iw_cxgb4: gracefully handle unknown CQE status errors
[linux-2.6-block.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/pci.h>
32 #include <linux/platform_device.h>
33
34 #include "io-pgtable.h"
35
36 /* MMIO registers */
37 #define ARM_SMMU_IDR0                   0x0
38 #define IDR0_ST_LVL_SHIFT               27
39 #define IDR0_ST_LVL_MASK                0x3
40 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
41 #define IDR0_STALL_MODEL                (3 << 24)
42 #define IDR0_TTENDIAN_SHIFT             21
43 #define IDR0_TTENDIAN_MASK              0x3
44 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
45 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
46 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_CD2L                       (1 << 19)
48 #define IDR0_VMID16                     (1 << 18)
49 #define IDR0_PRI                        (1 << 16)
50 #define IDR0_SEV                        (1 << 14)
51 #define IDR0_MSI                        (1 << 13)
52 #define IDR0_ASID16                     (1 << 12)
53 #define IDR0_ATS                        (1 << 10)
54 #define IDR0_HYP                        (1 << 9)
55 #define IDR0_COHACC                     (1 << 4)
56 #define IDR0_TTF_SHIFT                  2
57 #define IDR0_TTF_MASK                   0x3
58 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
59 #define IDR0_S1P                        (1 << 1)
60 #define IDR0_S2P                        (1 << 0)
61
62 #define ARM_SMMU_IDR1                   0x4
63 #define IDR1_TABLES_PRESET              (1 << 30)
64 #define IDR1_QUEUES_PRESET              (1 << 29)
65 #define IDR1_REL                        (1 << 28)
66 #define IDR1_CMDQ_SHIFT                 21
67 #define IDR1_CMDQ_MASK                  0x1f
68 #define IDR1_EVTQ_SHIFT                 16
69 #define IDR1_EVTQ_MASK                  0x1f
70 #define IDR1_PRIQ_SHIFT                 11
71 #define IDR1_PRIQ_MASK                  0x1f
72 #define IDR1_SSID_SHIFT                 6
73 #define IDR1_SSID_MASK                  0x1f
74 #define IDR1_SID_SHIFT                  0
75 #define IDR1_SID_MASK                   0x3f
76
77 #define ARM_SMMU_IDR5                   0x14
78 #define IDR5_STALL_MAX_SHIFT            16
79 #define IDR5_STALL_MAX_MASK             0xffff
80 #define IDR5_GRAN64K                    (1 << 6)
81 #define IDR5_GRAN16K                    (1 << 5)
82 #define IDR5_GRAN4K                     (1 << 4)
83 #define IDR5_OAS_SHIFT                  0
84 #define IDR5_OAS_MASK                   0x7
85 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
86 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
87 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
88 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
91
92 #define ARM_SMMU_CR0                    0x20
93 #define CR0_CMDQEN                      (1 << 3)
94 #define CR0_EVTQEN                      (1 << 2)
95 #define CR0_PRIQEN                      (1 << 1)
96 #define CR0_SMMUEN                      (1 << 0)
97
98 #define ARM_SMMU_CR0ACK                 0x24
99
100 #define ARM_SMMU_CR1                    0x28
101 #define CR1_SH_NSH                      0
102 #define CR1_SH_OSH                      2
103 #define CR1_SH_ISH                      3
104 #define CR1_CACHE_NC                    0
105 #define CR1_CACHE_WB                    1
106 #define CR1_CACHE_WT                    2
107 #define CR1_TABLE_SH_SHIFT              10
108 #define CR1_TABLE_OC_SHIFT              8
109 #define CR1_TABLE_IC_SHIFT              6
110 #define CR1_QUEUE_SH_SHIFT              4
111 #define CR1_QUEUE_OC_SHIFT              2
112 #define CR1_QUEUE_IC_SHIFT              0
113
114 #define ARM_SMMU_CR2                    0x2c
115 #define CR2_PTM                         (1 << 2)
116 #define CR2_RECINVSID                   (1 << 1)
117 #define CR2_E2H                         (1 << 0)
118
119 #define ARM_SMMU_IRQ_CTRL               0x50
120 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
121 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
122
123 #define ARM_SMMU_IRQ_CTRLACK            0x54
124
125 #define ARM_SMMU_GERROR                 0x60
126 #define GERROR_SFM_ERR                  (1 << 8)
127 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
128 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
129 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
130 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
131 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
132 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
133 #define GERROR_CMDQ_ERR                 (1 << 0)
134 #define GERROR_ERR_MASK                 0xfd
135
136 #define ARM_SMMU_GERRORN                0x64
137
138 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
139 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
140 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
141
142 #define ARM_SMMU_STRTAB_BASE            0x80
143 #define STRTAB_BASE_RA                  (1UL << 62)
144 #define STRTAB_BASE_ADDR_SHIFT          6
145 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
146
147 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
148 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
149 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
150 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
151 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
152 #define STRTAB_BASE_CFG_FMT_SHIFT       16
153 #define STRTAB_BASE_CFG_FMT_MASK        0x3
154 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
155 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
156
157 #define ARM_SMMU_CMDQ_BASE              0x90
158 #define ARM_SMMU_CMDQ_PROD              0x98
159 #define ARM_SMMU_CMDQ_CONS              0x9c
160
161 #define ARM_SMMU_EVTQ_BASE              0xa0
162 #define ARM_SMMU_EVTQ_PROD              0x100a8
163 #define ARM_SMMU_EVTQ_CONS              0x100ac
164 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
165 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
166 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
167
168 #define ARM_SMMU_PRIQ_BASE              0xc0
169 #define ARM_SMMU_PRIQ_PROD              0x100c8
170 #define ARM_SMMU_PRIQ_CONS              0x100cc
171 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
172 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
173 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
174
175 /* Common MSI config fields */
176 #define MSI_CFG0_SH_SHIFT               60
177 #define MSI_CFG0_SH_NSH                 (0UL << MSI_CFG0_SH_SHIFT)
178 #define MSI_CFG0_SH_OSH                 (2UL << MSI_CFG0_SH_SHIFT)
179 #define MSI_CFG0_SH_ISH                 (3UL << MSI_CFG0_SH_SHIFT)
180 #define MSI_CFG0_MEMATTR_SHIFT          56
181 #define MSI_CFG0_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG0_MEMATTR_SHIFT)
182 #define MSI_CFG0_ADDR_SHIFT             2
183 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
184
185 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
186 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
187 #define Q_OVERFLOW_FLAG                 (1 << 31)
188 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
189 #define Q_ENT(q, p)                     ((q)->base +                    \
190                                          Q_IDX(q, p) * (q)->ent_dwords)
191
192 #define Q_BASE_RWA                      (1UL << 62)
193 #define Q_BASE_ADDR_SHIFT               5
194 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
195 #define Q_BASE_LOG2SIZE_SHIFT           0
196 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
197
198 /*
199  * Stream table.
200  *
201  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
202  * 2lvl: 8k L1 entries, 256 lazy entries per table (each table covers a PCI bus)
203  */
204 #define STRTAB_L1_SZ_SHIFT              16
205 #define STRTAB_SPLIT                    8
206
207 #define STRTAB_L1_DESC_DWORDS           1
208 #define STRTAB_L1_DESC_SPAN_SHIFT       0
209 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
210 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
211 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
212
213 #define STRTAB_STE_DWORDS               8
214 #define STRTAB_STE_0_V                  (1UL << 0)
215 #define STRTAB_STE_0_CFG_SHIFT          1
216 #define STRTAB_STE_0_CFG_MASK           0x7UL
217 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
218 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
219 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
220 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
221
222 #define STRTAB_STE_0_S1FMT_SHIFT        4
223 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
224 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
225 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
226 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
227 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
228
229 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
230 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
231 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
232 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
233 #define STRTAB_STE_1_S1C_SH_NSH         0UL
234 #define STRTAB_STE_1_S1C_SH_OSH         2UL
235 #define STRTAB_STE_1_S1C_SH_ISH         3UL
236 #define STRTAB_STE_1_S1CIR_SHIFT        2
237 #define STRTAB_STE_1_S1COR_SHIFT        4
238 #define STRTAB_STE_1_S1CSH_SHIFT        6
239
240 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
241
242 #define STRTAB_STE_1_EATS_ABT           0UL
243 #define STRTAB_STE_1_EATS_TRANS         1UL
244 #define STRTAB_STE_1_EATS_S1CHK         2UL
245 #define STRTAB_STE_1_EATS_SHIFT         28
246
247 #define STRTAB_STE_1_STRW_NSEL1         0UL
248 #define STRTAB_STE_1_STRW_EL2           2UL
249 #define STRTAB_STE_1_STRW_SHIFT         30
250
251 #define STRTAB_STE_2_S2VMID_SHIFT       0
252 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
253 #define STRTAB_STE_2_VTCR_SHIFT         32
254 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
255 #define STRTAB_STE_2_S2AA64             (1UL << 51)
256 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
257 #define STRTAB_STE_2_S2PTW              (1UL << 54)
258 #define STRTAB_STE_2_S2R                (1UL << 58)
259
260 #define STRTAB_STE_3_S2TTB_SHIFT        4
261 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
262
263 /* Context descriptor (stage-1 only) */
264 #define CTXDESC_CD_DWORDS               8
265 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
266 #define ARM64_TCR_T0SZ_SHIFT            0
267 #define ARM64_TCR_T0SZ_MASK             0x1fUL
268 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
269 #define ARM64_TCR_TG0_SHIFT             14
270 #define ARM64_TCR_TG0_MASK              0x3UL
271 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
272 #define ARM64_TCR_IRGN0_SHIFT           24
273 #define ARM64_TCR_IRGN0_MASK            0x3UL
274 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
275 #define ARM64_TCR_ORGN0_SHIFT           26
276 #define ARM64_TCR_ORGN0_MASK            0x3UL
277 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
278 #define ARM64_TCR_SH0_SHIFT             12
279 #define ARM64_TCR_SH0_MASK              0x3UL
280 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
281 #define ARM64_TCR_EPD0_SHIFT            7
282 #define ARM64_TCR_EPD0_MASK             0x1UL
283 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
284 #define ARM64_TCR_EPD1_SHIFT            23
285 #define ARM64_TCR_EPD1_MASK             0x1UL
286
287 #define CTXDESC_CD_0_ENDI               (1UL << 15)
288 #define CTXDESC_CD_0_V                  (1UL << 31)
289
290 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
291 #define ARM64_TCR_IPS_SHIFT             32
292 #define ARM64_TCR_IPS_MASK              0x7UL
293 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
294 #define ARM64_TCR_TBI0_SHIFT            37
295 #define ARM64_TCR_TBI0_MASK             0x1UL
296
297 #define CTXDESC_CD_0_AA64               (1UL << 41)
298 #define CTXDESC_CD_0_R                  (1UL << 45)
299 #define CTXDESC_CD_0_A                  (1UL << 46)
300 #define CTXDESC_CD_0_ASET_SHIFT         47
301 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
302 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
303 #define CTXDESC_CD_0_ASID_SHIFT         48
304 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
305
306 #define CTXDESC_CD_1_TTB0_SHIFT         4
307 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
308
309 #define CTXDESC_CD_3_MAIR_SHIFT         0
310
311 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
312 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
313         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
314          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
315
316 /* Command queue */
317 #define CMDQ_ENT_DWORDS                 2
318 #define CMDQ_MAX_SZ_SHIFT               8
319
320 #define CMDQ_ERR_SHIFT                  24
321 #define CMDQ_ERR_MASK                   0x7f
322 #define CMDQ_ERR_CERROR_NONE_IDX        0
323 #define CMDQ_ERR_CERROR_ILL_IDX         1
324 #define CMDQ_ERR_CERROR_ABT_IDX         2
325
326 #define CMDQ_0_OP_SHIFT                 0
327 #define CMDQ_0_OP_MASK                  0xffUL
328 #define CMDQ_0_SSV                      (1UL << 11)
329
330 #define CMDQ_PREFETCH_0_SID_SHIFT       32
331 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
332 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
333
334 #define CMDQ_CFGI_0_SID_SHIFT           32
335 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
336 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
337 #define CMDQ_CFGI_1_RANGE_SHIFT         0
338 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
339
340 #define CMDQ_TLBI_0_VMID_SHIFT          32
341 #define CMDQ_TLBI_0_ASID_SHIFT          48
342 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
343 #define CMDQ_TLBI_1_ADDR_MASK           ~0xfffUL
344
345 #define CMDQ_PRI_0_SSID_SHIFT           12
346 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
347 #define CMDQ_PRI_0_SID_SHIFT            32
348 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
349 #define CMDQ_PRI_1_GRPID_SHIFT          0
350 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
351 #define CMDQ_PRI_1_RESP_SHIFT           12
352 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
353 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
354 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
355
356 #define CMDQ_SYNC_0_CS_SHIFT            12
357 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
358 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
359
360 /* Event queue */
361 #define EVTQ_ENT_DWORDS                 4
362 #define EVTQ_MAX_SZ_SHIFT               7
363
364 #define EVTQ_0_ID_SHIFT                 0
365 #define EVTQ_0_ID_MASK                  0xffUL
366
367 /* PRI queue */
368 #define PRIQ_ENT_DWORDS                 2
369 #define PRIQ_MAX_SZ_SHIFT               8
370
371 #define PRIQ_0_SID_SHIFT                0
372 #define PRIQ_0_SID_MASK                 0xffffffffUL
373 #define PRIQ_0_SSID_SHIFT               32
374 #define PRIQ_0_SSID_MASK                0xfffffUL
375 #define PRIQ_0_OF                       (1UL << 57)
376 #define PRIQ_0_PERM_PRIV                (1UL << 58)
377 #define PRIQ_0_PERM_EXEC                (1UL << 59)
378 #define PRIQ_0_PERM_READ                (1UL << 60)
379 #define PRIQ_0_PERM_WRITE               (1UL << 61)
380 #define PRIQ_0_PRG_LAST                 (1UL << 62)
381 #define PRIQ_0_SSID_V                   (1UL << 63)
382
383 #define PRIQ_1_PRG_IDX_SHIFT            0
384 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
385 #define PRIQ_1_ADDR_SHIFT               12
386 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
387
388 /* High-level queue structures */
389 #define ARM_SMMU_POLL_TIMEOUT_US        100
390
391 static bool disable_bypass;
392 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
393 MODULE_PARM_DESC(disable_bypass,
394         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
395
396 enum pri_resp {
397         PRI_RESP_DENY,
398         PRI_RESP_FAIL,
399         PRI_RESP_SUCC,
400 };
401
402 struct arm_smmu_cmdq_ent {
403         /* Common fields */
404         u8                              opcode;
405         bool                            substream_valid;
406
407         /* Command-specific fields */
408         union {
409                 #define CMDQ_OP_PREFETCH_CFG    0x1
410                 struct {
411                         u32                     sid;
412                         u8                      size;
413                         u64                     addr;
414                 } prefetch;
415
416                 #define CMDQ_OP_CFGI_STE        0x3
417                 #define CMDQ_OP_CFGI_ALL        0x4
418                 struct {
419                         u32                     sid;
420                         union {
421                                 bool            leaf;
422                                 u8              span;
423                         };
424                 } cfgi;
425
426                 #define CMDQ_OP_TLBI_NH_ASID    0x11
427                 #define CMDQ_OP_TLBI_NH_VA      0x12
428                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
429                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
430                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
431                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
432                 struct {
433                         u16                     asid;
434                         u16                     vmid;
435                         bool                    leaf;
436                         u64                     addr;
437                 } tlbi;
438
439                 #define CMDQ_OP_PRI_RESP        0x41
440                 struct {
441                         u32                     sid;
442                         u32                     ssid;
443                         u16                     grpid;
444                         enum pri_resp           resp;
445                 } pri;
446
447                 #define CMDQ_OP_CMD_SYNC        0x46
448         };
449 };
450
451 struct arm_smmu_queue {
452         int                             irq; /* Wired interrupt */
453
454         __le64                          *base;
455         dma_addr_t                      base_dma;
456         u64                             q_base;
457
458         size_t                          ent_dwords;
459         u32                             max_n_shift;
460         u32                             prod;
461         u32                             cons;
462
463         u32 __iomem                     *prod_reg;
464         u32 __iomem                     *cons_reg;
465 };
466
467 struct arm_smmu_cmdq {
468         struct arm_smmu_queue           q;
469         spinlock_t                      lock;
470 };
471
472 struct arm_smmu_evtq {
473         struct arm_smmu_queue           q;
474         u32                             max_stalls;
475 };
476
477 struct arm_smmu_priq {
478         struct arm_smmu_queue           q;
479 };
480
481 /* High-level stream table and context descriptor structures */
482 struct arm_smmu_strtab_l1_desc {
483         u8                              span;
484
485         __le64                          *l2ptr;
486         dma_addr_t                      l2ptr_dma;
487 };
488
489 struct arm_smmu_s1_cfg {
490         __le64                          *cdptr;
491         dma_addr_t                      cdptr_dma;
492
493         struct arm_smmu_ctx_desc {
494                 u16     asid;
495                 u64     ttbr;
496                 u64     tcr;
497                 u64     mair;
498         }                               cd;
499 };
500
501 struct arm_smmu_s2_cfg {
502         u16                             vmid;
503         u64                             vttbr;
504         u64                             vtcr;
505 };
506
507 struct arm_smmu_strtab_ent {
508         bool                            valid;
509
510         bool                            bypass; /* Overrides s1/s2 config */
511         struct arm_smmu_s1_cfg          *s1_cfg;
512         struct arm_smmu_s2_cfg          *s2_cfg;
513 };
514
515 struct arm_smmu_strtab_cfg {
516         __le64                          *strtab;
517         dma_addr_t                      strtab_dma;
518         struct arm_smmu_strtab_l1_desc  *l1_desc;
519         unsigned int                    num_l1_ents;
520
521         u64                             strtab_base;
522         u32                             strtab_base_cfg;
523 };
524
525 /* An SMMUv3 instance */
526 struct arm_smmu_device {
527         struct device                   *dev;
528         void __iomem                    *base;
529
530 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
531 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
532 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
533 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
534 #define ARM_SMMU_FEAT_PRI               (1 << 4)
535 #define ARM_SMMU_FEAT_ATS               (1 << 5)
536 #define ARM_SMMU_FEAT_SEV               (1 << 6)
537 #define ARM_SMMU_FEAT_MSI               (1 << 7)
538 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
539 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
540 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
541 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
542 #define ARM_SMMU_FEAT_HYP               (1 << 12)
543         u32                             features;
544
545         struct arm_smmu_cmdq            cmdq;
546         struct arm_smmu_evtq            evtq;
547         struct arm_smmu_priq            priq;
548
549         int                             gerr_irq;
550
551         unsigned long                   ias; /* IPA */
552         unsigned long                   oas; /* PA */
553
554 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
555         unsigned int                    asid_bits;
556         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
557
558 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
559         unsigned int                    vmid_bits;
560         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
561
562         unsigned int                    ssid_bits;
563         unsigned int                    sid_bits;
564
565         struct arm_smmu_strtab_cfg      strtab_cfg;
566         struct list_head                list;
567 };
568
569 /* SMMU private data for an IOMMU group */
570 struct arm_smmu_group {
571         struct arm_smmu_device          *smmu;
572         struct arm_smmu_domain          *domain;
573         int                             num_sids;
574         u32                             *sids;
575         struct arm_smmu_strtab_ent      ste;
576 };
577
578 /* SMMU private data for an IOMMU domain */
579 enum arm_smmu_domain_stage {
580         ARM_SMMU_DOMAIN_S1 = 0,
581         ARM_SMMU_DOMAIN_S2,
582         ARM_SMMU_DOMAIN_NESTED,
583 };
584
585 struct arm_smmu_domain {
586         struct arm_smmu_device          *smmu;
587         struct mutex                    init_mutex; /* Protects smmu pointer */
588
589         struct io_pgtable_ops           *pgtbl_ops;
590         spinlock_t                      pgtbl_lock;
591
592         enum arm_smmu_domain_stage      stage;
593         union {
594                 struct arm_smmu_s1_cfg  s1_cfg;
595                 struct arm_smmu_s2_cfg  s2_cfg;
596         };
597
598         struct iommu_domain             domain;
599 };
600
601 /* Our list of SMMU instances */
602 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
603 static LIST_HEAD(arm_smmu_devices);
604
605 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
606 {
607         return container_of(dom, struct arm_smmu_domain, domain);
608 }
609
610 /* Low-level queue manipulation functions */
611 static bool queue_full(struct arm_smmu_queue *q)
612 {
613         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
614                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
615 }
616
617 static bool queue_empty(struct arm_smmu_queue *q)
618 {
619         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
620                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
621 }
622
623 static void queue_sync_cons(struct arm_smmu_queue *q)
624 {
625         q->cons = readl_relaxed(q->cons_reg);
626 }
627
628 static void queue_inc_cons(struct arm_smmu_queue *q)
629 {
630         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
631
632         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
633         writel(q->cons, q->cons_reg);
634 }
635
636 static int queue_sync_prod(struct arm_smmu_queue *q)
637 {
638         int ret = 0;
639         u32 prod = readl_relaxed(q->prod_reg);
640
641         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
642                 ret = -EOVERFLOW;
643
644         q->prod = prod;
645         return ret;
646 }
647
648 static void queue_inc_prod(struct arm_smmu_queue *q)
649 {
650         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
651
652         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
653         writel(q->prod, q->prod_reg);
654 }
655
656 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
657 {
658         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
659                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
660
661         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
662 }
663
664 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
665 {
666         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
667
668         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
669                 if (ktime_compare(ktime_get(), timeout) > 0)
670                         return -ETIMEDOUT;
671
672                 if (wfe) {
673                         wfe();
674                 } else {
675                         cpu_relax();
676                         udelay(1);
677                 }
678         }
679
680         return 0;
681 }
682
683 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
684 {
685         int i;
686
687         for (i = 0; i < n_dwords; ++i)
688                 *dst++ = cpu_to_le64(*src++);
689 }
690
691 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
692 {
693         if (queue_full(q))
694                 return -ENOSPC;
695
696         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
697         queue_inc_prod(q);
698         return 0;
699 }
700
701 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
702 {
703         int i;
704
705         for (i = 0; i < n_dwords; ++i)
706                 *dst++ = le64_to_cpu(*src++);
707 }
708
709 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
710 {
711         if (queue_empty(q))
712                 return -EAGAIN;
713
714         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
715         queue_inc_cons(q);
716         return 0;
717 }
718
719 /* High-level queue accessors */
720 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
721 {
722         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
723         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
724
725         switch (ent->opcode) {
726         case CMDQ_OP_TLBI_EL2_ALL:
727         case CMDQ_OP_TLBI_NSNH_ALL:
728                 break;
729         case CMDQ_OP_PREFETCH_CFG:
730                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
731                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
732                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
733                 break;
734         case CMDQ_OP_CFGI_STE:
735                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
736                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
737                 break;
738         case CMDQ_OP_CFGI_ALL:
739                 /* Cover the entire SID range */
740                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
741                 break;
742         case CMDQ_OP_TLBI_NH_VA:
743                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
744                 /* Fallthrough */
745         case CMDQ_OP_TLBI_S2_IPA:
746                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
747                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
748                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_ADDR_MASK;
749                 break;
750         case CMDQ_OP_TLBI_NH_ASID:
751                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
752                 /* Fallthrough */
753         case CMDQ_OP_TLBI_S12_VMALL:
754                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
755                 break;
756         case CMDQ_OP_PRI_RESP:
757                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
758                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
759                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
760                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
761                 switch (ent->pri.resp) {
762                 case PRI_RESP_DENY:
763                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
764                         break;
765                 case PRI_RESP_FAIL:
766                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
767                         break;
768                 case PRI_RESP_SUCC:
769                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
770                         break;
771                 default:
772                         return -EINVAL;
773                 }
774                 break;
775         case CMDQ_OP_CMD_SYNC:
776                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
777                 break;
778         default:
779                 return -ENOENT;
780         }
781
782         return 0;
783 }
784
785 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
786 {
787         static const char *cerror_str[] = {
788                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
789                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
790                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
791         };
792
793         int i;
794         u64 cmd[CMDQ_ENT_DWORDS];
795         struct arm_smmu_queue *q = &smmu->cmdq.q;
796         u32 cons = readl_relaxed(q->cons_reg);
797         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
798         struct arm_smmu_cmdq_ent cmd_sync = {
799                 .opcode = CMDQ_OP_CMD_SYNC,
800         };
801
802         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
803                 cerror_str[idx]);
804
805         switch (idx) {
806         case CMDQ_ERR_CERROR_ILL_IDX:
807                 break;
808         case CMDQ_ERR_CERROR_ABT_IDX:
809                 dev_err(smmu->dev, "retrying command fetch\n");
810         case CMDQ_ERR_CERROR_NONE_IDX:
811                 return;
812         }
813
814         /*
815          * We may have concurrent producers, so we need to be careful
816          * not to touch any of the shadow cmdq state.
817          */
818         queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
819         dev_err(smmu->dev, "skipping command in error state:\n");
820         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
821                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
822
823         /* Convert the erroneous command into a CMD_SYNC */
824         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
825                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
826                 return;
827         }
828
829         queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
830 }
831
832 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
833                                     struct arm_smmu_cmdq_ent *ent)
834 {
835         u32 until;
836         u64 cmd[CMDQ_ENT_DWORDS];
837         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
838         struct arm_smmu_queue *q = &smmu->cmdq.q;
839
840         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
841                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
842                          ent->opcode);
843                 return;
844         }
845
846         spin_lock(&smmu->cmdq.lock);
847         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
848                 /*
849                  * Keep the queue locked, otherwise the producer could wrap
850                  * twice and we could see a future consumer pointer that looks
851                  * like it's behind us.
852                  */
853                 if (queue_poll_cons(q, until, wfe))
854                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
855         }
856
857         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
858                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
859         spin_unlock(&smmu->cmdq.lock);
860 }
861
862 /* Context descriptor manipulation functions */
863 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
864 {
865         u64 val = 0;
866
867         /* Repack the TCR. Just care about TTBR0 for now */
868         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
869         val |= ARM_SMMU_TCR2CD(tcr, TG0);
870         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
871         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
872         val |= ARM_SMMU_TCR2CD(tcr, SH0);
873         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
874         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
875         val |= ARM_SMMU_TCR2CD(tcr, IPS);
876         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
877
878         return val;
879 }
880
881 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
882                                     struct arm_smmu_s1_cfg *cfg)
883 {
884         u64 val;
885
886         /*
887          * We don't need to issue any invalidation here, as we'll invalidate
888          * the STE when installing the new entry anyway.
889          */
890         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
891 #ifdef __BIG_ENDIAN
892               CTXDESC_CD_0_ENDI |
893 #endif
894               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
895               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
896               CTXDESC_CD_0_V;
897         cfg->cdptr[0] = cpu_to_le64(val);
898
899         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
900         cfg->cdptr[1] = cpu_to_le64(val);
901
902         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
903 }
904
905 /* Stream table manipulation functions */
906 static void
907 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
908 {
909         u64 val = 0;
910
911         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
912                 << STRTAB_L1_DESC_SPAN_SHIFT;
913         val |= desc->l2ptr_dma &
914                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
915
916         *dst = cpu_to_le64(val);
917 }
918
919 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
920 {
921         struct arm_smmu_cmdq_ent cmd = {
922                 .opcode = CMDQ_OP_CFGI_STE,
923                 .cfgi   = {
924                         .sid    = sid,
925                         .leaf   = true,
926                 },
927         };
928
929         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
930         cmd.opcode = CMDQ_OP_CMD_SYNC;
931         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
932 }
933
934 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
935                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
936 {
937         /*
938          * This is hideously complicated, but we only really care about
939          * three cases at the moment:
940          *
941          * 1. Invalid (all zero) -> bypass  (init)
942          * 2. Bypass -> translation (attach)
943          * 3. Translation -> bypass (detach)
944          *
945          * Given that we can't update the STE atomically and the SMMU
946          * doesn't read the thing in a defined order, that leaves us
947          * with the following maintenance requirements:
948          *
949          * 1. Update Config, return (init time STEs aren't live)
950          * 2. Write everything apart from dword 0, sync, write dword 0, sync
951          * 3. Update Config, sync
952          */
953         u64 val = le64_to_cpu(dst[0]);
954         bool ste_live = false;
955         struct arm_smmu_cmdq_ent prefetch_cmd = {
956                 .opcode         = CMDQ_OP_PREFETCH_CFG,
957                 .prefetch       = {
958                         .sid    = sid,
959                 },
960         };
961
962         if (val & STRTAB_STE_0_V) {
963                 u64 cfg;
964
965                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
966                 switch (cfg) {
967                 case STRTAB_STE_0_CFG_BYPASS:
968                         break;
969                 case STRTAB_STE_0_CFG_S1_TRANS:
970                 case STRTAB_STE_0_CFG_S2_TRANS:
971                         ste_live = true;
972                         break;
973                 default:
974                         BUG(); /* STE corruption */
975                 }
976         }
977
978         /* Nuke the existing Config, as we're going to rewrite it */
979         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
980
981         if (ste->valid)
982                 val |= STRTAB_STE_0_V;
983         else
984                 val &= ~STRTAB_STE_0_V;
985
986         if (ste->bypass) {
987                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
988                                       : STRTAB_STE_0_CFG_BYPASS;
989                 dst[0] = cpu_to_le64(val);
990                 dst[2] = 0; /* Nuke the VMID */
991                 if (ste_live)
992                         arm_smmu_sync_ste_for_sid(smmu, sid);
993                 return;
994         }
995
996         if (ste->s1_cfg) {
997                 BUG_ON(ste_live);
998                 dst[1] = cpu_to_le64(
999                          STRTAB_STE_1_S1C_CACHE_WBRA
1000                          << STRTAB_STE_1_S1CIR_SHIFT |
1001                          STRTAB_STE_1_S1C_CACHE_WBRA
1002                          << STRTAB_STE_1_S1COR_SHIFT |
1003                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1004                          STRTAB_STE_1_S1STALLD |
1005 #ifdef CONFIG_PCI_ATS
1006                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1007 #endif
1008                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1009
1010                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1011                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1012                         STRTAB_STE_0_CFG_S1_TRANS;
1013
1014         }
1015
1016         if (ste->s2_cfg) {
1017                 BUG_ON(ste_live);
1018                 dst[2] = cpu_to_le64(
1019                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1020                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1021                           << STRTAB_STE_2_VTCR_SHIFT |
1022 #ifdef __BIG_ENDIAN
1023                          STRTAB_STE_2_S2ENDI |
1024 #endif
1025                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1026                          STRTAB_STE_2_S2R);
1027
1028                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1029                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1030
1031                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1032         }
1033
1034         arm_smmu_sync_ste_for_sid(smmu, sid);
1035         dst[0] = cpu_to_le64(val);
1036         arm_smmu_sync_ste_for_sid(smmu, sid);
1037
1038         /* It's likely that we'll want to use the new STE soon */
1039         arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1040 }
1041
1042 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1043 {
1044         unsigned int i;
1045         struct arm_smmu_strtab_ent ste = {
1046                 .valid  = true,
1047                 .bypass = true,
1048         };
1049
1050         for (i = 0; i < nent; ++i) {
1051                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1052                 strtab += STRTAB_STE_DWORDS;
1053         }
1054 }
1055
1056 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1057 {
1058         size_t size;
1059         void *strtab;
1060         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1061         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1062
1063         if (desc->l2ptr)
1064                 return 0;
1065
1066         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1067         strtab = &cfg->strtab[sid >> STRTAB_SPLIT << STRTAB_L1_DESC_DWORDS];
1068
1069         desc->span = STRTAB_SPLIT + 1;
1070         desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1071                                           GFP_KERNEL);
1072         if (!desc->l2ptr) {
1073                 dev_err(smmu->dev,
1074                         "failed to allocate l2 stream table for SID %u\n",
1075                         sid);
1076                 return -ENOMEM;
1077         }
1078
1079         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1080         arm_smmu_write_strtab_l1_desc(strtab, desc);
1081         return 0;
1082 }
1083
1084 /* IRQ and event handlers */
1085 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1086 {
1087         int i;
1088         struct arm_smmu_device *smmu = dev;
1089         struct arm_smmu_queue *q = &smmu->evtq.q;
1090         u64 evt[EVTQ_ENT_DWORDS];
1091
1092         while (!queue_remove_raw(q, evt)) {
1093                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1094
1095                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1096                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1097                         dev_info(smmu->dev, "\t0x%016llx\n",
1098                                  (unsigned long long)evt[i]);
1099         }
1100
1101         /* Sync our overflow flag, as we believe we're up to speed */
1102         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1103         return IRQ_HANDLED;
1104 }
1105
1106 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1107 {
1108         irqreturn_t ret = IRQ_WAKE_THREAD;
1109         struct arm_smmu_device *smmu = dev;
1110         struct arm_smmu_queue *q = &smmu->evtq.q;
1111
1112         /*
1113          * Not much we can do on overflow, so scream and pretend we're
1114          * trying harder.
1115          */
1116         if (queue_sync_prod(q) == -EOVERFLOW)
1117                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1118         else if (queue_empty(q))
1119                 ret = IRQ_NONE;
1120
1121         return ret;
1122 }
1123
1124 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1125 {
1126         struct arm_smmu_device *smmu = dev;
1127         struct arm_smmu_queue *q = &smmu->priq.q;
1128         u64 evt[PRIQ_ENT_DWORDS];
1129
1130         while (!queue_remove_raw(q, evt)) {
1131                 u32 sid, ssid;
1132                 u16 grpid;
1133                 bool ssv, last;
1134
1135                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1136                 ssv = evt[0] & PRIQ_0_SSID_V;
1137                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1138                 last = evt[0] & PRIQ_0_PRG_LAST;
1139                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1140
1141                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1142                 dev_info(smmu->dev,
1143                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1144                          sid, ssid, grpid, last ? "L" : "",
1145                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1146                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1147                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1148                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1149                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1150
1151                 if (last) {
1152                         struct arm_smmu_cmdq_ent cmd = {
1153                                 .opcode                 = CMDQ_OP_PRI_RESP,
1154                                 .substream_valid        = ssv,
1155                                 .pri                    = {
1156                                         .sid    = sid,
1157                                         .ssid   = ssid,
1158                                         .grpid  = grpid,
1159                                         .resp   = PRI_RESP_DENY,
1160                                 },
1161                         };
1162
1163                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1164                 }
1165         }
1166
1167         /* Sync our overflow flag, as we believe we're up to speed */
1168         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1169         return IRQ_HANDLED;
1170 }
1171
1172 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1173 {
1174         irqreturn_t ret = IRQ_WAKE_THREAD;
1175         struct arm_smmu_device *smmu = dev;
1176         struct arm_smmu_queue *q = &smmu->priq.q;
1177
1178         /* PRIQ overflow indicates a programming error */
1179         if (queue_sync_prod(q) == -EOVERFLOW)
1180                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1181         else if (queue_empty(q))
1182                 ret = IRQ_NONE;
1183
1184         return ret;
1185 }
1186
1187 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1188 {
1189         /* We don't actually use CMD_SYNC interrupts for anything */
1190         return IRQ_HANDLED;
1191 }
1192
1193 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1194
1195 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1196 {
1197         u32 gerror, gerrorn;
1198         struct arm_smmu_device *smmu = dev;
1199
1200         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1201         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1202
1203         gerror ^= gerrorn;
1204         if (!(gerror & GERROR_ERR_MASK))
1205                 return IRQ_NONE; /* No errors pending */
1206
1207         dev_warn(smmu->dev,
1208                  "unexpected global error reported (0x%08x), this could be serious\n",
1209                  gerror);
1210
1211         if (gerror & GERROR_SFM_ERR) {
1212                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1213                 arm_smmu_device_disable(smmu);
1214         }
1215
1216         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1217                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1218
1219         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1220                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1221                 arm_smmu_priq_handler(irq, smmu->dev);
1222         }
1223
1224         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1225                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1226                 arm_smmu_evtq_handler(irq, smmu->dev);
1227         }
1228
1229         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1230                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1231                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1232         }
1233
1234         if (gerror & GERROR_PRIQ_ABT_ERR)
1235                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1236
1237         if (gerror & GERROR_EVTQ_ABT_ERR)
1238                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1239
1240         if (gerror & GERROR_CMDQ_ERR)
1241                 arm_smmu_cmdq_skip_err(smmu);
1242
1243         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1244         return IRQ_HANDLED;
1245 }
1246
1247 /* IO_PGTABLE API */
1248 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1249 {
1250         struct arm_smmu_cmdq_ent cmd;
1251
1252         cmd.opcode = CMDQ_OP_CMD_SYNC;
1253         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1254 }
1255
1256 static void arm_smmu_tlb_sync(void *cookie)
1257 {
1258         struct arm_smmu_domain *smmu_domain = cookie;
1259         __arm_smmu_tlb_sync(smmu_domain->smmu);
1260 }
1261
1262 static void arm_smmu_tlb_inv_context(void *cookie)
1263 {
1264         struct arm_smmu_domain *smmu_domain = cookie;
1265         struct arm_smmu_device *smmu = smmu_domain->smmu;
1266         struct arm_smmu_cmdq_ent cmd;
1267
1268         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1269                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1270                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1271                 cmd.tlbi.vmid   = 0;
1272         } else {
1273                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1274                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1275         }
1276
1277         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1278         __arm_smmu_tlb_sync(smmu);
1279 }
1280
1281 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1282                                           bool leaf, void *cookie)
1283 {
1284         struct arm_smmu_domain *smmu_domain = cookie;
1285         struct arm_smmu_device *smmu = smmu_domain->smmu;
1286         struct arm_smmu_cmdq_ent cmd = {
1287                 .tlbi = {
1288                         .leaf   = leaf,
1289                         .addr   = iova,
1290                 },
1291         };
1292
1293         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1294                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1295                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1296         } else {
1297                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1298                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1299         }
1300
1301         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1302 }
1303
1304 static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
1305 {
1306         struct arm_smmu_domain *smmu_domain = cookie;
1307         struct arm_smmu_device *smmu = smmu_domain->smmu;
1308         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1309
1310         if (smmu->features & ARM_SMMU_FEAT_COHERENCY) {
1311                 dsb(ishst);
1312         } else {
1313                 dma_addr_t dma_addr;
1314                 struct device *dev = smmu->dev;
1315
1316                 dma_addr = dma_map_page(dev, virt_to_page(addr), offset, size,
1317                                         DMA_TO_DEVICE);
1318
1319                 if (dma_mapping_error(dev, dma_addr))
1320                         dev_err(dev, "failed to flush pgtable at %p\n", addr);
1321                 else
1322                         dma_unmap_page(dev, dma_addr, size, DMA_TO_DEVICE);
1323         }
1324 }
1325
1326 static struct iommu_gather_ops arm_smmu_gather_ops = {
1327         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1328         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1329         .tlb_sync       = arm_smmu_tlb_sync,
1330         .flush_pgtable  = arm_smmu_flush_pgtable,
1331 };
1332
1333 /* IOMMU API */
1334 static bool arm_smmu_capable(enum iommu_cap cap)
1335 {
1336         switch (cap) {
1337         case IOMMU_CAP_CACHE_COHERENCY:
1338                 return true;
1339         case IOMMU_CAP_INTR_REMAP:
1340                 return true; /* MSIs are just memory writes */
1341         case IOMMU_CAP_NOEXEC:
1342                 return true;
1343         default:
1344                 return false;
1345         }
1346 }
1347
1348 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1349 {
1350         struct arm_smmu_domain *smmu_domain;
1351
1352         if (type != IOMMU_DOMAIN_UNMANAGED)
1353                 return NULL;
1354
1355         /*
1356          * Allocate the domain and initialise some of its data structures.
1357          * We can't really do anything meaningful until we've added a
1358          * master.
1359          */
1360         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1361         if (!smmu_domain)
1362                 return NULL;
1363
1364         mutex_init(&smmu_domain->init_mutex);
1365         spin_lock_init(&smmu_domain->pgtbl_lock);
1366         return &smmu_domain->domain;
1367 }
1368
1369 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1370 {
1371         int idx, size = 1 << span;
1372
1373         do {
1374                 idx = find_first_zero_bit(map, size);
1375                 if (idx == size)
1376                         return -ENOSPC;
1377         } while (test_and_set_bit(idx, map));
1378
1379         return idx;
1380 }
1381
1382 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1383 {
1384         clear_bit(idx, map);
1385 }
1386
1387 static void arm_smmu_domain_free(struct iommu_domain *domain)
1388 {
1389         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1390         struct arm_smmu_device *smmu = smmu_domain->smmu;
1391
1392         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1393
1394         /* Free the CD and ASID, if we allocated them */
1395         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1396                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1397
1398                 if (cfg->cdptr) {
1399                         dma_free_coherent(smmu_domain->smmu->dev,
1400                                           CTXDESC_CD_DWORDS << 3,
1401                                           cfg->cdptr,
1402                                           cfg->cdptr_dma);
1403
1404                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1405                 }
1406         } else {
1407                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1408                 if (cfg->vmid)
1409                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1410         }
1411
1412         kfree(smmu_domain);
1413 }
1414
1415 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1416                                        struct io_pgtable_cfg *pgtbl_cfg)
1417 {
1418         int ret;
1419         u16 asid;
1420         struct arm_smmu_device *smmu = smmu_domain->smmu;
1421         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1422
1423         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1424         if (IS_ERR_VALUE(asid))
1425                 return asid;
1426
1427         cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1428                                          &cfg->cdptr_dma, GFP_KERNEL);
1429         if (!cfg->cdptr) {
1430                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1431                 goto out_free_asid;
1432         }
1433
1434         cfg->cd.asid    = asid;
1435         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1436         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1437         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1438         return 0;
1439
1440 out_free_asid:
1441         arm_smmu_bitmap_free(smmu->asid_map, asid);
1442         return ret;
1443 }
1444
1445 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1446                                        struct io_pgtable_cfg *pgtbl_cfg)
1447 {
1448         u16 vmid;
1449         struct arm_smmu_device *smmu = smmu_domain->smmu;
1450         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1451
1452         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1453         if (IS_ERR_VALUE(vmid))
1454                 return vmid;
1455
1456         cfg->vmid       = vmid;
1457         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1458         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1459         return 0;
1460 }
1461
1462 static struct iommu_ops arm_smmu_ops;
1463
1464 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1465 {
1466         int ret;
1467         unsigned long ias, oas;
1468         enum io_pgtable_fmt fmt;
1469         struct io_pgtable_cfg pgtbl_cfg;
1470         struct io_pgtable_ops *pgtbl_ops;
1471         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1472                                  struct io_pgtable_cfg *);
1473         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1474         struct arm_smmu_device *smmu = smmu_domain->smmu;
1475
1476         /* Restrict the stage to what we can actually support */
1477         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1478                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1479         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1480                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1481
1482         switch (smmu_domain->stage) {
1483         case ARM_SMMU_DOMAIN_S1:
1484                 ias = VA_BITS;
1485                 oas = smmu->ias;
1486                 fmt = ARM_64_LPAE_S1;
1487                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1488                 break;
1489         case ARM_SMMU_DOMAIN_NESTED:
1490         case ARM_SMMU_DOMAIN_S2:
1491                 ias = smmu->ias;
1492                 oas = smmu->oas;
1493                 fmt = ARM_64_LPAE_S2;
1494                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1495                 break;
1496         default:
1497                 return -EINVAL;
1498         }
1499
1500         pgtbl_cfg = (struct io_pgtable_cfg) {
1501                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1502                 .ias            = ias,
1503                 .oas            = oas,
1504                 .tlb            = &arm_smmu_gather_ops,
1505         };
1506
1507         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1508         if (!pgtbl_ops)
1509                 return -ENOMEM;
1510
1511         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1512         smmu_domain->pgtbl_ops = pgtbl_ops;
1513
1514         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1515         if (IS_ERR_VALUE(ret))
1516                 free_io_pgtable_ops(pgtbl_ops);
1517
1518         return ret;
1519 }
1520
1521 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1522 {
1523         struct iommu_group *group;
1524         struct arm_smmu_group *smmu_group;
1525
1526         group = iommu_group_get(dev);
1527         if (!group)
1528                 return NULL;
1529
1530         smmu_group = iommu_group_get_iommudata(group);
1531         iommu_group_put(group);
1532         return smmu_group;
1533 }
1534
1535 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1536 {
1537         __le64 *step;
1538         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1539
1540         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1541                 struct arm_smmu_strtab_l1_desc *l1_desc;
1542                 int idx;
1543
1544                 /* Two-level walk */
1545                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1546                 l1_desc = &cfg->l1_desc[idx];
1547                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1548                 step = &l1_desc->l2ptr[idx];
1549         } else {
1550                 /* Simple linear lookup */
1551                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1552         }
1553
1554         return step;
1555 }
1556
1557 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1558 {
1559         int i;
1560         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1561         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1562         struct arm_smmu_device *smmu = smmu_group->smmu;
1563
1564         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1565                 ste->s1_cfg = &smmu_domain->s1_cfg;
1566                 ste->s2_cfg = NULL;
1567                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1568         } else {
1569                 ste->s1_cfg = NULL;
1570                 ste->s2_cfg = &smmu_domain->s2_cfg;
1571         }
1572
1573         for (i = 0; i < smmu_group->num_sids; ++i) {
1574                 u32 sid = smmu_group->sids[i];
1575                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1576
1577                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1578         }
1579
1580         return 0;
1581 }
1582
1583 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1584 {
1585         int ret = 0;
1586         struct arm_smmu_device *smmu;
1587         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1588         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1589
1590         if (!smmu_group)
1591                 return -ENOENT;
1592
1593         /* Already attached to a different domain? */
1594         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1595                 return -EEXIST;
1596
1597         smmu = smmu_group->smmu;
1598         mutex_lock(&smmu_domain->init_mutex);
1599
1600         if (!smmu_domain->smmu) {
1601                 smmu_domain->smmu = smmu;
1602                 ret = arm_smmu_domain_finalise(domain);
1603                 if (ret) {
1604                         smmu_domain->smmu = NULL;
1605                         goto out_unlock;
1606                 }
1607         } else if (smmu_domain->smmu != smmu) {
1608                 dev_err(dev,
1609                         "cannot attach to SMMU %s (upstream of %s)\n",
1610                         dev_name(smmu_domain->smmu->dev),
1611                         dev_name(smmu->dev));
1612                 ret = -ENXIO;
1613                 goto out_unlock;
1614         }
1615
1616         /* Group already attached to this domain? */
1617         if (smmu_group->domain)
1618                 goto out_unlock;
1619
1620         smmu_group->domain      = smmu_domain;
1621         smmu_group->ste.bypass  = false;
1622
1623         ret = arm_smmu_install_ste_for_group(smmu_group);
1624         if (IS_ERR_VALUE(ret))
1625                 smmu_group->domain = NULL;
1626
1627 out_unlock:
1628         mutex_unlock(&smmu_domain->init_mutex);
1629         return ret;
1630 }
1631
1632 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1633 {
1634         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1635         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1636
1637         BUG_ON(!smmu_domain);
1638         BUG_ON(!smmu_group);
1639
1640         mutex_lock(&smmu_domain->init_mutex);
1641         BUG_ON(smmu_group->domain != smmu_domain);
1642
1643         smmu_group->ste.bypass = true;
1644         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1645                 dev_warn(dev, "failed to install bypass STE\n");
1646
1647         smmu_group->domain = NULL;
1648         mutex_unlock(&smmu_domain->init_mutex);
1649 }
1650
1651 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1652                         phys_addr_t paddr, size_t size, int prot)
1653 {
1654         int ret;
1655         unsigned long flags;
1656         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1657         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1658
1659         if (!ops)
1660                 return -ENODEV;
1661
1662         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1663         ret = ops->map(ops, iova, paddr, size, prot);
1664         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1665         return ret;
1666 }
1667
1668 static size_t
1669 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1670 {
1671         size_t ret;
1672         unsigned long flags;
1673         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1674         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1675
1676         if (!ops)
1677                 return 0;
1678
1679         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1680         ret = ops->unmap(ops, iova, size);
1681         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1682         return ret;
1683 }
1684
1685 static phys_addr_t
1686 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1687 {
1688         phys_addr_t ret;
1689         unsigned long flags;
1690         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1691         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1692
1693         if (!ops)
1694                 return 0;
1695
1696         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1697         ret = ops->iova_to_phys(ops, iova);
1698         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1699
1700         return ret;
1701 }
1702
1703 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1704 {
1705         *(u32 *)sidp = alias;
1706         return 0; /* Continue walking */
1707 }
1708
1709 static void __arm_smmu_release_pci_iommudata(void *data)
1710 {
1711         kfree(data);
1712 }
1713
1714 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1715 {
1716         struct device_node *of_node;
1717         struct arm_smmu_device *curr, *smmu = NULL;
1718         struct pci_bus *bus = pdev->bus;
1719
1720         /* Walk up to the root bus */
1721         while (!pci_is_root_bus(bus))
1722                 bus = bus->parent;
1723
1724         /* Follow the "iommus" phandle from the host controller */
1725         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1726         if (!of_node)
1727                 return NULL;
1728
1729         /* See if we can find an SMMU corresponding to the phandle */
1730         spin_lock(&arm_smmu_devices_lock);
1731         list_for_each_entry(curr, &arm_smmu_devices, list) {
1732                 if (curr->dev->of_node == of_node) {
1733                         smmu = curr;
1734                         break;
1735                 }
1736         }
1737         spin_unlock(&arm_smmu_devices_lock);
1738         of_node_put(of_node);
1739         return smmu;
1740 }
1741
1742 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1743 {
1744         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1745
1746         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1747                 limit *= 1UL << STRTAB_SPLIT;
1748
1749         return sid < limit;
1750 }
1751
1752 static int arm_smmu_add_device(struct device *dev)
1753 {
1754         int i, ret;
1755         u32 sid, *sids;
1756         struct pci_dev *pdev;
1757         struct iommu_group *group;
1758         struct arm_smmu_group *smmu_group;
1759         struct arm_smmu_device *smmu;
1760
1761         /* We only support PCI, for now */
1762         if (!dev_is_pci(dev))
1763                 return -ENODEV;
1764
1765         pdev = to_pci_dev(dev);
1766         group = iommu_group_get_for_dev(dev);
1767         if (IS_ERR(group))
1768                 return PTR_ERR(group);
1769
1770         smmu_group = iommu_group_get_iommudata(group);
1771         if (!smmu_group) {
1772                 smmu = arm_smmu_get_for_pci_dev(pdev);
1773                 if (!smmu) {
1774                         ret = -ENOENT;
1775                         goto out_put_group;
1776                 }
1777
1778                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1779                 if (!smmu_group) {
1780                         ret = -ENOMEM;
1781                         goto out_put_group;
1782                 }
1783
1784                 smmu_group->ste.valid   = true;
1785                 smmu_group->smmu        = smmu;
1786                 iommu_group_set_iommudata(group, smmu_group,
1787                                           __arm_smmu_release_pci_iommudata);
1788         } else {
1789                 smmu = smmu_group->smmu;
1790         }
1791
1792         /* Assume SID == RID until firmware tells us otherwise */
1793         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1794         for (i = 0; i < smmu_group->num_sids; ++i) {
1795                 /* If we already know about this SID, then we're done */
1796                 if (smmu_group->sids[i] == sid)
1797                         return 0;
1798         }
1799
1800         /* Check the SID is in range of the SMMU and our stream table */
1801         if (!arm_smmu_sid_in_range(smmu, sid)) {
1802                 ret = -ERANGE;
1803                 goto out_put_group;
1804         }
1805
1806         /* Ensure l2 strtab is initialised */
1807         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1808                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1809                 if (ret)
1810                         goto out_put_group;
1811         }
1812
1813         /* Resize the SID array for the group */
1814         smmu_group->num_sids++;
1815         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1816                         GFP_KERNEL);
1817         if (!sids) {
1818                 smmu_group->num_sids--;
1819                 ret = -ENOMEM;
1820                 goto out_put_group;
1821         }
1822
1823         /* Add the new SID */
1824         sids[smmu_group->num_sids - 1] = sid;
1825         smmu_group->sids = sids;
1826         return 0;
1827
1828 out_put_group:
1829         iommu_group_put(group);
1830         return ret;
1831 }
1832
1833 static void arm_smmu_remove_device(struct device *dev)
1834 {
1835         iommu_group_remove_device(dev);
1836 }
1837
1838 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1839                                     enum iommu_attr attr, void *data)
1840 {
1841         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1842
1843         switch (attr) {
1844         case DOMAIN_ATTR_NESTING:
1845                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1846                 return 0;
1847         default:
1848                 return -ENODEV;
1849         }
1850 }
1851
1852 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1853                                     enum iommu_attr attr, void *data)
1854 {
1855         int ret = 0;
1856         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1857
1858         mutex_lock(&smmu_domain->init_mutex);
1859
1860         switch (attr) {
1861         case DOMAIN_ATTR_NESTING:
1862                 if (smmu_domain->smmu) {
1863                         ret = -EPERM;
1864                         goto out_unlock;
1865                 }
1866
1867                 if (*(int *)data)
1868                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1869                 else
1870                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1871
1872                 break;
1873         default:
1874                 ret = -ENODEV;
1875         }
1876
1877 out_unlock:
1878         mutex_unlock(&smmu_domain->init_mutex);
1879         return ret;
1880 }
1881
1882 static struct iommu_ops arm_smmu_ops = {
1883         .capable                = arm_smmu_capable,
1884         .domain_alloc           = arm_smmu_domain_alloc,
1885         .domain_free            = arm_smmu_domain_free,
1886         .attach_dev             = arm_smmu_attach_dev,
1887         .detach_dev             = arm_smmu_detach_dev,
1888         .map                    = arm_smmu_map,
1889         .unmap                  = arm_smmu_unmap,
1890         .iova_to_phys           = arm_smmu_iova_to_phys,
1891         .add_device             = arm_smmu_add_device,
1892         .remove_device          = arm_smmu_remove_device,
1893         .domain_get_attr        = arm_smmu_domain_get_attr,
1894         .domain_set_attr        = arm_smmu_domain_set_attr,
1895         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1896 };
1897
1898 /* Probing and initialisation functions */
1899 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1900                                    struct arm_smmu_queue *q,
1901                                    unsigned long prod_off,
1902                                    unsigned long cons_off,
1903                                    size_t dwords)
1904 {
1905         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1906
1907         q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1908         if (!q->base) {
1909                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1910                         qsz);
1911                 return -ENOMEM;
1912         }
1913
1914         q->prod_reg     = smmu->base + prod_off;
1915         q->cons_reg     = smmu->base + cons_off;
1916         q->ent_dwords   = dwords;
1917
1918         q->q_base  = Q_BASE_RWA;
1919         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1920         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1921                      << Q_BASE_LOG2SIZE_SHIFT;
1922
1923         q->prod = q->cons = 0;
1924         return 0;
1925 }
1926
1927 static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
1928                                     struct arm_smmu_queue *q)
1929 {
1930         size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;
1931
1932         dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
1933 }
1934
1935 static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
1936 {
1937         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1938         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1939
1940         if (smmu->features & ARM_SMMU_FEAT_PRI)
1941                 arm_smmu_free_one_queue(smmu, &smmu->priq.q);
1942 }
1943
1944 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1945 {
1946         int ret;
1947
1948         /* cmdq */
1949         spin_lock_init(&smmu->cmdq.lock);
1950         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1951                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1952         if (ret)
1953                 goto out;
1954
1955         /* evtq */
1956         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1957                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1958         if (ret)
1959                 goto out_free_cmdq;
1960
1961         /* priq */
1962         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1963                 return 0;
1964
1965         ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1966                                       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1967         if (ret)
1968                 goto out_free_evtq;
1969
1970         return 0;
1971
1972 out_free_evtq:
1973         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1974 out_free_cmdq:
1975         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1976 out:
1977         return ret;
1978 }
1979
1980 static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
1981 {
1982         int i;
1983         size_t size;
1984         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1985
1986         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1987         for (i = 0; i < cfg->num_l1_ents; ++i) {
1988                 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];
1989
1990                 if (!desc->l2ptr)
1991                         continue;
1992
1993                 dma_free_coherent(smmu->dev, size, desc->l2ptr,
1994                                   desc->l2ptr_dma);
1995         }
1996 }
1997
1998 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1999 {
2000         unsigned int i;
2001         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2002         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2003         void *strtab = smmu->strtab_cfg.strtab;
2004
2005         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2006         if (!cfg->l1_desc) {
2007                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2008                 return -ENOMEM;
2009         }
2010
2011         for (i = 0; i < cfg->num_l1_ents; ++i) {
2012                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2013                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2014         }
2015
2016         return 0;
2017 }
2018
2019 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2020 {
2021         void *strtab;
2022         u64 reg;
2023         u32 size;
2024         int ret;
2025         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2026
2027         /* Calculate the L1 size, capped to the SIDSIZE */
2028         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2029         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2030         if (size + STRTAB_SPLIT < smmu->sid_bits)
2031                 dev_warn(smmu->dev,
2032                          "2-level strtab only covers %u/%u bits of SID\n",
2033                          size + STRTAB_SPLIT, smmu->sid_bits);
2034
2035         cfg->num_l1_ents = 1 << size;
2036         size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2037         strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2038                                      GFP_KERNEL);
2039         if (!strtab) {
2040                 dev_err(smmu->dev,
2041                         "failed to allocate l1 stream table (%u bytes)\n",
2042                         size);
2043                 return -ENOMEM;
2044         }
2045         cfg->strtab = strtab;
2046
2047         /* Configure strtab_base_cfg for 2 levels */
2048         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2049         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2050                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2051         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2052                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2053         cfg->strtab_base_cfg = reg;
2054
2055         ret = arm_smmu_init_l1_strtab(smmu);
2056         if (ret)
2057                 dma_free_coherent(smmu->dev,
2058                                   cfg->num_l1_ents *
2059                                   (STRTAB_L1_DESC_DWORDS << 3),
2060                                   strtab,
2061                                   cfg->strtab_dma);
2062         return ret;
2063 }
2064
2065 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2066 {
2067         void *strtab;
2068         u64 reg;
2069         u32 size;
2070         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2071
2072         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2073         strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2074                                      GFP_KERNEL);
2075         if (!strtab) {
2076                 dev_err(smmu->dev,
2077                         "failed to allocate linear stream table (%u bytes)\n",
2078                         size);
2079                 return -ENOMEM;
2080         }
2081         cfg->strtab = strtab;
2082         cfg->num_l1_ents = 1 << smmu->sid_bits;
2083
2084         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2085         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2086         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2087                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2088         cfg->strtab_base_cfg = reg;
2089
2090         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2091         return 0;
2092 }
2093
2094 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2095 {
2096         u64 reg;
2097         int ret;
2098
2099         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2100                 ret = arm_smmu_init_strtab_2lvl(smmu);
2101         else
2102                 ret = arm_smmu_init_strtab_linear(smmu);
2103
2104         if (ret)
2105                 return ret;
2106
2107         /* Set the strtab base address */
2108         reg  = smmu->strtab_cfg.strtab_dma &
2109                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2110         reg |= STRTAB_BASE_RA;
2111         smmu->strtab_cfg.strtab_base = reg;
2112
2113         /* Allocate the first VMID for stage-2 bypass STEs */
2114         set_bit(0, smmu->vmid_map);
2115         return 0;
2116 }
2117
2118 static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
2119 {
2120         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2121         u32 size = cfg->num_l1_ents;
2122
2123         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2124                 arm_smmu_free_l2_strtab(smmu);
2125                 size *= STRTAB_L1_DESC_DWORDS << 3;
2126         } else {
2127                 size *= STRTAB_STE_DWORDS * 3;
2128         }
2129
2130         dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
2131 }
2132
2133 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2134 {
2135         int ret;
2136
2137         ret = arm_smmu_init_queues(smmu);
2138         if (ret)
2139                 return ret;
2140
2141         ret = arm_smmu_init_strtab(smmu);
2142         if (ret)
2143                 goto out_free_queues;
2144
2145         return 0;
2146
2147 out_free_queues:
2148         arm_smmu_free_queues(smmu);
2149         return ret;
2150 }
2151
2152 static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
2153 {
2154         arm_smmu_free_strtab(smmu);
2155         arm_smmu_free_queues(smmu);
2156 }
2157
2158 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2159                                    unsigned int reg_off, unsigned int ack_off)
2160 {
2161         u32 reg;
2162
2163         writel_relaxed(val, smmu->base + reg_off);
2164         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2165                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2166 }
2167
2168 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2169 {
2170         int ret, irq;
2171
2172         /* Disable IRQs first */
2173         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2174                                       ARM_SMMU_IRQ_CTRLACK);
2175         if (ret) {
2176                 dev_err(smmu->dev, "failed to disable irqs\n");
2177                 return ret;
2178         }
2179
2180         /* Clear the MSI address regs */
2181         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2182         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2183
2184         /* Request wired interrupt lines */
2185         irq = smmu->evtq.q.irq;
2186         if (irq) {
2187                 ret = devm_request_threaded_irq(smmu->dev, irq,
2188                                                 arm_smmu_evtq_handler,
2189                                                 arm_smmu_evtq_thread,
2190                                                 0, "arm-smmu-v3-evtq", smmu);
2191                 if (IS_ERR_VALUE(ret))
2192                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2193         }
2194
2195         irq = smmu->cmdq.q.irq;
2196         if (irq) {
2197                 ret = devm_request_irq(smmu->dev, irq,
2198                                        arm_smmu_cmdq_sync_handler, 0,
2199                                        "arm-smmu-v3-cmdq-sync", smmu);
2200                 if (IS_ERR_VALUE(ret))
2201                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2202         }
2203
2204         irq = smmu->gerr_irq;
2205         if (irq) {
2206                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2207                                        0, "arm-smmu-v3-gerror", smmu);
2208                 if (IS_ERR_VALUE(ret))
2209                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2210         }
2211
2212         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2213                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2214
2215                 irq = smmu->priq.q.irq;
2216                 if (irq) {
2217                         ret = devm_request_threaded_irq(smmu->dev, irq,
2218                                                         arm_smmu_priq_handler,
2219                                                         arm_smmu_priq_thread,
2220                                                         0, "arm-smmu-v3-priq",
2221                                                         smmu);
2222                         if (IS_ERR_VALUE(ret))
2223                                 dev_warn(smmu->dev,
2224                                          "failed to enable priq irq\n");
2225                 }
2226         }
2227
2228         /* Enable interrupt generation on the SMMU */
2229         ret = arm_smmu_write_reg_sync(smmu,
2230                                       IRQ_CTRL_EVTQ_IRQEN |
2231                                       IRQ_CTRL_GERROR_IRQEN,
2232                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2233         if (ret)
2234                 dev_warn(smmu->dev, "failed to enable irqs\n");
2235
2236         return 0;
2237 }
2238
2239 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2240 {
2241         int ret;
2242
2243         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2244         if (ret)
2245                 dev_err(smmu->dev, "failed to clear cr0\n");
2246
2247         return ret;
2248 }
2249
2250 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2251 {
2252         int ret;
2253         u32 reg, enables;
2254         struct arm_smmu_cmdq_ent cmd;
2255
2256         /* Clear CR0 and sync (disables SMMU and queue processing) */
2257         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2258         if (reg & CR0_SMMUEN)
2259                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2260
2261         ret = arm_smmu_device_disable(smmu);
2262         if (ret)
2263                 return ret;
2264
2265         /* CR1 (table and queue memory attributes) */
2266         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2267               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2268               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2269               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2270               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2271               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2272         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2273
2274         /* CR2 (random crap) */
2275         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2276         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2277
2278         /* Stream table */
2279         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2280                        smmu->base + ARM_SMMU_STRTAB_BASE);
2281         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2282                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2283
2284         /* Command queue */
2285         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2286         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2287         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2288
2289         enables = CR0_CMDQEN;
2290         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2291                                       ARM_SMMU_CR0ACK);
2292         if (ret) {
2293                 dev_err(smmu->dev, "failed to enable command queue\n");
2294                 return ret;
2295         }
2296
2297         /* Invalidate any cached configuration */
2298         cmd.opcode = CMDQ_OP_CFGI_ALL;
2299         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2300         cmd.opcode = CMDQ_OP_CMD_SYNC;
2301         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2302
2303         /* Invalidate any stale TLB entries */
2304         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2305                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2306                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2307         }
2308
2309         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2310         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2311         cmd.opcode = CMDQ_OP_CMD_SYNC;
2312         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2313
2314         /* Event queue */
2315         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2316         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2317         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2318
2319         enables |= CR0_EVTQEN;
2320         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2321                                       ARM_SMMU_CR0ACK);
2322         if (ret) {
2323                 dev_err(smmu->dev, "failed to enable event queue\n");
2324                 return ret;
2325         }
2326
2327         /* PRI queue */
2328         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2329                 writeq_relaxed(smmu->priq.q.q_base,
2330                                smmu->base + ARM_SMMU_PRIQ_BASE);
2331                 writel_relaxed(smmu->priq.q.prod,
2332                                smmu->base + ARM_SMMU_PRIQ_PROD);
2333                 writel_relaxed(smmu->priq.q.cons,
2334                                smmu->base + ARM_SMMU_PRIQ_CONS);
2335
2336                 enables |= CR0_PRIQEN;
2337                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2338                                               ARM_SMMU_CR0ACK);
2339                 if (ret) {
2340                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2341                         return ret;
2342                 }
2343         }
2344
2345         ret = arm_smmu_setup_irqs(smmu);
2346         if (ret) {
2347                 dev_err(smmu->dev, "failed to setup irqs\n");
2348                 return ret;
2349         }
2350
2351         /* Enable the SMMU interface */
2352         enables |= CR0_SMMUEN;
2353         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2354                                       ARM_SMMU_CR0ACK);
2355         if (ret) {
2356                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2357                 return ret;
2358         }
2359
2360         return 0;
2361 }
2362
2363 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2364 {
2365         u32 reg;
2366         bool coherent;
2367         unsigned long pgsize_bitmap = 0;
2368
2369         /* IDR0 */
2370         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2371
2372         /* 2-level structures */
2373         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2374                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2375
2376         if (reg & IDR0_CD2L)
2377                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2378
2379         /*
2380          * Translation table endianness.
2381          * We currently require the same endianness as the CPU, but this
2382          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2383          */
2384         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2385         case IDR0_TTENDIAN_MIXED:
2386                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2387                 break;
2388 #ifdef __BIG_ENDIAN
2389         case IDR0_TTENDIAN_BE:
2390                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2391                 break;
2392 #else
2393         case IDR0_TTENDIAN_LE:
2394                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2395                 break;
2396 #endif
2397         default:
2398                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2399                 return -ENXIO;
2400         }
2401
2402         /* Boolean feature flags */
2403         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2404                 smmu->features |= ARM_SMMU_FEAT_PRI;
2405
2406         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2407                 smmu->features |= ARM_SMMU_FEAT_ATS;
2408
2409         if (reg & IDR0_SEV)
2410                 smmu->features |= ARM_SMMU_FEAT_SEV;
2411
2412         if (reg & IDR0_MSI)
2413                 smmu->features |= ARM_SMMU_FEAT_MSI;
2414
2415         if (reg & IDR0_HYP)
2416                 smmu->features |= ARM_SMMU_FEAT_HYP;
2417
2418         /*
2419          * The dma-coherent property is used in preference to the ID
2420          * register, but warn on mismatch.
2421          */
2422         coherent = of_dma_is_coherent(smmu->dev->of_node);
2423         if (coherent)
2424                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2425
2426         if (!!(reg & IDR0_COHACC) != coherent)
2427                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2428                          coherent ? "true" : "false");
2429
2430         if (reg & IDR0_STALL_MODEL)
2431                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2432
2433         if (reg & IDR0_S1P)
2434                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2435
2436         if (reg & IDR0_S2P)
2437                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2438
2439         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2440                 dev_err(smmu->dev, "no translation support!\n");
2441                 return -ENXIO;
2442         }
2443
2444         /* We only support the AArch64 table format at present */
2445         if ((reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) < IDR0_TTF_AARCH64) {
2446                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2447                 return -ENXIO;
2448         }
2449
2450         /* ASID/VMID sizes */
2451         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2452         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2453
2454         /* IDR1 */
2455         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2456         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2457                 dev_err(smmu->dev, "embedded implementation not supported\n");
2458                 return -ENXIO;
2459         }
2460
2461         /* Queue sizes, capped at 4k */
2462         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2463                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2464         if (!smmu->cmdq.q.max_n_shift) {
2465                 /* Odd alignment restrictions on the base, so ignore for now */
2466                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2467                 return -ENXIO;
2468         }
2469
2470         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2471                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2472         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2473                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2474
2475         /* SID/SSID sizes */
2476         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2477         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2478
2479         /* IDR5 */
2480         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2481
2482         /* Maximum number of outstanding stalls */
2483         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2484                                 & IDR5_STALL_MAX_MASK;
2485
2486         /* Page sizes */
2487         if (reg & IDR5_GRAN64K)
2488                 pgsize_bitmap |= SZ_64K | SZ_512M;
2489         if (reg & IDR5_GRAN16K)
2490                 pgsize_bitmap |= SZ_16K | SZ_32M;
2491         if (reg & IDR5_GRAN4K)
2492                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2493
2494         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2495
2496         /* Output address size */
2497         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2498         case IDR5_OAS_32_BIT:
2499                 smmu->oas = 32;
2500                 break;
2501         case IDR5_OAS_36_BIT:
2502                 smmu->oas = 36;
2503                 break;
2504         case IDR5_OAS_40_BIT:
2505                 smmu->oas = 40;
2506                 break;
2507         case IDR5_OAS_42_BIT:
2508                 smmu->oas = 42;
2509                 break;
2510         case IDR5_OAS_44_BIT:
2511                 smmu->oas = 44;
2512                 break;
2513         case IDR5_OAS_48_BIT:
2514                 smmu->oas = 48;
2515                 break;
2516         default:
2517                 dev_err(smmu->dev, "unknown output address size!\n");
2518                 return -ENXIO;
2519         }
2520
2521         /* Set the DMA mask for our table walker */
2522         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2523                 dev_warn(smmu->dev,
2524                          "failed to set DMA mask for table walker\n");
2525
2526         if (!smmu->ias)
2527                 smmu->ias = smmu->oas;
2528
2529         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2530                  smmu->ias, smmu->oas, smmu->features);
2531         return 0;
2532 }
2533
2534 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2535 {
2536         int irq, ret;
2537         struct resource *res;
2538         struct arm_smmu_device *smmu;
2539         struct device *dev = &pdev->dev;
2540
2541         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2542         if (!smmu) {
2543                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2544                 return -ENOMEM;
2545         }
2546         smmu->dev = dev;
2547
2548         /* Base address */
2549         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2550         if (resource_size(res) + 1 < SZ_128K) {
2551                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2552                 return -EINVAL;
2553         }
2554
2555         smmu->base = devm_ioremap_resource(dev, res);
2556         if (IS_ERR(smmu->base))
2557                 return PTR_ERR(smmu->base);
2558
2559         /* Interrupt lines */
2560         irq = platform_get_irq_byname(pdev, "eventq");
2561         if (irq > 0)
2562                 smmu->evtq.q.irq = irq;
2563
2564         irq = platform_get_irq_byname(pdev, "priq");
2565         if (irq > 0)
2566                 smmu->priq.q.irq = irq;
2567
2568         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2569         if (irq > 0)
2570                 smmu->cmdq.q.irq = irq;
2571
2572         irq = platform_get_irq_byname(pdev, "gerror");
2573         if (irq > 0)
2574                 smmu->gerr_irq = irq;
2575
2576         /* Probe the h/w */
2577         ret = arm_smmu_device_probe(smmu);
2578         if (ret)
2579                 return ret;
2580
2581         /* Initialise in-memory data structures */
2582         ret = arm_smmu_init_structures(smmu);
2583         if (ret)
2584                 return ret;
2585
2586         /* Reset the device */
2587         ret = arm_smmu_device_reset(smmu);
2588         if (ret)
2589                 goto out_free_structures;
2590
2591         /* Record our private device structure */
2592         INIT_LIST_HEAD(&smmu->list);
2593         spin_lock(&arm_smmu_devices_lock);
2594         list_add(&smmu->list, &arm_smmu_devices);
2595         spin_unlock(&arm_smmu_devices_lock);
2596         return 0;
2597
2598 out_free_structures:
2599         arm_smmu_free_structures(smmu);
2600         return ret;
2601 }
2602
2603 static int arm_smmu_device_remove(struct platform_device *pdev)
2604 {
2605         struct arm_smmu_device *curr, *smmu = NULL;
2606         struct device *dev = &pdev->dev;
2607
2608         spin_lock(&arm_smmu_devices_lock);
2609         list_for_each_entry(curr, &arm_smmu_devices, list) {
2610                 if (curr->dev == dev) {
2611                         smmu = curr;
2612                         list_del(&smmu->list);
2613                         break;
2614                 }
2615         }
2616         spin_unlock(&arm_smmu_devices_lock);
2617
2618         if (!smmu)
2619                 return -ENODEV;
2620
2621         arm_smmu_device_disable(smmu);
2622         arm_smmu_free_structures(smmu);
2623         return 0;
2624 }
2625
2626 static struct of_device_id arm_smmu_of_match[] = {
2627         { .compatible = "arm,smmu-v3", },
2628         { },
2629 };
2630 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2631
2632 static struct platform_driver arm_smmu_driver = {
2633         .driver = {
2634                 .name           = "arm-smmu-v3",
2635                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2636         },
2637         .probe  = arm_smmu_device_dt_probe,
2638         .remove = arm_smmu_device_remove,
2639 };
2640
2641 static int __init arm_smmu_init(void)
2642 {
2643         struct device_node *np;
2644         int ret;
2645
2646         np = of_find_matching_node(NULL, arm_smmu_of_match);
2647         if (!np)
2648                 return 0;
2649
2650         of_node_put(np);
2651
2652         ret = platform_driver_register(&arm_smmu_driver);
2653         if (ret)
2654                 return ret;
2655
2656         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2657 }
2658
2659 static void __exit arm_smmu_exit(void)
2660 {
2661         return platform_driver_unregister(&arm_smmu_driver);
2662 }
2663
2664 subsys_initcall(arm_smmu_init);
2665 module_exit(arm_smmu_exit);
2666
2667 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2668 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2669 MODULE_LICENSE("GPL v2");