Merge tag 'powerpc-4.6-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-block.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *      Additional technical information is available on
7  *      http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *      David Woodhouse for adding multichip support
14  *
15  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *      rework for 2K page size chips
17  *
18  *  TODO:
19  *      Enable cached programming for 2k page size chips
20  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *      if we have HW ECC support.
22  *      BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
46 #include <linux/leds.h>
47 #include <linux/io.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of_mtd.h>
50
51 /* Define default oob placement schemes for large and small page devices */
52 static struct nand_ecclayout nand_oob_8 = {
53         .eccbytes = 3,
54         .eccpos = {0, 1, 2},
55         .oobfree = {
56                 {.offset = 3,
57                  .length = 2},
58                 {.offset = 6,
59                  .length = 2} }
60 };
61
62 static struct nand_ecclayout nand_oob_16 = {
63         .eccbytes = 6,
64         .eccpos = {0, 1, 2, 3, 6, 7},
65         .oobfree = {
66                 {.offset = 8,
67                  . length = 8} }
68 };
69
70 static struct nand_ecclayout nand_oob_64 = {
71         .eccbytes = 24,
72         .eccpos = {
73                    40, 41, 42, 43, 44, 45, 46, 47,
74                    48, 49, 50, 51, 52, 53, 54, 55,
75                    56, 57, 58, 59, 60, 61, 62, 63},
76         .oobfree = {
77                 {.offset = 2,
78                  .length = 38} }
79 };
80
81 static struct nand_ecclayout nand_oob_128 = {
82         .eccbytes = 48,
83         .eccpos = {
84                    80, 81, 82, 83, 84, 85, 86, 87,
85                    88, 89, 90, 91, 92, 93, 94, 95,
86                    96, 97, 98, 99, 100, 101, 102, 103,
87                    104, 105, 106, 107, 108, 109, 110, 111,
88                    112, 113, 114, 115, 116, 117, 118, 119,
89                    120, 121, 122, 123, 124, 125, 126, 127},
90         .oobfree = {
91                 {.offset = 2,
92                  .length = 78} }
93 };
94
95 static int nand_get_device(struct mtd_info *mtd, int new_state);
96
97 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98                              struct mtd_oob_ops *ops);
99
100 /*
101  * For devices which display every fart in the system on a separate LED. Is
102  * compiled away when LED support is disabled.
103  */
104 DEFINE_LED_TRIGGER(nand_led_trigger);
105
106 static int check_offs_len(struct mtd_info *mtd,
107                                         loff_t ofs, uint64_t len)
108 {
109         struct nand_chip *chip = mtd_to_nand(mtd);
110         int ret = 0;
111
112         /* Start address must align on block boundary */
113         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
114                 pr_debug("%s: unaligned address\n", __func__);
115                 ret = -EINVAL;
116         }
117
118         /* Length must align on block boundary */
119         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
120                 pr_debug("%s: length not block aligned\n", __func__);
121                 ret = -EINVAL;
122         }
123
124         return ret;
125 }
126
127 /**
128  * nand_release_device - [GENERIC] release chip
129  * @mtd: MTD device structure
130  *
131  * Release chip lock and wake up anyone waiting on the device.
132  */
133 static void nand_release_device(struct mtd_info *mtd)
134 {
135         struct nand_chip *chip = mtd_to_nand(mtd);
136
137         /* Release the controller and the chip */
138         spin_lock(&chip->controller->lock);
139         chip->controller->active = NULL;
140         chip->state = FL_READY;
141         wake_up(&chip->controller->wq);
142         spin_unlock(&chip->controller->lock);
143 }
144
145 /**
146  * nand_read_byte - [DEFAULT] read one byte from the chip
147  * @mtd: MTD device structure
148  *
149  * Default read function for 8bit buswidth
150  */
151 static uint8_t nand_read_byte(struct mtd_info *mtd)
152 {
153         struct nand_chip *chip = mtd_to_nand(mtd);
154         return readb(chip->IO_ADDR_R);
155 }
156
157 /**
158  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
159  * @mtd: MTD device structure
160  *
161  * Default read function for 16bit buswidth with endianness conversion.
162  *
163  */
164 static uint8_t nand_read_byte16(struct mtd_info *mtd)
165 {
166         struct nand_chip *chip = mtd_to_nand(mtd);
167         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
168 }
169
170 /**
171  * nand_read_word - [DEFAULT] read one word from the chip
172  * @mtd: MTD device structure
173  *
174  * Default read function for 16bit buswidth without endianness conversion.
175  */
176 static u16 nand_read_word(struct mtd_info *mtd)
177 {
178         struct nand_chip *chip = mtd_to_nand(mtd);
179         return readw(chip->IO_ADDR_R);
180 }
181
182 /**
183  * nand_select_chip - [DEFAULT] control CE line
184  * @mtd: MTD device structure
185  * @chipnr: chipnumber to select, -1 for deselect
186  *
187  * Default select function for 1 chip devices.
188  */
189 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
190 {
191         struct nand_chip *chip = mtd_to_nand(mtd);
192
193         switch (chipnr) {
194         case -1:
195                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
196                 break;
197         case 0:
198                 break;
199
200         default:
201                 BUG();
202         }
203 }
204
205 /**
206  * nand_write_byte - [DEFAULT] write single byte to chip
207  * @mtd: MTD device structure
208  * @byte: value to write
209  *
210  * Default function to write a byte to I/O[7:0]
211  */
212 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
213 {
214         struct nand_chip *chip = mtd_to_nand(mtd);
215
216         chip->write_buf(mtd, &byte, 1);
217 }
218
219 /**
220  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221  * @mtd: MTD device structure
222  * @byte: value to write
223  *
224  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
225  */
226 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
227 {
228         struct nand_chip *chip = mtd_to_nand(mtd);
229         uint16_t word = byte;
230
231         /*
232          * It's not entirely clear what should happen to I/O[15:8] when writing
233          * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
234          *
235          *    When the host supports a 16-bit bus width, only data is
236          *    transferred at the 16-bit width. All address and command line
237          *    transfers shall use only the lower 8-bits of the data bus. During
238          *    command transfers, the host may place any value on the upper
239          *    8-bits of the data bus. During address transfers, the host shall
240          *    set the upper 8-bits of the data bus to 00h.
241          *
242          * One user of the write_byte callback is nand_onfi_set_features. The
243          * four parameters are specified to be written to I/O[7:0], but this is
244          * neither an address nor a command transfer. Let's assume a 0 on the
245          * upper I/O lines is OK.
246          */
247         chip->write_buf(mtd, (uint8_t *)&word, 2);
248 }
249
250 /**
251  * nand_write_buf - [DEFAULT] write buffer to chip
252  * @mtd: MTD device structure
253  * @buf: data buffer
254  * @len: number of bytes to write
255  *
256  * Default write function for 8bit buswidth.
257  */
258 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
259 {
260         struct nand_chip *chip = mtd_to_nand(mtd);
261
262         iowrite8_rep(chip->IO_ADDR_W, buf, len);
263 }
264
265 /**
266  * nand_read_buf - [DEFAULT] read chip data into buffer
267  * @mtd: MTD device structure
268  * @buf: buffer to store date
269  * @len: number of bytes to read
270  *
271  * Default read function for 8bit buswidth.
272  */
273 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
274 {
275         struct nand_chip *chip = mtd_to_nand(mtd);
276
277         ioread8_rep(chip->IO_ADDR_R, buf, len);
278 }
279
280 /**
281  * nand_write_buf16 - [DEFAULT] write buffer to chip
282  * @mtd: MTD device structure
283  * @buf: data buffer
284  * @len: number of bytes to write
285  *
286  * Default write function for 16bit buswidth.
287  */
288 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290         struct nand_chip *chip = mtd_to_nand(mtd);
291         u16 *p = (u16 *) buf;
292
293         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
294 }
295
296 /**
297  * nand_read_buf16 - [DEFAULT] read chip data into buffer
298  * @mtd: MTD device structure
299  * @buf: buffer to store date
300  * @len: number of bytes to read
301  *
302  * Default read function for 16bit buswidth.
303  */
304 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
305 {
306         struct nand_chip *chip = mtd_to_nand(mtd);
307         u16 *p = (u16 *) buf;
308
309         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
310 }
311
312 /**
313  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
314  * @mtd: MTD device structure
315  * @ofs: offset from device start
316  *
317  * Check, if the block is bad.
318  */
319 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
320 {
321         int page, res = 0, i = 0;
322         struct nand_chip *chip = mtd_to_nand(mtd);
323         u16 bad;
324
325         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
326                 ofs += mtd->erasesize - mtd->writesize;
327
328         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
329
330         do {
331                 if (chip->options & NAND_BUSWIDTH_16) {
332                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
333                                         chip->badblockpos & 0xFE, page);
334                         bad = cpu_to_le16(chip->read_word(mtd));
335                         if (chip->badblockpos & 0x1)
336                                 bad >>= 8;
337                         else
338                                 bad &= 0xFF;
339                 } else {
340                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
341                                         page);
342                         bad = chip->read_byte(mtd);
343                 }
344
345                 if (likely(chip->badblockbits == 8))
346                         res = bad != 0xFF;
347                 else
348                         res = hweight8(bad) < chip->badblockbits;
349                 ofs += mtd->writesize;
350                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
351                 i++;
352         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
353
354         return res;
355 }
356
357 /**
358  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
359  * @mtd: MTD device structure
360  * @ofs: offset from device start
361  *
362  * This is the default implementation, which can be overridden by a hardware
363  * specific driver. It provides the details for writing a bad block marker to a
364  * block.
365  */
366 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
367 {
368         struct nand_chip *chip = mtd_to_nand(mtd);
369         struct mtd_oob_ops ops;
370         uint8_t buf[2] = { 0, 0 };
371         int ret = 0, res, i = 0;
372
373         memset(&ops, 0, sizeof(ops));
374         ops.oobbuf = buf;
375         ops.ooboffs = chip->badblockpos;
376         if (chip->options & NAND_BUSWIDTH_16) {
377                 ops.ooboffs &= ~0x01;
378                 ops.len = ops.ooblen = 2;
379         } else {
380                 ops.len = ops.ooblen = 1;
381         }
382         ops.mode = MTD_OPS_PLACE_OOB;
383
384         /* Write to first/last page(s) if necessary */
385         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
386                 ofs += mtd->erasesize - mtd->writesize;
387         do {
388                 res = nand_do_write_oob(mtd, ofs, &ops);
389                 if (!ret)
390                         ret = res;
391
392                 i++;
393                 ofs += mtd->writesize;
394         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
395
396         return ret;
397 }
398
399 /**
400  * nand_block_markbad_lowlevel - mark a block bad
401  * @mtd: MTD device structure
402  * @ofs: offset from device start
403  *
404  * This function performs the generic NAND bad block marking steps (i.e., bad
405  * block table(s) and/or marker(s)). We only allow the hardware driver to
406  * specify how to write bad block markers to OOB (chip->block_markbad).
407  *
408  * We try operations in the following order:
409  *  (1) erase the affected block, to allow OOB marker to be written cleanly
410  *  (2) write bad block marker to OOB area of affected block (unless flag
411  *      NAND_BBT_NO_OOB_BBM is present)
412  *  (3) update the BBT
413  * Note that we retain the first error encountered in (2) or (3), finish the
414  * procedures, and dump the error in the end.
415 */
416 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
417 {
418         struct nand_chip *chip = mtd_to_nand(mtd);
419         int res, ret = 0;
420
421         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
422                 struct erase_info einfo;
423
424                 /* Attempt erase before marking OOB */
425                 memset(&einfo, 0, sizeof(einfo));
426                 einfo.mtd = mtd;
427                 einfo.addr = ofs;
428                 einfo.len = 1ULL << chip->phys_erase_shift;
429                 nand_erase_nand(mtd, &einfo, 0);
430
431                 /* Write bad block marker to OOB */
432                 nand_get_device(mtd, FL_WRITING);
433                 ret = chip->block_markbad(mtd, ofs);
434                 nand_release_device(mtd);
435         }
436
437         /* Mark block bad in BBT */
438         if (chip->bbt) {
439                 res = nand_markbad_bbt(mtd, ofs);
440                 if (!ret)
441                         ret = res;
442         }
443
444         if (!ret)
445                 mtd->ecc_stats.badblocks++;
446
447         return ret;
448 }
449
450 /**
451  * nand_check_wp - [GENERIC] check if the chip is write protected
452  * @mtd: MTD device structure
453  *
454  * Check, if the device is write protected. The function expects, that the
455  * device is already selected.
456  */
457 static int nand_check_wp(struct mtd_info *mtd)
458 {
459         struct nand_chip *chip = mtd_to_nand(mtd);
460
461         /* Broken xD cards report WP despite being writable */
462         if (chip->options & NAND_BROKEN_XD)
463                 return 0;
464
465         /* Check the WP bit */
466         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
467         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
468 }
469
470 /**
471  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
472  * @mtd: MTD device structure
473  * @ofs: offset from device start
474  *
475  * Check if the block is marked as reserved.
476  */
477 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
478 {
479         struct nand_chip *chip = mtd_to_nand(mtd);
480
481         if (!chip->bbt)
482                 return 0;
483         /* Return info from the table */
484         return nand_isreserved_bbt(mtd, ofs);
485 }
486
487 /**
488  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
489  * @mtd: MTD device structure
490  * @ofs: offset from device start
491  * @allowbbt: 1, if its allowed to access the bbt area
492  *
493  * Check, if the block is bad. Either by reading the bad block table or
494  * calling of the scan function.
495  */
496 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
497 {
498         struct nand_chip *chip = mtd_to_nand(mtd);
499
500         if (!chip->bbt)
501                 return chip->block_bad(mtd, ofs);
502
503         /* Return info from the table */
504         return nand_isbad_bbt(mtd, ofs, allowbbt);
505 }
506
507 /**
508  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
509  * @mtd: MTD device structure
510  * @timeo: Timeout
511  *
512  * Helper function for nand_wait_ready used when needing to wait in interrupt
513  * context.
514  */
515 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
516 {
517         struct nand_chip *chip = mtd_to_nand(mtd);
518         int i;
519
520         /* Wait for the device to get ready */
521         for (i = 0; i < timeo; i++) {
522                 if (chip->dev_ready(mtd))
523                         break;
524                 touch_softlockup_watchdog();
525                 mdelay(1);
526         }
527 }
528
529 /**
530  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
531  * @mtd: MTD device structure
532  *
533  * Wait for the ready pin after a command, and warn if a timeout occurs.
534  */
535 void nand_wait_ready(struct mtd_info *mtd)
536 {
537         struct nand_chip *chip = mtd_to_nand(mtd);
538         unsigned long timeo = 400;
539
540         if (in_interrupt() || oops_in_progress)
541                 return panic_nand_wait_ready(mtd, timeo);
542
543         led_trigger_event(nand_led_trigger, LED_FULL);
544         /* Wait until command is processed or timeout occurs */
545         timeo = jiffies + msecs_to_jiffies(timeo);
546         do {
547                 if (chip->dev_ready(mtd))
548                         goto out;
549                 cond_resched();
550         } while (time_before(jiffies, timeo));
551
552         if (!chip->dev_ready(mtd))
553                 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
554 out:
555         led_trigger_event(nand_led_trigger, LED_OFF);
556 }
557 EXPORT_SYMBOL_GPL(nand_wait_ready);
558
559 /**
560  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
561  * @mtd: MTD device structure
562  * @timeo: Timeout in ms
563  *
564  * Wait for status ready (i.e. command done) or timeout.
565  */
566 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
567 {
568         register struct nand_chip *chip = mtd_to_nand(mtd);
569
570         timeo = jiffies + msecs_to_jiffies(timeo);
571         do {
572                 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
573                         break;
574                 touch_softlockup_watchdog();
575         } while (time_before(jiffies, timeo));
576 };
577
578 /**
579  * nand_command - [DEFAULT] Send command to NAND device
580  * @mtd: MTD device structure
581  * @command: the command to be sent
582  * @column: the column address for this command, -1 if none
583  * @page_addr: the page address for this command, -1 if none
584  *
585  * Send command to NAND device. This function is used for small page devices
586  * (512 Bytes per page).
587  */
588 static void nand_command(struct mtd_info *mtd, unsigned int command,
589                          int column, int page_addr)
590 {
591         register struct nand_chip *chip = mtd_to_nand(mtd);
592         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
593
594         /* Write out the command to the device */
595         if (command == NAND_CMD_SEQIN) {
596                 int readcmd;
597
598                 if (column >= mtd->writesize) {
599                         /* OOB area */
600                         column -= mtd->writesize;
601                         readcmd = NAND_CMD_READOOB;
602                 } else if (column < 256) {
603                         /* First 256 bytes --> READ0 */
604                         readcmd = NAND_CMD_READ0;
605                 } else {
606                         column -= 256;
607                         readcmd = NAND_CMD_READ1;
608                 }
609                 chip->cmd_ctrl(mtd, readcmd, ctrl);
610                 ctrl &= ~NAND_CTRL_CHANGE;
611         }
612         chip->cmd_ctrl(mtd, command, ctrl);
613
614         /* Address cycle, when necessary */
615         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
616         /* Serially input address */
617         if (column != -1) {
618                 /* Adjust columns for 16 bit buswidth */
619                 if (chip->options & NAND_BUSWIDTH_16 &&
620                                 !nand_opcode_8bits(command))
621                         column >>= 1;
622                 chip->cmd_ctrl(mtd, column, ctrl);
623                 ctrl &= ~NAND_CTRL_CHANGE;
624         }
625         if (page_addr != -1) {
626                 chip->cmd_ctrl(mtd, page_addr, ctrl);
627                 ctrl &= ~NAND_CTRL_CHANGE;
628                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
629                 /* One more address cycle for devices > 32MiB */
630                 if (chip->chipsize > (32 << 20))
631                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
632         }
633         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
634
635         /*
636          * Program and erase have their own busy handlers status and sequential
637          * in needs no delay
638          */
639         switch (command) {
640
641         case NAND_CMD_PAGEPROG:
642         case NAND_CMD_ERASE1:
643         case NAND_CMD_ERASE2:
644         case NAND_CMD_SEQIN:
645         case NAND_CMD_STATUS:
646                 return;
647
648         case NAND_CMD_RESET:
649                 if (chip->dev_ready)
650                         break;
651                 udelay(chip->chip_delay);
652                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
653                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
654                 chip->cmd_ctrl(mtd,
655                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
656                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
657                 nand_wait_status_ready(mtd, 250);
658                 return;
659
660                 /* This applies to read commands */
661         default:
662                 /*
663                  * If we don't have access to the busy pin, we apply the given
664                  * command delay
665                  */
666                 if (!chip->dev_ready) {
667                         udelay(chip->chip_delay);
668                         return;
669                 }
670         }
671         /*
672          * Apply this short delay always to ensure that we do wait tWB in
673          * any case on any machine.
674          */
675         ndelay(100);
676
677         nand_wait_ready(mtd);
678 }
679
680 /**
681  * nand_command_lp - [DEFAULT] Send command to NAND large page device
682  * @mtd: MTD device structure
683  * @command: the command to be sent
684  * @column: the column address for this command, -1 if none
685  * @page_addr: the page address for this command, -1 if none
686  *
687  * Send command to NAND device. This is the version for the new large page
688  * devices. We don't have the separate regions as we have in the small page
689  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
690  */
691 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
692                             int column, int page_addr)
693 {
694         register struct nand_chip *chip = mtd_to_nand(mtd);
695
696         /* Emulate NAND_CMD_READOOB */
697         if (command == NAND_CMD_READOOB) {
698                 column += mtd->writesize;
699                 command = NAND_CMD_READ0;
700         }
701
702         /* Command latch cycle */
703         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
704
705         if (column != -1 || page_addr != -1) {
706                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
707
708                 /* Serially input address */
709                 if (column != -1) {
710                         /* Adjust columns for 16 bit buswidth */
711                         if (chip->options & NAND_BUSWIDTH_16 &&
712                                         !nand_opcode_8bits(command))
713                                 column >>= 1;
714                         chip->cmd_ctrl(mtd, column, ctrl);
715                         ctrl &= ~NAND_CTRL_CHANGE;
716                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
717                 }
718                 if (page_addr != -1) {
719                         chip->cmd_ctrl(mtd, page_addr, ctrl);
720                         chip->cmd_ctrl(mtd, page_addr >> 8,
721                                        NAND_NCE | NAND_ALE);
722                         /* One more address cycle for devices > 128MiB */
723                         if (chip->chipsize > (128 << 20))
724                                 chip->cmd_ctrl(mtd, page_addr >> 16,
725                                                NAND_NCE | NAND_ALE);
726                 }
727         }
728         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
729
730         /*
731          * Program and erase have their own busy handlers status, sequential
732          * in and status need no delay.
733          */
734         switch (command) {
735
736         case NAND_CMD_CACHEDPROG:
737         case NAND_CMD_PAGEPROG:
738         case NAND_CMD_ERASE1:
739         case NAND_CMD_ERASE2:
740         case NAND_CMD_SEQIN:
741         case NAND_CMD_RNDIN:
742         case NAND_CMD_STATUS:
743                 return;
744
745         case NAND_CMD_RESET:
746                 if (chip->dev_ready)
747                         break;
748                 udelay(chip->chip_delay);
749                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
750                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
751                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
752                                NAND_NCE | NAND_CTRL_CHANGE);
753                 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
754                 nand_wait_status_ready(mtd, 250);
755                 return;
756
757         case NAND_CMD_RNDOUT:
758                 /* No ready / busy check necessary */
759                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
760                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
761                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
762                                NAND_NCE | NAND_CTRL_CHANGE);
763                 return;
764
765         case NAND_CMD_READ0:
766                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
767                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
768                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
769                                NAND_NCE | NAND_CTRL_CHANGE);
770
771                 /* This applies to read commands */
772         default:
773                 /*
774                  * If we don't have access to the busy pin, we apply the given
775                  * command delay.
776                  */
777                 if (!chip->dev_ready) {
778                         udelay(chip->chip_delay);
779                         return;
780                 }
781         }
782
783         /*
784          * Apply this short delay always to ensure that we do wait tWB in
785          * any case on any machine.
786          */
787         ndelay(100);
788
789         nand_wait_ready(mtd);
790 }
791
792 /**
793  * panic_nand_get_device - [GENERIC] Get chip for selected access
794  * @chip: the nand chip descriptor
795  * @mtd: MTD device structure
796  * @new_state: the state which is requested
797  *
798  * Used when in panic, no locks are taken.
799  */
800 static void panic_nand_get_device(struct nand_chip *chip,
801                       struct mtd_info *mtd, int new_state)
802 {
803         /* Hardware controller shared among independent devices */
804         chip->controller->active = chip;
805         chip->state = new_state;
806 }
807
808 /**
809  * nand_get_device - [GENERIC] Get chip for selected access
810  * @mtd: MTD device structure
811  * @new_state: the state which is requested
812  *
813  * Get the device and lock it for exclusive access
814  */
815 static int
816 nand_get_device(struct mtd_info *mtd, int new_state)
817 {
818         struct nand_chip *chip = mtd_to_nand(mtd);
819         spinlock_t *lock = &chip->controller->lock;
820         wait_queue_head_t *wq = &chip->controller->wq;
821         DECLARE_WAITQUEUE(wait, current);
822 retry:
823         spin_lock(lock);
824
825         /* Hardware controller shared among independent devices */
826         if (!chip->controller->active)
827                 chip->controller->active = chip;
828
829         if (chip->controller->active == chip && chip->state == FL_READY) {
830                 chip->state = new_state;
831                 spin_unlock(lock);
832                 return 0;
833         }
834         if (new_state == FL_PM_SUSPENDED) {
835                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
836                         chip->state = FL_PM_SUSPENDED;
837                         spin_unlock(lock);
838                         return 0;
839                 }
840         }
841         set_current_state(TASK_UNINTERRUPTIBLE);
842         add_wait_queue(wq, &wait);
843         spin_unlock(lock);
844         schedule();
845         remove_wait_queue(wq, &wait);
846         goto retry;
847 }
848
849 /**
850  * panic_nand_wait - [GENERIC] wait until the command is done
851  * @mtd: MTD device structure
852  * @chip: NAND chip structure
853  * @timeo: timeout
854  *
855  * Wait for command done. This is a helper function for nand_wait used when
856  * we are in interrupt context. May happen when in panic and trying to write
857  * an oops through mtdoops.
858  */
859 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
860                             unsigned long timeo)
861 {
862         int i;
863         for (i = 0; i < timeo; i++) {
864                 if (chip->dev_ready) {
865                         if (chip->dev_ready(mtd))
866                                 break;
867                 } else {
868                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
869                                 break;
870                 }
871                 mdelay(1);
872         }
873 }
874
875 /**
876  * nand_wait - [DEFAULT] wait until the command is done
877  * @mtd: MTD device structure
878  * @chip: NAND chip structure
879  *
880  * Wait for command done. This applies to erase and program only.
881  */
882 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
883 {
884
885         int status;
886         unsigned long timeo = 400;
887
888         led_trigger_event(nand_led_trigger, LED_FULL);
889
890         /*
891          * Apply this short delay always to ensure that we do wait tWB in any
892          * case on any machine.
893          */
894         ndelay(100);
895
896         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
897
898         if (in_interrupt() || oops_in_progress)
899                 panic_nand_wait(mtd, chip, timeo);
900         else {
901                 timeo = jiffies + msecs_to_jiffies(timeo);
902                 do {
903                         if (chip->dev_ready) {
904                                 if (chip->dev_ready(mtd))
905                                         break;
906                         } else {
907                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
908                                         break;
909                         }
910                         cond_resched();
911                 } while (time_before(jiffies, timeo));
912         }
913         led_trigger_event(nand_led_trigger, LED_OFF);
914
915         status = (int)chip->read_byte(mtd);
916         /* This can happen if in case of timeout or buggy dev_ready */
917         WARN_ON(!(status & NAND_STATUS_READY));
918         return status;
919 }
920
921 /**
922  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
923  * @mtd: mtd info
924  * @ofs: offset to start unlock from
925  * @len: length to unlock
926  * @invert: when = 0, unlock the range of blocks within the lower and
927  *                    upper boundary address
928  *          when = 1, unlock the range of blocks outside the boundaries
929  *                    of the lower and upper boundary address
930  *
931  * Returs unlock status.
932  */
933 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
934                                         uint64_t len, int invert)
935 {
936         int ret = 0;
937         int status, page;
938         struct nand_chip *chip = mtd_to_nand(mtd);
939
940         /* Submit address of first page to unlock */
941         page = ofs >> chip->page_shift;
942         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
943
944         /* Submit address of last page to unlock */
945         page = (ofs + len) >> chip->page_shift;
946         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
947                                 (page | invert) & chip->pagemask);
948
949         /* Call wait ready function */
950         status = chip->waitfunc(mtd, chip);
951         /* See if device thinks it succeeded */
952         if (status & NAND_STATUS_FAIL) {
953                 pr_debug("%s: error status = 0x%08x\n",
954                                         __func__, status);
955                 ret = -EIO;
956         }
957
958         return ret;
959 }
960
961 /**
962  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
963  * @mtd: mtd info
964  * @ofs: offset to start unlock from
965  * @len: length to unlock
966  *
967  * Returns unlock status.
968  */
969 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
970 {
971         int ret = 0;
972         int chipnr;
973         struct nand_chip *chip = mtd_to_nand(mtd);
974
975         pr_debug("%s: start = 0x%012llx, len = %llu\n",
976                         __func__, (unsigned long long)ofs, len);
977
978         if (check_offs_len(mtd, ofs, len))
979                 return -EINVAL;
980
981         /* Align to last block address if size addresses end of the device */
982         if (ofs + len == mtd->size)
983                 len -= mtd->erasesize;
984
985         nand_get_device(mtd, FL_UNLOCKING);
986
987         /* Shift to get chip number */
988         chipnr = ofs >> chip->chip_shift;
989
990         chip->select_chip(mtd, chipnr);
991
992         /*
993          * Reset the chip.
994          * If we want to check the WP through READ STATUS and check the bit 7
995          * we must reset the chip
996          * some operation can also clear the bit 7 of status register
997          * eg. erase/program a locked block
998          */
999         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1000
1001         /* Check, if it is write protected */
1002         if (nand_check_wp(mtd)) {
1003                 pr_debug("%s: device is write protected!\n",
1004                                         __func__);
1005                 ret = -EIO;
1006                 goto out;
1007         }
1008
1009         ret = __nand_unlock(mtd, ofs, len, 0);
1010
1011 out:
1012         chip->select_chip(mtd, -1);
1013         nand_release_device(mtd);
1014
1015         return ret;
1016 }
1017 EXPORT_SYMBOL(nand_unlock);
1018
1019 /**
1020  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1021  * @mtd: mtd info
1022  * @ofs: offset to start unlock from
1023  * @len: length to unlock
1024  *
1025  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1026  * have this feature, but it allows only to lock all blocks, not for specified
1027  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1028  * now.
1029  *
1030  * Returns lock status.
1031  */
1032 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1033 {
1034         int ret = 0;
1035         int chipnr, status, page;
1036         struct nand_chip *chip = mtd_to_nand(mtd);
1037
1038         pr_debug("%s: start = 0x%012llx, len = %llu\n",
1039                         __func__, (unsigned long long)ofs, len);
1040
1041         if (check_offs_len(mtd, ofs, len))
1042                 return -EINVAL;
1043
1044         nand_get_device(mtd, FL_LOCKING);
1045
1046         /* Shift to get chip number */
1047         chipnr = ofs >> chip->chip_shift;
1048
1049         chip->select_chip(mtd, chipnr);
1050
1051         /*
1052          * Reset the chip.
1053          * If we want to check the WP through READ STATUS and check the bit 7
1054          * we must reset the chip
1055          * some operation can also clear the bit 7 of status register
1056          * eg. erase/program a locked block
1057          */
1058         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1059
1060         /* Check, if it is write protected */
1061         if (nand_check_wp(mtd)) {
1062                 pr_debug("%s: device is write protected!\n",
1063                                         __func__);
1064                 status = MTD_ERASE_FAILED;
1065                 ret = -EIO;
1066                 goto out;
1067         }
1068
1069         /* Submit address of first page to lock */
1070         page = ofs >> chip->page_shift;
1071         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1072
1073         /* Call wait ready function */
1074         status = chip->waitfunc(mtd, chip);
1075         /* See if device thinks it succeeded */
1076         if (status & NAND_STATUS_FAIL) {
1077                 pr_debug("%s: error status = 0x%08x\n",
1078                                         __func__, status);
1079                 ret = -EIO;
1080                 goto out;
1081         }
1082
1083         ret = __nand_unlock(mtd, ofs, len, 0x1);
1084
1085 out:
1086         chip->select_chip(mtd, -1);
1087         nand_release_device(mtd);
1088
1089         return ret;
1090 }
1091 EXPORT_SYMBOL(nand_lock);
1092
1093 /**
1094  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1095  * @buf: buffer to test
1096  * @len: buffer length
1097  * @bitflips_threshold: maximum number of bitflips
1098  *
1099  * Check if a buffer contains only 0xff, which means the underlying region
1100  * has been erased and is ready to be programmed.
1101  * The bitflips_threshold specify the maximum number of bitflips before
1102  * considering the region is not erased.
1103  * Note: The logic of this function has been extracted from the memweight
1104  * implementation, except that nand_check_erased_buf function exit before
1105  * testing the whole buffer if the number of bitflips exceed the
1106  * bitflips_threshold value.
1107  *
1108  * Returns a positive number of bitflips less than or equal to
1109  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1110  * threshold.
1111  */
1112 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1113 {
1114         const unsigned char *bitmap = buf;
1115         int bitflips = 0;
1116         int weight;
1117
1118         for (; len && ((uintptr_t)bitmap) % sizeof(long);
1119              len--, bitmap++) {
1120                 weight = hweight8(*bitmap);
1121                 bitflips += BITS_PER_BYTE - weight;
1122                 if (unlikely(bitflips > bitflips_threshold))
1123                         return -EBADMSG;
1124         }
1125
1126         for (; len >= sizeof(long);
1127              len -= sizeof(long), bitmap += sizeof(long)) {
1128                 weight = hweight_long(*((unsigned long *)bitmap));
1129                 bitflips += BITS_PER_LONG - weight;
1130                 if (unlikely(bitflips > bitflips_threshold))
1131                         return -EBADMSG;
1132         }
1133
1134         for (; len > 0; len--, bitmap++) {
1135                 weight = hweight8(*bitmap);
1136                 bitflips += BITS_PER_BYTE - weight;
1137                 if (unlikely(bitflips > bitflips_threshold))
1138                         return -EBADMSG;
1139         }
1140
1141         return bitflips;
1142 }
1143
1144 /**
1145  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1146  *                               0xff data
1147  * @data: data buffer to test
1148  * @datalen: data length
1149  * @ecc: ECC buffer
1150  * @ecclen: ECC length
1151  * @extraoob: extra OOB buffer
1152  * @extraooblen: extra OOB length
1153  * @bitflips_threshold: maximum number of bitflips
1154  *
1155  * Check if a data buffer and its associated ECC and OOB data contains only
1156  * 0xff pattern, which means the underlying region has been erased and is
1157  * ready to be programmed.
1158  * The bitflips_threshold specify the maximum number of bitflips before
1159  * considering the region as not erased.
1160  *
1161  * Note:
1162  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1163  *    different from the NAND page size. When fixing bitflips, ECC engines will
1164  *    report the number of errors per chunk, and the NAND core infrastructure
1165  *    expect you to return the maximum number of bitflips for the whole page.
1166  *    This is why you should always use this function on a single chunk and
1167  *    not on the whole page. After checking each chunk you should update your
1168  *    max_bitflips value accordingly.
1169  * 2/ When checking for bitflips in erased pages you should not only check
1170  *    the payload data but also their associated ECC data, because a user might
1171  *    have programmed almost all bits to 1 but a few. In this case, we
1172  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
1173  *    this case.
1174  * 3/ The extraoob argument is optional, and should be used if some of your OOB
1175  *    data are protected by the ECC engine.
1176  *    It could also be used if you support subpages and want to attach some
1177  *    extra OOB data to an ECC chunk.
1178  *
1179  * Returns a positive number of bitflips less than or equal to
1180  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1181  * threshold. In case of success, the passed buffers are filled with 0xff.
1182  */
1183 int nand_check_erased_ecc_chunk(void *data, int datalen,
1184                                 void *ecc, int ecclen,
1185                                 void *extraoob, int extraooblen,
1186                                 int bitflips_threshold)
1187 {
1188         int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1189
1190         data_bitflips = nand_check_erased_buf(data, datalen,
1191                                               bitflips_threshold);
1192         if (data_bitflips < 0)
1193                 return data_bitflips;
1194
1195         bitflips_threshold -= data_bitflips;
1196
1197         ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1198         if (ecc_bitflips < 0)
1199                 return ecc_bitflips;
1200
1201         bitflips_threshold -= ecc_bitflips;
1202
1203         extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1204                                                   bitflips_threshold);
1205         if (extraoob_bitflips < 0)
1206                 return extraoob_bitflips;
1207
1208         if (data_bitflips)
1209                 memset(data, 0xff, datalen);
1210
1211         if (ecc_bitflips)
1212                 memset(ecc, 0xff, ecclen);
1213
1214         if (extraoob_bitflips)
1215                 memset(extraoob, 0xff, extraooblen);
1216
1217         return data_bitflips + ecc_bitflips + extraoob_bitflips;
1218 }
1219 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1220
1221 /**
1222  * nand_read_page_raw - [INTERN] read raw page data without ecc
1223  * @mtd: mtd info structure
1224  * @chip: nand chip info structure
1225  * @buf: buffer to store read data
1226  * @oob_required: caller requires OOB data read to chip->oob_poi
1227  * @page: page number to read
1228  *
1229  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1230  */
1231 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1232                               uint8_t *buf, int oob_required, int page)
1233 {
1234         chip->read_buf(mtd, buf, mtd->writesize);
1235         if (oob_required)
1236                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1237         return 0;
1238 }
1239
1240 /**
1241  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1242  * @mtd: mtd info structure
1243  * @chip: nand chip info structure
1244  * @buf: buffer to store read data
1245  * @oob_required: caller requires OOB data read to chip->oob_poi
1246  * @page: page number to read
1247  *
1248  * We need a special oob layout and handling even when OOB isn't used.
1249  */
1250 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1251                                        struct nand_chip *chip, uint8_t *buf,
1252                                        int oob_required, int page)
1253 {
1254         int eccsize = chip->ecc.size;
1255         int eccbytes = chip->ecc.bytes;
1256         uint8_t *oob = chip->oob_poi;
1257         int steps, size;
1258
1259         for (steps = chip->ecc.steps; steps > 0; steps--) {
1260                 chip->read_buf(mtd, buf, eccsize);
1261                 buf += eccsize;
1262
1263                 if (chip->ecc.prepad) {
1264                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1265                         oob += chip->ecc.prepad;
1266                 }
1267
1268                 chip->read_buf(mtd, oob, eccbytes);
1269                 oob += eccbytes;
1270
1271                 if (chip->ecc.postpad) {
1272                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1273                         oob += chip->ecc.postpad;
1274                 }
1275         }
1276
1277         size = mtd->oobsize - (oob - chip->oob_poi);
1278         if (size)
1279                 chip->read_buf(mtd, oob, size);
1280
1281         return 0;
1282 }
1283
1284 /**
1285  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1286  * @mtd: mtd info structure
1287  * @chip: nand chip info structure
1288  * @buf: buffer to store read data
1289  * @oob_required: caller requires OOB data read to chip->oob_poi
1290  * @page: page number to read
1291  */
1292 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1293                                 uint8_t *buf, int oob_required, int page)
1294 {
1295         int i, eccsize = chip->ecc.size;
1296         int eccbytes = chip->ecc.bytes;
1297         int eccsteps = chip->ecc.steps;
1298         uint8_t *p = buf;
1299         uint8_t *ecc_calc = chip->buffers->ecccalc;
1300         uint8_t *ecc_code = chip->buffers->ecccode;
1301         uint32_t *eccpos = chip->ecc.layout->eccpos;
1302         unsigned int max_bitflips = 0;
1303
1304         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1305
1306         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1307                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1308
1309         for (i = 0; i < chip->ecc.total; i++)
1310                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1311
1312         eccsteps = chip->ecc.steps;
1313         p = buf;
1314
1315         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1316                 int stat;
1317
1318                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1319                 if (stat < 0) {
1320                         mtd->ecc_stats.failed++;
1321                 } else {
1322                         mtd->ecc_stats.corrected += stat;
1323                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1324                 }
1325         }
1326         return max_bitflips;
1327 }
1328
1329 /**
1330  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1331  * @mtd: mtd info structure
1332  * @chip: nand chip info structure
1333  * @data_offs: offset of requested data within the page
1334  * @readlen: data length
1335  * @bufpoi: buffer to store read data
1336  * @page: page number to read
1337  */
1338 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1339                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1340                         int page)
1341 {
1342         int start_step, end_step, num_steps;
1343         uint32_t *eccpos = chip->ecc.layout->eccpos;
1344         uint8_t *p;
1345         int data_col_addr, i, gaps = 0;
1346         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1347         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1348         int index;
1349         unsigned int max_bitflips = 0;
1350
1351         /* Column address within the page aligned to ECC size (256bytes) */
1352         start_step = data_offs / chip->ecc.size;
1353         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1354         num_steps = end_step - start_step + 1;
1355         index = start_step * chip->ecc.bytes;
1356
1357         /* Data size aligned to ECC ecc.size */
1358         datafrag_len = num_steps * chip->ecc.size;
1359         eccfrag_len = num_steps * chip->ecc.bytes;
1360
1361         data_col_addr = start_step * chip->ecc.size;
1362         /* If we read not a page aligned data */
1363         if (data_col_addr != 0)
1364                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1365
1366         p = bufpoi + data_col_addr;
1367         chip->read_buf(mtd, p, datafrag_len);
1368
1369         /* Calculate ECC */
1370         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1371                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1372
1373         /*
1374          * The performance is faster if we position offsets according to
1375          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1376          */
1377         for (i = 0; i < eccfrag_len - 1; i++) {
1378                 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1379                         gaps = 1;
1380                         break;
1381                 }
1382         }
1383         if (gaps) {
1384                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1385                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1386         } else {
1387                 /*
1388                  * Send the command to read the particular ECC bytes take care
1389                  * about buswidth alignment in read_buf.
1390                  */
1391                 aligned_pos = eccpos[index] & ~(busw - 1);
1392                 aligned_len = eccfrag_len;
1393                 if (eccpos[index] & (busw - 1))
1394                         aligned_len++;
1395                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1396                         aligned_len++;
1397
1398                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1399                                         mtd->writesize + aligned_pos, -1);
1400                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1401         }
1402
1403         for (i = 0; i < eccfrag_len; i++)
1404                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1405
1406         p = bufpoi + data_col_addr;
1407         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1408                 int stat;
1409
1410                 stat = chip->ecc.correct(mtd, p,
1411                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1412                 if (stat == -EBADMSG &&
1413                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1414                         /* check for empty pages with bitflips */
1415                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1416                                                 &chip->buffers->ecccode[i],
1417                                                 chip->ecc.bytes,
1418                                                 NULL, 0,
1419                                                 chip->ecc.strength);
1420                 }
1421
1422                 if (stat < 0) {
1423                         mtd->ecc_stats.failed++;
1424                 } else {
1425                         mtd->ecc_stats.corrected += stat;
1426                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1427                 }
1428         }
1429         return max_bitflips;
1430 }
1431
1432 /**
1433  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1434  * @mtd: mtd info structure
1435  * @chip: nand chip info structure
1436  * @buf: buffer to store read data
1437  * @oob_required: caller requires OOB data read to chip->oob_poi
1438  * @page: page number to read
1439  *
1440  * Not for syndrome calculating ECC controllers which need a special oob layout.
1441  */
1442 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1443                                 uint8_t *buf, int oob_required, int page)
1444 {
1445         int i, eccsize = chip->ecc.size;
1446         int eccbytes = chip->ecc.bytes;
1447         int eccsteps = chip->ecc.steps;
1448         uint8_t *p = buf;
1449         uint8_t *ecc_calc = chip->buffers->ecccalc;
1450         uint8_t *ecc_code = chip->buffers->ecccode;
1451         uint32_t *eccpos = chip->ecc.layout->eccpos;
1452         unsigned int max_bitflips = 0;
1453
1454         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1456                 chip->read_buf(mtd, p, eccsize);
1457                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1458         }
1459         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1460
1461         for (i = 0; i < chip->ecc.total; i++)
1462                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1463
1464         eccsteps = chip->ecc.steps;
1465         p = buf;
1466
1467         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1468                 int stat;
1469
1470                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1471                 if (stat == -EBADMSG &&
1472                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1473                         /* check for empty pages with bitflips */
1474                         stat = nand_check_erased_ecc_chunk(p, eccsize,
1475                                                 &ecc_code[i], eccbytes,
1476                                                 NULL, 0,
1477                                                 chip->ecc.strength);
1478                 }
1479
1480                 if (stat < 0) {
1481                         mtd->ecc_stats.failed++;
1482                 } else {
1483                         mtd->ecc_stats.corrected += stat;
1484                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1485                 }
1486         }
1487         return max_bitflips;
1488 }
1489
1490 /**
1491  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1492  * @mtd: mtd info structure
1493  * @chip: nand chip info structure
1494  * @buf: buffer to store read data
1495  * @oob_required: caller requires OOB data read to chip->oob_poi
1496  * @page: page number to read
1497  *
1498  * Hardware ECC for large page chips, require OOB to be read first. For this
1499  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1500  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1501  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1502  * the data area, by overwriting the NAND manufacturer bad block markings.
1503  */
1504 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1505         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1506 {
1507         int i, eccsize = chip->ecc.size;
1508         int eccbytes = chip->ecc.bytes;
1509         int eccsteps = chip->ecc.steps;
1510         uint8_t *p = buf;
1511         uint8_t *ecc_code = chip->buffers->ecccode;
1512         uint32_t *eccpos = chip->ecc.layout->eccpos;
1513         uint8_t *ecc_calc = chip->buffers->ecccalc;
1514         unsigned int max_bitflips = 0;
1515
1516         /* Read the OOB area first */
1517         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1518         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1519         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1520
1521         for (i = 0; i < chip->ecc.total; i++)
1522                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1523
1524         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1525                 int stat;
1526
1527                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1528                 chip->read_buf(mtd, p, eccsize);
1529                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1530
1531                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1532                 if (stat == -EBADMSG &&
1533                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1534                         /* check for empty pages with bitflips */
1535                         stat = nand_check_erased_ecc_chunk(p, eccsize,
1536                                                 &ecc_code[i], eccbytes,
1537                                                 NULL, 0,
1538                                                 chip->ecc.strength);
1539                 }
1540
1541                 if (stat < 0) {
1542                         mtd->ecc_stats.failed++;
1543                 } else {
1544                         mtd->ecc_stats.corrected += stat;
1545                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1546                 }
1547         }
1548         return max_bitflips;
1549 }
1550
1551 /**
1552  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1553  * @mtd: mtd info structure
1554  * @chip: nand chip info structure
1555  * @buf: buffer to store read data
1556  * @oob_required: caller requires OOB data read to chip->oob_poi
1557  * @page: page number to read
1558  *
1559  * The hw generator calculates the error syndrome automatically. Therefore we
1560  * need a special oob layout and handling.
1561  */
1562 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1563                                    uint8_t *buf, int oob_required, int page)
1564 {
1565         int i, eccsize = chip->ecc.size;
1566         int eccbytes = chip->ecc.bytes;
1567         int eccsteps = chip->ecc.steps;
1568         int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1569         uint8_t *p = buf;
1570         uint8_t *oob = chip->oob_poi;
1571         unsigned int max_bitflips = 0;
1572
1573         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1574                 int stat;
1575
1576                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1577                 chip->read_buf(mtd, p, eccsize);
1578
1579                 if (chip->ecc.prepad) {
1580                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1581                         oob += chip->ecc.prepad;
1582                 }
1583
1584                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1585                 chip->read_buf(mtd, oob, eccbytes);
1586                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1587
1588                 oob += eccbytes;
1589
1590                 if (chip->ecc.postpad) {
1591                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1592                         oob += chip->ecc.postpad;
1593                 }
1594
1595                 if (stat == -EBADMSG &&
1596                     (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1597                         /* check for empty pages with bitflips */
1598                         stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1599                                                            oob - eccpadbytes,
1600                                                            eccpadbytes,
1601                                                            NULL, 0,
1602                                                            chip->ecc.strength);
1603                 }
1604
1605                 if (stat < 0) {
1606                         mtd->ecc_stats.failed++;
1607                 } else {
1608                         mtd->ecc_stats.corrected += stat;
1609                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1610                 }
1611         }
1612
1613         /* Calculate remaining oob bytes */
1614         i = mtd->oobsize - (oob - chip->oob_poi);
1615         if (i)
1616                 chip->read_buf(mtd, oob, i);
1617
1618         return max_bitflips;
1619 }
1620
1621 /**
1622  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1623  * @chip: nand chip structure
1624  * @oob: oob destination address
1625  * @ops: oob ops structure
1626  * @len: size of oob to transfer
1627  */
1628 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1629                                   struct mtd_oob_ops *ops, size_t len)
1630 {
1631         switch (ops->mode) {
1632
1633         case MTD_OPS_PLACE_OOB:
1634         case MTD_OPS_RAW:
1635                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1636                 return oob + len;
1637
1638         case MTD_OPS_AUTO_OOB: {
1639                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1640                 uint32_t boffs = 0, roffs = ops->ooboffs;
1641                 size_t bytes = 0;
1642
1643                 for (; free->length && len; free++, len -= bytes) {
1644                         /* Read request not from offset 0? */
1645                         if (unlikely(roffs)) {
1646                                 if (roffs >= free->length) {
1647                                         roffs -= free->length;
1648                                         continue;
1649                                 }
1650                                 boffs = free->offset + roffs;
1651                                 bytes = min_t(size_t, len,
1652                                               (free->length - roffs));
1653                                 roffs = 0;
1654                         } else {
1655                                 bytes = min_t(size_t, len, free->length);
1656                                 boffs = free->offset;
1657                         }
1658                         memcpy(oob, chip->oob_poi + boffs, bytes);
1659                         oob += bytes;
1660                 }
1661                 return oob;
1662         }
1663         default:
1664                 BUG();
1665         }
1666         return NULL;
1667 }
1668
1669 /**
1670  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1671  * @mtd: MTD device structure
1672  * @retry_mode: the retry mode to use
1673  *
1674  * Some vendors supply a special command to shift the Vt threshold, to be used
1675  * when there are too many bitflips in a page (i.e., ECC error). After setting
1676  * a new threshold, the host should retry reading the page.
1677  */
1678 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1679 {
1680         struct nand_chip *chip = mtd_to_nand(mtd);
1681
1682         pr_debug("setting READ RETRY mode %d\n", retry_mode);
1683
1684         if (retry_mode >= chip->read_retries)
1685                 return -EINVAL;
1686
1687         if (!chip->setup_read_retry)
1688                 return -EOPNOTSUPP;
1689
1690         return chip->setup_read_retry(mtd, retry_mode);
1691 }
1692
1693 /**
1694  * nand_do_read_ops - [INTERN] Read data with ECC
1695  * @mtd: MTD device structure
1696  * @from: offset to read from
1697  * @ops: oob ops structure
1698  *
1699  * Internal function. Called with chip held.
1700  */
1701 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1702                             struct mtd_oob_ops *ops)
1703 {
1704         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1705         struct nand_chip *chip = mtd_to_nand(mtd);
1706         int ret = 0;
1707         uint32_t readlen = ops->len;
1708         uint32_t oobreadlen = ops->ooblen;
1709         uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1710
1711         uint8_t *bufpoi, *oob, *buf;
1712         int use_bufpoi;
1713         unsigned int max_bitflips = 0;
1714         int retry_mode = 0;
1715         bool ecc_fail = false;
1716
1717         chipnr = (int)(from >> chip->chip_shift);
1718         chip->select_chip(mtd, chipnr);
1719
1720         realpage = (int)(from >> chip->page_shift);
1721         page = realpage & chip->pagemask;
1722
1723         col = (int)(from & (mtd->writesize - 1));
1724
1725         buf = ops->datbuf;
1726         oob = ops->oobbuf;
1727         oob_required = oob ? 1 : 0;
1728
1729         while (1) {
1730                 unsigned int ecc_failures = mtd->ecc_stats.failed;
1731
1732                 bytes = min(mtd->writesize - col, readlen);
1733                 aligned = (bytes == mtd->writesize);
1734
1735                 if (!aligned)
1736                         use_bufpoi = 1;
1737                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1738                         use_bufpoi = !virt_addr_valid(buf);
1739                 else
1740                         use_bufpoi = 0;
1741
1742                 /* Is the current page in the buffer? */
1743                 if (realpage != chip->pagebuf || oob) {
1744                         bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1745
1746                         if (use_bufpoi && aligned)
1747                                 pr_debug("%s: using read bounce buffer for buf@%p\n",
1748                                                  __func__, buf);
1749
1750 read_retry:
1751                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1752
1753                         /*
1754                          * Now read the page into the buffer.  Absent an error,
1755                          * the read methods return max bitflips per ecc step.
1756                          */
1757                         if (unlikely(ops->mode == MTD_OPS_RAW))
1758                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1759                                                               oob_required,
1760                                                               page);
1761                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1762                                  !oob)
1763                                 ret = chip->ecc.read_subpage(mtd, chip,
1764                                                         col, bytes, bufpoi,
1765                                                         page);
1766                         else
1767                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1768                                                           oob_required, page);
1769                         if (ret < 0) {
1770                                 if (use_bufpoi)
1771                                         /* Invalidate page cache */
1772                                         chip->pagebuf = -1;
1773                                 break;
1774                         }
1775
1776                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1777
1778                         /* Transfer not aligned data */
1779                         if (use_bufpoi) {
1780                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1781                                     !(mtd->ecc_stats.failed - ecc_failures) &&
1782                                     (ops->mode != MTD_OPS_RAW)) {
1783                                         chip->pagebuf = realpage;
1784                                         chip->pagebuf_bitflips = ret;
1785                                 } else {
1786                                         /* Invalidate page cache */
1787                                         chip->pagebuf = -1;
1788                                 }
1789                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1790                         }
1791
1792                         if (unlikely(oob)) {
1793                                 int toread = min(oobreadlen, max_oobsize);
1794
1795                                 if (toread) {
1796                                         oob = nand_transfer_oob(chip,
1797                                                 oob, ops, toread);
1798                                         oobreadlen -= toread;
1799                                 }
1800                         }
1801
1802                         if (chip->options & NAND_NEED_READRDY) {
1803                                 /* Apply delay or wait for ready/busy pin */
1804                                 if (!chip->dev_ready)
1805                                         udelay(chip->chip_delay);
1806                                 else
1807                                         nand_wait_ready(mtd);
1808                         }
1809
1810                         if (mtd->ecc_stats.failed - ecc_failures) {
1811                                 if (retry_mode + 1 < chip->read_retries) {
1812                                         retry_mode++;
1813                                         ret = nand_setup_read_retry(mtd,
1814                                                         retry_mode);
1815                                         if (ret < 0)
1816                                                 break;
1817
1818                                         /* Reset failures; retry */
1819                                         mtd->ecc_stats.failed = ecc_failures;
1820                                         goto read_retry;
1821                                 } else {
1822                                         /* No more retry modes; real failure */
1823                                         ecc_fail = true;
1824                                 }
1825                         }
1826
1827                         buf += bytes;
1828                 } else {
1829                         memcpy(buf, chip->buffers->databuf + col, bytes);
1830                         buf += bytes;
1831                         max_bitflips = max_t(unsigned int, max_bitflips,
1832                                              chip->pagebuf_bitflips);
1833                 }
1834
1835                 readlen -= bytes;
1836
1837                 /* Reset to retry mode 0 */
1838                 if (retry_mode) {
1839                         ret = nand_setup_read_retry(mtd, 0);
1840                         if (ret < 0)
1841                                 break;
1842                         retry_mode = 0;
1843                 }
1844
1845                 if (!readlen)
1846                         break;
1847
1848                 /* For subsequent reads align to page boundary */
1849                 col = 0;
1850                 /* Increment page address */
1851                 realpage++;
1852
1853                 page = realpage & chip->pagemask;
1854                 /* Check, if we cross a chip boundary */
1855                 if (!page) {
1856                         chipnr++;
1857                         chip->select_chip(mtd, -1);
1858                         chip->select_chip(mtd, chipnr);
1859                 }
1860         }
1861         chip->select_chip(mtd, -1);
1862
1863         ops->retlen = ops->len - (size_t) readlen;
1864         if (oob)
1865                 ops->oobretlen = ops->ooblen - oobreadlen;
1866
1867         if (ret < 0)
1868                 return ret;
1869
1870         if (ecc_fail)
1871                 return -EBADMSG;
1872
1873         return max_bitflips;
1874 }
1875
1876 /**
1877  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1878  * @mtd: MTD device structure
1879  * @from: offset to read from
1880  * @len: number of bytes to read
1881  * @retlen: pointer to variable to store the number of read bytes
1882  * @buf: the databuffer to put data
1883  *
1884  * Get hold of the chip and call nand_do_read.
1885  */
1886 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1887                      size_t *retlen, uint8_t *buf)
1888 {
1889         struct mtd_oob_ops ops;
1890         int ret;
1891
1892         nand_get_device(mtd, FL_READING);
1893         memset(&ops, 0, sizeof(ops));
1894         ops.len = len;
1895         ops.datbuf = buf;
1896         ops.mode = MTD_OPS_PLACE_OOB;
1897         ret = nand_do_read_ops(mtd, from, &ops);
1898         *retlen = ops.retlen;
1899         nand_release_device(mtd);
1900         return ret;
1901 }
1902
1903 /**
1904  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1905  * @mtd: mtd info structure
1906  * @chip: nand chip info structure
1907  * @page: page number to read
1908  */
1909 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1910                              int page)
1911 {
1912         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1913         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1914         return 0;
1915 }
1916
1917 /**
1918  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1919  *                          with syndromes
1920  * @mtd: mtd info structure
1921  * @chip: nand chip info structure
1922  * @page: page number to read
1923  */
1924 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1925                                   int page)
1926 {
1927         int length = mtd->oobsize;
1928         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1929         int eccsize = chip->ecc.size;
1930         uint8_t *bufpoi = chip->oob_poi;
1931         int i, toread, sndrnd = 0, pos;
1932
1933         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1934         for (i = 0; i < chip->ecc.steps; i++) {
1935                 if (sndrnd) {
1936                         pos = eccsize + i * (eccsize + chunk);
1937                         if (mtd->writesize > 512)
1938                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1939                         else
1940                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1941                 } else
1942                         sndrnd = 1;
1943                 toread = min_t(int, length, chunk);
1944                 chip->read_buf(mtd, bufpoi, toread);
1945                 bufpoi += toread;
1946                 length -= toread;
1947         }
1948         if (length > 0)
1949                 chip->read_buf(mtd, bufpoi, length);
1950
1951         return 0;
1952 }
1953
1954 /**
1955  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1956  * @mtd: mtd info structure
1957  * @chip: nand chip info structure
1958  * @page: page number to write
1959  */
1960 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1961                               int page)
1962 {
1963         int status = 0;
1964         const uint8_t *buf = chip->oob_poi;
1965         int length = mtd->oobsize;
1966
1967         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1968         chip->write_buf(mtd, buf, length);
1969         /* Send command to program the OOB data */
1970         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1971
1972         status = chip->waitfunc(mtd, chip);
1973
1974         return status & NAND_STATUS_FAIL ? -EIO : 0;
1975 }
1976
1977 /**
1978  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1979  *                           with syndrome - only for large page flash
1980  * @mtd: mtd info structure
1981  * @chip: nand chip info structure
1982  * @page: page number to write
1983  */
1984 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1985                                    struct nand_chip *chip, int page)
1986 {
1987         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1988         int eccsize = chip->ecc.size, length = mtd->oobsize;
1989         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1990         const uint8_t *bufpoi = chip->oob_poi;
1991
1992         /*
1993          * data-ecc-data-ecc ... ecc-oob
1994          * or
1995          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1996          */
1997         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1998                 pos = steps * (eccsize + chunk);
1999                 steps = 0;
2000         } else
2001                 pos = eccsize;
2002
2003         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2004         for (i = 0; i < steps; i++) {
2005                 if (sndcmd) {
2006                         if (mtd->writesize <= 512) {
2007                                 uint32_t fill = 0xFFFFFFFF;
2008
2009                                 len = eccsize;
2010                                 while (len > 0) {
2011                                         int num = min_t(int, len, 4);
2012                                         chip->write_buf(mtd, (uint8_t *)&fill,
2013                                                         num);
2014                                         len -= num;
2015                                 }
2016                         } else {
2017                                 pos = eccsize + i * (eccsize + chunk);
2018                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2019                         }
2020                 } else
2021                         sndcmd = 1;
2022                 len = min_t(int, length, chunk);
2023                 chip->write_buf(mtd, bufpoi, len);
2024                 bufpoi += len;
2025                 length -= len;
2026         }
2027         if (length > 0)
2028                 chip->write_buf(mtd, bufpoi, length);
2029
2030         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2031         status = chip->waitfunc(mtd, chip);
2032
2033         return status & NAND_STATUS_FAIL ? -EIO : 0;
2034 }
2035
2036 /**
2037  * nand_do_read_oob - [INTERN] NAND read out-of-band
2038  * @mtd: MTD device structure
2039  * @from: offset to read from
2040  * @ops: oob operations description structure
2041  *
2042  * NAND read out-of-band data from the spare area.
2043  */
2044 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2045                             struct mtd_oob_ops *ops)
2046 {
2047         int page, realpage, chipnr;
2048         struct nand_chip *chip = mtd_to_nand(mtd);
2049         struct mtd_ecc_stats stats;
2050         int readlen = ops->ooblen;
2051         int len;
2052         uint8_t *buf = ops->oobbuf;
2053         int ret = 0;
2054
2055         pr_debug("%s: from = 0x%08Lx, len = %i\n",
2056                         __func__, (unsigned long long)from, readlen);
2057
2058         stats = mtd->ecc_stats;
2059
2060         len = mtd_oobavail(mtd, ops);
2061
2062         if (unlikely(ops->ooboffs >= len)) {
2063                 pr_debug("%s: attempt to start read outside oob\n",
2064                                 __func__);
2065                 return -EINVAL;
2066         }
2067
2068         /* Do not allow reads past end of device */
2069         if (unlikely(from >= mtd->size ||
2070                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2071                                         (from >> chip->page_shift)) * len)) {
2072                 pr_debug("%s: attempt to read beyond end of device\n",
2073                                 __func__);
2074                 return -EINVAL;
2075         }
2076
2077         chipnr = (int)(from >> chip->chip_shift);
2078         chip->select_chip(mtd, chipnr);
2079
2080         /* Shift to get page */
2081         realpage = (int)(from >> chip->page_shift);
2082         page = realpage & chip->pagemask;
2083
2084         while (1) {
2085                 if (ops->mode == MTD_OPS_RAW)
2086                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
2087                 else
2088                         ret = chip->ecc.read_oob(mtd, chip, page);
2089
2090                 if (ret < 0)
2091                         break;
2092
2093                 len = min(len, readlen);
2094                 buf = nand_transfer_oob(chip, buf, ops, len);
2095
2096                 if (chip->options & NAND_NEED_READRDY) {
2097                         /* Apply delay or wait for ready/busy pin */
2098                         if (!chip->dev_ready)
2099                                 udelay(chip->chip_delay);
2100                         else
2101                                 nand_wait_ready(mtd);
2102                 }
2103
2104                 readlen -= len;
2105                 if (!readlen)
2106                         break;
2107
2108                 /* Increment page address */
2109                 realpage++;
2110
2111                 page = realpage & chip->pagemask;
2112                 /* Check, if we cross a chip boundary */
2113                 if (!page) {
2114                         chipnr++;
2115                         chip->select_chip(mtd, -1);
2116                         chip->select_chip(mtd, chipnr);
2117                 }
2118         }
2119         chip->select_chip(mtd, -1);
2120
2121         ops->oobretlen = ops->ooblen - readlen;
2122
2123         if (ret < 0)
2124                 return ret;
2125
2126         if (mtd->ecc_stats.failed - stats.failed)
2127                 return -EBADMSG;
2128
2129         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2130 }
2131
2132 /**
2133  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2134  * @mtd: MTD device structure
2135  * @from: offset to read from
2136  * @ops: oob operation description structure
2137  *
2138  * NAND read data and/or out-of-band data.
2139  */
2140 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2141                          struct mtd_oob_ops *ops)
2142 {
2143         int ret = -ENOTSUPP;
2144
2145         ops->retlen = 0;
2146
2147         /* Do not allow reads past end of device */
2148         if (ops->datbuf && (from + ops->len) > mtd->size) {
2149                 pr_debug("%s: attempt to read beyond end of device\n",
2150                                 __func__);
2151                 return -EINVAL;
2152         }
2153
2154         nand_get_device(mtd, FL_READING);
2155
2156         switch (ops->mode) {
2157         case MTD_OPS_PLACE_OOB:
2158         case MTD_OPS_AUTO_OOB:
2159         case MTD_OPS_RAW:
2160                 break;
2161
2162         default:
2163                 goto out;
2164         }
2165
2166         if (!ops->datbuf)
2167                 ret = nand_do_read_oob(mtd, from, ops);
2168         else
2169                 ret = nand_do_read_ops(mtd, from, ops);
2170
2171 out:
2172         nand_release_device(mtd);
2173         return ret;
2174 }
2175
2176
2177 /**
2178  * nand_write_page_raw - [INTERN] raw page write function
2179  * @mtd: mtd info structure
2180  * @chip: nand chip info structure
2181  * @buf: data buffer
2182  * @oob_required: must write chip->oob_poi to OOB
2183  * @page: page number to write
2184  *
2185  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2186  */
2187 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2188                                const uint8_t *buf, int oob_required, int page)
2189 {
2190         chip->write_buf(mtd, buf, mtd->writesize);
2191         if (oob_required)
2192                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2193
2194         return 0;
2195 }
2196
2197 /**
2198  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2199  * @mtd: mtd info structure
2200  * @chip: nand chip info structure
2201  * @buf: data buffer
2202  * @oob_required: must write chip->oob_poi to OOB
2203  * @page: page number to write
2204  *
2205  * We need a special oob layout and handling even when ECC isn't checked.
2206  */
2207 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2208                                         struct nand_chip *chip,
2209                                         const uint8_t *buf, int oob_required,
2210                                         int page)
2211 {
2212         int eccsize = chip->ecc.size;
2213         int eccbytes = chip->ecc.bytes;
2214         uint8_t *oob = chip->oob_poi;
2215         int steps, size;
2216
2217         for (steps = chip->ecc.steps; steps > 0; steps--) {
2218                 chip->write_buf(mtd, buf, eccsize);
2219                 buf += eccsize;
2220
2221                 if (chip->ecc.prepad) {
2222                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2223                         oob += chip->ecc.prepad;
2224                 }
2225
2226                 chip->write_buf(mtd, oob, eccbytes);
2227                 oob += eccbytes;
2228
2229                 if (chip->ecc.postpad) {
2230                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2231                         oob += chip->ecc.postpad;
2232                 }
2233         }
2234
2235         size = mtd->oobsize - (oob - chip->oob_poi);
2236         if (size)
2237                 chip->write_buf(mtd, oob, size);
2238
2239         return 0;
2240 }
2241 /**
2242  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2243  * @mtd: mtd info structure
2244  * @chip: nand chip info structure
2245  * @buf: data buffer
2246  * @oob_required: must write chip->oob_poi to OOB
2247  * @page: page number to write
2248  */
2249 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2250                                  const uint8_t *buf, int oob_required,
2251                                  int page)
2252 {
2253         int i, eccsize = chip->ecc.size;
2254         int eccbytes = chip->ecc.bytes;
2255         int eccsteps = chip->ecc.steps;
2256         uint8_t *ecc_calc = chip->buffers->ecccalc;
2257         const uint8_t *p = buf;
2258         uint32_t *eccpos = chip->ecc.layout->eccpos;
2259
2260         /* Software ECC calculation */
2261         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2262                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2263
2264         for (i = 0; i < chip->ecc.total; i++)
2265                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2266
2267         return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2268 }
2269
2270 /**
2271  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2272  * @mtd: mtd info structure
2273  * @chip: nand chip info structure
2274  * @buf: data buffer
2275  * @oob_required: must write chip->oob_poi to OOB
2276  * @page: page number to write
2277  */
2278 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2279                                   const uint8_t *buf, int oob_required,
2280                                   int page)
2281 {
2282         int i, eccsize = chip->ecc.size;
2283         int eccbytes = chip->ecc.bytes;
2284         int eccsteps = chip->ecc.steps;
2285         uint8_t *ecc_calc = chip->buffers->ecccalc;
2286         const uint8_t *p = buf;
2287         uint32_t *eccpos = chip->ecc.layout->eccpos;
2288
2289         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2290                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2291                 chip->write_buf(mtd, p, eccsize);
2292                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2293         }
2294
2295         for (i = 0; i < chip->ecc.total; i++)
2296                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2297
2298         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2299
2300         return 0;
2301 }
2302
2303
2304 /**
2305  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2306  * @mtd:        mtd info structure
2307  * @chip:       nand chip info structure
2308  * @offset:     column address of subpage within the page
2309  * @data_len:   data length
2310  * @buf:        data buffer
2311  * @oob_required: must write chip->oob_poi to OOB
2312  * @page: page number to write
2313  */
2314 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2315                                 struct nand_chip *chip, uint32_t offset,
2316                                 uint32_t data_len, const uint8_t *buf,
2317                                 int oob_required, int page)
2318 {
2319         uint8_t *oob_buf  = chip->oob_poi;
2320         uint8_t *ecc_calc = chip->buffers->ecccalc;
2321         int ecc_size      = chip->ecc.size;
2322         int ecc_bytes     = chip->ecc.bytes;
2323         int ecc_steps     = chip->ecc.steps;
2324         uint32_t *eccpos  = chip->ecc.layout->eccpos;
2325         uint32_t start_step = offset / ecc_size;
2326         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2327         int oob_bytes       = mtd->oobsize / ecc_steps;
2328         int step, i;
2329
2330         for (step = 0; step < ecc_steps; step++) {
2331                 /* configure controller for WRITE access */
2332                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2333
2334                 /* write data (untouched subpages already masked by 0xFF) */
2335                 chip->write_buf(mtd, buf, ecc_size);
2336
2337                 /* mask ECC of un-touched subpages by padding 0xFF */
2338                 if ((step < start_step) || (step > end_step))
2339                         memset(ecc_calc, 0xff, ecc_bytes);
2340                 else
2341                         chip->ecc.calculate(mtd, buf, ecc_calc);
2342
2343                 /* mask OOB of un-touched subpages by padding 0xFF */
2344                 /* if oob_required, preserve OOB metadata of written subpage */
2345                 if (!oob_required || (step < start_step) || (step > end_step))
2346                         memset(oob_buf, 0xff, oob_bytes);
2347
2348                 buf += ecc_size;
2349                 ecc_calc += ecc_bytes;
2350                 oob_buf  += oob_bytes;
2351         }
2352
2353         /* copy calculated ECC for whole page to chip->buffer->oob */
2354         /* this include masked-value(0xFF) for unwritten subpages */
2355         ecc_calc = chip->buffers->ecccalc;
2356         for (i = 0; i < chip->ecc.total; i++)
2357                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2358
2359         /* write OOB buffer to NAND device */
2360         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2361
2362         return 0;
2363 }
2364
2365
2366 /**
2367  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2368  * @mtd: mtd info structure
2369  * @chip: nand chip info structure
2370  * @buf: data buffer
2371  * @oob_required: must write chip->oob_poi to OOB
2372  * @page: page number to write
2373  *
2374  * The hw generator calculates the error syndrome automatically. Therefore we
2375  * need a special oob layout and handling.
2376  */
2377 static int nand_write_page_syndrome(struct mtd_info *mtd,
2378                                     struct nand_chip *chip,
2379                                     const uint8_t *buf, int oob_required,
2380                                     int page)
2381 {
2382         int i, eccsize = chip->ecc.size;
2383         int eccbytes = chip->ecc.bytes;
2384         int eccsteps = chip->ecc.steps;
2385         const uint8_t *p = buf;
2386         uint8_t *oob = chip->oob_poi;
2387
2388         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2389
2390                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2391                 chip->write_buf(mtd, p, eccsize);
2392
2393                 if (chip->ecc.prepad) {
2394                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2395                         oob += chip->ecc.prepad;
2396                 }
2397
2398                 chip->ecc.calculate(mtd, p, oob);
2399                 chip->write_buf(mtd, oob, eccbytes);
2400                 oob += eccbytes;
2401
2402                 if (chip->ecc.postpad) {
2403                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2404                         oob += chip->ecc.postpad;
2405                 }
2406         }
2407
2408         /* Calculate remaining oob bytes */
2409         i = mtd->oobsize - (oob - chip->oob_poi);
2410         if (i)
2411                 chip->write_buf(mtd, oob, i);
2412
2413         return 0;
2414 }
2415
2416 /**
2417  * nand_write_page - [REPLACEABLE] write one page
2418  * @mtd: MTD device structure
2419  * @chip: NAND chip descriptor
2420  * @offset: address offset within the page
2421  * @data_len: length of actual data to be written
2422  * @buf: the data to write
2423  * @oob_required: must write chip->oob_poi to OOB
2424  * @page: page number to write
2425  * @cached: cached programming
2426  * @raw: use _raw version of write_page
2427  */
2428 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2429                 uint32_t offset, int data_len, const uint8_t *buf,
2430                 int oob_required, int page, int cached, int raw)
2431 {
2432         int status, subpage;
2433
2434         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2435                 chip->ecc.write_subpage)
2436                 subpage = offset || (data_len < mtd->writesize);
2437         else
2438                 subpage = 0;
2439
2440         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2441
2442         if (unlikely(raw))
2443                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2444                                                   oob_required, page);
2445         else if (subpage)
2446                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2447                                                  buf, oob_required, page);
2448         else
2449                 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2450                                               page);
2451
2452         if (status < 0)
2453                 return status;
2454
2455         /*
2456          * Cached progamming disabled for now. Not sure if it's worth the
2457          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2458          */
2459         cached = 0;
2460
2461         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2462
2463                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2464                 status = chip->waitfunc(mtd, chip);
2465                 /*
2466                  * See if operation failed and additional status checks are
2467                  * available.
2468                  */
2469                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2470                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2471                                                page);
2472
2473                 if (status & NAND_STATUS_FAIL)
2474                         return -EIO;
2475         } else {
2476                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2477                 status = chip->waitfunc(mtd, chip);
2478         }
2479
2480         return 0;
2481 }
2482
2483 /**
2484  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2485  * @mtd: MTD device structure
2486  * @oob: oob data buffer
2487  * @len: oob data write length
2488  * @ops: oob ops structure
2489  */
2490 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2491                               struct mtd_oob_ops *ops)
2492 {
2493         struct nand_chip *chip = mtd_to_nand(mtd);
2494
2495         /*
2496          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2497          * data from a previous OOB read.
2498          */
2499         memset(chip->oob_poi, 0xff, mtd->oobsize);
2500
2501         switch (ops->mode) {
2502
2503         case MTD_OPS_PLACE_OOB:
2504         case MTD_OPS_RAW:
2505                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2506                 return oob + len;
2507
2508         case MTD_OPS_AUTO_OOB: {
2509                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2510                 uint32_t boffs = 0, woffs = ops->ooboffs;
2511                 size_t bytes = 0;
2512
2513                 for (; free->length && len; free++, len -= bytes) {
2514                         /* Write request not from offset 0? */
2515                         if (unlikely(woffs)) {
2516                                 if (woffs >= free->length) {
2517                                         woffs -= free->length;
2518                                         continue;
2519                                 }
2520                                 boffs = free->offset + woffs;
2521                                 bytes = min_t(size_t, len,
2522                                               (free->length - woffs));
2523                                 woffs = 0;
2524                         } else {
2525                                 bytes = min_t(size_t, len, free->length);
2526                                 boffs = free->offset;
2527                         }
2528                         memcpy(chip->oob_poi + boffs, oob, bytes);
2529                         oob += bytes;
2530                 }
2531                 return oob;
2532         }
2533         default:
2534                 BUG();
2535         }
2536         return NULL;
2537 }
2538
2539 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2540
2541 /**
2542  * nand_do_write_ops - [INTERN] NAND write with ECC
2543  * @mtd: MTD device structure
2544  * @to: offset to write to
2545  * @ops: oob operations description structure
2546  *
2547  * NAND write with ECC.
2548  */
2549 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2550                              struct mtd_oob_ops *ops)
2551 {
2552         int chipnr, realpage, page, blockmask, column;
2553         struct nand_chip *chip = mtd_to_nand(mtd);
2554         uint32_t writelen = ops->len;
2555
2556         uint32_t oobwritelen = ops->ooblen;
2557         uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2558
2559         uint8_t *oob = ops->oobbuf;
2560         uint8_t *buf = ops->datbuf;
2561         int ret;
2562         int oob_required = oob ? 1 : 0;
2563
2564         ops->retlen = 0;
2565         if (!writelen)
2566                 return 0;
2567
2568         /* Reject writes, which are not page aligned */
2569         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2570                 pr_notice("%s: attempt to write non page aligned data\n",
2571                            __func__);
2572                 return -EINVAL;
2573         }
2574
2575         column = to & (mtd->writesize - 1);
2576
2577         chipnr = (int)(to >> chip->chip_shift);
2578         chip->select_chip(mtd, chipnr);
2579
2580         /* Check, if it is write protected */
2581         if (nand_check_wp(mtd)) {
2582                 ret = -EIO;
2583                 goto err_out;
2584         }
2585
2586         realpage = (int)(to >> chip->page_shift);
2587         page = realpage & chip->pagemask;
2588         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2589
2590         /* Invalidate the page cache, when we write to the cached page */
2591         if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2592             ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2593                 chip->pagebuf = -1;
2594
2595         /* Don't allow multipage oob writes with offset */
2596         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2597                 ret = -EINVAL;
2598                 goto err_out;
2599         }
2600
2601         while (1) {
2602                 int bytes = mtd->writesize;
2603                 int cached = writelen > bytes && page != blockmask;
2604                 uint8_t *wbuf = buf;
2605                 int use_bufpoi;
2606                 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2607
2608                 if (part_pagewr)
2609                         use_bufpoi = 1;
2610                 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2611                         use_bufpoi = !virt_addr_valid(buf);
2612                 else
2613                         use_bufpoi = 0;
2614
2615                 /* Partial page write?, or need to use bounce buffer */
2616                 if (use_bufpoi) {
2617                         pr_debug("%s: using write bounce buffer for buf@%p\n",
2618                                          __func__, buf);
2619                         cached = 0;
2620                         if (part_pagewr)
2621                                 bytes = min_t(int, bytes - column, writelen);
2622                         chip->pagebuf = -1;
2623                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2624                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2625                         wbuf = chip->buffers->databuf;
2626                 }
2627
2628                 if (unlikely(oob)) {
2629                         size_t len = min(oobwritelen, oobmaxlen);
2630                         oob = nand_fill_oob(mtd, oob, len, ops);
2631                         oobwritelen -= len;
2632                 } else {
2633                         /* We still need to erase leftover OOB data */
2634                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2635                 }
2636                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2637                                         oob_required, page, cached,
2638                                         (ops->mode == MTD_OPS_RAW));
2639                 if (ret)
2640                         break;
2641
2642                 writelen -= bytes;
2643                 if (!writelen)
2644                         break;
2645
2646                 column = 0;
2647                 buf += bytes;
2648                 realpage++;
2649
2650                 page = realpage & chip->pagemask;
2651                 /* Check, if we cross a chip boundary */
2652                 if (!page) {
2653                         chipnr++;
2654                         chip->select_chip(mtd, -1);
2655                         chip->select_chip(mtd, chipnr);
2656                 }
2657         }
2658
2659         ops->retlen = ops->len - writelen;
2660         if (unlikely(oob))
2661                 ops->oobretlen = ops->ooblen;
2662
2663 err_out:
2664         chip->select_chip(mtd, -1);
2665         return ret;
2666 }
2667
2668 /**
2669  * panic_nand_write - [MTD Interface] NAND write with ECC
2670  * @mtd: MTD device structure
2671  * @to: offset to write to
2672  * @len: number of bytes to write
2673  * @retlen: pointer to variable to store the number of written bytes
2674  * @buf: the data to write
2675  *
2676  * NAND write with ECC. Used when performing writes in interrupt context, this
2677  * may for example be called by mtdoops when writing an oops while in panic.
2678  */
2679 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2680                             size_t *retlen, const uint8_t *buf)
2681 {
2682         struct nand_chip *chip = mtd_to_nand(mtd);
2683         struct mtd_oob_ops ops;
2684         int ret;
2685
2686         /* Wait for the device to get ready */
2687         panic_nand_wait(mtd, chip, 400);
2688
2689         /* Grab the device */
2690         panic_nand_get_device(chip, mtd, FL_WRITING);
2691
2692         memset(&ops, 0, sizeof(ops));
2693         ops.len = len;
2694         ops.datbuf = (uint8_t *)buf;
2695         ops.mode = MTD_OPS_PLACE_OOB;
2696
2697         ret = nand_do_write_ops(mtd, to, &ops);
2698
2699         *retlen = ops.retlen;
2700         return ret;
2701 }
2702
2703 /**
2704  * nand_write - [MTD Interface] NAND write with ECC
2705  * @mtd: MTD device structure
2706  * @to: offset to write to
2707  * @len: number of bytes to write
2708  * @retlen: pointer to variable to store the number of written bytes
2709  * @buf: the data to write
2710  *
2711  * NAND write with ECC.
2712  */
2713 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2714                           size_t *retlen, const uint8_t *buf)
2715 {
2716         struct mtd_oob_ops ops;
2717         int ret;
2718
2719         nand_get_device(mtd, FL_WRITING);
2720         memset(&ops, 0, sizeof(ops));
2721         ops.len = len;
2722         ops.datbuf = (uint8_t *)buf;
2723         ops.mode = MTD_OPS_PLACE_OOB;
2724         ret = nand_do_write_ops(mtd, to, &ops);
2725         *retlen = ops.retlen;
2726         nand_release_device(mtd);
2727         return ret;
2728 }
2729
2730 /**
2731  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2732  * @mtd: MTD device structure
2733  * @to: offset to write to
2734  * @ops: oob operation description structure
2735  *
2736  * NAND write out-of-band.
2737  */
2738 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2739                              struct mtd_oob_ops *ops)
2740 {
2741         int chipnr, page, status, len;
2742         struct nand_chip *chip = mtd_to_nand(mtd);
2743
2744         pr_debug("%s: to = 0x%08x, len = %i\n",
2745                          __func__, (unsigned int)to, (int)ops->ooblen);
2746
2747         len = mtd_oobavail(mtd, ops);
2748
2749         /* Do not allow write past end of page */
2750         if ((ops->ooboffs + ops->ooblen) > len) {
2751                 pr_debug("%s: attempt to write past end of page\n",
2752                                 __func__);
2753                 return -EINVAL;
2754         }
2755
2756         if (unlikely(ops->ooboffs >= len)) {
2757                 pr_debug("%s: attempt to start write outside oob\n",
2758                                 __func__);
2759                 return -EINVAL;
2760         }
2761
2762         /* Do not allow write past end of device */
2763         if (unlikely(to >= mtd->size ||
2764                      ops->ooboffs + ops->ooblen >
2765                         ((mtd->size >> chip->page_shift) -
2766                          (to >> chip->page_shift)) * len)) {
2767                 pr_debug("%s: attempt to write beyond end of device\n",
2768                                 __func__);
2769                 return -EINVAL;
2770         }
2771
2772         chipnr = (int)(to >> chip->chip_shift);
2773         chip->select_chip(mtd, chipnr);
2774
2775         /* Shift to get page */
2776         page = (int)(to >> chip->page_shift);
2777
2778         /*
2779          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2780          * of my DiskOnChip 2000 test units) will clear the whole data page too
2781          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2782          * it in the doc2000 driver in August 1999.  dwmw2.
2783          */
2784         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2785
2786         /* Check, if it is write protected */
2787         if (nand_check_wp(mtd)) {
2788                 chip->select_chip(mtd, -1);
2789                 return -EROFS;
2790         }
2791
2792         /* Invalidate the page cache, if we write to the cached page */
2793         if (page == chip->pagebuf)
2794                 chip->pagebuf = -1;
2795
2796         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2797
2798         if (ops->mode == MTD_OPS_RAW)
2799                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2800         else
2801                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2802
2803         chip->select_chip(mtd, -1);
2804
2805         if (status)
2806                 return status;
2807
2808         ops->oobretlen = ops->ooblen;
2809
2810         return 0;
2811 }
2812
2813 /**
2814  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2815  * @mtd: MTD device structure
2816  * @to: offset to write to
2817  * @ops: oob operation description structure
2818  */
2819 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2820                           struct mtd_oob_ops *ops)
2821 {
2822         int ret = -ENOTSUPP;
2823
2824         ops->retlen = 0;
2825
2826         /* Do not allow writes past end of device */
2827         if (ops->datbuf && (to + ops->len) > mtd->size) {
2828                 pr_debug("%s: attempt to write beyond end of device\n",
2829                                 __func__);
2830                 return -EINVAL;
2831         }
2832
2833         nand_get_device(mtd, FL_WRITING);
2834
2835         switch (ops->mode) {
2836         case MTD_OPS_PLACE_OOB:
2837         case MTD_OPS_AUTO_OOB:
2838         case MTD_OPS_RAW:
2839                 break;
2840
2841         default:
2842                 goto out;
2843         }
2844
2845         if (!ops->datbuf)
2846                 ret = nand_do_write_oob(mtd, to, ops);
2847         else
2848                 ret = nand_do_write_ops(mtd, to, ops);
2849
2850 out:
2851         nand_release_device(mtd);
2852         return ret;
2853 }
2854
2855 /**
2856  * single_erase - [GENERIC] NAND standard block erase command function
2857  * @mtd: MTD device structure
2858  * @page: the page address of the block which will be erased
2859  *
2860  * Standard erase command for NAND chips. Returns NAND status.
2861  */
2862 static int single_erase(struct mtd_info *mtd, int page)
2863 {
2864         struct nand_chip *chip = mtd_to_nand(mtd);
2865         /* Send commands to erase a block */
2866         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2867         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2868
2869         return chip->waitfunc(mtd, chip);
2870 }
2871
2872 /**
2873  * nand_erase - [MTD Interface] erase block(s)
2874  * @mtd: MTD device structure
2875  * @instr: erase instruction
2876  *
2877  * Erase one ore more blocks.
2878  */
2879 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2880 {
2881         return nand_erase_nand(mtd, instr, 0);
2882 }
2883
2884 /**
2885  * nand_erase_nand - [INTERN] erase block(s)
2886  * @mtd: MTD device structure
2887  * @instr: erase instruction
2888  * @allowbbt: allow erasing the bbt area
2889  *
2890  * Erase one ore more blocks.
2891  */
2892 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2893                     int allowbbt)
2894 {
2895         int page, status, pages_per_block, ret, chipnr;
2896         struct nand_chip *chip = mtd_to_nand(mtd);
2897         loff_t len;
2898
2899         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2900                         __func__, (unsigned long long)instr->addr,
2901                         (unsigned long long)instr->len);
2902
2903         if (check_offs_len(mtd, instr->addr, instr->len))
2904                 return -EINVAL;
2905
2906         /* Grab the lock and see if the device is available */
2907         nand_get_device(mtd, FL_ERASING);
2908
2909         /* Shift to get first page */
2910         page = (int)(instr->addr >> chip->page_shift);
2911         chipnr = (int)(instr->addr >> chip->chip_shift);
2912
2913         /* Calculate pages in each block */
2914         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2915
2916         /* Select the NAND device */
2917         chip->select_chip(mtd, chipnr);
2918
2919         /* Check, if it is write protected */
2920         if (nand_check_wp(mtd)) {
2921                 pr_debug("%s: device is write protected!\n",
2922                                 __func__);
2923                 instr->state = MTD_ERASE_FAILED;
2924                 goto erase_exit;
2925         }
2926
2927         /* Loop through the pages */
2928         len = instr->len;
2929
2930         instr->state = MTD_ERASING;
2931
2932         while (len) {
2933                 /* Check if we have a bad block, we do not erase bad blocks! */
2934                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2935                                         chip->page_shift, allowbbt)) {
2936                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2937                                     __func__, page);
2938                         instr->state = MTD_ERASE_FAILED;
2939                         goto erase_exit;
2940                 }
2941
2942                 /*
2943                  * Invalidate the page cache, if we erase the block which
2944                  * contains the current cached page.
2945                  */
2946                 if (page <= chip->pagebuf && chip->pagebuf <
2947                     (page + pages_per_block))
2948                         chip->pagebuf = -1;
2949
2950                 status = chip->erase(mtd, page & chip->pagemask);
2951
2952                 /*
2953                  * See if operation failed and additional status checks are
2954                  * available
2955                  */
2956                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2957                         status = chip->errstat(mtd, chip, FL_ERASING,
2958                                                status, page);
2959
2960                 /* See if block erase succeeded */
2961                 if (status & NAND_STATUS_FAIL) {
2962                         pr_debug("%s: failed erase, page 0x%08x\n",
2963                                         __func__, page);
2964                         instr->state = MTD_ERASE_FAILED;
2965                         instr->fail_addr =
2966                                 ((loff_t)page << chip->page_shift);
2967                         goto erase_exit;
2968                 }
2969
2970                 /* Increment page address and decrement length */
2971                 len -= (1ULL << chip->phys_erase_shift);
2972                 page += pages_per_block;
2973
2974                 /* Check, if we cross a chip boundary */
2975                 if (len && !(page & chip->pagemask)) {
2976                         chipnr++;
2977                         chip->select_chip(mtd, -1);
2978                         chip->select_chip(mtd, chipnr);
2979                 }
2980         }
2981         instr->state = MTD_ERASE_DONE;
2982
2983 erase_exit:
2984
2985         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2986
2987         /* Deselect and wake up anyone waiting on the device */
2988         chip->select_chip(mtd, -1);
2989         nand_release_device(mtd);
2990
2991         /* Do call back function */
2992         if (!ret)
2993                 mtd_erase_callback(instr);
2994
2995         /* Return more or less happy */
2996         return ret;
2997 }
2998
2999 /**
3000  * nand_sync - [MTD Interface] sync
3001  * @mtd: MTD device structure
3002  *
3003  * Sync is actually a wait for chip ready function.
3004  */
3005 static void nand_sync(struct mtd_info *mtd)
3006 {
3007         pr_debug("%s: called\n", __func__);
3008
3009         /* Grab the lock and see if the device is available */
3010         nand_get_device(mtd, FL_SYNCING);
3011         /* Release it and go back */
3012         nand_release_device(mtd);
3013 }
3014
3015 /**
3016  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3017  * @mtd: MTD device structure
3018  * @offs: offset relative to mtd start
3019  */
3020 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3021 {
3022         struct nand_chip *chip = mtd_to_nand(mtd);
3023         int chipnr = (int)(offs >> chip->chip_shift);
3024         int ret;
3025
3026         /* Select the NAND device */
3027         nand_get_device(mtd, FL_READING);
3028         chip->select_chip(mtd, chipnr);
3029
3030         ret = nand_block_checkbad(mtd, offs, 0);
3031
3032         chip->select_chip(mtd, -1);
3033         nand_release_device(mtd);
3034
3035         return ret;
3036 }
3037
3038 /**
3039  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3040  * @mtd: MTD device structure
3041  * @ofs: offset relative to mtd start
3042  */
3043 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3044 {
3045         int ret;
3046
3047         ret = nand_block_isbad(mtd, ofs);
3048         if (ret) {
3049                 /* If it was bad already, return success and do nothing */
3050                 if (ret > 0)
3051                         return 0;
3052                 return ret;
3053         }
3054
3055         return nand_block_markbad_lowlevel(mtd, ofs);
3056 }
3057
3058 /**
3059  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3060  * @mtd: MTD device structure
3061  * @chip: nand chip info structure
3062  * @addr: feature address.
3063  * @subfeature_param: the subfeature parameters, a four bytes array.
3064  */
3065 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3066                         int addr, uint8_t *subfeature_param)
3067 {
3068         int status;
3069         int i;
3070
3071         if (!chip->onfi_version ||
3072             !(le16_to_cpu(chip->onfi_params.opt_cmd)
3073               & ONFI_OPT_CMD_SET_GET_FEATURES))
3074                 return -EINVAL;
3075
3076         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3077         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3078                 chip->write_byte(mtd, subfeature_param[i]);
3079
3080         status = chip->waitfunc(mtd, chip);
3081         if (status & NAND_STATUS_FAIL)
3082                 return -EIO;
3083         return 0;
3084 }
3085
3086 /**
3087  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3088  * @mtd: MTD device structure
3089  * @chip: nand chip info structure
3090  * @addr: feature address.
3091  * @subfeature_param: the subfeature parameters, a four bytes array.
3092  */
3093 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3094                         int addr, uint8_t *subfeature_param)
3095 {
3096         int i;
3097
3098         if (!chip->onfi_version ||
3099             !(le16_to_cpu(chip->onfi_params.opt_cmd)
3100               & ONFI_OPT_CMD_SET_GET_FEATURES))
3101                 return -EINVAL;
3102
3103         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3104         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3105                 *subfeature_param++ = chip->read_byte(mtd);
3106         return 0;
3107 }
3108
3109 /**
3110  * nand_suspend - [MTD Interface] Suspend the NAND flash
3111  * @mtd: MTD device structure
3112  */
3113 static int nand_suspend(struct mtd_info *mtd)
3114 {
3115         return nand_get_device(mtd, FL_PM_SUSPENDED);
3116 }
3117
3118 /**
3119  * nand_resume - [MTD Interface] Resume the NAND flash
3120  * @mtd: MTD device structure
3121  */
3122 static void nand_resume(struct mtd_info *mtd)
3123 {
3124         struct nand_chip *chip = mtd_to_nand(mtd);
3125
3126         if (chip->state == FL_PM_SUSPENDED)
3127                 nand_release_device(mtd);
3128         else
3129                 pr_err("%s called for a chip which is not in suspended state\n",
3130                         __func__);
3131 }
3132
3133 /**
3134  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3135  *                 prevent further operations
3136  * @mtd: MTD device structure
3137  */
3138 static void nand_shutdown(struct mtd_info *mtd)
3139 {
3140         nand_get_device(mtd, FL_PM_SUSPENDED);
3141 }
3142
3143 /* Set default functions */
3144 static void nand_set_defaults(struct nand_chip *chip, int busw)
3145 {
3146         /* check for proper chip_delay setup, set 20us if not */
3147         if (!chip->chip_delay)
3148                 chip->chip_delay = 20;
3149
3150         /* check, if a user supplied command function given */
3151         if (chip->cmdfunc == NULL)
3152                 chip->cmdfunc = nand_command;
3153
3154         /* check, if a user supplied wait function given */
3155         if (chip->waitfunc == NULL)
3156                 chip->waitfunc = nand_wait;
3157
3158         if (!chip->select_chip)
3159                 chip->select_chip = nand_select_chip;
3160
3161         /* set for ONFI nand */
3162         if (!chip->onfi_set_features)
3163                 chip->onfi_set_features = nand_onfi_set_features;
3164         if (!chip->onfi_get_features)
3165                 chip->onfi_get_features = nand_onfi_get_features;
3166
3167         /* If called twice, pointers that depend on busw may need to be reset */
3168         if (!chip->read_byte || chip->read_byte == nand_read_byte)
3169                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3170         if (!chip->read_word)
3171                 chip->read_word = nand_read_word;
3172         if (!chip->block_bad)
3173                 chip->block_bad = nand_block_bad;
3174         if (!chip->block_markbad)
3175                 chip->block_markbad = nand_default_block_markbad;
3176         if (!chip->write_buf || chip->write_buf == nand_write_buf)
3177                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3178         if (!chip->write_byte || chip->write_byte == nand_write_byte)
3179                 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3180         if (!chip->read_buf || chip->read_buf == nand_read_buf)
3181                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3182         if (!chip->scan_bbt)
3183                 chip->scan_bbt = nand_default_bbt;
3184
3185         if (!chip->controller) {
3186                 chip->controller = &chip->hwcontrol;
3187                 spin_lock_init(&chip->controller->lock);
3188                 init_waitqueue_head(&chip->controller->wq);
3189         }
3190
3191 }
3192
3193 /* Sanitize ONFI strings so we can safely print them */
3194 static void sanitize_string(uint8_t *s, size_t len)
3195 {
3196         ssize_t i;
3197
3198         /* Null terminate */
3199         s[len - 1] = 0;
3200
3201         /* Remove non printable chars */
3202         for (i = 0; i < len - 1; i++) {
3203                 if (s[i] < ' ' || s[i] > 127)
3204                         s[i] = '?';
3205         }
3206
3207         /* Remove trailing spaces */
3208         strim(s);
3209 }
3210
3211 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3212 {
3213         int i;
3214         while (len--) {
3215                 crc ^= *p++ << 8;
3216                 for (i = 0; i < 8; i++)
3217                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3218         }
3219
3220         return crc;
3221 }
3222
3223 /* Parse the Extended Parameter Page. */
3224 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3225                 struct nand_chip *chip, struct nand_onfi_params *p)
3226 {
3227         struct onfi_ext_param_page *ep;
3228         struct onfi_ext_section *s;
3229         struct onfi_ext_ecc_info *ecc;
3230         uint8_t *cursor;
3231         int ret = -EINVAL;
3232         int len;
3233         int i;
3234
3235         len = le16_to_cpu(p->ext_param_page_length) * 16;
3236         ep = kmalloc(len, GFP_KERNEL);
3237         if (!ep)
3238                 return -ENOMEM;
3239
3240         /* Send our own NAND_CMD_PARAM. */
3241         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3242
3243         /* Use the Change Read Column command to skip the ONFI param pages. */
3244         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3245                         sizeof(*p) * p->num_of_param_pages , -1);
3246
3247         /* Read out the Extended Parameter Page. */
3248         chip->read_buf(mtd, (uint8_t *)ep, len);
3249         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3250                 != le16_to_cpu(ep->crc))) {
3251                 pr_debug("fail in the CRC.\n");
3252                 goto ext_out;
3253         }
3254
3255         /*
3256          * Check the signature.
3257          * Do not strictly follow the ONFI spec, maybe changed in future.
3258          */
3259         if (strncmp(ep->sig, "EPPS", 4)) {
3260                 pr_debug("The signature is invalid.\n");
3261                 goto ext_out;
3262         }
3263
3264         /* find the ECC section. */
3265         cursor = (uint8_t *)(ep + 1);
3266         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3267                 s = ep->sections + i;
3268                 if (s->type == ONFI_SECTION_TYPE_2)
3269                         break;
3270                 cursor += s->length * 16;
3271         }
3272         if (i == ONFI_EXT_SECTION_MAX) {
3273                 pr_debug("We can not find the ECC section.\n");
3274                 goto ext_out;
3275         }
3276
3277         /* get the info we want. */
3278         ecc = (struct onfi_ext_ecc_info *)cursor;
3279
3280         if (!ecc->codeword_size) {
3281                 pr_debug("Invalid codeword size\n");
3282                 goto ext_out;
3283         }
3284
3285         chip->ecc_strength_ds = ecc->ecc_bits;
3286         chip->ecc_step_ds = 1 << ecc->codeword_size;
3287         ret = 0;
3288
3289 ext_out:
3290         kfree(ep);
3291         return ret;
3292 }
3293
3294 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3295 {
3296         struct nand_chip *chip = mtd_to_nand(mtd);
3297         uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3298
3299         return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3300                         feature);
3301 }
3302
3303 /*
3304  * Configure chip properties from Micron vendor-specific ONFI table
3305  */
3306 static void nand_onfi_detect_micron(struct nand_chip *chip,
3307                 struct nand_onfi_params *p)
3308 {
3309         struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3310
3311         if (le16_to_cpu(p->vendor_revision) < 1)
3312                 return;
3313
3314         chip->read_retries = micron->read_retry_options;
3315         chip->setup_read_retry = nand_setup_read_retry_micron;
3316 }
3317
3318 /*
3319  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3320  */
3321 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3322                                         int *busw)
3323 {
3324         struct nand_onfi_params *p = &chip->onfi_params;
3325         int i, j;
3326         int val;
3327
3328         /* Try ONFI for unknown chip or LP */
3329         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3330         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3331                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3332                 return 0;
3333
3334         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3335         for (i = 0; i < 3; i++) {
3336                 for (j = 0; j < sizeof(*p); j++)
3337                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3338                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3339                                 le16_to_cpu(p->crc)) {
3340                         break;
3341                 }
3342         }
3343
3344         if (i == 3) {
3345                 pr_err("Could not find valid ONFI parameter page; aborting\n");
3346                 return 0;
3347         }
3348
3349         /* Check version */
3350         val = le16_to_cpu(p->revision);
3351         if (val & (1 << 5))
3352                 chip->onfi_version = 23;
3353         else if (val & (1 << 4))
3354                 chip->onfi_version = 22;
3355         else if (val & (1 << 3))
3356                 chip->onfi_version = 21;
3357         else if (val & (1 << 2))
3358                 chip->onfi_version = 20;
3359         else if (val & (1 << 1))
3360                 chip->onfi_version = 10;
3361
3362         if (!chip->onfi_version) {
3363                 pr_info("unsupported ONFI version: %d\n", val);
3364                 return 0;
3365         }
3366
3367         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3368         sanitize_string(p->model, sizeof(p->model));
3369         if (!mtd->name)
3370                 mtd->name = p->model;
3371
3372         mtd->writesize = le32_to_cpu(p->byte_per_page);
3373
3374         /*
3375          * pages_per_block and blocks_per_lun may not be a power-of-2 size
3376          * (don't ask me who thought of this...). MTD assumes that these
3377          * dimensions will be power-of-2, so just truncate the remaining area.
3378          */
3379         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3380         mtd->erasesize *= mtd->writesize;
3381
3382         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3383
3384         /* See erasesize comment */
3385         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3386         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3387         chip->bits_per_cell = p->bits_per_cell;
3388
3389         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3390                 *busw = NAND_BUSWIDTH_16;
3391         else
3392                 *busw = 0;
3393
3394         if (p->ecc_bits != 0xff) {
3395                 chip->ecc_strength_ds = p->ecc_bits;
3396                 chip->ecc_step_ds = 512;
3397         } else if (chip->onfi_version >= 21 &&
3398                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3399
3400                 /*
3401                  * The nand_flash_detect_ext_param_page() uses the
3402                  * Change Read Column command which maybe not supported
3403                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3404                  * now. We do not replace user supplied command function.
3405                  */
3406                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3407                         chip->cmdfunc = nand_command_lp;
3408
3409                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3410                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3411                         pr_warn("Failed to detect ONFI extended param page\n");
3412         } else {
3413                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3414         }
3415
3416         if (p->jedec_id == NAND_MFR_MICRON)
3417                 nand_onfi_detect_micron(chip, p);
3418
3419         return 1;
3420 }
3421
3422 /*
3423  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3424  */
3425 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3426                                         int *busw)
3427 {
3428         struct nand_jedec_params *p = &chip->jedec_params;
3429         struct jedec_ecc_info *ecc;
3430         int val;
3431         int i, j;
3432
3433         /* Try JEDEC for unknown chip or LP */
3434         chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3435         if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3436                 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3437                 chip->read_byte(mtd) != 'C')
3438                 return 0;
3439
3440         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3441         for (i = 0; i < 3; i++) {
3442                 for (j = 0; j < sizeof(*p); j++)
3443                         ((uint8_t *)p)[j] = chip->read_byte(mtd);
3444
3445                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3446                                 le16_to_cpu(p->crc))
3447                         break;
3448         }
3449
3450         if (i == 3) {
3451                 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3452                 return 0;
3453         }
3454
3455         /* Check version */
3456         val = le16_to_cpu(p->revision);
3457         if (val & (1 << 2))
3458                 chip->jedec_version = 10;
3459         else if (val & (1 << 1))
3460                 chip->jedec_version = 1; /* vendor specific version */
3461
3462         if (!chip->jedec_version) {
3463                 pr_info("unsupported JEDEC version: %d\n", val);
3464                 return 0;
3465         }
3466
3467         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3468         sanitize_string(p->model, sizeof(p->model));
3469         if (!mtd->name)
3470                 mtd->name = p->model;
3471
3472         mtd->writesize = le32_to_cpu(p->byte_per_page);
3473
3474         /* Please reference to the comment for nand_flash_detect_onfi. */
3475         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3476         mtd->erasesize *= mtd->writesize;
3477
3478         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3479
3480         /* Please reference to the comment for nand_flash_detect_onfi. */
3481         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3482         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3483         chip->bits_per_cell = p->bits_per_cell;
3484
3485         if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3486                 *busw = NAND_BUSWIDTH_16;
3487         else
3488                 *busw = 0;
3489
3490         /* ECC info */
3491         ecc = &p->ecc_info[0];
3492
3493         if (ecc->codeword_size >= 9) {
3494                 chip->ecc_strength_ds = ecc->ecc_bits;
3495                 chip->ecc_step_ds = 1 << ecc->codeword_size;
3496         } else {
3497                 pr_warn("Invalid codeword size\n");
3498         }
3499
3500         return 1;
3501 }
3502
3503 /*
3504  * nand_id_has_period - Check if an ID string has a given wraparound period
3505  * @id_data: the ID string
3506  * @arrlen: the length of the @id_data array
3507  * @period: the period of repitition
3508  *
3509  * Check if an ID string is repeated within a given sequence of bytes at
3510  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3511  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3512  * if the repetition has a period of @period; otherwise, returns zero.
3513  */
3514 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3515 {
3516         int i, j;
3517         for (i = 0; i < period; i++)
3518                 for (j = i + period; j < arrlen; j += period)
3519                         if (id_data[i] != id_data[j])
3520                                 return 0;
3521         return 1;
3522 }
3523
3524 /*
3525  * nand_id_len - Get the length of an ID string returned by CMD_READID
3526  * @id_data: the ID string
3527  * @arrlen: the length of the @id_data array
3528
3529  * Returns the length of the ID string, according to known wraparound/trailing
3530  * zero patterns. If no pattern exists, returns the length of the array.
3531  */
3532 static int nand_id_len(u8 *id_data, int arrlen)
3533 {
3534         int last_nonzero, period;
3535
3536         /* Find last non-zero byte */
3537         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3538                 if (id_data[last_nonzero])
3539                         break;
3540
3541         /* All zeros */
3542         if (last_nonzero < 0)
3543                 return 0;
3544
3545         /* Calculate wraparound period */
3546         for (period = 1; period < arrlen; period++)
3547                 if (nand_id_has_period(id_data, arrlen, period))
3548                         break;
3549
3550         /* There's a repeated pattern */
3551         if (period < arrlen)
3552                 return period;
3553
3554         /* There are trailing zeros */
3555         if (last_nonzero < arrlen - 1)
3556                 return last_nonzero + 1;
3557
3558         /* No pattern detected */
3559         return arrlen;
3560 }
3561
3562 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3563 static int nand_get_bits_per_cell(u8 cellinfo)
3564 {
3565         int bits;
3566
3567         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3568         bits >>= NAND_CI_CELLTYPE_SHIFT;
3569         return bits + 1;
3570 }
3571
3572 /*
3573  * Many new NAND share similar device ID codes, which represent the size of the
3574  * chip. The rest of the parameters must be decoded according to generic or
3575  * manufacturer-specific "extended ID" decoding patterns.
3576  */
3577 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3578                                 u8 id_data[8], int *busw)
3579 {
3580         int extid, id_len;
3581         /* The 3rd id byte holds MLC / multichip data */
3582         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3583         /* The 4th id byte is the important one */
3584         extid = id_data[3];
3585
3586         id_len = nand_id_len(id_data, 8);
3587
3588         /*
3589          * Field definitions are in the following datasheets:
3590          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3591          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3592          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3593          *
3594          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3595          * ID to decide what to do.
3596          */
3597         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3598                         !nand_is_slc(chip) && id_data[5] != 0x00) {
3599                 /* Calc pagesize */
3600                 mtd->writesize = 2048 << (extid & 0x03);
3601                 extid >>= 2;
3602                 /* Calc oobsize */
3603                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3604                 case 1:
3605                         mtd->oobsize = 128;
3606                         break;
3607                 case 2:
3608                         mtd->oobsize = 218;
3609                         break;
3610                 case 3:
3611                         mtd->oobsize = 400;
3612                         break;
3613                 case 4:
3614                         mtd->oobsize = 436;
3615                         break;
3616                 case 5:
3617                         mtd->oobsize = 512;
3618                         break;
3619                 case 6:
3620                         mtd->oobsize = 640;
3621                         break;
3622                 case 7:
3623                 default: /* Other cases are "reserved" (unknown) */
3624                         mtd->oobsize = 1024;
3625                         break;
3626                 }
3627                 extid >>= 2;
3628                 /* Calc blocksize */
3629                 mtd->erasesize = (128 * 1024) <<
3630                         (((extid >> 1) & 0x04) | (extid & 0x03));
3631                 *busw = 0;
3632         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3633                         !nand_is_slc(chip)) {
3634                 unsigned int tmp;
3635
3636                 /* Calc pagesize */
3637                 mtd->writesize = 2048 << (extid & 0x03);
3638                 extid >>= 2;
3639                 /* Calc oobsize */
3640                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3641                 case 0:
3642                         mtd->oobsize = 128;
3643                         break;
3644                 case 1:
3645                         mtd->oobsize = 224;
3646                         break;
3647                 case 2:
3648                         mtd->oobsize = 448;
3649                         break;
3650                 case 3:
3651                         mtd->oobsize = 64;
3652                         break;
3653                 case 4:
3654                         mtd->oobsize = 32;
3655                         break;
3656                 case 5:
3657                         mtd->oobsize = 16;
3658                         break;
3659                 default:
3660                         mtd->oobsize = 640;
3661                         break;
3662                 }
3663                 extid >>= 2;
3664                 /* Calc blocksize */
3665                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3666                 if (tmp < 0x03)
3667                         mtd->erasesize = (128 * 1024) << tmp;
3668                 else if (tmp == 0x03)
3669                         mtd->erasesize = 768 * 1024;
3670                 else
3671                         mtd->erasesize = (64 * 1024) << tmp;
3672                 *busw = 0;
3673         } else {
3674                 /* Calc pagesize */
3675                 mtd->writesize = 1024 << (extid & 0x03);
3676                 extid >>= 2;
3677                 /* Calc oobsize */
3678                 mtd->oobsize = (8 << (extid & 0x01)) *
3679                         (mtd->writesize >> 9);
3680                 extid >>= 2;
3681                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3682                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3683                 extid >>= 2;
3684                 /* Get buswidth information */
3685                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3686
3687                 /*
3688                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3689                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3690                  * follows:
3691                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3692                  *                         110b -> 24nm
3693                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3694                  */
3695                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3696                                 nand_is_slc(chip) &&
3697                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3698                                 !(id_data[4] & 0x80) /* !BENAND */) {
3699                         mtd->oobsize = 32 * mtd->writesize >> 9;
3700                 }
3701
3702         }
3703 }
3704
3705 /*
3706  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3707  * decodes a matching ID table entry and assigns the MTD size parameters for
3708  * the chip.
3709  */
3710 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3711                                 struct nand_flash_dev *type, u8 id_data[8],
3712                                 int *busw)
3713 {
3714         int maf_id = id_data[0];
3715
3716         mtd->erasesize = type->erasesize;
3717         mtd->writesize = type->pagesize;
3718         mtd->oobsize = mtd->writesize / 32;
3719         *busw = type->options & NAND_BUSWIDTH_16;
3720
3721         /* All legacy ID NAND are small-page, SLC */
3722         chip->bits_per_cell = 1;
3723
3724         /*
3725          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3726          * some Spansion chips have erasesize that conflicts with size
3727          * listed in nand_ids table.
3728          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3729          */
3730         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3731                         && id_data[6] == 0x00 && id_data[7] == 0x00
3732                         && mtd->writesize == 512) {
3733                 mtd->erasesize = 128 * 1024;
3734                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3735         }
3736 }
3737
3738 /*
3739  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3740  * heuristic patterns using various detected parameters (e.g., manufacturer,
3741  * page size, cell-type information).
3742  */
3743 static void nand_decode_bbm_options(struct mtd_info *mtd,
3744                                     struct nand_chip *chip, u8 id_data[8])
3745 {
3746         int maf_id = id_data[0];
3747
3748         /* Set the bad block position */
3749         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3750                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3751         else
3752                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3753
3754         /*
3755          * Bad block marker is stored in the last page of each block on Samsung
3756          * and Hynix MLC devices; stored in first two pages of each block on
3757          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3758          * AMD/Spansion, and Macronix.  All others scan only the first page.
3759          */
3760         if (!nand_is_slc(chip) &&
3761                         (maf_id == NAND_MFR_SAMSUNG ||
3762                          maf_id == NAND_MFR_HYNIX))
3763                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3764         else if ((nand_is_slc(chip) &&
3765                                 (maf_id == NAND_MFR_SAMSUNG ||
3766                                  maf_id == NAND_MFR_HYNIX ||
3767                                  maf_id == NAND_MFR_TOSHIBA ||
3768                                  maf_id == NAND_MFR_AMD ||
3769                                  maf_id == NAND_MFR_MACRONIX)) ||
3770                         (mtd->writesize == 2048 &&
3771                          maf_id == NAND_MFR_MICRON))
3772                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3773 }
3774
3775 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3776 {
3777         return type->id_len;
3778 }
3779
3780 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3781                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3782 {
3783         if (!strncmp(type->id, id_data, type->id_len)) {
3784                 mtd->writesize = type->pagesize;
3785                 mtd->erasesize = type->erasesize;
3786                 mtd->oobsize = type->oobsize;
3787
3788                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3789                 chip->chipsize = (uint64_t)type->chipsize << 20;
3790                 chip->options |= type->options;
3791                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3792                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3793                 chip->onfi_timing_mode_default =
3794                                         type->onfi_timing_mode_default;
3795
3796                 *busw = type->options & NAND_BUSWIDTH_16;
3797
3798                 if (!mtd->name)
3799                         mtd->name = type->name;
3800
3801                 return true;
3802         }
3803         return false;
3804 }
3805
3806 /*
3807  * Get the flash and manufacturer id and lookup if the type is supported.
3808  */
3809 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3810                                                   struct nand_chip *chip,
3811                                                   int *maf_id, int *dev_id,
3812                                                   struct nand_flash_dev *type)
3813 {
3814         int busw;
3815         int i, maf_idx;
3816         u8 id_data[8];
3817
3818         /* Select the device */
3819         chip->select_chip(mtd, 0);
3820
3821         /*
3822          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3823          * after power-up.
3824          */
3825         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3826
3827         /* Send the command for reading device ID */
3828         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3829
3830         /* Read manufacturer and device IDs */
3831         *maf_id = chip->read_byte(mtd);
3832         *dev_id = chip->read_byte(mtd);
3833
3834         /*
3835          * Try again to make sure, as some systems the bus-hold or other
3836          * interface concerns can cause random data which looks like a
3837          * possibly credible NAND flash to appear. If the two results do
3838          * not match, ignore the device completely.
3839          */
3840
3841         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3842
3843         /* Read entire ID string */
3844         for (i = 0; i < 8; i++)
3845                 id_data[i] = chip->read_byte(mtd);
3846
3847         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3848                 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3849                         *maf_id, *dev_id, id_data[0], id_data[1]);
3850                 return ERR_PTR(-ENODEV);
3851         }
3852
3853         if (!type)
3854                 type = nand_flash_ids;
3855
3856         for (; type->name != NULL; type++) {
3857                 if (is_full_id_nand(type)) {
3858                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3859                                 goto ident_done;
3860                 } else if (*dev_id == type->dev_id) {
3861                         break;
3862                 }
3863         }
3864
3865         chip->onfi_version = 0;
3866         if (!type->name || !type->pagesize) {
3867                 /* Check if the chip is ONFI compliant */
3868                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3869                         goto ident_done;
3870
3871                 /* Check if the chip is JEDEC compliant */
3872                 if (nand_flash_detect_jedec(mtd, chip, &busw))
3873                         goto ident_done;
3874         }
3875
3876         if (!type->name)
3877                 return ERR_PTR(-ENODEV);
3878
3879         if (!mtd->name)
3880                 mtd->name = type->name;
3881
3882         chip->chipsize = (uint64_t)type->chipsize << 20;
3883
3884         if (!type->pagesize) {
3885                 /* Decode parameters from extended ID */
3886                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3887         } else {
3888                 nand_decode_id(mtd, chip, type, id_data, &busw);
3889         }
3890         /* Get chip options */
3891         chip->options |= type->options;
3892
3893         /*
3894          * Check if chip is not a Samsung device. Do not clear the
3895          * options for chips which do not have an extended id.
3896          */
3897         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3898                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3899 ident_done:
3900
3901         /* Try to identify manufacturer */
3902         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3903                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3904                         break;
3905         }
3906
3907         if (chip->options & NAND_BUSWIDTH_AUTO) {
3908                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3909                 chip->options |= busw;
3910                 nand_set_defaults(chip, busw);
3911         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3912                 /*
3913                  * Check, if buswidth is correct. Hardware drivers should set
3914                  * chip correct!
3915                  */
3916                 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3917                         *maf_id, *dev_id);
3918                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3919                 pr_warn("bus width %d instead %d bit\n",
3920                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3921                            busw ? 16 : 8);
3922                 return ERR_PTR(-EINVAL);
3923         }
3924
3925         nand_decode_bbm_options(mtd, chip, id_data);
3926
3927         /* Calculate the address shift from the page size */
3928         chip->page_shift = ffs(mtd->writesize) - 1;
3929         /* Convert chipsize to number of pages per chip -1 */
3930         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3931
3932         chip->bbt_erase_shift = chip->phys_erase_shift =
3933                 ffs(mtd->erasesize) - 1;
3934         if (chip->chipsize & 0xffffffff)
3935                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3936         else {
3937                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3938                 chip->chip_shift += 32 - 1;
3939         }
3940
3941         chip->badblockbits = 8;
3942         chip->erase = single_erase;
3943
3944         /* Do not replace user supplied command function! */
3945         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3946                 chip->cmdfunc = nand_command_lp;
3947
3948         pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3949                 *maf_id, *dev_id);
3950
3951         if (chip->onfi_version)
3952                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3953                                 chip->onfi_params.model);
3954         else if (chip->jedec_version)
3955                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3956                                 chip->jedec_params.model);
3957         else
3958                 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3959                                 type->name);
3960
3961         pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3962                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3963                 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3964         return type;
3965 }
3966
3967 static int nand_dt_init(struct nand_chip *chip)
3968 {
3969         struct device_node *dn = nand_get_flash_node(chip);
3970         int ecc_mode, ecc_strength, ecc_step;
3971
3972         if (!dn)
3973                 return 0;
3974
3975         if (of_get_nand_bus_width(dn) == 16)
3976                 chip->options |= NAND_BUSWIDTH_16;
3977
3978         if (of_get_nand_on_flash_bbt(dn))
3979                 chip->bbt_options |= NAND_BBT_USE_FLASH;
3980
3981         ecc_mode = of_get_nand_ecc_mode(dn);
3982         ecc_strength = of_get_nand_ecc_strength(dn);
3983         ecc_step = of_get_nand_ecc_step_size(dn);
3984
3985         if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3986             (!(ecc_step >= 0) && ecc_strength >= 0)) {
3987                 pr_err("must set both strength and step size in DT\n");
3988                 return -EINVAL;
3989         }
3990
3991         if (ecc_mode >= 0)
3992                 chip->ecc.mode = ecc_mode;
3993
3994         if (ecc_strength >= 0)
3995                 chip->ecc.strength = ecc_strength;
3996
3997         if (ecc_step > 0)
3998                 chip->ecc.size = ecc_step;
3999
4000         return 0;
4001 }
4002
4003 /**
4004  * nand_scan_ident - [NAND Interface] Scan for the NAND device
4005  * @mtd: MTD device structure
4006  * @maxchips: number of chips to scan for
4007  * @table: alternative NAND ID table
4008  *
4009  * This is the first phase of the normal nand_scan() function. It reads the
4010  * flash ID and sets up MTD fields accordingly.
4011  *
4012  */
4013 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4014                     struct nand_flash_dev *table)
4015 {
4016         int i, nand_maf_id, nand_dev_id;
4017         struct nand_chip *chip = mtd_to_nand(mtd);
4018         struct nand_flash_dev *type;
4019         int ret;
4020
4021         ret = nand_dt_init(chip);
4022         if (ret)
4023                 return ret;
4024
4025         if (!mtd->name && mtd->dev.parent)
4026                 mtd->name = dev_name(mtd->dev.parent);
4027
4028         /* Set the default functions */
4029         nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4030
4031         /* Read the flash type */
4032         type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4033                                    &nand_dev_id, table);
4034
4035         if (IS_ERR(type)) {
4036                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4037                         pr_warn("No NAND device found\n");
4038                 chip->select_chip(mtd, -1);
4039                 return PTR_ERR(type);
4040         }
4041
4042         chip->select_chip(mtd, -1);
4043
4044         /* Check for a chip array */
4045         for (i = 1; i < maxchips; i++) {
4046                 chip->select_chip(mtd, i);
4047                 /* See comment in nand_get_flash_type for reset */
4048                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
4049                 /* Send the command for reading device ID */
4050                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4051                 /* Read manufacturer and device IDs */
4052                 if (nand_maf_id != chip->read_byte(mtd) ||
4053                     nand_dev_id != chip->read_byte(mtd)) {
4054                         chip->select_chip(mtd, -1);
4055                         break;
4056                 }
4057                 chip->select_chip(mtd, -1);
4058         }
4059         if (i > 1)
4060                 pr_info("%d chips detected\n", i);
4061
4062         /* Store the number of chips and calc total size for mtd */
4063         chip->numchips = i;
4064         mtd->size = i * chip->chipsize;
4065
4066         return 0;
4067 }
4068 EXPORT_SYMBOL(nand_scan_ident);
4069
4070 /*
4071  * Check if the chip configuration meet the datasheet requirements.
4072
4073  * If our configuration corrects A bits per B bytes and the minimum
4074  * required correction level is X bits per Y bytes, then we must ensure
4075  * both of the following are true:
4076  *
4077  * (1) A / B >= X / Y
4078  * (2) A >= X
4079  *
4080  * Requirement (1) ensures we can correct for the required bitflip density.
4081  * Requirement (2) ensures we can correct even when all bitflips are clumped
4082  * in the same sector.
4083  */
4084 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4085 {
4086         struct nand_chip *chip = mtd_to_nand(mtd);
4087         struct nand_ecc_ctrl *ecc = &chip->ecc;
4088         int corr, ds_corr;
4089
4090         if (ecc->size == 0 || chip->ecc_step_ds == 0)
4091                 /* Not enough information */
4092                 return true;
4093
4094         /*
4095          * We get the number of corrected bits per page to compare
4096          * the correction density.
4097          */
4098         corr = (mtd->writesize * ecc->strength) / ecc->size;
4099         ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4100
4101         return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4102 }
4103
4104 /**
4105  * nand_scan_tail - [NAND Interface] Scan for the NAND device
4106  * @mtd: MTD device structure
4107  *
4108  * This is the second phase of the normal nand_scan() function. It fills out
4109  * all the uninitialized function pointers with the defaults and scans for a
4110  * bad block table if appropriate.
4111  */
4112 int nand_scan_tail(struct mtd_info *mtd)
4113 {
4114         int i;
4115         struct nand_chip *chip = mtd_to_nand(mtd);
4116         struct nand_ecc_ctrl *ecc = &chip->ecc;
4117         struct nand_buffers *nbuf;
4118
4119         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4120         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4121                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
4122
4123         if (!(chip->options & NAND_OWN_BUFFERS)) {
4124                 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4125                                 + mtd->oobsize * 3, GFP_KERNEL);
4126                 if (!nbuf)
4127                         return -ENOMEM;
4128                 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4129                 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4130                 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4131
4132                 chip->buffers = nbuf;
4133         } else {
4134                 if (!chip->buffers)
4135                         return -ENOMEM;
4136         }
4137
4138         /* Set the internal oob buffer location, just after the page data */
4139         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4140
4141         /*
4142          * If no default placement scheme is given, select an appropriate one.
4143          */
4144         if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4145                 switch (mtd->oobsize) {
4146                 case 8:
4147                         ecc->layout = &nand_oob_8;
4148                         break;
4149                 case 16:
4150                         ecc->layout = &nand_oob_16;
4151                         break;
4152                 case 64:
4153                         ecc->layout = &nand_oob_64;
4154                         break;
4155                 case 128:
4156                         ecc->layout = &nand_oob_128;
4157                         break;
4158                 default:
4159                         pr_warn("No oob scheme defined for oobsize %d\n",
4160                                    mtd->oobsize);
4161                         BUG();
4162                 }
4163         }
4164
4165         if (!chip->write_page)
4166                 chip->write_page = nand_write_page;
4167
4168         /*
4169          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4170          * selected and we have 256 byte pagesize fallback to software ECC
4171          */
4172
4173         switch (ecc->mode) {
4174         case NAND_ECC_HW_OOB_FIRST:
4175                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4176                 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4177                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4178                         BUG();
4179                 }
4180                 if (!ecc->read_page)
4181                         ecc->read_page = nand_read_page_hwecc_oob_first;
4182
4183         case NAND_ECC_HW:
4184                 /* Use standard hwecc read page function? */
4185                 if (!ecc->read_page)
4186                         ecc->read_page = nand_read_page_hwecc;
4187                 if (!ecc->write_page)
4188                         ecc->write_page = nand_write_page_hwecc;
4189                 if (!ecc->read_page_raw)
4190                         ecc->read_page_raw = nand_read_page_raw;
4191                 if (!ecc->write_page_raw)
4192                         ecc->write_page_raw = nand_write_page_raw;
4193                 if (!ecc->read_oob)
4194                         ecc->read_oob = nand_read_oob_std;
4195                 if (!ecc->write_oob)
4196                         ecc->write_oob = nand_write_oob_std;
4197                 if (!ecc->read_subpage)
4198                         ecc->read_subpage = nand_read_subpage;
4199                 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4200                         ecc->write_subpage = nand_write_subpage_hwecc;
4201
4202         case NAND_ECC_HW_SYNDROME:
4203                 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4204                     (!ecc->read_page ||
4205                      ecc->read_page == nand_read_page_hwecc ||
4206                      !ecc->write_page ||
4207                      ecc->write_page == nand_write_page_hwecc)) {
4208                         pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4209                         BUG();
4210                 }
4211                 /* Use standard syndrome read/write page function? */
4212                 if (!ecc->read_page)
4213                         ecc->read_page = nand_read_page_syndrome;
4214                 if (!ecc->write_page)
4215                         ecc->write_page = nand_write_page_syndrome;
4216                 if (!ecc->read_page_raw)
4217                         ecc->read_page_raw = nand_read_page_raw_syndrome;
4218                 if (!ecc->write_page_raw)
4219                         ecc->write_page_raw = nand_write_page_raw_syndrome;
4220                 if (!ecc->read_oob)
4221                         ecc->read_oob = nand_read_oob_syndrome;
4222                 if (!ecc->write_oob)
4223                         ecc->write_oob = nand_write_oob_syndrome;
4224
4225                 if (mtd->writesize >= ecc->size) {
4226                         if (!ecc->strength) {
4227                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4228                                 BUG();
4229                         }
4230                         break;
4231                 }
4232                 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4233                         ecc->size, mtd->writesize);
4234                 ecc->mode = NAND_ECC_SOFT;
4235
4236         case NAND_ECC_SOFT:
4237                 ecc->calculate = nand_calculate_ecc;
4238                 ecc->correct = nand_correct_data;
4239                 ecc->read_page = nand_read_page_swecc;
4240                 ecc->read_subpage = nand_read_subpage;
4241                 ecc->write_page = nand_write_page_swecc;
4242                 ecc->read_page_raw = nand_read_page_raw;
4243                 ecc->write_page_raw = nand_write_page_raw;
4244                 ecc->read_oob = nand_read_oob_std;
4245                 ecc->write_oob = nand_write_oob_std;
4246                 if (!ecc->size)
4247                         ecc->size = 256;
4248                 ecc->bytes = 3;
4249                 ecc->strength = 1;
4250                 break;
4251
4252         case NAND_ECC_SOFT_BCH:
4253                 if (!mtd_nand_has_bch()) {
4254                         pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4255                         BUG();
4256                 }
4257                 ecc->calculate = nand_bch_calculate_ecc;
4258                 ecc->correct = nand_bch_correct_data;
4259                 ecc->read_page = nand_read_page_swecc;
4260                 ecc->read_subpage = nand_read_subpage;
4261                 ecc->write_page = nand_write_page_swecc;
4262                 ecc->read_page_raw = nand_read_page_raw;
4263                 ecc->write_page_raw = nand_write_page_raw;
4264                 ecc->read_oob = nand_read_oob_std;
4265                 ecc->write_oob = nand_write_oob_std;
4266                 /*
4267                  * Board driver should supply ecc.size and ecc.strength values
4268                  * to select how many bits are correctable. Otherwise, default
4269                  * to 4 bits for large page devices.
4270                  */
4271                 if (!ecc->size && (mtd->oobsize >= 64)) {
4272                         ecc->size = 512;
4273                         ecc->strength = 4;
4274                 }
4275
4276                 /* See nand_bch_init() for details. */
4277                 ecc->bytes = 0;
4278                 ecc->priv = nand_bch_init(mtd);
4279                 if (!ecc->priv) {
4280                         pr_warn("BCH ECC initialization failed!\n");
4281                         BUG();
4282                 }
4283                 break;
4284
4285         case NAND_ECC_NONE:
4286                 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4287                 ecc->read_page = nand_read_page_raw;
4288                 ecc->write_page = nand_write_page_raw;
4289                 ecc->read_oob = nand_read_oob_std;
4290                 ecc->read_page_raw = nand_read_page_raw;
4291                 ecc->write_page_raw = nand_write_page_raw;
4292                 ecc->write_oob = nand_write_oob_std;
4293                 ecc->size = mtd->writesize;
4294                 ecc->bytes = 0;
4295                 ecc->strength = 0;
4296                 break;
4297
4298         default:
4299                 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4300                 BUG();
4301         }
4302
4303         /* For many systems, the standard OOB write also works for raw */
4304         if (!ecc->read_oob_raw)
4305                 ecc->read_oob_raw = ecc->read_oob;
4306         if (!ecc->write_oob_raw)
4307                 ecc->write_oob_raw = ecc->write_oob;
4308
4309         /*
4310          * The number of bytes available for a client to place data into
4311          * the out of band area.
4312          */
4313         mtd->oobavail = 0;
4314         if (ecc->layout) {
4315                 for (i = 0; ecc->layout->oobfree[i].length; i++)
4316                         mtd->oobavail += ecc->layout->oobfree[i].length;
4317         }
4318
4319         /* ECC sanity check: warn if it's too weak */
4320         if (!nand_ecc_strength_good(mtd))
4321                 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4322                         mtd->name);
4323
4324         /*
4325          * Set the number of read / write steps for one page depending on ECC
4326          * mode.
4327          */
4328         ecc->steps = mtd->writesize / ecc->size;
4329         if (ecc->steps * ecc->size != mtd->writesize) {
4330                 pr_warn("Invalid ECC parameters\n");
4331                 BUG();
4332         }
4333         ecc->total = ecc->steps * ecc->bytes;
4334
4335         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4336         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4337                 switch (ecc->steps) {
4338                 case 2:
4339                         mtd->subpage_sft = 1;
4340                         break;
4341                 case 4:
4342                 case 8:
4343                 case 16:
4344                         mtd->subpage_sft = 2;
4345                         break;
4346                 }
4347         }
4348         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4349
4350         /* Initialize state */
4351         chip->state = FL_READY;
4352
4353         /* Invalidate the pagebuffer reference */
4354         chip->pagebuf = -1;
4355
4356         /* Large page NAND with SOFT_ECC should support subpage reads */
4357         switch (ecc->mode) {
4358         case NAND_ECC_SOFT:
4359         case NAND_ECC_SOFT_BCH:
4360                 if (chip->page_shift > 9)
4361                         chip->options |= NAND_SUBPAGE_READ;
4362                 break;
4363
4364         default:
4365                 break;
4366         }
4367
4368         /* Fill in remaining MTD driver data */
4369         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4370         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4371                                                 MTD_CAP_NANDFLASH;
4372         mtd->_erase = nand_erase;
4373         mtd->_point = NULL;
4374         mtd->_unpoint = NULL;
4375         mtd->_read = nand_read;
4376         mtd->_write = nand_write;
4377         mtd->_panic_write = panic_nand_write;
4378         mtd->_read_oob = nand_read_oob;
4379         mtd->_write_oob = nand_write_oob;
4380         mtd->_sync = nand_sync;
4381         mtd->_lock = NULL;
4382         mtd->_unlock = NULL;
4383         mtd->_suspend = nand_suspend;
4384         mtd->_resume = nand_resume;
4385         mtd->_reboot = nand_shutdown;
4386         mtd->_block_isreserved = nand_block_isreserved;
4387         mtd->_block_isbad = nand_block_isbad;
4388         mtd->_block_markbad = nand_block_markbad;
4389         mtd->writebufsize = mtd->writesize;
4390
4391         /* propagate ecc info to mtd_info */
4392         mtd->ecclayout = ecc->layout;
4393         mtd->ecc_strength = ecc->strength;
4394         mtd->ecc_step_size = ecc->size;
4395         /*
4396          * Initialize bitflip_threshold to its default prior scan_bbt() call.
4397          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4398          * properly set.
4399          */
4400         if (!mtd->bitflip_threshold)
4401                 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4402
4403         /* Check, if we should skip the bad block table scan */
4404         if (chip->options & NAND_SKIP_BBTSCAN)
4405                 return 0;
4406
4407         /* Build bad block table */
4408         return chip->scan_bbt(mtd);
4409 }
4410 EXPORT_SYMBOL(nand_scan_tail);
4411
4412 /*
4413  * is_module_text_address() isn't exported, and it's mostly a pointless
4414  * test if this is a module _anyway_ -- they'd have to try _really_ hard
4415  * to call us from in-kernel code if the core NAND support is modular.
4416  */
4417 #ifdef MODULE
4418 #define caller_is_module() (1)
4419 #else
4420 #define caller_is_module() \
4421         is_module_text_address((unsigned long)__builtin_return_address(0))
4422 #endif
4423
4424 /**
4425  * nand_scan - [NAND Interface] Scan for the NAND device
4426  * @mtd: MTD device structure
4427  * @maxchips: number of chips to scan for
4428  *
4429  * This fills out all the uninitialized function pointers with the defaults.
4430  * The flash ID is read and the mtd/chip structures are filled with the
4431  * appropriate values.
4432  */
4433 int nand_scan(struct mtd_info *mtd, int maxchips)
4434 {
4435         int ret;
4436
4437         ret = nand_scan_ident(mtd, maxchips, NULL);
4438         if (!ret)
4439                 ret = nand_scan_tail(mtd);
4440         return ret;
4441 }
4442 EXPORT_SYMBOL(nand_scan);
4443
4444 /**
4445  * nand_release - [NAND Interface] Free resources held by the NAND device
4446  * @mtd: MTD device structure
4447  */
4448 void nand_release(struct mtd_info *mtd)
4449 {
4450         struct nand_chip *chip = mtd_to_nand(mtd);
4451
4452         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4453                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4454
4455         mtd_device_unregister(mtd);
4456
4457         /* Free bad block table memory */
4458         kfree(chip->bbt);
4459         if (!(chip->options & NAND_OWN_BUFFERS))
4460                 kfree(chip->buffers);
4461
4462         /* Free bad block descriptor memory */
4463         if (chip->badblock_pattern && chip->badblock_pattern->options
4464                         & NAND_BBT_DYNAMICSTRUCT)
4465                 kfree(chip->badblock_pattern);
4466 }
4467 EXPORT_SYMBOL_GPL(nand_release);
4468
4469 static int __init nand_base_init(void)
4470 {
4471         led_trigger_register_simple("nand-disk", &nand_led_trigger);
4472         return 0;
4473 }
4474
4475 static void __exit nand_base_exit(void)
4476 {
4477         led_trigger_unregister_simple(nand_led_trigger);
4478 }
4479
4480 module_init(nand_base_init);
4481 module_exit(nand_base_exit);
4482
4483 MODULE_LICENSE("GPL");
4484 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4485 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4486 MODULE_DESCRIPTION("Generic NAND flash driver code");