * @adapter: board private structure
4021  * @status: descriptor status field as written by hardware
4022  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023  * @skb: pointer to sk_buff to be indicated to stack
4024  */
4025 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026                               __le16 vlan, struct sk_buff *skb)
4027 {
4028         skb->protocol = eth_type_trans(skb, adapter->netdev);
4029
4030         if (status & E1000_RXD_STAT_VP) {
4031                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4032
4033                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4034         }
4035         napi_gro_receive(&adapter->napi, skb);
4036 }
4037
4038 /**
4039  * e1000_tbi_adjust_stats
4040  * @hw: Struct containing variables accessed by shared code
4041  * @frame_len: The length of the frame in question
4042  * @mac_addr: The Ethernet destination address of the frame in question
4043  *
4044  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4045  */
4046 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047                                    struct e1000_hw_stats *stats,
4048                                    u32 frame_len, const u8 *mac_addr)
4049 {
4050         u64 carry_bit;
4051
4052         /* First adjust the frame length. */
4053         frame_len--;
4054         /* We need to adjust the statistics counters, since the hardware
4055          * counters overcount this packet as a CRC error and undercount
4056          * the packet as a good packet
4057          */
4058         /* This packet should not be counted as a CRC error. */
4059         stats->crcerrs--;
4060         /* This packet does count as a Good Packet Received. */
4061         stats->gprc++;
4062
4063         /* Adjust the Good Octets received counters */
4064         carry_bit = 0x80000000 & stats->gorcl;
4065         stats->gorcl += frame_len;
4066         /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067          * Received Count) was one before the addition,
4068          * AND it is zero after, then we lost the carry out,
4069          * need to add one to Gorch (Good Octets Received Count High).
4070          * This could be simplified if all environments supported
4071          * 64-bit integers.
4072          */
4073         if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4074                 stats->gorch++;
4075         /* Is this a broadcast or multicast?  Check broadcast first,
4076          * since the test for a multicast frame will test positive on
4077          * a broadcast frame.
4078          */
4079         if (is_broadcast_ether_addr(mac_addr))
4080                 stats->bprc++;
4081         else if (is_multicast_ether_addr(mac_addr))
4082                 stats->mprc++;
4083
4084         if (frame_len == hw->max_frame_size) {
4085                 /* In this case, the hardware has overcounted the number of
4086                  * oversize frames.
4087                  */
4088                 if (stats->roc > 0)
4089                         stats->roc--;
4090         }
4091
4092         /* Adjust the bin counters when the extra byte put the frame in the
4093          * wrong bin. Remember that the frame_len was adjusted above.
4094          */
4095         if (frame_len == 64) {
4096                 stats->prc64++;
4097                 stats->prc127--;
4098         } else if (frame_len == 127) {
4099                 stats->prc127++;
4100                 stats->prc255--;
4101         } else if (frame_len == 255) {
4102                 stats->prc255++;
4103                 stats->prc511--;
4104         } else if (frame_len == 511) {
4105                 stats->prc511++;
4106                 stats->prc1023--;
4107         } else if (frame_len == 1023) {
4108                 stats->prc1023++;
4109                 stats->prc1522--;
4110         } else if (frame_len == 1522) {
4111                 stats->prc1522++;
4112         }
4113 }
4114
4115 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116                                     u8 status, u8 errors,
4117                                     u32 length, const u8 *data)
4118 {
4119         struct e1000_hw *hw = &adapter->hw;
4120         u8 last_byte = *(data + length - 1);
4121
4122         if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123                 unsigned long irq_flags;
4124
4125                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126                 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4128
4129                 return true;
4130         }
4131
4132         return false;
4133 }
4134
4135 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4136                                           unsigned int bufsz)
4137 {
4138         struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4139
4140         if (unlikely(!skb))
4141                 adapter->alloc_rx_buff_failed++;
4142         return skb;
4143 }
4144
4145 /**
4146  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147  * @adapter: board private structure
4148  * @rx_ring: ring to clean
4149  * @work_done: amount of napi work completed this call
4150  * @work_to_do: max amount of work allowed for this call to do
4151  *
4152  * the return value indicates whether actual cleaning was done, there
4153  * is no guarantee that everything was cleaned
4154  */
4155 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156                                      struct e1000_rx_ring *rx_ring,
4157                                      int *work_done, int work_to_do)
4158 {
4159         struct net_device *netdev = adapter->netdev;
4160         struct pci_dev *pdev = adapter->pdev;
4161         struct e1000_rx_desc *rx_desc, *next_rxd;
4162         struct e1000_rx_buffer *buffer_info, *next_buffer;
4163         u32 length;
4164         unsigned int i;
4165         int cleaned_count = 0;
4166         bool cleaned = false;
4167         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4168
4169         i = rx_ring->next_to_clean;
4170         rx_desc = E1000_RX_DESC(*rx_ring, i);
4171         buffer_info = &rx_ring->buffer_info[i];
4172
4173         while (rx_desc->status & E1000_RXD_STAT_DD) {
4174                 struct sk_buff *skb;
4175                 u8 status;
4176
4177                 if (*work_done >= work_to_do)
4178                         break;
4179                 (*work_done)++;
4180                 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4181
4182                 status = rx_desc->status;
4183
4184                 if (++i == rx_ring->count)
4185                         i = 0;
4186
4187                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4188                 prefetch(next_rxd);
4189
4190                 next_buffer = &rx_ring->buffer_info[i];
4191
4192                 cleaned = true;
4193                 cleaned_count++;
4194                 dma_unmap_page(&pdev->dev, buffer_info->dma,
4195                                adapter->rx_buffer_len, DMA_FROM_DEVICE);
4196                 buffer_info->dma = 0;
4197
4198                 length = le16_to_cpu(rx_desc->length);
4199
4200                 /* errors is only valid for DD + EOP descriptors */
4201                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4203                         u8 *mapped = page_address(buffer_info->rxbuf.page);
4204
4205                         if (e1000_tbi_should_accept(adapter, status,
4206                                                     rx_desc->errors,
4207                                                     length, mapped)) {
4208                                 length--;
4209                         } else if (netdev->features & NETIF_F_RXALL) {
4210                                 goto process_skb;
4211                         } else {
4212                                 /* an error means any chain goes out the window
4213                                  * too
4214                                  */
4215                                 if (rx_ring->rx_skb_top)
4216                                         dev_kfree_skb(rx_ring->rx_skb_top);
4217                                 rx_ring->rx_skb_top = NULL;
4218                                 goto next_desc;
4219                         }
4220                 }
4221
4222 #define rxtop rx_ring->rx_skb_top
4223 process_skb:
4224                 if (!(status & E1000_RXD_STAT_EOP)) {
4225                         /* this descriptor is only the beginning (or middle) */
4226                         if (!rxtop) {
4227                                 /* this is the beginning of a chain */
4228                                 rxtop = napi_get_frags(&adapter->napi);
4229                                 if (!rxtop)
4230                                         break;
4231
4232                                 skb_fill_page_desc(rxtop, 0,
4233                                                    buffer_info->rxbuf.page,
4234                                                    0, length);
4235                         } else {
4236                                 /* this is the middle of a chain */
4237                                 skb_fill_page_desc(rxtop,
4238                                     skb_shinfo(rxtop)->nr_frags,
4239                                     buffer_info->rxbuf.page, 0, length);
4240                         }
4241                         e1000_consume_page(buffer_info, rxtop, length);
4242                         goto next_desc;
4243                 } else {
4244                         if (rxtop) {
4245                                 /* end of the chain */
4246                                 skb_fill_page_desc(rxtop,
4247                                     skb_shinfo(rxtop)->nr_frags,
4248                                     buffer_info->rxbuf.page, 0, length);
4249                                 skb = rxtop;
4250                                 rxtop = NULL;
4251                                 e1000_consume_page(buffer_info, skb, length);
4252                         } else {
4253                                 struct page *p;
4254                                 /* no chain, got EOP, this buf is the packet
4255                                  * copybreak to save the put_page/alloc_page
4256                                  */
4257                                 p = buffer_info->rxbuf.page;
4258                                 if (length <= copybreak) {
4259                                         u8 *vaddr;
4260
4261                                         if (likely(!(netdev->features & NETIF_F_RXFCS)))
4262                                                 length -= 4;
4263                                         skb = e1000_alloc_rx_skb(adapter,
4264                                                                  length);
4265                                         if (!skb)
4266                                                 break;
4267
4268                                         vaddr = kmap_atomic(p);
4269                                         memcpy(skb_tail_pointer(skb), vaddr,
4270                                                length);
4271                                         kunmap_atomic(vaddr);
4272                                         /* re-use the page, so don't erase
4273                                          * buffer_info->rxbuf.page
4274                                          */
4275                                         skb_put(skb, length);
4276                                         e1000_rx_checksum(adapter,
4277                                                           status | rx_desc->errors << 24,
4278                                                           le16_to_cpu(rx_desc->csum), skb);
4279
4280                                         total_rx_bytes += skb->len;
4281                                         total_rx_packets++;
4282
4283                                         e1000_receive_skb(adapter, status,
4284                                                           rx_desc->special, skb);
4285                                         goto next_desc;
4286                                 } else {
4287                                         skb = napi_get_frags(&adapter->napi);
4288                                         if (!skb) {
4289                                                 adapter->alloc_rx_buff_failed++;
4290                                                 break;
4291                                         }
4292                                         skb_fill_page_desc(skb, 0, p, 0,
4293                                                            length);
4294                                         e1000_consume_page(buffer_info, skb,
4295                                                            length);
4296                                 }
4297                         }
4298                 }
4299
4300                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4301                 e1000_rx_checksum(adapter,
4302                                   (u32)(status) |
4303                                   ((u32)(rx_desc->errors) << 24),
4304                                   le16_to_cpu(rx_desc->csum), skb);
4305
4306                 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308                         pskb_trim(skb, skb->len - 4);
4309                 total_rx_packets++;
4310
4311                 if (status & E1000_RXD_STAT_VP) {
4312                         __le16 vlan = rx_desc->special;
4313                         u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4314
4315                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4316                 }
4317
4318                 napi_gro_frags(&adapter->napi);
4319
4320 next_desc:
4321                 rx_desc->status = 0;
4322
4323                 /* return some buffers to hardware, one at a time is too slow */
4324                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4326                         cleaned_count = 0;
4327                 }
4328
4329                 /* use prefetched values */
4330                 rx_desc = next_rxd;
4331                 buffer_info = next_buffer;
4332         }
4333         rx_ring->next_to_clean = i;
4334
4335         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4336         if (cleaned_count)
4337                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4338
4339         adapter->total_rx_packets += total_rx_packets;
4340         adapter->total_rx_bytes += total_rx_bytes;
4341         netdev->stats.rx_bytes += total_rx_bytes;
4342         netdev->stats.rx_packets += total_rx_packets;
4343         return cleaned;
4344 }
4345
4346 /* this should improve performance for small packets with large amounts
4347  * of reassembly being done in the stack
4348  */
4349 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4350                                        struct e1000_rx_buffer *buffer_info,
4351                                        u32 length, const void *data)
4352 {
4353         struct sk_buff *skb;
4354
4355         if (length > copybreak)
4356                 return NULL;
4357
4358         skb = e1000_alloc_rx_skb(adapter, length);
4359         if (!skb)
4360                 return NULL;
4361
4362         dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363                                 length, DMA_FROM_DEVICE);
4364
4365         memcpy(skb_put(skb, length), data, length);
4366
4367         return skb;
4368 }
4369
4370 /**
4371  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4372  * @adapter: board private structure
4373  * @rx_ring: ring to clean
4374  * @work_done: amount of napi work completed this call
4375  * @work_to_do: max amount of work allowed for this call to do
4376  */
4377 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378                                struct e1000_rx_ring *rx_ring,
4379                                int *work_done, int work_to_do)
4380 {
4381         struct net_device *netdev = adapter->netdev;
4382         struct pci_dev *pdev = adapter->pdev;
4383         struct e1000_rx_desc *rx_desc, *next_rxd;
4384         struct e1000_rx_buffer *buffer_info, *next_buffer;
4385         u32 length;
4386         unsigned int i;
4387         int cleaned_count = 0;
4388         bool cleaned = false;
4389         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4390
4391         i = rx_ring->next_to_clean;
4392         rx_desc = E1000_RX_DESC(*rx_ring, i);
4393         buffer_info = &rx_ring->buffer_info[i];
4394
4395         while (rx_desc->status & E1000_RXD_STAT_DD) {
4396                 struct sk_buff *skb;
4397                 u8 *data;
4398                 u8 status;
4399
4400                 if (*work_done >= work_to_do)
4401                         break;
4402                 (*work_done)++;
4403                 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4404
4405                 status = rx_desc->status;
4406                 length = le16_to_cpu(rx_desc->length);
4407
4408                 data = buffer_info->rxbuf.data;
4409                 prefetch(data);
4410                 skb = e1000_copybreak(adapter, buffer_info, length, data);
4411                 if (!skb) {
4412                         unsigned int frag_len = e1000_frag_len(adapter);
4413
4414                         skb = build_skb(data - E1000_HEADROOM, frag_len);
4415                         if (!skb) {
4416                                 adapter->alloc_rx_buff_failed++;
4417                                 break;
4418                         }
4419
4420                         skb_reserve(skb, E1000_HEADROOM);
4421                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4422                                          adapter->rx_buffer_len,
4423                                          DMA_FROM_DEVICE);
4424                         buffer_info->dma = 0;
4425                         buffer_info->rxbuf.data = NULL;
4426                 }
4427
4428                 if (++i == rx_ring->count)
4429                         i = 0;
4430
4431                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4432                 prefetch(next_rxd);
4433
4434                 next_buffer = &rx_ring->buffer_info[i];
4435
4436                 cleaned = true;
4437                 cleaned_count++;
4438
4439                 /* !EOP means multiple descriptors were used to store a single
4440                  * packet, if thats the case we need to toss it.  In fact, we
4441                  * to toss every packet with the EOP bit clear and the next
4442                  * frame that _does_ have the EOP bit set, as it is by
4443                  * definition only a frame fragment
4444                  */
4445                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446                         adapter->discarding = true;
4447
4448                 if (adapter->discarding) {
4449                         /* All receives must fit into a single buffer */
4450                         netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4451                         dev_kfree_skb(skb);
4452                         if (status & E1000_RXD_STAT_EOP)
4453                                 adapter->discarding = false;
4454                         goto next_desc;
4455                 }
4456
4457                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4458                         if (e1000_tbi_should_accept(adapter, status,
4459                                                     rx_desc->errors,
4460                                                     length, data)) {
4461                                 length--;
4462                         } else if (netdev->features & NETIF_F_RXALL) {
4463                                 goto process_skb;
4464                         } else {
4465                                 dev_kfree_skb(skb);
4466                                 goto next_desc;
4467                         }
4468                 }
4469
4470 process_skb:
4471                 total_rx_bytes += (length - 4); /* don't count FCS */
4472                 total_rx_packets++;
4473
4474                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475                         /* adjust length to remove Ethernet CRC, this must be
4476                          * done after the TBI_ACCEPT workaround above
4477                          */
4478                         length -= 4;
4479
4480                 if (buffer_info->rxbuf.data == NULL)
4481                         skb_put(skb, length);
4482                 else /* copybreak skb */
4483                         skb_trim(skb, length);
4484
4485                 /* Receive Checksum Offload */
4486                 e1000_rx_checksum(adapter,
4487                                   (u32)(status) |
4488                                   ((u32)(rx_desc->errors) << 24),
4489                                   le16_to_cpu(rx_desc->csum), skb);
4490
4491                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4492
4493 next_desc:
4494                 rx_desc->status = 0;
4495
4496                 /* return some buffers to hardware, one at a time is too slow */
4497                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499                         cleaned_count = 0;
4500                 }
4501
4502                 /* use prefetched values */
4503                 rx_desc = next_rxd;
4504                 buffer_info = next_buffer;
4505         }
4506         rx_ring->next_to_clean = i;
4507
4508         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4509         if (cleaned_count)
4510                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4511
4512         adapter->total_rx_packets += total_rx_packets;
4513         adapter->total_rx_bytes += total_rx_bytes;
4514         netdev->stats.rx_bytes += total_rx_bytes;
4515         netdev->stats.rx_packets += total_rx_packets;
4516         return cleaned;
4517 }
4518
4519 /**
4520  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521  * @adapter: address of board private structure
4522  * @rx_ring: pointer to receive ring structure
4523  * @cleaned_count: number of buffers to allocate this pass
4524  **/
4525 static void
4526 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4527                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4528 {
4529         struct pci_dev *pdev = adapter->pdev;
4530         struct e1000_rx_desc *rx_desc;
4531         struct e1000_rx_buffer *buffer_info;
4532         unsigned int i;
4533
4534         i = rx_ring->next_to_use;
4535         buffer_info = &rx_ring->buffer_info[i];
4536
4537         while (cleaned_count--) {
4538                 /* allocate a new page if necessary */
4539                 if (!buffer_info->rxbuf.page) {
4540                         buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541                         if (unlikely(!buffer_info->rxbuf.page)) {
4542                                 adapter->alloc_rx_buff_failed++;
4543                                 break;
4544                         }
4545                 }
4546
4547                 if (!buffer_info->dma) {
4548                         buffer_info->dma = dma_map_page(&pdev->dev,
4549                                                         buffer_info->rxbuf.page, 0,
4550                                                         adapter->rx_buffer_len,
4551                                                         DMA_FROM_DEVICE);
4552                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4553                                 put_page(buffer_info->rxbuf.page);
4554                                 buffer_info->rxbuf.page = NULL;
4555                                 buffer_info->dma = 0;
4556                                 adapter->alloc_rx_buff_failed++;
4557                                 break;
4558                         }
4559                 }
4560
4561                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4562                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4563
4564                 if (unlikely(++i == rx_ring->count))
4565                         i = 0;
4566                 buffer_info = &rx_ring->buffer_info[i];
4567         }
4568
4569         if (likely(rx_ring->next_to_use != i)) {
4570                 rx_ring->next_to_use = i;
4571                 if (unlikely(i-- == 0))
4572                         i = (rx_ring->count - 1);
4573
4574                 /* Force memory writes to complete before letting h/w
4575                  * know there are new descriptors to fetch.  (Only
4576                  * applicable for weak-ordered memory model archs,
4577                  * such as IA-64).
4578                  */
4579                 wmb();
4580                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4581         }
4582 }
4583
4584 /**
4585  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4586  * @adapter: address of board private structure
4587  **/
4588 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589                                    struct e1000_rx_ring *rx_ring,
4590                                    int cleaned_count)
4591 {
4592         struct e1000_hw *hw = &adapter->hw;
4593         struct pci_dev *pdev = adapter->pdev;
4594         struct e1000_rx_desc *rx_desc;
4595         struct e1000_rx_buffer *buffer_info;
4596         unsigned int i;
4597         unsigned int bufsz = adapter->rx_buffer_len;
4598
4599         i = rx_ring->next_to_use;
4600         buffer_info = &rx_ring->buffer_info[i];
4601
4602         while (cleaned_count--) {
4603                 void *data;
4604
4605                 if (buffer_info->rxbuf.data)
4606                         goto skip;
4607
4608                 data = e1000_alloc_frag(adapter);
4609                 if (!data) {
4610                         /* Better luck next round */
4611                         adapter->alloc_rx_buff_failed++;
4612                         break;
4613                 }
4614
4615                 /* Fix for errata 23, can't cross 64kB boundary */
4616                 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617                         void *olddata = data;
4618                         e_err(rx_err, "skb align check failed: %u bytes at "
4619                               "%p\n", bufsz, data);
4620                         /* Try again, without freeing the previous */
4621                         data = e1000_alloc_frag(adapter);
4622                         /* Failed allocation, critical failure */
4623                         if (!data) {
4624                                 skb_free_frag(olddata);
4625                                 adapter->alloc_rx_buff_failed++;
4626                                 break;
4627                         }
4628
4629                         if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4630                                 /* give up */
4631                                 skb_free_frag(data);
4632                                 skb_free_frag(olddata);
4633                                 adapter->alloc_rx_buff_failed++;
4634                                 break;
4635                         }
4636
4637                         /* Use new allocation */
4638                         skb_free_frag(olddata);
4639                 }
4640                 buffer_info->dma = dma_map_single(&pdev->dev,
4641                                                   data,
4642                                                   adapter->rx_buffer_len,
4643                                                   DMA_FROM_DEVICE);
4644                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4645                         skb_free_frag(data);
4646                         buffer_info->dma = 0;
4647                         adapter->alloc_rx_buff_failed++;
4648                         break;
4649                 }
4650
4651                 /* XXX if it was allocated cleanly it will never map to a
4652                  * boundary crossing
4653                  */
4654
4655                 /* Fix for errata 23, can't cross 64kB boundary */
4656                 if (!e1000_check_64k_bound(adapter,
4657                                         (void *)(unsigned long)buffer_info->dma,
4658                                         adapter->rx_buffer_len)) {
4659                         e_err(rx_err, "dma align check failed: %u bytes at "
4660                               "%p\n", adapter->rx_buffer_len,
4661                               (void *)(unsigned long)buffer_info->dma);
4662
4663                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4664                                          adapter->rx_buffer_len,
4665                                          DMA_FROM_DEVICE);
4666
4667                         skb_free_frag(data);
4668                         buffer_info->rxbuf.data = NULL;
4669                         buffer_info->dma = 0;
4670
4671                         adapter->alloc_rx_buff_failed++;
4672                         break;
4673                 }
4674                 buffer_info->rxbuf.data = data;
4675  skip:
4676                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4677                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4678
4679                 if (unlikely(++i == rx_ring->count))
4680                         i = 0;
4681                 buffer_info = &rx_ring->buffer_info[i];
4682         }
4683
4684         if (likely(rx_ring->next_to_use != i)) {
4685                 rx_ring->next_to_use = i;
4686                 if (unlikely(i-- == 0))
4687                         i = (rx_ring->count - 1);
4688
4689                 /* Force memory writes to complete before letting h/w
4690                  * know there are new descriptors to fetch.  (Only
4691                  * applicable for weak-ordered memory model archs,
4692                  * such as IA-64).
4693                  */
4694                 wmb();
4695                 writel(i, hw->hw_addr + rx_ring->rdt);
4696         }
4697 }
4698
4699 /**
4700  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701  * @adapter:
4702  **/
4703 static void e1000_smartspeed(struct e1000_adapter *adapter)
4704 {
4705         struct e1000_hw *hw = &adapter->hw;
4706         u16 phy_status;
4707         u16 phy_ctrl;
4708
4709         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4711                 return;
4712
4713         if (adapter->smartspeed == 0) {
4714                 /* If Master/Slave config fault is asserted twice,
4715                  * we assume back-to-back
4716                  */
4717                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719                         return;
4720                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4721                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4722                         return;
4723                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4724                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4725                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4726                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4727                                             phy_ctrl);
4728                         adapter->smartspeed++;
4729                         if (!e1000_phy_setup_autoneg(hw) &&
4730                            !e1000_read_phy_reg(hw, PHY_CTRL,
4731                                                &phy_ctrl)) {
4732                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733                                              MII_CR_RESTART_AUTO_NEG);
4734                                 e1000_write_phy_reg(hw, PHY_CTRL,
4735                                                     phy_ctrl);
4736                         }
4737                 }
4738                 return;
4739         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4740                 /* If still no link, perhaps using 2/3 pair cable */
4741                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4742                 phy_ctrl |= CR_1000T_MS_ENABLE;
4743                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744                 if (!e1000_phy_setup_autoneg(hw) &&
4745                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4746                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747                                      MII_CR_RESTART_AUTO_NEG);
4748                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4749                 }
4750         }
4751         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4752         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4753                 adapter->smartspeed = 0;
4754 }
4755
4756 /**
4757  * e1000_ioctl -
4758  * @netdev:
4759  * @ifreq:
4760  * @cmd:
4761  **/
4762 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4763 {
4764         switch (cmd) {
4765         case SIOCGMIIPHY:
4766         case SIOCGMIIREG:
4767         case SIOCSMIIREG:
4768                 return e1000_mii_ioctl(netdev, ifr, cmd);
4769         default:
4770                 return -EOPNOTSUPP;
4771         }
4772 }
4773
4774 /**
4775  * e1000_mii_ioctl -
4776  * @netdev:
4777  * @ifreq:
4778  * @cmd:
4779  **/
4780 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4781                            int cmd)
4782 {
4783         struct e1000_adapter *adapter = netdev_priv(netdev);
4784         struct e1000_hw *hw = &adapter->hw;
4785         struct mii_ioctl_data *data = if_mii(ifr);
4786         int retval;
4787         u16 mii_reg;
4788         unsigned long flags;
4789
4790         if (hw->media_type != e1000_media_type_copper)
4791                 return -EOPNOTSUPP;
4792
4793         switch (cmd) {
4794         case SIOCGMIIPHY:
4795                 data->phy_id = hw->phy_addr;
4796                 break;
4797         case SIOCGMIIREG:
4798                 spin_lock_irqsave(&adapter->stats_lock, flags);
4799                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4800                                    &data->val_out)) {
4801                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802                         return -EIO;
4803                 }
4804                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4805                 break;
4806         case SIOCSMIIREG:
4807                 if (data->reg_num & ~(0x1F))
4808                         return -EFAULT;
4809                 mii_reg = data->val_in;
4810                 spin_lock_irqsave(&adapter->stats_lock, flags);
4811                 if (e1000_write_phy_reg(hw, data->reg_num,
4812                                         mii_reg)) {
4813                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814                         return -EIO;
4815                 }
4816                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4817                 if (hw->media_type == e1000_media_type_copper) {
4818                         switch (data->reg_num) {
4819                         case PHY_CTRL:
4820                                 if (mii_reg & MII_CR_POWER_DOWN)
4821                                         break;
4822                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4823                                         hw->autoneg = 1;
4824                                         hw->autoneg_advertised = 0x2F;
4825                                 } else {
4826                                         u32 speed;
4827                                         if (mii_reg & 0x40)
4828                                                 speed = SPEED_1000;
4829                                         else if (mii_reg & 0x2000)
4830                                                 speed = SPEED_100;
4831                                         else
4832                                                 speed = SPEED_10;
4833                                         retval = e1000_set_spd_dplx(
4834                                                 adapter, speed,
4835                                                 ((mii_reg & 0x100)
4836                                                  ? DUPLEX_FULL :
4837                                                  DUPLEX_HALF));
4838                                         if (retval)
4839                                                 return retval;
4840                                 }
4841                                 if (netif_running(adapter->netdev))
4842                                         e1000_reinit_locked(adapter);
4843                                 else
4844                                         e1000_reset(adapter);
4845                                 break;
4846                         case M88E1000_PHY_SPEC_CTRL:
4847                         case M88E1000_EXT_PHY_SPEC_CTRL:
4848                                 if (e1000_phy_reset(hw))
4849                                         return -EIO;
4850                                 break;
4851                         }
4852                 } else {
4853                         switch (data->reg_num) {
4854                         case PHY_CTRL:
4855                                 if (mii_reg & MII_CR_POWER_DOWN)
4856                                         break;
4857                                 if (netif_running(adapter->netdev))
4858                                         e1000_reinit_locked(adapter);
4859                                 else
4860                                         e1000_reset(adapter);
4861                                 break;
4862                         }
4863                 }
4864                 break;
4865         default:
4866                 return -EOPNOTSUPP;
4867         }
4868         return E1000_SUCCESS;
4869 }
4870
4871 void e1000_pci_set_mwi(struct e1000_hw *hw)
4872 {
4873         struct e1000_adapter *adapter = hw->back;
4874         int ret_val = pci_set_mwi(adapter->pdev);
4875
4876         if (ret_val)
4877                 e_err(probe, "Error in setting MWI\n");
4878 }
4879
4880 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4881 {
4882         struct e1000_adapter *adapter = hw->back;
4883
4884         pci_clear_mwi(adapter->pdev);
4885 }
4886
4887 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4888 {
4889         struct e1000_adapter *adapter = hw->back;
4890         return pcix_get_mmrbc(adapter->pdev);
4891 }
4892
4893 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4894 {
4895         struct e1000_adapter *adapter = hw->back;
4896         pcix_set_mmrbc(adapter->pdev, mmrbc);
4897 }
4898
4899 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4900 {
4901         outl(value, port);
4902 }
4903
4904 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4905 {
4906         u16 vid;
4907
4908         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4909                 return true;
4910         return false;
4911 }
4912
4913 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914                               netdev_features_t features)
4915 {
4916         struct e1000_hw *hw = &adapter->hw;
4917         u32 ctrl;
4918
4919         ctrl = er32(CTRL);
4920         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4921                 /* enable VLAN tag insert/strip */
4922                 ctrl |= E1000_CTRL_VME;
4923         } else {
4924                 /* disable VLAN tag insert/strip */
4925                 ctrl &= ~E1000_CTRL_VME;
4926         }
4927         ew32(CTRL, ctrl);
4928 }
4929 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4930                                      bool filter_on)
4931 {
4932         struct e1000_hw *hw = &adapter->hw;
4933         u32 rctl;
4934
4935         if (!test_bit(__E1000_DOWN, &adapter->flags))
4936                 e1000_irq_disable(adapter);
4937
4938         __e1000_vlan_mode(adapter, adapter->netdev->features);
4939         if (filter_on) {
4940                 /* enable VLAN receive filtering */
4941                 rctl = er32(RCTL);
4942                 rctl &= ~E1000_RCTL_CFIEN;
4943                 if (!(adapter->netdev->flags & IFF_PROMISC))
4944                         rctl |= E1000_RCTL_VFE;
4945                 ew32(RCTL, rctl);
4946                 e1000_update_mng_vlan(adapter);
4947         } else {
4948                 /* disable VLAN receive filtering */
4949                 rctl = er32(RCTL);
4950                 rctl &= ~E1000_RCTL_VFE;
4951                 ew32(RCTL, rctl);
4952         }
4953
4954         if (!test_bit(__E1000_DOWN, &adapter->flags))
4955                 e1000_irq_enable(adapter);
4956 }
4957
4958 static void e1000_vlan_mode(struct net_device *netdev,
4959                             netdev_features_t features)
4960 {
4961         struct e1000_adapter *adapter = netdev_priv(netdev);
4962
4963         if (!test_bit(__E1000_DOWN, &adapter->flags))
4964                 e1000_irq_disable(adapter);
4965
4966         __e1000_vlan_mode(adapter, features);
4967
4968         if (!test_bit(__E1000_DOWN, &adapter->flags))
4969                 e1000_irq_enable(adapter);
4970 }
4971
4972 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973                                  __be16 proto, u16 vid)
4974 {
4975         struct e1000_adapter *adapter = netdev_priv(netdev);
4976         struct e1000_hw *hw = &adapter->hw;
4977         u32 vfta, index;
4978
4979         if ((hw->mng_cookie.status &
4980              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981             (vid == adapter->mng_vlan_id))
4982                 return 0;
4983
4984         if (!e1000_vlan_used(adapter))
4985                 e1000_vlan_filter_on_off(adapter, true);
4986
4987         /* add VID to filter table */
4988         index = (vid >> 5) & 0x7F;
4989         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4990         vfta |= (1 << (vid & 0x1F));
4991         e1000_write_vfta(hw, index, vfta);
4992
4993         set_bit(vid, adapter->active_vlans);
4994
4995         return 0;
4996 }
4997
4998 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999                                   __be16 proto, u16 vid)
5000 {
5001         struct e1000_adapter *adapter = netdev_priv(netdev);
5002         struct e1000_hw *hw = &adapter->hw;
5003         u32 vfta, index;
5004
5005         if (!test_bit(__E1000_DOWN, &adapter->flags))
5006                 e1000_irq_disable(adapter);
5007         if (!test_bit(__E1000_DOWN, &adapter->flags))
5008                 e1000_irq_enable(adapter);
5009
5010         /* remove VID from filter table */
5011         index = (vid >> 5) & 0x7F;
5012         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5013         vfta &= ~(1 << (vid & 0x1F));
5014         e1000_write_vfta(hw, index, vfta);
5015
5016         clear_bit(vid, adapter->active_vlans);
5017
5018         if (!e1000_vlan_used(adapter))
5019                 e1000_vlan_filter_on_off(adapter, false);
5020
5021         return 0;
5022 }
5023
5024 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5025 {
5026         u16 vid;
5027
5028         if (!e1000_vlan_used(adapter))
5029                 return;
5030
5031         e1000_vlan_filter_on_off(adapter, true);
5032         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5033                 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5034 }
5035
5036 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5037 {
5038         struct e1000_hw *hw = &adapter->hw;
5039
5040         hw->autoneg = 0;
5041
5042         /* Make sure dplx is at most 1 bit and lsb of speed is not set
5043          * for the switch() below to work
5044          */
5045         if ((spd & 1) || (dplx & ~1))
5046                 goto err_inval;
5047
5048         /* Fiber NICs only allow 1000 gbps Full duplex */
5049         if ((hw->media_type == e1000_media_type_fiber) &&
5050             spd != SPEED_1000 &&
5051             dplx != DUPLEX_FULL)
5052                 goto err_inval;
5053
5054         switch (spd + dplx) {
5055         case SPEED_10 + DUPLEX_HALF:
5056                 hw->forced_speed_duplex = e1000_10_half;
5057                 break;
5058         case SPEED_10 + DUPLEX_FULL:
5059                 hw->forced_speed_duplex = e1000_10_full;
5060                 break;
5061         case SPEED_100 + DUPLEX_HALF:
5062                 hw->forced_speed_duplex = e1000_100_half;
5063                 break;
5064         case SPEED_100 + DUPLEX_FULL:
5065                 hw->forced_speed_duplex = e1000_100_full;
5066                 break;
5067         case SPEED_1000 + DUPLEX_FULL:
5068                 hw->autoneg = 1;
5069                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5070                 break;
5071         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5072         default:
5073                 goto err_inval;
5074         }
5075
5076         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077         hw->mdix = AUTO_ALL_MODES;
5078
5079         return 0;
5080
5081 err_inval:
5082         e_err(probe, "Unsupported Speed/Duplex configuration\n");
5083         return -EINVAL;
5084 }
5085
5086 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5087 {
5088         struct net_device *netdev = pci_get_drvdata(pdev);
5089         struct e1000_adapter *adapter = netdev_priv(netdev);
5090         struct e1000_hw *hw = &adapter->hw;
5091         u32 ctrl, ctrl_ext, rctl, status;
5092         u32 wufc = adapter->wol;
5093 #ifdef CONFIG_PM
5094         int retval = 0;
5095 #endif
5096
5097         netif_device_detach(netdev);
5098
5099         if (netif_running(netdev)) {
5100                 int count = E1000_CHECK_RESET_COUNT;
5101
5102                 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103                         usleep_range(10000, 20000);
5104
5105                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5106                 e1000_down(adapter);
5107         }
5108
5109 #ifdef CONFIG_PM
5110         retval = pci_save_state(pdev);
5111         if (retval)
5112                 return retval;
5113 #endif
5114
5115         status = er32(STATUS);
5116         if (status & E1000_STATUS_LU)
5117                 wufc &= ~E1000_WUFC_LNKC;
5118
5119         if (wufc) {
5120                 e1000_setup_rctl(adapter);
5121                 e1000_set_rx_mode(netdev);
5122
5123                 rctl = er32(RCTL);
5124
5125                 /* turn on all-multi mode if wake on multicast is enabled */
5126                 if (wufc & E1000_WUFC_MC)
5127                         rctl |= E1000_RCTL_MPE;
5128
5129                 /* enable receives in the hardware */
5130                 ew32(RCTL, rctl | E1000_RCTL_EN);
5131
5132                 if (hw->mac_type >= e1000_82540) {
5133                         ctrl = er32(CTRL);
5134                         /* advertise wake from D3Cold */
5135                         #define E1000_CTRL_ADVD3WUC 0x00100000
5136                         /* phy power management enable */
5137                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138                         ctrl |= E1000_CTRL_ADVD3WUC |
5139                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5140                         ew32(CTRL, ctrl);
5141                 }
5142
5143                 if (hw->media_type == e1000_media_type_fiber ||
5144                     hw->media_type == e1000_media_type_internal_serdes) {
5145                         /* keep the laser running in D3 */
5146                         ctrl_ext = er32(CTRL_EXT);
5147                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5148                         ew32(CTRL_EXT, ctrl_ext);
5149                 }
5150
5151                 ew32(WUC, E1000_WUC_PME_EN);
5152                 ew32(WUFC, wufc);
5153         } else {
5154                 ew32(WUC, 0);
5155                 ew32(WUFC, 0);
5156         }
5157
5158         e1000_release_manageability(adapter);
5159
5160         *enable_wake = !!wufc;
5161
5162         /* make sure adapter isn't asleep if manageability is enabled */
5163         if (adapter->en_mng_pt)
5164                 *enable_wake = true;
5165
5166         if (netif_running(netdev))
5167                 e1000_free_irq(adapter);
5168
5169         pci_disable_device(pdev);
5170
5171         return 0;
5172 }
5173
5174 #ifdef CONFIG_PM
5175 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5176 {
5177         int retval;
5178         bool wake;
5179
5180         retval = __e1000_shutdown(pdev, &wake);
5181         if (retval)
5182                 return retval;
5183
5184         if (wake) {
5185                 pci_prepare_to_sleep(pdev);
5186         } else {
5187                 pci_wake_from_d3(pdev, false);
5188                 pci_set_power_state(pdev, PCI_D3hot);
5189         }
5190
5191         return 0;
5192 }
5193
5194 static int e1000_resume(struct pci_dev *pdev)
5195 {
5196         struct net_device *netdev = pci_get_drvdata(pdev);
5197         struct e1000_adapter *adapter = netdev_priv(netdev);
5198         struct e1000_hw *hw = &adapter->hw;
5199         u32 err;
5200
5201         pci_set_power_state(pdev, PCI_D0);
5202         pci_restore_state(pdev);
5203         pci_save_state(pdev);
5204
5205         if (adapter->need_ioport)
5206                 err = pci_enable_device(pdev);
5207         else
5208                 err = pci_enable_device_mem(pdev);
5209         if (err) {
5210                 pr_err("Cannot enable PCI device from suspend\n");
5211                 return err;
5212         }
5213         pci_set_master(pdev);
5214
5215         pci_enable_wake(pdev, PCI_D3hot, 0);
5216         pci_enable_wake(pdev, PCI_D3cold, 0);
5217
5218         if (netif_running(netdev)) {
5219                 err = e1000_request_irq(adapter);
5220                 if (err)
5221                         return err;
5222         }
5223
5224         e1000_power_up_phy(adapter);
5225         e1000_reset(adapter);
5226         ew32(WUS, ~0);
5227
5228         e1000_init_manageability(adapter);
5229
5230         if (netif_running(netdev))
5231                 e1000_up(adapter);
5232
5233         netif_device_attach(netdev);
5234
5235         return 0;
5236 }
5237 #endif
5238
5239 static void e1000_shutdown(struct pci_dev *pdev)
5240 {
5241         bool wake;
5242
5243         __e1000_shutdown(pdev, &wake);
5244
5245         if (system_state == SYSTEM_POWER_OFF) {
5246                 pci_wake_from_d3(pdev, wake);
5247                 pci_set_power_state(pdev, PCI_D3hot);
5248         }
5249 }
5250
5251 #ifdef CONFIG_NET_POLL_CONTROLLER
5252 /* Polling 'interrupt' - used by things like netconsole to send skbs
5253  * without having to re-enable interrupts. It's not called while
5254  * the interrupt routine is executing.
5255  */
5256 static void e1000_netpoll(struct net_device *netdev)
5257 {
5258         struct e1000_adapter *adapter = netdev_priv(netdev);
5259
5260         disable_irq(adapter->pdev->irq);
5261         e1000_intr(adapter->pdev->irq, netdev);
5262         enable_irq(adapter->pdev->irq);
5263 }
5264 #endif
5265
5266 /**
5267  * e1000_io_error_detected - called when PCI error is detected
5268  * @pdev: Pointer to PCI device
5269  * @state: The current pci connection state
5270  *
5271  * This function is called after a PCI bus error affecting
5272  * this device has been detected.
5273  */
5274 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275                                                 pci_channel_state_t state)
5276 {
5277         struct net_device *netdev = pci_get_drvdata(pdev);
5278         struct e1000_adapter *adapter = netdev_priv(netdev);
5279
5280         netif_device_detach(netdev);
5281
5282         if (state == pci_channel_io_perm_failure)
5283                 return PCI_ERS_RESULT_DISCONNECT;
5284
5285         if (netif_running(netdev))
5286                 e1000_down(adapter);
5287         pci_disable_device(pdev);
5288
5289         /* Request a slot slot reset. */
5290         return PCI_ERS_RESULT_NEED_RESET;
5291 }
5292
5293 /**
5294  * e1000_io_slot_reset - called after the pci bus has been reset.
5295  * @pdev: Pointer to PCI device
5296  *
5297  * Restart the card from scratch, as if from a cold-boot. Implementation
5298  * resembles the first-half of the e1000_resume routine.
5299  */
5300 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5301 {
5302         struct net_device *netdev = pci_get_drvdata(pdev);
5303         struct e1000_adapter *adapter = netdev_priv(netdev);
5304         struct e1000_hw *hw = &adapter->hw;
5305         int err;
5306
5307         if (adapter->need_ioport)
5308                 err = pci_enable_device(pdev);
5309         else
5310                 err = pci_enable_device_mem(pdev);
5311         if (err) {
5312                 pr_err("Cannot re-enable PCI device after reset.\n");
5313                 return PCI_ERS_RESULT_DISCONNECT;
5314         }
5315         pci_set_master(pdev);
5316
5317         pci_enable_wake(pdev, PCI_D3hot, 0);
5318         pci_enable_wake(pdev, PCI_D3cold, 0);
5319
5320         e1000_reset(adapter);
5321         ew32(WUS, ~0);
5322
5323         return PCI_ERS_RESULT_RECOVERED;
5324 }
5325
5326 /**
5327  * e1000_io_resume - called when traffic can start flowing again.
5328  * @pdev: Pointer to PCI device
5329  *
5330  * This callback is called when the error recovery driver tells us that
5331  * its OK to resume normal operation. Implementation resembles the
5332  * second-half of the e1000_resume routine.
5333  */
5334 static void e1000_io_resume(struct pci_dev *pdev)
5335 {
5336         struct net_device *netdev = pci_get_drvdata(pdev);
5337         struct e1000_adapter *adapter = netdev_priv(netdev);
5338
5339         e1000_init_manageability(adapter);
5340
5341         if (netif_running(netdev)) {
5342                 if (e1000_up(adapter)) {
5343                         pr_info("can't bring device back up after reset\n");
5344                         return;
5345                 }
5346         }
5347
5348         netif_device_attach(netdev);
5349 }
5350
5351 /* e1000_main.c */