Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[linux-2.6-block.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         unsigned long do_wakeup = 0;
348         int i = 0;
349         unsigned long flags;
350
351         if (hash == NR_STRIPE_HASH_LOCKS) {
352                 size = NR_STRIPE_HASH_LOCKS;
353                 hash = NR_STRIPE_HASH_LOCKS - 1;
354         } else
355                 size = 1;
356         while (size) {
357                 struct list_head *list = &temp_inactive_list[size - 1];
358
359                 /*
360                  * We don't hold any lock here yet, get_active_stripe() might
361                  * remove stripes from the list
362                  */
363                 if (!list_empty_careful(list)) {
364                         spin_lock_irqsave(conf->hash_locks + hash, flags);
365                         if (list_empty(conf->inactive_list + hash) &&
366                             !list_empty(list))
367                                 atomic_dec(&conf->empty_inactive_list_nr);
368                         list_splice_tail_init(list, conf->inactive_list + hash);
369                         do_wakeup |= 1 << hash;
370                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371                 }
372                 size--;
373                 hash--;
374         }
375
376         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
377                 if (do_wakeup & (1 << i))
378                         wake_up(&conf->wait_for_stripe[i]);
379         }
380
381         if (do_wakeup) {
382                 if (atomic_read(&conf->active_stripes) == 0)
383                         wake_up(&conf->wait_for_quiescent);
384                 if (conf->retry_read_aligned)
385                         md_wakeup_thread(conf->mddev->thread);
386         }
387 }
388
389 /* should hold conf->device_lock already */
390 static int release_stripe_list(struct r5conf *conf,
391                                struct list_head *temp_inactive_list)
392 {
393         struct stripe_head *sh;
394         int count = 0;
395         struct llist_node *head;
396
397         head = llist_del_all(&conf->released_stripes);
398         head = llist_reverse_order(head);
399         while (head) {
400                 int hash;
401
402                 sh = llist_entry(head, struct stripe_head, release_list);
403                 head = llist_next(head);
404                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
405                 smp_mb();
406                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
407                 /*
408                  * Don't worry the bit is set here, because if the bit is set
409                  * again, the count is always > 1. This is true for
410                  * STRIPE_ON_UNPLUG_LIST bit too.
411                  */
412                 hash = sh->hash_lock_index;
413                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
414                 count++;
415         }
416
417         return count;
418 }
419
420 static void release_stripe(struct stripe_head *sh)
421 {
422         struct r5conf *conf = sh->raid_conf;
423         unsigned long flags;
424         struct list_head list;
425         int hash;
426         bool wakeup;
427
428         /* Avoid release_list until the last reference.
429          */
430         if (atomic_add_unless(&sh->count, -1, 1))
431                 return;
432
433         if (unlikely(!conf->mddev->thread) ||
434                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
435                 goto slow_path;
436         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
437         if (wakeup)
438                 md_wakeup_thread(conf->mddev->thread);
439         return;
440 slow_path:
441         local_irq_save(flags);
442         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
443         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
444                 INIT_LIST_HEAD(&list);
445                 hash = sh->hash_lock_index;
446                 do_release_stripe(conf, sh, &list);
447                 spin_unlock(&conf->device_lock);
448                 release_inactive_stripe_list(conf, &list, hash);
449         }
450         local_irq_restore(flags);
451 }
452
453 static inline void remove_hash(struct stripe_head *sh)
454 {
455         pr_debug("remove_hash(), stripe %llu\n",
456                 (unsigned long long)sh->sector);
457
458         hlist_del_init(&sh->hash);
459 }
460
461 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
462 {
463         struct hlist_head *hp = stripe_hash(conf, sh->sector);
464
465         pr_debug("insert_hash(), stripe %llu\n",
466                 (unsigned long long)sh->sector);
467
468         hlist_add_head(&sh->hash, hp);
469 }
470
471 /* find an idle stripe, make sure it is unhashed, and return it. */
472 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
473 {
474         struct stripe_head *sh = NULL;
475         struct list_head *first;
476
477         if (list_empty(conf->inactive_list + hash))
478                 goto out;
479         first = (conf->inactive_list + hash)->next;
480         sh = list_entry(first, struct stripe_head, lru);
481         list_del_init(first);
482         remove_hash(sh);
483         atomic_inc(&conf->active_stripes);
484         BUG_ON(hash != sh->hash_lock_index);
485         if (list_empty(conf->inactive_list + hash))
486                 atomic_inc(&conf->empty_inactive_list_nr);
487 out:
488         return sh;
489 }
490
491 static void shrink_buffers(struct stripe_head *sh)
492 {
493         struct page *p;
494         int i;
495         int num = sh->raid_conf->pool_size;
496
497         for (i = 0; i < num ; i++) {
498                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
499                 p = sh->dev[i].page;
500                 if (!p)
501                         continue;
502                 sh->dev[i].page = NULL;
503                 put_page(p);
504         }
505 }
506
507 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
508 {
509         int i;
510         int num = sh->raid_conf->pool_size;
511
512         for (i = 0; i < num; i++) {
513                 struct page *page;
514
515                 if (!(page = alloc_page(gfp))) {
516                         return 1;
517                 }
518                 sh->dev[i].page = page;
519                 sh->dev[i].orig_page = page;
520         }
521         return 0;
522 }
523
524 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
526                             struct stripe_head *sh);
527
528 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
529 {
530         struct r5conf *conf = sh->raid_conf;
531         int i, seq;
532
533         BUG_ON(atomic_read(&sh->count) != 0);
534         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
535         BUG_ON(stripe_operations_active(sh));
536         BUG_ON(sh->batch_head);
537
538         pr_debug("init_stripe called, stripe %llu\n",
539                 (unsigned long long)sector);
540 retry:
541         seq = read_seqcount_begin(&conf->gen_lock);
542         sh->generation = conf->generation - previous;
543         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
544         sh->sector = sector;
545         stripe_set_idx(sector, conf, previous, sh);
546         sh->state = 0;
547
548         for (i = sh->disks; i--; ) {
549                 struct r5dev *dev = &sh->dev[i];
550
551                 if (dev->toread || dev->read || dev->towrite || dev->written ||
552                     test_bit(R5_LOCKED, &dev->flags)) {
553                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
554                                (unsigned long long)sh->sector, i, dev->toread,
555                                dev->read, dev->towrite, dev->written,
556                                test_bit(R5_LOCKED, &dev->flags));
557                         WARN_ON(1);
558                 }
559                 dev->flags = 0;
560                 raid5_build_block(sh, i, previous);
561         }
562         if (read_seqcount_retry(&conf->gen_lock, seq))
563                 goto retry;
564         sh->overwrite_disks = 0;
565         insert_hash(conf, sh);
566         sh->cpu = smp_processor_id();
567         set_bit(STRIPE_BATCH_READY, &sh->state);
568 }
569
570 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
571                                          short generation)
572 {
573         struct stripe_head *sh;
574
575         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
576         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
577                 if (sh->sector == sector && sh->generation == generation)
578                         return sh;
579         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
580         return NULL;
581 }
582
583 /*
584  * Need to check if array has failed when deciding whether to:
585  *  - start an array
586  *  - remove non-faulty devices
587  *  - add a spare
588  *  - allow a reshape
589  * This determination is simple when no reshape is happening.
590  * However if there is a reshape, we need to carefully check
591  * both the before and after sections.
592  * This is because some failed devices may only affect one
593  * of the two sections, and some non-in_sync devices may
594  * be insync in the section most affected by failed devices.
595  */
596 static int calc_degraded(struct r5conf *conf)
597 {
598         int degraded, degraded2;
599         int i;
600
601         rcu_read_lock();
602         degraded = 0;
603         for (i = 0; i < conf->previous_raid_disks; i++) {
604                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
605                 if (rdev && test_bit(Faulty, &rdev->flags))
606                         rdev = rcu_dereference(conf->disks[i].replacement);
607                 if (!rdev || test_bit(Faulty, &rdev->flags))
608                         degraded++;
609                 else if (test_bit(In_sync, &rdev->flags))
610                         ;
611                 else
612                         /* not in-sync or faulty.
613                          * If the reshape increases the number of devices,
614                          * this is being recovered by the reshape, so
615                          * this 'previous' section is not in_sync.
616                          * If the number of devices is being reduced however,
617                          * the device can only be part of the array if
618                          * we are reverting a reshape, so this section will
619                          * be in-sync.
620                          */
621                         if (conf->raid_disks >= conf->previous_raid_disks)
622                                 degraded++;
623         }
624         rcu_read_unlock();
625         if (conf->raid_disks == conf->previous_raid_disks)
626                 return degraded;
627         rcu_read_lock();
628         degraded2 = 0;
629         for (i = 0; i < conf->raid_disks; i++) {
630                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
631                 if (rdev && test_bit(Faulty, &rdev->flags))
632                         rdev = rcu_dereference(conf->disks[i].replacement);
633                 if (!rdev || test_bit(Faulty, &rdev->flags))
634                         degraded2++;
635                 else if (test_bit(In_sync, &rdev->flags))
636                         ;
637                 else
638                         /* not in-sync or faulty.
639                          * If reshape increases the number of devices, this
640                          * section has already been recovered, else it
641                          * almost certainly hasn't.
642                          */
643                         if (conf->raid_disks <= conf->previous_raid_disks)
644                                 degraded2++;
645         }
646         rcu_read_unlock();
647         if (degraded2 > degraded)
648                 return degraded2;
649         return degraded;
650 }
651
652 static int has_failed(struct r5conf *conf)
653 {
654         int degraded;
655
656         if (conf->mddev->reshape_position == MaxSector)
657                 return conf->mddev->degraded > conf->max_degraded;
658
659         degraded = calc_degraded(conf);
660         if (degraded > conf->max_degraded)
661                 return 1;
662         return 0;
663 }
664
665 static struct stripe_head *
666 get_active_stripe(struct r5conf *conf, sector_t sector,
667                   int previous, int noblock, int noquiesce)
668 {
669         struct stripe_head *sh;
670         int hash = stripe_hash_locks_hash(sector);
671
672         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
673
674         spin_lock_irq(conf->hash_locks + hash);
675
676         do {
677                 wait_event_lock_irq(conf->wait_for_quiescent,
678                                     conf->quiesce == 0 || noquiesce,
679                                     *(conf->hash_locks + hash));
680                 sh = __find_stripe(conf, sector, conf->generation - previous);
681                 if (!sh) {
682                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
683                                 sh = get_free_stripe(conf, hash);
684                                 if (!sh && !test_bit(R5_DID_ALLOC,
685                                                      &conf->cache_state))
686                                         set_bit(R5_ALLOC_MORE,
687                                                 &conf->cache_state);
688                         }
689                         if (noblock && sh == NULL)
690                                 break;
691                         if (!sh) {
692                                 set_bit(R5_INACTIVE_BLOCKED,
693                                         &conf->cache_state);
694                                 wait_event_exclusive_cmd(
695                                         conf->wait_for_stripe[hash],
696                                         !list_empty(conf->inactive_list + hash) &&
697                                         (atomic_read(&conf->active_stripes)
698                                          < (conf->max_nr_stripes * 3 / 4)
699                                          || !test_bit(R5_INACTIVE_BLOCKED,
700                                                       &conf->cache_state)),
701                                         spin_unlock_irq(conf->hash_locks + hash),
702                                         spin_lock_irq(conf->hash_locks + hash));
703                                 clear_bit(R5_INACTIVE_BLOCKED,
704                                           &conf->cache_state);
705                         } else {
706                                 init_stripe(sh, sector, previous);
707                                 atomic_inc(&sh->count);
708                         }
709                 } else if (!atomic_inc_not_zero(&sh->count)) {
710                         spin_lock(&conf->device_lock);
711                         if (!atomic_read(&sh->count)) {
712                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
713                                         atomic_inc(&conf->active_stripes);
714                                 BUG_ON(list_empty(&sh->lru) &&
715                                        !test_bit(STRIPE_EXPANDING, &sh->state));
716                                 list_del_init(&sh->lru);
717                                 if (sh->group) {
718                                         sh->group->stripes_cnt--;
719                                         sh->group = NULL;
720                                 }
721                         }
722                         atomic_inc(&sh->count);
723                         spin_unlock(&conf->device_lock);
724                 }
725         } while (sh == NULL);
726
727         if (!list_empty(conf->inactive_list + hash))
728                 wake_up(&conf->wait_for_stripe[hash]);
729
730         spin_unlock_irq(conf->hash_locks + hash);
731         return sh;
732 }
733
734 static bool is_full_stripe_write(struct stripe_head *sh)
735 {
736         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
737         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
738 }
739
740 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
741 {
742         local_irq_disable();
743         if (sh1 > sh2) {
744                 spin_lock(&sh2->stripe_lock);
745                 spin_lock_nested(&sh1->stripe_lock, 1);
746         } else {
747                 spin_lock(&sh1->stripe_lock);
748                 spin_lock_nested(&sh2->stripe_lock, 1);
749         }
750 }
751
752 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
753 {
754         spin_unlock(&sh1->stripe_lock);
755         spin_unlock(&sh2->stripe_lock);
756         local_irq_enable();
757 }
758
759 /* Only freshly new full stripe normal write stripe can be added to a batch list */
760 static bool stripe_can_batch(struct stripe_head *sh)
761 {
762         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763                 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764                 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770         struct stripe_head *head;
771         sector_t head_sector, tmp_sec;
772         int hash;
773         int dd_idx;
774
775         if (!stripe_can_batch(sh))
776                 return;
777         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778         tmp_sec = sh->sector;
779         if (!sector_div(tmp_sec, conf->chunk_sectors))
780                 return;
781         head_sector = sh->sector - STRIPE_SECTORS;
782
783         hash = stripe_hash_locks_hash(head_sector);
784         spin_lock_irq(conf->hash_locks + hash);
785         head = __find_stripe(conf, head_sector, conf->generation);
786         if (head && !atomic_inc_not_zero(&head->count)) {
787                 spin_lock(&conf->device_lock);
788                 if (!atomic_read(&head->count)) {
789                         if (!test_bit(STRIPE_HANDLE, &head->state))
790                                 atomic_inc(&conf->active_stripes);
791                         BUG_ON(list_empty(&head->lru) &&
792                                !test_bit(STRIPE_EXPANDING, &head->state));
793                         list_del_init(&head->lru);
794                         if (head->group) {
795                                 head->group->stripes_cnt--;
796                                 head->group = NULL;
797                         }
798                 }
799                 atomic_inc(&head->count);
800                 spin_unlock(&conf->device_lock);
801         }
802         spin_unlock_irq(conf->hash_locks + hash);
803
804         if (!head)
805                 return;
806         if (!stripe_can_batch(head))
807                 goto out;
808
809         lock_two_stripes(head, sh);
810         /* clear_batch_ready clear the flag */
811         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812                 goto unlock_out;
813
814         if (sh->batch_head)
815                 goto unlock_out;
816
817         dd_idx = 0;
818         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819                 dd_idx++;
820         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821                 goto unlock_out;
822
823         if (head->batch_head) {
824                 spin_lock(&head->batch_head->batch_lock);
825                 /* This batch list is already running */
826                 if (!stripe_can_batch(head)) {
827                         spin_unlock(&head->batch_head->batch_lock);
828                         goto unlock_out;
829                 }
830
831                 /*
832                  * at this point, head's BATCH_READY could be cleared, but we
833                  * can still add the stripe to batch list
834                  */
835                 list_add(&sh->batch_list, &head->batch_list);
836                 spin_unlock(&head->batch_head->batch_lock);
837
838                 sh->batch_head = head->batch_head;
839         } else {
840                 head->batch_head = head;
841                 sh->batch_head = head->batch_head;
842                 spin_lock(&head->batch_lock);
843                 list_add_tail(&sh->batch_list, &head->batch_list);
844                 spin_unlock(&head->batch_lock);
845         }
846
847         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848                 if (atomic_dec_return(&conf->preread_active_stripes)
849                     < IO_THRESHOLD)
850                         md_wakeup_thread(conf->mddev->thread);
851
852         if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853                 int seq = sh->bm_seq;
854                 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855                     sh->batch_head->bm_seq > seq)
856                         seq = sh->batch_head->bm_seq;
857                 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858                 sh->batch_head->bm_seq = seq;
859         }
860
861         atomic_inc(&sh->count);
862 unlock_out:
863         unlock_two_stripes(head, sh);
864 out:
865         release_stripe(head);
866 }
867
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869  * in this stripe_head.
870  */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873         sector_t progress = conf->reshape_progress;
874         /* Need a memory barrier to make sure we see the value
875          * of conf->generation, or ->data_offset that was set before
876          * reshape_progress was updated.
877          */
878         smp_rmb();
879         if (progress == MaxSector)
880                 return 0;
881         if (sh->generation == conf->generation - 1)
882                 return 0;
883         /* We are in a reshape, and this is a new-generation stripe,
884          * so use new_data_offset.
885          */
886         return 1;
887 }
888
889 static void
890 raid5_end_read_request(struct bio *bi, int error);
891 static void
892 raid5_end_write_request(struct bio *bi, int error);
893
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896         struct r5conf *conf = sh->raid_conf;
897         int i, disks = sh->disks;
898         struct stripe_head *head_sh = sh;
899
900         might_sleep();
901
902         for (i = disks; i--; ) {
903                 int rw;
904                 int replace_only = 0;
905                 struct bio *bi, *rbi;
906                 struct md_rdev *rdev, *rrdev = NULL;
907
908                 sh = head_sh;
909                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911                                 rw = WRITE_FUA;
912                         else
913                                 rw = WRITE;
914                         if (test_bit(R5_Discard, &sh->dev[i].flags))
915                                 rw |= REQ_DISCARD;
916                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917                         rw = READ;
918                 else if (test_and_clear_bit(R5_WantReplace,
919                                             &sh->dev[i].flags)) {
920                         rw = WRITE;
921                         replace_only = 1;
922                 } else
923                         continue;
924                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925                         rw |= REQ_SYNC;
926
927 again:
928                 bi = &sh->dev[i].req;
929                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
930
931                 rcu_read_lock();
932                 rrdev = rcu_dereference(conf->disks[i].replacement);
933                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934                 rdev = rcu_dereference(conf->disks[i].rdev);
935                 if (!rdev) {
936                         rdev = rrdev;
937                         rrdev = NULL;
938                 }
939                 if (rw & WRITE) {
940                         if (replace_only)
941                                 rdev = NULL;
942                         if (rdev == rrdev)
943                                 /* We raced and saw duplicates */
944                                 rrdev = NULL;
945                 } else {
946                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947                                 rdev = rrdev;
948                         rrdev = NULL;
949                 }
950
951                 if (rdev && test_bit(Faulty, &rdev->flags))
952                         rdev = NULL;
953                 if (rdev)
954                         atomic_inc(&rdev->nr_pending);
955                 if (rrdev && test_bit(Faulty, &rrdev->flags))
956                         rrdev = NULL;
957                 if (rrdev)
958                         atomic_inc(&rrdev->nr_pending);
959                 rcu_read_unlock();
960
961                 /* We have already checked bad blocks for reads.  Now
962                  * need to check for writes.  We never accept write errors
963                  * on the replacement, so we don't to check rrdev.
964                  */
965                 while ((rw & WRITE) && rdev &&
966                        test_bit(WriteErrorSeen, &rdev->flags)) {
967                         sector_t first_bad;
968                         int bad_sectors;
969                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970                                               &first_bad, &bad_sectors);
971                         if (!bad)
972                                 break;
973
974                         if (bad < 0) {
975                                 set_bit(BlockedBadBlocks, &rdev->flags);
976                                 if (!conf->mddev->external &&
977                                     conf->mddev->flags) {
978                                         /* It is very unlikely, but we might
979                                          * still need to write out the
980                                          * bad block log - better give it
981                                          * a chance*/
982                                         md_check_recovery(conf->mddev);
983                                 }
984                                 /*
985                                  * Because md_wait_for_blocked_rdev
986                                  * will dec nr_pending, we must
987                                  * increment it first.
988                                  */
989                                 atomic_inc(&rdev->nr_pending);
990                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
991                         } else {
992                                 /* Acknowledged bad block - skip the write */
993                                 rdev_dec_pending(rdev, conf->mddev);
994                                 rdev = NULL;
995                         }
996                 }
997
998                 if (rdev) {
999                         if (s->syncing || s->expanding || s->expanded
1000                             || s->replacing)
1001                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
1003                         set_bit(STRIPE_IO_STARTED, &sh->state);
1004
1005                         bio_reset(bi);
1006                         bi->bi_bdev = rdev->bdev;
1007                         bi->bi_rw = rw;
1008                         bi->bi_end_io = (rw & WRITE)
1009                                 ? raid5_end_write_request
1010                                 : raid5_end_read_request;
1011                         bi->bi_private = sh;
1012
1013                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014                                 __func__, (unsigned long long)sh->sector,
1015                                 bi->bi_rw, i);
1016                         atomic_inc(&sh->count);
1017                         if (sh != head_sh)
1018                                 atomic_inc(&head_sh->count);
1019                         if (use_new_offset(conf, sh))
1020                                 bi->bi_iter.bi_sector = (sh->sector
1021                                                  + rdev->new_data_offset);
1022                         else
1023                                 bi->bi_iter.bi_sector = (sh->sector
1024                                                  + rdev->data_offset);
1025                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026                                 bi->bi_rw |= REQ_NOMERGE;
1027
1028                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1031                         bi->bi_vcnt = 1;
1032                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033                         bi->bi_io_vec[0].bv_offset = 0;
1034                         bi->bi_iter.bi_size = STRIPE_SIZE;
1035                         /*
1036                          * If this is discard request, set bi_vcnt 0. We don't
1037                          * want to confuse SCSI because SCSI will replace payload
1038                          */
1039                         if (rw & REQ_DISCARD)
1040                                 bi->bi_vcnt = 0;
1041                         if (rrdev)
1042                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043
1044                         if (conf->mddev->gendisk)
1045                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046                                                       bi, disk_devt(conf->mddev->gendisk),
1047                                                       sh->dev[i].sector);
1048                         generic_make_request(bi);
1049                 }
1050                 if (rrdev) {
1051                         if (s->syncing || s->expanding || s->expanded
1052                             || s->replacing)
1053                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055                         set_bit(STRIPE_IO_STARTED, &sh->state);
1056
1057                         bio_reset(rbi);
1058                         rbi->bi_bdev = rrdev->bdev;
1059                         rbi->bi_rw = rw;
1060                         BUG_ON(!(rw & WRITE));
1061                         rbi->bi_end_io = raid5_end_write_request;
1062                         rbi->bi_private = sh;
1063
1064                         pr_debug("%s: for %llu schedule op %ld on "
1065                                  "replacement disc %d\n",
1066                                 __func__, (unsigned long long)sh->sector,
1067                                 rbi->bi_rw, i);
1068                         atomic_inc(&sh->count);
1069                         if (sh != head_sh)
1070                                 atomic_inc(&head_sh->count);
1071                         if (use_new_offset(conf, sh))
1072                                 rbi->bi_iter.bi_sector = (sh->sector
1073                                                   + rrdev->new_data_offset);
1074                         else
1075                                 rbi->bi_iter.bi_sector = (sh->sector
1076                                                   + rrdev->data_offset);
1077                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080                         rbi->bi_vcnt = 1;
1081                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082                         rbi->bi_io_vec[0].bv_offset = 0;
1083                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1084                         /*
1085                          * If this is discard request, set bi_vcnt 0. We don't
1086                          * want to confuse SCSI because SCSI will replace payload
1087                          */
1088                         if (rw & REQ_DISCARD)
1089                                 rbi->bi_vcnt = 0;
1090                         if (conf->mddev->gendisk)
1091                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092                                                       rbi, disk_devt(conf->mddev->gendisk),
1093                                                       sh->dev[i].sector);
1094                         generic_make_request(rbi);
1095                 }
1096                 if (!rdev && !rrdev) {
1097                         if (rw & WRITE)
1098                                 set_bit(STRIPE_DEGRADED, &sh->state);
1099                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1100                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1101                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102                         set_bit(STRIPE_HANDLE, &sh->state);
1103                 }
1104
1105                 if (!head_sh->batch_head)
1106                         continue;
1107                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108                                       batch_list);
1109                 if (sh != head_sh)
1110                         goto again;
1111         }
1112 }
1113
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116         sector_t sector, struct dma_async_tx_descriptor *tx,
1117         struct stripe_head *sh)
1118 {
1119         struct bio_vec bvl;
1120         struct bvec_iter iter;
1121         struct page *bio_page;
1122         int page_offset;
1123         struct async_submit_ctl submit;
1124         enum async_tx_flags flags = 0;
1125
1126         if (bio->bi_iter.bi_sector >= sector)
1127                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128         else
1129                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130
1131         if (frombio)
1132                 flags |= ASYNC_TX_FENCE;
1133         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
1135         bio_for_each_segment(bvl, bio, iter) {
1136                 int len = bvl.bv_len;
1137                 int clen;
1138                 int b_offset = 0;
1139
1140                 if (page_offset < 0) {
1141                         b_offset = -page_offset;
1142                         page_offset += b_offset;
1143                         len -= b_offset;
1144                 }
1145
1146                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147                         clen = STRIPE_SIZE - page_offset;
1148                 else
1149                         clen = len;
1150
1151                 if (clen > 0) {
1152                         b_offset += bvl.bv_offset;
1153                         bio_page = bvl.bv_page;
1154                         if (frombio) {
1155                                 if (sh->raid_conf->skip_copy &&
1156                                     b_offset == 0 && page_offset == 0 &&
1157                                     clen == STRIPE_SIZE)
1158                                         *page = bio_page;
1159                                 else
1160                                         tx = async_memcpy(*page, bio_page, page_offset,
1161                                                   b_offset, clen, &submit);
1162                         } else
1163                                 tx = async_memcpy(bio_page, *page, b_offset,
1164                                                   page_offset, clen, &submit);
1165                 }
1166                 /* chain the operations */
1167                 submit.depend_tx = tx;
1168
1169                 if (clen < len) /* hit end of page */
1170                         break;
1171                 page_offset +=  len;
1172         }
1173
1174         return tx;
1175 }
1176
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179         struct stripe_head *sh = stripe_head_ref;
1180         struct bio *return_bi = NULL;
1181         int i;
1182
1183         pr_debug("%s: stripe %llu\n", __func__,
1184                 (unsigned long long)sh->sector);
1185
1186         /* clear completed biofills */
1187         for (i = sh->disks; i--; ) {
1188                 struct r5dev *dev = &sh->dev[i];
1189
1190                 /* acknowledge completion of a biofill operation */
1191                 /* and check if we need to reply to a read request,
1192                  * new R5_Wantfill requests are held off until
1193                  * !STRIPE_BIOFILL_RUN
1194                  */
1195                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196                         struct bio *rbi, *rbi2;
1197
1198                         BUG_ON(!dev->read);
1199                         rbi = dev->read;
1200                         dev->read = NULL;
1201                         while (rbi && rbi->bi_iter.bi_sector <
1202                                 dev->sector + STRIPE_SECTORS) {
1203                                 rbi2 = r5_next_bio(rbi, dev->sector);
1204                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1205                                         rbi->bi_next = return_bi;
1206                                         return_bi = rbi;
1207                                 }
1208                                 rbi = rbi2;
1209                         }
1210                 }
1211         }
1212         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213
1214         return_io(return_bi);
1215
1216         set_bit(STRIPE_HANDLE, &sh->state);
1217         release_stripe(sh);
1218 }
1219
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222         struct dma_async_tx_descriptor *tx = NULL;
1223         struct async_submit_ctl submit;
1224         int i;
1225
1226         BUG_ON(sh->batch_head);
1227         pr_debug("%s: stripe %llu\n", __func__,
1228                 (unsigned long long)sh->sector);
1229
1230         for (i = sh->disks; i--; ) {
1231                 struct r5dev *dev = &sh->dev[i];
1232                 if (test_bit(R5_Wantfill, &dev->flags)) {
1233                         struct bio *rbi;
1234                         spin_lock_irq(&sh->stripe_lock);
1235                         dev->read = rbi = dev->toread;
1236                         dev->toread = NULL;
1237                         spin_unlock_irq(&sh->stripe_lock);
1238                         while (rbi && rbi->bi_iter.bi_sector <
1239                                 dev->sector + STRIPE_SECTORS) {
1240                                 tx = async_copy_data(0, rbi, &dev->page,
1241                                         dev->sector, tx, sh);
1242                                 rbi = r5_next_bio(rbi, dev->sector);
1243                         }
1244                 }
1245         }
1246
1247         atomic_inc(&sh->count);
1248         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249         async_trigger_callback(&submit);
1250 }
1251
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254         struct r5dev *tgt;
1255
1256         if (target < 0)
1257                 return;
1258
1259         tgt = &sh->dev[target];
1260         set_bit(R5_UPTODATE, &tgt->flags);
1261         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262         clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267         struct stripe_head *sh = stripe_head_ref;
1268
1269         pr_debug("%s: stripe %llu\n", __func__,
1270                 (unsigned long long)sh->sector);
1271
1272         /* mark the computed target(s) as uptodate */
1273         mark_target_uptodate(sh, sh->ops.target);
1274         mark_target_uptodate(sh, sh->ops.target2);
1275
1276         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277         if (sh->check_state == check_state_compute_run)
1278                 sh->check_state = check_state_compute_result;
1279         set_bit(STRIPE_HANDLE, &sh->state);
1280         release_stripe(sh);
1281 }
1282
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285                                  struct raid5_percpu *percpu, int i)
1286 {
1287         void *addr;
1288
1289         addr = flex_array_get(percpu->scribble, i);
1290         return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296         void *addr;
1297
1298         addr = flex_array_get(percpu->scribble, i);
1299         return addr;
1300 }
1301
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305         int disks = sh->disks;
1306         struct page **xor_srcs = to_addr_page(percpu, 0);
1307         int target = sh->ops.target;
1308         struct r5dev *tgt = &sh->dev[target];
1309         struct page *xor_dest = tgt->page;
1310         int count = 0;
1311         struct dma_async_tx_descriptor *tx;
1312         struct async_submit_ctl submit;
1313         int i;
1314
1315         BUG_ON(sh->batch_head);
1316
1317         pr_debug("%s: stripe %llu block: %d\n",
1318                 __func__, (unsigned long long)sh->sector, target);
1319         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321         for (i = disks; i--; )
1322                 if (i != target)
1323                         xor_srcs[count++] = sh->dev[i].page;
1324
1325         atomic_inc(&sh->count);
1326
1327         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329         if (unlikely(count == 1))
1330                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331         else
1332                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333
1334         return tx;
1335 }
1336
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338  * @srcs - (struct page *) array of size sh->disks
1339  * @sh - stripe_head to parse
1340  *
1341  * Populates srcs in proper layout order for the stripe and returns the
1342  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1343  * destination buffer is recorded in srcs[count] and the Q destination
1344  * is recorded in srcs[count+1]].
1345  */
1346 static int set_syndrome_sources(struct page **srcs,
1347                                 struct stripe_head *sh,
1348                                 int srctype)
1349 {
1350         int disks = sh->disks;
1351         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352         int d0_idx = raid6_d0(sh);
1353         int count;
1354         int i;
1355
1356         for (i = 0; i < disks; i++)
1357                 srcs[i] = NULL;
1358
1359         count = 0;
1360         i = d0_idx;
1361         do {
1362                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363                 struct r5dev *dev = &sh->dev[i];
1364
1365                 if (i == sh->qd_idx || i == sh->pd_idx ||
1366                     (srctype == SYNDROME_SRC_ALL) ||
1367                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368                      test_bit(R5_Wantdrain, &dev->flags)) ||
1369                     (srctype == SYNDROME_SRC_WRITTEN &&
1370                      dev->written))
1371                         srcs[slot] = sh->dev[i].page;
1372                 i = raid6_next_disk(i, disks);
1373         } while (i != d0_idx);
1374
1375         return syndrome_disks;
1376 }
1377
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381         int disks = sh->disks;
1382         struct page **blocks = to_addr_page(percpu, 0);
1383         int target;
1384         int qd_idx = sh->qd_idx;
1385         struct dma_async_tx_descriptor *tx;
1386         struct async_submit_ctl submit;
1387         struct r5dev *tgt;
1388         struct page *dest;
1389         int i;
1390         int count;
1391
1392         BUG_ON(sh->batch_head);
1393         if (sh->ops.target < 0)
1394                 target = sh->ops.target2;
1395         else if (sh->ops.target2 < 0)
1396                 target = sh->ops.target;
1397         else
1398                 /* we should only have one valid target */
1399                 BUG();
1400         BUG_ON(target < 0);
1401         pr_debug("%s: stripe %llu block: %d\n",
1402                 __func__, (unsigned long long)sh->sector, target);
1403
1404         tgt = &sh->dev[target];
1405         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406         dest = tgt->page;
1407
1408         atomic_inc(&sh->count);
1409
1410         if (target == qd_idx) {
1411                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412                 blocks[count] = NULL; /* regenerating p is not necessary */
1413                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415                                   ops_complete_compute, sh,
1416                                   to_addr_conv(sh, percpu, 0));
1417                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418         } else {
1419                 /* Compute any data- or p-drive using XOR */
1420                 count = 0;
1421                 for (i = disks; i-- ; ) {
1422                         if (i == target || i == qd_idx)
1423                                 continue;
1424                         blocks[count++] = sh->dev[i].page;
1425                 }
1426
1427                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428                                   NULL, ops_complete_compute, sh,
1429                                   to_addr_conv(sh, percpu, 0));
1430                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431         }
1432
1433         return tx;
1434 }
1435
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439         int i, count, disks = sh->disks;
1440         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441         int d0_idx = raid6_d0(sh);
1442         int faila = -1, failb = -1;
1443         int target = sh->ops.target;
1444         int target2 = sh->ops.target2;
1445         struct r5dev *tgt = &sh->dev[target];
1446         struct r5dev *tgt2 = &sh->dev[target2];
1447         struct dma_async_tx_descriptor *tx;
1448         struct page **blocks = to_addr_page(percpu, 0);
1449         struct async_submit_ctl submit;
1450
1451         BUG_ON(sh->batch_head);
1452         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453                  __func__, (unsigned long long)sh->sector, target, target2);
1454         BUG_ON(target < 0 || target2 < 0);
1455         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
1458         /* we need to open-code set_syndrome_sources to handle the
1459          * slot number conversion for 'faila' and 'failb'
1460          */
1461         for (i = 0; i < disks ; i++)
1462                 blocks[i] = NULL;
1463         count = 0;
1464         i = d0_idx;
1465         do {
1466                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468                 blocks[slot] = sh->dev[i].page;
1469
1470                 if (i == target)
1471                         faila = slot;
1472                 if (i == target2)
1473                         failb = slot;
1474                 i = raid6_next_disk(i, disks);
1475         } while (i != d0_idx);
1476
1477         BUG_ON(faila == failb);
1478         if (failb < faila)
1479                 swap(faila, failb);
1480         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481                  __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483         atomic_inc(&sh->count);
1484
1485         if (failb == syndrome_disks+1) {
1486                 /* Q disk is one of the missing disks */
1487                 if (faila == syndrome_disks) {
1488                         /* Missing P+Q, just recompute */
1489                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490                                           ops_complete_compute, sh,
1491                                           to_addr_conv(sh, percpu, 0));
1492                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493                                                   STRIPE_SIZE, &submit);
1494                 } else {
1495                         struct page *dest;
1496                         int data_target;
1497                         int qd_idx = sh->qd_idx;
1498
1499                         /* Missing D+Q: recompute D from P, then recompute Q */
1500                         if (target == qd_idx)
1501                                 data_target = target2;
1502                         else
1503                                 data_target = target;
1504
1505                         count = 0;
1506                         for (i = disks; i-- ; ) {
1507                                 if (i == data_target || i == qd_idx)
1508                                         continue;
1509                                 blocks[count++] = sh->dev[i].page;
1510                         }
1511                         dest = sh->dev[data_target].page;
1512                         init_async_submit(&submit,
1513                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514                                           NULL, NULL, NULL,
1515                                           to_addr_conv(sh, percpu, 0));
1516                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517                                        &submit);
1518
1519                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521                                           ops_complete_compute, sh,
1522                                           to_addr_conv(sh, percpu, 0));
1523                         return async_gen_syndrome(blocks, 0, count+2,
1524                                                   STRIPE_SIZE, &submit);
1525                 }
1526         } else {
1527                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528                                   ops_complete_compute, sh,
1529                                   to_addr_conv(sh, percpu, 0));
1530                 if (failb == syndrome_disks) {
1531                         /* We're missing D+P. */
1532                         return async_raid6_datap_recov(syndrome_disks+2,
1533                                                        STRIPE_SIZE, faila,
1534                                                        blocks, &submit);
1535                 } else {
1536                         /* We're missing D+D. */
1537                         return async_raid6_2data_recov(syndrome_disks+2,
1538                                                        STRIPE_SIZE, faila, failb,
1539                                                        blocks, &submit);
1540                 }
1541         }
1542 }
1543
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546         struct stripe_head *sh = stripe_head_ref;
1547
1548         pr_debug("%s: stripe %llu\n", __func__,
1549                 (unsigned long long)sh->sector);
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554                 struct dma_async_tx_descriptor *tx)
1555 {
1556         int disks = sh->disks;
1557         struct page **xor_srcs = to_addr_page(percpu, 0);
1558         int count = 0, pd_idx = sh->pd_idx, i;
1559         struct async_submit_ctl submit;
1560
1561         /* existing parity data subtracted */
1562         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
1564         BUG_ON(sh->batch_head);
1565         pr_debug("%s: stripe %llu\n", __func__,
1566                 (unsigned long long)sh->sector);
1567
1568         for (i = disks; i--; ) {
1569                 struct r5dev *dev = &sh->dev[i];
1570                 /* Only process blocks that are known to be uptodate */
1571                 if (test_bit(R5_Wantdrain, &dev->flags))
1572                         xor_srcs[count++] = dev->page;
1573         }
1574
1575         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579         return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584                 struct dma_async_tx_descriptor *tx)
1585 {
1586         struct page **blocks = to_addr_page(percpu, 0);
1587         int count;
1588         struct async_submit_ctl submit;
1589
1590         pr_debug("%s: stripe %llu\n", __func__,
1591                 (unsigned long long)sh->sector);
1592
1593         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1598
1599         return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605         int disks = sh->disks;
1606         int i;
1607         struct stripe_head *head_sh = sh;
1608
1609         pr_debug("%s: stripe %llu\n", __func__,
1610                 (unsigned long long)sh->sector);
1611
1612         for (i = disks; i--; ) {
1613                 struct r5dev *dev;
1614                 struct bio *chosen;
1615
1616                 sh = head_sh;
1617                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618                         struct bio *wbi;
1619
1620 again:
1621                         dev = &sh->dev[i];
1622                         spin_lock_irq(&sh->stripe_lock);
1623                         chosen = dev->towrite;
1624                         dev->towrite = NULL;
1625                         sh->overwrite_disks = 0;
1626                         BUG_ON(dev->written);
1627                         wbi = dev->written = chosen;
1628                         spin_unlock_irq(&sh->stripe_lock);
1629                         WARN_ON(dev->page != dev->orig_page);
1630
1631                         while (wbi && wbi->bi_iter.bi_sector <
1632                                 dev->sector + STRIPE_SECTORS) {
1633                                 if (wbi->bi_rw & REQ_FUA)
1634                                         set_bit(R5_WantFUA, &dev->flags);
1635                                 if (wbi->bi_rw & REQ_SYNC)
1636                                         set_bit(R5_SyncIO, &dev->flags);
1637                                 if (wbi->bi_rw & REQ_DISCARD)
1638                                         set_bit(R5_Discard, &dev->flags);
1639                                 else {
1640                                         tx = async_copy_data(1, wbi, &dev->page,
1641                                                 dev->sector, tx, sh);
1642                                         if (dev->page != dev->orig_page) {
1643                                                 set_bit(R5_SkipCopy, &dev->flags);
1644                                                 clear_bit(R5_UPTODATE, &dev->flags);
1645                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1646                                         }
1647                                 }
1648                                 wbi = r5_next_bio(wbi, dev->sector);
1649                         }
1650
1651                         if (head_sh->batch_head) {
1652                                 sh = list_first_entry(&sh->batch_list,
1653                                                       struct stripe_head,
1654                                                       batch_list);
1655                                 if (sh == head_sh)
1656                                         continue;
1657                                 goto again;
1658                         }
1659                 }
1660         }
1661
1662         return tx;
1663 }
1664
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667         struct stripe_head *sh = stripe_head_ref;
1668         int disks = sh->disks;
1669         int pd_idx = sh->pd_idx;
1670         int qd_idx = sh->qd_idx;
1671         int i;
1672         bool fua = false, sync = false, discard = false;
1673
1674         pr_debug("%s: stripe %llu\n", __func__,
1675                 (unsigned long long)sh->sector);
1676
1677         for (i = disks; i--; ) {
1678                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681         }
1682
1683         for (i = disks; i--; ) {
1684                 struct r5dev *dev = &sh->dev[i];
1685
1686                 if (dev->written || i == pd_idx || i == qd_idx) {
1687                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688                                 set_bit(R5_UPTODATE, &dev->flags);
1689                         if (fua)
1690                                 set_bit(R5_WantFUA, &dev->flags);
1691                         if (sync)
1692                                 set_bit(R5_SyncIO, &dev->flags);
1693                 }
1694         }
1695
1696         if (sh->reconstruct_state == reconstruct_state_drain_run)
1697                 sh->reconstruct_state = reconstruct_state_drain_result;
1698         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700         else {
1701                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702                 sh->reconstruct_state = reconstruct_state_result;
1703         }
1704
1705         set_bit(STRIPE_HANDLE, &sh->state);
1706         release_stripe(sh);
1707 }
1708
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711                      struct dma_async_tx_descriptor *tx)
1712 {
1713         int disks = sh->disks;
1714         struct page **xor_srcs;
1715         struct async_submit_ctl submit;
1716         int count, pd_idx = sh->pd_idx, i;
1717         struct page *xor_dest;
1718         int prexor = 0;
1719         unsigned long flags;
1720         int j = 0;
1721         struct stripe_head *head_sh = sh;
1722         int last_stripe;
1723
1724         pr_debug("%s: stripe %llu\n", __func__,
1725                 (unsigned long long)sh->sector);
1726
1727         for (i = 0; i < sh->disks; i++) {
1728                 if (pd_idx == i)
1729                         continue;
1730                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731                         break;
1732         }
1733         if (i >= sh->disks) {
1734                 atomic_inc(&sh->count);
1735                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736                 ops_complete_reconstruct(sh);
1737                 return;
1738         }
1739 again:
1740         count = 0;
1741         xor_srcs = to_addr_page(percpu, j);
1742         /* check if prexor is active which means only process blocks
1743          * that are part of a read-modify-write (written)
1744          */
1745         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746                 prexor = 1;
1747                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748                 for (i = disks; i--; ) {
1749                         struct r5dev *dev = &sh->dev[i];
1750                         if (head_sh->dev[i].written)
1751                                 xor_srcs[count++] = dev->page;
1752                 }
1753         } else {
1754                 xor_dest = sh->dev[pd_idx].page;
1755                 for (i = disks; i--; ) {
1756                         struct r5dev *dev = &sh->dev[i];
1757                         if (i != pd_idx)
1758                                 xor_srcs[count++] = dev->page;
1759                 }
1760         }
1761
1762         /* 1/ if we prexor'd then the dest is reused as a source
1763          * 2/ if we did not prexor then we are redoing the parity
1764          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765          * for the synchronous xor case
1766          */
1767         last_stripe = !head_sh->batch_head ||
1768                 list_first_entry(&sh->batch_list,
1769                                  struct stripe_head, batch_list) == head_sh;
1770         if (last_stripe) {
1771                 flags = ASYNC_TX_ACK |
1772                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774                 atomic_inc(&head_sh->count);
1775                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776                                   to_addr_conv(sh, percpu, j));
1777         } else {
1778                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779                 init_async_submit(&submit, flags, tx, NULL, NULL,
1780                                   to_addr_conv(sh, percpu, j));
1781         }
1782
1783         if (unlikely(count == 1))
1784                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785         else
1786                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787         if (!last_stripe) {
1788                 j++;
1789                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790                                       batch_list);
1791                 goto again;
1792         }
1793 }
1794
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797                      struct dma_async_tx_descriptor *tx)
1798 {
1799         struct async_submit_ctl submit;
1800         struct page **blocks;
1801         int count, i, j = 0;
1802         struct stripe_head *head_sh = sh;
1803         int last_stripe;
1804         int synflags;
1805         unsigned long txflags;
1806
1807         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
1809         for (i = 0; i < sh->disks; i++) {
1810                 if (sh->pd_idx == i || sh->qd_idx == i)
1811                         continue;
1812                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813                         break;
1814         }
1815         if (i >= sh->disks) {
1816                 atomic_inc(&sh->count);
1817                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819                 ops_complete_reconstruct(sh);
1820                 return;
1821         }
1822
1823 again:
1824         blocks = to_addr_page(percpu, j);
1825
1826         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827                 synflags = SYNDROME_SRC_WRITTEN;
1828                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829         } else {
1830                 synflags = SYNDROME_SRC_ALL;
1831                 txflags = ASYNC_TX_ACK;
1832         }
1833
1834         count = set_syndrome_sources(blocks, sh, synflags);
1835         last_stripe = !head_sh->batch_head ||
1836                 list_first_entry(&sh->batch_list,
1837                                  struct stripe_head, batch_list) == head_sh;
1838
1839         if (last_stripe) {
1840                 atomic_inc(&head_sh->count);
1841                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842                                   head_sh, to_addr_conv(sh, percpu, j));
1843         } else
1844                 init_async_submit(&submit, 0, tx, NULL, NULL,
1845                                   to_addr_conv(sh, percpu, j));
1846         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1847         if (!last_stripe) {
1848                 j++;
1849                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850                                       batch_list);
1851                 goto again;
1852         }
1853 }
1854
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857         struct stripe_head *sh = stripe_head_ref;
1858
1859         pr_debug("%s: stripe %llu\n", __func__,
1860                 (unsigned long long)sh->sector);
1861
1862         sh->check_state = check_state_check_result;
1863         set_bit(STRIPE_HANDLE, &sh->state);
1864         release_stripe(sh);
1865 }
1866
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869         int disks = sh->disks;
1870         int pd_idx = sh->pd_idx;
1871         int qd_idx = sh->qd_idx;
1872         struct page *xor_dest;
1873         struct page **xor_srcs = to_addr_page(percpu, 0);
1874         struct dma_async_tx_descriptor *tx;
1875         struct async_submit_ctl submit;
1876         int count;
1877         int i;
1878
1879         pr_debug("%s: stripe %llu\n", __func__,
1880                 (unsigned long long)sh->sector);
1881
1882         BUG_ON(sh->batch_head);
1883         count = 0;
1884         xor_dest = sh->dev[pd_idx].page;
1885         xor_srcs[count++] = xor_dest;
1886         for (i = disks; i--; ) {
1887                 if (i == pd_idx || i == qd_idx)
1888                         continue;
1889                 xor_srcs[count++] = sh->dev[i].page;
1890         }
1891
1892         init_async_submit(&submit, 0, NULL, NULL, NULL,
1893                           to_addr_conv(sh, percpu, 0));
1894         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895                            &sh->ops.zero_sum_result, &submit);
1896
1897         atomic_inc(&sh->count);
1898         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899         tx = async_trigger_callback(&submit);
1900 }
1901
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904         struct page **srcs = to_addr_page(percpu, 0);
1905         struct async_submit_ctl submit;
1906         int count;
1907
1908         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909                 (unsigned long long)sh->sector, checkp);
1910
1911         BUG_ON(sh->batch_head);
1912         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913         if (!checkp)
1914                 srcs[count] = NULL;
1915
1916         atomic_inc(&sh->count);
1917         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918                           sh, to_addr_conv(sh, percpu, 0));
1919         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925         int overlap_clear = 0, i, disks = sh->disks;
1926         struct dma_async_tx_descriptor *tx = NULL;
1927         struct r5conf *conf = sh->raid_conf;
1928         int level = conf->level;
1929         struct raid5_percpu *percpu;
1930         unsigned long cpu;
1931
1932         cpu = get_cpu();
1933         percpu = per_cpu_ptr(conf->percpu, cpu);
1934         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935                 ops_run_biofill(sh);
1936                 overlap_clear++;
1937         }
1938
1939         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940                 if (level < 6)
1941                         tx = ops_run_compute5(sh, percpu);
1942                 else {
1943                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944                                 tx = ops_run_compute6_1(sh, percpu);
1945                         else
1946                                 tx = ops_run_compute6_2(sh, percpu);
1947                 }
1948                 /* terminate the chain if reconstruct is not set to be run */
1949                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950                         async_tx_ack(tx);
1951         }
1952
1953         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954                 if (level < 6)
1955                         tx = ops_run_prexor5(sh, percpu, tx);
1956                 else
1957                         tx = ops_run_prexor6(sh, percpu, tx);
1958         }
1959
1960         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961                 tx = ops_run_biodrain(sh, tx);
1962                 overlap_clear++;
1963         }
1964
1965         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966                 if (level < 6)
1967                         ops_run_reconstruct5(sh, percpu, tx);
1968                 else
1969                         ops_run_reconstruct6(sh, percpu, tx);
1970         }
1971
1972         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973                 if (sh->check_state == check_state_run)
1974                         ops_run_check_p(sh, percpu);
1975                 else if (sh->check_state == check_state_run_q)
1976                         ops_run_check_pq(sh, percpu, 0);
1977                 else if (sh->check_state == check_state_run_pq)
1978                         ops_run_check_pq(sh, percpu, 1);
1979                 else
1980                         BUG();
1981         }
1982
1983         if (overlap_clear && !sh->batch_head)
1984                 for (i = disks; i--; ) {
1985                         struct r5dev *dev = &sh->dev[i];
1986                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987                                 wake_up(&sh->raid_conf->wait_for_overlap);
1988                 }
1989         put_cpu();
1990 }
1991
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994         struct stripe_head *sh;
1995
1996         sh = kmem_cache_zalloc(sc, gfp);
1997         if (sh) {
1998                 spin_lock_init(&sh->stripe_lock);
1999                 spin_lock_init(&sh->batch_lock);
2000                 INIT_LIST_HEAD(&sh->batch_list);
2001                 INIT_LIST_HEAD(&sh->lru);
2002                 atomic_set(&sh->count, 1);
2003         }
2004         return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008         struct stripe_head *sh;
2009
2010         sh = alloc_stripe(conf->slab_cache, gfp);
2011         if (!sh)
2012                 return 0;
2013
2014         sh->raid_conf = conf;
2015
2016         if (grow_buffers(sh, gfp)) {
2017                 shrink_buffers(sh);
2018                 kmem_cache_free(conf->slab_cache, sh);
2019                 return 0;
2020         }
2021         sh->hash_lock_index =
2022                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023         /* we just created an active stripe so... */
2024         atomic_inc(&conf->active_stripes);
2025
2026         release_stripe(sh);
2027         conf->max_nr_stripes++;
2028         return 1;
2029 }
2030
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033         struct kmem_cache *sc;
2034         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035
2036         if (conf->mddev->gendisk)
2037                 sprintf(conf->cache_name[0],
2038                         "raid%d-%s", conf->level, mdname(conf->mddev));
2039         else
2040                 sprintf(conf->cache_name[0],
2041                         "raid%d-%p", conf->level, conf->mddev);
2042         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
2044         conf->active_name = 0;
2045         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047                                0, 0, NULL);
2048         if (!sc)
2049                 return 1;
2050         conf->slab_cache = sc;
2051         conf->pool_size = devs;
2052         while (num--)
2053                 if (!grow_one_stripe(conf, GFP_KERNEL))
2054                         return 1;
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * scribble_len - return the required size of the scribble region
2061  * @num - total number of disks in the array
2062  *
2063  * The size must be enough to contain:
2064  * 1/ a struct page pointer for each device in the array +2
2065  * 2/ room to convert each entry in (1) to its corresponding dma
2066  *    (dma_map_page()) or page (page_address()) address.
2067  *
2068  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069  * calculate over all devices (not just the data blocks), using zeros in place
2070  * of the P and Q blocks.
2071  */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074         struct flex_array *ret;
2075         size_t len;
2076
2077         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078         ret = flex_array_alloc(len, cnt, flags);
2079         if (!ret)
2080                 return NULL;
2081         /* always prealloc all elements, so no locking is required */
2082         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083                 flex_array_free(ret);
2084                 return NULL;
2085         }
2086         return ret;
2087 }
2088
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091         unsigned long cpu;
2092         int err = 0;
2093
2094         mddev_suspend(conf->mddev);
2095         get_online_cpus();
2096         for_each_present_cpu(cpu) {
2097                 struct raid5_percpu *percpu;
2098                 struct flex_array *scribble;
2099
2100                 percpu = per_cpu_ptr(conf->percpu, cpu);
2101                 scribble = scribble_alloc(new_disks,
2102                                           new_sectors / STRIPE_SECTORS,
2103                                           GFP_NOIO);
2104
2105                 if (scribble) {
2106                         flex_array_free(percpu->scribble);
2107                         percpu->scribble = scribble;
2108                 } else {
2109                         err = -ENOMEM;
2110                         break;
2111                 }
2112         }
2113         put_online_cpus();
2114         mddev_resume(conf->mddev);
2115         return err;
2116 }
2117
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120         /* Make all the stripes able to hold 'newsize' devices.
2121          * New slots in each stripe get 'page' set to a new page.
2122          *
2123          * This happens in stages:
2124          * 1/ create a new kmem_cache and allocate the required number of
2125          *    stripe_heads.
2126          * 2/ gather all the old stripe_heads and transfer the pages across
2127          *    to the new stripe_heads.  This will have the side effect of
2128          *    freezing the array as once all stripe_heads have been collected,
2129          *    no IO will be possible.  Old stripe heads are freed once their
2130          *    pages have been transferred over, and the old kmem_cache is
2131          *    freed when all stripes are done.
2132          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2133          *    we simple return a failre status - no need to clean anything up.
2134          * 4/ allocate new pages for the new slots in the new stripe_heads.
2135          *    If this fails, we don't bother trying the shrink the
2136          *    stripe_heads down again, we just leave them as they are.
2137          *    As each stripe_head is processed the new one is released into
2138          *    active service.
2139          *
2140          * Once step2 is started, we cannot afford to wait for a write,
2141          * so we use GFP_NOIO allocations.
2142          */
2143         struct stripe_head *osh, *nsh;
2144         LIST_HEAD(newstripes);
2145         struct disk_info *ndisks;
2146         int err;
2147         struct kmem_cache *sc;
2148         int i;
2149         int hash, cnt;
2150
2151         if (newsize <= conf->pool_size)
2152                 return 0; /* never bother to shrink */
2153
2154         err = md_allow_write(conf->mddev);
2155         if (err)
2156                 return err;
2157
2158         /* Step 1 */
2159         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161                                0, 0, NULL);
2162         if (!sc)
2163                 return -ENOMEM;
2164
2165         /* Need to ensure auto-resizing doesn't interfere */
2166         mutex_lock(&conf->cache_size_mutex);
2167
2168         for (i = conf->max_nr_stripes; i; i--) {
2169                 nsh = alloc_stripe(sc, GFP_KERNEL);
2170                 if (!nsh)
2171                         break;
2172
2173                 nsh->raid_conf = conf;
2174                 list_add(&nsh->lru, &newstripes);
2175         }
2176         if (i) {
2177                 /* didn't get enough, give up */
2178                 while (!list_empty(&newstripes)) {
2179                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2180                         list_del(&nsh->lru);
2181                         kmem_cache_free(sc, nsh);
2182                 }
2183                 kmem_cache_destroy(sc);
2184                 mutex_unlock(&conf->cache_size_mutex);
2185                 return -ENOMEM;
2186         }
2187         /* Step 2 - Must use GFP_NOIO now.
2188          * OK, we have enough stripes, start collecting inactive
2189          * stripes and copying them over
2190          */
2191         hash = 0;
2192         cnt = 0;
2193         list_for_each_entry(nsh, &newstripes, lru) {
2194                 lock_device_hash_lock(conf, hash);
2195                 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2196                                     !list_empty(conf->inactive_list + hash),
2197                                     unlock_device_hash_lock(conf, hash),
2198                                     lock_device_hash_lock(conf, hash));
2199                 osh = get_free_stripe(conf, hash);
2200                 unlock_device_hash_lock(conf, hash);
2201
2202                 for(i=0; i<conf->pool_size; i++) {
2203                         nsh->dev[i].page = osh->dev[i].page;
2204                         nsh->dev[i].orig_page = osh->dev[i].page;
2205                 }
2206                 nsh->hash_lock_index = hash;
2207                 kmem_cache_free(conf->slab_cache, osh);
2208                 cnt++;
2209                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2210                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2211                         hash++;
2212                         cnt = 0;
2213                 }
2214         }
2215         kmem_cache_destroy(conf->slab_cache);
2216
2217         /* Step 3.
2218          * At this point, we are holding all the stripes so the array
2219          * is completely stalled, so now is a good time to resize
2220          * conf->disks and the scribble region
2221          */
2222         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2223         if (ndisks) {
2224                 for (i=0; i<conf->raid_disks; i++)
2225                         ndisks[i] = conf->disks[i];
2226                 kfree(conf->disks);
2227                 conf->disks = ndisks;
2228         } else
2229                 err = -ENOMEM;
2230
2231         mutex_unlock(&conf->cache_size_mutex);
2232         /* Step 4, return new stripes to service */
2233         while(!list_empty(&newstripes)) {
2234                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2235                 list_del_init(&nsh->lru);
2236
2237                 for (i=conf->raid_disks; i < newsize; i++)
2238                         if (nsh->dev[i].page == NULL) {
2239                                 struct page *p = alloc_page(GFP_NOIO);
2240                                 nsh->dev[i].page = p;
2241                                 nsh->dev[i].orig_page = p;
2242                                 if (!p)
2243                                         err = -ENOMEM;
2244                         }
2245                 release_stripe(nsh);
2246         }
2247         /* critical section pass, GFP_NOIO no longer needed */
2248
2249         conf->slab_cache = sc;
2250         conf->active_name = 1-conf->active_name;
2251         if (!err)
2252                 conf->pool_size = newsize;
2253         return err;
2254 }
2255
2256 static int drop_one_stripe(struct r5conf *conf)
2257 {
2258         struct stripe_head *sh;
2259         int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2260
2261         spin_lock_irq(conf->hash_locks + hash);
2262         sh = get_free_stripe(conf, hash);
2263         spin_unlock_irq(conf->hash_locks + hash);
2264         if (!sh)
2265                 return 0;
2266         BUG_ON(atomic_read(&sh->count));
2267         shrink_buffers(sh);
2268         kmem_cache_free(conf->slab_cache, sh);
2269         atomic_dec(&conf->active_stripes);
2270         conf->max_nr_stripes--;
2271         return 1;
2272 }
2273
2274 static void shrink_stripes(struct r5conf *conf)
2275 {
2276         while (conf->max_nr_stripes &&
2277                drop_one_stripe(conf))
2278                 ;
2279
2280         if (conf->slab_cache)
2281                 kmem_cache_destroy(conf->slab_cache);
2282         conf->slab_cache = NULL;
2283 }
2284
2285 static void raid5_end_read_request(struct bio * bi, int error)
2286 {
2287         struct stripe_head *sh = bi->bi_private;
2288         struct r5conf *conf = sh->raid_conf;
2289         int disks = sh->disks, i;
2290         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2291         char b[BDEVNAME_SIZE];
2292         struct md_rdev *rdev = NULL;
2293         sector_t s;
2294
2295         for (i=0 ; i<disks; i++)
2296                 if (bi == &sh->dev[i].req)
2297                         break;
2298
2299         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2300                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2301                 uptodate);
2302         if (i == disks) {
2303                 BUG();
2304                 return;
2305         }
2306         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2307                 /* If replacement finished while this request was outstanding,
2308                  * 'replacement' might be NULL already.
2309                  * In that case it moved down to 'rdev'.
2310                  * rdev is not removed until all requests are finished.
2311                  */
2312                 rdev = conf->disks[i].replacement;
2313         if (!rdev)
2314                 rdev = conf->disks[i].rdev;
2315
2316         if (use_new_offset(conf, sh))
2317                 s = sh->sector + rdev->new_data_offset;
2318         else
2319                 s = sh->sector + rdev->data_offset;
2320         if (uptodate) {
2321                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2322                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2323                         /* Note that this cannot happen on a
2324                          * replacement device.  We just fail those on
2325                          * any error
2326                          */
2327                         printk_ratelimited(
2328                                 KERN_INFO
2329                                 "md/raid:%s: read error corrected"
2330                                 " (%lu sectors at %llu on %s)\n",
2331                                 mdname(conf->mddev), STRIPE_SECTORS,
2332                                 (unsigned long long)s,
2333                                 bdevname(rdev->bdev, b));
2334                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2335                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2336                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2337                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2338                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2339
2340                 if (atomic_read(&rdev->read_errors))
2341                         atomic_set(&rdev->read_errors, 0);
2342         } else {
2343                 const char *bdn = bdevname(rdev->bdev, b);
2344                 int retry = 0;
2345                 int set_bad = 0;
2346
2347                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2348                 atomic_inc(&rdev->read_errors);
2349                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2350                         printk_ratelimited(
2351                                 KERN_WARNING
2352                                 "md/raid:%s: read error on replacement device "
2353                                 "(sector %llu on %s).\n",
2354                                 mdname(conf->mddev),
2355                                 (unsigned long long)s,
2356                                 bdn);
2357                 else if (conf->mddev->degraded >= conf->max_degraded) {
2358                         set_bad = 1;
2359                         printk_ratelimited(
2360                                 KERN_WARNING
2361                                 "md/raid:%s: read error not correctable "
2362                                 "(sector %llu on %s).\n",
2363                                 mdname(conf->mddev),
2364                                 (unsigned long long)s,
2365                                 bdn);
2366                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2367                         /* Oh, no!!! */
2368                         set_bad = 1;
2369                         printk_ratelimited(
2370                                 KERN_WARNING
2371                                 "md/raid:%s: read error NOT corrected!! "
2372                                 "(sector %llu on %s).\n",
2373                                 mdname(conf->mddev),
2374                                 (unsigned long long)s,
2375                                 bdn);
2376                 } else if (atomic_read(&rdev->read_errors)
2377                          > conf->max_nr_stripes)
2378                         printk(KERN_WARNING
2379                                "md/raid:%s: Too many read errors, failing device %s.\n",
2380                                mdname(conf->mddev), bdn);
2381                 else
2382                         retry = 1;
2383                 if (set_bad && test_bit(In_sync, &rdev->flags)
2384                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2385                         retry = 1;
2386                 if (retry)
2387                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2388                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2389                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2390                         } else
2391                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2392                 else {
2393                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2394                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2395                         if (!(set_bad
2396                               && test_bit(In_sync, &rdev->flags)
2397                               && rdev_set_badblocks(
2398                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2399                                 md_error(conf->mddev, rdev);
2400                 }
2401         }
2402         rdev_dec_pending(rdev, conf->mddev);
2403         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2404         set_bit(STRIPE_HANDLE, &sh->state);
2405         release_stripe(sh);
2406 }
2407
2408 static void raid5_end_write_request(struct bio *bi, int error)
2409 {
2410         struct stripe_head *sh = bi->bi_private;
2411         struct r5conf *conf = sh->raid_conf;
2412         int disks = sh->disks, i;
2413         struct md_rdev *uninitialized_var(rdev);
2414         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2415         sector_t first_bad;
2416         int bad_sectors;
2417         int replacement = 0;
2418
2419         for (i = 0 ; i < disks; i++) {
2420                 if (bi == &sh->dev[i].req) {
2421                         rdev = conf->disks[i].rdev;
2422                         break;
2423                 }
2424                 if (bi == &sh->dev[i].rreq) {
2425                         rdev = conf->disks[i].replacement;
2426                         if (rdev)
2427                                 replacement = 1;
2428                         else
2429                                 /* rdev was removed and 'replacement'
2430                                  * replaced it.  rdev is not removed
2431                                  * until all requests are finished.
2432                                  */
2433                                 rdev = conf->disks[i].rdev;
2434                         break;
2435                 }
2436         }
2437         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2438                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2439                 uptodate);
2440         if (i == disks) {
2441                 BUG();
2442                 return;
2443         }
2444
2445         if (replacement) {
2446                 if (!uptodate)
2447                         md_error(conf->mddev, rdev);
2448                 else if (is_badblock(rdev, sh->sector,
2449                                      STRIPE_SECTORS,
2450                                      &first_bad, &bad_sectors))
2451                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2452         } else {
2453                 if (!uptodate) {
2454                         set_bit(STRIPE_DEGRADED, &sh->state);
2455                         set_bit(WriteErrorSeen, &rdev->flags);
2456                         set_bit(R5_WriteError, &sh->dev[i].flags);
2457                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2458                                 set_bit(MD_RECOVERY_NEEDED,
2459                                         &rdev->mddev->recovery);
2460                 } else if (is_badblock(rdev, sh->sector,
2461                                        STRIPE_SECTORS,
2462                                        &first_bad, &bad_sectors)) {
2463                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2464                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2465                                 /* That was a successful write so make
2466                                  * sure it looks like we already did
2467                                  * a re-write.
2468                                  */
2469                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2470                 }
2471         }
2472         rdev_dec_pending(rdev, conf->mddev);
2473
2474         if (sh->batch_head && !uptodate && !replacement)
2475                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2476
2477         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2478                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2479         set_bit(STRIPE_HANDLE, &sh->state);
2480         release_stripe(sh);
2481
2482         if (sh->batch_head && sh != sh->batch_head)
2483                 release_stripe(sh->batch_head);
2484 }
2485
2486 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2487
2488 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2489 {
2490         struct r5dev *dev = &sh->dev[i];
2491
2492         bio_init(&dev->req);
2493         dev->req.bi_io_vec = &dev->vec;
2494         dev->req.bi_max_vecs = 1;
2495         dev->req.bi_private = sh;
2496
2497         bio_init(&dev->rreq);
2498         dev->rreq.bi_io_vec = &dev->rvec;
2499         dev->rreq.bi_max_vecs = 1;
2500         dev->rreq.bi_private = sh;
2501
2502         dev->flags = 0;
2503         dev->sector = compute_blocknr(sh, i, previous);
2504 }
2505
2506 static void error(struct mddev *mddev, struct md_rdev *rdev)
2507 {
2508         char b[BDEVNAME_SIZE];
2509         struct r5conf *conf = mddev->private;
2510         unsigned long flags;
2511         pr_debug("raid456: error called\n");
2512
2513         spin_lock_irqsave(&conf->device_lock, flags);
2514         clear_bit(In_sync, &rdev->flags);
2515         mddev->degraded = calc_degraded(conf);
2516         spin_unlock_irqrestore(&conf->device_lock, flags);
2517         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2518
2519         set_bit(Blocked, &rdev->flags);
2520         set_bit(Faulty, &rdev->flags);
2521         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2522         printk(KERN_ALERT
2523                "md/raid:%s: Disk failure on %s, disabling device.\n"
2524                "md/raid:%s: Operation continuing on %d devices.\n",
2525                mdname(mddev),
2526                bdevname(rdev->bdev, b),
2527                mdname(mddev),
2528                conf->raid_disks - mddev->degraded);
2529 }
2530
2531 /*
2532  * Input: a 'big' sector number,
2533  * Output: index of the data and parity disk, and the sector # in them.
2534  */
2535 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2536                                      int previous, int *dd_idx,
2537                                      struct stripe_head *sh)
2538 {
2539         sector_t stripe, stripe2;
2540         sector_t chunk_number;
2541         unsigned int chunk_offset;
2542         int pd_idx, qd_idx;
2543         int ddf_layout = 0;
2544         sector_t new_sector;
2545         int algorithm = previous ? conf->prev_algo
2546                                  : conf->algorithm;
2547         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2548                                          : conf->chunk_sectors;
2549         int raid_disks = previous ? conf->previous_raid_disks
2550                                   : conf->raid_disks;
2551         int data_disks = raid_disks - conf->max_degraded;
2552
2553         /* First compute the information on this sector */
2554
2555         /*
2556          * Compute the chunk number and the sector offset inside the chunk
2557          */
2558         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2559         chunk_number = r_sector;
2560
2561         /*
2562          * Compute the stripe number
2563          */
2564         stripe = chunk_number;
2565         *dd_idx = sector_div(stripe, data_disks);
2566         stripe2 = stripe;
2567         /*
2568          * Select the parity disk based on the user selected algorithm.
2569          */
2570         pd_idx = qd_idx = -1;
2571         switch(conf->level) {
2572         case 4:
2573                 pd_idx = data_disks;
2574                 break;
2575         case 5:
2576                 switch (algorithm) {
2577                 case ALGORITHM_LEFT_ASYMMETRIC:
2578                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2579                         if (*dd_idx >= pd_idx)
2580                                 (*dd_idx)++;
2581                         break;
2582                 case ALGORITHM_RIGHT_ASYMMETRIC:
2583                         pd_idx = sector_div(stripe2, raid_disks);
2584                         if (*dd_idx >= pd_idx)
2585                                 (*dd_idx)++;
2586                         break;
2587                 case ALGORITHM_LEFT_SYMMETRIC:
2588                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2589                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2590                         break;
2591                 case ALGORITHM_RIGHT_SYMMETRIC:
2592                         pd_idx = sector_div(stripe2, raid_disks);
2593                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2594                         break;
2595                 case ALGORITHM_PARITY_0:
2596                         pd_idx = 0;
2597                         (*dd_idx)++;
2598                         break;
2599                 case ALGORITHM_PARITY_N:
2600                         pd_idx = data_disks;
2601                         break;
2602                 default:
2603                         BUG();
2604                 }
2605                 break;
2606         case 6:
2607
2608                 switch (algorithm) {
2609                 case ALGORITHM_LEFT_ASYMMETRIC:
2610                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2611                         qd_idx = pd_idx + 1;
2612                         if (pd_idx == raid_disks-1) {
2613                                 (*dd_idx)++;    /* Q D D D P */
2614                                 qd_idx = 0;
2615                         } else if (*dd_idx >= pd_idx)
2616                                 (*dd_idx) += 2; /* D D P Q D */
2617                         break;
2618                 case ALGORITHM_RIGHT_ASYMMETRIC:
2619                         pd_idx = sector_div(stripe2, raid_disks);
2620                         qd_idx = pd_idx + 1;
2621                         if (pd_idx == raid_disks-1) {
2622                                 (*dd_idx)++;    /* Q D D D P */
2623                                 qd_idx = 0;
2624                         } else if (*dd_idx >= pd_idx)
2625                                 (*dd_idx) += 2; /* D D P Q D */
2626                         break;
2627                 case ALGORITHM_LEFT_SYMMETRIC:
2628                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2629                         qd_idx = (pd_idx + 1) % raid_disks;
2630                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2631                         break;
2632                 case ALGORITHM_RIGHT_SYMMETRIC:
2633                         pd_idx = sector_div(stripe2, raid_disks);
2634                         qd_idx = (pd_idx + 1) % raid_disks;
2635                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2636                         break;
2637
2638                 case ALGORITHM_PARITY_0:
2639                         pd_idx = 0;
2640                         qd_idx = 1;
2641                         (*dd_idx) += 2;
2642                         break;
2643                 case ALGORITHM_PARITY_N:
2644                         pd_idx = data_disks;
2645                         qd_idx = data_disks + 1;
2646                         break;
2647
2648                 case ALGORITHM_ROTATING_ZERO_RESTART:
2649                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2650                          * of blocks for computing Q is different.
2651                          */
2652                         pd_idx = sector_div(stripe2, raid_disks);
2653                         qd_idx = pd_idx + 1;
2654                         if (pd_idx == raid_disks-1) {
2655                                 (*dd_idx)++;    /* Q D D D P */
2656                                 qd_idx = 0;
2657                         } else if (*dd_idx >= pd_idx)
2658                                 (*dd_idx) += 2; /* D D P Q D */
2659                         ddf_layout = 1;
2660                         break;
2661
2662                 case ALGORITHM_ROTATING_N_RESTART:
2663                         /* Same a left_asymmetric, by first stripe is
2664                          * D D D P Q  rather than
2665                          * Q D D D P
2666                          */
2667                         stripe2 += 1;
2668                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2669                         qd_idx = pd_idx + 1;
2670                         if (pd_idx == raid_disks-1) {
2671                                 (*dd_idx)++;    /* Q D D D P */
2672                                 qd_idx = 0;
2673                         } else if (*dd_idx >= pd_idx)
2674                                 (*dd_idx) += 2; /* D D P Q D */
2675                         ddf_layout = 1;
2676                         break;
2677
2678                 case ALGORITHM_ROTATING_N_CONTINUE:
2679                         /* Same as left_symmetric but Q is before P */
2680                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2681                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2682                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2683                         ddf_layout = 1;
2684                         break;
2685
2686                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2687                         /* RAID5 left_asymmetric, with Q on last device */
2688                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2689                         if (*dd_idx >= pd_idx)
2690                                 (*dd_idx)++;
2691                         qd_idx = raid_disks - 1;
2692                         break;
2693
2694                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2695                         pd_idx = sector_div(stripe2, raid_disks-1);
2696                         if (*dd_idx >= pd_idx)
2697                                 (*dd_idx)++;
2698                         qd_idx = raid_disks - 1;
2699                         break;
2700
2701                 case ALGORITHM_LEFT_SYMMETRIC_6:
2702                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2703                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2704                         qd_idx = raid_disks - 1;
2705                         break;
2706
2707                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2708                         pd_idx = sector_div(stripe2, raid_disks-1);
2709                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2710                         qd_idx = raid_disks - 1;
2711                         break;
2712
2713                 case ALGORITHM_PARITY_0_6:
2714                         pd_idx = 0;
2715                         (*dd_idx)++;
2716                         qd_idx = raid_disks - 1;
2717                         break;
2718
2719                 default:
2720                         BUG();
2721                 }
2722                 break;
2723         }
2724
2725         if (sh) {
2726                 sh->pd_idx = pd_idx;
2727                 sh->qd_idx = qd_idx;
2728                 sh->ddf_layout = ddf_layout;
2729         }
2730         /*
2731          * Finally, compute the new sector number
2732          */
2733         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2734         return new_sector;
2735 }
2736
2737 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2738 {
2739         struct r5conf *conf = sh->raid_conf;
2740         int raid_disks = sh->disks;
2741         int data_disks = raid_disks - conf->max_degraded;
2742         sector_t new_sector = sh->sector, check;
2743         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2744                                          : conf->chunk_sectors;
2745         int algorithm = previous ? conf->prev_algo
2746                                  : conf->algorithm;
2747         sector_t stripe;
2748         int chunk_offset;
2749         sector_t chunk_number;
2750         int dummy1, dd_idx = i;
2751         sector_t r_sector;
2752         struct stripe_head sh2;
2753
2754         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2755         stripe = new_sector;
2756
2757         if (i == sh->pd_idx)
2758                 return 0;
2759         switch(conf->level) {
2760         case 4: break;
2761         case 5:
2762                 switch (algorithm) {
2763                 case ALGORITHM_LEFT_ASYMMETRIC:
2764                 case ALGORITHM_RIGHT_ASYMMETRIC:
2765                         if (i > sh->pd_idx)
2766                                 i--;
2767                         break;
2768                 case ALGORITHM_LEFT_SYMMETRIC:
2769                 case ALGORITHM_RIGHT_SYMMETRIC:
2770                         if (i < sh->pd_idx)
2771                                 i += raid_disks;
2772                         i -= (sh->pd_idx + 1);
2773                         break;
2774                 case ALGORITHM_PARITY_0:
2775                         i -= 1;
2776                         break;
2777                 case ALGORITHM_PARITY_N:
2778                         break;
2779                 default:
2780                         BUG();
2781                 }
2782                 break;
2783         case 6:
2784                 if (i == sh->qd_idx)
2785                         return 0; /* It is the Q disk */
2786                 switch (algorithm) {
2787                 case ALGORITHM_LEFT_ASYMMETRIC:
2788                 case ALGORITHM_RIGHT_ASYMMETRIC:
2789                 case ALGORITHM_ROTATING_ZERO_RESTART:
2790                 case ALGORITHM_ROTATING_N_RESTART:
2791                         if (sh->pd_idx == raid_disks-1)
2792                                 i--;    /* Q D D D P */
2793                         else if (i > sh->pd_idx)
2794                                 i -= 2; /* D D P Q D */
2795                         break;
2796                 case ALGORITHM_LEFT_SYMMETRIC:
2797                 case ALGORITHM_RIGHT_SYMMETRIC:
2798                         if (sh->pd_idx == raid_disks-1)
2799                                 i--; /* Q D D D P */
2800                         else {
2801                                 /* D D P Q D */
2802                                 if (i < sh->pd_idx)
2803                                         i += raid_disks;
2804                                 i -= (sh->pd_idx + 2);
2805                         }
2806                         break;
2807                 case ALGORITHM_PARITY_0:
2808                         i -= 2;
2809                         break;
2810                 case ALGORITHM_PARITY_N:
2811                         break;
2812                 case ALGORITHM_ROTATING_N_CONTINUE:
2813                         /* Like left_symmetric, but P is before Q */
2814                         if (sh->pd_idx == 0)
2815                                 i--;    /* P D D D Q */
2816                         else {
2817                                 /* D D Q P D */
2818                                 if (i < sh->pd_idx)
2819                                         i += raid_disks;
2820                                 i -= (sh->pd_idx + 1);
2821                         }
2822                         break;
2823                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2824                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2825                         if (i > sh->pd_idx)
2826                                 i--;
2827                         break;
2828                 case ALGORITHM_LEFT_SYMMETRIC_6:
2829                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2830                         if (i < sh->pd_idx)
2831                                 i += data_disks + 1;
2832                         i -= (sh->pd_idx + 1);
2833                         break;
2834                 case ALGORITHM_PARITY_0_6:
2835                         i -= 1;
2836                         break;
2837                 default:
2838                         BUG();
2839                 }
2840                 break;
2841         }
2842
2843         chunk_number = stripe * data_disks + i;
2844         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2845
2846         check = raid5_compute_sector(conf, r_sector,
2847                                      previous, &dummy1, &sh2);
2848         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2849                 || sh2.qd_idx != sh->qd_idx) {
2850                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2851                        mdname(conf->mddev));
2852                 return 0;
2853         }
2854         return r_sector;
2855 }
2856
2857 static void
2858 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2859                          int rcw, int expand)
2860 {
2861         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2862         struct r5conf *conf = sh->raid_conf;
2863         int level = conf->level;
2864
2865         if (rcw) {
2866
2867                 for (i = disks; i--; ) {
2868                         struct r5dev *dev = &sh->dev[i];
2869
2870                         if (dev->towrite) {
2871                                 set_bit(R5_LOCKED, &dev->flags);
2872                                 set_bit(R5_Wantdrain, &dev->flags);
2873                                 if (!expand)
2874                                         clear_bit(R5_UPTODATE, &dev->flags);
2875                                 s->locked++;
2876                         }
2877                 }
2878                 /* if we are not expanding this is a proper write request, and
2879                  * there will be bios with new data to be drained into the
2880                  * stripe cache
2881                  */
2882                 if (!expand) {
2883                         if (!s->locked)
2884                                 /* False alarm, nothing to do */
2885                                 return;
2886                         sh->reconstruct_state = reconstruct_state_drain_run;
2887                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2888                 } else
2889                         sh->reconstruct_state = reconstruct_state_run;
2890
2891                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2892
2893                 if (s->locked + conf->max_degraded == disks)
2894                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2895                                 atomic_inc(&conf->pending_full_writes);
2896         } else {
2897                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2898                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2899                 BUG_ON(level == 6 &&
2900                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2901                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2902
2903                 for (i = disks; i--; ) {
2904                         struct r5dev *dev = &sh->dev[i];
2905                         if (i == pd_idx || i == qd_idx)
2906                                 continue;
2907
2908                         if (dev->towrite &&
2909                             (test_bit(R5_UPTODATE, &dev->flags) ||
2910                              test_bit(R5_Wantcompute, &dev->flags))) {
2911                                 set_bit(R5_Wantdrain, &dev->flags);
2912                                 set_bit(R5_LOCKED, &dev->flags);
2913                                 clear_bit(R5_UPTODATE, &dev->flags);
2914                                 s->locked++;
2915                         }
2916                 }
2917                 if (!s->locked)
2918                         /* False alarm - nothing to do */
2919                         return;
2920                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2921                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2922                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2923                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2924         }
2925
2926         /* keep the parity disk(s) locked while asynchronous operations
2927          * are in flight
2928          */
2929         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2930         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2931         s->locked++;
2932
2933         if (level == 6) {
2934                 int qd_idx = sh->qd_idx;
2935                 struct r5dev *dev = &sh->dev[qd_idx];
2936
2937                 set_bit(R5_LOCKED, &dev->flags);
2938                 clear_bit(R5_UPTODATE, &dev->flags);
2939                 s->locked++;
2940         }
2941
2942         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2943                 __func__, (unsigned long long)sh->sector,
2944                 s->locked, s->ops_request);
2945 }
2946
2947 /*
2948  * Each stripe/dev can have one or more bion attached.
2949  * toread/towrite point to the first in a chain.
2950  * The bi_next chain must be in order.
2951  */
2952 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2953                           int forwrite, int previous)
2954 {
2955         struct bio **bip;
2956         struct r5conf *conf = sh->raid_conf;
2957         int firstwrite=0;
2958
2959         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2960                 (unsigned long long)bi->bi_iter.bi_sector,
2961                 (unsigned long long)sh->sector);
2962
2963         /*
2964          * If several bio share a stripe. The bio bi_phys_segments acts as a
2965          * reference count to avoid race. The reference count should already be
2966          * increased before this function is called (for example, in
2967          * make_request()), so other bio sharing this stripe will not free the
2968          * stripe. If a stripe is owned by one stripe, the stripe lock will
2969          * protect it.
2970          */
2971         spin_lock_irq(&sh->stripe_lock);
2972         /* Don't allow new IO added to stripes in batch list */
2973         if (sh->batch_head)
2974                 goto overlap;
2975         if (forwrite) {
2976                 bip = &sh->dev[dd_idx].towrite;
2977                 if (*bip == NULL)
2978                         firstwrite = 1;
2979         } else
2980                 bip = &sh->dev[dd_idx].toread;
2981         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2982                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2983                         goto overlap;
2984                 bip = & (*bip)->bi_next;
2985         }
2986         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2987                 goto overlap;
2988
2989         if (!forwrite || previous)
2990                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2991
2992         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2993         if (*bip)
2994                 bi->bi_next = *bip;
2995         *bip = bi;
2996         raid5_inc_bi_active_stripes(bi);
2997
2998         if (forwrite) {
2999                 /* check if page is covered */
3000                 sector_t sector = sh->dev[dd_idx].sector;
3001                 for (bi=sh->dev[dd_idx].towrite;
3002                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3003                              bi && bi->bi_iter.bi_sector <= sector;
3004                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3005                         if (bio_end_sector(bi) >= sector)
3006                                 sector = bio_end_sector(bi);
3007                 }
3008                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3009                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3010                                 sh->overwrite_disks++;
3011         }
3012
3013         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3014                 (unsigned long long)(*bip)->bi_iter.bi_sector,
3015                 (unsigned long long)sh->sector, dd_idx);
3016
3017         if (conf->mddev->bitmap && firstwrite) {
3018                 /* Cannot hold spinlock over bitmap_startwrite,
3019                  * but must ensure this isn't added to a batch until
3020                  * we have added to the bitmap and set bm_seq.
3021                  * So set STRIPE_BITMAP_PENDING to prevent
3022                  * batching.
3023                  * If multiple add_stripe_bio() calls race here they
3024                  * much all set STRIPE_BITMAP_PENDING.  So only the first one
3025                  * to complete "bitmap_startwrite" gets to set
3026                  * STRIPE_BIT_DELAY.  This is important as once a stripe
3027                  * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3028                  * any more.
3029                  */
3030                 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3031                 spin_unlock_irq(&sh->stripe_lock);
3032                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3033                                   STRIPE_SECTORS, 0);
3034                 spin_lock_irq(&sh->stripe_lock);
3035                 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3036                 if (!sh->batch_head) {
3037                         sh->bm_seq = conf->seq_flush+1;
3038                         set_bit(STRIPE_BIT_DELAY, &sh->state);
3039                 }
3040         }
3041         spin_unlock_irq(&sh->stripe_lock);
3042
3043         if (stripe_can_batch(sh))
3044                 stripe_add_to_batch_list(conf, sh);
3045         return 1;
3046
3047  overlap:
3048         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3049         spin_unlock_irq(&sh->stripe_lock);
3050         return 0;
3051 }
3052
3053 static void end_reshape(struct r5conf *conf);
3054
3055 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3056                             struct stripe_head *sh)
3057 {
3058         int sectors_per_chunk =
3059                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3060         int dd_idx;
3061         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3062         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3063
3064         raid5_compute_sector(conf,
3065                              stripe * (disks - conf->max_degraded)
3066                              *sectors_per_chunk + chunk_offset,
3067                              previous,
3068                              &dd_idx, sh);
3069 }
3070
3071 static void
3072 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3073                                 struct stripe_head_state *s, int disks,
3074                                 struct bio **return_bi)
3075 {
3076         int i;
3077         BUG_ON(sh->batch_head);
3078         for (i = disks; i--; ) {
3079                 struct bio *bi;
3080                 int bitmap_end = 0;
3081
3082                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3083                         struct md_rdev *rdev;
3084                         rcu_read_lock();
3085                         rdev = rcu_dereference(conf->disks[i].rdev);
3086                         if (rdev && test_bit(In_sync, &rdev->flags))
3087                                 atomic_inc(&rdev->nr_pending);
3088                         else
3089                                 rdev = NULL;
3090                         rcu_read_unlock();
3091                         if (rdev) {
3092                                 if (!rdev_set_badblocks(
3093                                             rdev,
3094                                             sh->sector,
3095                                             STRIPE_SECTORS, 0))
3096                                         md_error(conf->mddev, rdev);
3097                                 rdev_dec_pending(rdev, conf->mddev);
3098                         }
3099                 }
3100                 spin_lock_irq(&sh->stripe_lock);
3101                 /* fail all writes first */
3102                 bi = sh->dev[i].towrite;
3103                 sh->dev[i].towrite = NULL;
3104                 sh->overwrite_disks = 0;
3105                 spin_unlock_irq(&sh->stripe_lock);
3106                 if (bi)
3107                         bitmap_end = 1;
3108
3109                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3110                         wake_up(&conf->wait_for_overlap);
3111
3112                 while (bi && bi->bi_iter.bi_sector <
3113                         sh->dev[i].sector + STRIPE_SECTORS) {
3114                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3115                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3116                         if (!raid5_dec_bi_active_stripes(bi)) {
3117                                 md_write_end(conf->mddev);
3118                                 bi->bi_next = *return_bi;
3119                                 *return_bi = bi;
3120                         }
3121                         bi = nextbi;
3122                 }
3123                 if (bitmap_end)
3124                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3125                                 STRIPE_SECTORS, 0, 0);
3126                 bitmap_end = 0;
3127                 /* and fail all 'written' */
3128                 bi = sh->dev[i].written;
3129                 sh->dev[i].written = NULL;
3130                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3131                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3132                         sh->dev[i].page = sh->dev[i].orig_page;
3133                 }
3134
3135                 if (bi) bitmap_end = 1;
3136                 while (bi && bi->bi_iter.bi_sector <
3137                        sh->dev[i].sector + STRIPE_SECTORS) {
3138                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3139                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3140                         if (!raid5_dec_bi_active_stripes(bi)) {
3141                                 md_write_end(conf->mddev);
3142                                 bi->bi_next = *return_bi;
3143                                 *return_bi = bi;
3144                         }
3145                         bi = bi2;
3146                 }
3147
3148                 /* fail any reads if this device is non-operational and
3149                  * the data has not reached the cache yet.
3150                  */
3151                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3152                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3153                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3154                         spin_lock_irq(&sh->stripe_lock);
3155                         bi = sh->dev[i].toread;
3156                         sh->dev[i].toread = NULL;
3157                         spin_unlock_irq(&sh->stripe_lock);
3158                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3159                                 wake_up(&conf->wait_for_overlap);
3160                         while (bi && bi->bi_iter.bi_sector <
3161                                sh->dev[i].sector + STRIPE_SECTORS) {
3162                                 struct bio *nextbi =
3163                                         r5_next_bio(bi, sh->dev[i].sector);
3164                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3165                                 if (!raid5_dec_bi_active_stripes(bi)) {
3166                                         bi->bi_next = *return_bi;
3167                                         *return_bi = bi;
3168                                 }
3169                                 bi = nextbi;
3170                         }
3171                 }
3172                 if (bitmap_end)
3173                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3174                                         STRIPE_SECTORS, 0, 0);
3175                 /* If we were in the middle of a write the parity block might
3176                  * still be locked - so just clear all R5_LOCKED flags
3177                  */
3178                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3179         }
3180
3181         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3182                 if (atomic_dec_and_test(&conf->pending_full_writes))
3183                         md_wakeup_thread(conf->mddev->thread);
3184 }
3185
3186 static void
3187 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3188                    struct stripe_head_state *s)
3189 {
3190         int abort = 0;
3191         int i;
3192
3193         BUG_ON(sh->batch_head);
3194         clear_bit(STRIPE_SYNCING, &sh->state);
3195         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3196                 wake_up(&conf->wait_for_overlap);
3197         s->syncing = 0;
3198         s->replacing = 0;
3199         /* There is nothing more to do for sync/check/repair.
3200          * Don't even need to abort as that is handled elsewhere
3201          * if needed, and not always wanted e.g. if there is a known
3202          * bad block here.
3203          * For recover/replace we need to record a bad block on all
3204          * non-sync devices, or abort the recovery
3205          */
3206         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3207                 /* During recovery devices cannot be removed, so
3208                  * locking and refcounting of rdevs is not needed
3209                  */
3210                 for (i = 0; i < conf->raid_disks; i++) {
3211                         struct md_rdev *rdev = conf->disks[i].rdev;
3212                         if (rdev
3213                             && !test_bit(Faulty, &rdev->flags)
3214                             && !test_bit(In_sync, &rdev->flags)
3215                             && !rdev_set_badblocks(rdev, sh->sector,
3216                                                    STRIPE_SECTORS, 0))
3217                                 abort = 1;
3218                         rdev = conf->disks[i].replacement;
3219                         if (rdev
3220                             && !test_bit(Faulty, &rdev->flags)
3221                             && !test_bit(In_sync, &rdev->flags)
3222                             && !rdev_set_badblocks(rdev, sh->sector,
3223                                                    STRIPE_SECTORS, 0))
3224                                 abort = 1;
3225                 }
3226                 if (abort)
3227                         conf->recovery_disabled =
3228                                 conf->mddev->recovery_disabled;
3229         }
3230         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3231 }
3232
3233 static int want_replace(struct stripe_head *sh, int disk_idx)
3234 {
3235         struct md_rdev *rdev;
3236         int rv = 0;
3237         /* Doing recovery so rcu locking not required */
3238         rdev = sh->raid_conf->disks[disk_idx].replacement;
3239         if (rdev
3240             && !test_bit(Faulty, &rdev->flags)
3241             && !test_bit(In_sync, &rdev->flags)
3242             && (rdev->recovery_offset <= sh->sector
3243                 || rdev->mddev->recovery_cp <= sh->sector))
3244                 rv = 1;
3245
3246         return rv;
3247 }
3248
3249 /* fetch_block - checks the given member device to see if its data needs
3250  * to be read or computed to satisfy a request.
3251  *
3252  * Returns 1 when no more member devices need to be checked, otherwise returns
3253  * 0 to tell the loop in handle_stripe_fill to continue
3254  */
3255
3256 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3257                            int disk_idx, int disks)
3258 {
3259         struct r5dev *dev = &sh->dev[disk_idx];
3260         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3261                                   &sh->dev[s->failed_num[1]] };
3262         int i;
3263
3264
3265         if (test_bit(R5_LOCKED, &dev->flags) ||
3266             test_bit(R5_UPTODATE, &dev->flags))
3267                 /* No point reading this as we already have it or have
3268                  * decided to get it.
3269                  */
3270                 return 0;
3271
3272         if (dev->toread ||
3273             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3274                 /* We need this block to directly satisfy a request */
3275                 return 1;
3276
3277         if (s->syncing || s->expanding ||
3278             (s->replacing && want_replace(sh, disk_idx)))
3279                 /* When syncing, or expanding we read everything.
3280                  * When replacing, we need the replaced block.
3281                  */
3282                 return 1;
3283
3284         if ((s->failed >= 1 && fdev[0]->toread) ||
3285             (s->failed >= 2 && fdev[1]->toread))
3286                 /* If we want to read from a failed device, then
3287                  * we need to actually read every other device.
3288                  */
3289                 return 1;
3290
3291         /* Sometimes neither read-modify-write nor reconstruct-write
3292          * cycles can work.  In those cases we read every block we
3293          * can.  Then the parity-update is certain to have enough to
3294          * work with.
3295          * This can only be a problem when we need to write something,
3296          * and some device has failed.  If either of those tests
3297          * fail we need look no further.
3298          */
3299         if (!s->failed || !s->to_write)
3300                 return 0;
3301
3302         if (test_bit(R5_Insync, &dev->flags) &&
3303             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3304                 /* Pre-reads at not permitted until after short delay
3305                  * to gather multiple requests.  However if this
3306                  * device is no Insync, the block could only be be computed
3307                  * and there is no need to delay that.
3308                  */
3309                 return 0;
3310
3311         for (i = 0; i < s->failed; i++) {
3312                 if (fdev[i]->towrite &&
3313                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3314                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3315                         /* If we have a partial write to a failed
3316                          * device, then we will need to reconstruct
3317                          * the content of that device, so all other
3318                          * devices must be read.
3319                          */
3320                         return 1;
3321         }
3322
3323         /* If we are forced to do a reconstruct-write, either because
3324          * the current RAID6 implementation only supports that, or
3325          * or because parity cannot be trusted and we are currently
3326          * recovering it, there is extra need to be careful.
3327          * If one of the devices that we would need to read, because
3328          * it is not being overwritten (and maybe not written at all)
3329          * is missing/faulty, then we need to read everything we can.
3330          */
3331         if (sh->raid_conf->level != 6 &&
3332             sh->sector < sh->raid_conf->mddev->recovery_cp)
3333                 /* reconstruct-write isn't being forced */
3334                 return 0;
3335         for (i = 0; i < s->failed; i++) {
3336                 if (s->failed_num[i] != sh->pd_idx &&
3337                     s->failed_num[i] != sh->qd_idx &&
3338                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3339                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3340                         return 1;
3341         }
3342
3343         return 0;
3344 }
3345
3346 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3347                        int disk_idx, int disks)
3348 {
3349         struct r5dev *dev = &sh->dev[disk_idx];
3350
3351         /* is the data in this block needed, and can we get it? */
3352         if (need_this_block(sh, s, disk_idx, disks)) {
3353                 /* we would like to get this block, possibly by computing it,
3354                  * otherwise read it if the backing disk is insync
3355                  */
3356                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3357                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3358                 BUG_ON(sh->batch_head);
3359                 if ((s->uptodate == disks - 1) &&
3360                     (s->failed && (disk_idx == s->failed_num[0] ||
3361                                    disk_idx == s->failed_num[1]))) {
3362                         /* have disk failed, and we're requested to fetch it;
3363                          * do compute it
3364                          */
3365                         pr_debug("Computing stripe %llu block %d\n",
3366                                (unsigned long long)sh->sector, disk_idx);
3367                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3368                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3369                         set_bit(R5_Wantcompute, &dev->flags);
3370                         sh->ops.target = disk_idx;
3371                         sh->ops.target2 = -1; /* no 2nd target */
3372                         s->req_compute = 1;
3373                         /* Careful: from this point on 'uptodate' is in the eye
3374                          * of raid_run_ops which services 'compute' operations
3375                          * before writes. R5_Wantcompute flags a block that will
3376                          * be R5_UPTODATE by the time it is needed for a
3377                          * subsequent operation.
3378                          */
3379                         s->uptodate++;
3380                         return 1;
3381                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3382                         /* Computing 2-failure is *very* expensive; only
3383                          * do it if failed >= 2
3384                          */
3385                         int other;
3386                         for (other = disks; other--; ) {
3387                                 if (other == disk_idx)
3388                                         continue;
3389                                 if (!test_bit(R5_UPTODATE,
3390                                       &sh->dev[other].flags))
3391                                         break;
3392                         }
3393                         BUG_ON(other < 0);
3394                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3395                                (unsigned long long)sh->sector,
3396                                disk_idx, other);
3397                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3398                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3399                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3400                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3401                         sh->ops.target = disk_idx;
3402                         sh->ops.target2 = other;
3403                         s->uptodate += 2;
3404                         s->req_compute = 1;
3405                         return 1;
3406                 } else if (test_bit(R5_Insync, &dev->flags)) {
3407                         set_bit(R5_LOCKED, &dev->flags);
3408                         set_bit(R5_Wantread, &dev->flags);
3409                         s->locked++;
3410                         pr_debug("Reading block %d (sync=%d)\n",
3411                                 disk_idx, s->syncing);
3412                 }
3413         }
3414
3415         return 0;
3416 }
3417
3418 /**
3419  * handle_stripe_fill - read or compute data to satisfy pending requests.
3420  */
3421 static void handle_stripe_fill(struct stripe_head *sh,
3422                                struct stripe_head_state *s,
3423                                int disks)
3424 {
3425         int i;
3426
3427         /* look for blocks to read/compute, skip this if a compute
3428          * is already in flight, or if the stripe contents are in the
3429          * midst of changing due to a write
3430          */
3431         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3432             !sh->reconstruct_state)
3433                 for (i = disks; i--; )
3434                         if (fetch_block(sh, s, i, disks))
3435                                 break;
3436         set_bit(STRIPE_HANDLE, &sh->state);
3437 }
3438
3439 static void break_stripe_batch_list(struct stripe_head *head_sh,
3440                                     unsigned long handle_flags);
3441 /* handle_stripe_clean_event
3442  * any written block on an uptodate or failed drive can be returned.
3443  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3444  * never LOCKED, so we don't need to test 'failed' directly.
3445  */
3446 static void handle_stripe_clean_event(struct r5conf *conf,
3447         struct stripe_head *sh, int disks, struct bio **return_bi)
3448 {
3449         int i;
3450         struct r5dev *dev;
3451         int discard_pending = 0;
3452         struct stripe_head *head_sh = sh;
3453         bool do_endio = false;
3454
3455         for (i = disks; i--; )
3456                 if (sh->dev[i].written) {
3457                         dev = &sh->dev[i];
3458                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3459                             (test_bit(R5_UPTODATE, &dev->flags) ||
3460                              test_bit(R5_Discard, &dev->flags) ||
3461                              test_bit(R5_SkipCopy, &dev->flags))) {
3462                                 /* We can return any write requests */
3463                                 struct bio *wbi, *wbi2;
3464                                 pr_debug("Return write for disc %d\n", i);
3465                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3466                                         clear_bit(R5_UPTODATE, &dev->flags);
3467                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3468                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3469                                 }
3470                                 do_endio = true;
3471
3472 returnbi:
3473                                 dev->page = dev->orig_page;
3474                                 wbi = dev->written;
3475                                 dev->written = NULL;
3476                                 while (wbi && wbi->bi_iter.bi_sector <
3477                                         dev->sector + STRIPE_SECTORS) {
3478                                         wbi2 = r5_next_bio(wbi, dev->sector);
3479                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3480                                                 md_write_end(conf->mddev);
3481                                                 wbi->bi_next = *return_bi;
3482                                                 *return_bi = wbi;
3483                                         }
3484                                         wbi = wbi2;
3485                                 }
3486                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3487                                                 STRIPE_SECTORS,
3488                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3489                                                 0);
3490                                 if (head_sh->batch_head) {
3491                                         sh = list_first_entry(&sh->batch_list,
3492                                                               struct stripe_head,
3493                                                               batch_list);
3494                                         if (sh != head_sh) {
3495                                                 dev = &sh->dev[i];
3496                                                 goto returnbi;
3497                                         }
3498                                 }
3499                                 sh = head_sh;
3500                                 dev = &sh->dev[i];
3501                         } else if (test_bit(R5_Discard, &dev->flags))
3502                                 discard_pending = 1;
3503                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3504                         WARN_ON(dev->page != dev->orig_page);
3505                 }
3506         if (!discard_pending &&
3507             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3508                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3509                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3510                 if (sh->qd_idx >= 0) {
3511                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3512                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3513                 }
3514                 /* now that discard is done we can proceed with any sync */
3515                 clear_bit(STRIPE_DISCARD, &sh->state);
3516                 /*
3517                  * SCSI discard will change some bio fields and the stripe has
3518                  * no updated data, so remove it from hash list and the stripe
3519                  * will be reinitialized
3520                  */
3521                 spin_lock_irq(&conf->device_lock);
3522 unhash:
3523                 remove_hash(sh);
3524                 if (head_sh->batch_head) {
3525                         sh = list_first_entry(&sh->batch_list,
3526                                               struct stripe_head, batch_list);
3527                         if (sh != head_sh)
3528                                         goto unhash;
3529                 }
3530                 spin_unlock_irq(&conf->device_lock);
3531                 sh = head_sh;
3532
3533                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3534                         set_bit(STRIPE_HANDLE, &sh->state);
3535
3536         }
3537
3538         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3539                 if (atomic_dec_and_test(&conf->pending_full_writes))
3540                         md_wakeup_thread(conf->mddev->thread);
3541
3542         if (head_sh->batch_head && do_endio)
3543                 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3544 }
3545
3546 static void handle_stripe_dirtying(struct r5conf *conf,
3547                                    struct stripe_head *sh,
3548                                    struct stripe_head_state *s,
3549                                    int disks)
3550 {
3551         int rmw = 0, rcw = 0, i;
3552         sector_t recovery_cp = conf->mddev->recovery_cp;
3553
3554         /* Check whether resync is now happening or should start.
3555          * If yes, then the array is dirty (after unclean shutdown or
3556          * initial creation), so parity in some stripes might be inconsistent.
3557          * In this case, we need to always do reconstruct-write, to ensure
3558          * that in case of drive failure or read-error correction, we
3559          * generate correct data from the parity.
3560          */
3561         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3562             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3563              s->failed == 0)) {
3564                 /* Calculate the real rcw later - for now make it
3565                  * look like rcw is cheaper
3566                  */
3567                 rcw = 1; rmw = 2;
3568                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3569                          conf->rmw_level, (unsigned long long)recovery_cp,
3570                          (unsigned long long)sh->sector);
3571         } else for (i = disks; i--; ) {
3572                 /* would I have to read this buffer for read_modify_write */
3573                 struct r5dev *dev = &sh->dev[i];
3574                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3575                     !test_bit(R5_LOCKED, &dev->flags) &&
3576                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3577                       test_bit(R5_Wantcompute, &dev->flags))) {
3578                         if (test_bit(R5_Insync, &dev->flags))
3579                                 rmw++;
3580                         else
3581                                 rmw += 2*disks;  /* cannot read it */
3582                 }
3583                 /* Would I have to read this buffer for reconstruct_write */
3584                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3585                     i != sh->pd_idx && i != sh->qd_idx &&
3586                     !test_bit(R5_LOCKED, &dev->flags) &&
3587                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3588                     test_bit(R5_Wantcompute, &dev->flags))) {
3589                         if (test_bit(R5_Insync, &dev->flags))
3590                                 rcw++;
3591                         else
3592                                 rcw += 2*disks;
3593                 }
3594         }
3595         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3596                 (unsigned long long)sh->sector, rmw, rcw);
3597         set_bit(STRIPE_HANDLE, &sh->state);
3598         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3599                 /* prefer read-modify-write, but need to get some data */
3600                 if (conf->mddev->queue)
3601                         blk_add_trace_msg(conf->mddev->queue,
3602                                           "raid5 rmw %llu %d",
3603                                           (unsigned long long)sh->sector, rmw);
3604                 for (i = disks; i--; ) {
3605                         struct r5dev *dev = &sh->dev[i];
3606                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3607                             !test_bit(R5_LOCKED, &dev->flags) &&
3608                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3609                             test_bit(R5_Wantcompute, &dev->flags)) &&
3610                             test_bit(R5_Insync, &dev->flags)) {
3611                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3612                                              &sh->state)) {
3613                                         pr_debug("Read_old block %d for r-m-w\n",
3614                                                  i);
3615                                         set_bit(R5_LOCKED, &dev->flags);
3616                                         set_bit(R5_Wantread, &dev->flags);
3617                                         s->locked++;
3618                                 } else {
3619                                         set_bit(STRIPE_DELAYED, &sh->state);
3620                                         set_bit(STRIPE_HANDLE, &sh->state);
3621                                 }
3622                         }
3623                 }
3624         }
3625         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3626                 /* want reconstruct write, but need to get some data */
3627                 int qread =0;
3628                 rcw = 0;
3629                 for (i = disks; i--; ) {
3630                         struct r5dev *dev = &sh->dev[i];
3631                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3632                             i != sh->pd_idx && i != sh->qd_idx &&
3633                             !test_bit(R5_LOCKED, &dev->flags) &&
3634                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3635                               test_bit(R5_Wantcompute, &dev->flags))) {
3636                                 rcw++;
3637                                 if (test_bit(R5_Insync, &dev->flags) &&
3638                                     test_bit(STRIPE_PREREAD_ACTIVE,
3639                                              &sh->state)) {
3640                                         pr_debug("Read_old block "
3641                                                 "%d for Reconstruct\n", i);
3642                                         set_bit(R5_LOCKED, &dev->flags);
3643                                         set_bit(R5_Wantread, &dev->flags);
3644                                         s->locked++;
3645                                         qread++;
3646                                 } else {
3647                                         set_bit(STRIPE_DELAYED, &sh->state);
3648                                         set_bit(STRIPE_HANDLE, &sh->state);
3649                                 }
3650                         }
3651                 }
3652                 if (rcw && conf->mddev->queue)
3653                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3654                                           (unsigned long long)sh->sector,
3655                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3656         }
3657
3658         if (rcw > disks && rmw > disks &&
3659             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3660                 set_bit(STRIPE_DELAYED, &sh->state);
3661
3662         /* now if nothing is locked, and if we have enough data,
3663          * we can start a write request
3664          */
3665         /* since handle_stripe can be called at any time we need to handle the
3666          * case where a compute block operation has been submitted and then a
3667          * subsequent call wants to start a write request.  raid_run_ops only
3668          * handles the case where compute block and reconstruct are requested
3669          * simultaneously.  If this is not the case then new writes need to be
3670          * held off until the compute completes.
3671          */
3672         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3673             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3674             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3675                 schedule_reconstruction(sh, s, rcw == 0, 0);
3676 }
3677
3678 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3679                                 struct stripe_head_state *s, int disks)
3680 {
3681         struct r5dev *dev = NULL;
3682
3683         BUG_ON(sh->batch_head);
3684         set_bit(STRIPE_HANDLE, &sh->state);
3685
3686         switch (sh->check_state) {
3687         case check_state_idle:
3688                 /* start a new check operation if there are no failures */
3689                 if (s->failed == 0) {
3690                         BUG_ON(s->uptodate != disks);
3691                         sh->check_state = check_state_run;
3692                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3693                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3694                         s->uptodate--;
3695                         break;
3696                 }
3697                 dev = &sh->dev[s->failed_num[0]];
3698                 /* fall through */
3699         case check_state_compute_result:
3700                 sh->check_state = check_state_idle;
3701                 if (!dev)
3702                         dev = &sh->dev[sh->pd_idx];
3703
3704                 /* check that a write has not made the stripe insync */
3705                 if (test_bit(STRIPE_INSYNC, &sh->state))
3706                         break;
3707
3708                 /* either failed parity check, or recovery is happening */
3709                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3710                 BUG_ON(s->uptodate != disks);
3711
3712                 set_bit(R5_LOCKED, &dev->flags);
3713                 s->locked++;
3714                 set_bit(R5_Wantwrite, &dev->flags);
3715
3716                 clear_bit(STRIPE_DEGRADED, &sh->state);
3717                 set_bit(STRIPE_INSYNC, &sh->state);
3718                 break;
3719         case check_state_run:
3720                 break; /* we will be called again upon completion */
3721         case check_state_check_result:
3722                 sh->check_state = check_state_idle;
3723
3724                 /* if a failure occurred during the check operation, leave
3725                  * STRIPE_INSYNC not set and let the stripe be handled again
3726                  */
3727                 if (s->failed)
3728                         break;
3729
3730                 /* handle a successful check operation, if parity is correct
3731                  * we are done.  Otherwise update the mismatch count and repair
3732                  * parity if !MD_RECOVERY_CHECK
3733                  */
3734                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3735                         /* parity is correct (on disc,
3736                          * not in buffer any more)
3737                          */
3738                         set_bit(STRIPE_INSYNC, &sh->state);
3739                 else {
3740                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3741                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3742                                 /* don't try to repair!! */
3743                                 set_bit(STRIPE_INSYNC, &sh->state);
3744                         else {
3745                                 sh->check_state = check_state_compute_run;
3746                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3747                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3748                                 set_bit(R5_Wantcompute,
3749                                         &sh->dev[sh->pd_idx].flags);
3750                                 sh->ops.target = sh->pd_idx;
3751                                 sh->ops.target2 = -1;
3752                                 s->uptodate++;
3753                         }
3754                 }
3755                 break;
3756         case check_state_compute_run:
3757                 break;
3758         default:
3759                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3760                        __func__, sh->check_state,
3761                        (unsigned long long) sh->sector);
3762                 BUG();
3763         }
3764 }
3765
3766 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3767                                   struct stripe_head_state *s,
3768                                   int disks)
3769 {
3770         int pd_idx = sh->pd_idx;
3771         int qd_idx = sh->qd_idx;
3772         struct r5dev *dev;
3773
3774         BUG_ON(sh->batch_head);
3775         set_bit(STRIPE_HANDLE, &sh->state);
3776
3777         BUG_ON(s->failed > 2);
3778
3779         /* Want to check and possibly repair P and Q.
3780          * However there could be one 'failed' device, in which
3781          * case we can only check one of them, possibly using the
3782          * other to generate missing data
3783          */
3784
3785         switch (sh->check_state) {
3786         case check_state_idle:
3787                 /* start a new check operation if there are < 2 failures */
3788                 if (s->failed == s->q_failed) {
3789                         /* The only possible failed device holds Q, so it
3790                          * makes sense to check P (If anything else were failed,
3791                          * we would have used P to recreate it).
3792                          */
3793                         sh->check_state = check_state_run;
3794                 }
3795                 if (!s->q_failed && s->failed < 2) {
3796                         /* Q is not failed, and we didn't use it to generate
3797                          * anything, so it makes sense to check it
3798                          */
3799                         if (sh->check_state == check_state_run)
3800                                 sh->check_state = check_state_run_pq;
3801                         else
3802                                 sh->check_state = check_state_run_q;
3803                 }
3804
3805                 /* discard potentially stale zero_sum_result */
3806                 sh->ops.zero_sum_result = 0;
3807
3808                 if (sh->check_state == check_state_run) {
3809                         /* async_xor_zero_sum destroys the contents of P */
3810                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3811                         s->uptodate--;
3812                 }
3813                 if (sh->check_state >= check_state_run &&
3814                     sh->check_state <= check_state_run_pq) {
3815                         /* async_syndrome_zero_sum preserves P and Q, so
3816                          * no need to mark them !uptodate here
3817                          */
3818                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3819                         break;
3820                 }
3821
3822                 /* we have 2-disk failure */
3823                 BUG_ON(s->failed != 2);
3824                 /* fall through */
3825         case check_state_compute_result:
3826                 sh->check_state = check_state_idle;
3827
3828                 /* check that a write has not made the stripe insync */
3829                 if (test_bit(STRIPE_INSYNC, &sh->state))
3830                         break;
3831
3832                 /* now write out any block on a failed drive,
3833                  * or P or Q if they were recomputed
3834                  */
3835                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3836                 if (s->failed == 2) {
3837                         dev = &sh->dev[s->failed_num[1]];
3838                         s->locked++;
3839                         set_bit(R5_LOCKED, &dev->flags);
3840                         set_bit(R5_Wantwrite, &dev->flags);
3841                 }
3842                 if (s->failed >= 1) {
3843                         dev = &sh->dev[s->failed_num[0]];
3844                         s->locked++;
3845                         set_bit(R5_LOCKED, &dev->flags);
3846                         set_bit(R5_Wantwrite, &dev->flags);
3847                 }
3848                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3849                         dev = &sh->dev[pd_idx];
3850                         s->locked++;
3851                         set_bit(R5_LOCKED, &dev->flags);
3852                         set_bit(R5_Wantwrite, &dev->flags);
3853                 }
3854                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3855                         dev = &sh->dev[qd_idx];
3856                         s->locked++;
3857                         set_bit(R5_LOCKED, &dev->flags);
3858                         set_bit(R5_Wantwrite, &dev->flags);
3859                 }
3860                 clear_bit(STRIPE_DEGRADED, &sh->state);
3861
3862                 set_bit(STRIPE_INSYNC, &sh->state);
3863                 break;
3864         case check_state_run:
3865         case check_state_run_q:
3866         case check_state_run_pq:
3867                 break; /* we will be called again upon completion */
3868         case check_state_check_result:
3869                 sh->check_state = check_state_idle;
3870
3871                 /* handle a successful check operation, if parity is correct
3872                  * we are done.  Otherwise update the mismatch count and repair
3873                  * parity if !MD_RECOVERY_CHECK
3874                  */
3875                 if (sh->ops.zero_sum_result == 0) {
3876                         /* both parities are correct */
3877                         if (!s->failed)
3878                                 set_bit(STRIPE_INSYNC, &sh->state);
3879                         else {
3880                                 /* in contrast to the raid5 case we can validate
3881                                  * parity, but still have a failure to write
3882                                  * back
3883                                  */
3884                                 sh->check_state = check_state_compute_result;
3885                                 /* Returning at this point means that we may go
3886                                  * off and bring p and/or q uptodate again so
3887                                  * we make sure to check zero_sum_result again
3888                                  * to verify if p or q need writeback
3889                                  */
3890                         }
3891                 } else {
3892                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3893                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3894                                 /* don't try to repair!! */
3895                                 set_bit(STRIPE_INSYNC, &sh->state);
3896                         else {
3897                                 int *target = &sh->ops.target;
3898
3899                                 sh->ops.target = -1;
3900                                 sh->ops.target2 = -1;
3901                                 sh->check_state = check_state_compute_run;
3902                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3903                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3904                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3905                                         set_bit(R5_Wantcompute,
3906                                                 &sh->dev[pd_idx].flags);
3907                                         *target = pd_idx;
3908                                         target = &sh->ops.target2;
3909                                         s->uptodate++;
3910                                 }
3911                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3912                                         set_bit(R5_Wantcompute,
3913                                                 &sh->dev[qd_idx].flags);
3914                                         *target = qd_idx;
3915                                         s->uptodate++;
3916                                 }
3917                         }
3918                 }
3919                 break;
3920         case check_state_compute_run:
3921                 break;
3922         default:
3923                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3924                        __func__, sh->check_state,
3925                        (unsigned long long) sh->sector);
3926                 BUG();
3927         }
3928 }
3929
3930 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3931 {
3932         int i;
3933
3934         /* We have read all the blocks in this stripe and now we need to
3935          * copy some of them into a target stripe for expand.
3936          */
3937         struct dma_async_tx_descriptor *tx = NULL;
3938         BUG_ON(sh->batch_head);
3939         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3940         for (i = 0; i < sh->disks; i++)
3941                 if (i != sh->pd_idx && i != sh->qd_idx) {
3942                         int dd_idx, j;
3943                         struct stripe_head *sh2;
3944                         struct async_submit_ctl submit;
3945
3946                         sector_t bn = compute_blocknr(sh, i, 1);
3947                         sector_t s = raid5_compute_sector(conf, bn, 0,
3948                                                           &dd_idx, NULL);
3949                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3950                         if (sh2 == NULL)
3951                                 /* so far only the early blocks of this stripe
3952                                  * have been requested.  When later blocks
3953                                  * get requested, we will try again
3954                                  */
3955                                 continue;
3956                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3957                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3958                                 /* must have already done this block */
3959                                 release_stripe(sh2);
3960                                 continue;
3961                         }
3962
3963                         /* place all the copies on one channel */
3964                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3965                         tx = async_memcpy(sh2->dev[dd_idx].page,
3966                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3967                                           &submit);
3968
3969                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3970                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3971                         for (j = 0; j < conf->raid_disks; j++)
3972                                 if (j != sh2->pd_idx &&
3973                                     j != sh2->qd_idx &&
3974                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3975                                         break;
3976                         if (j == conf->raid_disks) {
3977                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3978                                 set_bit(STRIPE_HANDLE, &sh2->state);
3979                         }
3980                         release_stripe(sh2);
3981
3982                 }
3983         /* done submitting copies, wait for them to complete */
3984         async_tx_quiesce(&tx);
3985 }
3986
3987 /*
3988  * handle_stripe - do things to a stripe.
3989  *
3990  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3991  * state of various bits to see what needs to be done.
3992  * Possible results:
3993  *    return some read requests which now have data
3994  *    return some write requests which are safely on storage
3995  *    schedule a read on some buffers
3996  *    schedule a write of some buffers
3997  *    return confirmation of parity correctness
3998  *
3999  */
4000
4001 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4002 {
4003         struct r5conf *conf = sh->raid_conf;
4004         int disks = sh->disks;
4005         struct r5dev *dev;
4006         int i;
4007         int do_recovery = 0;
4008
4009         memset(s, 0, sizeof(*s));
4010
4011         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4012         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4013         s->failed_num[0] = -1;
4014         s->failed_num[1] = -1;
4015
4016         /* Now to look around and see what can be done */
4017         rcu_read_lock();
4018         for (i=disks; i--; ) {
4019                 struct md_rdev *rdev;
4020                 sector_t first_bad;
4021                 int bad_sectors;
4022                 int is_bad = 0;
4023
4024                 dev = &sh->dev[i];
4025
4026                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4027                          i, dev->flags,
4028                          dev->toread, dev->towrite, dev->written);
4029                 /* maybe we can reply to a read
4030                  *
4031                  * new wantfill requests are only permitted while
4032                  * ops_complete_biofill is guaranteed to be inactive
4033                  */
4034                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4035                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4036                         set_bit(R5_Wantfill, &dev->flags);
4037
4038                 /* now count some things */
4039                 if (test_bit(R5_LOCKED, &dev->flags))
4040                         s->locked++;
4041                 if (test_bit(R5_UPTODATE, &dev->flags))
4042                         s->uptodate++;
4043                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4044                         s->compute++;
4045                         BUG_ON(s->compute > 2);
4046                 }
4047
4048                 if (test_bit(R5_Wantfill, &dev->flags))
4049                         s->to_fill++;
4050                 else if (dev->toread)
4051                         s->to_read++;
4052                 if (dev->towrite) {
4053                         s->to_write++;
4054                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4055                                 s->non_overwrite++;
4056                 }
4057                 if (dev->written)
4058                         s->written++;
4059                 /* Prefer to use the replacement for reads, but only
4060                  * if it is recovered enough and has no bad blocks.
4061                  */
4062                 rdev = rcu_dereference(conf->disks[i].replacement);
4063                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4064                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4065                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4066                                  &first_bad, &bad_sectors))
4067                         set_bit(R5_ReadRepl, &dev->flags);
4068                 else {
4069                         if (rdev && !test_bit(Faulty, &rdev->flags))
4070                                 set_bit(R5_NeedReplace, &dev->flags);
4071                         else
4072                                 clear_bit(R5_NeedReplace, &dev->flags);
4073                         rdev = rcu_dereference(conf->disks[i].rdev);
4074                         clear_bit(R5_ReadRepl, &dev->flags);
4075                 }
4076                 if (rdev && test_bit(Faulty, &rdev->flags))
4077                         rdev = NULL;
4078                 if (rdev) {
4079                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4080                                              &first_bad, &bad_sectors);
4081                         if (s->blocked_rdev == NULL
4082                             && (test_bit(Blocked, &rdev->flags)
4083                                 || is_bad < 0)) {
4084                                 if (is_bad < 0)
4085                                         set_bit(BlockedBadBlocks,
4086                                                 &rdev->flags);
4087                                 s->blocked_rdev = rdev;
4088                                 atomic_inc(&rdev->nr_pending);
4089                         }
4090                 }
4091                 clear_bit(R5_Insync, &dev->flags);
4092                 if (!rdev)
4093                         /* Not in-sync */;
4094                 else if (is_bad) {
4095                         /* also not in-sync */
4096                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4097                             test_bit(R5_UPTODATE, &dev->flags)) {
4098                                 /* treat as in-sync, but with a read error
4099                                  * which we can now try to correct
4100                                  */
4101                                 set_bit(R5_Insync, &dev->flags);
4102                                 set_bit(R5_ReadError, &dev->flags);
4103                         }
4104                 } else if (test_bit(In_sync, &rdev->flags))
4105                         set_bit(R5_Insync, &dev->flags);
4106                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4107                         /* in sync if before recovery_offset */
4108                         set_bit(R5_Insync, &dev->flags);
4109                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4110                          test_bit(R5_Expanded, &dev->flags))
4111                         /* If we've reshaped into here, we assume it is Insync.
4112                          * We will shortly update recovery_offset to make
4113                          * it official.
4114                          */
4115                         set_bit(R5_Insync, &dev->flags);
4116
4117                 if (test_bit(R5_WriteError, &dev->flags)) {
4118                         /* This flag does not apply to '.replacement'
4119                          * only to .rdev, so make sure to check that*/
4120                         struct md_rdev *rdev2 = rcu_dereference(
4121                                 conf->disks[i].rdev);
4122                         if (rdev2 == rdev)
4123                                 clear_bit(R5_Insync, &dev->flags);
4124                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4125                                 s->handle_bad_blocks = 1;
4126                                 atomic_inc(&rdev2->nr_pending);
4127                         } else
4128                                 clear_bit(R5_WriteError, &dev->flags);
4129                 }
4130                 if (test_bit(R5_MadeGood, &dev->flags)) {
4131                         /* This flag does not apply to '.replacement'
4132                          * only to .rdev, so make sure to check that*/
4133                         struct md_rdev *rdev2 = rcu_dereference(
4134                                 conf->disks[i].rdev);
4135                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4136                                 s->handle_bad_blocks = 1;
4137                                 atomic_inc(&rdev2->nr_pending);
4138                         } else
4139                                 clear_bit(R5_MadeGood, &dev->flags);
4140                 }
4141                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4142                         struct md_rdev *rdev2 = rcu_dereference(
4143                                 conf->disks[i].replacement);
4144                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4145                                 s->handle_bad_blocks = 1;
4146                                 atomic_inc(&rdev2->nr_pending);
4147                         } else
4148                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4149                 }
4150                 if (!test_bit(R5_Insync, &dev->flags)) {
4151                         /* The ReadError flag will just be confusing now */
4152                         clear_bit(R5_ReadError, &dev->flags);
4153                         clear_bit(R5_ReWrite, &dev->flags);
4154                 }
4155                 if (test_bit(R5_ReadError, &dev->flags))
4156                         clear_bit(R5_Insync, &dev->flags);
4157                 if (!test_bit(R5_Insync, &dev->flags)) {
4158                         if (s->failed < 2)
4159                                 s->failed_num[s->failed] = i;
4160                         s->failed++;
4161                         if (rdev && !test_bit(Faulty, &rdev->flags))
4162                                 do_recovery = 1;
4163                 }
4164         }
4165         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4166                 /* If there is a failed device being replaced,
4167                  *     we must be recovering.
4168                  * else if we are after recovery_cp, we must be syncing
4169                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4170                  * else we can only be replacing
4171                  * sync and recovery both need to read all devices, and so
4172                  * use the same flag.
4173                  */
4174                 if (do_recovery ||
4175                     sh->sector >= conf->mddev->recovery_cp ||
4176                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4177                         s->syncing = 1;
4178                 else
4179                         s->replacing = 1;
4180         }
4181         rcu_read_unlock();
4182 }
4183
4184 static int clear_batch_ready(struct stripe_head *sh)
4185 {
4186         /* Return '1' if this is a member of batch, or
4187          * '0' if it is a lone stripe or a head which can now be
4188          * handled.
4189          */
4190         struct stripe_head *tmp;
4191         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4192                 return (sh->batch_head && sh->batch_head != sh);
4193         spin_lock(&sh->stripe_lock);
4194         if (!sh->batch_head) {
4195                 spin_unlock(&sh->stripe_lock);
4196                 return 0;
4197         }
4198
4199         /*
4200          * this stripe could be added to a batch list before we check
4201          * BATCH_READY, skips it
4202          */
4203         if (sh->batch_head != sh) {
4204                 spin_unlock(&sh->stripe_lock);
4205                 return 1;
4206         }
4207         spin_lock(&sh->batch_lock);
4208         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4209                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4210         spin_unlock(&sh->batch_lock);
4211         spin_unlock(&sh->stripe_lock);
4212
4213         /*
4214          * BATCH_READY is cleared, no new stripes can be added.
4215          * batch_list can be accessed without lock
4216          */
4217         return 0;
4218 }
4219
4220 static void break_stripe_batch_list(struct stripe_head *head_sh,
4221                                     unsigned long handle_flags)
4222 {
4223         struct stripe_head *sh, *next;
4224         int i;
4225         int do_wakeup = 0;
4226
4227         list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4228
4229                 list_del_init(&sh->batch_list);
4230
4231                 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4232                                           (1 << STRIPE_SYNCING) |
4233                                           (1 << STRIPE_REPLACED) |
4234                                           (1 << STRIPE_PREREAD_ACTIVE) |
4235                                           (1 << STRIPE_DELAYED) |
4236                                           (1 << STRIPE_BIT_DELAY) |
4237                                           (1 << STRIPE_FULL_WRITE) |
4238                                           (1 << STRIPE_BIOFILL_RUN) |
4239                                           (1 << STRIPE_COMPUTE_RUN)  |
4240                                           (1 << STRIPE_OPS_REQ_PENDING) |
4241                                           (1 << STRIPE_DISCARD) |
4242                                           (1 << STRIPE_BATCH_READY) |
4243                                           (1 << STRIPE_BATCH_ERR) |
4244                                           (1 << STRIPE_BITMAP_PENDING)));
4245                 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4246                                               (1 << STRIPE_REPLACED)));
4247
4248                 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4249                                             (1 << STRIPE_DEGRADED)),
4250                               head_sh->state & (1 << STRIPE_INSYNC));
4251
4252                 sh->check_state = head_sh->check_state;
4253                 sh->reconstruct_state = head_sh->reconstruct_state;
4254                 for (i = 0; i < sh->disks; i++) {
4255                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4256                                 do_wakeup = 1;
4257                         sh->dev[i].flags = head_sh->dev[i].flags &
4258                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4259                 }
4260                 spin_lock_irq(&sh->stripe_lock);
4261                 sh->batch_head = NULL;
4262                 spin_unlock_irq(&sh->stripe_lock);
4263                 if (handle_flags == 0 ||
4264                     sh->state & handle_flags)
4265                         set_bit(STRIPE_HANDLE, &sh->state);
4266                 release_stripe(sh);
4267         }
4268         spin_lock_irq(&head_sh->stripe_lock);
4269         head_sh->batch_head = NULL;
4270         spin_unlock_irq(&head_sh->stripe_lock);
4271         for (i = 0; i < head_sh->disks; i++)
4272                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4273                         do_wakeup = 1;
4274         if (head_sh->state & handle_flags)
4275                 set_bit(STRIPE_HANDLE, &head_sh->state);
4276
4277         if (do_wakeup)
4278                 wake_up(&head_sh->raid_conf->wait_for_overlap);
4279 }
4280
4281 static void handle_stripe(struct stripe_head *sh)
4282 {
4283         struct stripe_head_state s;
4284         struct r5conf *conf = sh->raid_conf;
4285         int i;
4286         int prexor;
4287         int disks = sh->disks;
4288         struct r5dev *pdev, *qdev;
4289
4290         clear_bit(STRIPE_HANDLE, &sh->state);
4291         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4292                 /* already being handled, ensure it gets handled
4293                  * again when current action finishes */
4294                 set_bit(STRIPE_HANDLE, &sh->state);
4295                 return;
4296         }
4297
4298         if (clear_batch_ready(sh) ) {
4299                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4300                 return;
4301         }
4302
4303         if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4304                 break_stripe_batch_list(sh, 0);
4305
4306         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4307                 spin_lock(&sh->stripe_lock);
4308                 /* Cannot process 'sync' concurrently with 'discard' */
4309                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4310                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4311                         set_bit(STRIPE_SYNCING, &sh->state);
4312                         clear_bit(STRIPE_INSYNC, &sh->state);
4313                         clear_bit(STRIPE_REPLACED, &sh->state);
4314                 }
4315                 spin_unlock(&sh->stripe_lock);
4316         }
4317         clear_bit(STRIPE_DELAYED, &sh->state);
4318
4319         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4320                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4321                (unsigned long long)sh->sector, sh->state,
4322                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4323                sh->check_state, sh->reconstruct_state);
4324
4325         analyse_stripe(sh, &s);
4326
4327         if (s.handle_bad_blocks) {
4328                 set_bit(STRIPE_HANDLE, &sh->state);
4329                 goto finish;
4330         }
4331
4332         if (unlikely(s.blocked_rdev)) {
4333                 if (s.syncing || s.expanding || s.expanded ||
4334                     s.replacing || s.to_write || s.written) {
4335                         set_bit(STRIPE_HANDLE, &sh->state);
4336                         goto finish;
4337                 }
4338                 /* There is nothing for the blocked_rdev to block */
4339                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4340                 s.blocked_rdev = NULL;
4341         }
4342
4343         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4344                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4345                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4346         }
4347
4348         pr_debug("locked=%d uptodate=%d to_read=%d"
4349                " to_write=%d failed=%d failed_num=%d,%d\n",
4350                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4351                s.failed_num[0], s.failed_num[1]);
4352         /* check if the array has lost more than max_degraded devices and,
4353          * if so, some requests might need to be failed.
4354          */
4355         if (s.failed > conf->max_degraded) {
4356                 sh->check_state = 0;
4357                 sh->reconstruct_state = 0;
4358                 break_stripe_batch_list(sh, 0);
4359                 if (s.to_read+s.to_write+s.written)
4360                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4361                 if (s.syncing + s.replacing)
4362                         handle_failed_sync(conf, sh, &s);
4363         }
4364
4365         /* Now we check to see if any write operations have recently
4366          * completed
4367          */
4368         prexor = 0;
4369         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4370                 prexor = 1;
4371         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4372             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4373                 sh->reconstruct_state = reconstruct_state_idle;
4374
4375                 /* All the 'written' buffers and the parity block are ready to
4376                  * be written back to disk
4377                  */
4378                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4379                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4380                 BUG_ON(sh->qd_idx >= 0 &&
4381                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4382                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4383                 for (i = disks; i--; ) {
4384                         struct r5dev *dev = &sh->dev[i];
4385                         if (test_bit(R5_LOCKED, &dev->flags) &&
4386                                 (i == sh->pd_idx || i == sh->qd_idx ||
4387                                  dev->written)) {
4388                                 pr_debug("Writing block %d\n", i);
4389                                 set_bit(R5_Wantwrite, &dev->flags);
4390                                 if (prexor)
4391                                         continue;
4392                                 if (s.failed > 1)
4393                                         continue;
4394                                 if (!test_bit(R5_Insync, &dev->flags) ||
4395                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4396                                      s.failed == 0))
4397                                         set_bit(STRIPE_INSYNC, &sh->state);
4398                         }
4399                 }
4400                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4401                         s.dec_preread_active = 1;
4402         }
4403
4404         /*
4405          * might be able to return some write requests if the parity blocks
4406          * are safe, or on a failed drive
4407          */
4408         pdev = &sh->dev[sh->pd_idx];
4409         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4410                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4411         qdev = &sh->dev[sh->qd_idx];
4412         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4413                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4414                 || conf->level < 6;
4415
4416         if (s.written &&
4417             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4418                              && !test_bit(R5_LOCKED, &pdev->flags)
4419                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4420                                  test_bit(R5_Discard, &pdev->flags))))) &&
4421             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4422                              && !test_bit(R5_LOCKED, &qdev->flags)
4423                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4424                                  test_bit(R5_Discard, &qdev->flags))))))
4425                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4426
4427         /* Now we might consider reading some blocks, either to check/generate
4428          * parity, or to satisfy requests
4429          * or to load a block that is being partially written.
4430          */
4431         if (s.to_read || s.non_overwrite
4432             || (conf->level == 6 && s.to_write && s.failed)
4433             || (s.syncing && (s.uptodate + s.compute < disks))
4434             || s.replacing
4435             || s.expanding)
4436                 handle_stripe_fill(sh, &s, disks);
4437
4438         /* Now to consider new write requests and what else, if anything
4439          * should be read.  We do not handle new writes when:
4440          * 1/ A 'write' operation (copy+xor) is already in flight.
4441          * 2/ A 'check' operation is in flight, as it may clobber the parity
4442          *    block.
4443          */
4444         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4445                 handle_stripe_dirtying(conf, sh, &s, disks);
4446
4447         /* maybe we need to check and possibly fix the parity for this stripe
4448          * Any reads will already have been scheduled, so we just see if enough
4449          * data is available.  The parity check is held off while parity
4450          * dependent operations are in flight.
4451          */
4452         if (sh->check_state ||
4453             (s.syncing && s.locked == 0 &&
4454              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4455              !test_bit(STRIPE_INSYNC, &sh->state))) {
4456                 if (conf->level == 6)
4457                         handle_parity_checks6(conf, sh, &s, disks);
4458                 else
4459                         handle_parity_checks5(conf, sh, &s, disks);
4460         }
4461
4462         if ((s.replacing || s.syncing) && s.locked == 0
4463             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4464             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4465                 /* Write out to replacement devices where possible */
4466                 for (i = 0; i < conf->raid_disks; i++)
4467                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4468                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4469                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4470                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4471                                 s.locked++;
4472                         }
4473                 if (s.replacing)
4474                         set_bit(STRIPE_INSYNC, &sh->state);
4475                 set_bit(STRIPE_REPLACED, &sh->state);
4476         }
4477         if ((s.syncing || s.replacing) && s.locked == 0 &&
4478             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4479             test_bit(STRIPE_INSYNC, &sh->state)) {
4480                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4481                 clear_bit(STRIPE_SYNCING, &sh->state);
4482                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4483                         wake_up(&conf->wait_for_overlap);
4484         }
4485
4486         /* If the failed drives are just a ReadError, then we might need
4487          * to progress the repair/check process
4488          */
4489         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4490                 for (i = 0; i < s.failed; i++) {
4491                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4492                         if (test_bit(R5_ReadError, &dev->flags)
4493                             && !test_bit(R5_LOCKED, &dev->flags)
4494                             && test_bit(R5_UPTODATE, &dev->flags)
4495                                 ) {
4496                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4497                                         set_bit(R5_Wantwrite, &dev->flags);
4498                                         set_bit(R5_ReWrite, &dev->flags);
4499                                         set_bit(R5_LOCKED, &dev->flags);
4500                                         s.locked++;
4501                                 } else {
4502                                         /* let's read it back */
4503                                         set_bit(R5_Wantread, &dev->flags);
4504                                         set_bit(R5_LOCKED, &dev->flags);
4505                                         s.locked++;
4506                                 }
4507                         }
4508                 }
4509
4510         /* Finish reconstruct operations initiated by the expansion process */
4511         if (sh->reconstruct_state == reconstruct_state_result) {
4512                 struct stripe_head *sh_src
4513                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4514                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4515                         /* sh cannot be written until sh_src has been read.
4516                          * so arrange for sh to be delayed a little
4517                          */
4518                         set_bit(STRIPE_DELAYED, &sh->state);
4519                         set_bit(STRIPE_HANDLE, &sh->state);
4520                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4521                                               &sh_src->state))
4522                                 atomic_inc(&conf->preread_active_stripes);
4523                         release_stripe(sh_src);
4524                         goto finish;
4525                 }
4526                 if (sh_src)
4527                         release_stripe(sh_src);
4528
4529                 sh->reconstruct_state = reconstruct_state_idle;
4530                 clear_bit(STRIPE_EXPANDING, &sh->state);
4531                 for (i = conf->raid_disks; i--; ) {
4532                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4533                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4534                         s.locked++;
4535                 }
4536         }
4537
4538         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4539             !sh->reconstruct_state) {
4540                 /* Need to write out all blocks after computing parity */
4541                 sh->disks = conf->raid_disks;
4542                 stripe_set_idx(sh->sector, conf, 0, sh);
4543                 schedule_reconstruction(sh, &s, 1, 1);
4544         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4545                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4546                 atomic_dec(&conf->reshape_stripes);
4547                 wake_up(&conf->wait_for_overlap);
4548                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4549         }
4550
4551         if (s.expanding && s.locked == 0 &&
4552             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4553                 handle_stripe_expansion(conf, sh);
4554
4555 finish:
4556         /* wait for this device to become unblocked */
4557         if (unlikely(s.blocked_rdev)) {
4558                 if (conf->mddev->external)
4559                         md_wait_for_blocked_rdev(s.blocked_rdev,
4560                                                  conf->mddev);
4561                 else
4562                         /* Internal metadata will immediately
4563                          * be written by raid5d, so we don't
4564                          * need to wait here.
4565                          */
4566                         rdev_dec_pending(s.blocked_rdev,
4567                                          conf->mddev);
4568         }
4569
4570         if (s.handle_bad_blocks)
4571                 for (i = disks; i--; ) {
4572                         struct md_rdev *rdev;
4573                         struct r5dev *dev = &sh->dev[i];
4574                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4575                                 /* We own a safe reference to the rdev */
4576                                 rdev = conf->disks[i].rdev;
4577                                 if (!rdev_set_badblocks(rdev, sh->sector,
4578                                                         STRIPE_SECTORS, 0))
4579                                         md_error(conf->mddev, rdev);
4580                                 rdev_dec_pending(rdev, conf->mddev);
4581                         }
4582                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4583                                 rdev = conf->disks[i].rdev;
4584                                 rdev_clear_badblocks(rdev, sh->sector,
4585                                                      STRIPE_SECTORS, 0);
4586                                 rdev_dec_pending(rdev, conf->mddev);
4587                         }
4588                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4589                                 rdev = conf->disks[i].replacement;
4590                                 if (!rdev)
4591                                         /* rdev have been moved down */
4592                                         rdev = conf->disks[i].rdev;
4593                                 rdev_clear_badblocks(rdev, sh->sector,
4594                                                      STRIPE_SECTORS, 0);
4595                                 rdev_dec_pending(rdev, conf->mddev);
4596                         }
4597                 }
4598
4599         if (s.ops_request)
4600                 raid_run_ops(sh, s.ops_request);
4601
4602         ops_run_io(sh, &s);
4603
4604         if (s.dec_preread_active) {
4605                 /* We delay this until after ops_run_io so that if make_request
4606                  * is waiting on a flush, it won't continue until the writes
4607                  * have actually been submitted.
4608                  */
4609                 atomic_dec(&conf->preread_active_stripes);
4610                 if (atomic_read(&conf->preread_active_stripes) <
4611                     IO_THRESHOLD)
4612                         md_wakeup_thread(conf->mddev->thread);
4613         }
4614
4615         return_io(s.return_bi);
4616
4617         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4618 }
4619
4620 static void raid5_activate_delayed(struct r5conf *conf)
4621 {
4622         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4623                 while (!list_empty(&conf->delayed_list)) {
4624                         struct list_head *l = conf->delayed_list.next;
4625                         struct stripe_head *sh;
4626                         sh = list_entry(l, struct stripe_head, lru);
4627                         list_del_init(l);
4628                         clear_bit(STRIPE_DELAYED, &sh->state);
4629                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4630                                 atomic_inc(&conf->preread_active_stripes);
4631                         list_add_tail(&sh->lru, &conf->hold_list);
4632                         raid5_wakeup_stripe_thread(sh);
4633                 }
4634         }
4635 }
4636
4637 static void activate_bit_delay(struct r5conf *conf,
4638         struct list_head *temp_inactive_list)
4639 {
4640         /* device_lock is held */
4641         struct list_head head;
4642         list_add(&head, &conf->bitmap_list);
4643         list_del_init(&conf->bitmap_list);
4644         while (!list_empty(&head)) {
4645                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4646                 int hash;
4647                 list_del_init(&sh->lru);
4648                 atomic_inc(&sh->count);
4649                 hash = sh->hash_lock_index;
4650                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4651         }
4652 }
4653
4654 static int raid5_congested(struct mddev *mddev, int bits)
4655 {
4656         struct r5conf *conf = mddev->private;
4657
4658         /* No difference between reads and writes.  Just check
4659          * how busy the stripe_cache is
4660          */
4661
4662         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4663                 return 1;
4664         if (conf->quiesce)
4665                 return 1;
4666         if (atomic_read(&conf->empty_inactive_list_nr))
4667                 return 1;
4668
4669         return 0;
4670 }
4671
4672 /* We want read requests to align with chunks where possible,
4673  * but write requests don't need to.
4674  */
4675 static int raid5_mergeable_bvec(struct mddev *mddev,
4676                                 struct bvec_merge_data *bvm,
4677                                 struct bio_vec *biovec)
4678 {
4679         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4680         int max;
4681         unsigned int chunk_sectors = mddev->chunk_sectors;
4682         unsigned int bio_sectors = bvm->bi_size >> 9;
4683
4684         /*
4685          * always allow writes to be mergeable, read as well if array
4686          * is degraded as we'll go through stripe cache anyway.
4687          */
4688         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4689                 return biovec->bv_len;
4690
4691         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4692                 chunk_sectors = mddev->new_chunk_sectors;
4693         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4694         if (max < 0) max = 0;
4695         if (max <= biovec->bv_len && bio_sectors == 0)
4696                 return biovec->bv_len;
4697         else
4698                 return max;
4699 }
4700
4701 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4702 {
4703         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4704         unsigned int chunk_sectors = mddev->chunk_sectors;
4705         unsigned int bio_sectors = bio_sectors(bio);
4706
4707         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4708                 chunk_sectors = mddev->new_chunk_sectors;
4709         return  chunk_sectors >=
4710                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4711 }
4712
4713 /*
4714  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4715  *  later sampled by raid5d.
4716  */
4717 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4718 {
4719         unsigned long flags;
4720
4721         spin_lock_irqsave(&conf->device_lock, flags);
4722
4723         bi->bi_next = conf->retry_read_aligned_list;
4724         conf->retry_read_aligned_list = bi;
4725
4726         spin_unlock_irqrestore(&conf->device_lock, flags);
4727         md_wakeup_thread(conf->mddev->thread);
4728 }
4729
4730 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4731 {
4732         struct bio *bi;
4733
4734         bi = conf->retry_read_aligned;
4735         if (bi) {
4736                 conf->retry_read_aligned = NULL;
4737                 return bi;
4738         }
4739         bi = conf->retry_read_aligned_list;
4740         if(bi) {
4741                 conf->retry_read_aligned_list = bi->bi_next;
4742                 bi->bi_next = NULL;
4743                 /*
4744                  * this sets the active strip count to 1 and the processed
4745                  * strip count to zero (upper 8 bits)
4746                  */
4747                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4748         }
4749
4750         return bi;
4751 }
4752
4753 /*
4754  *  The "raid5_align_endio" should check if the read succeeded and if it
4755  *  did, call bio_endio on the original bio (having bio_put the new bio
4756  *  first).
4757  *  If the read failed..
4758  */
4759 static void raid5_align_endio(struct bio *bi, int error)
4760 {
4761         struct bio* raid_bi  = bi->bi_private;
4762         struct mddev *mddev;
4763         struct r5conf *conf;
4764         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4765         struct md_rdev *rdev;
4766
4767         bio_put(bi);
4768
4769         rdev = (void*)raid_bi->bi_next;
4770         raid_bi->bi_next = NULL;
4771         mddev = rdev->mddev;
4772         conf = mddev->private;
4773
4774         rdev_dec_pending(rdev, conf->mddev);
4775
4776         if (!error && uptodate) {
4777                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4778                                          raid_bi, 0);
4779                 bio_endio(raid_bi, 0);
4780                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4781                         wake_up(&conf->wait_for_quiescent);
4782                 return;
4783         }
4784
4785         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4786
4787         add_bio_to_retry(raid_bi, conf);
4788 }
4789
4790 static int bio_fits_rdev(struct bio *bi)
4791 {
4792         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4793
4794         if (bio_sectors(bi) > queue_max_sectors(q))
4795                 return 0;
4796         blk_recount_segments(q, bi);
4797         if (bi->bi_phys_segments > queue_max_segments(q))
4798                 return 0;
4799
4800         if (q->merge_bvec_fn)
4801                 /* it's too hard to apply the merge_bvec_fn at this stage,
4802                  * just just give up
4803                  */
4804                 return 0;
4805
4806         return 1;
4807 }
4808
4809 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4810 {
4811         struct r5conf *conf = mddev->private;
4812         int dd_idx;
4813         struct bio* align_bi;
4814         struct md_rdev *rdev;
4815         sector_t end_sector;
4816
4817         if (!in_chunk_boundary(mddev, raid_bio)) {
4818                 pr_debug("chunk_aligned_read : non aligned\n");
4819                 return 0;
4820         }
4821         /*
4822          * use bio_clone_mddev to make a copy of the bio
4823          */
4824         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4825         if (!align_bi)
4826                 return 0;
4827         /*
4828          *   set bi_end_io to a new function, and set bi_private to the
4829          *     original bio.
4830          */
4831         align_bi->bi_end_io  = raid5_align_endio;
4832         align_bi->bi_private = raid_bio;
4833         /*
4834          *      compute position
4835          */
4836         align_bi->bi_iter.bi_sector =
4837                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4838                                      0, &dd_idx, NULL);
4839
4840         end_sector = bio_end_sector(align_bi);
4841         rcu_read_lock();
4842         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4843         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4844             rdev->recovery_offset < end_sector) {
4845                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4846                 if (rdev &&
4847                     (test_bit(Faulty, &rdev->flags) ||
4848                     !(test_bit(In_sync, &rdev->flags) ||
4849                       rdev->recovery_offset >= end_sector)))
4850                         rdev = NULL;
4851         }
4852         if (rdev) {
4853                 sector_t first_bad;
4854                 int bad_sectors;
4855
4856                 atomic_inc(&rdev->nr_pending);
4857                 rcu_read_unlock();
4858                 raid_bio->bi_next = (void*)rdev;
4859                 align_bi->bi_bdev =  rdev->bdev;
4860                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4861
4862                 if (!bio_fits_rdev(align_bi) ||
4863                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4864                                 bio_sectors(align_bi),
4865                                 &first_bad, &bad_sectors)) {
4866                         /* too big in some way, or has a known bad block */
4867                         bio_put(align_bi);
4868                         rdev_dec_pending(rdev, mddev);
4869                         return 0;
4870                 }
4871
4872                 /* No reshape active, so we can trust rdev->data_offset */
4873                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4874
4875                 spin_lock_irq(&conf->device_lock);
4876                 wait_event_lock_irq(conf->wait_for_quiescent,
4877                                     conf->quiesce == 0,
4878                                     conf->device_lock);
4879                 atomic_inc(&conf->active_aligned_reads);
4880                 spin_unlock_irq(&conf->device_lock);
4881
4882                 if (mddev->gendisk)
4883                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4884                                               align_bi, disk_devt(mddev->gendisk),
4885                                               raid_bio->bi_iter.bi_sector);
4886                 generic_make_request(align_bi);
4887                 return 1;
4888         } else {
4889                 rcu_read_unlock();
4890                 bio_put(align_bi);
4891                 return 0;
4892         }
4893 }
4894
4895 /* __get_priority_stripe - get the next stripe to process
4896  *
4897  * Full stripe writes are allowed to pass preread active stripes up until
4898  * the bypass_threshold is exceeded.  In general the bypass_count
4899  * increments when the handle_list is handled before the hold_list; however, it
4900  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4901  * stripe with in flight i/o.  The bypass_count will be reset when the
4902  * head of the hold_list has changed, i.e. the head was promoted to the
4903  * handle_list.
4904  */
4905 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4906 {
4907         struct stripe_head *sh = NULL, *tmp;
4908         struct list_head *handle_list = NULL;
4909         struct r5worker_group *wg = NULL;
4910
4911         if (conf->worker_cnt_per_group == 0) {
4912                 handle_list = &conf->handle_list;
4913         } else if (group != ANY_GROUP) {
4914                 handle_list = &conf->worker_groups[group].handle_list;
4915                 wg = &conf->worker_groups[group];
4916         } else {
4917                 int i;
4918                 for (i = 0; i < conf->group_cnt; i++) {
4919                         handle_list = &conf->worker_groups[i].handle_list;
4920                         wg = &conf->worker_groups[i];
4921                         if (!list_empty(handle_list))
4922                                 break;
4923                 }
4924         }
4925
4926         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4927                   __func__,
4928                   list_empty(handle_list) ? "empty" : "busy",
4929                   list_empty(&conf->hold_list) ? "empty" : "busy",
4930                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4931
4932         if (!list_empty(handle_list)) {
4933                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4934
4935                 if (list_empty(&conf->hold_list))
4936                         conf->bypass_count = 0;
4937                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4938                         if (conf->hold_list.next == conf->last_hold)
4939                                 conf->bypass_count++;
4940                         else {
4941                                 conf->last_hold = conf->hold_list.next;
4942                                 conf->bypass_count -= conf->bypass_threshold;
4943                                 if (conf->bypass_count < 0)
4944                                         conf->bypass_count = 0;
4945                         }
4946                 }
4947         } else if (!list_empty(&conf->hold_list) &&
4948                    ((conf->bypass_threshold &&
4949                      conf->bypass_count > conf->bypass_threshold) ||
4950                     atomic_read(&conf->pending_full_writes) == 0)) {
4951
4952                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4953                         if (conf->worker_cnt_per_group == 0 ||
4954                             group == ANY_GROUP ||
4955                             !cpu_online(tmp->cpu) ||
4956                             cpu_to_group(tmp->cpu) == group) {
4957                                 sh = tmp;
4958                                 break;
4959                         }
4960                 }
4961
4962                 if (sh) {
4963                         conf->bypass_count -= conf->bypass_threshold;
4964                         if (conf->bypass_count < 0)
4965                                 conf->bypass_count = 0;
4966                 }
4967                 wg = NULL;
4968         }
4969
4970         if (!sh)
4971                 return NULL;
4972
4973         if (wg) {
4974                 wg->stripes_cnt--;
4975                 sh->group = NULL;
4976         }
4977         list_del_init(&sh->lru);
4978         BUG_ON(atomic_inc_return(&sh->count) != 1);
4979         return sh;
4980 }
4981
4982 struct raid5_plug_cb {
4983         struct blk_plug_cb      cb;
4984         struct list_head        list;
4985         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4986 };
4987
4988 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4989 {
4990         struct raid5_plug_cb *cb = container_of(
4991                 blk_cb, struct raid5_plug_cb, cb);
4992         struct stripe_head *sh;
4993         struct mddev *mddev = cb->cb.data;
4994         struct r5conf *conf = mddev->private;
4995         int cnt = 0;
4996         int hash;
4997
4998         if (cb->list.next && !list_empty(&cb->list)) {
4999                 spin_lock_irq(&conf->device_lock);
5000                 while (!list_empty(&cb->list)) {
5001                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
5002                         list_del_init(&sh->lru);
5003                         /*
5004                          * avoid race release_stripe_plug() sees
5005                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
5006                          * is still in our list
5007                          */
5008                         smp_mb__before_atomic();
5009                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5010                         /*
5011                          * STRIPE_ON_RELEASE_LIST could be set here. In that
5012                          * case, the count is always > 1 here
5013                          */
5014                         hash = sh->hash_lock_index;
5015                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5016                         cnt++;
5017                 }
5018                 spin_unlock_irq(&conf->device_lock);
5019         }
5020         release_inactive_stripe_list(conf, cb->temp_inactive_list,
5021                                      NR_STRIPE_HASH_LOCKS);
5022         if (mddev->queue)
5023                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5024         kfree(cb);
5025 }
5026
5027 static void release_stripe_plug(struct mddev *mddev,
5028                                 struct stripe_head *sh)
5029 {
5030         struct blk_plug_cb *blk_cb = blk_check_plugged(
5031                 raid5_unplug, mddev,
5032                 sizeof(struct raid5_plug_cb));
5033         struct raid5_plug_cb *cb;
5034
5035         if (!blk_cb) {
5036                 release_stripe(sh);
5037                 return;
5038         }
5039
5040         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5041
5042         if (cb->list.next == NULL) {
5043                 int i;
5044                 INIT_LIST_HEAD(&cb->list);
5045                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5046                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5047         }
5048
5049         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5050                 list_add_tail(&sh->lru, &cb->list);
5051         else
5052                 release_stripe(sh);
5053 }
5054
5055 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5056 {
5057         struct r5conf *conf = mddev->private;
5058         sector_t logical_sector, last_sector;
5059         struct stripe_head *sh;
5060         int remaining;
5061         int stripe_sectors;
5062
5063         if (mddev->reshape_position != MaxSector)
5064                 /* Skip discard while reshape is happening */
5065                 return;
5066
5067         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5068         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5069
5070         bi->bi_next = NULL;
5071         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5072
5073         stripe_sectors = conf->chunk_sectors *
5074                 (conf->raid_disks - conf->max_degraded);
5075         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5076                                                stripe_sectors);
5077         sector_div(last_sector, stripe_sectors);
5078
5079         logical_sector *= conf->chunk_sectors;
5080         last_sector *= conf->chunk_sectors;
5081
5082         for (; logical_sector < last_sector;
5083              logical_sector += STRIPE_SECTORS) {
5084                 DEFINE_WAIT(w);
5085                 int d;
5086         again:
5087                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5088                 prepare_to_wait(&conf->wait_for_overlap, &w,
5089                                 TASK_UNINTERRUPTIBLE);
5090                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5091                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5092                         release_stripe(sh);
5093                         schedule();
5094                         goto again;
5095                 }
5096                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5097                 spin_lock_irq(&sh->stripe_lock);
5098                 for (d = 0; d < conf->raid_disks; d++) {
5099                         if (d == sh->pd_idx || d == sh->qd_idx)
5100                                 continue;
5101                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5102                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5103                                 spin_unlock_irq(&sh->stripe_lock);
5104                                 release_stripe(sh);
5105                                 schedule();
5106                                 goto again;
5107                         }
5108                 }
5109                 set_bit(STRIPE_DISCARD, &sh->state);
5110                 finish_wait(&conf->wait_for_overlap, &w);
5111                 sh->overwrite_disks = 0;
5112                 for (d = 0; d < conf->raid_disks; d++) {
5113                         if (d == sh->pd_idx || d == sh->qd_idx)
5114                                 continue;
5115                         sh->dev[d].towrite = bi;
5116                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5117                         raid5_inc_bi_active_stripes(bi);
5118                         sh->overwrite_disks++;
5119                 }
5120                 spin_unlock_irq(&sh->stripe_lock);
5121                 if (conf->mddev->bitmap) {
5122                         for (d = 0;
5123                              d < conf->raid_disks - conf->max_degraded;
5124                              d++)
5125                                 bitmap_startwrite(mddev->bitmap,
5126                                                   sh->sector,
5127                                                   STRIPE_SECTORS,
5128                                                   0);
5129                         sh->bm_seq = conf->seq_flush + 1;
5130                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5131                 }
5132
5133                 set_bit(STRIPE_HANDLE, &sh->state);
5134                 clear_bit(STRIPE_DELAYED, &sh->state);
5135                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5136                         atomic_inc(&conf->preread_active_stripes);
5137                 release_stripe_plug(mddev, sh);
5138         }
5139
5140         remaining = raid5_dec_bi_active_stripes(bi);
5141         if (remaining == 0) {
5142                 md_write_end(mddev);
5143                 bio_endio(bi, 0);
5144         }
5145 }
5146
5147 static void make_request(struct mddev *mddev, struct bio * bi)
5148 {
5149         struct r5conf *conf = mddev->private;
5150         int dd_idx;
5151         sector_t new_sector;
5152         sector_t logical_sector, last_sector;
5153         struct stripe_head *sh;
5154         const int rw = bio_data_dir(bi);
5155         int remaining;
5156         DEFINE_WAIT(w);
5157         bool do_prepare;
5158
5159         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5160                 md_flush_request(mddev, bi);
5161                 return;
5162         }
5163
5164         md_write_start(mddev, bi);
5165
5166         /*
5167          * If array is degraded, better not do chunk aligned read because
5168          * later we might have to read it again in order to reconstruct
5169          * data on failed drives.
5170          */
5171         if (rw == READ && mddev->degraded == 0 &&
5172              mddev->reshape_position == MaxSector &&
5173              chunk_aligned_read(mddev,bi))
5174                 return;
5175
5176         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5177                 make_discard_request(mddev, bi);
5178                 return;
5179         }
5180
5181         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5182         last_sector = bio_end_sector(bi);
5183         bi->bi_next = NULL;
5184         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5185
5186         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5187         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5188                 int previous;
5189                 int seq;
5190
5191                 do_prepare = false;
5192         retry:
5193                 seq = read_seqcount_begin(&conf->gen_lock);
5194                 previous = 0;
5195                 if (do_prepare)
5196                         prepare_to_wait(&conf->wait_for_overlap, &w,
5197                                 TASK_UNINTERRUPTIBLE);
5198                 if (unlikely(conf->reshape_progress != MaxSector)) {
5199                         /* spinlock is needed as reshape_progress may be
5200                          * 64bit on a 32bit platform, and so it might be
5201                          * possible to see a half-updated value
5202                          * Of course reshape_progress could change after
5203                          * the lock is dropped, so once we get a reference
5204                          * to the stripe that we think it is, we will have
5205                          * to check again.
5206                          */
5207                         spin_lock_irq(&conf->device_lock);
5208                         if (mddev->reshape_backwards
5209                             ? logical_sector < conf->reshape_progress
5210                             : logical_sector >= conf->reshape_progress) {
5211                                 previous = 1;
5212                         } else {
5213                                 if (mddev->reshape_backwards
5214                                     ? logical_sector < conf->reshape_safe
5215                                     : logical_sector >= conf->reshape_safe) {
5216                                         spin_unlock_irq(&conf->device_lock);
5217                                         schedule();
5218                                         do_prepare = true;
5219                                         goto retry;
5220                                 }
5221                         }
5222                         spin_unlock_irq(&conf->device_lock);
5223                 }
5224
5225                 new_sector = raid5_compute_sector(conf, logical_sector,
5226                                                   previous,
5227                                                   &dd_idx, NULL);
5228                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5229                         (unsigned long long)new_sector,
5230                         (unsigned long long)logical_sector);
5231
5232                 sh = get_active_stripe(conf, new_sector, previous,
5233                                        (bi->bi_rw&RWA_MASK), 0);
5234                 if (sh) {
5235                         if (unlikely(previous)) {
5236                                 /* expansion might have moved on while waiting for a
5237                                  * stripe, so we must do the range check again.
5238                                  * Expansion could still move past after this
5239                                  * test, but as we are holding a reference to
5240                                  * 'sh', we know that if that happens,
5241                                  *  STRIPE_EXPANDING will get set and the expansion
5242                                  * won't proceed until we finish with the stripe.
5243                                  */
5244                                 int must_retry = 0;
5245                                 spin_lock_irq(&conf->device_lock);
5246                                 if (mddev->reshape_backwards
5247                                     ? logical_sector >= conf->reshape_progress
5248                                     : logical_sector < conf->reshape_progress)
5249                                         /* mismatch, need to try again */
5250                                         must_retry = 1;
5251                                 spin_unlock_irq(&conf->device_lock);
5252                                 if (must_retry) {
5253                                         release_stripe(sh);
5254                                         schedule();
5255                                         do_prepare = true;
5256                                         goto retry;
5257                                 }
5258                         }
5259                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5260                                 /* Might have got the wrong stripe_head
5261                                  * by accident
5262                                  */
5263                                 release_stripe(sh);
5264                                 goto retry;
5265                         }
5266
5267                         if (rw == WRITE &&
5268                             logical_sector >= mddev->suspend_lo &&
5269                             logical_sector < mddev->suspend_hi) {
5270                                 release_stripe(sh);
5271                                 /* As the suspend_* range is controlled by
5272                                  * userspace, we want an interruptible
5273                                  * wait.
5274                                  */
5275                                 flush_signals(current);
5276                                 prepare_to_wait(&conf->wait_for_overlap,
5277                                                 &w, TASK_INTERRUPTIBLE);
5278                                 if (logical_sector >= mddev->suspend_lo &&
5279                                     logical_sector < mddev->suspend_hi) {
5280                                         schedule();
5281                                         do_prepare = true;
5282                                 }
5283                                 goto retry;
5284                         }
5285
5286                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5287                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5288                                 /* Stripe is busy expanding or
5289                                  * add failed due to overlap.  Flush everything
5290                                  * and wait a while
5291                                  */
5292                                 md_wakeup_thread(mddev->thread);
5293                                 release_stripe(sh);
5294                                 schedule();
5295                                 do_prepare = true;
5296                                 goto retry;
5297                         }
5298                         set_bit(STRIPE_HANDLE, &sh->state);
5299                         clear_bit(STRIPE_DELAYED, &sh->state);
5300                         if ((!sh->batch_head || sh == sh->batch_head) &&
5301                             (bi->bi_rw & REQ_SYNC) &&
5302                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5303                                 atomic_inc(&conf->preread_active_stripes);
5304                         release_stripe_plug(mddev, sh);
5305                 } else {
5306                         /* cannot get stripe for read-ahead, just give-up */
5307                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5308                         break;
5309                 }
5310         }
5311         finish_wait(&conf->wait_for_overlap, &w);
5312
5313         remaining = raid5_dec_bi_active_stripes(bi);
5314         if (remaining == 0) {
5315
5316                 if ( rw == WRITE )
5317                         md_write_end(mddev);
5318
5319                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5320                                          bi, 0);
5321                 bio_endio(bi, 0);
5322         }
5323 }
5324
5325 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5326
5327 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5328 {
5329         /* reshaping is quite different to recovery/resync so it is
5330          * handled quite separately ... here.
5331          *
5332          * On each call to sync_request, we gather one chunk worth of
5333          * destination stripes and flag them as expanding.
5334          * Then we find all the source stripes and request reads.
5335          * As the reads complete, handle_stripe will copy the data
5336          * into the destination stripe and release that stripe.
5337          */
5338         struct r5conf *conf = mddev->private;
5339         struct stripe_head *sh;
5340         sector_t first_sector, last_sector;
5341         int raid_disks = conf->previous_raid_disks;
5342         int data_disks = raid_disks - conf->max_degraded;
5343         int new_data_disks = conf->raid_disks - conf->max_degraded;
5344         int i;
5345         int dd_idx;
5346         sector_t writepos, readpos, safepos;
5347         sector_t stripe_addr;
5348         int reshape_sectors;
5349         struct list_head stripes;
5350
5351         if (sector_nr == 0) {
5352                 /* If restarting in the middle, skip the initial sectors */
5353                 if (mddev->reshape_backwards &&
5354                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5355                         sector_nr = raid5_size(mddev, 0, 0)
5356                                 - conf->reshape_progress;
5357                 } else if (!mddev->reshape_backwards &&
5358                            conf->reshape_progress > 0)
5359                         sector_nr = conf->reshape_progress;
5360                 sector_div(sector_nr, new_data_disks);
5361                 if (sector_nr) {
5362                         mddev->curr_resync_completed = sector_nr;
5363                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5364                         *skipped = 1;
5365                         return sector_nr;
5366                 }
5367         }
5368
5369         /* We need to process a full chunk at a time.
5370          * If old and new chunk sizes differ, we need to process the
5371          * largest of these
5372          */
5373         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5374                 reshape_sectors = mddev->new_chunk_sectors;
5375         else
5376                 reshape_sectors = mddev->chunk_sectors;
5377
5378         /* We update the metadata at least every 10 seconds, or when
5379          * the data about to be copied would over-write the source of
5380          * the data at the front of the range.  i.e. one new_stripe
5381          * along from reshape_progress new_maps to after where
5382          * reshape_safe old_maps to
5383          */
5384         writepos = conf->reshape_progress;
5385         sector_div(writepos, new_data_disks);
5386         readpos = conf->reshape_progress;
5387         sector_div(readpos, data_disks);
5388         safepos = conf->reshape_safe;
5389         sector_div(safepos, data_disks);
5390         if (mddev->reshape_backwards) {
5391                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5392                 readpos += reshape_sectors;
5393                 safepos += reshape_sectors;
5394         } else {
5395                 writepos += reshape_sectors;
5396                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5397                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5398         }
5399
5400         /* Having calculated the 'writepos' possibly use it
5401          * to set 'stripe_addr' which is where we will write to.
5402          */
5403         if (mddev->reshape_backwards) {
5404                 BUG_ON(conf->reshape_progress == 0);
5405                 stripe_addr = writepos;
5406                 BUG_ON((mddev->dev_sectors &
5407                         ~((sector_t)reshape_sectors - 1))
5408                        - reshape_sectors - stripe_addr
5409                        != sector_nr);
5410         } else {
5411                 BUG_ON(writepos != sector_nr + reshape_sectors);
5412                 stripe_addr = sector_nr;
5413         }
5414
5415         /* 'writepos' is the most advanced device address we might write.
5416          * 'readpos' is the least advanced device address we might read.
5417          * 'safepos' is the least address recorded in the metadata as having
5418          *     been reshaped.
5419          * If there is a min_offset_diff, these are adjusted either by
5420          * increasing the safepos/readpos if diff is negative, or
5421          * increasing writepos if diff is positive.
5422          * If 'readpos' is then behind 'writepos', there is no way that we can
5423          * ensure safety in the face of a crash - that must be done by userspace
5424          * making a backup of the data.  So in that case there is no particular
5425          * rush to update metadata.
5426          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5427          * update the metadata to advance 'safepos' to match 'readpos' so that
5428          * we can be safe in the event of a crash.
5429          * So we insist on updating metadata if safepos is behind writepos and
5430          * readpos is beyond writepos.
5431          * In any case, update the metadata every 10 seconds.
5432          * Maybe that number should be configurable, but I'm not sure it is
5433          * worth it.... maybe it could be a multiple of safemode_delay???
5434          */
5435         if (conf->min_offset_diff < 0) {
5436                 safepos += -conf->min_offset_diff;
5437                 readpos += -conf->min_offset_diff;
5438         } else
5439                 writepos += conf->min_offset_diff;
5440
5441         if ((mddev->reshape_backwards
5442              ? (safepos > writepos && readpos < writepos)
5443              : (safepos < writepos && readpos > writepos)) ||
5444             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5445                 /* Cannot proceed until we've updated the superblock... */
5446                 wait_event(conf->wait_for_overlap,
5447                            atomic_read(&conf->reshape_stripes)==0
5448                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5449                 if (atomic_read(&conf->reshape_stripes) != 0)
5450                         return 0;
5451                 mddev->reshape_position = conf->reshape_progress;
5452                 mddev->curr_resync_completed = sector_nr;
5453                 conf->reshape_checkpoint = jiffies;
5454                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5455                 md_wakeup_thread(mddev->thread);
5456                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5457                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5458                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5459                         return 0;
5460                 spin_lock_irq(&conf->device_lock);
5461                 conf->reshape_safe = mddev->reshape_position;
5462                 spin_unlock_irq(&conf->device_lock);
5463                 wake_up(&conf->wait_for_overlap);
5464                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5465         }
5466
5467         INIT_LIST_HEAD(&stripes);
5468         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5469                 int j;
5470                 int skipped_disk = 0;
5471                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5472                 set_bit(STRIPE_EXPANDING, &sh->state);
5473                 atomic_inc(&conf->reshape_stripes);
5474                 /* If any of this stripe is beyond the end of the old
5475                  * array, then we need to zero those blocks
5476                  */
5477                 for (j=sh->disks; j--;) {
5478                         sector_t s;
5479                         if (j == sh->pd_idx)
5480                                 continue;
5481                         if (conf->level == 6 &&
5482                             j == sh->qd_idx)
5483                                 continue;
5484                         s = compute_blocknr(sh, j, 0);
5485                         if (s < raid5_size(mddev, 0, 0)) {
5486                                 skipped_disk = 1;
5487                                 continue;
5488                         }
5489                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5490                         set_bit(R5_Expanded, &sh->dev[j].flags);
5491                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5492                 }
5493                 if (!skipped_disk) {
5494                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5495                         set_bit(STRIPE_HANDLE, &sh->state);
5496                 }
5497                 list_add(&sh->lru, &stripes);
5498         }
5499         spin_lock_irq(&conf->device_lock);
5500         if (mddev->reshape_backwards)
5501                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5502         else
5503                 conf->reshape_progress += reshape_sectors * new_data_disks;
5504         spin_unlock_irq(&conf->device_lock);
5505         /* Ok, those stripe are ready. We can start scheduling
5506          * reads on the source stripes.
5507          * The source stripes are determined by mapping the first and last
5508          * block on the destination stripes.
5509          */
5510         first_sector =
5511                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5512                                      1, &dd_idx, NULL);
5513         last_sector =
5514                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5515                                             * new_data_disks - 1),
5516                                      1, &dd_idx, NULL);
5517         if (last_sector >= mddev->dev_sectors)
5518                 last_sector = mddev->dev_sectors - 1;
5519         while (first_sector <= last_sector) {
5520                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5521                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5522                 set_bit(STRIPE_HANDLE, &sh->state);
5523                 release_stripe(sh);
5524                 first_sector += STRIPE_SECTORS;
5525         }
5526         /* Now that the sources are clearly marked, we can release
5527          * the destination stripes
5528          */
5529         while (!list_empty(&stripes)) {
5530                 sh = list_entry(stripes.next, struct stripe_head, lru);
5531                 list_del_init(&sh->lru);
5532                 release_stripe(sh);
5533         }
5534         /* If this takes us to the resync_max point where we have to pause,
5535          * then we need to write out the superblock.
5536          */
5537         sector_nr += reshape_sectors;
5538         if ((sector_nr - mddev->curr_resync_completed) * 2
5539             >= mddev->resync_max - mddev->curr_resync_completed) {
5540                 /* Cannot proceed until we've updated the superblock... */
5541                 wait_event(conf->wait_for_overlap,
5542                            atomic_read(&conf->reshape_stripes) == 0
5543                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5544                 if (atomic_read(&conf->reshape_stripes) != 0)
5545                         goto ret;
5546                 mddev->reshape_position = conf->reshape_progress;
5547                 mddev->curr_resync_completed = sector_nr;
5548                 conf->reshape_checkpoint = jiffies;
5549                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5550                 md_wakeup_thread(mddev->thread);
5551                 wait_event(mddev->sb_wait,
5552                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5553                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5554                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5555                         goto ret;
5556                 spin_lock_irq(&conf->device_lock);
5557                 conf->reshape_safe = mddev->reshape_position;
5558                 spin_unlock_irq(&conf->device_lock);
5559                 wake_up(&conf->wait_for_overlap);
5560                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5561         }
5562 ret:
5563         return reshape_sectors;
5564 }
5565
5566 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5567 {
5568         struct r5conf *conf = mddev->private;
5569         struct stripe_head *sh;
5570         sector_t max_sector = mddev->dev_sectors;
5571         sector_t sync_blocks;
5572         int still_degraded = 0;
5573         int i;
5574
5575         if (sector_nr >= max_sector) {
5576                 /* just being told to finish up .. nothing much to do */
5577
5578                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5579                         end_reshape(conf);
5580                         return 0;
5581                 }
5582
5583                 if (mddev->curr_resync < max_sector) /* aborted */
5584                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5585                                         &sync_blocks, 1);
5586                 else /* completed sync */
5587                         conf->fullsync = 0;
5588                 bitmap_close_sync(mddev->bitmap);
5589
5590                 return 0;
5591         }
5592
5593         /* Allow raid5_quiesce to complete */
5594         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5595
5596         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5597                 return reshape_request(mddev, sector_nr, skipped);
5598
5599         /* No need to check resync_max as we never do more than one
5600          * stripe, and as resync_max will always be on a chunk boundary,
5601          * if the check in md_do_sync didn't fire, there is no chance
5602          * of overstepping resync_max here
5603          */
5604
5605         /* if there is too many failed drives and we are trying
5606          * to resync, then assert that we are finished, because there is
5607          * nothing we can do.
5608          */
5609         if (mddev->degraded >= conf->max_degraded &&
5610             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5611                 sector_t rv = mddev->dev_sectors - sector_nr;
5612                 *skipped = 1;
5613                 return rv;
5614         }
5615         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5616             !conf->fullsync &&
5617             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5618             sync_blocks >= STRIPE_SECTORS) {
5619                 /* we can skip this block, and probably more */
5620                 sync_blocks /= STRIPE_SECTORS;
5621                 *skipped = 1;
5622                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5623         }
5624
5625         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5626
5627         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5628         if (sh == NULL) {
5629                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5630                 /* make sure we don't swamp the stripe cache if someone else
5631                  * is trying to get access
5632                  */
5633                 schedule_timeout_uninterruptible(1);
5634         }
5635         /* Need to check if array will still be degraded after recovery/resync
5636          * Note in case of > 1 drive failures it's possible we're rebuilding
5637          * one drive while leaving another faulty drive in array.
5638          */
5639         rcu_read_lock();
5640         for (i = 0; i < conf->raid_disks; i++) {
5641                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5642
5643                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5644                         still_degraded = 1;
5645         }
5646         rcu_read_unlock();
5647
5648         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5649
5650         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5651         set_bit(STRIPE_HANDLE, &sh->state);
5652
5653         release_stripe(sh);
5654
5655         return STRIPE_SECTORS;
5656 }
5657
5658 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5659 {
5660         /* We may not be able to submit a whole bio at once as there
5661          * may not be enough stripe_heads available.
5662          * We cannot pre-allocate enough stripe_heads as we may need
5663          * more than exist in the cache (if we allow ever large chunks).
5664          * So we do one stripe head at a time and record in
5665          * ->bi_hw_segments how many have been done.
5666          *
5667          * We *know* that this entire raid_bio is in one chunk, so
5668          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5669          */
5670         struct stripe_head *sh;
5671         int dd_idx;
5672         sector_t sector, logical_sector, last_sector;
5673         int scnt = 0;
5674         int remaining;
5675         int handled = 0;
5676
5677         logical_sector = raid_bio->bi_iter.bi_sector &
5678                 ~((sector_t)STRIPE_SECTORS-1);
5679         sector = raid5_compute_sector(conf, logical_sector,
5680                                       0, &dd_idx, NULL);
5681         last_sector = bio_end_sector(raid_bio);
5682
5683         for (; logical_sector < last_sector;
5684              logical_sector += STRIPE_SECTORS,
5685                      sector += STRIPE_SECTORS,
5686                      scnt++) {
5687
5688                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5689                         /* already done this stripe */
5690                         continue;
5691
5692                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5693
5694                 if (!sh) {
5695                         /* failed to get a stripe - must wait */
5696                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5697                         conf->retry_read_aligned = raid_bio;
5698                         return handled;
5699                 }
5700
5701                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5702                         release_stripe(sh);
5703                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5704                         conf->retry_read_aligned = raid_bio;
5705                         return handled;
5706                 }
5707
5708                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5709                 handle_stripe(sh);
5710                 release_stripe(sh);
5711                 handled++;
5712         }
5713         remaining = raid5_dec_bi_active_stripes(raid_bio);
5714         if (remaining == 0) {
5715                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5716                                          raid_bio, 0);
5717                 bio_endio(raid_bio, 0);
5718         }
5719         if (atomic_dec_and_test(&conf->active_aligned_reads))
5720                 wake_up(&conf->wait_for_quiescent);
5721         return handled;
5722 }
5723
5724 static int handle_active_stripes(struct r5conf *conf, int group,
5725                                  struct r5worker *worker,
5726                                  struct list_head *temp_inactive_list)
5727 {
5728         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5729         int i, batch_size = 0, hash;
5730         bool release_inactive = false;
5731
5732         while (batch_size < MAX_STRIPE_BATCH &&
5733                         (sh = __get_priority_stripe(conf, group)) != NULL)
5734                 batch[batch_size++] = sh;
5735
5736         if (batch_size == 0) {
5737                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5738                         if (!list_empty(temp_inactive_list + i))
5739                                 break;
5740                 if (i == NR_STRIPE_HASH_LOCKS)
5741                         return batch_size;
5742                 release_inactive = true;
5743         }
5744         spin_unlock_irq(&conf->device_lock);
5745
5746         release_inactive_stripe_list(conf, temp_inactive_list,
5747                                      NR_STRIPE_HASH_LOCKS);
5748
5749         if (release_inactive) {
5750                 spin_lock_irq(&conf->device_lock);
5751                 return 0;
5752         }
5753
5754         for (i = 0; i < batch_size; i++)
5755                 handle_stripe(batch[i]);
5756
5757         cond_resched();
5758
5759         spin_lock_irq(&conf->device_lock);
5760         for (i = 0; i < batch_size; i++) {
5761                 hash = batch[i]->hash_lock_index;
5762                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5763         }
5764         return batch_size;
5765 }
5766
5767 static void raid5_do_work(struct work_struct *work)
5768 {
5769         struct r5worker *worker = container_of(work, struct r5worker, work);
5770         struct r5worker_group *group = worker->group;
5771         struct r5conf *conf = group->conf;
5772         int group_id = group - conf->worker_groups;
5773         int handled;
5774         struct blk_plug plug;
5775
5776         pr_debug("+++ raid5worker active\n");
5777
5778         blk_start_plug(&plug);
5779         handled = 0;
5780         spin_lock_irq(&conf->device_lock);
5781         while (1) {
5782                 int batch_size, released;
5783
5784                 released = release_stripe_list(conf, worker->temp_inactive_list);
5785
5786                 batch_size = handle_active_stripes(conf, group_id, worker,
5787                                                    worker->temp_inactive_list);
5788                 worker->working = false;
5789                 if (!batch_size && !released)
5790                         break;
5791                 handled += batch_size;
5792         }
5793         pr_debug("%d stripes handled\n", handled);
5794
5795         spin_unlock_irq(&conf->device_lock);
5796         blk_finish_plug(&plug);
5797
5798         pr_debug("--- raid5worker inactive\n");
5799 }
5800
5801 /*
5802  * This is our raid5 kernel thread.
5803  *
5804  * We scan the hash table for stripes which can be handled now.
5805  * During the scan, completed stripes are saved for us by the interrupt
5806  * handler, so that they will not have to wait for our next wakeup.
5807  */
5808 static void raid5d(struct md_thread *thread)
5809 {
5810         struct mddev *mddev = thread->mddev;
5811         struct r5conf *conf = mddev->private;
5812         int handled;
5813         struct blk_plug plug;
5814
5815         pr_debug("+++ raid5d active\n");
5816
5817         md_check_recovery(mddev);
5818
5819         blk_start_plug(&plug);
5820         handled = 0;
5821         spin_lock_irq(&conf->device_lock);
5822         while (1) {
5823                 struct bio *bio;
5824                 int batch_size, released;
5825
5826                 released = release_stripe_list(conf, conf->temp_inactive_list);
5827                 if (released)
5828                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5829
5830                 if (
5831                     !list_empty(&conf->bitmap_list)) {
5832                         /* Now is a good time to flush some bitmap updates */
5833                         conf->seq_flush++;
5834                         spin_unlock_irq(&conf->device_lock);
5835                         bitmap_unplug(mddev->bitmap);
5836                         spin_lock_irq(&conf->device_lock);
5837                         conf->seq_write = conf->seq_flush;
5838                         activate_bit_delay(conf, conf->temp_inactive_list);
5839                 }
5840                 raid5_activate_delayed(conf);
5841
5842                 while ((bio = remove_bio_from_retry(conf))) {
5843                         int ok;
5844                         spin_unlock_irq(&conf->device_lock);
5845                         ok = retry_aligned_read(conf, bio);
5846                         spin_lock_irq(&conf->device_lock);
5847                         if (!ok)
5848                                 break;
5849                         handled++;
5850                 }
5851
5852                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5853                                                    conf->temp_inactive_list);
5854                 if (!batch_size && !released)
5855                         break;
5856                 handled += batch_size;
5857
5858                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5859                         spin_unlock_irq(&conf->device_lock);
5860                         md_check_recovery(mddev);
5861                         spin_lock_irq(&conf->device_lock);
5862                 }
5863         }
5864         pr_debug("%d stripes handled\n", handled);
5865
5866         spin_unlock_irq(&conf->device_lock);
5867         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5868             mutex_trylock(&conf->cache_size_mutex)) {
5869                 grow_one_stripe(conf, __GFP_NOWARN);
5870                 /* Set flag even if allocation failed.  This helps
5871                  * slow down allocation requests when mem is short
5872                  */
5873                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5874                 mutex_unlock(&conf->cache_size_mutex);
5875         }
5876
5877         async_tx_issue_pending_all();
5878         blk_finish_plug(&plug);
5879
5880         pr_debug("--- raid5d inactive\n");
5881 }
5882
5883 static ssize_t
5884 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5885 {
5886         struct r5conf *conf;
5887         int ret = 0;
5888         spin_lock(&mddev->lock);
5889         conf = mddev->private;
5890         if (conf)
5891                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5892         spin_unlock(&mddev->lock);
5893         return ret;
5894 }
5895
5896 int
5897 raid5_set_cache_size(struct mddev *mddev, int size)
5898 {
5899         struct r5conf *conf = mddev->private;
5900         int err;
5901
5902         if (size <= 16 || size > 32768)
5903                 return -EINVAL;
5904
5905         conf->min_nr_stripes = size;
5906         mutex_lock(&conf->cache_size_mutex);
5907         while (size < conf->max_nr_stripes &&
5908                drop_one_stripe(conf))
5909                 ;
5910         mutex_unlock(&conf->cache_size_mutex);
5911
5912
5913         err = md_allow_write(mddev);
5914         if (err)
5915                 return err;
5916
5917         mutex_lock(&conf->cache_size_mutex);
5918         while (size > conf->max_nr_stripes)
5919                 if (!grow_one_stripe(conf, GFP_KERNEL))
5920                         break;
5921         mutex_unlock(&conf->cache_size_mutex);
5922
5923         return 0;
5924 }
5925 EXPORT_SYMBOL(raid5_set_cache_size);
5926
5927 static ssize_t
5928 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5929 {
5930         struct r5conf *conf;
5931         unsigned long new;
5932         int err;
5933
5934         if (len >= PAGE_SIZE)
5935                 return -EINVAL;
5936         if (kstrtoul(page, 10, &new))
5937                 return -EINVAL;
5938         err = mddev_lock(mddev);
5939         if (err)
5940                 return err;
5941         conf = mddev->private;
5942         if (!conf)
5943                 err = -ENODEV;
5944         else
5945                 err = raid5_set_cache_size(mddev, new);
5946         mddev_unlock(mddev);
5947
5948         return err ?: len;
5949 }
5950
5951 static struct md_sysfs_entry
5952 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5953                                 raid5_show_stripe_cache_size,
5954                                 raid5_store_stripe_cache_size);
5955
5956 static ssize_t
5957 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5958 {
5959         struct r5conf *conf = mddev->private;
5960         if (conf)
5961                 return sprintf(page, "%d\n", conf->rmw_level);
5962         else
5963                 return 0;
5964 }
5965
5966 static ssize_t
5967 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5968 {
5969         struct r5conf *conf = mddev->private;
5970         unsigned long new;
5971
5972         if (!conf)
5973                 return -ENODEV;
5974
5975         if (len >= PAGE_SIZE)
5976                 return -EINVAL;
5977
5978         if (kstrtoul(page, 10, &new))
5979                 return -EINVAL;
5980
5981         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5982                 return -EINVAL;
5983
5984         if (new != PARITY_DISABLE_RMW &&
5985             new != PARITY_ENABLE_RMW &&
5986             new != PARITY_PREFER_RMW)
5987                 return -EINVAL;
5988
5989         conf->rmw_level = new;
5990         return len;
5991 }
5992
5993 static struct md_sysfs_entry
5994 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5995                          raid5_show_rmw_level,
5996                          raid5_store_rmw_level);
5997
5998
5999 static ssize_t
6000 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6001 {
6002         struct r5conf *conf;
6003         int ret = 0;
6004         spin_lock(&mddev->lock);
6005         conf = mddev->private;
6006         if (conf)
6007                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6008         spin_unlock(&mddev->lock);
6009         return ret;
6010 }
6011
6012 static ssize_t
6013 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6014 {
6015         struct r5conf *conf;
6016         unsigned long new;
6017         int err;
6018
6019         if (len >= PAGE_SIZE)
6020                 return -EINVAL;
6021         if (kstrtoul(page, 10, &new))
6022                 return -EINVAL;
6023
6024         err = mddev_lock(mddev);
6025         if (err)
6026                 return err;
6027         conf = mddev->private;
6028         if (!conf)
6029                 err = -ENODEV;
6030         else if (new > conf->min_nr_stripes)
6031                 err = -EINVAL;
6032         else
6033                 conf->bypass_threshold = new;
6034         mddev_unlock(mddev);
6035         return err ?: len;
6036 }
6037
6038 static struct md_sysfs_entry
6039 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6040                                         S_IRUGO | S_IWUSR,
6041                                         raid5_show_preread_threshold,
6042                                         raid5_store_preread_threshold);
6043
6044 static ssize_t
6045 raid5_show_skip_copy(struct mddev *mddev, char *page)
6046 {
6047         struct r5conf *conf;
6048         int ret = 0;
6049         spin_lock(&mddev->lock);
6050         conf = mddev->private;
6051         if (conf)
6052                 ret = sprintf(page, "%d\n", conf->skip_copy);
6053         spin_unlock(&mddev->lock);
6054         return ret;
6055 }
6056
6057 static ssize_t
6058 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6059 {
6060         struct r5conf *conf;
6061         unsigned long new;
6062         int err;
6063
6064         if (len >= PAGE_SIZE)
6065                 return -EINVAL;
6066         if (kstrtoul(page, 10, &new))
6067                 return -EINVAL;
6068         new = !!new;
6069
6070         err = mddev_lock(mddev);
6071         if (err)
6072                 return err;
6073         conf = mddev->private;
6074         if (!conf)
6075                 err = -ENODEV;
6076         else if (new != conf->skip_copy) {
6077                 mddev_suspend(mddev);
6078                 conf->skip_copy = new;
6079                 if (new)
6080                         mddev->queue->backing_dev_info.capabilities |=
6081                                 BDI_CAP_STABLE_WRITES;
6082                 else
6083                         mddev->queue->backing_dev_info.capabilities &=
6084                                 ~BDI_CAP_STABLE_WRITES;
6085                 mddev_resume(mddev);
6086         }
6087         mddev_unlock(mddev);
6088         return err ?: len;
6089 }
6090
6091 static struct md_sysfs_entry
6092 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6093                                         raid5_show_skip_copy,
6094                                         raid5_store_skip_copy);
6095
6096 static ssize_t
6097 stripe_cache_active_show(struct mddev *mddev, char *page)
6098 {
6099         struct r5conf *conf = mddev->private;
6100         if (conf)
6101                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6102         else
6103                 return 0;
6104 }
6105
6106 static struct md_sysfs_entry
6107 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6108
6109 static ssize_t
6110 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6111 {
6112         struct r5conf *conf;
6113         int ret = 0;
6114         spin_lock(&mddev->lock);
6115         conf = mddev->private;
6116         if (conf)
6117                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6118         spin_unlock(&mddev->lock);
6119         return ret;
6120 }
6121
6122 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6123                                int *group_cnt,
6124                                int *worker_cnt_per_group,
6125                                struct r5worker_group **worker_groups);
6126 static ssize_t
6127 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6128 {
6129         struct r5conf *conf;
6130         unsigned long new;
6131         int err;
6132         struct r5worker_group *new_groups, *old_groups;
6133         int group_cnt, worker_cnt_per_group;
6134
6135         if (len >= PAGE_SIZE)
6136                 return -EINVAL;
6137         if (kstrtoul(page, 10, &new))
6138                 return -EINVAL;
6139
6140         err = mddev_lock(mddev);
6141         if (err)
6142                 return err;
6143         conf = mddev->private;
6144         if (!conf)
6145                 err = -ENODEV;
6146         else if (new != conf->worker_cnt_per_group) {
6147                 mddev_suspend(mddev);
6148
6149                 old_groups = conf->worker_groups;
6150                 if (old_groups)
6151                         flush_workqueue(raid5_wq);
6152
6153                 err = alloc_thread_groups(conf, new,
6154                                           &group_cnt, &worker_cnt_per_group,
6155                                           &new_groups);
6156                 if (!err) {
6157                         spin_lock_irq(&conf->device_lock);
6158                         conf->group_cnt = group_cnt;
6159                         conf->worker_cnt_per_group = worker_cnt_per_group;
6160                         conf->worker_groups = new_groups;
6161                         spin_unlock_irq(&conf->device_lock);
6162
6163                         if (old_groups)
6164                                 kfree(old_groups[0].workers);
6165                         kfree(old_groups);
6166                 }
6167                 mddev_resume(mddev);
6168         }
6169         mddev_unlock(mddev);
6170
6171         return err ?: len;
6172 }
6173
6174 static struct md_sysfs_entry
6175 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6176                                 raid5_show_group_thread_cnt,
6177                                 raid5_store_group_thread_cnt);
6178
6179 static struct attribute *raid5_attrs[] =  {
6180         &raid5_stripecache_size.attr,
6181         &raid5_stripecache_active.attr,
6182         &raid5_preread_bypass_threshold.attr,
6183         &raid5_group_thread_cnt.attr,
6184         &raid5_skip_copy.attr,
6185         &raid5_rmw_level.attr,
6186         NULL,
6187 };
6188 static struct attribute_group raid5_attrs_group = {
6189         .name = NULL,
6190         .attrs = raid5_attrs,
6191 };
6192
6193 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6194                                int *group_cnt,
6195                                int *worker_cnt_per_group,
6196                                struct r5worker_group **worker_groups)
6197 {
6198         int i, j, k;
6199         ssize_t size;
6200         struct r5worker *workers;
6201
6202         *worker_cnt_per_group = cnt;
6203         if (cnt == 0) {
6204                 *group_cnt = 0;
6205                 *worker_groups = NULL;
6206                 return 0;
6207         }
6208         *group_cnt = num_possible_nodes();
6209         size = sizeof(struct r5worker) * cnt;
6210         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6211         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6212                                 *group_cnt, GFP_NOIO);
6213         if (!*worker_groups || !workers) {
6214                 kfree(workers);
6215                 kfree(*worker_groups);
6216                 return -ENOMEM;
6217         }
6218
6219         for (i = 0; i < *group_cnt; i++) {
6220                 struct r5worker_group *group;
6221
6222                 group = &(*worker_groups)[i];
6223                 INIT_LIST_HEAD(&group->handle_list);
6224                 group->conf = conf;
6225                 group->workers = workers + i * cnt;
6226
6227                 for (j = 0; j < cnt; j++) {
6228                         struct r5worker *worker = group->workers + j;
6229                         worker->group = group;
6230                         INIT_WORK(&worker->work, raid5_do_work);
6231
6232                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6233                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6234                 }
6235         }
6236
6237         return 0;
6238 }
6239
6240 static void free_thread_groups(struct r5conf *conf)
6241 {
6242         if (conf->worker_groups)
6243                 kfree(conf->worker_groups[0].workers);
6244         kfree(conf->worker_groups);
6245         conf->worker_groups = NULL;
6246 }
6247
6248 static sector_t
6249 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6250 {
6251         struct r5conf *conf = mddev->private;
6252
6253         if (!sectors)
6254                 sectors = mddev->dev_sectors;
6255         if (!raid_disks)
6256                 /* size is defined by the smallest of previous and new size */
6257                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6258
6259         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6260         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6261         return sectors * (raid_disks - conf->max_degraded);
6262 }
6263
6264 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6265 {
6266         safe_put_page(percpu->spare_page);
6267         if (percpu->scribble)
6268                 flex_array_free(percpu->scribble);
6269         percpu->spare_page = NULL;
6270         percpu->scribble = NULL;
6271 }
6272
6273 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6274 {
6275         if (conf->level == 6 && !percpu->spare_page)
6276                 percpu->spare_page = alloc_page(GFP_KERNEL);
6277         if (!percpu->scribble)
6278                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6279                                                       conf->previous_raid_disks),
6280                                                   max(conf->chunk_sectors,
6281                                                       conf->prev_chunk_sectors)
6282                                                    / STRIPE_SECTORS,
6283                                                   GFP_KERNEL);
6284
6285         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6286                 free_scratch_buffer(conf, percpu);
6287                 return -ENOMEM;
6288         }
6289
6290         return 0;
6291 }
6292
6293 static void raid5_free_percpu(struct r5conf *conf)
6294 {
6295         unsigned long cpu;
6296
6297         if (!conf->percpu)
6298                 return;
6299
6300 #ifdef CONFIG_HOTPLUG_CPU
6301         unregister_cpu_notifier(&conf->cpu_notify);
6302 #endif
6303
6304         get_online_cpus();
6305         for_each_possible_cpu(cpu)
6306                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6307         put_online_cpus();
6308
6309         free_percpu(conf->percpu);
6310 }
6311
6312 static void free_conf(struct r5conf *conf)
6313 {
6314         if (conf->shrinker.seeks)
6315                 unregister_shrinker(&conf->shrinker);
6316         free_thread_groups(conf);
6317         shrink_stripes(conf);
6318         raid5_free_percpu(conf);
6319         kfree(conf->disks);
6320         kfree(conf->stripe_hashtbl);
6321         kfree(conf);
6322 }
6323
6324 #ifdef CONFIG_HOTPLUG_CPU
6325 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6326                               void *hcpu)
6327 {
6328         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6329         long cpu = (long)hcpu;
6330         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6331
6332         switch (action) {
6333         case CPU_UP_PREPARE:
6334         case CPU_UP_PREPARE_FROZEN:
6335                 if (alloc_scratch_buffer(conf, percpu)) {
6336                         pr_err("%s: failed memory allocation for cpu%ld\n",
6337                                __func__, cpu);
6338                         return notifier_from_errno(-ENOMEM);
6339                 }
6340                 break;
6341         case CPU_DEAD:
6342         case CPU_DEAD_FROZEN:
6343                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6344                 break;
6345         default:
6346                 break;
6347         }
6348         return NOTIFY_OK;
6349 }
6350 #endif
6351
6352 static int raid5_alloc_percpu(struct r5conf *conf)
6353 {
6354         unsigned long cpu;
6355         int err = 0;
6356
6357         conf->percpu = alloc_percpu(struct raid5_percpu);
6358         if (!conf->percpu)
6359                 return -ENOMEM;
6360
6361 #ifdef CONFIG_HOTPLUG_CPU
6362         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6363         conf->cpu_notify.priority = 0;
6364         err = register_cpu_notifier(&conf->cpu_notify);
6365         if (err)
6366                 return err;
6367 #endif
6368
6369         get_online_cpus();
6370         for_each_present_cpu(cpu) {
6371                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6372                 if (err) {
6373                         pr_err("%s: failed memory allocation for cpu%ld\n",
6374                                __func__, cpu);
6375                         break;
6376                 }
6377         }
6378         put_online_cpus();
6379
6380         return err;
6381 }
6382
6383 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6384                                       struct shrink_control *sc)
6385 {
6386         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6387         unsigned long ret = SHRINK_STOP;
6388
6389         if (mutex_trylock(&conf->cache_size_mutex)) {
6390                 ret= 0;
6391                 while (ret < sc->nr_to_scan &&
6392                        conf->max_nr_stripes > conf->min_nr_stripes) {
6393                         if (drop_one_stripe(conf) == 0) {
6394                                 ret = SHRINK_STOP;
6395                                 break;
6396                         }
6397                         ret++;
6398                 }
6399                 mutex_unlock(&conf->cache_size_mutex);
6400         }
6401         return ret;
6402 }
6403
6404 static unsigned long raid5_cache_count(struct shrinker *shrink,
6405                                        struct shrink_control *sc)
6406 {
6407         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6408
6409         if (conf->max_nr_stripes < conf->min_nr_stripes)
6410                 /* unlikely, but not impossible */
6411                 return 0;
6412         return conf->max_nr_stripes - conf->min_nr_stripes;
6413 }
6414
6415 static struct r5conf *setup_conf(struct mddev *mddev)
6416 {
6417         struct r5conf *conf;
6418         int raid_disk, memory, max_disks;
6419         struct md_rdev *rdev;
6420         struct disk_info *disk;
6421         char pers_name[6];
6422         int i;
6423         int group_cnt, worker_cnt_per_group;
6424         struct r5worker_group *new_group;
6425
6426         if (mddev->new_level != 5
6427             && mddev->new_level != 4
6428             && mddev->new_level != 6) {
6429                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6430                        mdname(mddev), mddev->new_level);
6431                 return ERR_PTR(-EIO);
6432         }
6433         if ((mddev->new_level == 5
6434              && !algorithm_valid_raid5(mddev->new_layout)) ||
6435             (mddev->new_level == 6
6436              && !algorithm_valid_raid6(mddev->new_layout))) {
6437                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6438                        mdname(mddev), mddev->new_layout);
6439                 return ERR_PTR(-EIO);
6440         }
6441         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6442                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6443                        mdname(mddev), mddev->raid_disks);
6444                 return ERR_PTR(-EINVAL);
6445         }
6446
6447         if (!mddev->new_chunk_sectors ||
6448             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6449             !is_power_of_2(mddev->new_chunk_sectors)) {
6450                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6451                        mdname(mddev), mddev->new_chunk_sectors << 9);
6452                 return ERR_PTR(-EINVAL);
6453         }
6454
6455         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6456         if (conf == NULL)
6457                 goto abort;
6458         /* Don't enable multi-threading by default*/
6459         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6460                                  &new_group)) {
6461                 conf->group_cnt = group_cnt;
6462                 conf->worker_cnt_per_group = worker_cnt_per_group;
6463                 conf->worker_groups = new_group;
6464         } else
6465                 goto abort;
6466         spin_lock_init(&conf->device_lock);
6467         seqcount_init(&conf->gen_lock);
6468         mutex_init(&conf->cache_size_mutex);
6469         init_waitqueue_head(&conf->wait_for_quiescent);
6470         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6471                 init_waitqueue_head(&conf->wait_for_stripe[i]);
6472         }
6473         init_waitqueue_head(&conf->wait_for_overlap);
6474         INIT_LIST_HEAD(&conf->handle_list);
6475         INIT_LIST_HEAD(&conf->hold_list);
6476         INIT_LIST_HEAD(&conf->delayed_list);
6477         INIT_LIST_HEAD(&conf->bitmap_list);
6478         init_llist_head(&conf->released_stripes);
6479         atomic_set(&conf->active_stripes, 0);
6480         atomic_set(&conf->preread_active_stripes, 0);
6481         atomic_set(&conf->active_aligned_reads, 0);
6482         conf->bypass_threshold = BYPASS_THRESHOLD;
6483         conf->recovery_disabled = mddev->recovery_disabled - 1;
6484
6485         conf->raid_disks = mddev->raid_disks;
6486         if (mddev->reshape_position == MaxSector)
6487                 conf->previous_raid_disks = mddev->raid_disks;
6488         else
6489                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6490         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6491
6492         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6493                               GFP_KERNEL);
6494         if (!conf->disks)
6495                 goto abort;
6496
6497         conf->mddev = mddev;
6498
6499         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6500                 goto abort;
6501
6502         /* We init hash_locks[0] separately to that it can be used
6503          * as the reference lock in the spin_lock_nest_lock() call
6504          * in lock_all_device_hash_locks_irq in order to convince
6505          * lockdep that we know what we are doing.
6506          */
6507         spin_lock_init(conf->hash_locks);
6508         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6509                 spin_lock_init(conf->hash_locks + i);
6510
6511         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6512                 INIT_LIST_HEAD(conf->inactive_list + i);
6513
6514         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6515                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6516
6517         conf->level = mddev->new_level;
6518         conf->chunk_sectors = mddev->new_chunk_sectors;
6519         if (raid5_alloc_percpu(conf) != 0)
6520                 goto abort;
6521
6522         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6523
6524         rdev_for_each(rdev, mddev) {
6525                 raid_disk = rdev->raid_disk;
6526                 if (raid_disk >= max_disks
6527                     || raid_disk < 0)
6528                         continue;
6529                 disk = conf->disks + raid_disk;
6530
6531                 if (test_bit(Replacement, &rdev->flags)) {
6532                         if (disk->replacement)
6533                                 goto abort;
6534                         disk->replacement = rdev;
6535                 } else {
6536                         if (disk->rdev)
6537                                 goto abort;
6538                         disk->rdev = rdev;
6539                 }
6540
6541                 if (test_bit(In_sync, &rdev->flags)) {
6542                         char b[BDEVNAME_SIZE];
6543                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6544                                " disk %d\n",
6545                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6546                 } else if (rdev->saved_raid_disk != raid_disk)
6547                         /* Cannot rely on bitmap to complete recovery */
6548                         conf->fullsync = 1;
6549         }
6550
6551         conf->level = mddev->new_level;
6552         if (conf->level == 6) {
6553                 conf->max_degraded = 2;
6554                 if (raid6_call.xor_syndrome)
6555                         conf->rmw_level = PARITY_ENABLE_RMW;
6556                 else
6557                         conf->rmw_level = PARITY_DISABLE_RMW;
6558         } else {
6559                 conf->max_degraded = 1;
6560                 conf->rmw_level = PARITY_ENABLE_RMW;
6561         }
6562         conf->algorithm = mddev->new_layout;
6563         conf->reshape_progress = mddev->reshape_position;
6564         if (conf->reshape_progress != MaxSector) {
6565                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6566                 conf->prev_algo = mddev->layout;
6567         }
6568
6569         conf->min_nr_stripes = NR_STRIPES;
6570         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6571                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6572         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6573         if (grow_stripes(conf, conf->min_nr_stripes)) {
6574                 printk(KERN_ERR
6575                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6576                        mdname(mddev), memory);
6577                 goto abort;
6578         } else
6579                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6580                        mdname(mddev), memory);
6581         /*
6582          * Losing a stripe head costs more than the time to refill it,
6583          * it reduces the queue depth and so can hurt throughput.
6584          * So set it rather large, scaled by number of devices.
6585          */
6586         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6587         conf->shrinker.scan_objects = raid5_cache_scan;
6588         conf->shrinker.count_objects = raid5_cache_count;
6589         conf->shrinker.batch = 128;
6590         conf->shrinker.flags = 0;
6591         register_shrinker(&conf->shrinker);
6592
6593         sprintf(pers_name, "raid%d", mddev->new_level);
6594         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6595         if (!conf->thread) {
6596                 printk(KERN_ERR
6597                        "md/raid:%s: couldn't allocate thread.\n",
6598                        mdname(mddev));
6599                 goto abort;
6600         }
6601
6602         return conf;
6603
6604  abort:
6605         if (conf) {
6606                 free_conf(conf);
6607                 return ERR_PTR(-EIO);
6608         } else
6609                 return ERR_PTR(-ENOMEM);
6610 }
6611
6612 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6613 {
6614         switch (algo) {
6615         case ALGORITHM_PARITY_0:
6616                 if (raid_disk < max_degraded)
6617                         return 1;
6618                 break;
6619         case ALGORITHM_PARITY_N:
6620                 if (raid_disk >= raid_disks - max_degraded)
6621                         return 1;
6622                 break;
6623         case ALGORITHM_PARITY_0_6:
6624                 if (raid_disk == 0 ||
6625                     raid_disk == raid_disks - 1)
6626                         return 1;
6627                 break;
6628         case ALGORITHM_LEFT_ASYMMETRIC_6:
6629         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6630         case ALGORITHM_LEFT_SYMMETRIC_6:
6631         case ALGORITHM_RIGHT_SYMMETRIC_6:
6632                 if (raid_disk == raid_disks - 1)
6633                         return 1;
6634         }
6635         return 0;
6636 }
6637
6638 static int run(struct mddev *mddev)
6639 {
6640         struct r5conf *conf;
6641         int working_disks = 0;
6642         int dirty_parity_disks = 0;
6643         struct md_rdev *rdev;
6644         sector_t reshape_offset = 0;
6645         int i;
6646         long long min_offset_diff = 0;
6647         int first = 1;
6648
6649         if (mddev->recovery_cp != MaxSector)
6650                 printk(KERN_NOTICE "md/raid:%s: not clean"
6651                        " -- starting background reconstruction\n",
6652                        mdname(mddev));
6653
6654         rdev_for_each(rdev, mddev) {
6655                 long long diff;
6656                 if (rdev->raid_disk < 0)
6657                         continue;
6658                 diff = (rdev->new_data_offset - rdev->data_offset);
6659                 if (first) {
6660                         min_offset_diff = diff;
6661                         first = 0;
6662                 } else if (mddev->reshape_backwards &&
6663                          diff < min_offset_diff)
6664                         min_offset_diff = diff;
6665                 else if (!mddev->reshape_backwards &&
6666                          diff > min_offset_diff)
6667                         min_offset_diff = diff;
6668         }
6669
6670         if (mddev->reshape_position != MaxSector) {
6671                 /* Check that we can continue the reshape.
6672                  * Difficulties arise if the stripe we would write to
6673                  * next is at or after the stripe we would read from next.
6674                  * For a reshape that changes the number of devices, this
6675                  * is only possible for a very short time, and mdadm makes
6676                  * sure that time appears to have past before assembling
6677                  * the array.  So we fail if that time hasn't passed.
6678                  * For a reshape that keeps the number of devices the same
6679                  * mdadm must be monitoring the reshape can keeping the
6680                  * critical areas read-only and backed up.  It will start
6681                  * the array in read-only mode, so we check for that.
6682                  */
6683                 sector_t here_new, here_old;
6684                 int old_disks;
6685                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6686
6687                 if (mddev->new_level != mddev->level) {
6688                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6689                                "required - aborting.\n",
6690                                mdname(mddev));
6691                         return -EINVAL;
6692                 }
6693                 old_disks = mddev->raid_disks - mddev->delta_disks;
6694                 /* reshape_position must be on a new-stripe boundary, and one
6695                  * further up in new geometry must map after here in old
6696                  * geometry.
6697                  */
6698                 here_new = mddev->reshape_position;
6699                 if (sector_div(here_new, mddev->new_chunk_sectors *
6700                                (mddev->raid_disks - max_degraded))) {
6701                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6702                                "on a stripe boundary\n", mdname(mddev));
6703                         return -EINVAL;
6704                 }
6705                 reshape_offset = here_new * mddev->new_chunk_sectors;
6706                 /* here_new is the stripe we will write to */
6707                 here_old = mddev->reshape_position;
6708                 sector_div(here_old, mddev->chunk_sectors *
6709                            (old_disks-max_degraded));
6710                 /* here_old is the first stripe that we might need to read
6711                  * from */
6712                 if (mddev->delta_disks == 0) {
6713                         if ((here_new * mddev->new_chunk_sectors !=
6714                              here_old * mddev->chunk_sectors)) {
6715                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6716                                        " confused - aborting\n", mdname(mddev));
6717                                 return -EINVAL;
6718                         }
6719                         /* We cannot be sure it is safe to start an in-place
6720                          * reshape.  It is only safe if user-space is monitoring
6721                          * and taking constant backups.
6722                          * mdadm always starts a situation like this in
6723                          * readonly mode so it can take control before
6724                          * allowing any writes.  So just check for that.
6725                          */
6726                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6727                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6728                                 /* not really in-place - so OK */;
6729                         else if (mddev->ro == 0) {
6730                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6731                                        "must be started in read-only mode "
6732                                        "- aborting\n",
6733                                        mdname(mddev));
6734                                 return -EINVAL;
6735                         }
6736                 } else if (mddev->reshape_backwards
6737                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6738                        here_old * mddev->chunk_sectors)
6739                     : (here_new * mddev->new_chunk_sectors >=
6740                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6741                         /* Reading from the same stripe as writing to - bad */
6742                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6743                                "auto-recovery - aborting.\n",
6744                                mdname(mddev));
6745                         return -EINVAL;
6746                 }
6747                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6748                        mdname(mddev));
6749                 /* OK, we should be able to continue; */
6750         } else {
6751                 BUG_ON(mddev->level != mddev->new_level);
6752                 BUG_ON(mddev->layout != mddev->new_layout);
6753                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6754                 BUG_ON(mddev->delta_disks != 0);
6755         }
6756
6757         if (mddev->private == NULL)
6758                 conf = setup_conf(mddev);
6759         else
6760                 conf = mddev->private;
6761
6762         if (IS_ERR(conf))
6763                 return PTR_ERR(conf);
6764
6765         conf->min_offset_diff = min_offset_diff;
6766         mddev->thread = conf->thread;
6767         conf->thread = NULL;
6768         mddev->private = conf;
6769
6770         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6771              i++) {
6772                 rdev = conf->disks[i].rdev;
6773                 if (!rdev && conf->disks[i].replacement) {
6774                         /* The replacement is all we have yet */
6775                         rdev = conf->disks[i].replacement;
6776                         conf->disks[i].replacement = NULL;
6777                         clear_bit(Replacement, &rdev->flags);
6778                         conf->disks[i].rdev = rdev;
6779                 }
6780                 if (!rdev)
6781                         continue;
6782                 if (conf->disks[i].replacement &&
6783                     conf->reshape_progress != MaxSector) {
6784                         /* replacements and reshape simply do not mix. */
6785                         printk(KERN_ERR "md: cannot handle concurrent "
6786                                "replacement and reshape.\n");
6787                         goto abort;
6788                 }
6789                 if (test_bit(In_sync, &rdev->flags)) {
6790                         working_disks++;
6791                         continue;
6792                 }
6793                 /* This disc is not fully in-sync.  However if it
6794                  * just stored parity (beyond the recovery_offset),
6795                  * when we don't need to be concerned about the
6796                  * array being dirty.
6797                  * When reshape goes 'backwards', we never have
6798                  * partially completed devices, so we only need
6799                  * to worry about reshape going forwards.
6800                  */
6801                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6802                 if (mddev->major_version == 0 &&
6803                     mddev->minor_version > 90)
6804                         rdev->recovery_offset = reshape_offset;
6805
6806                 if (rdev->recovery_offset < reshape_offset) {
6807                         /* We need to check old and new layout */
6808                         if (!only_parity(rdev->raid_disk,
6809                                          conf->algorithm,
6810                                          conf->raid_disks,
6811                                          conf->max_degraded))
6812                                 continue;
6813                 }
6814                 if (!only_parity(rdev->raid_disk,
6815                                  conf->prev_algo,
6816                                  conf->previous_raid_disks,
6817                                  conf->max_degraded))
6818                         continue;
6819                 dirty_parity_disks++;
6820         }
6821
6822         /*
6823          * 0 for a fully functional array, 1 or 2 for a degraded array.
6824          */
6825         mddev->degraded = calc_degraded(conf);
6826
6827         if (has_failed(conf)) {
6828                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6829                         " (%d/%d failed)\n",
6830                         mdname(mddev), mddev->degraded, conf->raid_disks);
6831                 goto abort;
6832         }
6833
6834         /* device size must be a multiple of chunk size */
6835         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6836         mddev->resync_max_sectors = mddev->dev_sectors;
6837
6838         if (mddev->degraded > dirty_parity_disks &&
6839             mddev->recovery_cp != MaxSector) {
6840                 if (mddev->ok_start_degraded)
6841                         printk(KERN_WARNING
6842                                "md/raid:%s: starting dirty degraded array"
6843                                " - data corruption possible.\n",
6844                                mdname(mddev));
6845                 else {
6846                         printk(KERN_ERR
6847                                "md/raid:%s: cannot start dirty degraded array.\n",
6848                                mdname(mddev));
6849                         goto abort;
6850                 }
6851         }
6852
6853         if (mddev->degraded == 0)
6854                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6855                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6856                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6857                        mddev->new_layout);
6858         else
6859                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6860                        " out of %d devices, algorithm %d\n",
6861                        mdname(mddev), conf->level,
6862                        mddev->raid_disks - mddev->degraded,
6863                        mddev->raid_disks, mddev->new_layout);
6864
6865         print_raid5_conf(conf);
6866
6867         if (conf->reshape_progress != MaxSector) {
6868                 conf->reshape_safe = conf->reshape_progress;
6869                 atomic_set(&conf->reshape_stripes, 0);
6870                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6871                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6872                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6873                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6874                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6875                                                         "reshape");
6876         }
6877
6878         /* Ok, everything is just fine now */
6879         if (mddev->to_remove == &raid5_attrs_group)
6880                 mddev->to_remove = NULL;
6881         else if (mddev->kobj.sd &&
6882             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6883                 printk(KERN_WARNING
6884                        "raid5: failed to create sysfs attributes for %s\n",
6885                        mdname(mddev));
6886         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6887
6888         if (mddev->queue) {
6889                 int chunk_size;
6890                 bool discard_supported = true;
6891                 /* read-ahead size must cover two whole stripes, which
6892                  * is 2 * (datadisks) * chunksize where 'n' is the
6893                  * number of raid devices
6894                  */
6895                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6896                 int stripe = data_disks *
6897                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6898                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6899                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6900
6901                 chunk_size = mddev->chunk_sectors << 9;
6902                 blk_queue_io_min(mddev->queue, chunk_size);
6903                 blk_queue_io_opt(mddev->queue, chunk_size *
6904                                  (conf->raid_disks - conf->max_degraded));
6905                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6906                 /*
6907                  * We can only discard a whole stripe. It doesn't make sense to
6908                  * discard data disk but write parity disk
6909                  */
6910                 stripe = stripe * PAGE_SIZE;
6911                 /* Round up to power of 2, as discard handling
6912                  * currently assumes that */
6913                 while ((stripe-1) & stripe)
6914                         stripe = (stripe | (stripe-1)) + 1;
6915                 mddev->queue->limits.discard_alignment = stripe;
6916                 mddev->queue->limits.discard_granularity = stripe;
6917                 /*
6918                  * unaligned part of discard request will be ignored, so can't
6919                  * guarantee discard_zeroes_data
6920                  */
6921                 mddev->queue->limits.discard_zeroes_data = 0;
6922
6923                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6924
6925                 rdev_for_each(rdev, mddev) {
6926                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6927                                           rdev->data_offset << 9);
6928                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6929                                           rdev->new_data_offset << 9);
6930                         /*
6931                          * discard_zeroes_data is required, otherwise data
6932                          * could be lost. Consider a scenario: discard a stripe
6933                          * (the stripe could be inconsistent if
6934                          * discard_zeroes_data is 0); write one disk of the
6935                          * stripe (the stripe could be inconsistent again
6936                          * depending on which disks are used to calculate
6937                          * parity); the disk is broken; The stripe data of this
6938                          * disk is lost.
6939                          */
6940                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6941                             !bdev_get_queue(rdev->bdev)->
6942                                                 limits.discard_zeroes_data)
6943                                 discard_supported = false;
6944                         /* Unfortunately, discard_zeroes_data is not currently
6945                          * a guarantee - just a hint.  So we only allow DISCARD
6946                          * if the sysadmin has confirmed that only safe devices
6947                          * are in use by setting a module parameter.
6948                          */
6949                         if (!devices_handle_discard_safely) {
6950                                 if (discard_supported) {
6951                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6952                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6953                                 }
6954                                 discard_supported = false;
6955                         }
6956                 }
6957
6958                 if (discard_supported &&
6959                    mddev->queue->limits.max_discard_sectors >= stripe &&
6960                    mddev->queue->limits.discard_granularity >= stripe)
6961                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6962                                                 mddev->queue);
6963                 else
6964                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6965                                                 mddev->queue);
6966         }
6967
6968         return 0;
6969 abort:
6970         md_unregister_thread(&mddev->thread);
6971         print_raid5_conf(conf);
6972         free_conf(conf);
6973         mddev->private = NULL;
6974         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6975         return -EIO;
6976 }
6977
6978 static void raid5_free(struct mddev *mddev, void *priv)
6979 {
6980         struct r5conf *conf = priv;
6981
6982         free_conf(conf);
6983         mddev->to_remove = &raid5_attrs_group;
6984 }
6985
6986 static void status(struct seq_file *seq, struct mddev *mddev)
6987 {
6988         struct r5conf *conf = mddev->private;
6989         int i;
6990
6991         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6992                 mddev->chunk_sectors / 2, mddev->layout);
6993         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6994         for (i = 0; i < conf->raid_disks; i++)
6995                 seq_printf (seq, "%s",
6996                                conf->disks[i].rdev &&
6997                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6998         seq_printf (seq, "]");
6999 }
7000
7001 static void print_raid5_conf (struct r5conf *conf)
7002 {
7003         int i;
7004         struct disk_info *tmp;
7005
7006         printk(KERN_DEBUG "RAID conf printout:\n");
7007         if (!conf) {
7008                 printk("(conf==NULL)\n");
7009                 return;
7010         }
7011         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7012                conf->raid_disks,
7013                conf->raid_disks - conf->mddev->degraded);
7014
7015         for (i = 0; i < conf->raid_disks; i++) {
7016                 char b[BDEVNAME_SIZE];
7017                 tmp = conf->disks + i;
7018                 if (tmp->rdev)
7019                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7020                                i, !test_bit(Faulty, &tmp->rdev->flags),
7021                                bdevname(tmp->rdev->bdev, b));
7022         }
7023 }
7024
7025 static int raid5_spare_active(struct mddev *mddev)
7026 {
7027         int i;
7028         struct r5conf *conf = mddev->private;
7029         struct disk_info *tmp;
7030         int count = 0;
7031         unsigned long flags;
7032
7033         for (i = 0; i < conf->raid_disks; i++) {
7034                 tmp = conf->disks + i;
7035                 if (tmp->replacement
7036                     && tmp->replacement->recovery_offset == MaxSector
7037                     && !test_bit(Faulty, &tmp->replacement->flags)
7038                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7039                         /* Replacement has just become active. */
7040                         if (!tmp->rdev
7041                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7042                                 count++;
7043                         if (tmp->rdev) {
7044                                 /* Replaced device not technically faulty,
7045                                  * but we need to be sure it gets removed
7046                                  * and never re-added.
7047                                  */
7048                                 set_bit(Faulty, &tmp->rdev->flags);
7049                                 sysfs_notify_dirent_safe(
7050                                         tmp->rdev->sysfs_state);
7051                         }
7052                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7053                 } else if (tmp->rdev
7054                     && tmp->rdev->recovery_offset == MaxSector
7055                     && !test_bit(Faulty, &tmp->rdev->flags)
7056                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7057                         count++;
7058                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7059                 }
7060         }
7061         spin_lock_irqsave(&conf->device_lock, flags);
7062         mddev->degraded = calc_degraded(conf);
7063         spin_unlock_irqrestore(&conf->device_lock, flags);
7064         print_raid5_conf(conf);
7065         return count;
7066 }
7067
7068 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7069 {
7070         struct r5conf *conf = mddev->private;
7071         int err = 0;
7072         int number = rdev->raid_disk;
7073         struct md_rdev **rdevp;
7074         struct disk_info *p = conf->disks + number;
7075
7076         print_raid5_conf(conf);
7077         if (rdev == p->rdev)
7078                 rdevp = &p->rdev;
7079         else if (rdev == p->replacement)
7080                 rdevp = &p->replacement;
7081         else
7082                 return 0;
7083
7084         if (number >= conf->raid_disks &&
7085             conf->reshape_progress == MaxSector)
7086                 clear_bit(In_sync, &rdev->flags);
7087
7088         if (test_bit(In_sync, &rdev->flags) ||
7089             atomic_read(&rdev->nr_pending)) {
7090                 err = -EBUSY;
7091                 goto abort;
7092         }
7093         /* Only remove non-faulty devices if recovery
7094          * isn't possible.
7095          */
7096         if (!test_bit(Faulty, &rdev->flags) &&
7097             mddev->recovery_disabled != conf->recovery_disabled &&
7098             !has_failed(conf) &&
7099             (!p->replacement || p->replacement == rdev) &&
7100             number < conf->raid_disks) {
7101                 err = -EBUSY;
7102                 goto abort;
7103         }
7104         *rdevp = NULL;
7105         synchronize_rcu();
7106         if (atomic_read(&rdev->nr_pending)) {
7107                 /* lost the race, try later */
7108                 err = -EBUSY;
7109                 *rdevp = rdev;
7110         } else if (p->replacement) {
7111                 /* We must have just cleared 'rdev' */
7112                 p->rdev = p->replacement;
7113                 clear_bit(Replacement, &p->replacement->flags);
7114                 smp_mb(); /* Make sure other CPUs may see both as identical
7115                            * but will never see neither - if they are careful
7116                            */
7117                 p->replacement = NULL;
7118                 clear_bit(WantReplacement, &rdev->flags);
7119         } else
7120                 /* We might have just removed the Replacement as faulty-
7121                  * clear the bit just in case
7122                  */
7123                 clear_bit(WantReplacement, &rdev->flags);
7124 abort:
7125
7126         print_raid5_conf(conf);
7127         return err;
7128 }
7129
7130 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7131 {
7132         struct r5conf *conf = mddev->private;
7133         int err = -EEXIST;
7134         int disk;
7135         struct disk_info *p;
7136         int first = 0;
7137         int last = conf->raid_disks - 1;
7138
7139         if (mddev->recovery_disabled == conf->recovery_disabled)
7140                 return -EBUSY;
7141
7142         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7143                 /* no point adding a device */
7144                 return -EINVAL;
7145
7146         if (rdev->raid_disk >= 0)
7147                 first = last = rdev->raid_disk;
7148
7149         /*
7150          * find the disk ... but prefer rdev->saved_raid_disk
7151          * if possible.
7152          */
7153         if (rdev->saved_raid_disk >= 0 &&
7154             rdev->saved_raid_disk >= first &&
7155             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7156                 first = rdev->saved_raid_disk;
7157
7158         for (disk = first; disk <= last; disk++) {
7159                 p = conf->disks + disk;
7160                 if (p->rdev == NULL) {
7161                         clear_bit(In_sync, &rdev->flags);
7162                         rdev->raid_disk = disk;
7163                         err = 0;
7164                         if (rdev->saved_raid_disk != disk)
7165                                 conf->fullsync = 1;
7166                         rcu_assign_pointer(p->rdev, rdev);
7167                         goto out;
7168                 }
7169         }
7170         for (disk = first; disk <= last; disk++) {
7171                 p = conf->disks + disk;
7172                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7173                     p->replacement == NULL) {
7174                         clear_bit(In_sync, &rdev->flags);
7175                         set_bit(Replacement, &rdev->flags);
7176                         rdev->raid_disk = disk;
7177                         err = 0;
7178                         conf->fullsync = 1;
7179                         rcu_assign_pointer(p->replacement, rdev);
7180                         break;
7181                 }
7182         }
7183 out:
7184         print_raid5_conf(conf);
7185         return err;
7186 }
7187
7188 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7189 {
7190         /* no resync is happening, and there is enough space
7191          * on all devices, so we can resize.
7192          * We need to make sure resync covers any new space.
7193          * If the array is shrinking we should possibly wait until
7194          * any io in the removed space completes, but it hardly seems
7195          * worth it.
7196          */
7197         sector_t newsize;
7198         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7199         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7200         if (mddev->external_size &&
7201             mddev->array_sectors > newsize)
7202                 return -EINVAL;
7203         if (mddev->bitmap) {
7204                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7205                 if (ret)
7206                         return ret;
7207         }
7208         md_set_array_sectors(mddev, newsize);
7209         set_capacity(mddev->gendisk, mddev->array_sectors);
7210         revalidate_disk(mddev->gendisk);
7211         if (sectors > mddev->dev_sectors &&
7212             mddev->recovery_cp > mddev->dev_sectors) {
7213                 mddev->recovery_cp = mddev->dev_sectors;
7214                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7215         }
7216         mddev->dev_sectors = sectors;
7217         mddev->resync_max_sectors = sectors;
7218         return 0;
7219 }
7220
7221 static int check_stripe_cache(struct mddev *mddev)
7222 {
7223         /* Can only proceed if there are plenty of stripe_heads.
7224          * We need a minimum of one full stripe,, and for sensible progress
7225          * it is best to have about 4 times that.
7226          * If we require 4 times, then the default 256 4K stripe_heads will
7227          * allow for chunk sizes up to 256K, which is probably OK.
7228          * If the chunk size is greater, user-space should request more
7229          * stripe_heads first.
7230          */
7231         struct r5conf *conf = mddev->private;
7232         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7233             > conf->min_nr_stripes ||
7234             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7235             > conf->min_nr_stripes) {
7236                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7237                        mdname(mddev),
7238                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7239                         / STRIPE_SIZE)*4);
7240                 return 0;
7241         }
7242         return 1;
7243 }
7244
7245 static int check_reshape(struct mddev *mddev)
7246 {
7247         struct r5conf *conf = mddev->private;
7248
7249         if (mddev->delta_disks == 0 &&
7250             mddev->new_layout == mddev->layout &&
7251             mddev->new_chunk_sectors == mddev->chunk_sectors)
7252                 return 0; /* nothing to do */
7253         if (has_failed(conf))
7254                 return -EINVAL;
7255         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7256                 /* We might be able to shrink, but the devices must
7257                  * be made bigger first.
7258                  * For raid6, 4 is the minimum size.
7259                  * Otherwise 2 is the minimum
7260                  */
7261                 int min = 2;
7262                 if (mddev->level == 6)
7263                         min = 4;
7264                 if (mddev->raid_disks + mddev->delta_disks < min)
7265                         return -EINVAL;
7266         }
7267
7268         if (!check_stripe_cache(mddev))
7269                 return -ENOSPC;
7270
7271         if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7272             mddev->delta_disks > 0)
7273                 if (resize_chunks(conf,
7274                                   conf->previous_raid_disks
7275                                   + max(0, mddev->delta_disks),
7276                                   max(mddev->new_chunk_sectors,
7277                                       mddev->chunk_sectors)
7278                             ) < 0)
7279                         return -ENOMEM;
7280         return resize_stripes(conf, (conf->previous_raid_disks
7281                                      + mddev->delta_disks));
7282 }
7283
7284 static int raid5_start_reshape(struct mddev *mddev)
7285 {
7286         struct r5conf *conf = mddev->private;
7287         struct md_rdev *rdev;
7288         int spares = 0;
7289         unsigned long flags;
7290
7291         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7292                 return -EBUSY;
7293
7294         if (!check_stripe_cache(mddev))
7295                 return -ENOSPC;
7296
7297         if (has_failed(conf))
7298                 return -EINVAL;
7299
7300         rdev_for_each(rdev, mddev) {
7301                 if (!test_bit(In_sync, &rdev->flags)
7302                     && !test_bit(Faulty, &rdev->flags))
7303                         spares++;
7304         }
7305
7306         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7307                 /* Not enough devices even to make a degraded array
7308                  * of that size
7309                  */
7310                 return -EINVAL;
7311
7312         /* Refuse to reduce size of the array.  Any reductions in
7313          * array size must be through explicit setting of array_size
7314          * attribute.
7315          */
7316         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7317             < mddev->array_sectors) {
7318                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7319                        "before number of disks\n", mdname(mddev));
7320                 return -EINVAL;
7321         }
7322
7323         atomic_set(&conf->reshape_stripes, 0);
7324         spin_lock_irq(&conf->device_lock);
7325         write_seqcount_begin(&conf->gen_lock);
7326         conf->previous_raid_disks = conf->raid_disks;
7327         conf->raid_disks += mddev->delta_disks;
7328         conf->prev_chunk_sectors = conf->chunk_sectors;
7329         conf->chunk_sectors = mddev->new_chunk_sectors;
7330         conf->prev_algo = conf->algorithm;
7331         conf->algorithm = mddev->new_layout;
7332         conf->generation++;
7333         /* Code that selects data_offset needs to see the generation update
7334          * if reshape_progress has been set - so a memory barrier needed.
7335          */
7336         smp_mb();
7337         if (mddev->reshape_backwards)
7338                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7339         else
7340                 conf->reshape_progress = 0;
7341         conf->reshape_safe = conf->reshape_progress;
7342         write_seqcount_end(&conf->gen_lock);
7343         spin_unlock_irq(&conf->device_lock);
7344
7345         /* Now make sure any requests that proceeded on the assumption
7346          * the reshape wasn't running - like Discard or Read - have
7347          * completed.
7348          */
7349         mddev_suspend(mddev);
7350         mddev_resume(mddev);
7351
7352         /* Add some new drives, as many as will fit.
7353          * We know there are enough to make the newly sized array work.
7354          * Don't add devices if we are reducing the number of
7355          * devices in the array.  This is because it is not possible
7356          * to correctly record the "partially reconstructed" state of
7357          * such devices during the reshape and confusion could result.
7358          */
7359         if (mddev->delta_disks >= 0) {
7360                 rdev_for_each(rdev, mddev)
7361                         if (rdev->raid_disk < 0 &&
7362                             !test_bit(Faulty, &rdev->flags)) {
7363                                 if (raid5_add_disk(mddev, rdev) == 0) {
7364                                         if (rdev->raid_disk
7365                                             >= conf->previous_raid_disks)
7366                                                 set_bit(In_sync, &rdev->flags);
7367                                         else
7368                                                 rdev->recovery_offset = 0;
7369
7370                                         if (sysfs_link_rdev(mddev, rdev))
7371                                                 /* Failure here is OK */;
7372                                 }
7373                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7374                                    && !test_bit(Faulty, &rdev->flags)) {
7375                                 /* This is a spare that was manually added */
7376                                 set_bit(In_sync, &rdev->flags);
7377                         }
7378
7379                 /* When a reshape changes the number of devices,
7380                  * ->degraded is measured against the larger of the
7381                  * pre and post number of devices.
7382                  */
7383                 spin_lock_irqsave(&conf->device_lock, flags);
7384                 mddev->degraded = calc_degraded(conf);
7385                 spin_unlock_irqrestore(&conf->device_lock, flags);
7386         }
7387         mddev->raid_disks = conf->raid_disks;
7388         mddev->reshape_position = conf->reshape_progress;
7389         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7390
7391         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7392         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7393         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7394         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7395         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7396         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7397                                                 "reshape");
7398         if (!mddev->sync_thread) {
7399                 mddev->recovery = 0;
7400                 spin_lock_irq(&conf->device_lock);
7401                 write_seqcount_begin(&conf->gen_lock);
7402                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7403                 mddev->new_chunk_sectors =
7404                         conf->chunk_sectors = conf->prev_chunk_sectors;
7405                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7406                 rdev_for_each(rdev, mddev)
7407                         rdev->new_data_offset = rdev->data_offset;
7408                 smp_wmb();
7409                 conf->generation --;
7410                 conf->reshape_progress = MaxSector;
7411                 mddev->reshape_position = MaxSector;
7412                 write_seqcount_end(&conf->gen_lock);
7413                 spin_unlock_irq(&conf->device_lock);
7414                 return -EAGAIN;
7415         }
7416         conf->reshape_checkpoint = jiffies;
7417         md_wakeup_thread(mddev->sync_thread);
7418         md_new_event(mddev);
7419         return 0;
7420 }
7421
7422 /* This is called from the reshape thread and should make any
7423  * changes needed in 'conf'
7424  */
7425 static void end_reshape(struct r5conf *conf)
7426 {
7427
7428         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7429                 struct md_rdev *rdev;
7430
7431                 spin_lock_irq(&conf->device_lock);
7432                 conf->previous_raid_disks = conf->raid_disks;
7433                 rdev_for_each(rdev, conf->mddev)
7434                         rdev->data_offset = rdev->new_data_offset;
7435                 smp_wmb();
7436                 conf->reshape_progress = MaxSector;
7437                 spin_unlock_irq(&conf->device_lock);
7438                 wake_up(&conf->wait_for_overlap);
7439
7440                 /* read-ahead size must cover two whole stripes, which is
7441                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7442                  */
7443                 if (conf->mddev->queue) {
7444                         int data_disks = conf->raid_disks - conf->max_degraded;
7445                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7446                                                    / PAGE_SIZE);
7447                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7448                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7449                 }
7450         }
7451 }
7452
7453 /* This is called from the raid5d thread with mddev_lock held.
7454  * It makes config changes to the device.
7455  */
7456 static void raid5_finish_reshape(struct mddev *mddev)
7457 {
7458         struct r5conf *conf = mddev->private;
7459
7460         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7461
7462                 if (mddev->delta_disks > 0) {
7463                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7464                         set_capacity(mddev->gendisk, mddev->array_sectors);
7465                         revalidate_disk(mddev->gendisk);
7466                 } else {
7467                         int d;
7468                         spin_lock_irq(&conf->device_lock);
7469                         mddev->degraded = calc_degraded(conf);
7470                         spin_unlock_irq(&conf->device_lock);
7471                         for (d = conf->raid_disks ;
7472                              d < conf->raid_disks - mddev->delta_disks;
7473                              d++) {
7474                                 struct md_rdev *rdev = conf->disks[d].rdev;
7475                                 if (rdev)
7476                                         clear_bit(In_sync, &rdev->flags);
7477                                 rdev = conf->disks[d].replacement;
7478                                 if (rdev)
7479                                         clear_bit(In_sync, &rdev->flags);
7480                         }
7481                 }
7482                 mddev->layout = conf->algorithm;
7483                 mddev->chunk_sectors = conf->chunk_sectors;
7484                 mddev->reshape_position = MaxSector;
7485                 mddev->delta_disks = 0;
7486                 mddev->reshape_backwards = 0;
7487         }
7488 }
7489
7490 static void raid5_quiesce(struct mddev *mddev, int state)
7491 {
7492         struct r5conf *conf = mddev->private;
7493
7494         switch(state) {
7495         case 2: /* resume for a suspend */
7496                 wake_up(&conf->wait_for_overlap);
7497                 break;
7498
7499         case 1: /* stop all writes */
7500                 lock_all_device_hash_locks_irq(conf);
7501                 /* '2' tells resync/reshape to pause so that all
7502                  * active stripes can drain
7503                  */
7504                 conf->quiesce = 2;
7505                 wait_event_cmd(conf->wait_for_quiescent,
7506                                     atomic_read(&conf->active_stripes) == 0 &&
7507                                     atomic_read(&conf->active_aligned_reads) == 0,
7508                                     unlock_all_device_hash_locks_irq(conf),
7509                                     lock_all_device_hash_locks_irq(conf));
7510                 conf->quiesce = 1;
7511                 unlock_all_device_hash_locks_irq(conf);
7512                 /* allow reshape to continue */
7513                 wake_up(&conf->wait_for_overlap);
7514                 break;
7515
7516         case 0: /* re-enable writes */
7517                 lock_all_device_hash_locks_irq(conf);
7518                 conf->quiesce = 0;
7519                 wake_up(&conf->wait_for_quiescent);
7520                 wake_up(&conf->wait_for_overlap);
7521                 unlock_all_device_hash_locks_irq(conf);
7522                 break;
7523         }
7524 }
7525
7526 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7527 {
7528         struct r0conf *raid0_conf = mddev->private;
7529         sector_t sectors;
7530
7531         /* for raid0 takeover only one zone is supported */
7532         if (raid0_conf->nr_strip_zones > 1) {
7533                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7534                        mdname(mddev));
7535                 return ERR_PTR(-EINVAL);
7536         }
7537
7538         sectors = raid0_conf->strip_zone[0].zone_end;
7539         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7540         mddev->dev_sectors = sectors;
7541         mddev->new_level = level;
7542         mddev->new_layout = ALGORITHM_PARITY_N;
7543         mddev->new_chunk_sectors = mddev->chunk_sectors;
7544         mddev->raid_disks += 1;
7545         mddev->delta_disks = 1;
7546         /* make sure it will be not marked as dirty */
7547         mddev->recovery_cp = MaxSector;
7548
7549         return setup_conf(mddev);
7550 }
7551
7552 static void *raid5_takeover_raid1(struct mddev *mddev)
7553 {
7554         int chunksect;
7555
7556         if (mddev->raid_disks != 2 ||
7557             mddev->degraded > 1)
7558                 return ERR_PTR(-EINVAL);
7559
7560         /* Should check if there are write-behind devices? */
7561
7562         chunksect = 64*2; /* 64K by default */
7563
7564         /* The array must be an exact multiple of chunksize */
7565         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7566                 chunksect >>= 1;
7567
7568         if ((chunksect<<9) < STRIPE_SIZE)
7569                 /* array size does not allow a suitable chunk size */
7570                 return ERR_PTR(-EINVAL);
7571
7572         mddev->new_level = 5;
7573         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7574         mddev->new_chunk_sectors = chunksect;
7575
7576         return setup_conf(mddev);
7577 }
7578
7579 static void *raid5_takeover_raid6(struct mddev *mddev)
7580 {
7581         int new_layout;
7582
7583         switch (mddev->layout) {
7584         case ALGORITHM_LEFT_ASYMMETRIC_6:
7585                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7586                 break;
7587         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7588                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7589                 break;
7590         case ALGORITHM_LEFT_SYMMETRIC_6:
7591                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7592                 break;
7593         case ALGORITHM_RIGHT_SYMMETRIC_6:
7594                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7595                 break;
7596         case ALGORITHM_PARITY_0_6:
7597                 new_layout = ALGORITHM_PARITY_0;
7598                 break;
7599         case ALGORITHM_PARITY_N:
7600                 new_layout = ALGORITHM_PARITY_N;
7601                 break;
7602         default:
7603                 return ERR_PTR(-EINVAL);
7604         }
7605         mddev->new_level = 5;
7606         mddev->new_layout = new_layout;
7607         mddev->delta_disks = -1;
7608         mddev->raid_disks -= 1;
7609         return setup_conf(mddev);
7610 }
7611
7612 static int raid5_check_reshape(struct mddev *mddev)
7613 {
7614         /* For a 2-drive array, the layout and chunk size can be changed
7615          * immediately as not restriping is needed.
7616          * For larger arrays we record the new value - after validation
7617          * to be used by a reshape pass.
7618          */
7619         struct r5conf *conf = mddev->private;
7620         int new_chunk = mddev->new_chunk_sectors;
7621
7622         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7623                 return -EINVAL;
7624         if (new_chunk > 0) {
7625                 if (!is_power_of_2(new_chunk))
7626                         return -EINVAL;
7627                 if (new_chunk < (PAGE_SIZE>>9))
7628                         return -EINVAL;
7629                 if (mddev->array_sectors & (new_chunk-1))
7630                         /* not factor of array size */
7631                         return -EINVAL;
7632         }
7633
7634         /* They look valid */
7635
7636         if (mddev->raid_disks == 2) {
7637                 /* can make the change immediately */
7638                 if (mddev->new_layout >= 0) {
7639                         conf->algorithm = mddev->new_layout;
7640                         mddev->layout = mddev->new_layout;
7641                 }
7642                 if (new_chunk > 0) {
7643                         conf->chunk_sectors = new_chunk ;
7644                         mddev->chunk_sectors = new_chunk;
7645                 }
7646                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7647                 md_wakeup_thread(mddev->thread);
7648         }
7649         return check_reshape(mddev);
7650 }
7651
7652 static int raid6_check_reshape(struct mddev *mddev)
7653 {
7654         int new_chunk = mddev->new_chunk_sectors;
7655
7656         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7657                 return -EINVAL;
7658         if (new_chunk > 0) {
7659                 if (!is_power_of_2(new_chunk))
7660                         return -EINVAL;
7661                 if (new_chunk < (PAGE_SIZE >> 9))
7662                         return -EINVAL;
7663                 if (mddev->array_sectors & (new_chunk-1))
7664                         /* not factor of array size */
7665                         return -EINVAL;
7666         }
7667
7668         /* They look valid */
7669         return check_reshape(mddev);
7670 }
7671
7672 static void *raid5_takeover(struct mddev *mddev)
7673 {
7674         /* raid5 can take over:
7675          *  raid0 - if there is only one strip zone - make it a raid4 layout
7676          *  raid1 - if there are two drives.  We need to know the chunk size
7677          *  raid4 - trivial - just use a raid4 layout.
7678          *  raid6 - Providing it is a *_6 layout
7679          */
7680         if (mddev->level == 0)
7681                 return raid45_takeover_raid0(mddev, 5);
7682         if (mddev->level == 1)
7683                 return raid5_takeover_raid1(mddev);
7684         if (mddev->level == 4) {
7685                 mddev->new_layout = ALGORITHM_PARITY_N;
7686                 mddev->new_level = 5;
7687                 return setup_conf(mddev);
7688         }
7689         if (mddev->level == 6)
7690                 return raid5_takeover_raid6(mddev);
7691
7692         return ERR_PTR(-EINVAL);
7693 }
7694
7695 static void *raid4_takeover(struct mddev *mddev)
7696 {
7697         /* raid4 can take over:
7698          *  raid0 - if there is only one strip zone
7699          *  raid5 - if layout is right
7700          */
7701         if (mddev->level == 0)
7702                 return raid45_takeover_raid0(mddev, 4);
7703         if (mddev->level == 5 &&
7704             mddev->layout == ALGORITHM_PARITY_N) {
7705                 mddev->new_layout = 0;
7706                 mddev->new_level = 4;
7707                 return setup_conf(mddev);
7708         }
7709         return ERR_PTR(-EINVAL);
7710 }
7711
7712 static struct md_personality raid5_personality;
7713
7714 static void *raid6_takeover(struct mddev *mddev)
7715 {
7716         /* Currently can only take over a raid5.  We map the
7717          * personality to an equivalent raid6 personality
7718          * with the Q block at the end.
7719          */
7720         int new_layout;
7721
7722         if (mddev->pers != &raid5_personality)
7723                 return ERR_PTR(-EINVAL);
7724         if (mddev->degraded > 1)
7725                 return ERR_PTR(-EINVAL);
7726         if (mddev->raid_disks > 253)
7727                 return ERR_PTR(-EINVAL);
7728         if (mddev->raid_disks < 3)
7729                 return ERR_PTR(-EINVAL);
7730
7731         switch (mddev->layout) {
7732         case ALGORITHM_LEFT_ASYMMETRIC:
7733                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7734                 break;
7735         case ALGORITHM_RIGHT_ASYMMETRIC:
7736                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7737                 break;
7738         case ALGORITHM_LEFT_SYMMETRIC:
7739                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7740                 break;
7741         case ALGORITHM_RIGHT_SYMMETRIC:
7742                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7743                 break;
7744         case ALGORITHM_PARITY_0:
7745                 new_layout = ALGORITHM_PARITY_0_6;
7746                 break;
7747         case ALGORITHM_PARITY_N:
7748                 new_layout = ALGORITHM_PARITY_N;
7749                 break;
7750         default:
7751                 return ERR_PTR(-EINVAL);
7752         }
7753         mddev->new_level = 6;
7754         mddev->new_layout = new_layout;
7755         mddev->delta_disks = 1;
7756         mddev->raid_disks += 1;
7757         return setup_conf(mddev);
7758 }
7759
7760 static struct md_personality raid6_personality =
7761 {
7762         .name           = "raid6",
7763         .level          = 6,
7764         .owner          = THIS_MODULE,
7765         .make_request   = make_request,
7766         .run            = run,
7767         .free           = raid5_free,
7768         .status         = status,
7769         .error_handler  = error,
7770         .hot_add_disk   = raid5_add_disk,
7771         .hot_remove_disk= raid5_remove_disk,
7772         .spare_active   = raid5_spare_active,
7773         .sync_request   = sync_request,
7774         .resize         = raid5_resize,
7775         .size           = raid5_size,
7776         .check_reshape  = raid6_check_reshape,
7777         .start_reshape  = raid5_start_reshape,
7778         .finish_reshape = raid5_finish_reshape,
7779         .quiesce        = raid5_quiesce,
7780         .takeover       = raid6_takeover,
7781         .congested      = raid5_congested,
7782         .mergeable_bvec = raid5_mergeable_bvec,
7783 };
7784 static struct md_personality raid5_personality =
7785 {
7786         .name           = "raid5",
7787         .level          = 5,
7788         .owner          = THIS_MODULE,
7789         .make_request   = make_request,
7790         .run            = run,
7791         .free           = raid5_free,
7792         .status         = status,
7793         .error_handler  = error,
7794         .hot_add_disk   = raid5_add_disk,
7795         .hot_remove_disk= raid5_remove_disk,
7796         .spare_active   = raid5_spare_active,
7797         .sync_request   = sync_request,
7798         .resize         = raid5_resize,
7799         .size           = raid5_size,
7800         .check_reshape  = raid5_check_reshape,
7801         .start_reshape  = raid5_start_reshape,
7802         .finish_reshape = raid5_finish_reshape,
7803         .quiesce        = raid5_quiesce,
7804         .takeover       = raid5_takeover,
7805         .congested      = raid5_congested,
7806         .mergeable_bvec = raid5_mergeable_bvec,
7807 };
7808
7809 static struct md_personality raid4_personality =
7810 {
7811         .name           = "raid4",
7812         .level          = 4,
7813         .owner          = THIS_MODULE,
7814         .make_request   = make_request,
7815         .run            = run,
7816         .free           = raid5_free,
7817         .status         = status,
7818         .error_handler  = error,
7819         .hot_add_disk   = raid5_add_disk,
7820         .hot_remove_disk= raid5_remove_disk,
7821         .spare_active   = raid5_spare_active,
7822         .sync_request   = sync_request,
7823         .resize         = raid5_resize,
7824         .size           = raid5_size,
7825         .check_reshape  = raid5_check_reshape,
7826         .start_reshape  = raid5_start_reshape,
7827         .finish_reshape = raid5_finish_reshape,
7828         .quiesce        = raid5_quiesce,
7829         .takeover       = raid4_takeover,
7830         .congested      = raid5_congested,
7831         .mergeable_bvec = raid5_mergeable_bvec,
7832 };
7833
7834 static int __init raid5_init(void)
7835 {
7836         raid5_wq = alloc_workqueue("raid5wq",
7837                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7838         if (!raid5_wq)
7839                 return -ENOMEM;
7840         register_md_personality(&raid6_personality);
7841         register_md_personality(&raid5_personality);
7842         register_md_personality(&raid4_personality);
7843         return 0;
7844 }
7845
7846 static void raid5_exit(void)
7847 {
7848         unregister_md_personality(&raid6_personality);
7849         unregister_md_personality(&raid5_personality);
7850         unregister_md_personality(&raid4_personality);
7851         destroy_workqueue(raid5_wq);
7852 }
7853
7854 module_init(raid5_init);
7855 module_exit(raid5_exit);
7856 MODULE_LICENSE("GPL");
7857 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7858 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7859 MODULE_ALIAS("md-raid5");
7860 MODULE_ALIAS("md-raid4");
7861 MODULE_ALIAS("md-level-5");
7862 MODULE_ALIAS("md-level-4");
7863 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7864 MODULE_ALIAS("md-raid6");
7865 MODULE_ALIAS("md-level-6");
7866
7867 /* This used to be two separate modules, they were: */
7868 MODULE_ALIAS("raid5");
7869 MODULE_ALIAS("raid6");