Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43  *      t4_wait_op_done_val - wait until an operation is completed
44  *      @adapter: the adapter performing the operation
45  *      @reg: the register to check for completion
46  *      @mask: a single-bit field within @reg that indicates completion
47  *      @polarity: the value of the field when the operation is completed
48  *      @attempts: number of check iterations
49  *      @delay: delay in usecs between iterations
50  *      @valp: where to store the value of the register at completion time
51  *
52  *      Wait until an operation is completed by checking a bit in a register
53  *      up to @attempts times.  If @valp is not NULL the value of the register
54  *      at the time it indicated completion is stored there.  Returns 0 if the
55  *      operation completes and -EAGAIN otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58                                int polarity, int attempts, int delay, u32 *valp)
59 {
60         while (1) {
61                 u32 val = t4_read_reg(adapter, reg);
62
63                 if (!!(val & mask) == polarity) {
64                         if (valp)
65                                 *valp = val;
66                         return 0;
67                 }
68                 if (--attempts == 0)
69                         return -EAGAIN;
70                 if (delay)
71                         udelay(delay);
72         }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76                                   int polarity, int attempts, int delay)
77 {
78         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79                                    delay, NULL);
80 }
81
82 /**
83  *      t4_set_reg_field - set a register field to a value
84  *      @adapter: the adapter to program
85  *      @addr: the register address
86  *      @mask: specifies the portion of the register to modify
87  *      @val: the new value for the register field
88  *
89  *      Sets a register field specified by the supplied mask to the
90  *      given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93                       u32 val)
94 {
95         u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97         t4_write_reg(adapter, addr, v | val);
98         (void) t4_read_reg(adapter, addr);      /* flush */
99 }
100
101 /**
102  *      t4_read_indirect - read indirectly addressed registers
103  *      @adap: the adapter
104  *      @addr_reg: register holding the indirect address
105  *      @data_reg: register holding the value of the indirect register
106  *      @vals: where the read register values are stored
107  *      @nregs: how many indirect registers to read
108  *      @start_idx: index of first indirect register to read
109  *
110  *      Reads registers that are accessed indirectly through an address/data
111  *      register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114                              unsigned int data_reg, u32 *vals,
115                              unsigned int nregs, unsigned int start_idx)
116 {
117         while (nregs--) {
118                 t4_write_reg(adap, addr_reg, start_idx);
119                 *vals++ = t4_read_reg(adap, data_reg);
120                 start_idx++;
121         }
122 }
123
124 /**
125  *      t4_write_indirect - write indirectly addressed registers
126  *      @adap: the adapter
127  *      @addr_reg: register holding the indirect addresses
128  *      @data_reg: register holding the value for the indirect registers
129  *      @vals: values to write
130  *      @nregs: how many indirect registers to write
131  *      @start_idx: address of first indirect register to write
132  *
133  *      Writes a sequential block of registers that are accessed indirectly
134  *      through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137                        unsigned int data_reg, const u32 *vals,
138                        unsigned int nregs, unsigned int start_idx)
139 {
140         while (nregs--) {
141                 t4_write_reg(adap, addr_reg, start_idx++);
142                 t4_write_reg(adap, data_reg, *vals++);
143         }
144 }
145
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157                 req |= ENABLE_F;
158         else
159                 req |= T6_ENABLE_F;
160
161         if (is_t4(adap->params.chip))
162                 req |= LOCALCFG_F;
163
164         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168          * Configuration Space read.  (None of the other fields matter when
169          * ENABLE is 0 so a simple register write is easier than a
170          * read-modify-write via t4_set_reg_field().)
171          */
172         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185         static const char *const reason[] = {
186                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
187                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193                 "Reserved",                     /* reserved */
194         };
195         u32 pcie_fw;
196
197         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198         if (pcie_fw & PCIE_FW_ERR_F)
199                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207                          u32 mbox_addr)
208 {
209         for ( ; nflit; nflit--, mbox_addr += 8)
210                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218         struct fw_debug_cmd asrt;
219
220         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221         dev_alert(adap->pdev_dev,
222                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229         dev_err(adap->pdev_dev,
230                 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231                 (unsigned long long)t4_read_reg64(adap, data_reg),
232                 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233                 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234                 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235                 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236                 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237                 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238                 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240
241 /**
242  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *      @adap: the adapter
244  *      @mbox: index of the mailbox to use
245  *      @cmd: the command to write
246  *      @size: command length in bytes
247  *      @rpl: where to optionally store the reply
248  *      @sleep_ok: if true we may sleep while awaiting command completion
249  *      @timeout: time to wait for command to finish before timing out
250  *
251  *      Sends the given command to FW through the selected mailbox and waits
252  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
253  *      store the FW's reply to the command.  The command and its optional
254  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
255  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
256  *      the response.  If sleeping is allowed we use progressive backoff
257  *      otherwise we spin.
258  *
259  *      The return value is 0 on success or a negative errno on failure.  A
260  *      failure can happen either because we are not able to execute the
261  *      command or FW executes it but signals an error.  In the latter case
262  *      the return value is the error code indicated by FW (negated).
263  */
264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265                             int size, void *rpl, bool sleep_ok, int timeout)
266 {
267         static const int delay[] = {
268                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269         };
270
271         u32 v;
272         u64 res;
273         int i, ms, delay_idx;
274         const __be64 *p = cmd;
275         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277
278         if ((size & 15) || size > MBOX_LEN)
279                 return -EINVAL;
280
281         /*
282          * If the device is off-line, as in EEH, commands will time out.
283          * Fail them early so we don't waste time waiting.
284          */
285         if (adap->pdev->error_state != pci_channel_io_normal)
286                 return -EIO;
287
288         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291
292         if (v != MBOX_OWNER_DRV)
293                 return v ? -EBUSY : -ETIMEDOUT;
294
295         for (i = 0; i < size; i += 8)
296                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
298         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299         t4_read_reg(adap, ctl_reg);          /* flush write */
300
301         delay_idx = 0;
302         ms = delay[0];
303
304         for (i = 0; i < timeout; i += ms) {
305                 if (sleep_ok) {
306                         ms = delay[delay_idx];  /* last element may repeat */
307                         if (delay_idx < ARRAY_SIZE(delay) - 1)
308                                 delay_idx++;
309                         msleep(ms);
310                 } else
311                         mdelay(ms);
312
313                 v = t4_read_reg(adap, ctl_reg);
314                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315                         if (!(v & MBMSGVALID_F)) {
316                                 t4_write_reg(adap, ctl_reg, 0);
317                                 continue;
318                         }
319
320                         res = t4_read_reg64(adap, data_reg);
321                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322                                 fw_asrt(adap, data_reg);
323                                 res = FW_CMD_RETVAL_V(EIO);
324                         } else if (rpl) {
325                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
326                         }
327
328                         if (FW_CMD_RETVAL_G((int)res))
329                                 dump_mbox(adap, mbox, data_reg);
330                         t4_write_reg(adap, ctl_reg, 0);
331                         return -FW_CMD_RETVAL_G((int)res);
332                 }
333         }
334
335         dump_mbox(adap, mbox, data_reg);
336         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337                 *(const u8 *)cmd, mbox);
338         t4_report_fw_error(adap);
339         return -ETIMEDOUT;
340 }
341
342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343                     void *rpl, bool sleep_ok)
344 {
345         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346                                        FW_CMD_MAX_TIMEOUT);
347 }
348
349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351         u32 edc_ecc_err_addr_reg;
352         u32 rdata_reg;
353
354         if (is_t4(adap->params.chip)) {
355                 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356                 return 0;
357         }
358         if (idx != 0 && idx != 1) {
359                 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360                 return 0;
361         }
362
363         edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364         rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366         CH_WARN(adap,
367                 "edc%d err addr 0x%x: 0x%x.\n",
368                 idx, edc_ecc_err_addr_reg,
369                 t4_read_reg(adap, edc_ecc_err_addr_reg));
370         CH_WARN(adap,
371                 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372                 rdata_reg,
373                 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381                 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383         return 0;
384 }
385
386 /**
387  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388  *      @adap: the adapter
389  *      @win: PCI-E Memory Window to use
390  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391  *      @addr: address within indicated memory type
392  *      @len: amount of memory to transfer
393  *      @hbuf: host memory buffer
394  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395  *
396  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
397  *      firmware memory address and host buffer must be aligned on 32-bit
398  *      boudaries; the length may be arbitrary.  The memory is transferred as
399  *      a raw byte sequence from/to the firmware's memory.  If this memory
400  *      contains data structures which contain multi-byte integers, it's the
401  *      caller's responsibility to perform appropriate byte order conversions.
402  */
403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404                  u32 len, void *hbuf, int dir)
405 {
406         u32 pos, offset, resid, memoffset;
407         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408         u32 *buf;
409
410         /* Argument sanity checks ...
411          */
412         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413                 return -EINVAL;
414         buf = (u32 *)hbuf;
415
416         /* It's convenient to be able to handle lengths which aren't a
417          * multiple of 32-bits because we often end up transferring files to
418          * the firmware.  So we'll handle that by normalizing the length here
419          * and then handling any residual transfer at the end.
420          */
421         resid = len & 0x3;
422         len -= resid;
423
424         /* Offset into the region of memory which is being accessed
425          * MEM_EDC0 = 0
426          * MEM_EDC1 = 1
427          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
428          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429          */
430         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431         if (mtype != MEM_MC1)
432                 memoffset = (mtype * (edc_size * 1024 * 1024));
433         else {
434                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435                                                       MA_EXT_MEMORY0_BAR_A));
436                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437         }
438
439         /* Determine the PCIE_MEM_ACCESS_OFFSET */
440         addr = addr + memoffset;
441
442         /* Each PCI-E Memory Window is programmed with a window size -- or
443          * "aperture" -- which controls the granularity of its mapping onto
444          * adapter memory.  We need to grab that aperture in order to know
445          * how to use the specified window.  The window is also programmed
446          * with the base address of the Memory Window in BAR0's address
447          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
448          * the address is relative to BAR0.
449          */
450         mem_reg = t4_read_reg(adap,
451                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452                                                   win));
453         mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454         mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455         if (is_t4(adap->params.chip))
456                 mem_base -= adap->t4_bar0;
457         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458
459         /* Calculate our initial PCI-E Memory Window Position and Offset into
460          * that Window.
461          */
462         pos = addr & ~(mem_aperture-1);
463         offset = addr - pos;
464
465         /* Set up initial PCI-E Memory Window to cover the start of our
466          * transfer.  (Read it back to ensure that changes propagate before we
467          * attempt to use the new value.)
468          */
469         t4_write_reg(adap,
470                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471                      pos | win_pf);
472         t4_read_reg(adap,
473                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474
475         /* Transfer data to/from the adapter as long as there's an integral
476          * number of 32-bit transfers to complete.
477          *
478          * A note on Endianness issues:
479          *
480          * The "register" reads and writes below from/to the PCI-E Memory
481          * Window invoke the standard adapter Big-Endian to PCI-E Link
482          * Little-Endian "swizzel."  As a result, if we have the following
483          * data in adapter memory:
484          *
485          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
486          *     Address:      i+0  i+1  i+2  i+3
487          *
488          * Then a read of the adapter memory via the PCI-E Memory Window
489          * will yield:
490          *
491          *     x = readl(i)
492          *         31                  0
493          *         [ b3 | b2 | b1 | b0 ]
494          *
495          * If this value is stored into local memory on a Little-Endian system
496          * it will show up correctly in local memory as:
497          *
498          *     ( ..., b0, b1, b2, b3, ... )
499          *
500          * But on a Big-Endian system, the store will show up in memory
501          * incorrectly swizzled as:
502          *
503          *     ( ..., b3, b2, b1, b0, ... )
504          *
505          * So we need to account for this in the reads and writes to the
506          * PCI-E Memory Window below by undoing the register read/write
507          * swizzels.
508          */
509         while (len > 0) {
510                 if (dir == T4_MEMORY_READ)
511                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512                                                 mem_base + offset));
513                 else
514                         t4_write_reg(adap, mem_base + offset,
515                                      (__force u32)cpu_to_le32(*buf++));
516                 offset += sizeof(__be32);
517                 len -= sizeof(__be32);
518
519                 /* If we've reached the end of our current window aperture,
520                  * move the PCI-E Memory Window on to the next.  Note that
521                  * doing this here after "len" may be 0 allows us to set up
522                  * the PCI-E Memory Window for a possible final residual
523                  * transfer below ...
524                  */
525                 if (offset == mem_aperture) {
526                         pos += mem_aperture;
527                         offset = 0;
528                         t4_write_reg(adap,
529                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530                                                     win), pos | win_pf);
531                         t4_read_reg(adap,
532                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533                                                     win));
534                 }
535         }
536
537         /* If the original transfer had a length which wasn't a multiple of
538          * 32-bits, now's where we need to finish off the transfer of the
539          * residual amount.  The PCI-E Memory Window has already been moved
540          * above (if necessary) to cover this final transfer.
541          */
542         if (resid) {
543                 union {
544                         u32 word;
545                         char byte[4];
546                 } last;
547                 unsigned char *bp;
548                 int i;
549
550                 if (dir == T4_MEMORY_READ) {
551                         last.word = le32_to_cpu(
552                                         (__force __le32)t4_read_reg(adap,
553                                                 mem_base + offset));
554                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555                                 bp[i] = last.byte[i];
556                 } else {
557                         last.word = *buf;
558                         for (i = resid; i < 4; i++)
559                                 last.byte[i] = 0;
560                         t4_write_reg(adap, mem_base + offset,
561                                      (__force u32)cpu_to_le32(last.word));
562                 }
563         }
564
565         return 0;
566 }
567
568 /* Return the specified PCI-E Configuration Space register from our Physical
569  * Function.  We try first via a Firmware LDST Command since we prefer to let
570  * the firmware own all of these registers, but if that fails we go for it
571  * directly ourselves.
572  */
573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575         u32 val, ldst_addrspace;
576
577         /* If fw_attach != 0, construct and send the Firmware LDST Command to
578          * retrieve the specified PCI-E Configuration Space register.
579          */
580         struct fw_ldst_cmd ldst_cmd;
581         int ret;
582
583         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586                                                FW_CMD_REQUEST_F |
587                                                FW_CMD_READ_F |
588                                                ldst_addrspace);
589         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591         ldst_cmd.u.pcie.ctrl_to_fn =
592                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593         ldst_cmd.u.pcie.r = reg;
594
595         /* If the LDST Command succeeds, return the result, otherwise
596          * fall through to reading it directly ourselves ...
597          */
598         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599                          &ldst_cmd);
600         if (ret == 0)
601                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602         else
603                 /* Read the desired Configuration Space register via the PCI-E
604                  * Backdoor mechanism.
605                  */
606                 t4_hw_pci_read_cfg4(adap, reg, &val);
607         return val;
608 }
609
610 /* Get the window based on base passed to it.
611  * Window aperture is currently unhandled, but there is no use case for it
612  * right now
613  */
614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615                          u32 memwin_base)
616 {
617         u32 ret;
618
619         if (is_t4(adap->params.chip)) {
620                 u32 bar0;
621
622                 /* Truncation intentional: we only read the bottom 32-bits of
623                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
624                  * mechanism to read BAR0 instead of using
625                  * pci_resource_start() because we could be operating from
626                  * within a Virtual Machine which is trapping our accesses to
627                  * our Configuration Space and we need to set up the PCI-E
628                  * Memory Window decoders with the actual addresses which will
629                  * be coming across the PCI-E link.
630                  */
631                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632                 bar0 &= pci_mask;
633                 adap->t4_bar0 = bar0;
634
635                 ret = bar0 + memwin_base;
636         } else {
637                 /* For T5, only relative offset inside the PCIe BAR is passed */
638                 ret = memwin_base;
639         }
640         return ret;
641 }
642
643 /* Get the default utility window (win0) used by everyone */
644 u32 t4_get_util_window(struct adapter *adap)
645 {
646         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649
650 /* Set up memory window for accessing adapter memory ranges.  (Read
651  * back MA register to ensure that changes propagate before we attempt
652  * to use the new values.)
653  */
654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656         t4_write_reg(adap,
657                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658                      memwin_base | BIR_V(0) |
659                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660         t4_read_reg(adap,
661                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663
664 /**
665  *      t4_get_regs_len - return the size of the chips register set
666  *      @adapter: the adapter
667  *
668  *      Returns the size of the chip's BAR0 register space.
669  */
670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674         switch (chip_version) {
675         case CHELSIO_T4:
676                 return T4_REGMAP_SIZE;
677
678         case CHELSIO_T5:
679         case CHELSIO_T6:
680                 return T5_REGMAP_SIZE;
681         }
682
683         dev_err(adapter->pdev_dev,
684                 "Unsupported chip version %d\n", chip_version);
685         return 0;
686 }
687
688 /**
689  *      t4_get_regs - read chip registers into provided buffer
690  *      @adap: the adapter
691  *      @buf: register buffer
692  *      @buf_size: size (in bytes) of register buffer
693  *
694  *      If the provided register buffer isn't large enough for the chip's
695  *      full register range, the register dump will be truncated to the
696  *      register buffer's size.
697  */
698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700         static const unsigned int t4_reg_ranges[] = {
701                 0x1008, 0x1108,
702                 0x1180, 0x1184,
703                 0x1190, 0x1194,
704                 0x11a0, 0x11a4,
705                 0x11b0, 0x11b4,
706                 0x11fc, 0x123c,
707                 0x1300, 0x173c,
708                 0x1800, 0x18fc,
709                 0x3000, 0x30d8,
710                 0x30e0, 0x30e4,
711                 0x30ec, 0x5910,
712                 0x5920, 0x5924,
713                 0x5960, 0x5960,
714                 0x5968, 0x5968,
715                 0x5970, 0x5970,
716                 0x5978, 0x5978,
717                 0x5980, 0x5980,
718                 0x5988, 0x5988,
719                 0x5990, 0x5990,
720                 0x5998, 0x5998,
721                 0x59a0, 0x59d4,
722                 0x5a00, 0x5ae0,
723                 0x5ae8, 0x5ae8,
724                 0x5af0, 0x5af0,
725                 0x5af8, 0x5af8,
726                 0x6000, 0x6098,
727                 0x6100, 0x6150,
728                 0x6200, 0x6208,
729                 0x6240, 0x6248,
730                 0x6280, 0x62b0,
731                 0x62c0, 0x6338,
732                 0x6370, 0x638c,
733                 0x6400, 0x643c,
734                 0x6500, 0x6524,
735                 0x6a00, 0x6a04,
736                 0x6a14, 0x6a38,
737                 0x6a60, 0x6a70,
738                 0x6a78, 0x6a78,
739                 0x6b00, 0x6b0c,
740                 0x6b1c, 0x6b84,
741                 0x6bf0, 0x6bf8,
742                 0x6c00, 0x6c0c,
743                 0x6c1c, 0x6c84,
744                 0x6cf0, 0x6cf8,
745                 0x6d00, 0x6d0c,
746                 0x6d1c, 0x6d84,
747                 0x6df0, 0x6df8,
748                 0x6e00, 0x6e0c,
749                 0x6e1c, 0x6e84,
750                 0x6ef0, 0x6ef8,
751                 0x6f00, 0x6f0c,
752                 0x6f1c, 0x6f84,
753                 0x6ff0, 0x6ff8,
754                 0x7000, 0x700c,
755                 0x701c, 0x7084,
756                 0x70f0, 0x70f8,
757                 0x7100, 0x710c,
758                 0x711c, 0x7184,
759                 0x71f0, 0x71f8,
760                 0x7200, 0x720c,
761                 0x721c, 0x7284,
762                 0x72f0, 0x72f8,
763                 0x7300, 0x730c,
764                 0x731c, 0x7384,
765                 0x73f0, 0x73f8,
766                 0x7400, 0x7450,
767                 0x7500, 0x7530,
768                 0x7600, 0x760c,
769                 0x7614, 0x761c,
770                 0x7680, 0x76cc,
771                 0x7700, 0x7798,
772                 0x77c0, 0x77fc,
773                 0x7900, 0x79fc,
774                 0x7b00, 0x7b58,
775                 0x7b60, 0x7b84,
776                 0x7b8c, 0x7c38,
777                 0x7d00, 0x7d38,
778                 0x7d40, 0x7d80,
779                 0x7d8c, 0x7ddc,
780                 0x7de4, 0x7e04,
781                 0x7e10, 0x7e1c,
782                 0x7e24, 0x7e38,
783                 0x7e40, 0x7e44,
784                 0x7e4c, 0x7e78,
785                 0x7e80, 0x7ea4,
786                 0x7eac, 0x7edc,
787                 0x7ee8, 0x7efc,
788                 0x8dc0, 0x8e04,
789                 0x8e10, 0x8e1c,
790                 0x8e30, 0x8e78,
791                 0x8ea0, 0x8eb8,
792                 0x8ec0, 0x8f6c,
793                 0x8fc0, 0x9008,
794                 0x9010, 0x9058,
795                 0x9060, 0x9060,
796                 0x9068, 0x9074,
797                 0x90fc, 0x90fc,
798                 0x9400, 0x9408,
799                 0x9410, 0x9458,
800                 0x9600, 0x9600,
801                 0x9608, 0x9638,
802                 0x9640, 0x96bc,
803                 0x9800, 0x9808,
804                 0x9820, 0x983c,
805                 0x9850, 0x9864,
806                 0x9c00, 0x9c6c,
807                 0x9c80, 0x9cec,
808                 0x9d00, 0x9d6c,
809                 0x9d80, 0x9dec,
810                 0x9e00, 0x9e6c,
811                 0x9e80, 0x9eec,
812                 0x9f00, 0x9f6c,
813                 0x9f80, 0x9fec,
814                 0xd004, 0xd004,
815                 0xd010, 0xd03c,
816                 0xdfc0, 0xdfe0,
817                 0xe000, 0xea7c,
818                 0xf000, 0x11190,
819                 0x19040, 0x1906c,
820                 0x19078, 0x19080,
821                 0x1908c, 0x190e4,
822                 0x190f0, 0x190f8,
823                 0x19100, 0x19110,
824                 0x19120, 0x19124,
825                 0x19150, 0x19194,
826                 0x1919c, 0x191b0,
827                 0x191d0, 0x191e8,
828                 0x19238, 0x1924c,
829                 0x193f8, 0x1943c,
830                 0x1944c, 0x19474,
831                 0x19490, 0x194e0,
832                 0x194f0, 0x194f8,
833                 0x19800, 0x19c08,
834                 0x19c10, 0x19c90,
835                 0x19ca0, 0x19ce4,
836                 0x19cf0, 0x19d40,
837                 0x19d50, 0x19d94,
838                 0x19da0, 0x19de8,
839                 0x19df0, 0x19e40,
840                 0x19e50, 0x19e90,
841                 0x19ea0, 0x19f4c,
842                 0x1a000, 0x1a004,
843                 0x1a010, 0x1a06c,
844                 0x1a0b0, 0x1a0e4,
845                 0x1a0ec, 0x1a0f4,
846                 0x1a100, 0x1a108,
847                 0x1a114, 0x1a120,
848                 0x1a128, 0x1a130,
849                 0x1a138, 0x1a138,
850                 0x1a190, 0x1a1c4,
851                 0x1a1fc, 0x1a1fc,
852                 0x1e040, 0x1e04c,
853                 0x1e284, 0x1e28c,
854                 0x1e2c0, 0x1e2c0,
855                 0x1e2e0, 0x1e2e0,
856                 0x1e300, 0x1e384,
857                 0x1e3c0, 0x1e3c8,
858                 0x1e440, 0x1e44c,
859                 0x1e684, 0x1e68c,
860                 0x1e6c0, 0x1e6c0,
861                 0x1e6e0, 0x1e6e0,
862                 0x1e700, 0x1e784,
863                 0x1e7c0, 0x1e7c8,
864                 0x1e840, 0x1e84c,
865                 0x1ea84, 0x1ea8c,
866                 0x1eac0, 0x1eac0,
867                 0x1eae0, 0x1eae0,
868                 0x1eb00, 0x1eb84,
869                 0x1ebc0, 0x1ebc8,
870                 0x1ec40, 0x1ec4c,
871                 0x1ee84, 0x1ee8c,
872                 0x1eec0, 0x1eec0,
873                 0x1eee0, 0x1eee0,
874                 0x1ef00, 0x1ef84,
875                 0x1efc0, 0x1efc8,
876                 0x1f040, 0x1f04c,
877                 0x1f284, 0x1f28c,
878                 0x1f2c0, 0x1f2c0,
879                 0x1f2e0, 0x1f2e0,
880                 0x1f300, 0x1f384,
881                 0x1f3c0, 0x1f3c8,
882                 0x1f440, 0x1f44c,
883                 0x1f684, 0x1f68c,
884                 0x1f6c0, 0x1f6c0,
885                 0x1f6e0, 0x1f6e0,
886                 0x1f700, 0x1f784,
887                 0x1f7c0, 0x1f7c8,
888                 0x1f840, 0x1f84c,
889                 0x1fa84, 0x1fa8c,
890                 0x1fac0, 0x1fac0,
891                 0x1fae0, 0x1fae0,
892                 0x1fb00, 0x1fb84,
893                 0x1fbc0, 0x1fbc8,
894                 0x1fc40, 0x1fc4c,
895                 0x1fe84, 0x1fe8c,
896                 0x1fec0, 0x1fec0,
897                 0x1fee0, 0x1fee0,
898                 0x1ff00, 0x1ff84,
899                 0x1ffc0, 0x1ffc8,
900                 0x20000, 0x2002c,
901                 0x20100, 0x2013c,
902                 0x20190, 0x201a0,
903                 0x201a8, 0x201b8,
904                 0x201c4, 0x201c8,
905                 0x20200, 0x20318,
906                 0x20400, 0x204b4,
907                 0x204c0, 0x20528,
908                 0x20540, 0x20614,
909                 0x21000, 0x21040,
910                 0x2104c, 0x21060,
911                 0x210c0, 0x210ec,
912                 0x21200, 0x21268,
913                 0x21270, 0x21284,
914                 0x212fc, 0x21388,
915                 0x21400, 0x21404,
916                 0x21500, 0x21500,
917                 0x21510, 0x21518,
918                 0x2152c, 0x21530,
919                 0x2153c, 0x2153c,
920                 0x21550, 0x21554,
921                 0x21600, 0x21600,
922                 0x21608, 0x2161c,
923                 0x21624, 0x21628,
924                 0x21630, 0x21634,
925                 0x2163c, 0x2163c,
926                 0x21700, 0x2171c,
927                 0x21780, 0x2178c,
928                 0x21800, 0x21818,
929                 0x21820, 0x21828,
930                 0x21830, 0x21848,
931                 0x21850, 0x21854,
932                 0x21860, 0x21868,
933                 0x21870, 0x21870,
934                 0x21878, 0x21898,
935                 0x218a0, 0x218a8,
936                 0x218b0, 0x218c8,
937                 0x218d0, 0x218d4,
938                 0x218e0, 0x218e8,
939                 0x218f0, 0x218f0,
940                 0x218f8, 0x21a18,
941                 0x21a20, 0x21a28,
942                 0x21a30, 0x21a48,
943                 0x21a50, 0x21a54,
944                 0x21a60, 0x21a68,
945                 0x21a70, 0x21a70,
946                 0x21a78, 0x21a98,
947                 0x21aa0, 0x21aa8,
948                 0x21ab0, 0x21ac8,
949                 0x21ad0, 0x21ad4,
950                 0x21ae0, 0x21ae8,
951                 0x21af0, 0x21af0,
952                 0x21af8, 0x21c18,
953                 0x21c20, 0x21c20,
954                 0x21c28, 0x21c30,
955                 0x21c38, 0x21c38,
956                 0x21c80, 0x21c98,
957                 0x21ca0, 0x21ca8,
958                 0x21cb0, 0x21cc8,
959                 0x21cd0, 0x21cd4,
960                 0x21ce0, 0x21ce8,
961                 0x21cf0, 0x21cf0,
962                 0x21cf8, 0x21d7c,
963                 0x21e00, 0x21e04,
964                 0x22000, 0x2202c,
965                 0x22100, 0x2213c,
966                 0x22190, 0x221a0,
967                 0x221a8, 0x221b8,
968                 0x221c4, 0x221c8,
969                 0x22200, 0x22318,
970                 0x22400, 0x224b4,
971                 0x224c0, 0x22528,
972                 0x22540, 0x22614,
973                 0x23000, 0x23040,
974                 0x2304c, 0x23060,
975                 0x230c0, 0x230ec,
976                 0x23200, 0x23268,
977                 0x23270, 0x23284,
978                 0x232fc, 0x23388,
979                 0x23400, 0x23404,
980                 0x23500, 0x23500,
981                 0x23510, 0x23518,
982                 0x2352c, 0x23530,
983                 0x2353c, 0x2353c,
984                 0x23550, 0x23554,
985                 0x23600, 0x23600,
986                 0x23608, 0x2361c,
987                 0x23624, 0x23628,
988                 0x23630, 0x23634,
989                 0x2363c, 0x2363c,
990                 0x23700, 0x2371c,
991                 0x23780, 0x2378c,
992                 0x23800, 0x23818,
993                 0x23820, 0x23828,
994                 0x23830, 0x23848,
995                 0x23850, 0x23854,
996                 0x23860, 0x23868,
997                 0x23870, 0x23870,
998                 0x23878, 0x23898,
999                 0x238a0, 0x238a8,
1000                 0x238b0, 0x238c8,
1001                 0x238d0, 0x238d4,
1002                 0x238e0, 0x238e8,
1003                 0x238f0, 0x238f0,
1004                 0x238f8, 0x23a18,
1005                 0x23a20, 0x23a28,
1006                 0x23a30, 0x23a48,
1007                 0x23a50, 0x23a54,
1008                 0x23a60, 0x23a68,
1009                 0x23a70, 0x23a70,
1010                 0x23a78, 0x23a98,
1011                 0x23aa0, 0x23aa8,
1012                 0x23ab0, 0x23ac8,
1013                 0x23ad0, 0x23ad4,
1014                 0x23ae0, 0x23ae8,
1015                 0x23af0, 0x23af0,
1016                 0x23af8, 0x23c18,
1017                 0x23c20, 0x23c20,
1018                 0x23c28, 0x23c30,
1019                 0x23c38, 0x23c38,
1020                 0x23c80, 0x23c98,
1021                 0x23ca0, 0x23ca8,
1022                 0x23cb0, 0x23cc8,
1023                 0x23cd0, 0x23cd4,
1024                 0x23ce0, 0x23ce8,
1025                 0x23cf0, 0x23cf0,
1026                 0x23cf8, 0x23d7c,
1027                 0x23e00, 0x23e04,
1028                 0x24000, 0x2402c,
1029                 0x24100, 0x2413c,
1030                 0x24190, 0x241a0,
1031                 0x241a8, 0x241b8,
1032                 0x241c4, 0x241c8,
1033                 0x24200, 0x24318,
1034                 0x24400, 0x244b4,
1035                 0x244c0, 0x24528,
1036                 0x24540, 0x24614,
1037                 0x25000, 0x25040,
1038                 0x2504c, 0x25060,
1039                 0x250c0, 0x250ec,
1040                 0x25200, 0x25268,
1041                 0x25270, 0x25284,
1042                 0x252fc, 0x25388,
1043                 0x25400, 0x25404,
1044                 0x25500, 0x25500,
1045                 0x25510, 0x25518,
1046                 0x2552c, 0x25530,
1047                 0x2553c, 0x2553c,
1048                 0x25550, 0x25554,
1049                 0x25600, 0x25600,
1050                 0x25608, 0x2561c,
1051                 0x25624, 0x25628,
1052                 0x25630, 0x25634,
1053                 0x2563c, 0x2563c,
1054                 0x25700, 0x2571c,
1055                 0x25780, 0x2578c,
1056                 0x25800, 0x25818,
1057                 0x25820, 0x25828,
1058                 0x25830, 0x25848,
1059                 0x25850, 0x25854,
1060                 0x25860, 0x25868,
1061                 0x25870, 0x25870,
1062                 0x25878, 0x25898,
1063                 0x258a0, 0x258a8,
1064                 0x258b0, 0x258c8,
1065                 0x258d0, 0x258d4,
1066                 0x258e0, 0x258e8,
1067                 0x258f0, 0x258f0,
1068                 0x258f8, 0x25a18,
1069                 0x25a20, 0x25a28,
1070                 0x25a30, 0x25a48,
1071                 0x25a50, 0x25a54,
1072                 0x25a60, 0x25a68,
1073                 0x25a70, 0x25a70,
1074                 0x25a78, 0x25a98,
1075                 0x25aa0, 0x25aa8,
1076                 0x25ab0, 0x25ac8,
1077                 0x25ad0, 0x25ad4,
1078                 0x25ae0, 0x25ae8,
1079                 0x25af0, 0x25af0,
1080                 0x25af8, 0x25c18,
1081                 0x25c20, 0x25c20,
1082                 0x25c28, 0x25c30,
1083                 0x25c38, 0x25c38,
1084                 0x25c80, 0x25c98,
1085                 0x25ca0, 0x25ca8,
1086                 0x25cb0, 0x25cc8,
1087                 0x25cd0, 0x25cd4,
1088                 0x25ce0, 0x25ce8,
1089                 0x25cf0, 0x25cf0,
1090                 0x25cf8, 0x25d7c,
1091                 0x25e00, 0x25e04,
1092                 0x26000, 0x2602c,
1093                 0x26100, 0x2613c,
1094                 0x26190, 0x261a0,
1095                 0x261a8, 0x261b8,
1096                 0x261c4, 0x261c8,
1097                 0x26200, 0x26318,
1098                 0x26400, 0x264b4,
1099                 0x264c0, 0x26528,
1100                 0x26540, 0x26614,
1101                 0x27000, 0x27040,
1102                 0x2704c, 0x27060,
1103                 0x270c0, 0x270ec,
1104                 0x27200, 0x27268,
1105                 0x27270, 0x27284,
1106                 0x272fc, 0x27388,
1107                 0x27400, 0x27404,
1108                 0x27500, 0x27500,
1109                 0x27510, 0x27518,
1110                 0x2752c, 0x27530,
1111                 0x2753c, 0x2753c,
1112                 0x27550, 0x27554,
1113                 0x27600, 0x27600,
1114                 0x27608, 0x2761c,
1115                 0x27624, 0x27628,
1116                 0x27630, 0x27634,
1117                 0x2763c, 0x2763c,
1118                 0x27700, 0x2771c,
1119                 0x27780, 0x2778c,
1120                 0x27800, 0x27818,
1121                 0x27820, 0x27828,
1122                 0x27830, 0x27848,
1123                 0x27850, 0x27854,
1124                 0x27860, 0x27868,
1125                 0x27870, 0x27870,
1126                 0x27878, 0x27898,
1127                 0x278a0, 0x278a8,
1128                 0x278b0, 0x278c8,
1129                 0x278d0, 0x278d4,
1130                 0x278e0, 0x278e8,
1131                 0x278f0, 0x278f0,
1132                 0x278f8, 0x27a18,
1133                 0x27a20, 0x27a28,
1134                 0x27a30, 0x27a48,
1135                 0x27a50, 0x27a54,
1136                 0x27a60, 0x27a68,
1137                 0x27a70, 0x27a70,
1138                 0x27a78, 0x27a98,
1139                 0x27aa0, 0x27aa8,
1140                 0x27ab0, 0x27ac8,
1141                 0x27ad0, 0x27ad4,
1142                 0x27ae0, 0x27ae8,
1143                 0x27af0, 0x27af0,
1144                 0x27af8, 0x27c18,
1145                 0x27c20, 0x27c20,
1146                 0x27c28, 0x27c30,
1147                 0x27c38, 0x27c38,
1148                 0x27c80, 0x27c98,
1149                 0x27ca0, 0x27ca8,
1150                 0x27cb0, 0x27cc8,
1151                 0x27cd0, 0x27cd4,
1152                 0x27ce0, 0x27ce8,
1153                 0x27cf0, 0x27cf0,
1154                 0x27cf8, 0x27d7c,
1155                 0x27e00, 0x27e04,
1156         };
1157
1158         static const unsigned int t5_reg_ranges[] = {
1159                 0x1008, 0x10c0,
1160                 0x10cc, 0x10f8,
1161                 0x1100, 0x1100,
1162                 0x110c, 0x1148,
1163                 0x1180, 0x1184,
1164                 0x1190, 0x1194,
1165                 0x11a0, 0x11a4,
1166                 0x11b0, 0x11b4,
1167                 0x11fc, 0x123c,
1168                 0x1280, 0x173c,
1169                 0x1800, 0x18fc,
1170                 0x3000, 0x3028,
1171                 0x3060, 0x30b0,
1172                 0x30b8, 0x30d8,
1173                 0x30e0, 0x30fc,
1174                 0x3140, 0x357c,
1175                 0x35a8, 0x35cc,
1176                 0x35ec, 0x35ec,
1177                 0x3600, 0x5624,
1178                 0x56cc, 0x56ec,
1179                 0x56f4, 0x5720,
1180                 0x5728, 0x575c,
1181                 0x580c, 0x5814,
1182                 0x5890, 0x589c,
1183                 0x58a4, 0x58ac,
1184                 0x58b8, 0x58bc,
1185                 0x5940, 0x59c8,
1186                 0x59d0, 0x59dc,
1187                 0x59fc, 0x5a18,
1188                 0x5a60, 0x5a70,
1189                 0x5a80, 0x5a9c,
1190                 0x5b94, 0x5bfc,
1191                 0x6000, 0x6020,
1192                 0x6028, 0x6040,
1193                 0x6058, 0x609c,
1194                 0x60a8, 0x614c,
1195                 0x7700, 0x7798,
1196                 0x77c0, 0x78fc,
1197                 0x7b00, 0x7b58,
1198                 0x7b60, 0x7b84,
1199                 0x7b8c, 0x7c54,
1200                 0x7d00, 0x7d38,
1201                 0x7d40, 0x7d80,
1202                 0x7d8c, 0x7ddc,
1203                 0x7de4, 0x7e04,
1204                 0x7e10, 0x7e1c,
1205                 0x7e24, 0x7e38,
1206                 0x7e40, 0x7e44,
1207                 0x7e4c, 0x7e78,
1208                 0x7e80, 0x7edc,
1209                 0x7ee8, 0x7efc,
1210                 0x8dc0, 0x8de0,
1211                 0x8df8, 0x8e04,
1212                 0x8e10, 0x8e84,
1213                 0x8ea0, 0x8f84,
1214                 0x8fc0, 0x9058,
1215                 0x9060, 0x9060,
1216                 0x9068, 0x90f8,
1217                 0x9400, 0x9408,
1218                 0x9410, 0x9470,
1219                 0x9600, 0x9600,
1220                 0x9608, 0x9638,
1221                 0x9640, 0x96f4,
1222                 0x9800, 0x9808,
1223                 0x9820, 0x983c,
1224                 0x9850, 0x9864,
1225                 0x9c00, 0x9c6c,
1226                 0x9c80, 0x9cec,
1227                 0x9d00, 0x9d6c,
1228                 0x9d80, 0x9dec,
1229                 0x9e00, 0x9e6c,
1230                 0x9e80, 0x9eec,
1231                 0x9f00, 0x9f6c,
1232                 0x9f80, 0xa020,
1233                 0xd004, 0xd004,
1234                 0xd010, 0xd03c,
1235                 0xdfc0, 0xdfe0,
1236                 0xe000, 0x1106c,
1237                 0x11074, 0x11088,
1238                 0x1109c, 0x1117c,
1239                 0x11190, 0x11204,
1240                 0x19040, 0x1906c,
1241                 0x19078, 0x19080,
1242                 0x1908c, 0x190e8,
1243                 0x190f0, 0x190f8,
1244                 0x19100, 0x19110,
1245                 0x19120, 0x19124,
1246                 0x19150, 0x19194,
1247                 0x1919c, 0x191b0,
1248                 0x191d0, 0x191e8,
1249                 0x19238, 0x19290,
1250                 0x193f8, 0x19428,
1251                 0x19430, 0x19444,
1252                 0x1944c, 0x1946c,
1253                 0x19474, 0x19474,
1254                 0x19490, 0x194cc,
1255                 0x194f0, 0x194f8,
1256                 0x19c00, 0x19c08,
1257                 0x19c10, 0x19c60,
1258                 0x19c94, 0x19ce4,
1259                 0x19cf0, 0x19d40,
1260                 0x19d50, 0x19d94,
1261                 0x19da0, 0x19de8,
1262                 0x19df0, 0x19e10,
1263                 0x19e50, 0x19e90,
1264                 0x19ea0, 0x19f24,
1265                 0x19f34, 0x19f34,
1266                 0x19f40, 0x19f50,
1267                 0x19f90, 0x19fb4,
1268                 0x19fc4, 0x19fe4,
1269                 0x1a000, 0x1a004,
1270                 0x1a010, 0x1a06c,
1271                 0x1a0b0, 0x1a0e4,
1272                 0x1a0ec, 0x1a0f8,
1273                 0x1a100, 0x1a108,
1274                 0x1a114, 0x1a120,
1275                 0x1a128, 0x1a130,
1276                 0x1a138, 0x1a138,
1277                 0x1a190, 0x1a1c4,
1278                 0x1a1fc, 0x1a1fc,
1279                 0x1e008, 0x1e00c,
1280                 0x1e040, 0x1e044,
1281                 0x1e04c, 0x1e04c,
1282                 0x1e284, 0x1e290,
1283                 0x1e2c0, 0x1e2c0,
1284                 0x1e2e0, 0x1e2e0,
1285                 0x1e300, 0x1e384,
1286                 0x1e3c0, 0x1e3c8,
1287                 0x1e408, 0x1e40c,
1288                 0x1e440, 0x1e444,
1289                 0x1e44c, 0x1e44c,
1290                 0x1e684, 0x1e690,
1291                 0x1e6c0, 0x1e6c0,
1292                 0x1e6e0, 0x1e6e0,
1293                 0x1e700, 0x1e784,
1294                 0x1e7c0, 0x1e7c8,
1295                 0x1e808, 0x1e80c,
1296                 0x1e840, 0x1e844,
1297                 0x1e84c, 0x1e84c,
1298                 0x1ea84, 0x1ea90,
1299                 0x1eac0, 0x1eac0,
1300                 0x1eae0, 0x1eae0,
1301                 0x1eb00, 0x1eb84,
1302                 0x1ebc0, 0x1ebc8,
1303                 0x1ec08, 0x1ec0c,
1304                 0x1ec40, 0x1ec44,
1305                 0x1ec4c, 0x1ec4c,
1306                 0x1ee84, 0x1ee90,
1307                 0x1eec0, 0x1eec0,
1308                 0x1eee0, 0x1eee0,
1309                 0x1ef00, 0x1ef84,
1310                 0x1efc0, 0x1efc8,
1311                 0x1f008, 0x1f00c,
1312                 0x1f040, 0x1f044,
1313                 0x1f04c, 0x1f04c,
1314                 0x1f284, 0x1f290,
1315                 0x1f2c0, 0x1f2c0,
1316                 0x1f2e0, 0x1f2e0,
1317                 0x1f300, 0x1f384,
1318                 0x1f3c0, 0x1f3c8,
1319                 0x1f408, 0x1f40c,
1320                 0x1f440, 0x1f444,
1321                 0x1f44c, 0x1f44c,
1322                 0x1f684, 0x1f690,
1323                 0x1f6c0, 0x1f6c0,
1324                 0x1f6e0, 0x1f6e0,
1325                 0x1f700, 0x1f784,
1326                 0x1f7c0, 0x1f7c8,
1327                 0x1f808, 0x1f80c,
1328                 0x1f840, 0x1f844,
1329                 0x1f84c, 0x1f84c,
1330                 0x1fa84, 0x1fa90,
1331                 0x1fac0, 0x1fac0,
1332                 0x1fae0, 0x1fae0,
1333                 0x1fb00, 0x1fb84,
1334                 0x1fbc0, 0x1fbc8,
1335                 0x1fc08, 0x1fc0c,
1336                 0x1fc40, 0x1fc44,
1337                 0x1fc4c, 0x1fc4c,
1338                 0x1fe84, 0x1fe90,
1339                 0x1fec0, 0x1fec0,
1340                 0x1fee0, 0x1fee0,
1341                 0x1ff00, 0x1ff84,
1342                 0x1ffc0, 0x1ffc8,
1343                 0x30000, 0x30030,
1344                 0x30038, 0x30038,
1345                 0x30040, 0x30040,
1346                 0x30100, 0x30144,
1347                 0x30190, 0x301a0,
1348                 0x301a8, 0x301b8,
1349                 0x301c4, 0x301c8,
1350                 0x301d0, 0x301d0,
1351                 0x30200, 0x30318,
1352                 0x30400, 0x304b4,
1353                 0x304c0, 0x3052c,
1354                 0x30540, 0x3061c,
1355                 0x30800, 0x30828,
1356                 0x30834, 0x30834,
1357                 0x308c0, 0x30908,
1358                 0x30910, 0x309ac,
1359                 0x30a00, 0x30a14,
1360                 0x30a1c, 0x30a2c,
1361                 0x30a44, 0x30a50,
1362                 0x30a74, 0x30a74,
1363                 0x30a7c, 0x30afc,
1364                 0x30b08, 0x30c24,
1365                 0x30d00, 0x30d00,
1366                 0x30d08, 0x30d14,
1367                 0x30d1c, 0x30d20,
1368                 0x30d3c, 0x30d3c,
1369                 0x30d48, 0x30d50,
1370                 0x31200, 0x3120c,
1371                 0x31220, 0x31220,
1372                 0x31240, 0x31240,
1373                 0x31600, 0x3160c,
1374                 0x31a00, 0x31a1c,
1375                 0x31e00, 0x31e20,
1376                 0x31e38, 0x31e3c,
1377                 0x31e80, 0x31e80,
1378                 0x31e88, 0x31ea8,
1379                 0x31eb0, 0x31eb4,
1380                 0x31ec8, 0x31ed4,
1381                 0x31fb8, 0x32004,
1382                 0x32200, 0x32200,
1383                 0x32208, 0x32240,
1384                 0x32248, 0x32280,
1385                 0x32288, 0x322c0,
1386                 0x322c8, 0x322fc,
1387                 0x32600, 0x32630,
1388                 0x32a00, 0x32abc,
1389                 0x32b00, 0x32b10,
1390                 0x32b20, 0x32b30,
1391                 0x32b40, 0x32b50,
1392                 0x32b60, 0x32b70,
1393                 0x33000, 0x33028,
1394                 0x33030, 0x33048,
1395                 0x33060, 0x33068,
1396                 0x33070, 0x3309c,
1397                 0x330f0, 0x33128,
1398                 0x33130, 0x33148,
1399                 0x33160, 0x33168,
1400                 0x33170, 0x3319c,
1401                 0x331f0, 0x33238,
1402                 0x33240, 0x33240,
1403                 0x33248, 0x33250,
1404                 0x3325c, 0x33264,
1405                 0x33270, 0x332b8,
1406                 0x332c0, 0x332e4,
1407                 0x332f8, 0x33338,
1408                 0x33340, 0x33340,
1409                 0x33348, 0x33350,
1410                 0x3335c, 0x33364,
1411                 0x33370, 0x333b8,
1412                 0x333c0, 0x333e4,
1413                 0x333f8, 0x33428,
1414                 0x33430, 0x33448,
1415                 0x33460, 0x33468,
1416                 0x33470, 0x3349c,
1417                 0x334f0, 0x33528,
1418                 0x33530, 0x33548,
1419                 0x33560, 0x33568,
1420                 0x33570, 0x3359c,
1421                 0x335f0, 0x33638,
1422                 0x33640, 0x33640,
1423                 0x33648, 0x33650,
1424                 0x3365c, 0x33664,
1425                 0x33670, 0x336b8,
1426                 0x336c0, 0x336e4,
1427                 0x336f8, 0x33738,
1428                 0x33740, 0x33740,
1429                 0x33748, 0x33750,
1430                 0x3375c, 0x33764,
1431                 0x33770, 0x337b8,
1432                 0x337c0, 0x337e4,
1433                 0x337f8, 0x337fc,
1434                 0x33814, 0x33814,
1435                 0x3382c, 0x3382c,
1436                 0x33880, 0x3388c,
1437                 0x338e8, 0x338ec,
1438                 0x33900, 0x33928,
1439                 0x33930, 0x33948,
1440                 0x33960, 0x33968,
1441                 0x33970, 0x3399c,
1442                 0x339f0, 0x33a38,
1443                 0x33a40, 0x33a40,
1444                 0x33a48, 0x33a50,
1445                 0x33a5c, 0x33a64,
1446                 0x33a70, 0x33ab8,
1447                 0x33ac0, 0x33ae4,
1448                 0x33af8, 0x33b10,
1449                 0x33b28, 0x33b28,
1450                 0x33b3c, 0x33b50,
1451                 0x33bf0, 0x33c10,
1452                 0x33c28, 0x33c28,
1453                 0x33c3c, 0x33c50,
1454                 0x33cf0, 0x33cfc,
1455                 0x34000, 0x34030,
1456                 0x34038, 0x34038,
1457                 0x34040, 0x34040,
1458                 0x34100, 0x34144,
1459                 0x34190, 0x341a0,
1460                 0x341a8, 0x341b8,
1461                 0x341c4, 0x341c8,
1462                 0x341d0, 0x341d0,
1463                 0x34200, 0x34318,
1464                 0x34400, 0x344b4,
1465                 0x344c0, 0x3452c,
1466                 0x34540, 0x3461c,
1467                 0x34800, 0x34828,
1468                 0x34834, 0x34834,
1469                 0x348c0, 0x34908,
1470                 0x34910, 0x349ac,
1471                 0x34a00, 0x34a14,
1472                 0x34a1c, 0x34a2c,
1473                 0x34a44, 0x34a50,
1474                 0x34a74, 0x34a74,
1475                 0x34a7c, 0x34afc,
1476                 0x34b08, 0x34c24,
1477                 0x34d00, 0x34d00,
1478                 0x34d08, 0x34d14,
1479                 0x34d1c, 0x34d20,
1480                 0x34d3c, 0x34d3c,
1481                 0x34d48, 0x34d50,
1482                 0x35200, 0x3520c,
1483                 0x35220, 0x35220,
1484                 0x35240, 0x35240,
1485                 0x35600, 0x3560c,
1486                 0x35a00, 0x35a1c,
1487                 0x35e00, 0x35e20,
1488                 0x35e38, 0x35e3c,
1489                 0x35e80, 0x35e80,
1490                 0x35e88, 0x35ea8,
1491                 0x35eb0, 0x35eb4,
1492                 0x35ec8, 0x35ed4,
1493                 0x35fb8, 0x36004,
1494                 0x36200, 0x36200,
1495                 0x36208, 0x36240,
1496                 0x36248, 0x36280,
1497                 0x36288, 0x362c0,
1498                 0x362c8, 0x362fc,
1499                 0x36600, 0x36630,
1500                 0x36a00, 0x36abc,
1501                 0x36b00, 0x36b10,
1502                 0x36b20, 0x36b30,
1503                 0x36b40, 0x36b50,
1504                 0x36b60, 0x36b70,
1505                 0x37000, 0x37028,
1506                 0x37030, 0x37048,
1507                 0x37060, 0x37068,
1508                 0x37070, 0x3709c,
1509                 0x370f0, 0x37128,
1510                 0x37130, 0x37148,
1511                 0x37160, 0x37168,
1512                 0x37170, 0x3719c,
1513                 0x371f0, 0x37238,
1514                 0x37240, 0x37240,
1515                 0x37248, 0x37250,
1516                 0x3725c, 0x37264,
1517                 0x37270, 0x372b8,
1518                 0x372c0, 0x372e4,
1519                 0x372f8, 0x37338,
1520                 0x37340, 0x37340,
1521                 0x37348, 0x37350,
1522                 0x3735c, 0x37364,
1523                 0x37370, 0x373b8,
1524                 0x373c0, 0x373e4,
1525                 0x373f8, 0x37428,
1526                 0x37430, 0x37448,
1527                 0x37460, 0x37468,
1528                 0x37470, 0x3749c,
1529                 0x374f0, 0x37528,
1530                 0x37530, 0x37548,
1531                 0x37560, 0x37568,
1532                 0x37570, 0x3759c,
1533                 0x375f0, 0x37638,
1534                 0x37640, 0x37640,
1535                 0x37648, 0x37650,
1536                 0x3765c, 0x37664,
1537                 0x37670, 0x376b8,
1538                 0x376c0, 0x376e4,
1539                 0x376f8, 0x37738,
1540                 0x37740, 0x37740,
1541                 0x37748, 0x37750,
1542                 0x3775c, 0x37764,
1543                 0x37770, 0x377b8,
1544                 0x377c0, 0x377e4,
1545                 0x377f8, 0x377fc,
1546                 0x37814, 0x37814,
1547                 0x3782c, 0x3782c,
1548                 0x37880, 0x3788c,
1549                 0x378e8, 0x378ec,
1550                 0x37900, 0x37928,
1551                 0x37930, 0x37948,
1552                 0x37960, 0x37968,
1553                 0x37970, 0x3799c,
1554                 0x379f0, 0x37a38,
1555                 0x37a40, 0x37a40,
1556                 0x37a48, 0x37a50,
1557                 0x37a5c, 0x37a64,
1558                 0x37a70, 0x37ab8,
1559                 0x37ac0, 0x37ae4,
1560                 0x37af8, 0x37b10,
1561                 0x37b28, 0x37b28,
1562                 0x37b3c, 0x37b50,
1563                 0x37bf0, 0x37c10,
1564                 0x37c28, 0x37c28,
1565                 0x37c3c, 0x37c50,
1566                 0x37cf0, 0x37cfc,
1567                 0x38000, 0x38030,
1568                 0x38038, 0x38038,
1569                 0x38040, 0x38040,
1570                 0x38100, 0x38144,
1571                 0x38190, 0x381a0,
1572                 0x381a8, 0x381b8,
1573                 0x381c4, 0x381c8,
1574                 0x381d0, 0x381d0,
1575                 0x38200, 0x38318,
1576                 0x38400, 0x384b4,
1577                 0x384c0, 0x3852c,
1578                 0x38540, 0x3861c,
1579                 0x38800, 0x38828,
1580                 0x38834, 0x38834,
1581                 0x388c0, 0x38908,
1582                 0x38910, 0x389ac,
1583                 0x38a00, 0x38a14,
1584                 0x38a1c, 0x38a2c,
1585                 0x38a44, 0x38a50,
1586                 0x38a74, 0x38a74,
1587                 0x38a7c, 0x38afc,
1588                 0x38b08, 0x38c24,
1589                 0x38d00, 0x38d00,
1590                 0x38d08, 0x38d14,
1591                 0x38d1c, 0x38d20,
1592                 0x38d3c, 0x38d3c,
1593                 0x38d48, 0x38d50,
1594                 0x39200, 0x3920c,
1595                 0x39220, 0x39220,
1596                 0x39240, 0x39240,
1597                 0x39600, 0x3960c,
1598                 0x39a00, 0x39a1c,
1599                 0x39e00, 0x39e20,
1600                 0x39e38, 0x39e3c,
1601                 0x39e80, 0x39e80,
1602                 0x39e88, 0x39ea8,
1603                 0x39eb0, 0x39eb4,
1604                 0x39ec8, 0x39ed4,
1605                 0x39fb8, 0x3a004,
1606                 0x3a200, 0x3a200,
1607                 0x3a208, 0x3a240,
1608                 0x3a248, 0x3a280,
1609                 0x3a288, 0x3a2c0,
1610                 0x3a2c8, 0x3a2fc,
1611                 0x3a600, 0x3a630,
1612                 0x3aa00, 0x3aabc,
1613                 0x3ab00, 0x3ab10,
1614                 0x3ab20, 0x3ab30,
1615                 0x3ab40, 0x3ab50,
1616                 0x3ab60, 0x3ab70,
1617                 0x3b000, 0x3b028,
1618                 0x3b030, 0x3b048,
1619                 0x3b060, 0x3b068,
1620                 0x3b070, 0x3b09c,
1621                 0x3b0f0, 0x3b128,
1622                 0x3b130, 0x3b148,
1623                 0x3b160, 0x3b168,
1624                 0x3b170, 0x3b19c,
1625                 0x3b1f0, 0x3b238,
1626                 0x3b240, 0x3b240,
1627                 0x3b248, 0x3b250,
1628                 0x3b25c, 0x3b264,
1629                 0x3b270, 0x3b2b8,
1630                 0x3b2c0, 0x3b2e4,
1631                 0x3b2f8, 0x3b338,
1632                 0x3b340, 0x3b340,
1633                 0x3b348, 0x3b350,
1634                 0x3b35c, 0x3b364,
1635                 0x3b370, 0x3b3b8,
1636                 0x3b3c0, 0x3b3e4,
1637                 0x3b3f8, 0x3b428,
1638                 0x3b430, 0x3b448,
1639                 0x3b460, 0x3b468,
1640                 0x3b470, 0x3b49c,
1641                 0x3b4f0, 0x3b528,
1642                 0x3b530, 0x3b548,
1643                 0x3b560, 0x3b568,
1644                 0x3b570, 0x3b59c,
1645                 0x3b5f0, 0x3b638,
1646                 0x3b640, 0x3b640,
1647                 0x3b648, 0x3b650,
1648                 0x3b65c, 0x3b664,
1649                 0x3b670, 0x3b6b8,
1650                 0x3b6c0, 0x3b6e4,
1651                 0x3b6f8, 0x3b738,
1652                 0x3b740, 0x3b740,
1653                 0x3b748, 0x3b750,
1654                 0x3b75c, 0x3b764,
1655                 0x3b770, 0x3b7b8,
1656                 0x3b7c0, 0x3b7e4,
1657                 0x3b7f8, 0x3b7fc,
1658                 0x3b814, 0x3b814,
1659                 0x3b82c, 0x3b82c,
1660                 0x3b880, 0x3b88c,
1661                 0x3b8e8, 0x3b8ec,
1662                 0x3b900, 0x3b928,
1663                 0x3b930, 0x3b948,
1664                 0x3b960, 0x3b968,
1665                 0x3b970, 0x3b99c,
1666                 0x3b9f0, 0x3ba38,
1667                 0x3ba40, 0x3ba40,
1668                 0x3ba48, 0x3ba50,
1669                 0x3ba5c, 0x3ba64,
1670                 0x3ba70, 0x3bab8,
1671                 0x3bac0, 0x3bae4,
1672                 0x3baf8, 0x3bb10,
1673                 0x3bb28, 0x3bb28,
1674                 0x3bb3c, 0x3bb50,
1675                 0x3bbf0, 0x3bc10,
1676                 0x3bc28, 0x3bc28,
1677                 0x3bc3c, 0x3bc50,
1678                 0x3bcf0, 0x3bcfc,
1679                 0x3c000, 0x3c030,
1680                 0x3c038, 0x3c038,
1681                 0x3c040, 0x3c040,
1682                 0x3c100, 0x3c144,
1683                 0x3c190, 0x3c1a0,
1684                 0x3c1a8, 0x3c1b8,
1685                 0x3c1c4, 0x3c1c8,
1686                 0x3c1d0, 0x3c1d0,
1687                 0x3c200, 0x3c318,
1688                 0x3c400, 0x3c4b4,
1689                 0x3c4c0, 0x3c52c,
1690                 0x3c540, 0x3c61c,
1691                 0x3c800, 0x3c828,
1692                 0x3c834, 0x3c834,
1693                 0x3c8c0, 0x3c908,
1694                 0x3c910, 0x3c9ac,
1695                 0x3ca00, 0x3ca14,
1696                 0x3ca1c, 0x3ca2c,
1697                 0x3ca44, 0x3ca50,
1698                 0x3ca74, 0x3ca74,
1699                 0x3ca7c, 0x3cafc,
1700                 0x3cb08, 0x3cc24,
1701                 0x3cd00, 0x3cd00,
1702                 0x3cd08, 0x3cd14,
1703                 0x3cd1c, 0x3cd20,
1704                 0x3cd3c, 0x3cd3c,
1705                 0x3cd48, 0x3cd50,
1706                 0x3d200, 0x3d20c,
1707                 0x3d220, 0x3d220,
1708                 0x3d240, 0x3d240,
1709                 0x3d600, 0x3d60c,
1710                 0x3da00, 0x3da1c,
1711                 0x3de00, 0x3de20,
1712                 0x3de38, 0x3de3c,
1713                 0x3de80, 0x3de80,
1714                 0x3de88, 0x3dea8,
1715                 0x3deb0, 0x3deb4,
1716                 0x3dec8, 0x3ded4,
1717                 0x3dfb8, 0x3e004,
1718                 0x3e200, 0x3e200,
1719                 0x3e208, 0x3e240,
1720                 0x3e248, 0x3e280,
1721                 0x3e288, 0x3e2c0,
1722                 0x3e2c8, 0x3e2fc,
1723                 0x3e600, 0x3e630,
1724                 0x3ea00, 0x3eabc,
1725                 0x3eb00, 0x3eb10,
1726                 0x3eb20, 0x3eb30,
1727                 0x3eb40, 0x3eb50,
1728                 0x3eb60, 0x3eb70,
1729                 0x3f000, 0x3f028,
1730                 0x3f030, 0x3f048,
1731                 0x3f060, 0x3f068,
1732                 0x3f070, 0x3f09c,
1733                 0x3f0f0, 0x3f128,
1734                 0x3f130, 0x3f148,
1735                 0x3f160, 0x3f168,
1736                 0x3f170, 0x3f19c,
1737                 0x3f1f0, 0x3f238,
1738                 0x3f240, 0x3f240,
1739                 0x3f248, 0x3f250,
1740                 0x3f25c, 0x3f264,
1741                 0x3f270, 0x3f2b8,
1742                 0x3f2c0, 0x3f2e4,
1743                 0x3f2f8, 0x3f338,
1744                 0x3f340, 0x3f340,
1745                 0x3f348, 0x3f350,
1746                 0x3f35c, 0x3f364,
1747                 0x3f370, 0x3f3b8,
1748                 0x3f3c0, 0x3f3e4,
1749                 0x3f3f8, 0x3f428,
1750                 0x3f430, 0x3f448,
1751                 0x3f460, 0x3f468,
1752                 0x3f470, 0x3f49c,
1753                 0x3f4f0, 0x3f528,
1754                 0x3f530, 0x3f548,
1755                 0x3f560, 0x3f568,
1756                 0x3f570, 0x3f59c,
1757                 0x3f5f0, 0x3f638,
1758                 0x3f640, 0x3f640,
1759                 0x3f648, 0x3f650,
1760                 0x3f65c, 0x3f664,
1761                 0x3f670, 0x3f6b8,
1762                 0x3f6c0, 0x3f6e4,
1763                 0x3f6f8, 0x3f738,
1764                 0x3f740, 0x3f740,
1765                 0x3f748, 0x3f750,
1766                 0x3f75c, 0x3f764,
1767                 0x3f770, 0x3f7b8,
1768                 0x3f7c0, 0x3f7e4,
1769                 0x3f7f8, 0x3f7fc,
1770                 0x3f814, 0x3f814,
1771                 0x3f82c, 0x3f82c,
1772                 0x3f880, 0x3f88c,
1773                 0x3f8e8, 0x3f8ec,
1774                 0x3f900, 0x3f928,
1775                 0x3f930, 0x3f948,
1776                 0x3f960, 0x3f968,
1777                 0x3f970, 0x3f99c,
1778                 0x3f9f0, 0x3fa38,
1779                 0x3fa40, 0x3fa40,
1780                 0x3fa48, 0x3fa50,
1781                 0x3fa5c, 0x3fa64,
1782                 0x3fa70, 0x3fab8,
1783                 0x3fac0, 0x3fae4,
1784                 0x3faf8, 0x3fb10,
1785                 0x3fb28, 0x3fb28,
1786                 0x3fb3c, 0x3fb50,
1787                 0x3fbf0, 0x3fc10,
1788                 0x3fc28, 0x3fc28,
1789                 0x3fc3c, 0x3fc50,
1790                 0x3fcf0, 0x3fcfc,
1791                 0x40000, 0x4000c,
1792                 0x40040, 0x40050,
1793                 0x40060, 0x40068,
1794                 0x4007c, 0x4008c,
1795                 0x40094, 0x400b0,
1796                 0x400c0, 0x40144,
1797                 0x40180, 0x4018c,
1798                 0x40200, 0x40254,
1799                 0x40260, 0x40264,
1800                 0x40270, 0x40288,
1801                 0x40290, 0x40298,
1802                 0x402ac, 0x402c8,
1803                 0x402d0, 0x402e0,
1804                 0x402f0, 0x402f0,
1805                 0x40300, 0x4033c,
1806                 0x403f8, 0x403fc,
1807                 0x41304, 0x413c4,
1808                 0x41400, 0x4140c,
1809                 0x41414, 0x4141c,
1810                 0x41480, 0x414d0,
1811                 0x44000, 0x44054,
1812                 0x4405c, 0x44078,
1813                 0x440c0, 0x44174,
1814                 0x44180, 0x441ac,
1815                 0x441b4, 0x441b8,
1816                 0x441c0, 0x44254,
1817                 0x4425c, 0x44278,
1818                 0x442c0, 0x44374,
1819                 0x44380, 0x443ac,
1820                 0x443b4, 0x443b8,
1821                 0x443c0, 0x44454,
1822                 0x4445c, 0x44478,
1823                 0x444c0, 0x44574,
1824                 0x44580, 0x445ac,
1825                 0x445b4, 0x445b8,
1826                 0x445c0, 0x44654,
1827                 0x4465c, 0x44678,
1828                 0x446c0, 0x44774,
1829                 0x44780, 0x447ac,
1830                 0x447b4, 0x447b8,
1831                 0x447c0, 0x44854,
1832                 0x4485c, 0x44878,
1833                 0x448c0, 0x44974,
1834                 0x44980, 0x449ac,
1835                 0x449b4, 0x449b8,
1836                 0x449c0, 0x449fc,
1837                 0x45000, 0x45004,
1838                 0x45010, 0x45030,
1839                 0x45040, 0x45060,
1840                 0x45068, 0x45068,
1841                 0x45080, 0x45084,
1842                 0x450a0, 0x450b0,
1843                 0x45200, 0x45204,
1844                 0x45210, 0x45230,
1845                 0x45240, 0x45260,
1846                 0x45268, 0x45268,
1847                 0x45280, 0x45284,
1848                 0x452a0, 0x452b0,
1849                 0x460c0, 0x460e4,
1850                 0x47000, 0x4703c,
1851                 0x47044, 0x4708c,
1852                 0x47200, 0x47250,
1853                 0x47400, 0x47408,
1854                 0x47414, 0x47420,
1855                 0x47600, 0x47618,
1856                 0x47800, 0x47814,
1857                 0x48000, 0x4800c,
1858                 0x48040, 0x48050,
1859                 0x48060, 0x48068,
1860                 0x4807c, 0x4808c,
1861                 0x48094, 0x480b0,
1862                 0x480c0, 0x48144,
1863                 0x48180, 0x4818c,
1864                 0x48200, 0x48254,
1865                 0x48260, 0x48264,
1866                 0x48270, 0x48288,
1867                 0x48290, 0x48298,
1868                 0x482ac, 0x482c8,
1869                 0x482d0, 0x482e0,
1870                 0x482f0, 0x482f0,
1871                 0x48300, 0x4833c,
1872                 0x483f8, 0x483fc,
1873                 0x49304, 0x493c4,
1874                 0x49400, 0x4940c,
1875                 0x49414, 0x4941c,
1876                 0x49480, 0x494d0,
1877                 0x4c000, 0x4c054,
1878                 0x4c05c, 0x4c078,
1879                 0x4c0c0, 0x4c174,
1880                 0x4c180, 0x4c1ac,
1881                 0x4c1b4, 0x4c1b8,
1882                 0x4c1c0, 0x4c254,
1883                 0x4c25c, 0x4c278,
1884                 0x4c2c0, 0x4c374,
1885                 0x4c380, 0x4c3ac,
1886                 0x4c3b4, 0x4c3b8,
1887                 0x4c3c0, 0x4c454,
1888                 0x4c45c, 0x4c478,
1889                 0x4c4c0, 0x4c574,
1890                 0x4c580, 0x4c5ac,
1891                 0x4c5b4, 0x4c5b8,
1892                 0x4c5c0, 0x4c654,
1893                 0x4c65c, 0x4c678,
1894                 0x4c6c0, 0x4c774,
1895                 0x4c780, 0x4c7ac,
1896                 0x4c7b4, 0x4c7b8,
1897                 0x4c7c0, 0x4c854,
1898                 0x4c85c, 0x4c878,
1899                 0x4c8c0, 0x4c974,
1900                 0x4c980, 0x4c9ac,
1901                 0x4c9b4, 0x4c9b8,
1902                 0x4c9c0, 0x4c9fc,
1903                 0x4d000, 0x4d004,
1904                 0x4d010, 0x4d030,
1905                 0x4d040, 0x4d060,
1906                 0x4d068, 0x4d068,
1907                 0x4d080, 0x4d084,
1908                 0x4d0a0, 0x4d0b0,
1909                 0x4d200, 0x4d204,
1910                 0x4d210, 0x4d230,
1911                 0x4d240, 0x4d260,
1912                 0x4d268, 0x4d268,
1913                 0x4d280, 0x4d284,
1914                 0x4d2a0, 0x4d2b0,
1915                 0x4e0c0, 0x4e0e4,
1916                 0x4f000, 0x4f03c,
1917                 0x4f044, 0x4f08c,
1918                 0x4f200, 0x4f250,
1919                 0x4f400, 0x4f408,
1920                 0x4f414, 0x4f420,
1921                 0x4f600, 0x4f618,
1922                 0x4f800, 0x4f814,
1923                 0x50000, 0x50084,
1924                 0x50090, 0x500cc,
1925                 0x50400, 0x50400,
1926                 0x50800, 0x50884,
1927                 0x50890, 0x508cc,
1928                 0x50c00, 0x50c00,
1929                 0x51000, 0x5101c,
1930                 0x51300, 0x51308,
1931         };
1932
1933         static const unsigned int t6_reg_ranges[] = {
1934                 0x1008, 0x101c,
1935                 0x1024, 0x10a8,
1936                 0x10b4, 0x10f8,
1937                 0x1100, 0x1114,
1938                 0x111c, 0x112c,
1939                 0x1138, 0x113c,
1940                 0x1144, 0x114c,
1941                 0x1180, 0x1184,
1942                 0x1190, 0x1194,
1943                 0x11a0, 0x11a4,
1944                 0x11b0, 0x11b4,
1945                 0x11fc, 0x1258,
1946                 0x1280, 0x12d4,
1947                 0x12d9, 0x12d9,
1948                 0x12de, 0x12de,
1949                 0x12e3, 0x12e3,
1950                 0x12e8, 0x133c,
1951                 0x1800, 0x18fc,
1952                 0x3000, 0x302c,
1953                 0x3060, 0x30b0,
1954                 0x30b8, 0x30d8,
1955                 0x30e0, 0x30fc,
1956                 0x3140, 0x357c,
1957                 0x35a8, 0x35cc,
1958                 0x35ec, 0x35ec,
1959                 0x3600, 0x5624,
1960                 0x56cc, 0x56ec,
1961                 0x56f4, 0x5720,
1962                 0x5728, 0x575c,
1963                 0x580c, 0x5814,
1964                 0x5890, 0x589c,
1965                 0x58a4, 0x58ac,
1966                 0x58b8, 0x58bc,
1967                 0x5940, 0x595c,
1968                 0x5980, 0x598c,
1969                 0x59b0, 0x59c8,
1970                 0x59d0, 0x59dc,
1971                 0x59fc, 0x5a18,
1972                 0x5a60, 0x5a6c,
1973                 0x5a80, 0x5a8c,
1974                 0x5a94, 0x5a9c,
1975                 0x5b94, 0x5bfc,
1976                 0x5c10, 0x5e48,
1977                 0x5e50, 0x5e94,
1978                 0x5ea0, 0x5eb0,
1979                 0x5ec0, 0x5ec0,
1980                 0x5ec8, 0x5ed0,
1981                 0x6000, 0x6020,
1982                 0x6028, 0x6040,
1983                 0x6058, 0x609c,
1984                 0x60a8, 0x619c,
1985                 0x7700, 0x7798,
1986                 0x77c0, 0x7880,
1987                 0x78cc, 0x78fc,
1988                 0x7b00, 0x7b58,
1989                 0x7b60, 0x7b84,
1990                 0x7b8c, 0x7c54,
1991                 0x7d00, 0x7d38,
1992                 0x7d40, 0x7d84,
1993                 0x7d8c, 0x7ddc,
1994                 0x7de4, 0x7e04,
1995                 0x7e10, 0x7e1c,
1996                 0x7e24, 0x7e38,
1997                 0x7e40, 0x7e44,
1998                 0x7e4c, 0x7e78,
1999                 0x7e80, 0x7edc,
2000                 0x7ee8, 0x7efc,
2001                 0x8dc0, 0x8de4,
2002                 0x8df8, 0x8e04,
2003                 0x8e10, 0x8e84,
2004                 0x8ea0, 0x8f88,
2005                 0x8fb8, 0x9058,
2006                 0x9060, 0x9060,
2007                 0x9068, 0x90f8,
2008                 0x9100, 0x9124,
2009                 0x9400, 0x9470,
2010                 0x9600, 0x9600,
2011                 0x9608, 0x9638,
2012                 0x9640, 0x9704,
2013                 0x9710, 0x971c,
2014                 0x9800, 0x9808,
2015                 0x9820, 0x983c,
2016                 0x9850, 0x9864,
2017                 0x9c00, 0x9c6c,
2018                 0x9c80, 0x9cec,
2019                 0x9d00, 0x9d6c,
2020                 0x9d80, 0x9dec,
2021                 0x9e00, 0x9e6c,
2022                 0x9e80, 0x9eec,
2023                 0x9f00, 0x9f6c,
2024                 0x9f80, 0xa020,
2025                 0xd004, 0xd03c,
2026                 0xd100, 0xd118,
2027                 0xd200, 0xd214,
2028                 0xd220, 0xd234,
2029                 0xd240, 0xd254,
2030                 0xd260, 0xd274,
2031                 0xd280, 0xd294,
2032                 0xd2a0, 0xd2b4,
2033                 0xd2c0, 0xd2d4,
2034                 0xd2e0, 0xd2f4,
2035                 0xd300, 0xd31c,
2036                 0xdfc0, 0xdfe0,
2037                 0xe000, 0xf008,
2038                 0x11000, 0x11014,
2039                 0x11048, 0x1106c,
2040                 0x11074, 0x11088,
2041                 0x11098, 0x11120,
2042                 0x1112c, 0x1117c,
2043                 0x11190, 0x112e0,
2044                 0x11300, 0x1130c,
2045                 0x12000, 0x1206c,
2046                 0x19040, 0x1906c,
2047                 0x19078, 0x19080,
2048                 0x1908c, 0x190e8,
2049                 0x190f0, 0x190f8,
2050                 0x19100, 0x19110,
2051                 0x19120, 0x19124,
2052                 0x19150, 0x19194,
2053                 0x1919c, 0x191b0,
2054                 0x191d0, 0x191e8,
2055                 0x19238, 0x19290,
2056                 0x192a4, 0x192b0,
2057                 0x192bc, 0x192bc,
2058                 0x19348, 0x1934c,
2059                 0x193f8, 0x19418,
2060                 0x19420, 0x19428,
2061                 0x19430, 0x19444,
2062                 0x1944c, 0x1946c,
2063                 0x19474, 0x19474,
2064                 0x19490, 0x194cc,
2065                 0x194f0, 0x194f8,
2066                 0x19c00, 0x19c48,
2067                 0x19c50, 0x19c80,
2068                 0x19c94, 0x19c98,
2069                 0x19ca0, 0x19cbc,
2070                 0x19ce4, 0x19ce4,
2071                 0x19cf0, 0x19cf8,
2072                 0x19d00, 0x19d28,
2073                 0x19d50, 0x19d78,
2074                 0x19d94, 0x19d98,
2075                 0x19da0, 0x19dc8,
2076                 0x19df0, 0x19e10,
2077                 0x19e50, 0x19e6c,
2078                 0x19ea0, 0x19ebc,
2079                 0x19ec4, 0x19ef4,
2080                 0x19f04, 0x19f2c,
2081                 0x19f34, 0x19f34,
2082                 0x19f40, 0x19f50,
2083                 0x19f90, 0x19fac,
2084                 0x19fc4, 0x19fc8,
2085                 0x19fd0, 0x19fe4,
2086                 0x1a000, 0x1a004,
2087                 0x1a010, 0x1a06c,
2088                 0x1a0b0, 0x1a0e4,
2089                 0x1a0ec, 0x1a0f8,
2090                 0x1a100, 0x1a108,
2091                 0x1a114, 0x1a120,
2092                 0x1a128, 0x1a130,
2093                 0x1a138, 0x1a138,
2094                 0x1a190, 0x1a1c4,
2095                 0x1a1fc, 0x1a1fc,
2096                 0x1e008, 0x1e00c,
2097                 0x1e040, 0x1e044,
2098                 0x1e04c, 0x1e04c,
2099                 0x1e284, 0x1e290,
2100                 0x1e2c0, 0x1e2c0,
2101                 0x1e2e0, 0x1e2e0,
2102                 0x1e300, 0x1e384,
2103                 0x1e3c0, 0x1e3c8,
2104                 0x1e408, 0x1e40c,
2105                 0x1e440, 0x1e444,
2106                 0x1e44c, 0x1e44c,
2107                 0x1e684, 0x1e690,
2108                 0x1e6c0, 0x1e6c0,
2109                 0x1e6e0, 0x1e6e0,
2110                 0x1e700, 0x1e784,
2111                 0x1e7c0, 0x1e7c8,
2112                 0x1e808, 0x1e80c,
2113                 0x1e840, 0x1e844,
2114                 0x1e84c, 0x1e84c,
2115                 0x1ea84, 0x1ea90,
2116                 0x1eac0, 0x1eac0,
2117                 0x1eae0, 0x1eae0,
2118                 0x1eb00, 0x1eb84,
2119                 0x1ebc0, 0x1ebc8,
2120                 0x1ec08, 0x1ec0c,
2121                 0x1ec40, 0x1ec44,
2122                 0x1ec4c, 0x1ec4c,
2123                 0x1ee84, 0x1ee90,
2124                 0x1eec0, 0x1eec0,
2125                 0x1eee0, 0x1eee0,
2126                 0x1ef00, 0x1ef84,
2127                 0x1efc0, 0x1efc8,
2128                 0x1f008, 0x1f00c,
2129                 0x1f040, 0x1f044,
2130                 0x1f04c, 0x1f04c,
2131                 0x1f284, 0x1f290,
2132                 0x1f2c0, 0x1f2c0,
2133                 0x1f2e0, 0x1f2e0,
2134                 0x1f300, 0x1f384,
2135                 0x1f3c0, 0x1f3c8,
2136                 0x1f408, 0x1f40c,
2137                 0x1f440, 0x1f444,
2138                 0x1f44c, 0x1f44c,
2139                 0x1f684, 0x1f690,
2140                 0x1f6c0, 0x1f6c0,
2141                 0x1f6e0, 0x1f6e0,
2142                 0x1f700, 0x1f784,
2143                 0x1f7c0, 0x1f7c8,
2144                 0x1f808, 0x1f80c,
2145                 0x1f840, 0x1f844,
2146                 0x1f84c, 0x1f84c,
2147                 0x1fa84, 0x1fa90,
2148                 0x1fac0, 0x1fac0,
2149                 0x1fae0, 0x1fae0,
2150                 0x1fb00, 0x1fb84,
2151                 0x1fbc0, 0x1fbc8,
2152                 0x1fc08, 0x1fc0c,
2153                 0x1fc40, 0x1fc44,
2154                 0x1fc4c, 0x1fc4c,
2155                 0x1fe84, 0x1fe90,
2156                 0x1fec0, 0x1fec0,
2157                 0x1fee0, 0x1fee0,
2158                 0x1ff00, 0x1ff84,
2159                 0x1ffc0, 0x1ffc8,
2160                 0x30000, 0x30030,
2161                 0x30038, 0x30038,
2162                 0x30040, 0x30040,
2163                 0x30048, 0x30048,
2164                 0x30050, 0x30050,
2165                 0x3005c, 0x30060,
2166                 0x30068, 0x30068,
2167                 0x30070, 0x30070,
2168                 0x30100, 0x30168,
2169                 0x30190, 0x301a0,
2170                 0x301a8, 0x301b8,
2171                 0x301c4, 0x301c8,
2172                 0x301d0, 0x301d0,
2173                 0x30200, 0x30320,
2174                 0x30400, 0x304b4,
2175                 0x304c0, 0x3052c,
2176                 0x30540, 0x3061c,
2177                 0x30800, 0x308a0,
2178                 0x308c0, 0x30908,
2179                 0x30910, 0x309b8,
2180                 0x30a00, 0x30a04,
2181                 0x30a0c, 0x30a14,
2182                 0x30a1c, 0x30a2c,
2183                 0x30a44, 0x30a50,
2184                 0x30a74, 0x30a74,
2185                 0x30a7c, 0x30afc,
2186                 0x30b08, 0x30c24,
2187                 0x30d00, 0x30d14,
2188                 0x30d1c, 0x30d3c,
2189                 0x30d44, 0x30d4c,
2190                 0x30d54, 0x30d74,
2191                 0x30d7c, 0x30d7c,
2192                 0x30de0, 0x30de0,
2193                 0x30e00, 0x30ed4,
2194                 0x30f00, 0x30fa4,
2195                 0x30fc0, 0x30fc4,
2196                 0x31000, 0x31004,
2197                 0x31080, 0x310fc,
2198                 0x31208, 0x31220,
2199                 0x3123c, 0x31254,
2200                 0x31300, 0x31300,
2201                 0x31308, 0x3131c,
2202                 0x31338, 0x3133c,
2203                 0x31380, 0x31380,
2204                 0x31388, 0x313a8,
2205                 0x313b4, 0x313b4,
2206                 0x31400, 0x31420,
2207                 0x31438, 0x3143c,
2208                 0x31480, 0x31480,
2209                 0x314a8, 0x314a8,
2210                 0x314b0, 0x314b4,
2211                 0x314c8, 0x314d4,
2212                 0x31a40, 0x31a4c,
2213                 0x31af0, 0x31b20,
2214                 0x31b38, 0x31b3c,
2215                 0x31b80, 0x31b80,
2216                 0x31ba8, 0x31ba8,
2217                 0x31bb0, 0x31bb4,
2218                 0x31bc8, 0x31bd4,
2219                 0x32140, 0x3218c,
2220                 0x321f0, 0x321f4,
2221                 0x32200, 0x32200,
2222                 0x32218, 0x32218,
2223                 0x32400, 0x32400,
2224                 0x32408, 0x3241c,
2225                 0x32618, 0x32620,
2226                 0x32664, 0x32664,
2227                 0x326a8, 0x326a8,
2228                 0x326ec, 0x326ec,
2229                 0x32a00, 0x32abc,
2230                 0x32b00, 0x32b38,
2231                 0x32b40, 0x32b58,
2232                 0x32b60, 0x32b78,
2233                 0x32c00, 0x32c00,
2234                 0x32c08, 0x32c3c,
2235                 0x32e00, 0x32e2c,
2236                 0x32f00, 0x32f2c,
2237                 0x33000, 0x3302c,
2238                 0x33034, 0x33050,
2239                 0x33058, 0x33058,
2240                 0x33060, 0x3308c,
2241                 0x3309c, 0x330ac,
2242                 0x330c0, 0x330c0,
2243                 0x330c8, 0x330d0,
2244                 0x330d8, 0x330e0,
2245                 0x330ec, 0x3312c,
2246                 0x33134, 0x33150,
2247                 0x33158, 0x33158,
2248                 0x33160, 0x3318c,
2249                 0x3319c, 0x331ac,
2250                 0x331c0, 0x331c0,
2251                 0x331c8, 0x331d0,
2252                 0x331d8, 0x331e0,
2253                 0x331ec, 0x33290,
2254                 0x33298, 0x332c4,
2255                 0x332e4, 0x33390,
2256                 0x33398, 0x333c4,
2257                 0x333e4, 0x3342c,
2258                 0x33434, 0x33450,
2259                 0x33458, 0x33458,
2260                 0x33460, 0x3348c,
2261                 0x3349c, 0x334ac,
2262                 0x334c0, 0x334c0,
2263                 0x334c8, 0x334d0,
2264                 0x334d8, 0x334e0,
2265                 0x334ec, 0x3352c,
2266                 0x33534, 0x33550,
2267                 0x33558, 0x33558,
2268                 0x33560, 0x3358c,
2269                 0x3359c, 0x335ac,
2270                 0x335c0, 0x335c0,
2271                 0x335c8, 0x335d0,
2272                 0x335d8, 0x335e0,
2273                 0x335ec, 0x33690,
2274                 0x33698, 0x336c4,
2275                 0x336e4, 0x33790,
2276                 0x33798, 0x337c4,
2277                 0x337e4, 0x337fc,
2278                 0x33814, 0x33814,
2279                 0x33854, 0x33868,
2280                 0x33880, 0x3388c,
2281                 0x338c0, 0x338d0,
2282                 0x338e8, 0x338ec,
2283                 0x33900, 0x3392c,
2284                 0x33934, 0x33950,
2285                 0x33958, 0x33958,
2286                 0x33960, 0x3398c,
2287                 0x3399c, 0x339ac,
2288                 0x339c0, 0x339c0,
2289                 0x339c8, 0x339d0,
2290                 0x339d8, 0x339e0,
2291                 0x339ec, 0x33a90,
2292                 0x33a98, 0x33ac4,
2293                 0x33ae4, 0x33b10,
2294                 0x33b24, 0x33b28,
2295                 0x33b38, 0x33b50,
2296                 0x33bf0, 0x33c10,
2297                 0x33c24, 0x33c28,
2298                 0x33c38, 0x33c50,
2299                 0x33cf0, 0x33cfc,
2300                 0x34000, 0x34030,
2301                 0x34038, 0x34038,
2302                 0x34040, 0x34040,
2303                 0x34048, 0x34048,
2304                 0x34050, 0x34050,
2305                 0x3405c, 0x34060,
2306                 0x34068, 0x34068,
2307                 0x34070, 0x34070,
2308                 0x34100, 0x34168,
2309                 0x34190, 0x341a0,
2310                 0x341a8, 0x341b8,
2311                 0x341c4, 0x341c8,
2312                 0x341d0, 0x341d0,
2313                 0x34200, 0x34320,
2314                 0x34400, 0x344b4,
2315                 0x344c0, 0x3452c,
2316                 0x34540, 0x3461c,
2317                 0x34800, 0x348a0,
2318                 0x348c0, 0x34908,
2319                 0x34910, 0x349b8,
2320                 0x34a00, 0x34a04,
2321                 0x34a0c, 0x34a14,
2322                 0x34a1c, 0x34a2c,
2323                 0x34a44, 0x34a50,
2324                 0x34a74, 0x34a74,
2325                 0x34a7c, 0x34afc,
2326                 0x34b08, 0x34c24,
2327                 0x34d00, 0x34d14,
2328                 0x34d1c, 0x34d3c,
2329                 0x34d44, 0x34d4c,
2330                 0x34d54, 0x34d74,
2331                 0x34d7c, 0x34d7c,
2332                 0x34de0, 0x34de0,
2333                 0x34e00, 0x34ed4,
2334                 0x34f00, 0x34fa4,
2335                 0x34fc0, 0x34fc4,
2336                 0x35000, 0x35004,
2337                 0x35080, 0x350fc,
2338                 0x35208, 0x35220,
2339                 0x3523c, 0x35254,
2340                 0x35300, 0x35300,
2341                 0x35308, 0x3531c,
2342                 0x35338, 0x3533c,
2343                 0x35380, 0x35380,
2344                 0x35388, 0x353a8,
2345                 0x353b4, 0x353b4,
2346                 0x35400, 0x35420,
2347                 0x35438, 0x3543c,
2348                 0x35480, 0x35480,
2349                 0x354a8, 0x354a8,
2350                 0x354b0, 0x354b4,
2351                 0x354c8, 0x354d4,
2352                 0x35a40, 0x35a4c,
2353                 0x35af0, 0x35b20,
2354                 0x35b38, 0x35b3c,
2355                 0x35b80, 0x35b80,
2356                 0x35ba8, 0x35ba8,
2357                 0x35bb0, 0x35bb4,
2358                 0x35bc8, 0x35bd4,
2359                 0x36140, 0x3618c,
2360                 0x361f0, 0x361f4,
2361                 0x36200, 0x36200,
2362                 0x36218, 0x36218,
2363                 0x36400, 0x36400,
2364                 0x36408, 0x3641c,
2365                 0x36618, 0x36620,
2366                 0x36664, 0x36664,
2367                 0x366a8, 0x366a8,
2368                 0x366ec, 0x366ec,
2369                 0x36a00, 0x36abc,
2370                 0x36b00, 0x36b38,
2371                 0x36b40, 0x36b58,
2372                 0x36b60, 0x36b78,
2373                 0x36c00, 0x36c00,
2374                 0x36c08, 0x36c3c,
2375                 0x36e00, 0x36e2c,
2376                 0x36f00, 0x36f2c,
2377                 0x37000, 0x3702c,
2378                 0x37034, 0x37050,
2379                 0x37058, 0x37058,
2380                 0x37060, 0x3708c,
2381                 0x3709c, 0x370ac,
2382                 0x370c0, 0x370c0,
2383                 0x370c8, 0x370d0,
2384                 0x370d8, 0x370e0,
2385                 0x370ec, 0x3712c,
2386                 0x37134, 0x37150,
2387                 0x37158, 0x37158,
2388                 0x37160, 0x3718c,
2389                 0x3719c, 0x371ac,
2390                 0x371c0, 0x371c0,
2391                 0x371c8, 0x371d0,
2392                 0x371d8, 0x371e0,
2393                 0x371ec, 0x37290,
2394                 0x37298, 0x372c4,
2395                 0x372e4, 0x37390,
2396                 0x37398, 0x373c4,
2397                 0x373e4, 0x3742c,
2398                 0x37434, 0x37450,
2399                 0x37458, 0x37458,
2400                 0x37460, 0x3748c,
2401                 0x3749c, 0x374ac,
2402                 0x374c0, 0x374c0,
2403                 0x374c8, 0x374d0,
2404                 0x374d8, 0x374e0,
2405                 0x374ec, 0x3752c,
2406                 0x37534, 0x37550,
2407                 0x37558, 0x37558,
2408                 0x37560, 0x3758c,
2409                 0x3759c, 0x375ac,
2410                 0x375c0, 0x375c0,
2411                 0x375c8, 0x375d0,
2412                 0x375d8, 0x375e0,
2413                 0x375ec, 0x37690,
2414                 0x37698, 0x376c4,
2415                 0x376e4, 0x37790,
2416                 0x37798, 0x377c4,
2417                 0x377e4, 0x377fc,
2418                 0x37814, 0x37814,
2419                 0x37854, 0x37868,
2420                 0x37880, 0x3788c,
2421                 0x378c0, 0x378d0,
2422                 0x378e8, 0x378ec,
2423                 0x37900, 0x3792c,
2424                 0x37934, 0x37950,
2425                 0x37958, 0x37958,
2426                 0x37960, 0x3798c,
2427                 0x3799c, 0x379ac,
2428                 0x379c0, 0x379c0,
2429                 0x379c8, 0x379d0,
2430                 0x379d8, 0x379e0,
2431                 0x379ec, 0x37a90,
2432                 0x37a98, 0x37ac4,
2433                 0x37ae4, 0x37b10,
2434                 0x37b24, 0x37b28,
2435                 0x37b38, 0x37b50,
2436                 0x37bf0, 0x37c10,
2437                 0x37c24, 0x37c28,
2438                 0x37c38, 0x37c50,
2439                 0x37cf0, 0x37cfc,
2440                 0x40040, 0x40040,
2441                 0x40080, 0x40084,
2442                 0x40100, 0x40100,
2443                 0x40140, 0x401bc,
2444                 0x40200, 0x40214,
2445                 0x40228, 0x40228,
2446                 0x40240, 0x40258,
2447                 0x40280, 0x40280,
2448                 0x40304, 0x40304,
2449                 0x40330, 0x4033c,
2450                 0x41304, 0x413b8,
2451                 0x413c0, 0x413c8,
2452                 0x413d0, 0x413dc,
2453                 0x413f0, 0x413f0,
2454                 0x41400, 0x4140c,
2455                 0x41414, 0x4141c,
2456                 0x41480, 0x414d0,
2457                 0x44000, 0x4407c,
2458                 0x440c0, 0x441ac,
2459                 0x441b4, 0x4427c,
2460                 0x442c0, 0x443ac,
2461                 0x443b4, 0x4447c,
2462                 0x444c0, 0x445ac,
2463                 0x445b4, 0x4467c,
2464                 0x446c0, 0x447ac,
2465                 0x447b4, 0x4487c,
2466                 0x448c0, 0x449ac,
2467                 0x449b4, 0x44a7c,
2468                 0x44ac0, 0x44bac,
2469                 0x44bb4, 0x44c7c,
2470                 0x44cc0, 0x44dac,
2471                 0x44db4, 0x44e7c,
2472                 0x44ec0, 0x44fac,
2473                 0x44fb4, 0x4507c,
2474                 0x450c0, 0x451ac,
2475                 0x451b4, 0x451fc,
2476                 0x45800, 0x45804,
2477                 0x45810, 0x45830,
2478                 0x45840, 0x45860,
2479                 0x45868, 0x45868,
2480                 0x45880, 0x45884,
2481                 0x458a0, 0x458b0,
2482                 0x45a00, 0x45a04,
2483                 0x45a10, 0x45a30,
2484                 0x45a40, 0x45a60,
2485                 0x45a68, 0x45a68,
2486                 0x45a80, 0x45a84,
2487                 0x45aa0, 0x45ab0,
2488                 0x460c0, 0x460e4,
2489                 0x47000, 0x4703c,
2490                 0x47044, 0x4708c,
2491                 0x47200, 0x47250,
2492                 0x47400, 0x47408,
2493                 0x47414, 0x47420,
2494                 0x47600, 0x47618,
2495                 0x47800, 0x47814,
2496                 0x47820, 0x4782c,
2497                 0x50000, 0x50084,
2498                 0x50090, 0x500cc,
2499                 0x50300, 0x50384,
2500                 0x50400, 0x50400,
2501                 0x50800, 0x50884,
2502                 0x50890, 0x508cc,
2503                 0x50b00, 0x50b84,
2504                 0x50c00, 0x50c00,
2505                 0x51000, 0x51020,
2506                 0x51028, 0x510b0,
2507                 0x51300, 0x51324,
2508         };
2509
2510         u32 *buf_end = (u32 *)((char *)buf + buf_size);
2511         const unsigned int *reg_ranges;
2512         int reg_ranges_size, range;
2513         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2514
2515         /* Select the right set of register ranges to dump depending on the
2516          * adapter chip type.
2517          */
2518         switch (chip_version) {
2519         case CHELSIO_T4:
2520                 reg_ranges = t4_reg_ranges;
2521                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2522                 break;
2523
2524         case CHELSIO_T5:
2525                 reg_ranges = t5_reg_ranges;
2526                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2527                 break;
2528
2529         case CHELSIO_T6:
2530                 reg_ranges = t6_reg_ranges;
2531                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2532                 break;
2533
2534         default:
2535                 dev_err(adap->pdev_dev,
2536                         "Unsupported chip version %d\n", chip_version);
2537                 return;
2538         }
2539
2540         /* Clear the register buffer and insert the appropriate register
2541          * values selected by the above register ranges.
2542          */
2543         memset(buf, 0, buf_size);
2544         for (range = 0; range < reg_ranges_size; range += 2) {
2545                 unsigned int reg = reg_ranges[range];
2546                 unsigned int last_reg = reg_ranges[range + 1];
2547                 u32 *bufp = (u32 *)((char *)buf + reg);
2548
2549                 /* Iterate across the register range filling in the register
2550                  * buffer but don't write past the end of the register buffer.
2551                  */
2552                 while (reg <= last_reg && bufp < buf_end) {
2553                         *bufp++ = t4_read_reg(adap, reg);
2554                         reg += sizeof(u32);
2555                 }
2556         }
2557 }
2558
2559 #define EEPROM_STAT_ADDR   0x7bfc
2560 #define VPD_SIZE           0x800
2561 #define VPD_BASE           0x400
2562 #define VPD_BASE_OLD       0
2563 #define VPD_LEN            1024
2564 #define CHELSIO_VPD_UNIQUE_ID 0x82
2565
2566 /**
2567  *      t4_seeprom_wp - enable/disable EEPROM write protection
2568  *      @adapter: the adapter
2569  *      @enable: whether to enable or disable write protection
2570  *
2571  *      Enables or disables write protection on the serial EEPROM.
2572  */
2573 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2574 {
2575         unsigned int v = enable ? 0xc : 0;
2576         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2577         return ret < 0 ? ret : 0;
2578 }
2579
2580 /**
2581  *      t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2582  *      @adapter: adapter to read
2583  *      @p: where to store the parameters
2584  *
2585  *      Reads card parameters stored in VPD EEPROM.
2586  */
2587 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2588 {
2589         int i, ret = 0, addr;
2590         int ec, sn, pn, na;
2591         u8 *vpd, csum;
2592         unsigned int vpdr_len, kw_offset, id_len;
2593
2594         vpd = vmalloc(VPD_LEN);
2595         if (!vpd)
2596                 return -ENOMEM;
2597
2598         /* We have two VPD data structures stored in the adapter VPD area.
2599          * By default, Linux calculates the size of the VPD area by traversing
2600          * the first VPD area at offset 0x0, so we need to tell the OS what
2601          * our real VPD size is.
2602          */
2603         ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2604         if (ret < 0)
2605                 goto out;
2606
2607         /* Card information normally starts at VPD_BASE but early cards had
2608          * it at 0.
2609          */
2610         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2611         if (ret < 0)
2612                 goto out;
2613
2614         /* The VPD shall have a unique identifier specified by the PCI SIG.
2615          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2616          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2617          * is expected to automatically put this entry at the
2618          * beginning of the VPD.
2619          */
2620         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2621
2622         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2623         if (ret < 0)
2624                 goto out;
2625
2626         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2627                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2628                 ret = -EINVAL;
2629                 goto out;
2630         }
2631
2632         id_len = pci_vpd_lrdt_size(vpd);
2633         if (id_len > ID_LEN)
2634                 id_len = ID_LEN;
2635
2636         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2637         if (i < 0) {
2638                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2639                 ret = -EINVAL;
2640                 goto out;
2641         }
2642
2643         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2644         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2645         if (vpdr_len + kw_offset > VPD_LEN) {
2646                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2647                 ret = -EINVAL;
2648                 goto out;
2649         }
2650
2651 #define FIND_VPD_KW(var, name) do { \
2652         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2653         if (var < 0) { \
2654                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2655                 ret = -EINVAL; \
2656                 goto out; \
2657         } \
2658         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2659 } while (0)
2660
2661         FIND_VPD_KW(i, "RV");
2662         for (csum = 0; i >= 0; i--)
2663                 csum += vpd[i];
2664
2665         if (csum) {
2666                 dev_err(adapter->pdev_dev,
2667                         "corrupted VPD EEPROM, actual csum %u\n", csum);
2668                 ret = -EINVAL;
2669                 goto out;
2670         }
2671
2672         FIND_VPD_KW(ec, "EC");
2673         FIND_VPD_KW(sn, "SN");
2674         FIND_VPD_KW(pn, "PN");
2675         FIND_VPD_KW(na, "NA");
2676 #undef FIND_VPD_KW
2677
2678         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2679         strim(p->id);
2680         memcpy(p->ec, vpd + ec, EC_LEN);
2681         strim(p->ec);
2682         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2683         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2684         strim(p->sn);
2685         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2686         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2687         strim(p->pn);
2688         memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2689         strim((char *)p->na);
2690
2691 out:
2692         vfree(vpd);
2693         return ret;
2694 }
2695
2696 /**
2697  *      t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2698  *      @adapter: adapter to read
2699  *      @p: where to store the parameters
2700  *
2701  *      Reads card parameters stored in VPD EEPROM and retrieves the Core
2702  *      Clock.  This can only be called after a connection to the firmware
2703  *      is established.
2704  */
2705 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2706 {
2707         u32 cclk_param, cclk_val;
2708         int ret;
2709
2710         /* Grab the raw VPD parameters.
2711          */
2712         ret = t4_get_raw_vpd_params(adapter, p);
2713         if (ret)
2714                 return ret;
2715
2716         /* Ask firmware for the Core Clock since it knows how to translate the
2717          * Reference Clock ('V2') VPD field into a Core Clock value ...
2718          */
2719         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2720                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2721         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2722                               1, &cclk_param, &cclk_val);
2723
2724         if (ret)
2725                 return ret;
2726         p->cclk = cclk_val;
2727
2728         return 0;
2729 }
2730
2731 /* serial flash and firmware constants */
2732 enum {
2733         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2734
2735         /* flash command opcodes */
2736         SF_PROG_PAGE    = 2,          /* program page */
2737         SF_WR_DISABLE   = 4,          /* disable writes */
2738         SF_RD_STATUS    = 5,          /* read status register */
2739         SF_WR_ENABLE    = 6,          /* enable writes */
2740         SF_RD_DATA_FAST = 0xb,        /* read flash */
2741         SF_RD_ID        = 0x9f,       /* read ID */
2742         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2743
2744         FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2745 };
2746
2747 /**
2748  *      sf1_read - read data from the serial flash
2749  *      @adapter: the adapter
2750  *      @byte_cnt: number of bytes to read
2751  *      @cont: whether another operation will be chained
2752  *      @lock: whether to lock SF for PL access only
2753  *      @valp: where to store the read data
2754  *
2755  *      Reads up to 4 bytes of data from the serial flash.  The location of
2756  *      the read needs to be specified prior to calling this by issuing the
2757  *      appropriate commands to the serial flash.
2758  */
2759 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2760                     int lock, u32 *valp)
2761 {
2762         int ret;
2763
2764         if (!byte_cnt || byte_cnt > 4)
2765                 return -EINVAL;
2766         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2767                 return -EBUSY;
2768         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2769                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2770         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2771         if (!ret)
2772                 *valp = t4_read_reg(adapter, SF_DATA_A);
2773         return ret;
2774 }
2775
2776 /**
2777  *      sf1_write - write data to the serial flash
2778  *      @adapter: the adapter
2779  *      @byte_cnt: number of bytes to write
2780  *      @cont: whether another operation will be chained
2781  *      @lock: whether to lock SF for PL access only
2782  *      @val: value to write
2783  *
2784  *      Writes up to 4 bytes of data to the serial flash.  The location of
2785  *      the write needs to be specified prior to calling this by issuing the
2786  *      appropriate commands to the serial flash.
2787  */
2788 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2789                      int lock, u32 val)
2790 {
2791         if (!byte_cnt || byte_cnt > 4)
2792                 return -EINVAL;
2793         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2794                 return -EBUSY;
2795         t4_write_reg(adapter, SF_DATA_A, val);
2796         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2797                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2798         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2799 }
2800
2801 /**
2802  *      flash_wait_op - wait for a flash operation to complete
2803  *      @adapter: the adapter
2804  *      @attempts: max number of polls of the status register
2805  *      @delay: delay between polls in ms
2806  *
2807  *      Wait for a flash operation to complete by polling the status register.
2808  */
2809 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2810 {
2811         int ret;
2812         u32 status;
2813
2814         while (1) {
2815                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2816                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2817                         return ret;
2818                 if (!(status & 1))
2819                         return 0;
2820                 if (--attempts == 0)
2821                         return -EAGAIN;
2822                 if (delay)
2823                         msleep(delay);
2824         }
2825 }
2826
2827 /**
2828  *      t4_read_flash - read words from serial flash
2829  *      @adapter: the adapter
2830  *      @addr: the start address for the read
2831  *      @nwords: how many 32-bit words to read
2832  *      @data: where to store the read data
2833  *      @byte_oriented: whether to store data as bytes or as words
2834  *
2835  *      Read the specified number of 32-bit words from the serial flash.
2836  *      If @byte_oriented is set the read data is stored as a byte array
2837  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
2838  *      natural endianness.
2839  */
2840 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2841                   unsigned int nwords, u32 *data, int byte_oriented)
2842 {
2843         int ret;
2844
2845         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2846                 return -EINVAL;
2847
2848         addr = swab32(addr) | SF_RD_DATA_FAST;
2849
2850         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2851             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2852                 return ret;
2853
2854         for ( ; nwords; nwords--, data++) {
2855                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2856                 if (nwords == 1)
2857                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2858                 if (ret)
2859                         return ret;
2860                 if (byte_oriented)
2861                         *data = (__force __u32)(cpu_to_be32(*data));
2862         }
2863         return 0;
2864 }
2865
2866 /**
2867  *      t4_write_flash - write up to a page of data to the serial flash
2868  *      @adapter: the adapter
2869  *      @addr: the start address to write
2870  *      @n: length of data to write in bytes
2871  *      @data: the data to write
2872  *
2873  *      Writes up to a page of data (256 bytes) to the serial flash starting
2874  *      at the given address.  All the data must be written to the same page.
2875  */
2876 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2877                           unsigned int n, const u8 *data)
2878 {
2879         int ret;
2880         u32 buf[64];
2881         unsigned int i, c, left, val, offset = addr & 0xff;
2882
2883         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2884                 return -EINVAL;
2885
2886         val = swab32(addr) | SF_PROG_PAGE;
2887
2888         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2889             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2890                 goto unlock;
2891
2892         for (left = n; left; left -= c) {
2893                 c = min(left, 4U);
2894                 for (val = 0, i = 0; i < c; ++i)
2895                         val = (val << 8) + *data++;
2896
2897                 ret = sf1_write(adapter, c, c != left, 1, val);
2898                 if (ret)
2899                         goto unlock;
2900         }
2901         ret = flash_wait_op(adapter, 8, 1);
2902         if (ret)
2903                 goto unlock;
2904
2905         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2906
2907         /* Read the page to verify the write succeeded */
2908         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2909         if (ret)
2910                 return ret;
2911
2912         if (memcmp(data - n, (u8 *)buf + offset, n)) {
2913                 dev_err(adapter->pdev_dev,
2914                         "failed to correctly write the flash page at %#x\n",
2915                         addr);
2916                 return -EIO;
2917         }
2918         return 0;
2919
2920 unlock:
2921         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2922         return ret;
2923 }
2924
2925 /**
2926  *      t4_get_fw_version - read the firmware version
2927  *      @adapter: the adapter
2928  *      @vers: where to place the version
2929  *
2930  *      Reads the FW version from flash.
2931  */
2932 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2933 {
2934         return t4_read_flash(adapter, FLASH_FW_START +
2935                              offsetof(struct fw_hdr, fw_ver), 1,
2936                              vers, 0);
2937 }
2938
2939 /**
2940  *      t4_get_tp_version - read the TP microcode version
2941  *      @adapter: the adapter
2942  *      @vers: where to place the version
2943  *
2944  *      Reads the TP microcode version from flash.
2945  */
2946 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2947 {
2948         return t4_read_flash(adapter, FLASH_FW_START +
2949                              offsetof(struct fw_hdr, tp_microcode_ver),
2950                              1, vers, 0);
2951 }
2952
2953 /**
2954  *      t4_get_exprom_version - return the Expansion ROM version (if any)
2955  *      @adapter: the adapter
2956  *      @vers: where to place the version
2957  *
2958  *      Reads the Expansion ROM header from FLASH and returns the version
2959  *      number (if present) through the @vers return value pointer.  We return
2960  *      this in the Firmware Version Format since it's convenient.  Return
2961  *      0 on success, -ENOENT if no Expansion ROM is present.
2962  */
2963 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2964 {
2965         struct exprom_header {
2966                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2967                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2968         } *hdr;
2969         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2970                                            sizeof(u32))];
2971         int ret;
2972
2973         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2974                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2975                             0);
2976         if (ret)
2977                 return ret;
2978
2979         hdr = (struct exprom_header *)exprom_header_buf;
2980         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2981                 return -ENOENT;
2982
2983         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2984                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2985                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2986                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2987         return 0;
2988 }
2989
2990 /**
2991  *      t4_check_fw_version - check if the FW is supported with this driver
2992  *      @adap: the adapter
2993  *
2994  *      Checks if an adapter's FW is compatible with the driver.  Returns 0
2995  *      if there's exact match, a negative error if the version could not be
2996  *      read or there's a major version mismatch
2997  */
2998 int t4_check_fw_version(struct adapter *adap)
2999 {
3000         int i, ret, major, minor, micro;
3001         int exp_major, exp_minor, exp_micro;
3002         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3003
3004         ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3005         /* Try multiple times before returning error */
3006         for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3007                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3008
3009         if (ret)
3010                 return ret;
3011
3012         major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3013         minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3014         micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3015
3016         switch (chip_version) {
3017         case CHELSIO_T4:
3018                 exp_major = T4FW_MIN_VERSION_MAJOR;
3019                 exp_minor = T4FW_MIN_VERSION_MINOR;
3020                 exp_micro = T4FW_MIN_VERSION_MICRO;
3021                 break;
3022         case CHELSIO_T5:
3023                 exp_major = T5FW_MIN_VERSION_MAJOR;
3024                 exp_minor = T5FW_MIN_VERSION_MINOR;
3025                 exp_micro = T5FW_MIN_VERSION_MICRO;
3026                 break;
3027         case CHELSIO_T6:
3028                 exp_major = T6FW_MIN_VERSION_MAJOR;
3029                 exp_minor = T6FW_MIN_VERSION_MINOR;
3030                 exp_micro = T6FW_MIN_VERSION_MICRO;
3031                 break;
3032         default:
3033                 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3034                         adap->chip);
3035                 return -EINVAL;
3036         }
3037
3038         if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3039             (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3040                 dev_err(adap->pdev_dev,
3041                         "Card has firmware version %u.%u.%u, minimum "
3042                         "supported firmware is %u.%u.%u.\n", major, minor,
3043                         micro, exp_major, exp_minor, exp_micro);
3044                 return -EFAULT;
3045         }
3046         return 0;
3047 }
3048
3049 /* Is the given firmware API compatible with the one the driver was compiled
3050  * with?
3051  */
3052 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3053 {
3054
3055         /* short circuit if it's the exact same firmware version */
3056         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3057                 return 1;
3058
3059 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3060         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3061             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3062                 return 1;
3063 #undef SAME_INTF
3064
3065         return 0;
3066 }
3067
3068 /* The firmware in the filesystem is usable, but should it be installed?
3069  * This routine explains itself in detail if it indicates the filesystem
3070  * firmware should be installed.
3071  */
3072 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3073                                 int k, int c)
3074 {
3075         const char *reason;
3076
3077         if (!card_fw_usable) {
3078                 reason = "incompatible or unusable";
3079                 goto install;
3080         }
3081
3082         if (k > c) {
3083                 reason = "older than the version supported with this driver";
3084                 goto install;
3085         }
3086
3087         return 0;
3088
3089 install:
3090         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3091                 "installing firmware %u.%u.%u.%u on card.\n",
3092                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3093                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3094                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3095                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3096
3097         return 1;
3098 }
3099
3100 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3101                const u8 *fw_data, unsigned int fw_size,
3102                struct fw_hdr *card_fw, enum dev_state state,
3103                int *reset)
3104 {
3105         int ret, card_fw_usable, fs_fw_usable;
3106         const struct fw_hdr *fs_fw;
3107         const struct fw_hdr *drv_fw;
3108
3109         drv_fw = &fw_info->fw_hdr;
3110
3111         /* Read the header of the firmware on the card */
3112         ret = -t4_read_flash(adap, FLASH_FW_START,
3113                             sizeof(*card_fw) / sizeof(uint32_t),
3114                             (uint32_t *)card_fw, 1);
3115         if (ret == 0) {
3116                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3117         } else {
3118                 dev_err(adap->pdev_dev,
3119                         "Unable to read card's firmware header: %d\n", ret);
3120                 card_fw_usable = 0;
3121         }
3122
3123         if (fw_data != NULL) {
3124                 fs_fw = (const void *)fw_data;
3125                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3126         } else {
3127                 fs_fw = NULL;
3128                 fs_fw_usable = 0;
3129         }
3130
3131         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3132             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3133                 /* Common case: the firmware on the card is an exact match and
3134                  * the filesystem one is an exact match too, or the filesystem
3135                  * one is absent/incompatible.
3136                  */
3137         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3138                    should_install_fs_fw(adap, card_fw_usable,
3139                                         be32_to_cpu(fs_fw->fw_ver),
3140                                         be32_to_cpu(card_fw->fw_ver))) {
3141                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3142                                      fw_size, 0);
3143                 if (ret != 0) {
3144                         dev_err(adap->pdev_dev,
3145                                 "failed to install firmware: %d\n", ret);
3146                         goto bye;
3147                 }
3148
3149                 /* Installed successfully, update the cached header too. */
3150                 *card_fw = *fs_fw;
3151                 card_fw_usable = 1;
3152                 *reset = 0;     /* already reset as part of load_fw */
3153         }
3154
3155         if (!card_fw_usable) {
3156                 uint32_t d, c, k;
3157
3158                 d = be32_to_cpu(drv_fw->fw_ver);
3159                 c = be32_to_cpu(card_fw->fw_ver);
3160                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3161
3162                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3163                         "chip state %d, "
3164                         "driver compiled with %d.%d.%d.%d, "
3165                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3166                         state,
3167                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3168                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3169                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3170                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3171                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3172                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3173                 ret = EINVAL;
3174                 goto bye;
3175         }
3176
3177         /* We're using whatever's on the card and it's known to be good. */
3178         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3179         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3180
3181 bye:
3182         return ret;
3183 }
3184
3185 /**
3186  *      t4_flash_erase_sectors - erase a range of flash sectors
3187  *      @adapter: the adapter
3188  *      @start: the first sector to erase
3189  *      @end: the last sector to erase
3190  *
3191  *      Erases the sectors in the given inclusive range.
3192  */
3193 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3194 {
3195         int ret = 0;
3196
3197         if (end >= adapter->params.sf_nsec)
3198                 return -EINVAL;
3199
3200         while (start <= end) {
3201                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3202                     (ret = sf1_write(adapter, 4, 0, 1,
3203                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
3204                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3205                         dev_err(adapter->pdev_dev,
3206                                 "erase of flash sector %d failed, error %d\n",
3207                                 start, ret);
3208                         break;
3209                 }
3210                 start++;
3211         }
3212         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3213         return ret;
3214 }
3215
3216 /**
3217  *      t4_flash_cfg_addr - return the address of the flash configuration file
3218  *      @adapter: the adapter
3219  *
3220  *      Return the address within the flash where the Firmware Configuration
3221  *      File is stored.
3222  */
3223 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3224 {
3225         if (adapter->params.sf_size == 0x100000)
3226                 return FLASH_FPGA_CFG_START;
3227         else
3228                 return FLASH_CFG_START;
3229 }
3230
3231 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3232  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3233  * and emit an error message for mismatched firmware to save our caller the
3234  * effort ...
3235  */
3236 static bool t4_fw_matches_chip(const struct adapter *adap,
3237                                const struct fw_hdr *hdr)
3238 {
3239         /* The expression below will return FALSE for any unsupported adapter
3240          * which will keep us "honest" in the future ...
3241          */
3242         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3243             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3244             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3245                 return true;
3246
3247         dev_err(adap->pdev_dev,
3248                 "FW image (%d) is not suitable for this adapter (%d)\n",
3249                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3250         return false;
3251 }
3252
3253 /**
3254  *      t4_load_fw - download firmware
3255  *      @adap: the adapter
3256  *      @fw_data: the firmware image to write
3257  *      @size: image size
3258  *
3259  *      Write the supplied firmware image to the card's serial flash.
3260  */
3261 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3262 {
3263         u32 csum;
3264         int ret, addr;
3265         unsigned int i;
3266         u8 first_page[SF_PAGE_SIZE];
3267         const __be32 *p = (const __be32 *)fw_data;
3268         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3269         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3270         unsigned int fw_img_start = adap->params.sf_fw_start;
3271         unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3272
3273         if (!size) {
3274                 dev_err(adap->pdev_dev, "FW image has no data\n");
3275                 return -EINVAL;
3276         }
3277         if (size & 511) {
3278                 dev_err(adap->pdev_dev,
3279                         "FW image size not multiple of 512 bytes\n");
3280                 return -EINVAL;
3281         }
3282         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3283                 dev_err(adap->pdev_dev,
3284                         "FW image size differs from size in FW header\n");
3285                 return -EINVAL;
3286         }
3287         if (size > FW_MAX_SIZE) {
3288                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3289                         FW_MAX_SIZE);
3290                 return -EFBIG;
3291         }
3292         if (!t4_fw_matches_chip(adap, hdr))
3293                 return -EINVAL;
3294
3295         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3296                 csum += be32_to_cpu(p[i]);
3297
3298         if (csum != 0xffffffff) {
3299                 dev_err(adap->pdev_dev,
3300                         "corrupted firmware image, checksum %#x\n", csum);
3301                 return -EINVAL;
3302         }
3303
3304         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3305         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3306         if (ret)
3307                 goto out;
3308
3309         /*
3310          * We write the correct version at the end so the driver can see a bad
3311          * version if the FW write fails.  Start by writing a copy of the
3312          * first page with a bad version.
3313          */
3314         memcpy(first_page, fw_data, SF_PAGE_SIZE);
3315         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3316         ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3317         if (ret)
3318                 goto out;
3319
3320         addr = fw_img_start;
3321         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3322                 addr += SF_PAGE_SIZE;
3323                 fw_data += SF_PAGE_SIZE;
3324                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3325                 if (ret)
3326                         goto out;
3327         }
3328
3329         ret = t4_write_flash(adap,
3330                              fw_img_start + offsetof(struct fw_hdr, fw_ver),
3331                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3332 out:
3333         if (ret)
3334                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3335                         ret);
3336         else
3337                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3338         return ret;
3339 }
3340
3341 /**
3342  *      t4_phy_fw_ver - return current PHY firmware version
3343  *      @adap: the adapter
3344  *      @phy_fw_ver: return value buffer for PHY firmware version
3345  *
3346  *      Returns the current version of external PHY firmware on the
3347  *      adapter.
3348  */
3349 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3350 {
3351         u32 param, val;
3352         int ret;
3353
3354         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3355                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3356                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3357                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3358         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3359                               &param, &val);
3360         if (ret < 0)
3361                 return ret;
3362         *phy_fw_ver = val;
3363         return 0;
3364 }
3365
3366 /**
3367  *      t4_load_phy_fw - download port PHY firmware
3368  *      @adap: the adapter
3369  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
3370  *      @win_lock: the lock to use to guard the memory copy
3371  *      @phy_fw_version: function to check PHY firmware versions
3372  *      @phy_fw_data: the PHY firmware image to write
3373  *      @phy_fw_size: image size
3374  *
3375  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
3376  *      @phy_fw_version is supplied, then it will be used to determine if
3377  *      it's necessary to perform the transfer by comparing the version
3378  *      of any existing adapter PHY firmware with that of the passed in
3379  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
3380  *      around the call to t4_memory_rw() which transfers the PHY firmware
3381  *      to the adapter.
3382  *
3383  *      A negative error number will be returned if an error occurs.  If
3384  *      version number support is available and there's no need to upgrade
3385  *      the firmware, 0 will be returned.  If firmware is successfully
3386  *      transferred to the adapter, 1 will be retured.
3387  *
3388  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
3389  *      a result, a RESET of the adapter would cause that RAM to lose its
3390  *      contents.  Thus, loading PHY firmware on such adapters must happen
3391  *      after any FW_RESET_CMDs ...
3392  */
3393 int t4_load_phy_fw(struct adapter *adap,
3394                    int win, spinlock_t *win_lock,
3395                    int (*phy_fw_version)(const u8 *, size_t),
3396                    const u8 *phy_fw_data, size_t phy_fw_size)
3397 {
3398         unsigned long mtype = 0, maddr = 0;
3399         u32 param, val;
3400         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3401         int ret;
3402
3403         /* If we have version number support, then check to see if the adapter
3404          * already has up-to-date PHY firmware loaded.
3405          */
3406          if (phy_fw_version) {
3407                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3408                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3409                 if (ret < 0)
3410                         return ret;
3411
3412                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3413                         CH_WARN(adap, "PHY Firmware already up-to-date, "
3414                                 "version %#x\n", cur_phy_fw_ver);
3415                         return 0;
3416                 }
3417         }
3418
3419         /* Ask the firmware where it wants us to copy the PHY firmware image.
3420          * The size of the file requires a special version of the READ coommand
3421          * which will pass the file size via the values field in PARAMS_CMD and
3422          * retrieve the return value from firmware and place it in the same
3423          * buffer values
3424          */
3425         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3426                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3427                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3428                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3429         val = phy_fw_size;
3430         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3431                                  &param, &val, 1);
3432         if (ret < 0)
3433                 return ret;
3434         mtype = val >> 8;
3435         maddr = (val & 0xff) << 16;
3436
3437         /* Copy the supplied PHY Firmware image to the adapter memory location
3438          * allocated by the adapter firmware.
3439          */
3440         if (win_lock)
3441                 spin_lock_bh(win_lock);
3442         ret = t4_memory_rw(adap, win, mtype, maddr,
3443                            phy_fw_size, (__be32 *)phy_fw_data,
3444                            T4_MEMORY_WRITE);
3445         if (win_lock)
3446                 spin_unlock_bh(win_lock);
3447         if (ret)
3448                 return ret;
3449
3450         /* Tell the firmware that the PHY firmware image has been written to
3451          * RAM and it can now start copying it over to the PHYs.  The chip
3452          * firmware will RESET the affected PHYs as part of this operation
3453          * leaving them running the new PHY firmware image.
3454          */
3455         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3456                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3457                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3458                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3459         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3460                                     &param, &val, 30000);
3461
3462         /* If we have version number support, then check to see that the new
3463          * firmware got loaded properly.
3464          */
3465         if (phy_fw_version) {
3466                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3467                 if (ret < 0)
3468                         return ret;
3469
3470                 if (cur_phy_fw_ver != new_phy_fw_vers) {
3471                         CH_WARN(adap, "PHY Firmware did not update: "
3472                                 "version on adapter %#x, "
3473                                 "version flashed %#x\n",
3474                                 cur_phy_fw_ver, new_phy_fw_vers);
3475                         return -ENXIO;
3476                 }
3477         }
3478
3479         return 1;
3480 }
3481
3482 /**
3483  *      t4_fwcache - firmware cache operation
3484  *      @adap: the adapter
3485  *      @op  : the operation (flush or flush and invalidate)
3486  */
3487 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3488 {
3489         struct fw_params_cmd c;
3490
3491         memset(&c, 0, sizeof(c));
3492         c.op_to_vfn =
3493                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3494                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3495                             FW_PARAMS_CMD_PFN_V(adap->pf) |
3496                             FW_PARAMS_CMD_VFN_V(0));
3497         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3498         c.param[0].mnem =
3499                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3500                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3501         c.param[0].val = (__force __be32)op;
3502
3503         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3504 }
3505
3506 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3507                         unsigned int *pif_req_wrptr,
3508                         unsigned int *pif_rsp_wrptr)
3509 {
3510         int i, j;
3511         u32 cfg, val, req, rsp;
3512
3513         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3514         if (cfg & LADBGEN_F)
3515                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3516
3517         val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3518         req = POLADBGWRPTR_G(val);
3519         rsp = PILADBGWRPTR_G(val);
3520         if (pif_req_wrptr)
3521                 *pif_req_wrptr = req;
3522         if (pif_rsp_wrptr)
3523                 *pif_rsp_wrptr = rsp;
3524
3525         for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3526                 for (j = 0; j < 6; j++) {
3527                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3528                                      PILADBGRDPTR_V(rsp));
3529                         *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3530                         *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3531                         req++;
3532                         rsp++;
3533                 }
3534                 req = (req + 2) & POLADBGRDPTR_M;
3535                 rsp = (rsp + 2) & PILADBGRDPTR_M;
3536         }
3537         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3538 }
3539
3540 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3541 {
3542         u32 cfg;
3543         int i, j, idx;
3544
3545         cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3546         if (cfg & LADBGEN_F)
3547                 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3548
3549         for (i = 0; i < CIM_MALA_SIZE; i++) {
3550                 for (j = 0; j < 5; j++) {
3551                         idx = 8 * i + j;
3552                         t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3553                                      PILADBGRDPTR_V(idx));
3554                         *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3555                         *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3556                 }
3557         }
3558         t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3559 }
3560
3561 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3562 {
3563         unsigned int i, j;
3564
3565         for (i = 0; i < 8; i++) {
3566                 u32 *p = la_buf + i;
3567
3568                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3569                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3570                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3571                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3572                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3573         }
3574 }
3575
3576 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3577                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3578                      FW_PORT_CAP_ANEG)
3579
3580 /**
3581  *      t4_link_l1cfg - apply link configuration to MAC/PHY
3582  *      @phy: the PHY to setup
3583  *      @mac: the MAC to setup
3584  *      @lc: the requested link configuration
3585  *
3586  *      Set up a port's MAC and PHY according to a desired link configuration.
3587  *      - If the PHY can auto-negotiate first decide what to advertise, then
3588  *        enable/disable auto-negotiation as desired, and reset.
3589  *      - If the PHY does not auto-negotiate just reset it.
3590  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3591  *        otherwise do it later based on the outcome of auto-negotiation.
3592  */
3593 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3594                   struct link_config *lc)
3595 {
3596         struct fw_port_cmd c;
3597         unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3598
3599         lc->link_ok = 0;
3600         if (lc->requested_fc & PAUSE_RX)
3601                 fc |= FW_PORT_CAP_FC_RX;
3602         if (lc->requested_fc & PAUSE_TX)
3603                 fc |= FW_PORT_CAP_FC_TX;
3604
3605         memset(&c, 0, sizeof(c));
3606         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3607                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3608                                      FW_PORT_CMD_PORTID_V(port));
3609         c.action_to_len16 =
3610                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3611                             FW_LEN16(c));
3612
3613         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3614                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3615                                              fc);
3616                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3617         } else if (lc->autoneg == AUTONEG_DISABLE) {
3618                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3619                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3620         } else
3621                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3622
3623         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3624 }
3625
3626 /**
3627  *      t4_restart_aneg - restart autonegotiation
3628  *      @adap: the adapter
3629  *      @mbox: mbox to use for the FW command
3630  *      @port: the port id
3631  *
3632  *      Restarts autonegotiation for the selected port.
3633  */
3634 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3635 {
3636         struct fw_port_cmd c;
3637
3638         memset(&c, 0, sizeof(c));
3639         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3640                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3641                                      FW_PORT_CMD_PORTID_V(port));
3642         c.action_to_len16 =
3643                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3644                             FW_LEN16(c));
3645         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3646         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3647 }
3648
3649 typedef void (*int_handler_t)(struct adapter *adap);
3650
3651 struct intr_info {
3652         unsigned int mask;       /* bits to check in interrupt status */
3653         const char *msg;         /* message to print or NULL */
3654         short stat_idx;          /* stat counter to increment or -1 */
3655         unsigned short fatal;    /* whether the condition reported is fatal */
3656         int_handler_t int_handler; /* platform-specific int handler */
3657 };
3658
3659 /**
3660  *      t4_handle_intr_status - table driven interrupt handler
3661  *      @adapter: the adapter that generated the interrupt
3662  *      @reg: the interrupt status register to process
3663  *      @acts: table of interrupt actions
3664  *
3665  *      A table driven interrupt handler that applies a set of masks to an
3666  *      interrupt status word and performs the corresponding actions if the
3667  *      interrupts described by the mask have occurred.  The actions include
3668  *      optionally emitting a warning or alert message.  The table is terminated
3669  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3670  *      conditions.
3671  */
3672 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3673                                  const struct intr_info *acts)
3674 {
3675         int fatal = 0;
3676         unsigned int mask = 0;
3677         unsigned int status = t4_read_reg(adapter, reg);
3678
3679         for ( ; acts->mask; ++acts) {
3680                 if (!(status & acts->mask))
3681                         continue;
3682                 if (acts->fatal) {
3683                         fatal++;
3684                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3685                                   status & acts->mask);
3686                 } else if (acts->msg && printk_ratelimit())
3687                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3688                                  status & acts->mask);
3689                 if (acts->int_handler)
3690                         acts->int_handler(adapter);
3691                 mask |= acts->mask;
3692         }
3693         status &= mask;
3694         if (status)                           /* clear processed interrupts */
3695                 t4_write_reg(adapter, reg, status);
3696         return fatal;
3697 }
3698
3699 /*
3700  * Interrupt handler for the PCIE module.
3701  */
3702 static void pcie_intr_handler(struct adapter *adapter)
3703 {
3704         static const struct intr_info sysbus_intr_info[] = {
3705                 { RNPP_F, "RXNP array parity error", -1, 1 },
3706                 { RPCP_F, "RXPC array parity error", -1, 1 },
3707                 { RCIP_F, "RXCIF array parity error", -1, 1 },
3708                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3709                 { RFTP_F, "RXFT array parity error", -1, 1 },
3710                 { 0 }
3711         };
3712         static const struct intr_info pcie_port_intr_info[] = {
3713                 { TPCP_F, "TXPC array parity error", -1, 1 },
3714                 { TNPP_F, "TXNP array parity error", -1, 1 },
3715                 { TFTP_F, "TXFT array parity error", -1, 1 },
3716                 { TCAP_F, "TXCA array parity error", -1, 1 },
3717                 { TCIP_F, "TXCIF array parity error", -1, 1 },
3718                 { RCAP_F, "RXCA array parity error", -1, 1 },
3719                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3720                 { RDPE_F, "Rx data parity error", -1, 1 },
3721                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3722                 { 0 }
3723         };
3724         static const struct intr_info pcie_intr_info[] = {
3725                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3726                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3727                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3728                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3729                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3730                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3731                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3732                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3733                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3734                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3735                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3736                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3737                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3738                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3739                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3740                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3741                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3742                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3743                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3744                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3745                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3746                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3747                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3748                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3749                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3750                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3751                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3752                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3753                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3754                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3755                   -1, 0 },
3756                 { 0 }
3757         };
3758
3759         static struct intr_info t5_pcie_intr_info[] = {
3760                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3761                   -1, 1 },
3762                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3763                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3764                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3765                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3766                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3767                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3768                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3769                   -1, 1 },
3770                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3771                   -1, 1 },
3772                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3773                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3774                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3775                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3776                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3777                   -1, 1 },
3778                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3779                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3780                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3781                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3782                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3783                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3784                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3785                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3786                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3787                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3788                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3789                   -1, 1 },
3790                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3791                   -1, 1 },
3792                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3793                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3794                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3795                 { READRSPERR_F, "Outbound read error", -1, 0 },
3796                 { 0 }
3797         };
3798
3799         int fat;
3800
3801         if (is_t4(adapter->params.chip))
3802                 fat = t4_handle_intr_status(adapter,
3803                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3804                                 sysbus_intr_info) +
3805                         t4_handle_intr_status(adapter,
3806                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3807                                         pcie_port_intr_info) +
3808                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3809                                               pcie_intr_info);
3810         else
3811                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3812                                             t5_pcie_intr_info);
3813
3814         if (fat)
3815                 t4_fatal_err(adapter);
3816 }
3817
3818 /*
3819  * TP interrupt handler.
3820  */
3821 static void tp_intr_handler(struct adapter *adapter)
3822 {
3823         static const struct intr_info tp_intr_info[] = {
3824                 { 0x3fffffff, "TP parity error", -1, 1 },
3825                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3826                 { 0 }
3827         };
3828
3829         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3830                 t4_fatal_err(adapter);
3831 }
3832
3833 /*
3834  * SGE interrupt handler.
3835  */
3836 static void sge_intr_handler(struct adapter *adapter)
3837 {
3838         u64 v;
3839         u32 err;
3840
3841         static const struct intr_info sge_intr_info[] = {
3842                 { ERR_CPL_EXCEED_IQE_SIZE_F,
3843                   "SGE received CPL exceeding IQE size", -1, 1 },
3844                 { ERR_INVALID_CIDX_INC_F,
3845                   "SGE GTS CIDX increment too large", -1, 0 },
3846                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3847                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3848                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3849                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3850                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3851                   0 },
3852                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3853                   0 },
3854                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3855                   0 },
3856                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3857                   0 },
3858                 { ERR_ING_CTXT_PRIO_F,
3859                   "SGE too many priority ingress contexts", -1, 0 },
3860                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3861                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3862                 { 0 }
3863         };
3864
3865         static struct intr_info t4t5_sge_intr_info[] = {
3866                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3867                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3868                 { ERR_EGR_CTXT_PRIO_F,
3869                   "SGE too many priority egress contexts", -1, 0 },
3870                 { 0 }
3871         };
3872
3873         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3874                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3875         if (v) {
3876                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3877                                 (unsigned long long)v);
3878                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3879                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3880         }
3881
3882         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3883         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3884                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3885                                            t4t5_sge_intr_info);
3886
3887         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3888         if (err & ERROR_QID_VALID_F) {
3889                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3890                         ERROR_QID_G(err));
3891                 if (err & UNCAPTURED_ERROR_F)
3892                         dev_err(adapter->pdev_dev,
3893                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
3894                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3895                              UNCAPTURED_ERROR_F);
3896         }
3897
3898         if (v != 0)
3899                 t4_fatal_err(adapter);
3900 }
3901
3902 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3903                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3904 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3905                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3906
3907 /*
3908  * CIM interrupt handler.
3909  */
3910 static void cim_intr_handler(struct adapter *adapter)
3911 {
3912         static const struct intr_info cim_intr_info[] = {
3913                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3914                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3915                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3916                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3917                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3918                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3919                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3920                 { 0 }
3921         };
3922         static const struct intr_info cim_upintr_info[] = {
3923                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3924                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3925                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3926                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3927                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3928                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3929                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3930                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3931                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3932                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3933                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3934                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3935                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3936                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3937                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3938                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3939                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3940                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3941                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3942                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3943                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3944                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3945                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3946                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3947                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3948                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3949                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3950                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3951                 { 0 }
3952         };
3953
3954         int fat;
3955
3956         if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3957                 t4_report_fw_error(adapter);
3958
3959         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3960                                     cim_intr_info) +
3961               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3962                                     cim_upintr_info);
3963         if (fat)
3964                 t4_fatal_err(adapter);
3965 }
3966
3967 /*
3968  * ULP RX interrupt handler.
3969  */
3970 static void ulprx_intr_handler(struct adapter *adapter)
3971 {
3972         static const struct intr_info ulprx_intr_info[] = {
3973                 { 0x1800000, "ULPRX context error", -1, 1 },
3974                 { 0x7fffff, "ULPRX parity error", -1, 1 },
3975                 { 0 }
3976         };
3977
3978         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3979                 t4_fatal_err(adapter);
3980 }
3981
3982 /*
3983  * ULP TX interrupt handler.
3984  */
3985 static void ulptx_intr_handler(struct adapter *adapter)
3986 {
3987         static const struct intr_info ulptx_intr_info[] = {
3988                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3989                   0 },
3990                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3991                   0 },
3992                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3993                   0 },
3994                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3995                   0 },
3996                 { 0xfffffff, "ULPTX parity error", -1, 1 },
3997                 { 0 }
3998         };
3999
4000         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4001                 t4_fatal_err(adapter);
4002 }
4003
4004 /*
4005  * PM TX interrupt handler.
4006  */
4007 static void pmtx_intr_handler(struct adapter *adapter)
4008 {
4009         static const struct intr_info pmtx_intr_info[] = {
4010                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4011                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4012                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4013                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4014                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4015                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4016                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4017                   -1, 1 },
4018                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4019                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4020                 { 0 }
4021         };
4022
4023         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4024                 t4_fatal_err(adapter);
4025 }
4026
4027 /*
4028  * PM RX interrupt handler.
4029  */
4030 static void pmrx_intr_handler(struct adapter *adapter)
4031 {
4032         static const struct intr_info pmrx_intr_info[] = {
4033                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4034                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4035                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4036                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4037                   -1, 1 },
4038                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4039                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4040                 { 0 }
4041         };
4042
4043         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4044                 t4_fatal_err(adapter);
4045 }
4046
4047 /*
4048  * CPL switch interrupt handler.
4049  */
4050 static void cplsw_intr_handler(struct adapter *adapter)
4051 {
4052         static const struct intr_info cplsw_intr_info[] = {
4053                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4054                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4055                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4056                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4057                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4058                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4059                 { 0 }
4060         };
4061
4062         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4063                 t4_fatal_err(adapter);
4064 }
4065
4066 /*
4067  * LE interrupt handler.
4068  */
4069 static void le_intr_handler(struct adapter *adap)
4070 {
4071         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4072         static const struct intr_info le_intr_info[] = {
4073                 { LIPMISS_F, "LE LIP miss", -1, 0 },
4074                 { LIP0_F, "LE 0 LIP error", -1, 0 },
4075                 { PARITYERR_F, "LE parity error", -1, 1 },
4076                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4077                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4078                 { 0 }
4079         };
4080
4081         static struct intr_info t6_le_intr_info[] = {
4082                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4083                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4084                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4085                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4086                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4087                 { 0 }
4088         };
4089
4090         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4091                                   (chip <= CHELSIO_T5) ?
4092                                   le_intr_info : t6_le_intr_info))
4093                 t4_fatal_err(adap);
4094 }
4095
4096 /*
4097  * MPS interrupt handler.
4098  */
4099 static void mps_intr_handler(struct adapter *adapter)
4100 {
4101         static const struct intr_info mps_rx_intr_info[] = {
4102                 { 0xffffff, "MPS Rx parity error", -1, 1 },
4103                 { 0 }
4104         };
4105         static const struct intr_info mps_tx_intr_info[] = {
4106                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4107                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4108                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4109                   -1, 1 },
4110                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4111                   -1, 1 },
4112                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4113                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4114                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4115                 { 0 }
4116         };
4117         static const struct intr_info mps_trc_intr_info[] = {
4118                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4119                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4120                   -1, 1 },
4121                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4122                 { 0 }
4123         };
4124         static const struct intr_info mps_stat_sram_intr_info[] = {
4125                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4126                 { 0 }
4127         };
4128         static const struct intr_info mps_stat_tx_intr_info[] = {
4129                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4130                 { 0 }
4131         };
4132         static const struct intr_info mps_stat_rx_intr_info[] = {
4133                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4134                 { 0 }
4135         };
4136         static const struct intr_info mps_cls_intr_info[] = {
4137                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4138                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4139                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4140                 { 0 }
4141         };
4142
4143         int fat;
4144
4145         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4146                                     mps_rx_intr_info) +
4147               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4148                                     mps_tx_intr_info) +
4149               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4150                                     mps_trc_intr_info) +
4151               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4152                                     mps_stat_sram_intr_info) +
4153               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4154                                     mps_stat_tx_intr_info) +
4155               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4156                                     mps_stat_rx_intr_info) +
4157               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4158                                     mps_cls_intr_info);
4159
4160         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4161         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4162         if (fat)
4163                 t4_fatal_err(adapter);
4164 }
4165
4166 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4167                       ECC_UE_INT_CAUSE_F)
4168
4169 /*
4170  * EDC/MC interrupt handler.
4171  */
4172 static void mem_intr_handler(struct adapter *adapter, int idx)
4173 {
4174         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4175
4176         unsigned int addr, cnt_addr, v;
4177
4178         if (idx <= MEM_EDC1) {
4179                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4180                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4181         } else if (idx == MEM_MC) {
4182                 if (is_t4(adapter->params.chip)) {
4183                         addr = MC_INT_CAUSE_A;
4184                         cnt_addr = MC_ECC_STATUS_A;
4185                 } else {
4186                         addr = MC_P_INT_CAUSE_A;
4187                         cnt_addr = MC_P_ECC_STATUS_A;
4188                 }
4189         } else {
4190                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4191                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4192         }
4193
4194         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4195         if (v & PERR_INT_CAUSE_F)
4196                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4197                           name[idx]);
4198         if (v & ECC_CE_INT_CAUSE_F) {
4199                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4200
4201                 t4_edc_err_read(adapter, idx);
4202
4203                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4204                 if (printk_ratelimit())
4205                         dev_warn(adapter->pdev_dev,
4206                                  "%u %s correctable ECC data error%s\n",
4207                                  cnt, name[idx], cnt > 1 ? "s" : "");
4208         }
4209         if (v & ECC_UE_INT_CAUSE_F)
4210                 dev_alert(adapter->pdev_dev,
4211                           "%s uncorrectable ECC data error\n", name[idx]);
4212
4213         t4_write_reg(adapter, addr, v);
4214         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4215                 t4_fatal_err(adapter);
4216 }
4217
4218 /*
4219  * MA interrupt handler.
4220  */
4221 static void ma_intr_handler(struct adapter *adap)
4222 {
4223         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4224
4225         if (status & MEM_PERR_INT_CAUSE_F) {
4226                 dev_alert(adap->pdev_dev,
4227                           "MA parity error, parity status %#x\n",
4228                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4229                 if (is_t5(adap->params.chip))
4230                         dev_alert(adap->pdev_dev,
4231                                   "MA parity error, parity status %#x\n",
4232                                   t4_read_reg(adap,
4233                                               MA_PARITY_ERROR_STATUS2_A));
4234         }
4235         if (status & MEM_WRAP_INT_CAUSE_F) {
4236                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4237                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4238                           "client %u to address %#x\n",
4239                           MEM_WRAP_CLIENT_NUM_G(v),
4240                           MEM_WRAP_ADDRESS_G(v) << 4);
4241         }
4242         t4_write_reg(adap, MA_INT_CAUSE_A, status);
4243         t4_fatal_err(adap);
4244 }
4245
4246 /*
4247  * SMB interrupt handler.
4248  */
4249 static void smb_intr_handler(struct adapter *adap)
4250 {
4251         static const struct intr_info smb_intr_info[] = {
4252                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4253                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4254                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4255                 { 0 }
4256         };
4257
4258         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4259                 t4_fatal_err(adap);
4260 }
4261
4262 /*
4263  * NC-SI interrupt handler.
4264  */
4265 static void ncsi_intr_handler(struct adapter *adap)
4266 {
4267         static const struct intr_info ncsi_intr_info[] = {
4268                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4269                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4270                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4271                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4272                 { 0 }
4273         };
4274
4275         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4276                 t4_fatal_err(adap);
4277 }
4278
4279 /*
4280  * XGMAC interrupt handler.
4281  */
4282 static void xgmac_intr_handler(struct adapter *adap, int port)
4283 {
4284         u32 v, int_cause_reg;
4285
4286         if (is_t4(adap->params.chip))
4287                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4288         else
4289                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4290
4291         v = t4_read_reg(adap, int_cause_reg);
4292
4293         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4294         if (!v)
4295                 return;
4296
4297         if (v & TXFIFO_PRTY_ERR_F)
4298                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4299                           port);
4300         if (v & RXFIFO_PRTY_ERR_F)
4301                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4302                           port);
4303         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4304         t4_fatal_err(adap);
4305 }
4306
4307 /*
4308  * PL interrupt handler.
4309  */
4310 static void pl_intr_handler(struct adapter *adap)
4311 {
4312         static const struct intr_info pl_intr_info[] = {
4313                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4314                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4315                 { 0 }
4316         };
4317
4318         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4319                 t4_fatal_err(adap);
4320 }
4321
4322 #define PF_INTR_MASK (PFSW_F)
4323 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4324                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4325                 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4326
4327 /**
4328  *      t4_slow_intr_handler - control path interrupt handler
4329  *      @adapter: the adapter
4330  *
4331  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
4332  *      The designation 'slow' is because it involves register reads, while
4333  *      data interrupts typically don't involve any MMIOs.
4334  */
4335 int t4_slow_intr_handler(struct adapter *adapter)
4336 {
4337         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4338
4339         if (!(cause & GLBL_INTR_MASK))
4340                 return 0;
4341         if (cause & CIM_F)
4342                 cim_intr_handler(adapter);
4343         if (cause & MPS_F)
4344                 mps_intr_handler(adapter);
4345         if (cause & NCSI_F)
4346                 ncsi_intr_handler(adapter);
4347         if (cause & PL_F)
4348                 pl_intr_handler(adapter);
4349         if (cause & SMB_F)
4350                 smb_intr_handler(adapter);
4351         if (cause & XGMAC0_F)
4352                 xgmac_intr_handler(adapter, 0);
4353         if (cause & XGMAC1_F)
4354                 xgmac_intr_handler(adapter, 1);
4355         if (cause & XGMAC_KR0_F)
4356                 xgmac_intr_handler(adapter, 2);
4357         if (cause & XGMAC_KR1_F)
4358                 xgmac_intr_handler(adapter, 3);
4359         if (cause & PCIE_F)
4360                 pcie_intr_handler(adapter);
4361         if (cause & MC_F)
4362                 mem_intr_handler(adapter, MEM_MC);
4363         if (is_t5(adapter->params.chip) && (cause & MC1_F))
4364                 mem_intr_handler(adapter, MEM_MC1);
4365         if (cause & EDC0_F)
4366                 mem_intr_handler(adapter, MEM_EDC0);
4367         if (cause & EDC1_F)
4368                 mem_intr_handler(adapter, MEM_EDC1);
4369         if (cause & LE_F)
4370                 le_intr_handler(adapter);
4371         if (cause & TP_F)
4372                 tp_intr_handler(adapter);
4373         if (cause & MA_F)
4374                 ma_intr_handler(adapter);
4375         if (cause & PM_TX_F)
4376                 pmtx_intr_handler(adapter);
4377         if (cause & PM_RX_F)
4378                 pmrx_intr_handler(adapter);
4379         if (cause & ULP_RX_F)
4380                 ulprx_intr_handler(adapter);
4381         if (cause & CPL_SWITCH_F)
4382                 cplsw_intr_handler(adapter);
4383         if (cause & SGE_F)
4384                 sge_intr_handler(adapter);
4385         if (cause & ULP_TX_F)
4386                 ulptx_intr_handler(adapter);
4387
4388         /* Clear the interrupts just processed for which we are the master. */
4389         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4390         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4391         return 1;
4392 }
4393
4394 /**
4395  *      t4_intr_enable - enable interrupts
4396  *      @adapter: the adapter whose interrupts should be enabled
4397  *
4398  *      Enable PF-specific interrupts for the calling function and the top-level
4399  *      interrupt concentrator for global interrupts.  Interrupts are already
4400  *      enabled at each module, here we just enable the roots of the interrupt
4401  *      hierarchies.
4402  *
4403  *      Note: this function should be called only when the driver manages
4404  *      non PF-specific interrupts from the various HW modules.  Only one PCI
4405  *      function at a time should be doing this.
4406  */
4407 void t4_intr_enable(struct adapter *adapter)
4408 {
4409         u32 val = 0;
4410         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4411         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4412                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4413
4414         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4415                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4416         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4417                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4418                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4419                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4420                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4421                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4422                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4423         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4424         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4425 }
4426
4427 /**
4428  *      t4_intr_disable - disable interrupts
4429  *      @adapter: the adapter whose interrupts should be disabled
4430  *
4431  *      Disable interrupts.  We only disable the top-level interrupt
4432  *      concentrators.  The caller must be a PCI function managing global
4433  *      interrupts.
4434  */
4435 void t4_intr_disable(struct adapter *adapter)
4436 {
4437         u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4438         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4439                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4440
4441         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4442         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4443 }
4444
4445 /**
4446  *      t4_config_rss_range - configure a portion of the RSS mapping table
4447  *      @adapter: the adapter
4448  *      @mbox: mbox to use for the FW command
4449  *      @viid: virtual interface whose RSS subtable is to be written
4450  *      @start: start entry in the table to write
4451  *      @n: how many table entries to write
4452  *      @rspq: values for the response queue lookup table
4453  *      @nrspq: number of values in @rspq
4454  *
4455  *      Programs the selected part of the VI's RSS mapping table with the
4456  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
4457  *      until the full table range is populated.
4458  *
4459  *      The caller must ensure the values in @rspq are in the range allowed for
4460  *      @viid.
4461  */
4462 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4463                         int start, int n, const u16 *rspq, unsigned int nrspq)
4464 {
4465         int ret;
4466         const u16 *rsp = rspq;
4467         const u16 *rsp_end = rspq + nrspq;
4468         struct fw_rss_ind_tbl_cmd cmd;
4469
4470         memset(&cmd, 0, sizeof(cmd));
4471         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4472                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4473                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
4474         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4475
4476         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4477         while (n > 0) {
4478                 int nq = min(n, 32);
4479                 __be32 *qp = &cmd.iq0_to_iq2;
4480
4481                 cmd.niqid = cpu_to_be16(nq);
4482                 cmd.startidx = cpu_to_be16(start);
4483
4484                 start += nq;
4485                 n -= nq;
4486
4487                 while (nq > 0) {
4488                         unsigned int v;
4489
4490                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4491                         if (++rsp >= rsp_end)
4492                                 rsp = rspq;
4493                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4494                         if (++rsp >= rsp_end)
4495                                 rsp = rspq;
4496                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4497                         if (++rsp >= rsp_end)
4498                                 rsp = rspq;
4499
4500                         *qp++ = cpu_to_be32(v);
4501                         nq -= 3;
4502                 }
4503
4504                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4505                 if (ret)
4506                         return ret;
4507         }
4508         return 0;
4509 }
4510
4511 /**
4512  *      t4_config_glbl_rss - configure the global RSS mode
4513  *      @adapter: the adapter
4514  *      @mbox: mbox to use for the FW command
4515  *      @mode: global RSS mode
4516  *      @flags: mode-specific flags
4517  *
4518  *      Sets the global RSS mode.
4519  */
4520 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4521                        unsigned int flags)
4522 {
4523         struct fw_rss_glb_config_cmd c;
4524
4525         memset(&c, 0, sizeof(c));
4526         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4527                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4528         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4529         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4530                 c.u.manual.mode_pkd =
4531                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4532         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4533                 c.u.basicvirtual.mode_pkd =
4534                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4535                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4536         } else
4537                 return -EINVAL;
4538         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4539 }
4540
4541 /**
4542  *      t4_config_vi_rss - configure per VI RSS settings
4543  *      @adapter: the adapter
4544  *      @mbox: mbox to use for the FW command
4545  *      @viid: the VI id
4546  *      @flags: RSS flags
4547  *      @defq: id of the default RSS queue for the VI.
4548  *
4549  *      Configures VI-specific RSS properties.
4550  */
4551 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4552                      unsigned int flags, unsigned int defq)
4553 {
4554         struct fw_rss_vi_config_cmd c;
4555
4556         memset(&c, 0, sizeof(c));
4557         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4558                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4559                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4560         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4561         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4562                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4563         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4564 }
4565
4566 /* Read an RSS table row */
4567 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4568 {
4569         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4570         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4571                                    5, 0, val);
4572 }
4573
4574 /**
4575  *      t4_read_rss - read the contents of the RSS mapping table
4576  *      @adapter: the adapter
4577  *      @map: holds the contents of the RSS mapping table
4578  *
4579  *      Reads the contents of the RSS hash->queue mapping table.
4580  */
4581 int t4_read_rss(struct adapter *adapter, u16 *map)
4582 {
4583         u32 val;
4584         int i, ret;
4585
4586         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4587                 ret = rd_rss_row(adapter, i, &val);
4588                 if (ret)
4589                         return ret;
4590                 *map++ = LKPTBLQUEUE0_G(val);
4591                 *map++ = LKPTBLQUEUE1_G(val);
4592         }
4593         return 0;
4594 }
4595
4596 static unsigned int t4_use_ldst(struct adapter *adap)
4597 {
4598         return (adap->flags & FW_OK) || !adap->use_bd;
4599 }
4600
4601 /**
4602  *      t4_fw_tp_pio_rw - Access TP PIO through LDST
4603  *      @adap: the adapter
4604  *      @vals: where the indirect register values are stored/written
4605  *      @nregs: how many indirect registers to read/write
4606  *      @start_idx: index of first indirect register to read/write
4607  *      @rw: Read (1) or Write (0)
4608  *
4609  *      Access TP PIO registers through LDST
4610  */
4611 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4612                             unsigned int start_index, unsigned int rw)
4613 {
4614         int ret, i;
4615         int cmd = FW_LDST_ADDRSPC_TP_PIO;
4616         struct fw_ldst_cmd c;
4617
4618         for (i = 0 ; i < nregs; i++) {
4619                 memset(&c, 0, sizeof(c));
4620                 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4621                                                 FW_CMD_REQUEST_F |
4622                                                 (rw ? FW_CMD_READ_F :
4623                                                       FW_CMD_WRITE_F) |
4624                                                 FW_LDST_CMD_ADDRSPACE_V(cmd));
4625                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4626
4627                 c.u.addrval.addr = cpu_to_be32(start_index + i);
4628                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4629                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4630                 if (!ret && rw)
4631                         vals[i] = be32_to_cpu(c.u.addrval.val);
4632         }
4633 }
4634
4635 /**
4636  *      t4_read_rss_key - read the global RSS key
4637  *      @adap: the adapter
4638  *      @key: 10-entry array holding the 320-bit RSS key
4639  *
4640  *      Reads the global 320-bit RSS key.
4641  */
4642 void t4_read_rss_key(struct adapter *adap, u32 *key)
4643 {
4644         if (t4_use_ldst(adap))
4645                 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4646         else
4647                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4648                                  TP_RSS_SECRET_KEY0_A);
4649 }
4650
4651 /**
4652  *      t4_write_rss_key - program one of the RSS keys
4653  *      @adap: the adapter
4654  *      @key: 10-entry array holding the 320-bit RSS key
4655  *      @idx: which RSS key to write
4656  *
4657  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
4658  *      0..15 the corresponding entry in the RSS key table is written,
4659  *      otherwise the global RSS key is written.
4660  */
4661 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4662 {
4663         u8 rss_key_addr_cnt = 16;
4664         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4665
4666         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4667          * allows access to key addresses 16-63 by using KeyWrAddrX
4668          * as index[5:4](upper 2) into key table
4669          */
4670         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4671             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4672                 rss_key_addr_cnt = 32;
4673
4674         if (t4_use_ldst(adap))
4675                 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4676         else
4677                 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4678                                   TP_RSS_SECRET_KEY0_A);
4679
4680         if (idx >= 0 && idx < rss_key_addr_cnt) {
4681                 if (rss_key_addr_cnt > 16)
4682                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4683                                      KEYWRADDRX_V(idx >> 4) |
4684                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
4685                 else
4686                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4687                                      KEYWRADDR_V(idx) | KEYWREN_F);
4688         }
4689 }
4690
4691 /**
4692  *      t4_read_rss_pf_config - read PF RSS Configuration Table
4693  *      @adapter: the adapter
4694  *      @index: the entry in the PF RSS table to read
4695  *      @valp: where to store the returned value
4696  *
4697  *      Reads the PF RSS Configuration Table at the specified index and returns
4698  *      the value found there.
4699  */
4700 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4701                            u32 *valp)
4702 {
4703         if (t4_use_ldst(adapter))
4704                 t4_fw_tp_pio_rw(adapter, valp, 1,
4705                                 TP_RSS_PF0_CONFIG_A + index, 1);
4706         else
4707                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4708                                  valp, 1, TP_RSS_PF0_CONFIG_A + index);
4709 }
4710
4711 /**
4712  *      t4_read_rss_vf_config - read VF RSS Configuration Table
4713  *      @adapter: the adapter
4714  *      @index: the entry in the VF RSS table to read
4715  *      @vfl: where to store the returned VFL
4716  *      @vfh: where to store the returned VFH
4717  *
4718  *      Reads the VF RSS Configuration Table at the specified index and returns
4719  *      the (VFL, VFH) values found there.
4720  */
4721 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4722                            u32 *vfl, u32 *vfh)
4723 {
4724         u32 vrt, mask, data;
4725
4726         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4727                 mask = VFWRADDR_V(VFWRADDR_M);
4728                 data = VFWRADDR_V(index);
4729         } else {
4730                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4731                  data = T6_VFWRADDR_V(index);
4732         }
4733
4734         /* Request that the index'th VF Table values be read into VFL/VFH.
4735          */
4736         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4737         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4738         vrt |= data | VFRDEN_F;
4739         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4740
4741         /* Grab the VFL/VFH values ...
4742          */
4743         if (t4_use_ldst(adapter)) {
4744                 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4745                 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4746         } else {
4747                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4748                                  vfl, 1, TP_RSS_VFL_CONFIG_A);
4749                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4750                                  vfh, 1, TP_RSS_VFH_CONFIG_A);
4751         }
4752 }
4753
4754 /**
4755  *      t4_read_rss_pf_map - read PF RSS Map
4756  *      @adapter: the adapter
4757  *
4758  *      Reads the PF RSS Map register and returns its value.
4759  */
4760 u32 t4_read_rss_pf_map(struct adapter *adapter)
4761 {
4762         u32 pfmap;
4763
4764         if (t4_use_ldst(adapter))
4765                 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4766         else
4767                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4768                                  &pfmap, 1, TP_RSS_PF_MAP_A);
4769         return pfmap;
4770 }
4771
4772 /**
4773  *      t4_read_rss_pf_mask - read PF RSS Mask
4774  *      @adapter: the adapter
4775  *
4776  *      Reads the PF RSS Mask register and returns its value.
4777  */
4778 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4779 {
4780         u32 pfmask;
4781
4782         if (t4_use_ldst(adapter))
4783                 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4784         else
4785                 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4786                                  &pfmask, 1, TP_RSS_PF_MSK_A);
4787         return pfmask;
4788 }
4789
4790 /**
4791  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
4792  *      @adap: the adapter
4793  *      @v4: holds the TCP/IP counter values
4794  *      @v6: holds the TCP/IPv6 counter values
4795  *
4796  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4797  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4798  */
4799 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4800                          struct tp_tcp_stats *v6)
4801 {
4802         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4803
4804 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4805 #define STAT(x)     val[STAT_IDX(x)]
4806 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4807
4808         if (v4) {
4809                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4810                                  ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4811                 v4->tcp_out_rsts = STAT(OUT_RST);
4812                 v4->tcp_in_segs  = STAT64(IN_SEG);
4813                 v4->tcp_out_segs = STAT64(OUT_SEG);
4814                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4815         }
4816         if (v6) {
4817                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4818                                  ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4819                 v6->tcp_out_rsts = STAT(OUT_RST);
4820                 v6->tcp_in_segs  = STAT64(IN_SEG);
4821                 v6->tcp_out_segs = STAT64(OUT_SEG);
4822                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4823         }
4824 #undef STAT64
4825 #undef STAT
4826 #undef STAT_IDX
4827 }
4828
4829 /**
4830  *      t4_tp_get_err_stats - read TP's error MIB counters
4831  *      @adap: the adapter
4832  *      @st: holds the counter values
4833  *
4834  *      Returns the values of TP's error counters.
4835  */
4836 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4837 {
4838         int nchan = adap->params.arch.nchan;
4839
4840         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4841                          st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4842         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4843                          st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4844         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4845                          st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4846         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4847                          st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4848         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4849                          st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4850         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4851                          st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4852         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4853                          st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4854         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4855                          st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4856
4857         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4858                          &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4859 }
4860
4861 /**
4862  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
4863  *      @adap: the adapter
4864  *      @st: holds the counter values
4865  *
4866  *      Returns the values of TP's CPL counters.
4867  */
4868 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4869 {
4870         int nchan = adap->params.arch.nchan;
4871
4872         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4873                          nchan, TP_MIB_CPL_IN_REQ_0_A);
4874         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4875                          nchan, TP_MIB_CPL_OUT_RSP_0_A);
4876
4877 }
4878
4879 /**
4880  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4881  *      @adap: the adapter
4882  *      @st: holds the counter values
4883  *
4884  *      Returns the values of TP's RDMA counters.
4885  */
4886 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4887 {
4888         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4889                          2, TP_MIB_RQE_DFR_PKT_A);
4890 }
4891
4892 /**
4893  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4894  *      @adap: the adapter
4895  *      @idx: the port index
4896  *      @st: holds the counter values
4897  *
4898  *      Returns the values of TP's FCoE counters for the selected port.
4899  */
4900 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4901                        struct tp_fcoe_stats *st)
4902 {
4903         u32 val[2];
4904
4905         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4906                          1, TP_MIB_FCOE_DDP_0_A + idx);
4907         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4908                          1, TP_MIB_FCOE_DROP_0_A + idx);
4909         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4910                          2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4911         st->octets_ddp = ((u64)val[0] << 32) | val[1];
4912 }
4913
4914 /**
4915  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4916  *      @adap: the adapter
4917  *      @st: holds the counter values
4918  *
4919  *      Returns the values of TP's counters for non-TCP directly-placed packets.
4920  */
4921 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4922 {
4923         u32 val[4];
4924
4925         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4926                          TP_MIB_USM_PKTS_A);
4927         st->frames = val[0];
4928         st->drops = val[1];
4929         st->octets = ((u64)val[2] << 32) | val[3];
4930 }
4931
4932 /**
4933  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
4934  *      @adap: the adapter
4935  *      @mtus: where to store the MTU values
4936  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
4937  *
4938  *      Reads the HW path MTU table.
4939  */
4940 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4941 {
4942         u32 v;
4943         int i;
4944
4945         for (i = 0; i < NMTUS; ++i) {
4946                 t4_write_reg(adap, TP_MTU_TABLE_A,
4947                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
4948                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4949                 mtus[i] = MTUVALUE_G(v);
4950                 if (mtu_log)
4951                         mtu_log[i] = MTUWIDTH_G(v);
4952         }
4953 }
4954
4955 /**
4956  *      t4_read_cong_tbl - reads the congestion control table
4957  *      @adap: the adapter
4958  *      @incr: where to store the alpha values
4959  *
4960  *      Reads the additive increments programmed into the HW congestion
4961  *      control table.
4962  */
4963 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4964 {
4965         unsigned int mtu, w;
4966
4967         for (mtu = 0; mtu < NMTUS; ++mtu)
4968                 for (w = 0; w < NCCTRL_WIN; ++w) {
4969                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
4970                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
4971                         incr[mtu][w] = (u16)t4_read_reg(adap,
4972                                                 TP_CCTRL_TABLE_A) & 0x1fff;
4973                 }
4974 }
4975
4976 /**
4977  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4978  *      @adap: the adapter
4979  *      @addr: the indirect TP register address
4980  *      @mask: specifies the field within the register to modify
4981  *      @val: new value for the field
4982  *
4983  *      Sets a field of an indirect TP register to the given value.
4984  */
4985 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4986                             unsigned int mask, unsigned int val)
4987 {
4988         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4989         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4990         t4_write_reg(adap, TP_PIO_DATA_A, val);
4991 }
4992
4993 /**
4994  *      init_cong_ctrl - initialize congestion control parameters
4995  *      @a: the alpha values for congestion control
4996  *      @b: the beta values for congestion control
4997  *
4998  *      Initialize the congestion control parameters.
4999  */
5000 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5001 {
5002         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5003         a[9] = 2;
5004         a[10] = 3;
5005         a[11] = 4;
5006         a[12] = 5;
5007         a[13] = 6;
5008         a[14] = 7;
5009         a[15] = 8;
5010         a[16] = 9;
5011         a[17] = 10;
5012         a[18] = 14;
5013         a[19] = 17;
5014         a[20] = 21;
5015         a[21] = 25;
5016         a[22] = 30;
5017         a[23] = 35;
5018         a[24] = 45;
5019         a[25] = 60;
5020         a[26] = 80;
5021         a[27] = 100;
5022         a[28] = 200;
5023         a[29] = 300;
5024         a[30] = 400;
5025         a[31] = 500;
5026
5027         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5028         b[9] = b[10] = 1;
5029         b[11] = b[12] = 2;
5030         b[13] = b[14] = b[15] = b[16] = 3;
5031         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5032         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5033         b[28] = b[29] = 6;
5034         b[30] = b[31] = 7;
5035 }
5036
5037 /* The minimum additive increment value for the congestion control table */
5038 #define CC_MIN_INCR 2U
5039
5040 /**
5041  *      t4_load_mtus - write the MTU and congestion control HW tables
5042  *      @adap: the adapter
5043  *      @mtus: the values for the MTU table
5044  *      @alpha: the values for the congestion control alpha parameter
5045  *      @beta: the values for the congestion control beta parameter
5046  *
5047  *      Write the HW MTU table with the supplied MTUs and the high-speed
5048  *      congestion control table with the supplied alpha, beta, and MTUs.
5049  *      We write the two tables together because the additive increments
5050  *      depend on the MTUs.
5051  */
5052 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5053                   const unsigned short *alpha, const unsigned short *beta)
5054 {
5055         static const unsigned int avg_pkts[NCCTRL_WIN] = {
5056                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5057                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5058                 28672, 40960, 57344, 81920, 114688, 163840, 229376
5059         };
5060
5061         unsigned int i, w;
5062
5063         for (i = 0; i < NMTUS; ++i) {
5064                 unsigned int mtu = mtus[i];
5065                 unsigned int log2 = fls(mtu);
5066
5067                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
5068                         log2--;
5069                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5070                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5071
5072                 for (w = 0; w < NCCTRL_WIN; ++w) {
5073                         unsigned int inc;
5074
5075                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5076                                   CC_MIN_INCR);
5077
5078                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5079                                      (w << 16) | (beta[w] << 13) | inc);
5080                 }
5081         }
5082 }
5083
5084 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5085  * clocks.  The formula is
5086  *
5087  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5088  *
5089  * which is equivalent to
5090  *
5091  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5092  */
5093 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5094 {
5095         u64 v = bytes256 * adap->params.vpd.cclk;
5096
5097         return v * 62 + v / 2;
5098 }
5099
5100 /**
5101  *      t4_get_chan_txrate - get the current per channel Tx rates
5102  *      @adap: the adapter
5103  *      @nic_rate: rates for NIC traffic
5104  *      @ofld_rate: rates for offloaded traffic
5105  *
5106  *      Return the current Tx rates in bytes/s for NIC and offloaded traffic
5107  *      for each channel.
5108  */
5109 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5110 {
5111         u32 v;
5112
5113         v = t4_read_reg(adap, TP_TX_TRATE_A);
5114         nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5115         nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5116         if (adap->params.arch.nchan == NCHAN) {
5117                 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5118                 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5119         }
5120
5121         v = t4_read_reg(adap, TP_TX_ORATE_A);
5122         ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5123         ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5124         if (adap->params.arch.nchan == NCHAN) {
5125                 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5126                 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5127         }
5128 }
5129
5130 /**
5131  *      t4_set_trace_filter - configure one of the tracing filters
5132  *      @adap: the adapter
5133  *      @tp: the desired trace filter parameters
5134  *      @idx: which filter to configure
5135  *      @enable: whether to enable or disable the filter
5136  *
5137  *      Configures one of the tracing filters available in HW.  If @enable is
5138  *      %0 @tp is not examined and may be %NULL. The user is responsible to
5139  *      set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5140  */
5141 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5142                         int idx, int enable)
5143 {
5144         int i, ofst = idx * 4;
5145         u32 data_reg, mask_reg, cfg;
5146         u32 multitrc = TRCMULTIFILTER_F;
5147
5148         if (!enable) {
5149                 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5150                 return 0;
5151         }
5152
5153         cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5154         if (cfg & TRCMULTIFILTER_F) {
5155                 /* If multiple tracers are enabled, then maximum
5156                  * capture size is 2.5KB (FIFO size of a single channel)
5157                  * minus 2 flits for CPL_TRACE_PKT header.
5158                  */
5159                 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5160                         return -EINVAL;
5161         } else {
5162                 /* If multiple tracers are disabled, to avoid deadlocks
5163                  * maximum packet capture size of 9600 bytes is recommended.
5164                  * Also in this mode, only trace0 can be enabled and running.
5165                  */
5166                 multitrc = 0;
5167                 if (tp->snap_len > 9600 || idx)
5168                         return -EINVAL;
5169         }
5170
5171         if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5172             tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5173             tp->min_len > TFMINPKTSIZE_M)
5174                 return -EINVAL;
5175
5176         /* stop the tracer we'll be changing */
5177         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5178
5179         idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5180         data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5181         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5182
5183         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5184                 t4_write_reg(adap, data_reg, tp->data[i]);
5185                 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5186         }
5187         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5188                      TFCAPTUREMAX_V(tp->snap_len) |
5189                      TFMINPKTSIZE_V(tp->min_len));
5190         t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5191                      TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5192                      (is_t4(adap->params.chip) ?
5193                      TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5194                      T5_TFPORT_V(tp->port) | T5_TFEN_F |
5195                      T5_TFINVERTMATCH_V(tp->invert)));
5196
5197         return 0;
5198 }
5199
5200 /**
5201  *      t4_get_trace_filter - query one of the tracing filters
5202  *      @adap: the adapter
5203  *      @tp: the current trace filter parameters
5204  *      @idx: which trace filter to query
5205  *      @enabled: non-zero if the filter is enabled
5206  *
5207  *      Returns the current settings of one of the HW tracing filters.
5208  */
5209 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5210                          int *enabled)
5211 {
5212         u32 ctla, ctlb;
5213         int i, ofst = idx * 4;
5214         u32 data_reg, mask_reg;
5215
5216         ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5217         ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5218
5219         if (is_t4(adap->params.chip)) {
5220                 *enabled = !!(ctla & TFEN_F);
5221                 tp->port =  TFPORT_G(ctla);
5222                 tp->invert = !!(ctla & TFINVERTMATCH_F);
5223         } else {
5224                 *enabled = !!(ctla & T5_TFEN_F);
5225                 tp->port = T5_TFPORT_G(ctla);
5226                 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5227         }
5228         tp->snap_len = TFCAPTUREMAX_G(ctlb);
5229         tp->min_len = TFMINPKTSIZE_G(ctlb);
5230         tp->skip_ofst = TFOFFSET_G(ctla);
5231         tp->skip_len = TFLENGTH_G(ctla);
5232
5233         ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5234         data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5235         mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5236
5237         for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5238                 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5239                 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5240         }
5241 }
5242
5243 /**
5244  *      t4_pmtx_get_stats - returns the HW stats from PMTX
5245  *      @adap: the adapter
5246  *      @cnt: where to store the count statistics
5247  *      @cycles: where to store the cycle statistics
5248  *
5249  *      Returns performance statistics from PMTX.
5250  */
5251 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5252 {
5253         int i;
5254         u32 data[2];
5255
5256         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5257                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5258                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5259                 if (is_t4(adap->params.chip)) {
5260                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5261                 } else {
5262                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5263                                          PM_TX_DBG_DATA_A, data, 2,
5264                                          PM_TX_DBG_STAT_MSB_A);
5265                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5266                 }
5267         }
5268 }
5269
5270 /**
5271  *      t4_pmrx_get_stats - returns the HW stats from PMRX
5272  *      @adap: the adapter
5273  *      @cnt: where to store the count statistics
5274  *      @cycles: where to store the cycle statistics
5275  *
5276  *      Returns performance statistics from PMRX.
5277  */
5278 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5279 {
5280         int i;
5281         u32 data[2];
5282
5283         for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5284                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5285                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5286                 if (is_t4(adap->params.chip)) {
5287                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5288                 } else {
5289                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5290                                          PM_RX_DBG_DATA_A, data, 2,
5291                                          PM_RX_DBG_STAT_MSB_A);
5292                         cycles[i] = (((u64)data[0] << 32) | data[1]);
5293                 }
5294         }
5295 }
5296
5297 /**
5298  *      t4_get_mps_bg_map - return the buffer groups associated with a port
5299  *      @adap: the adapter
5300  *      @idx: the port index
5301  *
5302  *      Returns a bitmap indicating which MPS buffer groups are associated
5303  *      with the given port.  Bit i is set if buffer group i is used by the
5304  *      port.
5305  */
5306 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5307 {
5308         u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5309
5310         if (n == 0)
5311                 return idx == 0 ? 0xf : 0;
5312         /* In T6 (which is a 2 port card),
5313          * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5314          * For 2 port T4/T5 adapter,
5315          * port 0 is mapped to channel 0 and 1,
5316          * port 1 is mapped to channel 2 and 3.
5317          */
5318         if ((n == 1) &&
5319             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5320                 return idx < 2 ? (3 << (2 * idx)) : 0;
5321         return 1 << idx;
5322 }
5323
5324 /**
5325  *      t4_get_port_type_description - return Port Type string description
5326  *      @port_type: firmware Port Type enumeration
5327  */
5328 const char *t4_get_port_type_description(enum fw_port_type port_type)
5329 {
5330         static const char *const port_type_description[] = {
5331                 "R XFI",
5332                 "R XAUI",
5333                 "T SGMII",
5334                 "T XFI",
5335                 "T XAUI",
5336                 "KX4",
5337                 "CX4",
5338                 "KX",
5339                 "KR",
5340                 "R SFP+",
5341                 "KR/KX",
5342                 "KR/KX/KX4",
5343                 "R QSFP_10G",
5344                 "R QSA",
5345                 "R QSFP",
5346                 "R BP40_BA",
5347         };
5348
5349         if (port_type < ARRAY_SIZE(port_type_description))
5350                 return port_type_description[port_type];
5351         return "UNKNOWN";
5352 }
5353
5354 /**
5355  *      t4_get_port_stats_offset - collect port stats relative to a previous
5356  *                                 snapshot
5357  *      @adap: The adapter
5358  *      @idx: The port
5359  *      @stats: Current stats to fill
5360  *      @offset: Previous stats snapshot
5361  */
5362 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5363                               struct port_stats *stats,
5364                               struct port_stats *offset)
5365 {
5366         u64 *s, *o;
5367         int i;
5368
5369         t4_get_port_stats(adap, idx, stats);
5370         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5371                         i < (sizeof(struct port_stats) / sizeof(u64));
5372                         i++, s++, o++)
5373                 *s -= *o;
5374 }
5375
5376 /**
5377  *      t4_get_port_stats - collect port statistics
5378  *      @adap: the adapter
5379  *      @idx: the port index
5380  *      @p: the stats structure to fill
5381  *
5382  *      Collect statistics related to the given port from HW.
5383  */
5384 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5385 {
5386         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5387
5388 #define GET_STAT(name) \
5389         t4_read_reg64(adap, \
5390         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5391         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5392 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5393
5394         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5395         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5396         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5397         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5398         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5399         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5400         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5401         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5402         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5403         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5404         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5405         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5406         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5407         p->tx_drop             = GET_STAT(TX_PORT_DROP);
5408         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5409         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5410         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5411         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5412         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5413         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5414         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5415         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5416         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5417
5418         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5419         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5420         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5421         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5422         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5423         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5424         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5425         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5426         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5427         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5428         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5429         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5430         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5431         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5432         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5433         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5434         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5435         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5436         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5437         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5438         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5439         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5440         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5441         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5442         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5443         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5444         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5445
5446         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5447         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5448         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5449         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5450         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5451         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5452         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5453         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5454
5455 #undef GET_STAT
5456 #undef GET_STAT_COM
5457 }
5458
5459 /**
5460  *      t4_get_lb_stats - collect loopback port statistics
5461  *      @adap: the adapter
5462  *      @idx: the loopback port index
5463  *      @p: the stats structure to fill
5464  *
5465  *      Return HW statistics for the given loopback port.
5466  */
5467 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5468 {
5469         u32 bgmap = t4_get_mps_bg_map(adap, idx);
5470
5471 #define GET_STAT(name) \
5472         t4_read_reg64(adap, \
5473         (is_t4(adap->params.chip) ? \
5474         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5475         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5476 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5477
5478         p->octets           = GET_STAT(BYTES);
5479         p->frames           = GET_STAT(FRAMES);
5480         p->bcast_frames     = GET_STAT(BCAST);
5481         p->mcast_frames     = GET_STAT(MCAST);
5482         p->ucast_frames     = GET_STAT(UCAST);
5483         p->error_frames     = GET_STAT(ERROR);
5484
5485         p->frames_64        = GET_STAT(64B);
5486         p->frames_65_127    = GET_STAT(65B_127B);
5487         p->frames_128_255   = GET_STAT(128B_255B);
5488         p->frames_256_511   = GET_STAT(256B_511B);
5489         p->frames_512_1023  = GET_STAT(512B_1023B);
5490         p->frames_1024_1518 = GET_STAT(1024B_1518B);
5491         p->frames_1519_max  = GET_STAT(1519B_MAX);
5492         p->drop             = GET_STAT(DROP_FRAMES);
5493
5494         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5495         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5496         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5497         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5498         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5499         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5500         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5501         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5502
5503 #undef GET_STAT
5504 #undef GET_STAT_COM
5505 }
5506
5507 /*     t4_mk_filtdelwr - create a delete filter WR
5508  *     @ftid: the filter ID
5509  *     @wr: the filter work request to populate
5510  *     @qid: ingress queue to receive the delete notification
5511  *
5512  *     Creates a filter work request to delete the supplied filter.  If @qid is
5513  *     negative the delete notification is suppressed.
5514  */
5515 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5516 {
5517         memset(wr, 0, sizeof(*wr));
5518         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5519         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5520         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5521                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
5522         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5523         if (qid >= 0)
5524                 wr->rx_chan_rx_rpl_iq =
5525                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5526 }
5527
5528 #define INIT_CMD(var, cmd, rd_wr) do { \
5529         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5530                                         FW_CMD_REQUEST_F | \
5531                                         FW_CMD_##rd_wr##_F); \
5532         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5533 } while (0)
5534
5535 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5536                           u32 addr, u32 val)
5537 {
5538         u32 ldst_addrspace;
5539         struct fw_ldst_cmd c;
5540
5541         memset(&c, 0, sizeof(c));
5542         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5543         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5544                                         FW_CMD_REQUEST_F |
5545                                         FW_CMD_WRITE_F |
5546                                         ldst_addrspace);
5547         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5548         c.u.addrval.addr = cpu_to_be32(addr);
5549         c.u.addrval.val = cpu_to_be32(val);
5550
5551         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5552 }
5553
5554 /**
5555  *      t4_mdio_rd - read a PHY register through MDIO
5556  *      @adap: the adapter
5557  *      @mbox: mailbox to use for the FW command
5558  *      @phy_addr: the PHY address
5559  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5560  *      @reg: the register to read
5561  *      @valp: where to store the value
5562  *
5563  *      Issues a FW command through the given mailbox to read a PHY register.
5564  */
5565 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5566                unsigned int mmd, unsigned int reg, u16 *valp)
5567 {
5568         int ret;
5569         u32 ldst_addrspace;
5570         struct fw_ldst_cmd c;
5571
5572         memset(&c, 0, sizeof(c));
5573         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5574         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5575                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5576                                         ldst_addrspace);
5577         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5578         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5579                                          FW_LDST_CMD_MMD_V(mmd));
5580         c.u.mdio.raddr = cpu_to_be16(reg);
5581
5582         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5583         if (ret == 0)
5584                 *valp = be16_to_cpu(c.u.mdio.rval);
5585         return ret;
5586 }
5587
5588 /**
5589  *      t4_mdio_wr - write a PHY register through MDIO
5590  *      @adap: the adapter
5591  *      @mbox: mailbox to use for the FW command
5592  *      @phy_addr: the PHY address
5593  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5594  *      @reg: the register to write
5595  *      @valp: value to write
5596  *
5597  *      Issues a FW command through the given mailbox to write a PHY register.
5598  */
5599 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5600                unsigned int mmd, unsigned int reg, u16 val)
5601 {
5602         u32 ldst_addrspace;
5603         struct fw_ldst_cmd c;
5604
5605         memset(&c, 0, sizeof(c));
5606         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5607         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5608                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5609                                         ldst_addrspace);
5610         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5611         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5612                                          FW_LDST_CMD_MMD_V(mmd));
5613         c.u.mdio.raddr = cpu_to_be16(reg);
5614         c.u.mdio.rval = cpu_to_be16(val);
5615
5616         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5617 }
5618
5619 /**
5620  *      t4_sge_decode_idma_state - decode the idma state
5621  *      @adap: the adapter
5622  *      @state: the state idma is stuck in
5623  */
5624 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5625 {
5626         static const char * const t4_decode[] = {
5627                 "IDMA_IDLE",
5628                 "IDMA_PUSH_MORE_CPL_FIFO",
5629                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5630                 "Not used",
5631                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5632                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5633                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5634                 "IDMA_SEND_FIFO_TO_IMSG",
5635                 "IDMA_FL_REQ_DATA_FL_PREP",
5636                 "IDMA_FL_REQ_DATA_FL",
5637                 "IDMA_FL_DROP",
5638                 "IDMA_FL_H_REQ_HEADER_FL",
5639                 "IDMA_FL_H_SEND_PCIEHDR",
5640                 "IDMA_FL_H_PUSH_CPL_FIFO",
5641                 "IDMA_FL_H_SEND_CPL",
5642                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5643                 "IDMA_FL_H_SEND_IP_HDR",
5644                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5645                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5646                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5647                 "IDMA_FL_D_SEND_PCIEHDR",
5648                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5649                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5650                 "IDMA_FL_SEND_PCIEHDR",
5651                 "IDMA_FL_PUSH_CPL_FIFO",
5652                 "IDMA_FL_SEND_CPL",
5653                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5654                 "IDMA_FL_SEND_PAYLOAD",
5655                 "IDMA_FL_REQ_NEXT_DATA_FL",
5656                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5657                 "IDMA_FL_SEND_PADDING",
5658                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5659                 "IDMA_FL_SEND_FIFO_TO_IMSG",
5660                 "IDMA_FL_REQ_DATAFL_DONE",
5661                 "IDMA_FL_REQ_HEADERFL_DONE",
5662         };
5663         static const char * const t5_decode[] = {
5664                 "IDMA_IDLE",
5665                 "IDMA_ALMOST_IDLE",
5666                 "IDMA_PUSH_MORE_CPL_FIFO",
5667                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5668                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5669                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5670                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5671                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5672                 "IDMA_SEND_FIFO_TO_IMSG",
5673                 "IDMA_FL_REQ_DATA_FL",
5674                 "IDMA_FL_DROP",
5675                 "IDMA_FL_DROP_SEND_INC",
5676                 "IDMA_FL_H_REQ_HEADER_FL",
5677                 "IDMA_FL_H_SEND_PCIEHDR",
5678                 "IDMA_FL_H_PUSH_CPL_FIFO",
5679                 "IDMA_FL_H_SEND_CPL",
5680                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5681                 "IDMA_FL_H_SEND_IP_HDR",
5682                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5683                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5684                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5685                 "IDMA_FL_D_SEND_PCIEHDR",
5686                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5687                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5688                 "IDMA_FL_SEND_PCIEHDR",
5689                 "IDMA_FL_PUSH_CPL_FIFO",
5690                 "IDMA_FL_SEND_CPL",
5691                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5692                 "IDMA_FL_SEND_PAYLOAD",
5693                 "IDMA_FL_REQ_NEXT_DATA_FL",
5694                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5695                 "IDMA_FL_SEND_PADDING",
5696                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5697         };
5698         static const char * const t6_decode[] = {
5699                 "IDMA_IDLE",
5700                 "IDMA_PUSH_MORE_CPL_FIFO",
5701                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5702                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5703                 "IDMA_PHYSADDR_SEND_PCIEHDR",
5704                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5705                 "IDMA_PHYSADDR_SEND_PAYLOAD",
5706                 "IDMA_FL_REQ_DATA_FL",
5707                 "IDMA_FL_DROP",
5708                 "IDMA_FL_DROP_SEND_INC",
5709                 "IDMA_FL_H_REQ_HEADER_FL",
5710                 "IDMA_FL_H_SEND_PCIEHDR",
5711                 "IDMA_FL_H_PUSH_CPL_FIFO",
5712                 "IDMA_FL_H_SEND_CPL",
5713                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5714                 "IDMA_FL_H_SEND_IP_HDR",
5715                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5716                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5717                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5718                 "IDMA_FL_D_SEND_PCIEHDR",
5719                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5720                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5721                 "IDMA_FL_SEND_PCIEHDR",
5722                 "IDMA_FL_PUSH_CPL_FIFO",
5723                 "IDMA_FL_SEND_CPL",
5724                 "IDMA_FL_SEND_PAYLOAD_FIRST",
5725                 "IDMA_FL_SEND_PAYLOAD",
5726                 "IDMA_FL_REQ_NEXT_DATA_FL",
5727                 "IDMA_FL_SEND_NEXT_PCIEHDR",
5728                 "IDMA_FL_SEND_PADDING",
5729                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5730         };
5731         static const u32 sge_regs[] = {
5732                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5733                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5734                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5735         };
5736         const char **sge_idma_decode;
5737         int sge_idma_decode_nstates;
5738         int i;
5739         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5740
5741         /* Select the right set of decode strings to dump depending on the
5742          * adapter chip type.
5743          */
5744         switch (chip_version) {
5745         case CHELSIO_T4:
5746                 sge_idma_decode = (const char **)t4_decode;
5747                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5748                 break;
5749
5750         case CHELSIO_T5:
5751                 sge_idma_decode = (const char **)t5_decode;
5752                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5753                 break;
5754
5755         case CHELSIO_T6:
5756                 sge_idma_decode = (const char **)t6_decode;
5757                 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5758                 break;
5759
5760         default:
5761                 dev_err(adapter->pdev_dev,
5762                         "Unsupported chip version %d\n", chip_version);
5763                 return;
5764         }
5765
5766         if (is_t4(adapter->params.chip)) {
5767                 sge_idma_decode = (const char **)t4_decode;
5768                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5769         } else {
5770                 sge_idma_decode = (const char **)t5_decode;
5771                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5772         }
5773
5774         if (state < sge_idma_decode_nstates)
5775                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5776         else
5777                 CH_WARN(adapter, "idma state %d unknown\n", state);
5778
5779         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5780                 CH_WARN(adapter, "SGE register %#x value %#x\n",
5781                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5782 }
5783
5784 /**
5785  *      t4_sge_ctxt_flush - flush the SGE context cache
5786  *      @adap: the adapter
5787  *      @mbox: mailbox to use for the FW command
5788  *
5789  *      Issues a FW command through the given mailbox to flush the
5790  *      SGE context cache.
5791  */
5792 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5793 {
5794         int ret;
5795         u32 ldst_addrspace;
5796         struct fw_ldst_cmd c;
5797
5798         memset(&c, 0, sizeof(c));
5799         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5800         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5801                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
5802                                         ldst_addrspace);
5803         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5804         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5805
5806         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5807         return ret;
5808 }
5809
5810 /**
5811  *      t4_fw_hello - establish communication with FW
5812  *      @adap: the adapter
5813  *      @mbox: mailbox to use for the FW command
5814  *      @evt_mbox: mailbox to receive async FW events
5815  *      @master: specifies the caller's willingness to be the device master
5816  *      @state: returns the current device state (if non-NULL)
5817  *
5818  *      Issues a command to establish communication with FW.  Returns either
5819  *      an error (negative integer) or the mailbox of the Master PF.
5820  */
5821 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5822                 enum dev_master master, enum dev_state *state)
5823 {
5824         int ret;
5825         struct fw_hello_cmd c;
5826         u32 v;
5827         unsigned int master_mbox;
5828         int retries = FW_CMD_HELLO_RETRIES;
5829
5830 retry:
5831         memset(&c, 0, sizeof(c));
5832         INIT_CMD(c, HELLO, WRITE);
5833         c.err_to_clearinit = cpu_to_be32(
5834                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5835                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5836                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5837                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
5838                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5839                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5840                 FW_HELLO_CMD_CLEARINIT_F);
5841
5842         /*
5843          * Issue the HELLO command to the firmware.  If it's not successful
5844          * but indicates that we got a "busy" or "timeout" condition, retry
5845          * the HELLO until we exhaust our retry limit.  If we do exceed our
5846          * retry limit, check to see if the firmware left us any error
5847          * information and report that if so.
5848          */
5849         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5850         if (ret < 0) {
5851                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5852                         goto retry;
5853                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5854                         t4_report_fw_error(adap);
5855                 return ret;
5856         }
5857
5858         v = be32_to_cpu(c.err_to_clearinit);
5859         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5860         if (state) {
5861                 if (v & FW_HELLO_CMD_ERR_F)
5862                         *state = DEV_STATE_ERR;
5863                 else if (v & FW_HELLO_CMD_INIT_F)
5864                         *state = DEV_STATE_INIT;
5865                 else
5866                         *state = DEV_STATE_UNINIT;
5867         }
5868
5869         /*
5870          * If we're not the Master PF then we need to wait around for the
5871          * Master PF Driver to finish setting up the adapter.
5872          *
5873          * Note that we also do this wait if we're a non-Master-capable PF and
5874          * there is no current Master PF; a Master PF may show up momentarily
5875          * and we wouldn't want to fail pointlessly.  (This can happen when an
5876          * OS loads lots of different drivers rapidly at the same time).  In
5877          * this case, the Master PF returned by the firmware will be
5878          * PCIE_FW_MASTER_M so the test below will work ...
5879          */
5880         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5881             master_mbox != mbox) {
5882                 int waiting = FW_CMD_HELLO_TIMEOUT;
5883
5884                 /*
5885                  * Wait for the firmware to either indicate an error or
5886                  * initialized state.  If we see either of these we bail out
5887                  * and report the issue to the caller.  If we exhaust the
5888                  * "hello timeout" and we haven't exhausted our retries, try
5889                  * again.  Otherwise bail with a timeout error.
5890                  */
5891                 for (;;) {
5892                         u32 pcie_fw;
5893
5894                         msleep(50);
5895                         waiting -= 50;
5896
5897                         /*
5898                          * If neither Error nor Initialialized are indicated
5899                          * by the firmware keep waiting till we exaust our
5900                          * timeout ... and then retry if we haven't exhausted
5901                          * our retries ...
5902                          */
5903                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5904                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5905                                 if (waiting <= 0) {
5906                                         if (retries-- > 0)
5907                                                 goto retry;
5908
5909                                         return -ETIMEDOUT;
5910                                 }
5911                                 continue;
5912                         }
5913
5914                         /*
5915                          * We either have an Error or Initialized condition
5916                          * report errors preferentially.
5917                          */
5918                         if (state) {
5919                                 if (pcie_fw & PCIE_FW_ERR_F)
5920                                         *state = DEV_STATE_ERR;
5921                                 else if (pcie_fw & PCIE_FW_INIT_F)
5922                                         *state = DEV_STATE_INIT;
5923                         }
5924
5925                         /*
5926                          * If we arrived before a Master PF was selected and
5927                          * there's not a valid Master PF, grab its identity
5928                          * for our caller.
5929                          */
5930                         if (master_mbox == PCIE_FW_MASTER_M &&
5931                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
5932                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5933                         break;
5934                 }
5935         }
5936
5937         return master_mbox;
5938 }
5939
5940 /**
5941  *      t4_fw_bye - end communication with FW
5942  *      @adap: the adapter
5943  *      @mbox: mailbox to use for the FW command
5944  *
5945  *      Issues a command to terminate communication with FW.
5946  */
5947 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5948 {
5949         struct fw_bye_cmd c;
5950
5951         memset(&c, 0, sizeof(c));
5952         INIT_CMD(c, BYE, WRITE);
5953         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5954 }
5955
5956 /**
5957  *      t4_init_cmd - ask FW to initialize the device
5958  *      @adap: the adapter
5959  *      @mbox: mailbox to use for the FW command
5960  *
5961  *      Issues a command to FW to partially initialize the device.  This
5962  *      performs initialization that generally doesn't depend on user input.
5963  */
5964 int t4_early_init(struct adapter *adap, unsigned int mbox)
5965 {
5966         struct fw_initialize_cmd c;
5967
5968         memset(&c, 0, sizeof(c));
5969         INIT_CMD(c, INITIALIZE, WRITE);
5970         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5971 }
5972
5973 /**
5974  *      t4_fw_reset - issue a reset to FW
5975  *      @adap: the adapter
5976  *      @mbox: mailbox to use for the FW command
5977  *      @reset: specifies the type of reset to perform
5978  *
5979  *      Issues a reset command of the specified type to FW.
5980  */
5981 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5982 {
5983         struct fw_reset_cmd c;
5984
5985         memset(&c, 0, sizeof(c));
5986         INIT_CMD(c, RESET, WRITE);
5987         c.val = cpu_to_be32(reset);
5988         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5989 }
5990
5991 /**
5992  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5993  *      @adap: the adapter
5994  *      @mbox: mailbox to use for the FW RESET command (if desired)
5995  *      @force: force uP into RESET even if FW RESET command fails
5996  *
5997  *      Issues a RESET command to firmware (if desired) with a HALT indication
5998  *      and then puts the microprocessor into RESET state.  The RESET command
5999  *      will only be issued if a legitimate mailbox is provided (mbox <=
6000  *      PCIE_FW_MASTER_M).
6001  *
6002  *      This is generally used in order for the host to safely manipulate the
6003  *      adapter without fear of conflicting with whatever the firmware might
6004  *      be doing.  The only way out of this state is to RESTART the firmware
6005  *      ...
6006  */
6007 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6008 {
6009         int ret = 0;
6010
6011         /*
6012          * If a legitimate mailbox is provided, issue a RESET command
6013          * with a HALT indication.
6014          */
6015         if (mbox <= PCIE_FW_MASTER_M) {
6016                 struct fw_reset_cmd c;
6017
6018                 memset(&c, 0, sizeof(c));
6019                 INIT_CMD(c, RESET, WRITE);
6020                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6021                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6022                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6023         }
6024
6025         /*
6026          * Normally we won't complete the operation if the firmware RESET
6027          * command fails but if our caller insists we'll go ahead and put the
6028          * uP into RESET.  This can be useful if the firmware is hung or even
6029          * missing ...  We'll have to take the risk of putting the uP into
6030          * RESET without the cooperation of firmware in that case.
6031          *
6032          * We also force the firmware's HALT flag to be on in case we bypassed
6033          * the firmware RESET command above or we're dealing with old firmware
6034          * which doesn't have the HALT capability.  This will serve as a flag
6035          * for the incoming firmware to know that it's coming out of a HALT
6036          * rather than a RESET ... if it's new enough to understand that ...
6037          */
6038         if (ret == 0 || force) {
6039                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6040                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6041                                  PCIE_FW_HALT_F);
6042         }
6043
6044         /*
6045          * And we always return the result of the firmware RESET command
6046          * even when we force the uP into RESET ...
6047          */
6048         return ret;
6049 }
6050
6051 /**
6052  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
6053  *      @adap: the adapter
6054  *      @reset: if we want to do a RESET to restart things
6055  *
6056  *      Restart firmware previously halted by t4_fw_halt().  On successful
6057  *      return the previous PF Master remains as the new PF Master and there
6058  *      is no need to issue a new HELLO command, etc.
6059  *
6060  *      We do this in two ways:
6061  *
6062  *       1. If we're dealing with newer firmware we'll simply want to take
6063  *          the chip's microprocessor out of RESET.  This will cause the
6064  *          firmware to start up from its start vector.  And then we'll loop
6065  *          until the firmware indicates it's started again (PCIE_FW.HALT
6066  *          reset to 0) or we timeout.
6067  *
6068  *       2. If we're dealing with older firmware then we'll need to RESET
6069  *          the chip since older firmware won't recognize the PCIE_FW.HALT
6070  *          flag and automatically RESET itself on startup.
6071  */
6072 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6073 {
6074         if (reset) {
6075                 /*
6076                  * Since we're directing the RESET instead of the firmware
6077                  * doing it automatically, we need to clear the PCIE_FW.HALT
6078                  * bit.
6079                  */
6080                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6081
6082                 /*
6083                  * If we've been given a valid mailbox, first try to get the
6084                  * firmware to do the RESET.  If that works, great and we can
6085                  * return success.  Otherwise, if we haven't been given a
6086                  * valid mailbox or the RESET command failed, fall back to
6087                  * hitting the chip with a hammer.
6088                  */
6089                 if (mbox <= PCIE_FW_MASTER_M) {
6090                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6091                         msleep(100);
6092                         if (t4_fw_reset(adap, mbox,
6093                                         PIORST_F | PIORSTMODE_F) == 0)
6094                                 return 0;
6095                 }
6096
6097                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6098                 msleep(2000);
6099         } else {
6100                 int ms;
6101
6102                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6103                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6104                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6105                                 return 0;
6106                         msleep(100);
6107                         ms += 100;
6108                 }
6109                 return -ETIMEDOUT;
6110         }
6111         return 0;
6112 }
6113
6114 /**
6115  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6116  *      @adap: the adapter
6117  *      @mbox: mailbox to use for the FW RESET command (if desired)
6118  *      @fw_data: the firmware image to write
6119  *      @size: image size
6120  *      @force: force upgrade even if firmware doesn't cooperate
6121  *
6122  *      Perform all of the steps necessary for upgrading an adapter's
6123  *      firmware image.  Normally this requires the cooperation of the
6124  *      existing firmware in order to halt all existing activities
6125  *      but if an invalid mailbox token is passed in we skip that step
6126  *      (though we'll still put the adapter microprocessor into RESET in
6127  *      that case).
6128  *
6129  *      On successful return the new firmware will have been loaded and
6130  *      the adapter will have been fully RESET losing all previous setup
6131  *      state.  On unsuccessful return the adapter may be completely hosed ...
6132  *      positive errno indicates that the adapter is ~probably~ intact, a
6133  *      negative errno indicates that things are looking bad ...
6134  */
6135 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6136                   const u8 *fw_data, unsigned int size, int force)
6137 {
6138         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6139         int reset, ret;
6140
6141         if (!t4_fw_matches_chip(adap, fw_hdr))
6142                 return -EINVAL;
6143
6144         ret = t4_fw_halt(adap, mbox, force);
6145         if (ret < 0 && !force)
6146                 return ret;
6147
6148         ret = t4_load_fw(adap, fw_data, size);
6149         if (ret < 0)
6150                 return ret;
6151
6152         /*
6153          * Older versions of the firmware don't understand the new
6154          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6155          * restart.  So for newly loaded older firmware we'll have to do the
6156          * RESET for it so it starts up on a clean slate.  We can tell if
6157          * the newly loaded firmware will handle this right by checking
6158          * its header flags to see if it advertises the capability.
6159          */
6160         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6161         return t4_fw_restart(adap, mbox, reset);
6162 }
6163
6164 /**
6165  *      t4_fl_pkt_align - return the fl packet alignment
6166  *      @adap: the adapter
6167  *
6168  *      T4 has a single field to specify the packing and padding boundary.
6169  *      T5 onwards has separate fields for this and hence the alignment for
6170  *      next packet offset is maximum of these two.
6171  *
6172  */
6173 int t4_fl_pkt_align(struct adapter *adap)
6174 {
6175         u32 sge_control, sge_control2;
6176         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6177
6178         sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6179
6180         /* T4 uses a single control field to specify both the PCIe Padding and
6181          * Packing Boundary.  T5 introduced the ability to specify these
6182          * separately.  The actual Ingress Packet Data alignment boundary
6183          * within Packed Buffer Mode is the maximum of these two
6184          * specifications.  (Note that it makes no real practical sense to
6185          * have the Pading Boudary be larger than the Packing Boundary but you
6186          * could set the chip up that way and, in fact, legacy T4 code would
6187          * end doing this because it would initialize the Padding Boundary and
6188          * leave the Packing Boundary initialized to 0 (16 bytes).)
6189          * Padding Boundary values in T6 starts from 8B,
6190          * where as it is 32B for T4 and T5.
6191          */
6192         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6193                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6194         else
6195                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6196
6197         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6198
6199         fl_align = ingpadboundary;
6200         if (!is_t4(adap->params.chip)) {
6201                 /* T5 has a weird interpretation of one of the PCIe Packing
6202                  * Boundary values.  No idea why ...
6203                  */
6204                 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6205                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6206                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6207                         ingpackboundary = 16;
6208                 else
6209                         ingpackboundary = 1 << (ingpackboundary +
6210                                                 INGPACKBOUNDARY_SHIFT_X);
6211
6212                 fl_align = max(ingpadboundary, ingpackboundary);
6213         }
6214         return fl_align;
6215 }
6216
6217 /**
6218  *      t4_fixup_host_params - fix up host-dependent parameters
6219  *      @adap: the adapter
6220  *      @page_size: the host's Base Page Size
6221  *      @cache_line_size: the host's Cache Line Size
6222  *
6223  *      Various registers in T4 contain values which are dependent on the
6224  *      host's Base Page and Cache Line Sizes.  This function will fix all of
6225  *      those registers with the appropriate values as passed in ...
6226  */
6227 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6228                          unsigned int cache_line_size)
6229 {
6230         unsigned int page_shift = fls(page_size) - 1;
6231         unsigned int sge_hps = page_shift - 10;
6232         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6233         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6234         unsigned int fl_align_log = fls(fl_align) - 1;
6235         unsigned int ingpad;
6236
6237         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6238                      HOSTPAGESIZEPF0_V(sge_hps) |
6239                      HOSTPAGESIZEPF1_V(sge_hps) |
6240                      HOSTPAGESIZEPF2_V(sge_hps) |
6241                      HOSTPAGESIZEPF3_V(sge_hps) |
6242                      HOSTPAGESIZEPF4_V(sge_hps) |
6243                      HOSTPAGESIZEPF5_V(sge_hps) |
6244                      HOSTPAGESIZEPF6_V(sge_hps) |
6245                      HOSTPAGESIZEPF7_V(sge_hps));
6246
6247         if (is_t4(adap->params.chip)) {
6248                 t4_set_reg_field(adap, SGE_CONTROL_A,
6249                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6250                                  EGRSTATUSPAGESIZE_F,
6251                                  INGPADBOUNDARY_V(fl_align_log -
6252                                                   INGPADBOUNDARY_SHIFT_X) |
6253                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6254         } else {
6255                 /* T5 introduced the separation of the Free List Padding and
6256                  * Packing Boundaries.  Thus, we can select a smaller Padding
6257                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
6258                  * Bandwidth, and use a Packing Boundary which is large enough
6259                  * to avoid false sharing between CPUs, etc.
6260                  *
6261                  * For the PCI Link, the smaller the Padding Boundary the
6262                  * better.  For the Memory Controller, a smaller Padding
6263                  * Boundary is better until we cross under the Memory Line
6264                  * Size (the minimum unit of transfer to/from Memory).  If we
6265                  * have a Padding Boundary which is smaller than the Memory
6266                  * Line Size, that'll involve a Read-Modify-Write cycle on the
6267                  * Memory Controller which is never good.  For T5 the smallest
6268                  * Padding Boundary which we can select is 32 bytes which is
6269                  * larger than any known Memory Controller Line Size so we'll
6270                  * use that.
6271                  *
6272                  * T5 has a different interpretation of the "0" value for the
6273                  * Packing Boundary.  This corresponds to 16 bytes instead of
6274                  * the expected 32 bytes.  We never have a Packing Boundary
6275                  * less than 32 bytes so we can't use that special value but
6276                  * on the other hand, if we wanted 32 bytes, the best we can
6277                  * really do is 64 bytes.
6278                 */
6279                 if (fl_align <= 32) {
6280                         fl_align = 64;
6281                         fl_align_log = 6;
6282                 }
6283
6284                 if (is_t5(adap->params.chip))
6285                         ingpad = INGPCIEBOUNDARY_32B_X;
6286                 else
6287                         ingpad = T6_INGPADBOUNDARY_32B_X;
6288
6289                 t4_set_reg_field(adap, SGE_CONTROL_A,
6290                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6291                                  EGRSTATUSPAGESIZE_F,
6292                                  INGPADBOUNDARY_V(ingpad) |
6293                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
6294                 t4_set_reg_field(adap, SGE_CONTROL2_A,
6295                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6296                                  INGPACKBOUNDARY_V(fl_align_log -
6297                                                    INGPACKBOUNDARY_SHIFT_X));
6298         }
6299         /*
6300          * Adjust various SGE Free List Host Buffer Sizes.
6301          *
6302          * This is something of a crock since we're using fixed indices into
6303          * the array which are also known by the sge.c code and the T4
6304          * Firmware Configuration File.  We need to come up with a much better
6305          * approach to managing this array.  For now, the first four entries
6306          * are:
6307          *
6308          *   0: Host Page Size
6309          *   1: 64KB
6310          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6311          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6312          *
6313          * For the single-MTU buffers in unpacked mode we need to include
6314          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6315          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6316          * Padding boundary.  All of these are accommodated in the Factory
6317          * Default Firmware Configuration File but we need to adjust it for
6318          * this host's cache line size.
6319          */
6320         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6321         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6322                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6323                      & ~(fl_align-1));
6324         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6325                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6326                      & ~(fl_align-1));
6327
6328         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6329
6330         return 0;
6331 }
6332
6333 /**
6334  *      t4_fw_initialize - ask FW to initialize the device
6335  *      @adap: the adapter
6336  *      @mbox: mailbox to use for the FW command
6337  *
6338  *      Issues a command to FW to partially initialize the device.  This
6339  *      performs initialization that generally doesn't depend on user input.
6340  */
6341 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6342 {
6343         struct fw_initialize_cmd c;
6344
6345         memset(&c, 0, sizeof(c));
6346         INIT_CMD(c, INITIALIZE, WRITE);
6347         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6348 }
6349
6350 /**
6351  *      t4_query_params_rw - query FW or device parameters
6352  *      @adap: the adapter
6353  *      @mbox: mailbox to use for the FW command
6354  *      @pf: the PF
6355  *      @vf: the VF
6356  *      @nparams: the number of parameters
6357  *      @params: the parameter names
6358  *      @val: the parameter values
6359  *      @rw: Write and read flag
6360  *
6361  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
6362  *      queried at once.
6363  */
6364 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6365                        unsigned int vf, unsigned int nparams, const u32 *params,
6366                        u32 *val, int rw)
6367 {
6368         int i, ret;
6369         struct fw_params_cmd c;
6370         __be32 *p = &c.param[0].mnem;
6371
6372         if (nparams > 7)
6373                 return -EINVAL;
6374
6375         memset(&c, 0, sizeof(c));
6376         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6377                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
6378                                   FW_PARAMS_CMD_PFN_V(pf) |
6379                                   FW_PARAMS_CMD_VFN_V(vf));
6380         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6381
6382         for (i = 0; i < nparams; i++) {
6383                 *p++ = cpu_to_be32(*params++);
6384                 if (rw)
6385                         *p = cpu_to_be32(*(val + i));
6386                 p++;
6387         }
6388
6389         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6390         if (ret == 0)
6391                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6392                         *val++ = be32_to_cpu(*p);
6393         return ret;
6394 }
6395
6396 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6397                     unsigned int vf, unsigned int nparams, const u32 *params,
6398                     u32 *val)
6399 {
6400         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6401 }
6402
6403 /**
6404  *      t4_set_params_timeout - sets FW or device parameters
6405  *      @adap: the adapter
6406  *      @mbox: mailbox to use for the FW command
6407  *      @pf: the PF
6408  *      @vf: the VF
6409  *      @nparams: the number of parameters
6410  *      @params: the parameter names
6411  *      @val: the parameter values
6412  *      @timeout: the timeout time
6413  *
6414  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6415  *      specified at once.
6416  */
6417 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6418                           unsigned int pf, unsigned int vf,
6419                           unsigned int nparams, const u32 *params,
6420                           const u32 *val, int timeout)
6421 {
6422         struct fw_params_cmd c;
6423         __be32 *p = &c.param[0].mnem;
6424
6425         if (nparams > 7)
6426                 return -EINVAL;
6427
6428         memset(&c, 0, sizeof(c));
6429         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6430                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6431                                   FW_PARAMS_CMD_PFN_V(pf) |
6432                                   FW_PARAMS_CMD_VFN_V(vf));
6433         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6434
6435         while (nparams--) {
6436                 *p++ = cpu_to_be32(*params++);
6437                 *p++ = cpu_to_be32(*val++);
6438         }
6439
6440         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6441 }
6442
6443 /**
6444  *      t4_set_params - sets FW or device parameters
6445  *      @adap: the adapter
6446  *      @mbox: mailbox to use for the FW command
6447  *      @pf: the PF
6448  *      @vf: the VF
6449  *      @nparams: the number of parameters
6450  *      @params: the parameter names
6451  *      @val: the parameter values
6452  *
6453  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6454  *      specified at once.
6455  */
6456 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6457                   unsigned int vf, unsigned int nparams, const u32 *params,
6458                   const u32 *val)
6459 {
6460         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6461                                      FW_CMD_MAX_TIMEOUT);
6462 }
6463
6464 /**
6465  *      t4_cfg_pfvf - configure PF/VF resource limits
6466  *      @adap: the adapter
6467  *      @mbox: mailbox to use for the FW command
6468  *      @pf: the PF being configured
6469  *      @vf: the VF being configured
6470  *      @txq: the max number of egress queues
6471  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
6472  *      @rxqi: the max number of interrupt-capable ingress queues
6473  *      @rxq: the max number of interruptless ingress queues
6474  *      @tc: the PCI traffic class
6475  *      @vi: the max number of virtual interfaces
6476  *      @cmask: the channel access rights mask for the PF/VF
6477  *      @pmask: the port access rights mask for the PF/VF
6478  *      @nexact: the maximum number of exact MPS filters
6479  *      @rcaps: read capabilities
6480  *      @wxcaps: write/execute capabilities
6481  *
6482  *      Configures resource limits and capabilities for a physical or virtual
6483  *      function.
6484  */
6485 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6486                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6487                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6488                 unsigned int vi, unsigned int cmask, unsigned int pmask,
6489                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6490 {
6491         struct fw_pfvf_cmd c;
6492
6493         memset(&c, 0, sizeof(c));
6494         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6495                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6496                                   FW_PFVF_CMD_VFN_V(vf));
6497         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6498         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6499                                      FW_PFVF_CMD_NIQ_V(rxq));
6500         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6501                                     FW_PFVF_CMD_PMASK_V(pmask) |
6502                                     FW_PFVF_CMD_NEQ_V(txq));
6503         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6504                                       FW_PFVF_CMD_NVI_V(vi) |
6505                                       FW_PFVF_CMD_NEXACTF_V(nexact));
6506         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6507                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6508                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6509         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6510 }
6511
6512 /**
6513  *      t4_alloc_vi - allocate a virtual interface
6514  *      @adap: the adapter
6515  *      @mbox: mailbox to use for the FW command
6516  *      @port: physical port associated with the VI
6517  *      @pf: the PF owning the VI
6518  *      @vf: the VF owning the VI
6519  *      @nmac: number of MAC addresses needed (1 to 5)
6520  *      @mac: the MAC addresses of the VI
6521  *      @rss_size: size of RSS table slice associated with this VI
6522  *
6523  *      Allocates a virtual interface for the given physical port.  If @mac is
6524  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
6525  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
6526  *      stored consecutively so the space needed is @nmac * 6 bytes.
6527  *      Returns a negative error number or the non-negative VI id.
6528  */
6529 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6530                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6531                 unsigned int *rss_size)
6532 {
6533         int ret;
6534         struct fw_vi_cmd c;
6535
6536         memset(&c, 0, sizeof(c));
6537         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6538                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6539                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6540         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6541         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6542         c.nmac = nmac - 1;
6543
6544         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6545         if (ret)
6546                 return ret;
6547
6548         if (mac) {
6549                 memcpy(mac, c.mac, sizeof(c.mac));
6550                 switch (nmac) {
6551                 case 5:
6552                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6553                 case 4:
6554                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6555                 case 3:
6556                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6557                 case 2:
6558                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6559                 }
6560         }
6561         if (rss_size)
6562                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6563         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6564 }
6565
6566 /**
6567  *      t4_free_vi - free a virtual interface
6568  *      @adap: the adapter
6569  *      @mbox: mailbox to use for the FW command
6570  *      @pf: the PF owning the VI
6571  *      @vf: the VF owning the VI
6572  *      @viid: virtual interface identifiler
6573  *
6574  *      Free a previously allocated virtual interface.
6575  */
6576 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6577                unsigned int vf, unsigned int viid)
6578 {
6579         struct fw_vi_cmd c;
6580
6581         memset(&c, 0, sizeof(c));
6582         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6583                                   FW_CMD_REQUEST_F |
6584                                   FW_CMD_EXEC_F |
6585                                   FW_VI_CMD_PFN_V(pf) |
6586                                   FW_VI_CMD_VFN_V(vf));
6587         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6588         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6589
6590         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6591 }
6592
6593 /**
6594  *      t4_set_rxmode - set Rx properties of a virtual interface
6595  *      @adap: the adapter
6596  *      @mbox: mailbox to use for the FW command
6597  *      @viid: the VI id
6598  *      @mtu: the new MTU or -1
6599  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6600  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6601  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6602  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6603  *      @sleep_ok: if true we may sleep while awaiting command completion
6604  *
6605  *      Sets Rx properties of a virtual interface.
6606  */
6607 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6608                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
6609                   bool sleep_ok)
6610 {
6611         struct fw_vi_rxmode_cmd c;
6612
6613         /* convert to FW values */
6614         if (mtu < 0)
6615                 mtu = FW_RXMODE_MTU_NO_CHG;
6616         if (promisc < 0)
6617                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6618         if (all_multi < 0)
6619                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6620         if (bcast < 0)
6621                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6622         if (vlanex < 0)
6623                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6624
6625         memset(&c, 0, sizeof(c));
6626         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6627                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6628                                    FW_VI_RXMODE_CMD_VIID_V(viid));
6629         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6630         c.mtu_to_vlanexen =
6631                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6632                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6633                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6634                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6635                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6636         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6637 }
6638
6639 /**
6640  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6641  *      @adap: the adapter
6642  *      @mbox: mailbox to use for the FW command
6643  *      @viid: the VI id
6644  *      @free: if true any existing filters for this VI id are first removed
6645  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6646  *      @addr: the MAC address(es)
6647  *      @idx: where to store the index of each allocated filter
6648  *      @hash: pointer to hash address filter bitmap
6649  *      @sleep_ok: call is allowed to sleep
6650  *
6651  *      Allocates an exact-match filter for each of the supplied addresses and
6652  *      sets it to the corresponding address.  If @idx is not %NULL it should
6653  *      have at least @naddr entries, each of which will be set to the index of
6654  *      the filter allocated for the corresponding MAC address.  If a filter
6655  *      could not be allocated for an address its index is set to 0xffff.
6656  *      If @hash is not %NULL addresses that fail to allocate an exact filter
6657  *      are hashed and update the hash filter bitmap pointed at by @hash.
6658  *
6659  *      Returns a negative error number or the number of filters allocated.
6660  */
6661 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6662                       unsigned int viid, bool free, unsigned int naddr,
6663                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6664 {
6665         int offset, ret = 0;
6666         struct fw_vi_mac_cmd c;
6667         unsigned int nfilters = 0;
6668         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6669         unsigned int rem = naddr;
6670
6671         if (naddr > max_naddr)
6672                 return -EINVAL;
6673
6674         for (offset = 0; offset < naddr ; /**/) {
6675                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6676                                          rem : ARRAY_SIZE(c.u.exact));
6677                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6678                                                      u.exact[fw_naddr]), 16);
6679                 struct fw_vi_mac_exact *p;
6680                 int i;
6681
6682                 memset(&c, 0, sizeof(c));
6683                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6684                                            FW_CMD_REQUEST_F |
6685                                            FW_CMD_WRITE_F |
6686                                            FW_CMD_EXEC_V(free) |
6687                                            FW_VI_MAC_CMD_VIID_V(viid));
6688                 c.freemacs_to_len16 =
6689                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6690                                     FW_CMD_LEN16_V(len16));
6691
6692                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6693                         p->valid_to_idx =
6694                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6695                                             FW_VI_MAC_CMD_IDX_V(
6696                                                     FW_VI_MAC_ADD_MAC));
6697                         memcpy(p->macaddr, addr[offset + i],
6698                                sizeof(p->macaddr));
6699                 }
6700
6701                 /* It's okay if we run out of space in our MAC address arena.
6702                  * Some of the addresses we submit may get stored so we need
6703                  * to run through the reply to see what the results were ...
6704                  */
6705                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6706                 if (ret && ret != -FW_ENOMEM)
6707                         break;
6708
6709                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6710                         u16 index = FW_VI_MAC_CMD_IDX_G(
6711                                         be16_to_cpu(p->valid_to_idx));
6712
6713                         if (idx)
6714                                 idx[offset + i] = (index >= max_naddr ?
6715                                                    0xffff : index);
6716                         if (index < max_naddr)
6717                                 nfilters++;
6718                         else if (hash)
6719                                 *hash |= (1ULL <<
6720                                           hash_mac_addr(addr[offset + i]));
6721                 }
6722
6723                 free = false;
6724                 offset += fw_naddr;
6725                 rem -= fw_naddr;
6726         }
6727
6728         if (ret == 0 || ret == -FW_ENOMEM)
6729                 ret = nfilters;
6730         return ret;
6731 }
6732
6733 /**
6734  *      t4_free_mac_filt - frees exact-match filters of given MAC addresses
6735  *      @adap: the adapter
6736  *      @mbox: mailbox to use for the FW command
6737  *      @viid: the VI id
6738  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
6739  *      @addr: the MAC address(es)
6740  *      @sleep_ok: call is allowed to sleep
6741  *
6742  *      Frees the exact-match filter for each of the supplied addresses
6743  *
6744  *      Returns a negative error number or the number of filters freed.
6745  */
6746 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6747                      unsigned int viid, unsigned int naddr,
6748                      const u8 **addr, bool sleep_ok)
6749 {
6750         int offset, ret = 0;
6751         struct fw_vi_mac_cmd c;
6752         unsigned int nfilters = 0;
6753         unsigned int max_naddr = is_t4(adap->params.chip) ?
6754                                        NUM_MPS_CLS_SRAM_L_INSTANCES :
6755                                        NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6756         unsigned int rem = naddr;
6757
6758         if (naddr > max_naddr)
6759                 return -EINVAL;
6760
6761         for (offset = 0; offset < (int)naddr ; /**/) {
6762                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6763                                          ? rem
6764                                          : ARRAY_SIZE(c.u.exact));
6765                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6766                                                      u.exact[fw_naddr]), 16);
6767                 struct fw_vi_mac_exact *p;
6768                 int i;
6769
6770                 memset(&c, 0, sizeof(c));
6771                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6772                                      FW_CMD_REQUEST_F |
6773                                      FW_CMD_WRITE_F |
6774                                      FW_CMD_EXEC_V(0) |
6775                                      FW_VI_MAC_CMD_VIID_V(viid));
6776                 c.freemacs_to_len16 =
6777                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6778                                             FW_CMD_LEN16_V(len16));
6779
6780                 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6781                         p->valid_to_idx = cpu_to_be16(
6782                                 FW_VI_MAC_CMD_VALID_F |
6783                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6784                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6785                 }
6786
6787                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6788                 if (ret)
6789                         break;
6790
6791                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6792                         u16 index = FW_VI_MAC_CMD_IDX_G(
6793                                                 be16_to_cpu(p->valid_to_idx));
6794
6795                         if (index < max_naddr)
6796                                 nfilters++;
6797                 }
6798
6799                 offset += fw_naddr;
6800                 rem -= fw_naddr;
6801         }
6802
6803         if (ret == 0)
6804                 ret = nfilters;
6805         return ret;
6806 }
6807
6808 /**
6809  *      t4_change_mac - modifies the exact-match filter for a MAC address
6810  *      @adap: the adapter
6811  *      @mbox: mailbox to use for the FW command
6812  *      @viid: the VI id
6813  *      @idx: index of existing filter for old value of MAC address, or -1
6814  *      @addr: the new MAC address value
6815  *      @persist: whether a new MAC allocation should be persistent
6816  *      @add_smt: if true also add the address to the HW SMT
6817  *
6818  *      Modifies an exact-match filter and sets it to the new MAC address.
6819  *      Note that in general it is not possible to modify the value of a given
6820  *      filter so the generic way to modify an address filter is to free the one
6821  *      being used by the old address value and allocate a new filter for the
6822  *      new address value.  @idx can be -1 if the address is a new addition.
6823  *
6824  *      Returns a negative error number or the index of the filter with the new
6825  *      MAC value.
6826  */
6827 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6828                   int idx, const u8 *addr, bool persist, bool add_smt)
6829 {
6830         int ret, mode;
6831         struct fw_vi_mac_cmd c;
6832         struct fw_vi_mac_exact *p = c.u.exact;
6833         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6834
6835         if (idx < 0)                             /* new allocation */
6836                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6837         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6838
6839         memset(&c, 0, sizeof(c));
6840         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6841                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6842                                    FW_VI_MAC_CMD_VIID_V(viid));
6843         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6844         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6845                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6846                                       FW_VI_MAC_CMD_IDX_V(idx));
6847         memcpy(p->macaddr, addr, sizeof(p->macaddr));
6848
6849         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6850         if (ret == 0) {
6851                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6852                 if (ret >= max_mac_addr)
6853                         ret = -ENOMEM;
6854         }
6855         return ret;
6856 }
6857
6858 /**
6859  *      t4_set_addr_hash - program the MAC inexact-match hash filter
6860  *      @adap: the adapter
6861  *      @mbox: mailbox to use for the FW command
6862  *      @viid: the VI id
6863  *      @ucast: whether the hash filter should also match unicast addresses
6864  *      @vec: the value to be written to the hash filter
6865  *      @sleep_ok: call is allowed to sleep
6866  *
6867  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
6868  */
6869 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6870                      bool ucast, u64 vec, bool sleep_ok)
6871 {
6872         struct fw_vi_mac_cmd c;
6873
6874         memset(&c, 0, sizeof(c));
6875         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6876                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6877                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6878         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6879                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6880                                           FW_CMD_LEN16_V(1));
6881         c.u.hash.hashvec = cpu_to_be64(vec);
6882         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6883 }
6884
6885 /**
6886  *      t4_enable_vi_params - enable/disable a virtual interface
6887  *      @adap: the adapter
6888  *      @mbox: mailbox to use for the FW command
6889  *      @viid: the VI id
6890  *      @rx_en: 1=enable Rx, 0=disable Rx
6891  *      @tx_en: 1=enable Tx, 0=disable Tx
6892  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6893  *
6894  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6895  *      only makes sense when enabling a Virtual Interface ...
6896  */
6897 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6898                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6899 {
6900         struct fw_vi_enable_cmd c;
6901
6902         memset(&c, 0, sizeof(c));
6903         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6904                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6905                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6906         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6907                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6908                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6909                                      FW_LEN16(c));
6910         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6911 }
6912
6913 /**
6914  *      t4_enable_vi - enable/disable a virtual interface
6915  *      @adap: the adapter
6916  *      @mbox: mailbox to use for the FW command
6917  *      @viid: the VI id
6918  *      @rx_en: 1=enable Rx, 0=disable Rx
6919  *      @tx_en: 1=enable Tx, 0=disable Tx
6920  *
6921  *      Enables/disables a virtual interface.
6922  */
6923 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6924                  bool rx_en, bool tx_en)
6925 {
6926         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6927 }
6928
6929 /**
6930  *      t4_identify_port - identify a VI's port by blinking its LED
6931  *      @adap: the adapter
6932  *      @mbox: mailbox to use for the FW command
6933  *      @viid: the VI id
6934  *      @nblinks: how many times to blink LED at 2.5 Hz
6935  *
6936  *      Identifies a VI's port by blinking its LED.
6937  */
6938 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6939                      unsigned int nblinks)
6940 {
6941         struct fw_vi_enable_cmd c;
6942
6943         memset(&c, 0, sizeof(c));
6944         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6945                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6946                                    FW_VI_ENABLE_CMD_VIID_V(viid));
6947         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6948         c.blinkdur = cpu_to_be16(nblinks);
6949         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6950 }
6951
6952 /**
6953  *      t4_iq_stop - stop an ingress queue and its FLs
6954  *      @adap: the adapter
6955  *      @mbox: mailbox to use for the FW command
6956  *      @pf: the PF owning the queues
6957  *      @vf: the VF owning the queues
6958  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
6959  *      @iqid: ingress queue id
6960  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
6961  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
6962  *
6963  *      Stops an ingress queue and its associated FLs, if any.  This causes
6964  *      any current or future data/messages destined for these queues to be
6965  *      tossed.
6966  */
6967 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
6968                unsigned int vf, unsigned int iqtype, unsigned int iqid,
6969                unsigned int fl0id, unsigned int fl1id)
6970 {
6971         struct fw_iq_cmd c;
6972
6973         memset(&c, 0, sizeof(c));
6974         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6975                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6976                                   FW_IQ_CMD_VFN_V(vf));
6977         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
6978         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6979         c.iqid = cpu_to_be16(iqid);
6980         c.fl0id = cpu_to_be16(fl0id);
6981         c.fl1id = cpu_to_be16(fl1id);
6982         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6983 }
6984
6985 /**
6986  *      t4_iq_free - free an ingress queue and its FLs
6987  *      @adap: the adapter
6988  *      @mbox: mailbox to use for the FW command
6989  *      @pf: the PF owning the queues
6990  *      @vf: the VF owning the queues
6991  *      @iqtype: the ingress queue type
6992  *      @iqid: ingress queue id
6993  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
6994  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
6995  *
6996  *      Frees an ingress queue and its associated FLs, if any.
6997  */
6998 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6999                unsigned int vf, unsigned int iqtype, unsigned int iqid,
7000                unsigned int fl0id, unsigned int fl1id)
7001 {
7002         struct fw_iq_cmd c;
7003
7004         memset(&c, 0, sizeof(c));
7005         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7006                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7007                                   FW_IQ_CMD_VFN_V(vf));
7008         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7009         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7010         c.iqid = cpu_to_be16(iqid);
7011         c.fl0id = cpu_to_be16(fl0id);
7012         c.fl1id = cpu_to_be16(fl1id);
7013         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7014 }
7015
7016 /**
7017  *      t4_eth_eq_free - free an Ethernet egress queue
7018  *      @adap: the adapter
7019  *      @mbox: mailbox to use for the FW command
7020  *      @pf: the PF owning the queue
7021  *      @vf: the VF owning the queue
7022  *      @eqid: egress queue id
7023  *
7024  *      Frees an Ethernet egress queue.
7025  */
7026 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7027                    unsigned int vf, unsigned int eqid)
7028 {
7029         struct fw_eq_eth_cmd c;
7030
7031         memset(&c, 0, sizeof(c));
7032         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7033                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7034                                   FW_EQ_ETH_CMD_PFN_V(pf) |
7035                                   FW_EQ_ETH_CMD_VFN_V(vf));
7036         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7037         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7038         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039 }
7040
7041 /**
7042  *      t4_ctrl_eq_free - free a control egress queue
7043  *      @adap: the adapter
7044  *      @mbox: mailbox to use for the FW command
7045  *      @pf: the PF owning the queue
7046  *      @vf: the VF owning the queue
7047  *      @eqid: egress queue id
7048  *
7049  *      Frees a control egress queue.
7050  */
7051 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7052                     unsigned int vf, unsigned int eqid)
7053 {
7054         struct fw_eq_ctrl_cmd c;
7055
7056         memset(&c, 0, sizeof(c));
7057         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7058                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7059                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
7060                                   FW_EQ_CTRL_CMD_VFN_V(vf));
7061         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7062         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7063         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7064 }
7065
7066 /**
7067  *      t4_ofld_eq_free - free an offload egress queue
7068  *      @adap: the adapter
7069  *      @mbox: mailbox to use for the FW command
7070  *      @pf: the PF owning the queue
7071  *      @vf: the VF owning the queue
7072  *      @eqid: egress queue id
7073  *
7074  *      Frees a control egress queue.
7075  */
7076 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7077                     unsigned int vf, unsigned int eqid)
7078 {
7079         struct fw_eq_ofld_cmd c;
7080
7081         memset(&c, 0, sizeof(c));
7082         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7083                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7084                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
7085                                   FW_EQ_OFLD_CMD_VFN_V(vf));
7086         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7087         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7088         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7089 }
7090
7091 /**
7092  *      t4_handle_fw_rpl - process a FW reply message
7093  *      @adap: the adapter
7094  *      @rpl: start of the FW message
7095  *
7096  *      Processes a FW message, such as link state change messages.
7097  */
7098 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7099 {
7100         u8 opcode = *(const u8 *)rpl;
7101
7102         if (opcode == FW_PORT_CMD) {    /* link/module state change message */
7103                 int speed = 0, fc = 0;
7104                 const struct fw_port_cmd *p = (void *)rpl;
7105                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7106                 int port = adap->chan_map[chan];
7107                 struct port_info *pi = adap2pinfo(adap, port);
7108                 struct link_config *lc = &pi->link_cfg;
7109                 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7110                 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7111                 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7112
7113                 if (stat & FW_PORT_CMD_RXPAUSE_F)
7114                         fc |= PAUSE_RX;
7115                 if (stat & FW_PORT_CMD_TXPAUSE_F)
7116                         fc |= PAUSE_TX;
7117                 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7118                         speed = 100;
7119                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7120                         speed = 1000;
7121                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7122                         speed = 10000;
7123                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7124                         speed = 40000;
7125
7126                 if (link_ok != lc->link_ok || speed != lc->speed ||
7127                     fc != lc->fc) {                    /* something changed */
7128                         lc->link_ok = link_ok;
7129                         lc->speed = speed;
7130                         lc->fc = fc;
7131                         lc->supported = be16_to_cpu(p->u.info.pcap);
7132                         t4_os_link_changed(adap, port, link_ok);
7133                 }
7134                 if (mod != pi->mod_type) {
7135                         pi->mod_type = mod;
7136                         t4_os_portmod_changed(adap, port);
7137                 }
7138         }
7139         return 0;
7140 }
7141
7142 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7143 {
7144         u16 val;
7145
7146         if (pci_is_pcie(adapter->pdev)) {
7147                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7148                 p->speed = val & PCI_EXP_LNKSTA_CLS;
7149                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7150         }
7151 }
7152
7153 /**
7154  *      init_link_config - initialize a link's SW state
7155  *      @lc: structure holding the link state
7156  *      @caps: link capabilities
7157  *
7158  *      Initializes the SW state maintained for each link, including the link's
7159  *      capabilities and default speed/flow-control/autonegotiation settings.
7160  */
7161 static void init_link_config(struct link_config *lc, unsigned int caps)
7162 {
7163         lc->supported = caps;
7164         lc->requested_speed = 0;
7165         lc->speed = 0;
7166         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7167         if (lc->supported & FW_PORT_CAP_ANEG) {
7168                 lc->advertising = lc->supported & ADVERT_MASK;
7169                 lc->autoneg = AUTONEG_ENABLE;
7170                 lc->requested_fc |= PAUSE_AUTONEG;
7171         } else {
7172                 lc->advertising = 0;
7173                 lc->autoneg = AUTONEG_DISABLE;
7174         }
7175 }
7176
7177 #define CIM_PF_NOACCESS 0xeeeeeeee
7178
7179 int t4_wait_dev_ready(void __iomem *regs)
7180 {
7181         u32 whoami;
7182
7183         whoami = readl(regs + PL_WHOAMI_A);
7184         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7185                 return 0;
7186
7187         msleep(500);
7188         whoami = readl(regs + PL_WHOAMI_A);
7189         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7190 }
7191
7192 struct flash_desc {
7193         u32 vendor_and_model_id;
7194         u32 size_mb;
7195 };
7196
7197 static int get_flash_params(struct adapter *adap)
7198 {
7199         /* Table for non-Numonix supported flash parts.  Numonix parts are left
7200          * to the preexisting code.  All flash parts have 64KB sectors.
7201          */
7202         static struct flash_desc supported_flash[] = {
7203                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7204         };
7205
7206         int ret;
7207         u32 info;
7208
7209         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7210         if (!ret)
7211                 ret = sf1_read(adap, 3, 0, 1, &info);
7212         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7213         if (ret)
7214                 return ret;
7215
7216         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7217                 if (supported_flash[ret].vendor_and_model_id == info) {
7218                         adap->params.sf_size = supported_flash[ret].size_mb;
7219                         adap->params.sf_nsec =
7220                                 adap->params.sf_size / SF_SEC_SIZE;
7221                         return 0;
7222                 }
7223
7224         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7225                 return -EINVAL;
7226         info >>= 16;                           /* log2 of size */
7227         if (info >= 0x14 && info < 0x18)
7228                 adap->params.sf_nsec = 1 << (info - 16);
7229         else if (info == 0x18)
7230                 adap->params.sf_nsec = 64;
7231         else
7232                 return -EINVAL;
7233         adap->params.sf_size = 1 << info;
7234         adap->params.sf_fw_start =
7235                 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7236
7237         if (adap->params.sf_size < FLASH_MIN_SIZE)
7238                 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7239                          adap->params.sf_size, FLASH_MIN_SIZE);
7240         return 0;
7241 }
7242
7243 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7244 {
7245         u16 val;
7246         u32 pcie_cap;
7247
7248         pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7249         if (pcie_cap) {
7250                 pci_read_config_word(adapter->pdev,
7251                                      pcie_cap + PCI_EXP_DEVCTL2, &val);
7252                 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7253                 val |= range;
7254                 pci_write_config_word(adapter->pdev,
7255                                       pcie_cap + PCI_EXP_DEVCTL2, val);
7256         }
7257 }
7258
7259 /**
7260  *      t4_prep_adapter - prepare SW and HW for operation
7261  *      @adapter: the adapter
7262  *      @reset: if true perform a HW reset
7263  *
7264  *      Initialize adapter SW state for the various HW modules, set initial
7265  *      values for some adapter tunables, take PHYs out of reset, and
7266  *      initialize the MDIO interface.
7267  */
7268 int t4_prep_adapter(struct adapter *adapter)
7269 {
7270         int ret, ver;
7271         uint16_t device_id;
7272         u32 pl_rev;
7273
7274         get_pci_mode(adapter, &adapter->params.pci);
7275         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7276
7277         ret = get_flash_params(adapter);
7278         if (ret < 0) {
7279                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7280                 return ret;
7281         }
7282
7283         /* Retrieve adapter's device ID
7284          */
7285         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7286         ver = device_id >> 12;
7287         adapter->params.chip = 0;
7288         switch (ver) {
7289         case CHELSIO_T4:
7290                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7291                 adapter->params.arch.sge_fl_db = DBPRIO_F;
7292                 adapter->params.arch.mps_tcam_size =
7293                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
7294                 adapter->params.arch.mps_rplc_size = 128;
7295                 adapter->params.arch.nchan = NCHAN;
7296                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7297                 adapter->params.arch.vfcount = 128;
7298                 /* Congestion map is for 4 channels so that
7299                  * MPS can have 4 priority per port.
7300                  */
7301                 adapter->params.arch.cng_ch_bits_log = 2;
7302                 break;
7303         case CHELSIO_T5:
7304                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7305                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7306                 adapter->params.arch.mps_tcam_size =
7307                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7308                 adapter->params.arch.mps_rplc_size = 128;
7309                 adapter->params.arch.nchan = NCHAN;
7310                 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7311                 adapter->params.arch.vfcount = 128;
7312                 adapter->params.arch.cng_ch_bits_log = 2;
7313                 break;
7314         case CHELSIO_T6:
7315                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7316                 adapter->params.arch.sge_fl_db = 0;
7317                 adapter->params.arch.mps_tcam_size =
7318                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7319                 adapter->params.arch.mps_rplc_size = 256;
7320                 adapter->params.arch.nchan = 2;
7321                 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7322                 adapter->params.arch.vfcount = 256;
7323                 /* Congestion map will be for 2 channels so that
7324                  * MPS can have 8 priority per port.
7325                  */
7326                 adapter->params.arch.cng_ch_bits_log = 3;
7327                 break;
7328         default:
7329                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7330                         device_id);
7331                 return -EINVAL;
7332         }
7333
7334         adapter->params.cim_la_size = CIMLA_SIZE;
7335         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7336
7337         /*
7338          * Default port for debugging in case we can't reach FW.
7339          */
7340         adapter->params.nports = 1;
7341         adapter->params.portvec = 1;
7342         adapter->params.vpd.cclk = 50000;
7343
7344         /* Set pci completion timeout value to 4 seconds. */
7345         set_pcie_completion_timeout(adapter, 0xd);
7346         return 0;
7347 }
7348
7349 /**
7350  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7351  *      @adapter: the adapter
7352  *      @qid: the Queue ID
7353  *      @qtype: the Ingress or Egress type for @qid
7354  *      @user: true if this request is for a user mode queue
7355  *      @pbar2_qoffset: BAR2 Queue Offset
7356  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7357  *
7358  *      Returns the BAR2 SGE Queue Registers information associated with the
7359  *      indicated Absolute Queue ID.  These are passed back in return value
7360  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7361  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7362  *
7363  *      This may return an error which indicates that BAR2 SGE Queue
7364  *      registers aren't available.  If an error is not returned, then the
7365  *      following values are returned:
7366  *
7367  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7368  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7369  *
7370  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7371  *      require the "Inferred Queue ID" ability may be used.  E.g. the
7372  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7373  *      then these "Inferred Queue ID" register may not be used.
7374  */
7375 int t4_bar2_sge_qregs(struct adapter *adapter,
7376                       unsigned int qid,
7377                       enum t4_bar2_qtype qtype,
7378                       int user,
7379                       u64 *pbar2_qoffset,
7380                       unsigned int *pbar2_qid)
7381 {
7382         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7383         u64 bar2_page_offset, bar2_qoffset;
7384         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7385
7386         /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7387         if (!user && is_t4(adapter->params.chip))
7388                 return -EINVAL;
7389
7390         /* Get our SGE Page Size parameters.
7391          */
7392         page_shift = adapter->params.sge.hps + 10;
7393         page_size = 1 << page_shift;
7394
7395         /* Get the right Queues per Page parameters for our Queue.
7396          */
7397         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7398                      ? adapter->params.sge.eq_qpp
7399                      : adapter->params.sge.iq_qpp);
7400         qpp_mask = (1 << qpp_shift) - 1;
7401
7402         /*  Calculate the basics of the BAR2 SGE Queue register area:
7403          *  o The BAR2 page the Queue registers will be in.
7404          *  o The BAR2 Queue ID.
7405          *  o The BAR2 Queue ID Offset into the BAR2 page.
7406          */
7407         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7408         bar2_qid = qid & qpp_mask;
7409         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7410
7411         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7412          * hardware will infer the Absolute Queue ID simply from the writes to
7413          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7414          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7415          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7416          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7417          * from the BAR2 Page and BAR2 Queue ID.
7418          *
7419          * One important censequence of this is that some BAR2 SGE registers
7420          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7421          * there.  But other registers synthesize the SGE Queue ID purely
7422          * from the writes to the registers -- the Write Combined Doorbell
7423          * Buffer is a good example.  These BAR2 SGE Registers are only
7424          * available for those BAR2 SGE Register areas where the SGE Absolute
7425          * Queue ID can be inferred from simple writes.
7426          */
7427         bar2_qoffset = bar2_page_offset;
7428         bar2_qinferred = (bar2_qid_offset < page_size);
7429         if (bar2_qinferred) {
7430                 bar2_qoffset += bar2_qid_offset;
7431                 bar2_qid = 0;
7432         }
7433
7434         *pbar2_qoffset = bar2_qoffset;
7435         *pbar2_qid = bar2_qid;
7436         return 0;
7437 }
7438
7439 /**
7440  *      t4_init_devlog_params - initialize adapter->params.devlog
7441  *      @adap: the adapter
7442  *
7443  *      Initialize various fields of the adapter's Firmware Device Log
7444  *      Parameters structure.
7445  */
7446 int t4_init_devlog_params(struct adapter *adap)
7447 {
7448         struct devlog_params *dparams = &adap->params.devlog;
7449         u32 pf_dparams;
7450         unsigned int devlog_meminfo;
7451         struct fw_devlog_cmd devlog_cmd;
7452         int ret;
7453
7454         /* If we're dealing with newer firmware, the Device Log Paramerters
7455          * are stored in a designated register which allows us to access the
7456          * Device Log even if we can't talk to the firmware.
7457          */
7458         pf_dparams =
7459                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7460         if (pf_dparams) {
7461                 unsigned int nentries, nentries128;
7462
7463                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7464                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7465
7466                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7467                 nentries = (nentries128 + 1) * 128;
7468                 dparams->size = nentries * sizeof(struct fw_devlog_e);
7469
7470                 return 0;
7471         }
7472
7473         /* Otherwise, ask the firmware for it's Device Log Parameters.
7474          */
7475         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7476         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7477                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
7478         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7479         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7480                          &devlog_cmd);
7481         if (ret)
7482                 return ret;
7483
7484         devlog_meminfo =
7485                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7486         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7487         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7488         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7489
7490         return 0;
7491 }
7492
7493 /**
7494  *      t4_init_sge_params - initialize adap->params.sge
7495  *      @adapter: the adapter
7496  *
7497  *      Initialize various fields of the adapter's SGE Parameters structure.
7498  */
7499 int t4_init_sge_params(struct adapter *adapter)
7500 {
7501         struct sge_params *sge_params = &adapter->params.sge;
7502         u32 hps, qpp;
7503         unsigned int s_hps, s_qpp;
7504
7505         /* Extract the SGE Page Size for our PF.
7506          */
7507         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7508         s_hps = (HOSTPAGESIZEPF0_S +
7509                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7510         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7511
7512         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7513          */
7514         s_qpp = (QUEUESPERPAGEPF0_S +
7515                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7516         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7517         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7518         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7519         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7520
7521         return 0;
7522 }
7523
7524 /**
7525  *      t4_init_tp_params - initialize adap->params.tp
7526  *      @adap: the adapter
7527  *
7528  *      Initialize various fields of the adapter's TP Parameters structure.
7529  */
7530 int t4_init_tp_params(struct adapter *adap)
7531 {
7532         int chan;
7533         u32 v;
7534
7535         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7536         adap->params.tp.tre = TIMERRESOLUTION_G(v);
7537         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7538
7539         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7540         for (chan = 0; chan < NCHAN; chan++)
7541                 adap->params.tp.tx_modq[chan] = chan;
7542
7543         /* Cache the adapter's Compressed Filter Mode and global Incress
7544          * Configuration.
7545          */
7546         if (t4_use_ldst(adap)) {
7547                 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7548                                 TP_VLAN_PRI_MAP_A, 1);
7549                 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7550                                 TP_INGRESS_CONFIG_A, 1);
7551         } else {
7552                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7553                                  &adap->params.tp.vlan_pri_map, 1,
7554                                  TP_VLAN_PRI_MAP_A);
7555                 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7556                                  &adap->params.tp.ingress_config, 1,
7557                                  TP_INGRESS_CONFIG_A);
7558         }
7559
7560         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7561          * shift positions of several elements of the Compressed Filter Tuple
7562          * for this adapter which we need frequently ...
7563          */
7564         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7565         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7566         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7567         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7568                                                                PROTOCOL_F);
7569
7570         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7571          * represents the presence of an Outer VLAN instead of a VNIC ID.
7572          */
7573         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7574                 adap->params.tp.vnic_shift = -1;
7575
7576         return 0;
7577 }
7578
7579 /**
7580  *      t4_filter_field_shift - calculate filter field shift
7581  *      @adap: the adapter
7582  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7583  *
7584  *      Return the shift position of a filter field within the Compressed
7585  *      Filter Tuple.  The filter field is specified via its selection bit
7586  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7587  */
7588 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7589 {
7590         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7591         unsigned int sel;
7592         int field_shift;
7593
7594         if ((filter_mode & filter_sel) == 0)
7595                 return -1;
7596
7597         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7598                 switch (filter_mode & sel) {
7599                 case FCOE_F:
7600                         field_shift += FT_FCOE_W;
7601                         break;
7602                 case PORT_F:
7603                         field_shift += FT_PORT_W;
7604                         break;
7605                 case VNIC_ID_F:
7606                         field_shift += FT_VNIC_ID_W;
7607                         break;
7608                 case VLAN_F:
7609                         field_shift += FT_VLAN_W;
7610                         break;
7611                 case TOS_F:
7612                         field_shift += FT_TOS_W;
7613                         break;
7614                 case PROTOCOL_F:
7615                         field_shift += FT_PROTOCOL_W;
7616                         break;
7617                 case ETHERTYPE_F:
7618                         field_shift += FT_ETHERTYPE_W;
7619                         break;
7620                 case MACMATCH_F:
7621                         field_shift += FT_MACMATCH_W;
7622                         break;
7623                 case MPSHITTYPE_F:
7624                         field_shift += FT_MPSHITTYPE_W;
7625                         break;
7626                 case FRAGMENTATION_F:
7627                         field_shift += FT_FRAGMENTATION_W;
7628                         break;
7629                 }
7630         }
7631         return field_shift;
7632 }
7633
7634 int t4_init_rss_mode(struct adapter *adap, int mbox)
7635 {
7636         int i, ret;
7637         struct fw_rss_vi_config_cmd rvc;
7638
7639         memset(&rvc, 0, sizeof(rvc));
7640
7641         for_each_port(adap, i) {
7642                 struct port_info *p = adap2pinfo(adap, i);
7643
7644                 rvc.op_to_viid =
7645                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7646                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7647                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7648                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7649                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7650                 if (ret)
7651                         return ret;
7652                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7653         }
7654         return 0;
7655 }
7656
7657 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7658 {
7659         u8 addr[6];
7660         int ret, i, j = 0;
7661         struct fw_port_cmd c;
7662         struct fw_rss_vi_config_cmd rvc;
7663
7664         memset(&c, 0, sizeof(c));
7665         memset(&rvc, 0, sizeof(rvc));
7666
7667         for_each_port(adap, i) {
7668                 unsigned int rss_size;
7669                 struct port_info *p = adap2pinfo(adap, i);
7670
7671                 while ((adap->params.portvec & (1 << j)) == 0)
7672                         j++;
7673
7674                 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7675                                              FW_CMD_REQUEST_F | FW_CMD_READ_F |
7676                                              FW_PORT_CMD_PORTID_V(j));
7677                 c.action_to_len16 = cpu_to_be32(
7678                         FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7679                         FW_LEN16(c));
7680                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7681                 if (ret)
7682                         return ret;
7683
7684                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7685                 if (ret < 0)
7686                         return ret;
7687
7688                 p->viid = ret;
7689                 p->tx_chan = j;
7690                 p->lport = j;
7691                 p->rss_size = rss_size;
7692                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7693                 adap->port[i]->dev_port = j;
7694
7695                 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7696                 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7697                         FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7698                 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7699                 p->mod_type = FW_PORT_MOD_TYPE_NA;
7700
7701                 rvc.op_to_viid =
7702                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7703                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7704                                     FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7705                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7706                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7707                 if (ret)
7708                         return ret;
7709                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7710
7711                 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7712                 j++;
7713         }
7714         return 0;
7715 }
7716
7717 /**
7718  *      t4_read_cimq_cfg - read CIM queue configuration
7719  *      @adap: the adapter
7720  *      @base: holds the queue base addresses in bytes
7721  *      @size: holds the queue sizes in bytes
7722  *      @thres: holds the queue full thresholds in bytes
7723  *
7724  *      Returns the current configuration of the CIM queues, starting with
7725  *      the IBQs, then the OBQs.
7726  */
7727 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7728 {
7729         unsigned int i, v;
7730         int cim_num_obq = is_t4(adap->params.chip) ?
7731                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7732
7733         for (i = 0; i < CIM_NUM_IBQ; i++) {
7734                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7735                              QUENUMSELECT_V(i));
7736                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7737                 /* value is in 256-byte units */
7738                 *base++ = CIMQBASE_G(v) * 256;
7739                 *size++ = CIMQSIZE_G(v) * 256;
7740                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7741         }
7742         for (i = 0; i < cim_num_obq; i++) {
7743                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7744                              QUENUMSELECT_V(i));
7745                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7746                 /* value is in 256-byte units */
7747                 *base++ = CIMQBASE_G(v) * 256;
7748                 *size++ = CIMQSIZE_G(v) * 256;
7749         }
7750 }
7751
7752 /**
7753  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
7754  *      @adap: the adapter
7755  *      @qid: the queue index
7756  *      @data: where to store the queue contents
7757  *      @n: capacity of @data in 32-bit words
7758  *
7759  *      Reads the contents of the selected CIM queue starting at address 0 up
7760  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7761  *      error and the number of 32-bit words actually read on success.
7762  */
7763 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7764 {
7765         int i, err, attempts;
7766         unsigned int addr;
7767         const unsigned int nwords = CIM_IBQ_SIZE * 4;
7768
7769         if (qid > 5 || (n & 3))
7770                 return -EINVAL;
7771
7772         addr = qid * nwords;
7773         if (n > nwords)
7774                 n = nwords;
7775
7776         /* It might take 3-10ms before the IBQ debug read access is allowed.
7777          * Wait for 1 Sec with a delay of 1 usec.
7778          */
7779         attempts = 1000000;
7780
7781         for (i = 0; i < n; i++, addr++) {
7782                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7783                              IBQDBGEN_F);
7784                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7785                                       attempts, 1);
7786                 if (err)
7787                         return err;
7788                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7789         }
7790         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7791         return i;
7792 }
7793
7794 /**
7795  *      t4_read_cim_obq - read the contents of a CIM outbound queue
7796  *      @adap: the adapter
7797  *      @qid: the queue index
7798  *      @data: where to store the queue contents
7799  *      @n: capacity of @data in 32-bit words
7800  *
7801  *      Reads the contents of the selected CIM queue starting at address 0 up
7802  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7803  *      error and the number of 32-bit words actually read on success.
7804  */
7805 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7806 {
7807         int i, err;
7808         unsigned int addr, v, nwords;
7809         int cim_num_obq = is_t4(adap->params.chip) ?
7810                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7811
7812         if ((qid > (cim_num_obq - 1)) || (n & 3))
7813                 return -EINVAL;
7814
7815         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7816                      QUENUMSELECT_V(qid));
7817         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7818
7819         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7820         nwords = CIMQSIZE_G(v) * 64;  /* same */
7821         if (n > nwords)
7822                 n = nwords;
7823
7824         for (i = 0; i < n; i++, addr++) {
7825                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7826                              OBQDBGEN_F);
7827                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7828                                       2, 1);
7829                 if (err)
7830                         return err;
7831                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7832         }
7833         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7834         return i;
7835 }
7836
7837 /**
7838  *      t4_cim_read - read a block from CIM internal address space
7839  *      @adap: the adapter
7840  *      @addr: the start address within the CIM address space
7841  *      @n: number of words to read
7842  *      @valp: where to store the result
7843  *
7844  *      Reads a block of 4-byte words from the CIM intenal address space.
7845  */
7846 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7847                 unsigned int *valp)
7848 {
7849         int ret = 0;
7850
7851         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7852                 return -EBUSY;
7853
7854         for ( ; !ret && n--; addr += 4) {
7855                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7856                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7857                                       0, 5, 2);
7858                 if (!ret)
7859                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7860         }
7861         return ret;
7862 }
7863
7864 /**
7865  *      t4_cim_write - write a block into CIM internal address space
7866  *      @adap: the adapter
7867  *      @addr: the start address within the CIM address space
7868  *      @n: number of words to write
7869  *      @valp: set of values to write
7870  *
7871  *      Writes a block of 4-byte words into the CIM intenal address space.
7872  */
7873 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7874                  const unsigned int *valp)
7875 {
7876         int ret = 0;
7877
7878         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7879                 return -EBUSY;
7880
7881         for ( ; !ret && n--; addr += 4) {
7882                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7883                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7884                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7885                                       0, 5, 2);
7886         }
7887         return ret;
7888 }
7889
7890 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7891                          unsigned int val)
7892 {
7893         return t4_cim_write(adap, addr, 1, &val);
7894 }
7895
7896 /**
7897  *      t4_cim_read_la - read CIM LA capture buffer
7898  *      @adap: the adapter
7899  *      @la_buf: where to store the LA data
7900  *      @wrptr: the HW write pointer within the capture buffer
7901  *
7902  *      Reads the contents of the CIM LA buffer with the most recent entry at
7903  *      the end of the returned data and with the entry at @wrptr first.
7904  *      We try to leave the LA in the running state we find it in.
7905  */
7906 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7907 {
7908         int i, ret;
7909         unsigned int cfg, val, idx;
7910
7911         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7912         if (ret)
7913                 return ret;
7914
7915         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
7916                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7917                 if (ret)
7918                         return ret;
7919         }
7920
7921         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7922         if (ret)
7923                 goto restart;
7924
7925         idx = UPDBGLAWRPTR_G(val);
7926         if (wrptr)
7927                 *wrptr = idx;
7928
7929         for (i = 0; i < adap->params.cim_la_size; i++) {
7930                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7931                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7932                 if (ret)
7933                         break;
7934                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7935                 if (ret)
7936                         break;
7937                 if (val & UPDBGLARDEN_F) {
7938                         ret = -ETIMEDOUT;
7939                         break;
7940                 }
7941                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7942                 if (ret)
7943                         break;
7944                 idx = (idx + 1) & UPDBGLARDPTR_M;
7945         }
7946 restart:
7947         if (cfg & UPDBGLAEN_F) {
7948                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7949                                       cfg & ~UPDBGLARDEN_F);
7950                 if (!ret)
7951                         ret = r;
7952         }
7953         return ret;
7954 }
7955
7956 /**
7957  *      t4_tp_read_la - read TP LA capture buffer
7958  *      @adap: the adapter
7959  *      @la_buf: where to store the LA data
7960  *      @wrptr: the HW write pointer within the capture buffer
7961  *
7962  *      Reads the contents of the TP LA buffer with the most recent entry at
7963  *      the end of the returned data and with the entry at @wrptr first.
7964  *      We leave the LA in the running state we find it in.
7965  */
7966 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7967 {
7968         bool last_incomplete;
7969         unsigned int i, cfg, val, idx;
7970
7971         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7972         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
7973                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7974                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7975
7976         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7977         idx = DBGLAWPTR_G(val);
7978         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7979         if (last_incomplete)
7980                 idx = (idx + 1) & DBGLARPTR_M;
7981         if (wrptr)
7982                 *wrptr = idx;
7983
7984         val &= 0xffff;
7985         val &= ~DBGLARPTR_V(DBGLARPTR_M);
7986         val |= adap->params.tp.la_mask;
7987
7988         for (i = 0; i < TPLA_SIZE; i++) {
7989                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7990                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7991                 idx = (idx + 1) & DBGLARPTR_M;
7992         }
7993
7994         /* Wipe out last entry if it isn't valid */
7995         if (last_incomplete)
7996                 la_buf[TPLA_SIZE - 1] = ~0ULL;
7997
7998         if (cfg & DBGLAENABLE_F)                    /* restore running state */
7999                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8000                              cfg | adap->params.tp.la_mask);
8001 }
8002
8003 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8004  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8005  * state for more than the Warning Threshold then we'll issue a warning about
8006  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8007  * appears to be hung every Warning Repeat second till the situation clears.
8008  * If the situation clears, we'll note that as well.
8009  */
8010 #define SGE_IDMA_WARN_THRESH 1
8011 #define SGE_IDMA_WARN_REPEAT 300
8012
8013 /**
8014  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8015  *      @adapter: the adapter
8016  *      @idma: the adapter IDMA Monitor state
8017  *
8018  *      Initialize the state of an SGE Ingress DMA Monitor.
8019  */
8020 void t4_idma_monitor_init(struct adapter *adapter,
8021                           struct sge_idma_monitor_state *idma)
8022 {
8023         /* Initialize the state variables for detecting an SGE Ingress DMA
8024          * hang.  The SGE has internal counters which count up on each clock
8025          * tick whenever the SGE finds its Ingress DMA State Engines in the
8026          * same state they were on the previous clock tick.  The clock used is
8027          * the Core Clock so we have a limit on the maximum "time" they can
8028          * record; typically a very small number of seconds.  For instance,
8029          * with a 600MHz Core Clock, we can only count up to a bit more than
8030          * 7s.  So we'll synthesize a larger counter in order to not run the
8031          * risk of having the "timers" overflow and give us the flexibility to
8032          * maintain a Hung SGE State Machine of our own which operates across
8033          * a longer time frame.
8034          */
8035         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8036         idma->idma_stalled[0] = 0;
8037         idma->idma_stalled[1] = 0;
8038 }
8039
8040 /**
8041  *      t4_idma_monitor - monitor SGE Ingress DMA state
8042  *      @adapter: the adapter
8043  *      @idma: the adapter IDMA Monitor state
8044  *      @hz: number of ticks/second
8045  *      @ticks: number of ticks since the last IDMA Monitor call
8046  */
8047 void t4_idma_monitor(struct adapter *adapter,
8048                      struct sge_idma_monitor_state *idma,
8049                      int hz, int ticks)
8050 {
8051         int i, idma_same_state_cnt[2];
8052
8053          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8054           * are counters inside the SGE which count up on each clock when the
8055           * SGE finds its Ingress DMA State Engines in the same states they
8056           * were in the previous clock.  The counters will peg out at
8057           * 0xffffffff without wrapping around so once they pass the 1s
8058           * threshold they'll stay above that till the IDMA state changes.
8059           */
8060         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8061         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8062         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8063
8064         for (i = 0; i < 2; i++) {
8065                 u32 debug0, debug11;
8066
8067                 /* If the Ingress DMA Same State Counter ("timer") is less
8068                  * than 1s, then we can reset our synthesized Stall Timer and
8069                  * continue.  If we have previously emitted warnings about a
8070                  * potential stalled Ingress Queue, issue a note indicating
8071                  * that the Ingress Queue has resumed forward progress.
8072                  */
8073                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8074                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8075                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8076                                          "resumed after %d seconds\n",
8077                                          i, idma->idma_qid[i],
8078                                          idma->idma_stalled[i] / hz);
8079                         idma->idma_stalled[i] = 0;
8080                         continue;
8081                 }
8082
8083                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8084                  * domain.  The first time we get here it'll be because we
8085                  * passed the 1s Threshold; each additional time it'll be
8086                  * because the RX Timer Callback is being fired on its regular
8087                  * schedule.
8088                  *
8089                  * If the stall is below our Potential Hung Ingress Queue
8090                  * Warning Threshold, continue.
8091                  */
8092                 if (idma->idma_stalled[i] == 0) {
8093                         idma->idma_stalled[i] = hz;
8094                         idma->idma_warn[i] = 0;
8095                 } else {
8096                         idma->idma_stalled[i] += ticks;
8097                         idma->idma_warn[i] -= ticks;
8098                 }
8099
8100                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8101                         continue;
8102
8103                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8104                  */
8105                 if (idma->idma_warn[i] > 0)
8106                         continue;
8107                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8108
8109                 /* Read and save the SGE IDMA State and Queue ID information.
8110                  * We do this every time in case it changes across time ...
8111                  * can't be too careful ...
8112                  */
8113                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8114                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8115                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8116
8117                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8118                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8119                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8120
8121                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8122                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8123                          i, idma->idma_qid[i], idma->idma_state[i],
8124                          idma->idma_stalled[i] / hz,
8125                          debug0, debug11);
8126                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8127         }
8128 }