ACPI / SRAT: fix SRAT parsing order with both LAPIC and X2APIC present
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52         DRM_FORMAT_C8,
53         DRM_FORMAT_RGB565,
54         DRM_FORMAT_XRGB1555,
55         DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60         DRM_FORMAT_C8,
61         DRM_FORMAT_RGB565,
62         DRM_FORMAT_XRGB8888,
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_XRGB2101010,
65         DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69         DRM_FORMAT_C8,
70         DRM_FORMAT_RGB565,
71         DRM_FORMAT_XRGB8888,
72         DRM_FORMAT_XBGR8888,
73         DRM_FORMAT_ARGB8888,
74         DRM_FORMAT_ABGR8888,
75         DRM_FORMAT_XRGB2101010,
76         DRM_FORMAT_XBGR2101010,
77         DRM_FORMAT_YUYV,
78         DRM_FORMAT_YVYU,
79         DRM_FORMAT_UYVY,
80         DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85         DRM_FORMAT_ARGB8888,
86 };
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151                                   const char *name, u32 reg)
152 {
153         u32 val;
154         int divider;
155
156         if (dev_priv->hpll_freq == 0)
157                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
173 intel_pch_rawclk(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176
177         WARN_ON(!HAS_PCH_SPLIT(dev));
178
179         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device *dev)
184 {
185         struct drm_i915_private *dev_priv = dev->dev_private;
186         uint32_t clkcfg;
187
188         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
190                 return 200;
191
192         clkcfg = I915_READ(CLKCFG);
193         switch (clkcfg & CLKCFG_FSB_MASK) {
194         case CLKCFG_FSB_400:
195                 return 100;
196         case CLKCFG_FSB_533:
197                 return 133;
198         case CLKCFG_FSB_667:
199                 return 166;
200         case CLKCFG_FSB_800:
201                 return 200;
202         case CLKCFG_FSB_1067:
203                 return 266;
204         case CLKCFG_FSB_1333:
205                 return 333;
206         /* these two are just a guess; one of them might be right */
207         case CLKCFG_FSB_1600:
208         case CLKCFG_FSB_1600_ALT:
209                 return 400;
210         default:
211                 return 133;
212         }
213 }
214
215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
218                 return;
219
220         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221                                                       CCK_CZ_CLOCK_CONTROL);
222
223         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229         if (IS_GEN5(dev)) {
230                 struct drm_i915_private *dev_priv = dev->dev_private;
231                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232         } else
233                 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237         .dot = { .min = 25000, .max = 350000 },
238         .vco = { .min = 908000, .max = 1512000 },
239         .n = { .min = 2, .max = 16 },
240         .m = { .min = 96, .max = 140 },
241         .m1 = { .min = 18, .max = 26 },
242         .m2 = { .min = 6, .max = 16 },
243         .p = { .min = 4, .max = 128 },
244         .p1 = { .min = 2, .max = 33 },
245         .p2 = { .dot_limit = 165000,
246                 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 908000, .max = 1512000 },
252         .n = { .min = 2, .max = 16 },
253         .m = { .min = 96, .max = 140 },
254         .m1 = { .min = 18, .max = 26 },
255         .m2 = { .min = 6, .max = 16 },
256         .p = { .min = 4, .max = 128 },
257         .p1 = { .min = 2, .max = 33 },
258         .p2 = { .dot_limit = 165000,
259                 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 908000, .max = 1512000 },
265         .n = { .min = 2, .max = 16 },
266         .m = { .min = 96, .max = 140 },
267         .m1 = { .min = 18, .max = 26 },
268         .m2 = { .min = 6, .max = 16 },
269         .p = { .min = 4, .max = 128 },
270         .p1 = { .min = 1, .max = 6 },
271         .p2 = { .dot_limit = 165000,
272                 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276         .dot = { .min = 20000, .max = 400000 },
277         .vco = { .min = 1400000, .max = 2800000 },
278         .n = { .min = 1, .max = 6 },
279         .m = { .min = 70, .max = 120 },
280         .m1 = { .min = 8, .max = 18 },
281         .m2 = { .min = 3, .max = 7 },
282         .p = { .min = 5, .max = 80 },
283         .p1 = { .min = 1, .max = 8 },
284         .p2 = { .dot_limit = 200000,
285                 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289         .dot = { .min = 20000, .max = 400000 },
290         .vco = { .min = 1400000, .max = 2800000 },
291         .n = { .min = 1, .max = 6 },
292         .m = { .min = 70, .max = 120 },
293         .m1 = { .min = 8, .max = 18 },
294         .m2 = { .min = 3, .max = 7 },
295         .p = { .min = 7, .max = 98 },
296         .p1 = { .min = 1, .max = 8 },
297         .p2 = { .dot_limit = 112000,
298                 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303         .dot = { .min = 25000, .max = 270000 },
304         .vco = { .min = 1750000, .max = 3500000},
305         .n = { .min = 1, .max = 4 },
306         .m = { .min = 104, .max = 138 },
307         .m1 = { .min = 17, .max = 23 },
308         .m2 = { .min = 5, .max = 11 },
309         .p = { .min = 10, .max = 30 },
310         .p1 = { .min = 1, .max = 3},
311         .p2 = { .dot_limit = 270000,
312                 .p2_slow = 10,
313                 .p2_fast = 10
314         },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318         .dot = { .min = 22000, .max = 400000 },
319         .vco = { .min = 1750000, .max = 3500000},
320         .n = { .min = 1, .max = 4 },
321         .m = { .min = 104, .max = 138 },
322         .m1 = { .min = 16, .max = 23 },
323         .m2 = { .min = 5, .max = 11 },
324         .p = { .min = 5, .max = 80 },
325         .p1 = { .min = 1, .max = 8},
326         .p2 = { .dot_limit = 165000,
327                 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331         .dot = { .min = 20000, .max = 115000 },
332         .vco = { .min = 1750000, .max = 3500000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 104, .max = 138 },
335         .m1 = { .min = 17, .max = 23 },
336         .m2 = { .min = 5, .max = 11 },
337         .p = { .min = 28, .max = 112 },
338         .p1 = { .min = 2, .max = 8 },
339         .p2 = { .dot_limit = 0,
340                 .p2_slow = 14, .p2_fast = 14
341         },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345         .dot = { .min = 80000, .max = 224000 },
346         .vco = { .min = 1750000, .max = 3500000 },
347         .n = { .min = 1, .max = 3 },
348         .m = { .min = 104, .max = 138 },
349         .m1 = { .min = 17, .max = 23 },
350         .m2 = { .min = 5, .max = 11 },
351         .p = { .min = 14, .max = 42 },
352         .p1 = { .min = 2, .max = 6 },
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 7, .p2_fast = 7
355         },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359         .dot = { .min = 20000, .max = 400000},
360         .vco = { .min = 1700000, .max = 3500000 },
361         /* Pineview's Ncounter is a ring counter */
362         .n = { .min = 3, .max = 6 },
363         .m = { .min = 2, .max = 256 },
364         /* Pineview only has one combined m divider, which we treat as m2. */
365         .m1 = { .min = 0, .max = 0 },
366         .m2 = { .min = 0, .max = 254 },
367         .p = { .min = 5, .max = 80 },
368         .p1 = { .min = 1, .max = 8 },
369         .p2 = { .dot_limit = 200000,
370                 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374         .dot = { .min = 20000, .max = 400000 },
375         .vco = { .min = 1700000, .max = 3500000 },
376         .n = { .min = 3, .max = 6 },
377         .m = { .min = 2, .max = 256 },
378         .m1 = { .min = 0, .max = 0 },
379         .m2 = { .min = 0, .max = 254 },
380         .p = { .min = 7, .max = 112 },
381         .p1 = { .min = 1, .max = 8 },
382         .p2 = { .dot_limit = 112000,
383                 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387  *
388  * We calculate clock using (register_value + 2) for N/M1/M2, so here
389  * the range value for them is (actual_value - 2).
390  */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392         .dot = { .min = 25000, .max = 350000 },
393         .vco = { .min = 1760000, .max = 3510000 },
394         .n = { .min = 1, .max = 5 },
395         .m = { .min = 79, .max = 127 },
396         .m1 = { .min = 12, .max = 22 },
397         .m2 = { .min = 5, .max = 9 },
398         .p = { .min = 5, .max = 80 },
399         .p1 = { .min = 1, .max = 8 },
400         .p2 = { .dot_limit = 225000,
401                 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405         .dot = { .min = 25000, .max = 350000 },
406         .vco = { .min = 1760000, .max = 3510000 },
407         .n = { .min = 1, .max = 3 },
408         .m = { .min = 79, .max = 118 },
409         .m1 = { .min = 12, .max = 22 },
410         .m2 = { .min = 5, .max = 9 },
411         .p = { .min = 28, .max = 112 },
412         .p1 = { .min = 2, .max = 8 },
413         .p2 = { .dot_limit = 225000,
414                 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418         .dot = { .min = 25000, .max = 350000 },
419         .vco = { .min = 1760000, .max = 3510000 },
420         .n = { .min = 1, .max = 3 },
421         .m = { .min = 79, .max = 127 },
422         .m1 = { .min = 12, .max = 22 },
423         .m2 = { .min = 5, .max = 9 },
424         .p = { .min = 14, .max = 56 },
425         .p1 = { .min = 2, .max = 8 },
426         .p2 = { .dot_limit = 225000,
427                 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432         .dot = { .min = 25000, .max = 350000 },
433         .vco = { .min = 1760000, .max = 3510000 },
434         .n = { .min = 1, .max = 2 },
435         .m = { .min = 79, .max = 126 },
436         .m1 = { .min = 12, .max = 22 },
437         .m2 = { .min = 5, .max = 9 },
438         .p = { .min = 28, .max = 112 },
439         .p1 = { .min = 2, .max = 8 },
440         .p2 = { .dot_limit = 225000,
441                 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445         .dot = { .min = 25000, .max = 350000 },
446         .vco = { .min = 1760000, .max = 3510000 },
447         .n = { .min = 1, .max = 3 },
448         .m = { .min = 79, .max = 126 },
449         .m1 = { .min = 12, .max = 22 },
450         .m2 = { .min = 5, .max = 9 },
451         .p = { .min = 14, .max = 42 },
452         .p1 = { .min = 2, .max = 6 },
453         .p2 = { .dot_limit = 225000,
454                 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458          /*
459           * These are the data rate limits (measured in fast clocks)
460           * since those are the strictest limits we have. The fast
461           * clock and actual rate limits are more relaxed, so checking
462           * them would make no difference.
463           */
464         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465         .vco = { .min = 4000000, .max = 6000000 },
466         .n = { .min = 1, .max = 7 },
467         .m1 = { .min = 2, .max = 3 },
468         .m2 = { .min = 11, .max = 156 },
469         .p1 = { .min = 2, .max = 3 },
470         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474         /*
475          * These are the data rate limits (measured in fast clocks)
476          * since those are the strictest limits we have.  The fast
477          * clock and actual rate limits are more relaxed, so checking
478          * them would make no difference.
479          */
480         .dot = { .min = 25000 * 5, .max = 540000 * 5},
481         .vco = { .min = 4800000, .max = 6480000 },
482         .n = { .min = 1, .max = 1 },
483         .m1 = { .min = 2, .max = 2 },
484         .m2 = { .min = 24 << 22, .max = 175 << 22 },
485         .p1 = { .min = 2, .max = 4 },
486         .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490         /* FIXME: find real dot limits */
491         .dot = { .min = 0, .max = INT_MAX },
492         .vco = { .min = 4800000, .max = 6700000 },
493         .n = { .min = 1, .max = 1 },
494         .m1 = { .min = 2, .max = 2 },
495         /* FIXME: find real m2 limits */
496         .m2 = { .min = 2 << 22, .max = 255 << 22 },
497         .p1 = { .min = 2, .max = 4 },
498         .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
502 needs_modeset(struct drm_crtc_state *state)
503 {
504         return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508  * Returns whether any output on the specified pipe is of the specified type
509  */
510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512         struct drm_device *dev = crtc->base.dev;
513         struct intel_encoder *encoder;
514
515         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516                 if (encoder->type == type)
517                         return true;
518
519         return false;
520 }
521
522 /**
523  * Returns whether any output on the specified pipe will have the specified
524  * type after a staged modeset is complete, i.e., the same as
525  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526  * encoder->crtc.
527  */
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529                                       int type)
530 {
531         struct drm_atomic_state *state = crtc_state->base.state;
532         struct drm_connector *connector;
533         struct drm_connector_state *connector_state;
534         struct intel_encoder *encoder;
535         int i, num_connectors = 0;
536
537         for_each_connector_in_state(state, connector, connector_state, i) {
538                 if (connector_state->crtc != crtc_state->base.crtc)
539                         continue;
540
541                 num_connectors++;
542
543                 encoder = to_intel_encoder(connector_state->best_encoder);
544                 if (encoder->type == type)
545                         return true;
546         }
547
548         WARN_ON(num_connectors == 0);
549
550         return false;
551 }
552
553 static const intel_limit_t *
554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556         struct drm_device *dev = crtc_state->base.crtc->dev;
557         const intel_limit_t *limit;
558
559         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560                 if (intel_is_dual_link_lvds(dev)) {
561                         if (refclk == 100000)
562                                 limit = &intel_limits_ironlake_dual_lvds_100m;
563                         else
564                                 limit = &intel_limits_ironlake_dual_lvds;
565                 } else {
566                         if (refclk == 100000)
567                                 limit = &intel_limits_ironlake_single_lvds_100m;
568                         else
569                                 limit = &intel_limits_ironlake_single_lvds;
570                 }
571         } else
572                 limit = &intel_limits_ironlake_dac;
573
574         return limit;
575 }
576
577 static const intel_limit_t *
578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580         struct drm_device *dev = crtc_state->base.crtc->dev;
581         const intel_limit_t *limit;
582
583         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584                 if (intel_is_dual_link_lvds(dev))
585                         limit = &intel_limits_g4x_dual_channel_lvds;
586                 else
587                         limit = &intel_limits_g4x_single_channel_lvds;
588         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590                 limit = &intel_limits_g4x_hdmi;
591         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592                 limit = &intel_limits_g4x_sdvo;
593         } else /* The option is for other outputs */
594                 limit = &intel_limits_i9xx_sdvo;
595
596         return limit;
597 }
598
599 static const intel_limit_t *
600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602         struct drm_device *dev = crtc_state->base.crtc->dev;
603         const intel_limit_t *limit;
604
605         if (IS_BROXTON(dev))
606                 limit = &intel_limits_bxt;
607         else if (HAS_PCH_SPLIT(dev))
608                 limit = intel_ironlake_limit(crtc_state, refclk);
609         else if (IS_G4X(dev)) {
610                 limit = intel_g4x_limit(crtc_state);
611         } else if (IS_PINEVIEW(dev)) {
612                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613                         limit = &intel_limits_pineview_lvds;
614                 else
615                         limit = &intel_limits_pineview_sdvo;
616         } else if (IS_CHERRYVIEW(dev)) {
617                 limit = &intel_limits_chv;
618         } else if (IS_VALLEYVIEW(dev)) {
619                 limit = &intel_limits_vlv;
620         } else if (!IS_GEN2(dev)) {
621                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622                         limit = &intel_limits_i9xx_lvds;
623                 else
624                         limit = &intel_limits_i9xx_sdvo;
625         } else {
626                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627                         limit = &intel_limits_i8xx_lvds;
628                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629                         limit = &intel_limits_i8xx_dvo;
630                 else
631                         limit = &intel_limits_i8xx_dac;
632         }
633         return limit;
634 }
635
636 /*
637  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640  * The helpers' return value is the rate of the clock that is fed to the
641  * display engine's pipe which can be the above fast dot clock rate or a
642  * divided-down version of it.
643  */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647         clock->m = clock->m2 + 2;
648         clock->p = clock->p1 * clock->p2;
649         if (WARN_ON(clock->n == 0 || clock->p == 0))
650                 return 0;
651         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654         return clock->dot;
655 }
656
657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664         clock->m = i9xx_dpll_compute_m(clock);
665         clock->p = clock->p1 * clock->p2;
666         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667                 return 0;
668         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671         return clock->dot;
672 }
673
674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676         clock->m = clock->m1 * clock->m2;
677         clock->p = clock->p1 * clock->p2;
678         if (WARN_ON(clock->n == 0 || clock->p == 0))
679                 return 0;
680         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683         return clock->dot / 5;
684 }
685
686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688         clock->m = clock->m1 * clock->m2;
689         clock->p = clock->p1 * clock->p2;
690         if (WARN_ON(clock->n == 0 || clock->p == 0))
691                 return 0;
692         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693                         clock->n << 22);
694         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696         return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701  * Returns whether the given set of divisors are valid for a given refclk with
702  * the given connectors.
703  */
704
705 static bool intel_PLL_is_valid(struct drm_device *dev,
706                                const intel_limit_t *limit,
707                                const intel_clock_t *clock)
708 {
709         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
710                 INTELPllInvalid("n out of range\n");
711         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
712                 INTELPllInvalid("p1 out of range\n");
713         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
714                 INTELPllInvalid("m2 out of range\n");
715         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
716                 INTELPllInvalid("m1 out of range\n");
717
718         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
719             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
720                 if (clock->m1 <= clock->m2)
721                         INTELPllInvalid("m1 <= m2\n");
722
723         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
724                 if (clock->p < limit->p.min || limit->p.max < clock->p)
725                         INTELPllInvalid("p out of range\n");
726                 if (clock->m < limit->m.min || limit->m.max < clock->m)
727                         INTELPllInvalid("m out of range\n");
728         }
729
730         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
731                 INTELPllInvalid("vco out of range\n");
732         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
733          * connector, etc., rather than just a single range.
734          */
735         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
736                 INTELPllInvalid("dot out of range\n");
737
738         return true;
739 }
740
741 static int
742 i9xx_select_p2_div(const intel_limit_t *limit,
743                    const struct intel_crtc_state *crtc_state,
744                    int target)
745 {
746         struct drm_device *dev = crtc_state->base.crtc->dev;
747
748         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
749                 /*
750                  * For LVDS just rely on its current settings for dual-channel.
751                  * We haven't figured out how to reliably set up different
752                  * single/dual channel state, if we even can.
753                  */
754                 if (intel_is_dual_link_lvds(dev))
755                         return limit->p2.p2_fast;
756                 else
757                         return limit->p2.p2_slow;
758         } else {
759                 if (target < limit->p2.dot_limit)
760                         return limit->p2.p2_slow;
761                 else
762                         return limit->p2.p2_fast;
763         }
764 }
765
766 static bool
767 i9xx_find_best_dpll(const intel_limit_t *limit,
768                     struct intel_crtc_state *crtc_state,
769                     int target, int refclk, intel_clock_t *match_clock,
770                     intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc_state->base.crtc->dev;
773         intel_clock_t clock;
774         int err = target;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781              clock.m1++) {
782                 for (clock.m2 = limit->m2.min;
783                      clock.m2 <= limit->m2.max; clock.m2++) {
784                         if (clock.m2 >= clock.m1)
785                                 break;
786                         for (clock.n = limit->n.min;
787                              clock.n <= limit->n.max; clock.n++) {
788                                 for (clock.p1 = limit->p1.min;
789                                         clock.p1 <= limit->p1.max; clock.p1++) {
790                                         int this_err;
791
792                                         i9xx_calc_dpll_params(refclk, &clock);
793                                         if (!intel_PLL_is_valid(dev, limit,
794                                                                 &clock))
795                                                 continue;
796                                         if (match_clock &&
797                                             clock.p != match_clock->p)
798                                                 continue;
799
800                                         this_err = abs(clock.dot - target);
801                                         if (this_err < err) {
802                                                 *best_clock = clock;
803                                                 err = this_err;
804                                         }
805                                 }
806                         }
807                 }
808         }
809
810         return (err != target);
811 }
812
813 static bool
814 pnv_find_best_dpll(const intel_limit_t *limit,
815                    struct intel_crtc_state *crtc_state,
816                    int target, int refclk, intel_clock_t *match_clock,
817                    intel_clock_t *best_clock)
818 {
819         struct drm_device *dev = crtc_state->base.crtc->dev;
820         intel_clock_t clock;
821         int err = target;
822
823         memset(best_clock, 0, sizeof(*best_clock));
824
825         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826
827         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
828              clock.m1++) {
829                 for (clock.m2 = limit->m2.min;
830                      clock.m2 <= limit->m2.max; clock.m2++) {
831                         for (clock.n = limit->n.min;
832                              clock.n <= limit->n.max; clock.n++) {
833                                 for (clock.p1 = limit->p1.min;
834                                         clock.p1 <= limit->p1.max; clock.p1++) {
835                                         int this_err;
836
837                                         pnv_calc_dpll_params(refclk, &clock);
838                                         if (!intel_PLL_is_valid(dev, limit,
839                                                                 &clock))
840                                                 continue;
841                                         if (match_clock &&
842                                             clock.p != match_clock->p)
843                                                 continue;
844
845                                         this_err = abs(clock.dot - target);
846                                         if (this_err < err) {
847                                                 *best_clock = clock;
848                                                 err = this_err;
849                                         }
850                                 }
851                         }
852                 }
853         }
854
855         return (err != target);
856 }
857
858 static bool
859 g4x_find_best_dpll(const intel_limit_t *limit,
860                    struct intel_crtc_state *crtc_state,
861                    int target, int refclk, intel_clock_t *match_clock,
862                    intel_clock_t *best_clock)
863 {
864         struct drm_device *dev = crtc_state->base.crtc->dev;
865         intel_clock_t clock;
866         int max_n;
867         bool found = false;
868         /* approximately equals target * 0.00585 */
869         int err_most = (target >> 8) + (target >> 9);
870
871         memset(best_clock, 0, sizeof(*best_clock));
872
873         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874
875         max_n = limit->n.max;
876         /* based on hardware requirement, prefer smaller n to precision */
877         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878                 /* based on hardware requirement, prefere larger m1,m2 */
879                 for (clock.m1 = limit->m1.max;
880                      clock.m1 >= limit->m1.min; clock.m1--) {
881                         for (clock.m2 = limit->m2.max;
882                              clock.m2 >= limit->m2.min; clock.m2--) {
883                                 for (clock.p1 = limit->p1.max;
884                                      clock.p1 >= limit->p1.min; clock.p1--) {
885                                         int this_err;
886
887                                         i9xx_calc_dpll_params(refclk, &clock);
888                                         if (!intel_PLL_is_valid(dev, limit,
889                                                                 &clock))
890                                                 continue;
891
892                                         this_err = abs(clock.dot - target);
893                                         if (this_err < err_most) {
894                                                 *best_clock = clock;
895                                                 err_most = this_err;
896                                                 max_n = clock.n;
897                                                 found = true;
898                                         }
899                                 }
900                         }
901                 }
902         }
903         return found;
904 }
905
906 /*
907  * Check if the calculated PLL configuration is more optimal compared to the
908  * best configuration and error found so far. Return the calculated error.
909  */
910 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
911                                const intel_clock_t *calculated_clock,
912                                const intel_clock_t *best_clock,
913                                unsigned int best_error_ppm,
914                                unsigned int *error_ppm)
915 {
916         /*
917          * For CHV ignore the error and consider only the P value.
918          * Prefer a bigger P value based on HW requirements.
919          */
920         if (IS_CHERRYVIEW(dev)) {
921                 *error_ppm = 0;
922
923                 return calculated_clock->p > best_clock->p;
924         }
925
926         if (WARN_ON_ONCE(!target_freq))
927                 return false;
928
929         *error_ppm = div_u64(1000000ULL *
930                                 abs(target_freq - calculated_clock->dot),
931                              target_freq);
932         /*
933          * Prefer a better P value over a better (smaller) error if the error
934          * is small. Ensure this preference for future configurations too by
935          * setting the error to 0.
936          */
937         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
938                 *error_ppm = 0;
939
940                 return true;
941         }
942
943         return *error_ppm + 10 < best_error_ppm;
944 }
945
946 static bool
947 vlv_find_best_dpll(const intel_limit_t *limit,
948                    struct intel_crtc_state *crtc_state,
949                    int target, int refclk, intel_clock_t *match_clock,
950                    intel_clock_t *best_clock)
951 {
952         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
953         struct drm_device *dev = crtc->base.dev;
954         intel_clock_t clock;
955         unsigned int bestppm = 1000000;
956         /* min update 19.2 MHz */
957         int max_n = min(limit->n.max, refclk / 19200);
958         bool found = false;
959
960         target *= 5; /* fast clock */
961
962         memset(best_clock, 0, sizeof(*best_clock));
963
964         /* based on hardware requirement, prefer smaller n to precision */
965         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
966                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
967                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
968                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
969                                 clock.p = clock.p1 * clock.p2;
970                                 /* based on hardware requirement, prefer bigger m1,m2 values */
971                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
972                                         unsigned int ppm;
973
974                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
975                                                                      refclk * clock.m1);
976
977                                         vlv_calc_dpll_params(refclk, &clock);
978
979                                         if (!intel_PLL_is_valid(dev, limit,
980                                                                 &clock))
981                                                 continue;
982
983                                         if (!vlv_PLL_is_optimal(dev, target,
984                                                                 &clock,
985                                                                 best_clock,
986                                                                 bestppm, &ppm))
987                                                 continue;
988
989                                         *best_clock = clock;
990                                         bestppm = ppm;
991                                         found = true;
992                                 }
993                         }
994                 }
995         }
996
997         return found;
998 }
999
1000 static bool
1001 chv_find_best_dpll(const intel_limit_t *limit,
1002                    struct intel_crtc_state *crtc_state,
1003                    int target, int refclk, intel_clock_t *match_clock,
1004                    intel_clock_t *best_clock)
1005 {
1006         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1007         struct drm_device *dev = crtc->base.dev;
1008         unsigned int best_error_ppm;
1009         intel_clock_t clock;
1010         uint64_t m2;
1011         int found = false;
1012
1013         memset(best_clock, 0, sizeof(*best_clock));
1014         best_error_ppm = 1000000;
1015
1016         /*
1017          * Based on hardware doc, the n always set to 1, and m1 always
1018          * set to 2.  If requires to support 200Mhz refclk, we need to
1019          * revisit this because n may not 1 anymore.
1020          */
1021         clock.n = 1, clock.m1 = 2;
1022         target *= 5;    /* fast clock */
1023
1024         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1025                 for (clock.p2 = limit->p2.p2_fast;
1026                                 clock.p2 >= limit->p2.p2_slow;
1027                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1028                         unsigned int error_ppm;
1029
1030                         clock.p = clock.p1 * clock.p2;
1031
1032                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1033                                         clock.n) << 22, refclk * clock.m1);
1034
1035                         if (m2 > INT_MAX/clock.m1)
1036                                 continue;
1037
1038                         clock.m2 = m2;
1039
1040                         chv_calc_dpll_params(refclk, &clock);
1041
1042                         if (!intel_PLL_is_valid(dev, limit, &clock))
1043                                 continue;
1044
1045                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1046                                                 best_error_ppm, &error_ppm))
1047                                 continue;
1048
1049                         *best_clock = clock;
1050                         best_error_ppm = error_ppm;
1051                         found = true;
1052                 }
1053         }
1054
1055         return found;
1056 }
1057
1058 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1059                         intel_clock_t *best_clock)
1060 {
1061         int refclk = i9xx_get_refclk(crtc_state, 0);
1062
1063         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1064                                   target_clock, refclk, NULL, best_clock);
1065 }
1066
1067 bool intel_crtc_active(struct drm_crtc *crtc)
1068 {
1069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071         /* Be paranoid as we can arrive here with only partial
1072          * state retrieved from the hardware during setup.
1073          *
1074          * We can ditch the adjusted_mode.crtc_clock check as soon
1075          * as Haswell has gained clock readout/fastboot support.
1076          *
1077          * We can ditch the crtc->primary->fb check as soon as we can
1078          * properly reconstruct framebuffers.
1079          *
1080          * FIXME: The intel_crtc->active here should be switched to
1081          * crtc->state->active once we have proper CRTC states wired up
1082          * for atomic.
1083          */
1084         return intel_crtc->active && crtc->primary->state->fb &&
1085                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1086 }
1087
1088 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1089                                              enum pipe pipe)
1090 {
1091         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093
1094         return intel_crtc->config->cpu_transcoder;
1095 }
1096
1097 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098 {
1099         struct drm_i915_private *dev_priv = dev->dev_private;
1100         i915_reg_t reg = PIPEDSL(pipe);
1101         u32 line1, line2;
1102         u32 line_mask;
1103
1104         if (IS_GEN2(dev))
1105                 line_mask = DSL_LINEMASK_GEN2;
1106         else
1107                 line_mask = DSL_LINEMASK_GEN3;
1108
1109         line1 = I915_READ(reg) & line_mask;
1110         msleep(5);
1111         line2 = I915_READ(reg) & line_mask;
1112
1113         return line1 == line2;
1114 }
1115
1116 /*
1117  * intel_wait_for_pipe_off - wait for pipe to turn off
1118  * @crtc: crtc whose pipe to wait for
1119  *
1120  * After disabling a pipe, we can't wait for vblank in the usual way,
1121  * spinning on the vblank interrupt status bit, since we won't actually
1122  * see an interrupt when the pipe is disabled.
1123  *
1124  * On Gen4 and above:
1125  *   wait for the pipe register state bit to turn off
1126  *
1127  * Otherwise:
1128  *   wait for the display line value to settle (it usually
1129  *   ends up stopping at the start of the next frame).
1130  *
1131  */
1132 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1133 {
1134         struct drm_device *dev = crtc->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1137         enum pipe pipe = crtc->pipe;
1138
1139         if (INTEL_INFO(dev)->gen >= 4) {
1140                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1141
1142                 /* Wait for the Pipe State to go off */
1143                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1144                              100))
1145                         WARN(1, "pipe_off wait timed out\n");
1146         } else {
1147                 /* Wait for the display line to settle */
1148                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1149                         WARN(1, "pipe_off wait timed out\n");
1150         }
1151 }
1152
1153 /* Only for pre-ILK configs */
1154 void assert_pll(struct drm_i915_private *dev_priv,
1155                 enum pipe pipe, bool state)
1156 {
1157         u32 val;
1158         bool cur_state;
1159
1160         val = I915_READ(DPLL(pipe));
1161         cur_state = !!(val & DPLL_VCO_ENABLE);
1162         I915_STATE_WARN(cur_state != state,
1163              "PLL state assertion failure (expected %s, current %s)\n",
1164                         onoff(state), onoff(cur_state));
1165 }
1166
1167 /* XXX: the dsi pll is shared between MIPI DSI ports */
1168 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1169 {
1170         u32 val;
1171         bool cur_state;
1172
1173         mutex_lock(&dev_priv->sb_lock);
1174         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1175         mutex_unlock(&dev_priv->sb_lock);
1176
1177         cur_state = val & DSI_PLL_VCO_EN;
1178         I915_STATE_WARN(cur_state != state,
1179              "DSI PLL state assertion failure (expected %s, current %s)\n",
1180                         onoff(state), onoff(cur_state));
1181 }
1182 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1183 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1184
1185 struct intel_shared_dpll *
1186 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1187 {
1188         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1189
1190         if (crtc->config->shared_dpll < 0)
1191                 return NULL;
1192
1193         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1194 }
1195
1196 /* For ILK+ */
1197 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1198                         struct intel_shared_dpll *pll,
1199                         bool state)
1200 {
1201         bool cur_state;
1202         struct intel_dpll_hw_state hw_state;
1203
1204         if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
1205                 return;
1206
1207         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1208         I915_STATE_WARN(cur_state != state,
1209              "%s assertion failure (expected %s, current %s)\n",
1210                         pll->name, onoff(state), onoff(cur_state));
1211 }
1212
1213 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1214                           enum pipe pipe, bool state)
1215 {
1216         bool cur_state;
1217         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1218                                                                       pipe);
1219
1220         if (HAS_DDI(dev_priv->dev)) {
1221                 /* DDI does not have a specific FDI_TX register */
1222                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1223                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1224         } else {
1225                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1226                 cur_state = !!(val & FDI_TX_ENABLE);
1227         }
1228         I915_STATE_WARN(cur_state != state,
1229              "FDI TX state assertion failure (expected %s, current %s)\n",
1230                         onoff(state), onoff(cur_state));
1231 }
1232 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1233 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1234
1235 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1236                           enum pipe pipe, bool state)
1237 {
1238         u32 val;
1239         bool cur_state;
1240
1241         val = I915_READ(FDI_RX_CTL(pipe));
1242         cur_state = !!(val & FDI_RX_ENABLE);
1243         I915_STATE_WARN(cur_state != state,
1244              "FDI RX state assertion failure (expected %s, current %s)\n",
1245                         onoff(state), onoff(cur_state));
1246 }
1247 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1248 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1249
1250 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1251                                       enum pipe pipe)
1252 {
1253         u32 val;
1254
1255         /* ILK FDI PLL is always enabled */
1256         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1257                 return;
1258
1259         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1260         if (HAS_DDI(dev_priv->dev))
1261                 return;
1262
1263         val = I915_READ(FDI_TX_CTL(pipe));
1264         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1265 }
1266
1267 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1268                        enum pipe pipe, bool state)
1269 {
1270         u32 val;
1271         bool cur_state;
1272
1273         val = I915_READ(FDI_RX_CTL(pipe));
1274         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1275         I915_STATE_WARN(cur_state != state,
1276              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1277                         onoff(state), onoff(cur_state));
1278 }
1279
1280 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1281                            enum pipe pipe)
1282 {
1283         struct drm_device *dev = dev_priv->dev;
1284         i915_reg_t pp_reg;
1285         u32 val;
1286         enum pipe panel_pipe = PIPE_A;
1287         bool locked = true;
1288
1289         if (WARN_ON(HAS_DDI(dev)))
1290                 return;
1291
1292         if (HAS_PCH_SPLIT(dev)) {
1293                 u32 port_sel;
1294
1295                 pp_reg = PCH_PP_CONTROL;
1296                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1297
1298                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1299                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1300                         panel_pipe = PIPE_B;
1301                 /* XXX: else fix for eDP */
1302         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1303                 /* presumably write lock depends on pipe, not port select */
1304                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1305                 panel_pipe = pipe;
1306         } else {
1307                 pp_reg = PP_CONTROL;
1308                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1309                         panel_pipe = PIPE_B;
1310         }
1311
1312         val = I915_READ(pp_reg);
1313         if (!(val & PANEL_POWER_ON) ||
1314             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1315                 locked = false;
1316
1317         I915_STATE_WARN(panel_pipe == pipe && locked,
1318              "panel assertion failure, pipe %c regs locked\n",
1319              pipe_name(pipe));
1320 }
1321
1322 static void assert_cursor(struct drm_i915_private *dev_priv,
1323                           enum pipe pipe, bool state)
1324 {
1325         struct drm_device *dev = dev_priv->dev;
1326         bool cur_state;
1327
1328         if (IS_845G(dev) || IS_I865G(dev))
1329                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1330         else
1331                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1332
1333         I915_STATE_WARN(cur_state != state,
1334              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1335                         pipe_name(pipe), onoff(state), onoff(cur_state));
1336 }
1337 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1338 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1339
1340 void assert_pipe(struct drm_i915_private *dev_priv,
1341                  enum pipe pipe, bool state)
1342 {
1343         bool cur_state;
1344         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1345                                                                       pipe);
1346         enum intel_display_power_domain power_domain;
1347
1348         /* if we need the pipe quirk it must be always on */
1349         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1350             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1351                 state = true;
1352
1353         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1354         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1355                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1356                 cur_state = !!(val & PIPECONF_ENABLE);
1357
1358                 intel_display_power_put(dev_priv, power_domain);
1359         } else {
1360                 cur_state = false;
1361         }
1362
1363         I915_STATE_WARN(cur_state != state,
1364              "pipe %c assertion failure (expected %s, current %s)\n",
1365                         pipe_name(pipe), onoff(state), onoff(cur_state));
1366 }
1367
1368 static void assert_plane(struct drm_i915_private *dev_priv,
1369                          enum plane plane, bool state)
1370 {
1371         u32 val;
1372         bool cur_state;
1373
1374         val = I915_READ(DSPCNTR(plane));
1375         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1376         I915_STATE_WARN(cur_state != state,
1377              "plane %c assertion failure (expected %s, current %s)\n",
1378                         plane_name(plane), onoff(state), onoff(cur_state));
1379 }
1380
1381 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1382 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1383
1384 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1385                                    enum pipe pipe)
1386 {
1387         struct drm_device *dev = dev_priv->dev;
1388         int i;
1389
1390         /* Primary planes are fixed to pipes on gen4+ */
1391         if (INTEL_INFO(dev)->gen >= 4) {
1392                 u32 val = I915_READ(DSPCNTR(pipe));
1393                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1394                      "plane %c assertion failure, should be disabled but not\n",
1395                      plane_name(pipe));
1396                 return;
1397         }
1398
1399         /* Need to check both planes against the pipe */
1400         for_each_pipe(dev_priv, i) {
1401                 u32 val = I915_READ(DSPCNTR(i));
1402                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1403                         DISPPLANE_SEL_PIPE_SHIFT;
1404                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1405                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1406                      plane_name(i), pipe_name(pipe));
1407         }
1408 }
1409
1410 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1411                                     enum pipe pipe)
1412 {
1413         struct drm_device *dev = dev_priv->dev;
1414         int sprite;
1415
1416         if (INTEL_INFO(dev)->gen >= 9) {
1417                 for_each_sprite(dev_priv, pipe, sprite) {
1418                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1419                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1420                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1421                              sprite, pipe_name(pipe));
1422                 }
1423         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1424                 for_each_sprite(dev_priv, pipe, sprite) {
1425                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1426                         I915_STATE_WARN(val & SP_ENABLE,
1427                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1428                              sprite_name(pipe, sprite), pipe_name(pipe));
1429                 }
1430         } else if (INTEL_INFO(dev)->gen >= 7) {
1431                 u32 val = I915_READ(SPRCTL(pipe));
1432                 I915_STATE_WARN(val & SPRITE_ENABLE,
1433                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1434                      plane_name(pipe), pipe_name(pipe));
1435         } else if (INTEL_INFO(dev)->gen >= 5) {
1436                 u32 val = I915_READ(DVSCNTR(pipe));
1437                 I915_STATE_WARN(val & DVS_ENABLE,
1438                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1439                      plane_name(pipe), pipe_name(pipe));
1440         }
1441 }
1442
1443 static void assert_vblank_disabled(struct drm_crtc *crtc)
1444 {
1445         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1446                 drm_crtc_vblank_put(crtc);
1447 }
1448
1449 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1450 {
1451         u32 val;
1452         bool enabled;
1453
1454         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1455
1456         val = I915_READ(PCH_DREF_CONTROL);
1457         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1458                             DREF_SUPERSPREAD_SOURCE_MASK));
1459         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1460 }
1461
1462 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1463                                            enum pipe pipe)
1464 {
1465         u32 val;
1466         bool enabled;
1467
1468         val = I915_READ(PCH_TRANSCONF(pipe));
1469         enabled = !!(val & TRANS_ENABLE);
1470         I915_STATE_WARN(enabled,
1471              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1472              pipe_name(pipe));
1473 }
1474
1475 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1476                             enum pipe pipe, u32 port_sel, u32 val)
1477 {
1478         if ((val & DP_PORT_EN) == 0)
1479                 return false;
1480
1481         if (HAS_PCH_CPT(dev_priv->dev)) {
1482                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1483                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1484                         return false;
1485         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1486                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1487                         return false;
1488         } else {
1489                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1490                         return false;
1491         }
1492         return true;
1493 }
1494
1495 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1496                               enum pipe pipe, u32 val)
1497 {
1498         if ((val & SDVO_ENABLE) == 0)
1499                 return false;
1500
1501         if (HAS_PCH_CPT(dev_priv->dev)) {
1502                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1503                         return false;
1504         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1505                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1506                         return false;
1507         } else {
1508                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1509                         return false;
1510         }
1511         return true;
1512 }
1513
1514 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1515                               enum pipe pipe, u32 val)
1516 {
1517         if ((val & LVDS_PORT_EN) == 0)
1518                 return false;
1519
1520         if (HAS_PCH_CPT(dev_priv->dev)) {
1521                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1522                         return false;
1523         } else {
1524                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1525                         return false;
1526         }
1527         return true;
1528 }
1529
1530 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1531                               enum pipe pipe, u32 val)
1532 {
1533         if ((val & ADPA_DAC_ENABLE) == 0)
1534                 return false;
1535         if (HAS_PCH_CPT(dev_priv->dev)) {
1536                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1537                         return false;
1538         } else {
1539                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1540                         return false;
1541         }
1542         return true;
1543 }
1544
1545 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1546                                    enum pipe pipe, i915_reg_t reg,
1547                                    u32 port_sel)
1548 {
1549         u32 val = I915_READ(reg);
1550         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1551              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1552              i915_mmio_reg_offset(reg), pipe_name(pipe));
1553
1554         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1555              && (val & DP_PIPEB_SELECT),
1556              "IBX PCH dp port still using transcoder B\n");
1557 }
1558
1559 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1560                                      enum pipe pipe, i915_reg_t reg)
1561 {
1562         u32 val = I915_READ(reg);
1563         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1564              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1565              i915_mmio_reg_offset(reg), pipe_name(pipe));
1566
1567         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1568              && (val & SDVO_PIPE_B_SELECT),
1569              "IBX PCH hdmi port still using transcoder B\n");
1570 }
1571
1572 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1573                                       enum pipe pipe)
1574 {
1575         u32 val;
1576
1577         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1578         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1579         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1580
1581         val = I915_READ(PCH_ADPA);
1582         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1583              "PCH VGA enabled on transcoder %c, should be disabled\n",
1584              pipe_name(pipe));
1585
1586         val = I915_READ(PCH_LVDS);
1587         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1588              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1589              pipe_name(pipe));
1590
1591         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1592         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1593         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1594 }
1595
1596 static void vlv_enable_pll(struct intel_crtc *crtc,
1597                            const struct intel_crtc_state *pipe_config)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         i915_reg_t reg = DPLL(crtc->pipe);
1602         u32 dpll = pipe_config->dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* PLL is protected by panel, make sure we can write it */
1607         if (IS_MOBILE(dev_priv->dev))
1608                 assert_panel_unlocked(dev_priv, crtc->pipe);
1609
1610         I915_WRITE(reg, dpll);
1611         POSTING_READ(reg);
1612         udelay(150);
1613
1614         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1615                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1616
1617         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1618         POSTING_READ(DPLL_MD(crtc->pipe));
1619
1620         /* We do this three times for luck */
1621         I915_WRITE(reg, dpll);
1622         POSTING_READ(reg);
1623         udelay(150); /* wait for warmup */
1624         I915_WRITE(reg, dpll);
1625         POSTING_READ(reg);
1626         udelay(150); /* wait for warmup */
1627         I915_WRITE(reg, dpll);
1628         POSTING_READ(reg);
1629         udelay(150); /* wait for warmup */
1630 }
1631
1632 static void chv_enable_pll(struct intel_crtc *crtc,
1633                            const struct intel_crtc_state *pipe_config)
1634 {
1635         struct drm_device *dev = crtc->base.dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         int pipe = crtc->pipe;
1638         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1639         u32 tmp;
1640
1641         assert_pipe_disabled(dev_priv, crtc->pipe);
1642
1643         mutex_lock(&dev_priv->sb_lock);
1644
1645         /* Enable back the 10bit clock to display controller */
1646         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1647         tmp |= DPIO_DCLKP_EN;
1648         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1649
1650         mutex_unlock(&dev_priv->sb_lock);
1651
1652         /*
1653          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1654          */
1655         udelay(1);
1656
1657         /* Enable PLL */
1658         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1659
1660         /* Check PLL is locked */
1661         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1662                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1663
1664         /* not sure when this should be written */
1665         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1666         POSTING_READ(DPLL_MD(pipe));
1667 }
1668
1669 static int intel_num_dvo_pipes(struct drm_device *dev)
1670 {
1671         struct intel_crtc *crtc;
1672         int count = 0;
1673
1674         for_each_intel_crtc(dev, crtc)
1675                 count += crtc->base.state->active &&
1676                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1677
1678         return count;
1679 }
1680
1681 static void i9xx_enable_pll(struct intel_crtc *crtc)
1682 {
1683         struct drm_device *dev = crtc->base.dev;
1684         struct drm_i915_private *dev_priv = dev->dev_private;
1685         i915_reg_t reg = DPLL(crtc->pipe);
1686         u32 dpll = crtc->config->dpll_hw_state.dpll;
1687
1688         assert_pipe_disabled(dev_priv, crtc->pipe);
1689
1690         /* No really, not for ILK+ */
1691         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1692
1693         /* PLL is protected by panel, make sure we can write it */
1694         if (IS_MOBILE(dev) && !IS_I830(dev))
1695                 assert_panel_unlocked(dev_priv, crtc->pipe);
1696
1697         /* Enable DVO 2x clock on both PLLs if necessary */
1698         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1699                 /*
1700                  * It appears to be important that we don't enable this
1701                  * for the current pipe before otherwise configuring the
1702                  * PLL. No idea how this should be handled if multiple
1703                  * DVO outputs are enabled simultaneosly.
1704                  */
1705                 dpll |= DPLL_DVO_2X_MODE;
1706                 I915_WRITE(DPLL(!crtc->pipe),
1707                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1708         }
1709
1710         /*
1711          * Apparently we need to have VGA mode enabled prior to changing
1712          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1713          * dividers, even though the register value does change.
1714          */
1715         I915_WRITE(reg, 0);
1716
1717         I915_WRITE(reg, dpll);
1718
1719         /* Wait for the clocks to stabilize. */
1720         POSTING_READ(reg);
1721         udelay(150);
1722
1723         if (INTEL_INFO(dev)->gen >= 4) {
1724                 I915_WRITE(DPLL_MD(crtc->pipe),
1725                            crtc->config->dpll_hw_state.dpll_md);
1726         } else {
1727                 /* The pixel multiplier can only be updated once the
1728                  * DPLL is enabled and the clocks are stable.
1729                  *
1730                  * So write it again.
1731                  */
1732                 I915_WRITE(reg, dpll);
1733         }
1734
1735         /* We do this three times for luck */
1736         I915_WRITE(reg, dpll);
1737         POSTING_READ(reg);
1738         udelay(150); /* wait for warmup */
1739         I915_WRITE(reg, dpll);
1740         POSTING_READ(reg);
1741         udelay(150); /* wait for warmup */
1742         I915_WRITE(reg, dpll);
1743         POSTING_READ(reg);
1744         udelay(150); /* wait for warmup */
1745 }
1746
1747 /**
1748  * i9xx_disable_pll - disable a PLL
1749  * @dev_priv: i915 private structure
1750  * @pipe: pipe PLL to disable
1751  *
1752  * Disable the PLL for @pipe, making sure the pipe is off first.
1753  *
1754  * Note!  This is for pre-ILK only.
1755  */
1756 static void i9xx_disable_pll(struct intel_crtc *crtc)
1757 {
1758         struct drm_device *dev = crtc->base.dev;
1759         struct drm_i915_private *dev_priv = dev->dev_private;
1760         enum pipe pipe = crtc->pipe;
1761
1762         /* Disable DVO 2x clock on both PLLs if necessary */
1763         if (IS_I830(dev) &&
1764             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1765             !intel_num_dvo_pipes(dev)) {
1766                 I915_WRITE(DPLL(PIPE_B),
1767                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1768                 I915_WRITE(DPLL(PIPE_A),
1769                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1770         }
1771
1772         /* Don't disable pipe or pipe PLLs if needed */
1773         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1774             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1775                 return;
1776
1777         /* Make sure the pipe isn't still relying on us */
1778         assert_pipe_disabled(dev_priv, pipe);
1779
1780         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1781         POSTING_READ(DPLL(pipe));
1782 }
1783
1784 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1785 {
1786         u32 val;
1787
1788         /* Make sure the pipe isn't still relying on us */
1789         assert_pipe_disabled(dev_priv, pipe);
1790
1791         /*
1792          * Leave integrated clock source and reference clock enabled for pipe B.
1793          * The latter is needed for VGA hotplug / manual detection.
1794          */
1795         val = DPLL_VGA_MODE_DIS;
1796         if (pipe == PIPE_B)
1797                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1798         I915_WRITE(DPLL(pipe), val);
1799         POSTING_READ(DPLL(pipe));
1800
1801 }
1802
1803 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1804 {
1805         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1806         u32 val;
1807
1808         /* Make sure the pipe isn't still relying on us */
1809         assert_pipe_disabled(dev_priv, pipe);
1810
1811         /* Set PLL en = 0 */
1812         val = DPLL_SSC_REF_CLK_CHV |
1813                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1814         if (pipe != PIPE_A)
1815                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1816         I915_WRITE(DPLL(pipe), val);
1817         POSTING_READ(DPLL(pipe));
1818
1819         mutex_lock(&dev_priv->sb_lock);
1820
1821         /* Disable 10bit clock to display controller */
1822         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1823         val &= ~DPIO_DCLKP_EN;
1824         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1825
1826         mutex_unlock(&dev_priv->sb_lock);
1827 }
1828
1829 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1830                          struct intel_digital_port *dport,
1831                          unsigned int expected_mask)
1832 {
1833         u32 port_mask;
1834         i915_reg_t dpll_reg;
1835
1836         switch (dport->port) {
1837         case PORT_B:
1838                 port_mask = DPLL_PORTB_READY_MASK;
1839                 dpll_reg = DPLL(0);
1840                 break;
1841         case PORT_C:
1842                 port_mask = DPLL_PORTC_READY_MASK;
1843                 dpll_reg = DPLL(0);
1844                 expected_mask <<= 4;
1845                 break;
1846         case PORT_D:
1847                 port_mask = DPLL_PORTD_READY_MASK;
1848                 dpll_reg = DPIO_PHY_STATUS;
1849                 break;
1850         default:
1851                 BUG();
1852         }
1853
1854         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1855                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1856                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1857 }
1858
1859 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1860 {
1861         struct drm_device *dev = crtc->base.dev;
1862         struct drm_i915_private *dev_priv = dev->dev_private;
1863         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1864
1865         if (WARN_ON(pll == NULL))
1866                 return;
1867
1868         WARN_ON(!pll->config.crtc_mask);
1869         if (pll->active == 0) {
1870                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1871                 WARN_ON(pll->on);
1872                 assert_shared_dpll_disabled(dev_priv, pll);
1873
1874                 pll->mode_set(dev_priv, pll);
1875         }
1876 }
1877
1878 /**
1879  * intel_enable_shared_dpll - enable PCH PLL
1880  * @dev_priv: i915 private structure
1881  * @pipe: pipe PLL to enable
1882  *
1883  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1884  * drives the transcoder clock.
1885  */
1886 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1887 {
1888         struct drm_device *dev = crtc->base.dev;
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1891
1892         if (WARN_ON(pll == NULL))
1893                 return;
1894
1895         if (WARN_ON(pll->config.crtc_mask == 0))
1896                 return;
1897
1898         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1899                       pll->name, pll->active, pll->on,
1900                       crtc->base.base.id);
1901
1902         if (pll->active++) {
1903                 WARN_ON(!pll->on);
1904                 assert_shared_dpll_enabled(dev_priv, pll);
1905                 return;
1906         }
1907         WARN_ON(pll->on);
1908
1909         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1910
1911         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1912         pll->enable(dev_priv, pll);
1913         pll->on = true;
1914 }
1915
1916 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1917 {
1918         struct drm_device *dev = crtc->base.dev;
1919         struct drm_i915_private *dev_priv = dev->dev_private;
1920         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1921
1922         /* PCH only available on ILK+ */
1923         if (INTEL_INFO(dev)->gen < 5)
1924                 return;
1925
1926         if (pll == NULL)
1927                 return;
1928
1929         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1930                 return;
1931
1932         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1933                       pll->name, pll->active, pll->on,
1934                       crtc->base.base.id);
1935
1936         if (WARN_ON(pll->active == 0)) {
1937                 assert_shared_dpll_disabled(dev_priv, pll);
1938                 return;
1939         }
1940
1941         assert_shared_dpll_enabled(dev_priv, pll);
1942         WARN_ON(!pll->on);
1943         if (--pll->active)
1944                 return;
1945
1946         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1947         pll->disable(dev_priv, pll);
1948         pll->on = false;
1949
1950         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1951 }
1952
1953 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1954                                            enum pipe pipe)
1955 {
1956         struct drm_device *dev = dev_priv->dev;
1957         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1959         i915_reg_t reg;
1960         uint32_t val, pipeconf_val;
1961
1962         /* PCH only available on ILK+ */
1963         BUG_ON(!HAS_PCH_SPLIT(dev));
1964
1965         /* Make sure PCH DPLL is enabled */
1966         assert_shared_dpll_enabled(dev_priv,
1967                                    intel_crtc_to_shared_dpll(intel_crtc));
1968
1969         /* FDI must be feeding us bits for PCH ports */
1970         assert_fdi_tx_enabled(dev_priv, pipe);
1971         assert_fdi_rx_enabled(dev_priv, pipe);
1972
1973         if (HAS_PCH_CPT(dev)) {
1974                 /* Workaround: Set the timing override bit before enabling the
1975                  * pch transcoder. */
1976                 reg = TRANS_CHICKEN2(pipe);
1977                 val = I915_READ(reg);
1978                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1979                 I915_WRITE(reg, val);
1980         }
1981
1982         reg = PCH_TRANSCONF(pipe);
1983         val = I915_READ(reg);
1984         pipeconf_val = I915_READ(PIPECONF(pipe));
1985
1986         if (HAS_PCH_IBX(dev_priv->dev)) {
1987                 /*
1988                  * Make the BPC in transcoder be consistent with
1989                  * that in pipeconf reg. For HDMI we must use 8bpc
1990                  * here for both 8bpc and 12bpc.
1991                  */
1992                 val &= ~PIPECONF_BPC_MASK;
1993                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1994                         val |= PIPECONF_8BPC;
1995                 else
1996                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1997         }
1998
1999         val &= ~TRANS_INTERLACE_MASK;
2000         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2001                 if (HAS_PCH_IBX(dev_priv->dev) &&
2002                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2003                         val |= TRANS_LEGACY_INTERLACED_ILK;
2004                 else
2005                         val |= TRANS_INTERLACED;
2006         else
2007                 val |= TRANS_PROGRESSIVE;
2008
2009         I915_WRITE(reg, val | TRANS_ENABLE);
2010         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2011                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2012 }
2013
2014 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2015                                       enum transcoder cpu_transcoder)
2016 {
2017         u32 val, pipeconf_val;
2018
2019         /* PCH only available on ILK+ */
2020         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2021
2022         /* FDI must be feeding us bits for PCH ports */
2023         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2024         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2025
2026         /* Workaround: set timing override bit. */
2027         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2028         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2029         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2030
2031         val = TRANS_ENABLE;
2032         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2033
2034         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2035             PIPECONF_INTERLACED_ILK)
2036                 val |= TRANS_INTERLACED;
2037         else
2038                 val |= TRANS_PROGRESSIVE;
2039
2040         I915_WRITE(LPT_TRANSCONF, val);
2041         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2042                 DRM_ERROR("Failed to enable PCH transcoder\n");
2043 }
2044
2045 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2046                                             enum pipe pipe)
2047 {
2048         struct drm_device *dev = dev_priv->dev;
2049         i915_reg_t reg;
2050         uint32_t val;
2051
2052         /* FDI relies on the transcoder */
2053         assert_fdi_tx_disabled(dev_priv, pipe);
2054         assert_fdi_rx_disabled(dev_priv, pipe);
2055
2056         /* Ports must be off as well */
2057         assert_pch_ports_disabled(dev_priv, pipe);
2058
2059         reg = PCH_TRANSCONF(pipe);
2060         val = I915_READ(reg);
2061         val &= ~TRANS_ENABLE;
2062         I915_WRITE(reg, val);
2063         /* wait for PCH transcoder off, transcoder state */
2064         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2065                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2066
2067         if (HAS_PCH_CPT(dev)) {
2068                 /* Workaround: Clear the timing override chicken bit again. */
2069                 reg = TRANS_CHICKEN2(pipe);
2070                 val = I915_READ(reg);
2071                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2072                 I915_WRITE(reg, val);
2073         }
2074 }
2075
2076 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2077 {
2078         u32 val;
2079
2080         val = I915_READ(LPT_TRANSCONF);
2081         val &= ~TRANS_ENABLE;
2082         I915_WRITE(LPT_TRANSCONF, val);
2083         /* wait for PCH transcoder off, transcoder state */
2084         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2085                 DRM_ERROR("Failed to disable PCH transcoder\n");
2086
2087         /* Workaround: clear timing override bit. */
2088         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2089         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2090         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2091 }
2092
2093 /**
2094  * intel_enable_pipe - enable a pipe, asserting requirements
2095  * @crtc: crtc responsible for the pipe
2096  *
2097  * Enable @crtc's pipe, making sure that various hardware specific requirements
2098  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2099  */
2100 static void intel_enable_pipe(struct intel_crtc *crtc)
2101 {
2102         struct drm_device *dev = crtc->base.dev;
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         enum pipe pipe = crtc->pipe;
2105         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2106         enum pipe pch_transcoder;
2107         i915_reg_t reg;
2108         u32 val;
2109
2110         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2111
2112         assert_planes_disabled(dev_priv, pipe);
2113         assert_cursor_disabled(dev_priv, pipe);
2114         assert_sprites_disabled(dev_priv, pipe);
2115
2116         if (HAS_PCH_LPT(dev_priv->dev))
2117                 pch_transcoder = TRANSCODER_A;
2118         else
2119                 pch_transcoder = pipe;
2120
2121         /*
2122          * A pipe without a PLL won't actually be able to drive bits from
2123          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2124          * need the check.
2125          */
2126         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2127                 if (crtc->config->has_dsi_encoder)
2128                         assert_dsi_pll_enabled(dev_priv);
2129                 else
2130                         assert_pll_enabled(dev_priv, pipe);
2131         else {
2132                 if (crtc->config->has_pch_encoder) {
2133                         /* if driving the PCH, we need FDI enabled */
2134                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2135                         assert_fdi_tx_pll_enabled(dev_priv,
2136                                                   (enum pipe) cpu_transcoder);
2137                 }
2138                 /* FIXME: assert CPU port conditions for SNB+ */
2139         }
2140
2141         reg = PIPECONF(cpu_transcoder);
2142         val = I915_READ(reg);
2143         if (val & PIPECONF_ENABLE) {
2144                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2145                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2146                 return;
2147         }
2148
2149         I915_WRITE(reg, val | PIPECONF_ENABLE);
2150         POSTING_READ(reg);
2151
2152         /*
2153          * Until the pipe starts DSL will read as 0, which would cause
2154          * an apparent vblank timestamp jump, which messes up also the
2155          * frame count when it's derived from the timestamps. So let's
2156          * wait for the pipe to start properly before we call
2157          * drm_crtc_vblank_on()
2158          */
2159         if (dev->max_vblank_count == 0 &&
2160             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2161                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2162 }
2163
2164 /**
2165  * intel_disable_pipe - disable a pipe, asserting requirements
2166  * @crtc: crtc whose pipes is to be disabled
2167  *
2168  * Disable the pipe of @crtc, making sure that various hardware
2169  * specific requirements are met, if applicable, e.g. plane
2170  * disabled, panel fitter off, etc.
2171  *
2172  * Will wait until the pipe has shut down before returning.
2173  */
2174 static void intel_disable_pipe(struct intel_crtc *crtc)
2175 {
2176         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2177         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2178         enum pipe pipe = crtc->pipe;
2179         i915_reg_t reg;
2180         u32 val;
2181
2182         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2183
2184         /*
2185          * Make sure planes won't keep trying to pump pixels to us,
2186          * or we might hang the display.
2187          */
2188         assert_planes_disabled(dev_priv, pipe);
2189         assert_cursor_disabled(dev_priv, pipe);
2190         assert_sprites_disabled(dev_priv, pipe);
2191
2192         reg = PIPECONF(cpu_transcoder);
2193         val = I915_READ(reg);
2194         if ((val & PIPECONF_ENABLE) == 0)
2195                 return;
2196
2197         /*
2198          * Double wide has implications for planes
2199          * so best keep it disabled when not needed.
2200          */
2201         if (crtc->config->double_wide)
2202                 val &= ~PIPECONF_DOUBLE_WIDE;
2203
2204         /* Don't disable pipe or pipe PLLs if needed */
2205         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2206             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2207                 val &= ~PIPECONF_ENABLE;
2208
2209         I915_WRITE(reg, val);
2210         if ((val & PIPECONF_ENABLE) == 0)
2211                 intel_wait_for_pipe_off(crtc);
2212 }
2213
2214 static bool need_vtd_wa(struct drm_device *dev)
2215 {
2216 #ifdef CONFIG_INTEL_IOMMU
2217         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2218                 return true;
2219 #endif
2220         return false;
2221 }
2222
2223 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2224 {
2225         return IS_GEN2(dev_priv) ? 2048 : 4096;
2226 }
2227
2228 static unsigned int intel_tile_width(const struct drm_i915_private *dev_priv,
2229                                      uint64_t fb_modifier, unsigned int cpp)
2230 {
2231         switch (fb_modifier) {
2232         case DRM_FORMAT_MOD_NONE:
2233                 return cpp;
2234         case I915_FORMAT_MOD_X_TILED:
2235                 if (IS_GEN2(dev_priv))
2236                         return 128;
2237                 else
2238                         return 512;
2239         case I915_FORMAT_MOD_Y_TILED:
2240                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2241                         return 128;
2242                 else
2243                         return 512;
2244         case I915_FORMAT_MOD_Yf_TILED:
2245                 switch (cpp) {
2246                 case 1:
2247                         return 64;
2248                 case 2:
2249                 case 4:
2250                         return 128;
2251                 case 8:
2252                 case 16:
2253                         return 256;
2254                 default:
2255                         MISSING_CASE(cpp);
2256                         return cpp;
2257                 }
2258                 break;
2259         default:
2260                 MISSING_CASE(fb_modifier);
2261                 return cpp;
2262         }
2263 }
2264
2265 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2266                                uint64_t fb_modifier, unsigned int cpp)
2267 {
2268         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2269                 return 1;
2270         else
2271                 return intel_tile_size(dev_priv) /
2272                         intel_tile_width(dev_priv, fb_modifier, cpp);
2273 }
2274
2275 unsigned int
2276 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2277                       uint32_t pixel_format, uint64_t fb_modifier)
2278 {
2279         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2280         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2281
2282         return ALIGN(height, tile_height);
2283 }
2284
2285 static void
2286 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2287                         const struct drm_plane_state *plane_state)
2288 {
2289         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2290         struct intel_rotation_info *info = &view->params.rotated;
2291         unsigned int tile_size, tile_width, tile_height, cpp;
2292
2293         *view = i915_ggtt_view_normal;
2294
2295         if (!plane_state)
2296                 return;
2297
2298         if (!intel_rotation_90_or_270(plane_state->rotation))
2299                 return;
2300
2301         *view = i915_ggtt_view_rotated;
2302
2303         info->height = fb->height;
2304         info->pixel_format = fb->pixel_format;
2305         info->pitch = fb->pitches[0];
2306         info->uv_offset = fb->offsets[1];
2307         info->fb_modifier = fb->modifier[0];
2308
2309         tile_size = intel_tile_size(dev_priv);
2310
2311         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2312         tile_width = intel_tile_width(dev_priv, fb->modifier[0], cpp);
2313         tile_height = tile_size / tile_width;
2314
2315         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_width);
2316         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2317         info->size = info->width_pages * info->height_pages * tile_size;
2318
2319         if (info->pixel_format == DRM_FORMAT_NV12) {
2320                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2321                 tile_width = intel_tile_width(dev_priv, fb->modifier[1], cpp);
2322                 tile_height = tile_size / tile_width;
2323
2324                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[1], tile_width);
2325                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2, tile_height);
2326                 info->size_uv = info->width_pages_uv * info->height_pages_uv * tile_size;
2327         }
2328 }
2329
2330 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2331 {
2332         if (INTEL_INFO(dev_priv)->gen >= 9)
2333                 return 256 * 1024;
2334         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2335                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2336                 return 128 * 1024;
2337         else if (INTEL_INFO(dev_priv)->gen >= 4)
2338                 return 4 * 1024;
2339         else
2340                 return 0;
2341 }
2342
2343 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2344                                          uint64_t fb_modifier)
2345 {
2346         switch (fb_modifier) {
2347         case DRM_FORMAT_MOD_NONE:
2348                 return intel_linear_alignment(dev_priv);
2349         case I915_FORMAT_MOD_X_TILED:
2350                 if (INTEL_INFO(dev_priv)->gen >= 9)
2351                         return 256 * 1024;
2352                 return 0;
2353         case I915_FORMAT_MOD_Y_TILED:
2354         case I915_FORMAT_MOD_Yf_TILED:
2355                 return 1 * 1024 * 1024;
2356         default:
2357                 MISSING_CASE(fb_modifier);
2358                 return 0;
2359         }
2360 }
2361
2362 int
2363 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2364                            struct drm_framebuffer *fb,
2365                            const struct drm_plane_state *plane_state)
2366 {
2367         struct drm_device *dev = fb->dev;
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2370         struct i915_ggtt_view view;
2371         u32 alignment;
2372         int ret;
2373
2374         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2375
2376         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2377
2378         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2379
2380         /* Note that the w/a also requires 64 PTE of padding following the
2381          * bo. We currently fill all unused PTE with the shadow page and so
2382          * we should always have valid PTE following the scanout preventing
2383          * the VT-d warning.
2384          */
2385         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2386                 alignment = 256 * 1024;
2387
2388         /*
2389          * Global gtt pte registers are special registers which actually forward
2390          * writes to a chunk of system memory. Which means that there is no risk
2391          * that the register values disappear as soon as we call
2392          * intel_runtime_pm_put(), so it is correct to wrap only the
2393          * pin/unpin/fence and not more.
2394          */
2395         intel_runtime_pm_get(dev_priv);
2396
2397         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2398                                                    &view);
2399         if (ret)
2400                 goto err_pm;
2401
2402         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2403          * fence, whereas 965+ only requires a fence if using
2404          * framebuffer compression.  For simplicity, we always install
2405          * a fence as the cost is not that onerous.
2406          */
2407         if (view.type == I915_GGTT_VIEW_NORMAL) {
2408                 ret = i915_gem_object_get_fence(obj);
2409                 if (ret == -EDEADLK) {
2410                         /*
2411                          * -EDEADLK means there are no free fences
2412                          * no pending flips.
2413                          *
2414                          * This is propagated to atomic, but it uses
2415                          * -EDEADLK to force a locking recovery, so
2416                          * change the returned error to -EBUSY.
2417                          */
2418                         ret = -EBUSY;
2419                         goto err_unpin;
2420                 } else if (ret)
2421                         goto err_unpin;
2422
2423                 i915_gem_object_pin_fence(obj);
2424         }
2425
2426         intel_runtime_pm_put(dev_priv);
2427         return 0;
2428
2429 err_unpin:
2430         i915_gem_object_unpin_from_display_plane(obj, &view);
2431 err_pm:
2432         intel_runtime_pm_put(dev_priv);
2433         return ret;
2434 }
2435
2436 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2437                                const struct drm_plane_state *plane_state)
2438 {
2439         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2440         struct i915_ggtt_view view;
2441
2442         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2443
2444         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2445
2446         if (view.type == I915_GGTT_VIEW_NORMAL)
2447                 i915_gem_object_unpin_fence(obj);
2448
2449         i915_gem_object_unpin_from_display_plane(obj, &view);
2450 }
2451
2452 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2453  * is assumed to be a power-of-two. */
2454 u32 intel_compute_tile_offset(struct drm_i915_private *dev_priv,
2455                               int *x, int *y,
2456                               uint64_t fb_modifier,
2457                               unsigned int cpp,
2458                               unsigned int pitch)
2459 {
2460         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2461                 unsigned int tile_size, tile_width, tile_height;
2462                 unsigned int tile_rows, tiles;
2463
2464                 tile_size = intel_tile_size(dev_priv);
2465                 tile_width = intel_tile_width(dev_priv, fb_modifier, cpp);
2466                 tile_height = tile_size / tile_width;
2467
2468                 tile_rows = *y / tile_height;
2469                 *y %= tile_height;
2470
2471                 tiles = *x / (tile_width/cpp);
2472                 *x %= tile_width/cpp;
2473
2474                 return tile_rows * pitch * tile_height + tiles * tile_size;
2475         } else {
2476                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2477                 unsigned int offset;
2478
2479                 offset = *y * pitch + *x * cpp;
2480                 *y = (offset & alignment) / pitch;
2481                 *x = ((offset & alignment) - *y * pitch) / cpp;
2482                 return offset & ~alignment;
2483         }
2484 }
2485
2486 static int i9xx_format_to_fourcc(int format)
2487 {
2488         switch (format) {
2489         case DISPPLANE_8BPP:
2490                 return DRM_FORMAT_C8;
2491         case DISPPLANE_BGRX555:
2492                 return DRM_FORMAT_XRGB1555;
2493         case DISPPLANE_BGRX565:
2494                 return DRM_FORMAT_RGB565;
2495         default:
2496         case DISPPLANE_BGRX888:
2497                 return DRM_FORMAT_XRGB8888;
2498         case DISPPLANE_RGBX888:
2499                 return DRM_FORMAT_XBGR8888;
2500         case DISPPLANE_BGRX101010:
2501                 return DRM_FORMAT_XRGB2101010;
2502         case DISPPLANE_RGBX101010:
2503                 return DRM_FORMAT_XBGR2101010;
2504         }
2505 }
2506
2507 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2508 {
2509         switch (format) {
2510         case PLANE_CTL_FORMAT_RGB_565:
2511                 return DRM_FORMAT_RGB565;
2512         default:
2513         case PLANE_CTL_FORMAT_XRGB_8888:
2514                 if (rgb_order) {
2515                         if (alpha)
2516                                 return DRM_FORMAT_ABGR8888;
2517                         else
2518                                 return DRM_FORMAT_XBGR8888;
2519                 } else {
2520                         if (alpha)
2521                                 return DRM_FORMAT_ARGB8888;
2522                         else
2523                                 return DRM_FORMAT_XRGB8888;
2524                 }
2525         case PLANE_CTL_FORMAT_XRGB_2101010:
2526                 if (rgb_order)
2527                         return DRM_FORMAT_XBGR2101010;
2528                 else
2529                         return DRM_FORMAT_XRGB2101010;
2530         }
2531 }
2532
2533 static bool
2534 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2535                               struct intel_initial_plane_config *plane_config)
2536 {
2537         struct drm_device *dev = crtc->base.dev;
2538         struct drm_i915_private *dev_priv = to_i915(dev);
2539         struct drm_i915_gem_object *obj = NULL;
2540         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2541         struct drm_framebuffer *fb = &plane_config->fb->base;
2542         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2543         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2544                                     PAGE_SIZE);
2545
2546         size_aligned -= base_aligned;
2547
2548         if (plane_config->size == 0)
2549                 return false;
2550
2551         /* If the FB is too big, just don't use it since fbdev is not very
2552          * important and we should probably use that space with FBC or other
2553          * features. */
2554         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2555                 return false;
2556
2557         mutex_lock(&dev->struct_mutex);
2558
2559         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2560                                                              base_aligned,
2561                                                              base_aligned,
2562                                                              size_aligned);
2563         if (!obj) {
2564                 mutex_unlock(&dev->struct_mutex);
2565                 return false;
2566         }
2567
2568         obj->tiling_mode = plane_config->tiling;
2569         if (obj->tiling_mode == I915_TILING_X)
2570                 obj->stride = fb->pitches[0];
2571
2572         mode_cmd.pixel_format = fb->pixel_format;
2573         mode_cmd.width = fb->width;
2574         mode_cmd.height = fb->height;
2575         mode_cmd.pitches[0] = fb->pitches[0];
2576         mode_cmd.modifier[0] = fb->modifier[0];
2577         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2578
2579         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2580                                    &mode_cmd, obj)) {
2581                 DRM_DEBUG_KMS("intel fb init failed\n");
2582                 goto out_unref_obj;
2583         }
2584
2585         mutex_unlock(&dev->struct_mutex);
2586
2587         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2588         return true;
2589
2590 out_unref_obj:
2591         drm_gem_object_unreference(&obj->base);
2592         mutex_unlock(&dev->struct_mutex);
2593         return false;
2594 }
2595
2596 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2597 static void
2598 update_state_fb(struct drm_plane *plane)
2599 {
2600         if (plane->fb == plane->state->fb)
2601                 return;
2602
2603         if (plane->state->fb)
2604                 drm_framebuffer_unreference(plane->state->fb);
2605         plane->state->fb = plane->fb;
2606         if (plane->state->fb)
2607                 drm_framebuffer_reference(plane->state->fb);
2608 }
2609
2610 static void
2611 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2612                              struct intel_initial_plane_config *plane_config)
2613 {
2614         struct drm_device *dev = intel_crtc->base.dev;
2615         struct drm_i915_private *dev_priv = dev->dev_private;
2616         struct drm_crtc *c;
2617         struct intel_crtc *i;
2618         struct drm_i915_gem_object *obj;
2619         struct drm_plane *primary = intel_crtc->base.primary;
2620         struct drm_plane_state *plane_state = primary->state;
2621         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2622         struct intel_plane *intel_plane = to_intel_plane(primary);
2623         struct intel_plane_state *intel_state =
2624                 to_intel_plane_state(plane_state);
2625         struct drm_framebuffer *fb;
2626
2627         if (!plane_config->fb)
2628                 return;
2629
2630         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2631                 fb = &plane_config->fb->base;
2632                 goto valid_fb;
2633         }
2634
2635         kfree(plane_config->fb);
2636
2637         /*
2638          * Failed to alloc the obj, check to see if we should share
2639          * an fb with another CRTC instead
2640          */
2641         for_each_crtc(dev, c) {
2642                 i = to_intel_crtc(c);
2643
2644                 if (c == &intel_crtc->base)
2645                         continue;
2646
2647                 if (!i->active)
2648                         continue;
2649
2650                 fb = c->primary->fb;
2651                 if (!fb)
2652                         continue;
2653
2654                 obj = intel_fb_obj(fb);
2655                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2656                         drm_framebuffer_reference(fb);
2657                         goto valid_fb;
2658                 }
2659         }
2660
2661         /*
2662          * We've failed to reconstruct the BIOS FB.  Current display state
2663          * indicates that the primary plane is visible, but has a NULL FB,
2664          * which will lead to problems later if we don't fix it up.  The
2665          * simplest solution is to just disable the primary plane now and
2666          * pretend the BIOS never had it enabled.
2667          */
2668         to_intel_plane_state(plane_state)->visible = false;
2669         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2670         intel_pre_disable_primary(&intel_crtc->base);
2671         intel_plane->disable_plane(primary, &intel_crtc->base);
2672
2673         return;
2674
2675 valid_fb:
2676         plane_state->src_x = 0;
2677         plane_state->src_y = 0;
2678         plane_state->src_w = fb->width << 16;
2679         plane_state->src_h = fb->height << 16;
2680
2681         plane_state->crtc_x = 0;
2682         plane_state->crtc_y = 0;
2683         plane_state->crtc_w = fb->width;
2684         plane_state->crtc_h = fb->height;
2685
2686         intel_state->src.x1 = plane_state->src_x;
2687         intel_state->src.y1 = plane_state->src_y;
2688         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2689         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2690         intel_state->dst.x1 = plane_state->crtc_x;
2691         intel_state->dst.y1 = plane_state->crtc_y;
2692         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2693         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2694
2695         obj = intel_fb_obj(fb);
2696         if (obj->tiling_mode != I915_TILING_NONE)
2697                 dev_priv->preserve_bios_swizzle = true;
2698
2699         drm_framebuffer_reference(fb);
2700         primary->fb = primary->state->fb = fb;
2701         primary->crtc = primary->state->crtc = &intel_crtc->base;
2702         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2703         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2704 }
2705
2706 static void i9xx_update_primary_plane(struct drm_plane *primary,
2707                                       const struct intel_crtc_state *crtc_state,
2708                                       const struct intel_plane_state *plane_state)
2709 {
2710         struct drm_device *dev = primary->dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2713         struct drm_framebuffer *fb = plane_state->base.fb;
2714         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2715         int plane = intel_crtc->plane;
2716         u32 linear_offset;
2717         u32 dspcntr;
2718         i915_reg_t reg = DSPCNTR(plane);
2719         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2720         int x = plane_state->src.x1 >> 16;
2721         int y = plane_state->src.y1 >> 16;
2722
2723         dspcntr = DISPPLANE_GAMMA_ENABLE;
2724
2725         dspcntr |= DISPLAY_PLANE_ENABLE;
2726
2727         if (INTEL_INFO(dev)->gen < 4) {
2728                 if (intel_crtc->pipe == PIPE_B)
2729                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2730
2731                 /* pipesrc and dspsize control the size that is scaled from,
2732                  * which should always be the user's requested size.
2733                  */
2734                 I915_WRITE(DSPSIZE(plane),
2735                            ((crtc_state->pipe_src_h - 1) << 16) |
2736                            (crtc_state->pipe_src_w - 1));
2737                 I915_WRITE(DSPPOS(plane), 0);
2738         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2739                 I915_WRITE(PRIMSIZE(plane),
2740                            ((crtc_state->pipe_src_h - 1) << 16) |
2741                            (crtc_state->pipe_src_w - 1));
2742                 I915_WRITE(PRIMPOS(plane), 0);
2743                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2744         }
2745
2746         switch (fb->pixel_format) {
2747         case DRM_FORMAT_C8:
2748                 dspcntr |= DISPPLANE_8BPP;
2749                 break;
2750         case DRM_FORMAT_XRGB1555:
2751                 dspcntr |= DISPPLANE_BGRX555;
2752                 break;
2753         case DRM_FORMAT_RGB565:
2754                 dspcntr |= DISPPLANE_BGRX565;
2755                 break;
2756         case DRM_FORMAT_XRGB8888:
2757                 dspcntr |= DISPPLANE_BGRX888;
2758                 break;
2759         case DRM_FORMAT_XBGR8888:
2760                 dspcntr |= DISPPLANE_RGBX888;
2761                 break;
2762         case DRM_FORMAT_XRGB2101010:
2763                 dspcntr |= DISPPLANE_BGRX101010;
2764                 break;
2765         case DRM_FORMAT_XBGR2101010:
2766                 dspcntr |= DISPPLANE_RGBX101010;
2767                 break;
2768         default:
2769                 BUG();
2770         }
2771
2772         if (INTEL_INFO(dev)->gen >= 4 &&
2773             obj->tiling_mode != I915_TILING_NONE)
2774                 dspcntr |= DISPPLANE_TILED;
2775
2776         if (IS_G4X(dev))
2777                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2778
2779         linear_offset = y * fb->pitches[0] + x * cpp;
2780
2781         if (INTEL_INFO(dev)->gen >= 4) {
2782                 intel_crtc->dspaddr_offset =
2783                         intel_compute_tile_offset(dev_priv, &x, &y,
2784                                                   fb->modifier[0], cpp,
2785                                                   fb->pitches[0]);
2786                 linear_offset -= intel_crtc->dspaddr_offset;
2787         } else {
2788                 intel_crtc->dspaddr_offset = linear_offset;
2789         }
2790
2791         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2792                 dspcntr |= DISPPLANE_ROTATE_180;
2793
2794                 x += (crtc_state->pipe_src_w - 1);
2795                 y += (crtc_state->pipe_src_h - 1);
2796
2797                 /* Finding the last pixel of the last line of the display
2798                 data and adding to linear_offset*/
2799                 linear_offset +=
2800                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2801                         (crtc_state->pipe_src_w - 1) * cpp;
2802         }
2803
2804         intel_crtc->adjusted_x = x;
2805         intel_crtc->adjusted_y = y;
2806
2807         I915_WRITE(reg, dspcntr);
2808
2809         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2810         if (INTEL_INFO(dev)->gen >= 4) {
2811                 I915_WRITE(DSPSURF(plane),
2812                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2813                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2814                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2815         } else
2816                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2817         POSTING_READ(reg);
2818 }
2819
2820 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2821                                        struct drm_crtc *crtc)
2822 {
2823         struct drm_device *dev = crtc->dev;
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2826         int plane = intel_crtc->plane;
2827
2828         I915_WRITE(DSPCNTR(plane), 0);
2829         if (INTEL_INFO(dev_priv)->gen >= 4)
2830                 I915_WRITE(DSPSURF(plane), 0);
2831         else
2832                 I915_WRITE(DSPADDR(plane), 0);
2833         POSTING_READ(DSPCNTR(plane));
2834 }
2835
2836 static void ironlake_update_primary_plane(struct drm_plane *primary,
2837                                           const struct intel_crtc_state *crtc_state,
2838                                           const struct intel_plane_state *plane_state)
2839 {
2840         struct drm_device *dev = primary->dev;
2841         struct drm_i915_private *dev_priv = dev->dev_private;
2842         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2843         struct drm_framebuffer *fb = plane_state->base.fb;
2844         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2845         int plane = intel_crtc->plane;
2846         u32 linear_offset;
2847         u32 dspcntr;
2848         i915_reg_t reg = DSPCNTR(plane);
2849         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2850         int x = plane_state->src.x1 >> 16;
2851         int y = plane_state->src.y1 >> 16;
2852
2853         dspcntr = DISPPLANE_GAMMA_ENABLE;
2854         dspcntr |= DISPLAY_PLANE_ENABLE;
2855
2856         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2857                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2858
2859         switch (fb->pixel_format) {
2860         case DRM_FORMAT_C8:
2861                 dspcntr |= DISPPLANE_8BPP;
2862                 break;
2863         case DRM_FORMAT_RGB565:
2864                 dspcntr |= DISPPLANE_BGRX565;
2865                 break;
2866         case DRM_FORMAT_XRGB8888:
2867                 dspcntr |= DISPPLANE_BGRX888;
2868                 break;
2869         case DRM_FORMAT_XBGR8888:
2870                 dspcntr |= DISPPLANE_RGBX888;
2871                 break;
2872         case DRM_FORMAT_XRGB2101010:
2873                 dspcntr |= DISPPLANE_BGRX101010;
2874                 break;
2875         case DRM_FORMAT_XBGR2101010:
2876                 dspcntr |= DISPPLANE_RGBX101010;
2877                 break;
2878         default:
2879                 BUG();
2880         }
2881
2882         if (obj->tiling_mode != I915_TILING_NONE)
2883                 dspcntr |= DISPPLANE_TILED;
2884
2885         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2886                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2887
2888         linear_offset = y * fb->pitches[0] + x * cpp;
2889         intel_crtc->dspaddr_offset =
2890                 intel_compute_tile_offset(dev_priv, &x, &y,
2891                                           fb->modifier[0], cpp,
2892                                           fb->pitches[0]);
2893         linear_offset -= intel_crtc->dspaddr_offset;
2894         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2895                 dspcntr |= DISPPLANE_ROTATE_180;
2896
2897                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2898                         x += (crtc_state->pipe_src_w - 1);
2899                         y += (crtc_state->pipe_src_h - 1);
2900
2901                         /* Finding the last pixel of the last line of the display
2902                         data and adding to linear_offset*/
2903                         linear_offset +=
2904                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2905                                 (crtc_state->pipe_src_w - 1) * cpp;
2906                 }
2907         }
2908
2909         intel_crtc->adjusted_x = x;
2910         intel_crtc->adjusted_y = y;
2911
2912         I915_WRITE(reg, dspcntr);
2913
2914         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2915         I915_WRITE(DSPSURF(plane),
2916                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2917         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2918                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2919         } else {
2920                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2921                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2922         }
2923         POSTING_READ(reg);
2924 }
2925
2926 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2927                               uint64_t fb_modifier, uint32_t pixel_format)
2928 {
2929         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2930                 return 64;
2931         } else {
2932                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2933
2934                 return intel_tile_width(dev_priv, fb_modifier, cpp);
2935         }
2936 }
2937
2938 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2939                            struct drm_i915_gem_object *obj,
2940                            unsigned int plane)
2941 {
2942         struct i915_ggtt_view view;
2943         struct i915_vma *vma;
2944         u64 offset;
2945
2946         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2947                                 intel_plane->base.state);
2948
2949         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2950         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2951                 view.type))
2952                 return -1;
2953
2954         offset = vma->node.start;
2955
2956         if (plane == 1) {
2957                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2958                           PAGE_SIZE;
2959         }
2960
2961         WARN_ON(upper_32_bits(offset));
2962
2963         return lower_32_bits(offset);
2964 }
2965
2966 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2967 {
2968         struct drm_device *dev = intel_crtc->base.dev;
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970
2971         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2972         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2973         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2974 }
2975
2976 /*
2977  * This function detaches (aka. unbinds) unused scalers in hardware
2978  */
2979 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2980 {
2981         struct intel_crtc_scaler_state *scaler_state;
2982         int i;
2983
2984         scaler_state = &intel_crtc->config->scaler_state;
2985
2986         /* loop through and disable scalers that aren't in use */
2987         for (i = 0; i < intel_crtc->num_scalers; i++) {
2988                 if (!scaler_state->scalers[i].in_use)
2989                         skl_detach_scaler(intel_crtc, i);
2990         }
2991 }
2992
2993 u32 skl_plane_ctl_format(uint32_t pixel_format)
2994 {
2995         switch (pixel_format) {
2996         case DRM_FORMAT_C8:
2997                 return PLANE_CTL_FORMAT_INDEXED;
2998         case DRM_FORMAT_RGB565:
2999                 return PLANE_CTL_FORMAT_RGB_565;
3000         case DRM_FORMAT_XBGR8888:
3001                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3002         case DRM_FORMAT_XRGB8888:
3003                 return PLANE_CTL_FORMAT_XRGB_8888;
3004         /*
3005          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3006          * to be already pre-multiplied. We need to add a knob (or a different
3007          * DRM_FORMAT) for user-space to configure that.
3008          */
3009         case DRM_FORMAT_ABGR8888:
3010                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3011                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3012         case DRM_FORMAT_ARGB8888:
3013                 return PLANE_CTL_FORMAT_XRGB_8888 |
3014                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3015         case DRM_FORMAT_XRGB2101010:
3016                 return PLANE_CTL_FORMAT_XRGB_2101010;
3017         case DRM_FORMAT_XBGR2101010:
3018                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3019         case DRM_FORMAT_YUYV:
3020                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3021         case DRM_FORMAT_YVYU:
3022                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3023         case DRM_FORMAT_UYVY:
3024                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3025         case DRM_FORMAT_VYUY:
3026                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3027         default:
3028                 MISSING_CASE(pixel_format);
3029         }
3030
3031         return 0;
3032 }
3033
3034 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3035 {
3036         switch (fb_modifier) {
3037         case DRM_FORMAT_MOD_NONE:
3038                 break;
3039         case I915_FORMAT_MOD_X_TILED:
3040                 return PLANE_CTL_TILED_X;
3041         case I915_FORMAT_MOD_Y_TILED:
3042                 return PLANE_CTL_TILED_Y;
3043         case I915_FORMAT_MOD_Yf_TILED:
3044                 return PLANE_CTL_TILED_YF;
3045         default:
3046                 MISSING_CASE(fb_modifier);
3047         }
3048
3049         return 0;
3050 }
3051
3052 u32 skl_plane_ctl_rotation(unsigned int rotation)
3053 {
3054         switch (rotation) {
3055         case BIT(DRM_ROTATE_0):
3056                 break;
3057         /*
3058          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3059          * while i915 HW rotation is clockwise, thats why this swapping.
3060          */
3061         case BIT(DRM_ROTATE_90):
3062                 return PLANE_CTL_ROTATE_270;
3063         case BIT(DRM_ROTATE_180):
3064                 return PLANE_CTL_ROTATE_180;
3065         case BIT(DRM_ROTATE_270):
3066                 return PLANE_CTL_ROTATE_90;
3067         default:
3068                 MISSING_CASE(rotation);
3069         }
3070
3071         return 0;
3072 }
3073
3074 static void skylake_update_primary_plane(struct drm_plane *plane,
3075                                          const struct intel_crtc_state *crtc_state,
3076                                          const struct intel_plane_state *plane_state)
3077 {
3078         struct drm_device *dev = plane->dev;
3079         struct drm_i915_private *dev_priv = dev->dev_private;
3080         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3081         struct drm_framebuffer *fb = plane_state->base.fb;
3082         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3083         int pipe = intel_crtc->pipe;
3084         u32 plane_ctl, stride_div, stride;
3085         u32 tile_height, plane_offset, plane_size;
3086         unsigned int rotation = plane_state->base.rotation;
3087         int x_offset, y_offset;
3088         u32 surf_addr;
3089         int scaler_id = plane_state->scaler_id;
3090         int src_x = plane_state->src.x1 >> 16;
3091         int src_y = plane_state->src.y1 >> 16;
3092         int src_w = drm_rect_width(&plane_state->src) >> 16;
3093         int src_h = drm_rect_height(&plane_state->src) >> 16;
3094         int dst_x = plane_state->dst.x1;
3095         int dst_y = plane_state->dst.y1;
3096         int dst_w = drm_rect_width(&plane_state->dst);
3097         int dst_h = drm_rect_height(&plane_state->dst);
3098
3099         plane_ctl = PLANE_CTL_ENABLE |
3100                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3101                     PLANE_CTL_PIPE_CSC_ENABLE;
3102
3103         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3104         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3105         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3106         plane_ctl |= skl_plane_ctl_rotation(rotation);
3107
3108         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3109                                                fb->pixel_format);
3110         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3111
3112         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3113
3114         if (intel_rotation_90_or_270(rotation)) {
3115                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3116
3117                 /* stride = Surface height in tiles */
3118                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3119                 stride = DIV_ROUND_UP(fb->height, tile_height);
3120                 x_offset = stride * tile_height - src_y - src_h;
3121                 y_offset = src_x;
3122                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3123         } else {
3124                 stride = fb->pitches[0] / stride_div;
3125                 x_offset = src_x;
3126                 y_offset = src_y;
3127                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3128         }
3129         plane_offset = y_offset << 16 | x_offset;
3130
3131         intel_crtc->adjusted_x = x_offset;
3132         intel_crtc->adjusted_y = y_offset;
3133
3134         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3135         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3136         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3137         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3138
3139         if (scaler_id >= 0) {
3140                 uint32_t ps_ctrl = 0;
3141
3142                 WARN_ON(!dst_w || !dst_h);
3143                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3144                         crtc_state->scaler_state.scalers[scaler_id].mode;
3145                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3146                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3147                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3148                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3149                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3150         } else {
3151                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3152         }
3153
3154         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3155
3156         POSTING_READ(PLANE_SURF(pipe, 0));
3157 }
3158
3159 static void skylake_disable_primary_plane(struct drm_plane *primary,
3160                                           struct drm_crtc *crtc)
3161 {
3162         struct drm_device *dev = crtc->dev;
3163         struct drm_i915_private *dev_priv = dev->dev_private;
3164         int pipe = to_intel_crtc(crtc)->pipe;
3165
3166         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3167         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3168         POSTING_READ(PLANE_SURF(pipe, 0));
3169 }
3170
3171 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3172 static int
3173 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3174                            int x, int y, enum mode_set_atomic state)
3175 {
3176         /* Support for kgdboc is disabled, this needs a major rework. */
3177         DRM_ERROR("legacy panic handler not supported any more.\n");
3178
3179         return -ENODEV;
3180 }
3181
3182 static void intel_complete_page_flips(struct drm_device *dev)
3183 {
3184         struct drm_crtc *crtc;
3185
3186         for_each_crtc(dev, crtc) {
3187                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188                 enum plane plane = intel_crtc->plane;
3189
3190                 intel_prepare_page_flip(dev, plane);
3191                 intel_finish_page_flip_plane(dev, plane);
3192         }
3193 }
3194
3195 static void intel_update_primary_planes(struct drm_device *dev)
3196 {
3197         struct drm_crtc *crtc;
3198
3199         for_each_crtc(dev, crtc) {
3200                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3201                 struct intel_plane_state *plane_state;
3202
3203                 drm_modeset_lock_crtc(crtc, &plane->base);
3204                 plane_state = to_intel_plane_state(plane->base.state);
3205
3206                 if (plane_state->visible)
3207                         plane->update_plane(&plane->base,
3208                                             to_intel_crtc_state(crtc->state),
3209                                             plane_state);
3210
3211                 drm_modeset_unlock_crtc(crtc);
3212         }
3213 }
3214
3215 void intel_prepare_reset(struct drm_device *dev)
3216 {
3217         /* no reset support for gen2 */
3218         if (IS_GEN2(dev))
3219                 return;
3220
3221         /* reset doesn't touch the display */
3222         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3223                 return;
3224
3225         drm_modeset_lock_all(dev);
3226         /*
3227          * Disabling the crtcs gracefully seems nicer. Also the
3228          * g33 docs say we should at least disable all the planes.
3229          */
3230         intel_display_suspend(dev);
3231 }
3232
3233 void intel_finish_reset(struct drm_device *dev)
3234 {
3235         struct drm_i915_private *dev_priv = to_i915(dev);
3236
3237         /*
3238          * Flips in the rings will be nuked by the reset,
3239          * so complete all pending flips so that user space
3240          * will get its events and not get stuck.
3241          */
3242         intel_complete_page_flips(dev);
3243
3244         /* no reset support for gen2 */
3245         if (IS_GEN2(dev))
3246                 return;
3247
3248         /* reset doesn't touch the display */
3249         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3250                 /*
3251                  * Flips in the rings have been nuked by the reset,
3252                  * so update the base address of all primary
3253                  * planes to the the last fb to make sure we're
3254                  * showing the correct fb after a reset.
3255                  *
3256                  * FIXME: Atomic will make this obsolete since we won't schedule
3257                  * CS-based flips (which might get lost in gpu resets) any more.
3258                  */
3259                 intel_update_primary_planes(dev);
3260                 return;
3261         }
3262
3263         /*
3264          * The display has been reset as well,
3265          * so need a full re-initialization.
3266          */
3267         intel_runtime_pm_disable_interrupts(dev_priv);
3268         intel_runtime_pm_enable_interrupts(dev_priv);
3269
3270         intel_modeset_init_hw(dev);
3271
3272         spin_lock_irq(&dev_priv->irq_lock);
3273         if (dev_priv->display.hpd_irq_setup)
3274                 dev_priv->display.hpd_irq_setup(dev);
3275         spin_unlock_irq(&dev_priv->irq_lock);
3276
3277         intel_display_resume(dev);
3278
3279         intel_hpd_init(dev_priv);
3280
3281         drm_modeset_unlock_all(dev);
3282 }
3283
3284 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3285 {
3286         struct drm_device *dev = crtc->dev;
3287         struct drm_i915_private *dev_priv = dev->dev_private;
3288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3289         bool pending;
3290
3291         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3292             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3293                 return false;
3294
3295         spin_lock_irq(&dev->event_lock);
3296         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3297         spin_unlock_irq(&dev->event_lock);
3298
3299         return pending;
3300 }
3301
3302 static void intel_update_pipe_config(struct intel_crtc *crtc,
3303                                      struct intel_crtc_state *old_crtc_state)
3304 {
3305         struct drm_device *dev = crtc->base.dev;
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307         struct intel_crtc_state *pipe_config =
3308                 to_intel_crtc_state(crtc->base.state);
3309
3310         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3311         crtc->base.mode = crtc->base.state->mode;
3312
3313         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3314                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3315                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3316
3317         if (HAS_DDI(dev))
3318                 intel_set_pipe_csc(&crtc->base);
3319
3320         /*
3321          * Update pipe size and adjust fitter if needed: the reason for this is
3322          * that in compute_mode_changes we check the native mode (not the pfit
3323          * mode) to see if we can flip rather than do a full mode set. In the
3324          * fastboot case, we'll flip, but if we don't update the pipesrc and
3325          * pfit state, we'll end up with a big fb scanned out into the wrong
3326          * sized surface.
3327          */
3328
3329         I915_WRITE(PIPESRC(crtc->pipe),
3330                    ((pipe_config->pipe_src_w - 1) << 16) |
3331                    (pipe_config->pipe_src_h - 1));
3332
3333         /* on skylake this is done by detaching scalers */
3334         if (INTEL_INFO(dev)->gen >= 9) {
3335                 skl_detach_scalers(crtc);
3336
3337                 if (pipe_config->pch_pfit.enabled)
3338                         skylake_pfit_enable(crtc);
3339         } else if (HAS_PCH_SPLIT(dev)) {
3340                 if (pipe_config->pch_pfit.enabled)
3341                         ironlake_pfit_enable(crtc);
3342                 else if (old_crtc_state->pch_pfit.enabled)
3343                         ironlake_pfit_disable(crtc, true);
3344         }
3345 }
3346
3347 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3348 {
3349         struct drm_device *dev = crtc->dev;
3350         struct drm_i915_private *dev_priv = dev->dev_private;
3351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3352         int pipe = intel_crtc->pipe;
3353         i915_reg_t reg;
3354         u32 temp;
3355
3356         /* enable normal train */
3357         reg = FDI_TX_CTL(pipe);
3358         temp = I915_READ(reg);
3359         if (IS_IVYBRIDGE(dev)) {
3360                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3361                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3362         } else {
3363                 temp &= ~FDI_LINK_TRAIN_NONE;
3364                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3365         }
3366         I915_WRITE(reg, temp);
3367
3368         reg = FDI_RX_CTL(pipe);
3369         temp = I915_READ(reg);
3370         if (HAS_PCH_CPT(dev)) {
3371                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3372                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3373         } else {
3374                 temp &= ~FDI_LINK_TRAIN_NONE;
3375                 temp |= FDI_LINK_TRAIN_NONE;
3376         }
3377         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3378
3379         /* wait one idle pattern time */
3380         POSTING_READ(reg);
3381         udelay(1000);
3382
3383         /* IVB wants error correction enabled */
3384         if (IS_IVYBRIDGE(dev))
3385                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3386                            FDI_FE_ERRC_ENABLE);
3387 }
3388
3389 /* The FDI link training functions for ILK/Ibexpeak. */
3390 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3391 {
3392         struct drm_device *dev = crtc->dev;
3393         struct drm_i915_private *dev_priv = dev->dev_private;
3394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3395         int pipe = intel_crtc->pipe;
3396         i915_reg_t reg;
3397         u32 temp, tries;
3398
3399         /* FDI needs bits from pipe first */
3400         assert_pipe_enabled(dev_priv, pipe);
3401
3402         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3403            for train result */
3404         reg = FDI_RX_IMR(pipe);
3405         temp = I915_READ(reg);
3406         temp &= ~FDI_RX_SYMBOL_LOCK;
3407         temp &= ~FDI_RX_BIT_LOCK;
3408         I915_WRITE(reg, temp);
3409         I915_READ(reg);
3410         udelay(150);
3411
3412         /* enable CPU FDI TX and PCH FDI RX */
3413         reg = FDI_TX_CTL(pipe);
3414         temp = I915_READ(reg);
3415         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3416         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3417         temp &= ~FDI_LINK_TRAIN_NONE;
3418         temp |= FDI_LINK_TRAIN_PATTERN_1;
3419         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3420
3421         reg = FDI_RX_CTL(pipe);
3422         temp = I915_READ(reg);
3423         temp &= ~FDI_LINK_TRAIN_NONE;
3424         temp |= FDI_LINK_TRAIN_PATTERN_1;
3425         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3426
3427         POSTING_READ(reg);
3428         udelay(150);
3429
3430         /* Ironlake workaround, enable clock pointer after FDI enable*/
3431         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3432         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3433                    FDI_RX_PHASE_SYNC_POINTER_EN);
3434
3435         reg = FDI_RX_IIR(pipe);
3436         for (tries = 0; tries < 5; tries++) {
3437                 temp = I915_READ(reg);
3438                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439
3440                 if ((temp & FDI_RX_BIT_LOCK)) {
3441                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3442                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3443                         break;
3444                 }
3445         }
3446         if (tries == 5)
3447                 DRM_ERROR("FDI train 1 fail!\n");
3448
3449         /* Train 2 */
3450         reg = FDI_TX_CTL(pipe);
3451         temp = I915_READ(reg);
3452         temp &= ~FDI_LINK_TRAIN_NONE;
3453         temp |= FDI_LINK_TRAIN_PATTERN_2;
3454         I915_WRITE(reg, temp);
3455
3456         reg = FDI_RX_CTL(pipe);
3457         temp = I915_READ(reg);
3458         temp &= ~FDI_LINK_TRAIN_NONE;
3459         temp |= FDI_LINK_TRAIN_PATTERN_2;
3460         I915_WRITE(reg, temp);
3461
3462         POSTING_READ(reg);
3463         udelay(150);
3464
3465         reg = FDI_RX_IIR(pipe);
3466         for (tries = 0; tries < 5; tries++) {
3467                 temp = I915_READ(reg);
3468                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3469
3470                 if (temp & FDI_RX_SYMBOL_LOCK) {
3471                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3472                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3473                         break;
3474                 }
3475         }
3476         if (tries == 5)
3477                 DRM_ERROR("FDI train 2 fail!\n");
3478
3479         DRM_DEBUG_KMS("FDI train done\n");
3480
3481 }
3482
3483 static const int snb_b_fdi_train_param[] = {
3484         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3485         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3486         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3487         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3488 };
3489
3490 /* The FDI link training functions for SNB/Cougarpoint. */
3491 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3492 {
3493         struct drm_device *dev = crtc->dev;
3494         struct drm_i915_private *dev_priv = dev->dev_private;
3495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3496         int pipe = intel_crtc->pipe;
3497         i915_reg_t reg;
3498         u32 temp, i, retry;
3499
3500         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3501            for train result */
3502         reg = FDI_RX_IMR(pipe);
3503         temp = I915_READ(reg);
3504         temp &= ~FDI_RX_SYMBOL_LOCK;
3505         temp &= ~FDI_RX_BIT_LOCK;
3506         I915_WRITE(reg, temp);
3507
3508         POSTING_READ(reg);
3509         udelay(150);
3510
3511         /* enable CPU FDI TX and PCH FDI RX */
3512         reg = FDI_TX_CTL(pipe);
3513         temp = I915_READ(reg);
3514         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3515         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3516         temp &= ~FDI_LINK_TRAIN_NONE;
3517         temp |= FDI_LINK_TRAIN_PATTERN_1;
3518         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3519         /* SNB-B */
3520         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3521         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3522
3523         I915_WRITE(FDI_RX_MISC(pipe),
3524                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3525
3526         reg = FDI_RX_CTL(pipe);
3527         temp = I915_READ(reg);
3528         if (HAS_PCH_CPT(dev)) {
3529                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3530                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3531         } else {
3532                 temp &= ~FDI_LINK_TRAIN_NONE;
3533                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3534         }
3535         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3536
3537         POSTING_READ(reg);
3538         udelay(150);
3539
3540         for (i = 0; i < 4; i++) {
3541                 reg = FDI_TX_CTL(pipe);
3542                 temp = I915_READ(reg);
3543                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3544                 temp |= snb_b_fdi_train_param[i];
3545                 I915_WRITE(reg, temp);
3546
3547                 POSTING_READ(reg);
3548                 udelay(500);
3549
3550                 for (retry = 0; retry < 5; retry++) {
3551                         reg = FDI_RX_IIR(pipe);
3552                         temp = I915_READ(reg);
3553                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3554                         if (temp & FDI_RX_BIT_LOCK) {
3555                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3556                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3557                                 break;
3558                         }
3559                         udelay(50);
3560                 }
3561                 if (retry < 5)
3562                         break;
3563         }
3564         if (i == 4)
3565                 DRM_ERROR("FDI train 1 fail!\n");
3566
3567         /* Train 2 */
3568         reg = FDI_TX_CTL(pipe);
3569         temp = I915_READ(reg);
3570         temp &= ~FDI_LINK_TRAIN_NONE;
3571         temp |= FDI_LINK_TRAIN_PATTERN_2;
3572         if (IS_GEN6(dev)) {
3573                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3574                 /* SNB-B */
3575                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3576         }
3577         I915_WRITE(reg, temp);
3578
3579         reg = FDI_RX_CTL(pipe);
3580         temp = I915_READ(reg);
3581         if (HAS_PCH_CPT(dev)) {
3582                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3583                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3584         } else {
3585                 temp &= ~FDI_LINK_TRAIN_NONE;
3586                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3587         }
3588         I915_WRITE(reg, temp);
3589
3590         POSTING_READ(reg);
3591         udelay(150);
3592
3593         for (i = 0; i < 4; i++) {
3594                 reg = FDI_TX_CTL(pipe);
3595                 temp = I915_READ(reg);
3596                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3597                 temp |= snb_b_fdi_train_param[i];
3598                 I915_WRITE(reg, temp);
3599
3600                 POSTING_READ(reg);
3601                 udelay(500);
3602
3603                 for (retry = 0; retry < 5; retry++) {
3604                         reg = FDI_RX_IIR(pipe);
3605                         temp = I915_READ(reg);
3606                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3607                         if (temp & FDI_RX_SYMBOL_LOCK) {
3608                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3609                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3610                                 break;
3611                         }
3612                         udelay(50);
3613                 }
3614                 if (retry < 5)
3615                         break;
3616         }
3617         if (i == 4)
3618                 DRM_ERROR("FDI train 2 fail!\n");
3619
3620         DRM_DEBUG_KMS("FDI train done.\n");
3621 }
3622
3623 /* Manual link training for Ivy Bridge A0 parts */
3624 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3625 {
3626         struct drm_device *dev = crtc->dev;
3627         struct drm_i915_private *dev_priv = dev->dev_private;
3628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629         int pipe = intel_crtc->pipe;
3630         i915_reg_t reg;
3631         u32 temp, i, j;
3632
3633         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3634            for train result */
3635         reg = FDI_RX_IMR(pipe);
3636         temp = I915_READ(reg);
3637         temp &= ~FDI_RX_SYMBOL_LOCK;
3638         temp &= ~FDI_RX_BIT_LOCK;
3639         I915_WRITE(reg, temp);
3640
3641         POSTING_READ(reg);
3642         udelay(150);
3643
3644         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3645                       I915_READ(FDI_RX_IIR(pipe)));
3646
3647         /* Try each vswing and preemphasis setting twice before moving on */
3648         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3649                 /* disable first in case we need to retry */
3650                 reg = FDI_TX_CTL(pipe);
3651                 temp = I915_READ(reg);
3652                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3653                 temp &= ~FDI_TX_ENABLE;
3654                 I915_WRITE(reg, temp);
3655
3656                 reg = FDI_RX_CTL(pipe);
3657                 temp = I915_READ(reg);
3658                 temp &= ~FDI_LINK_TRAIN_AUTO;
3659                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3660                 temp &= ~FDI_RX_ENABLE;
3661                 I915_WRITE(reg, temp);
3662
3663                 /* enable CPU FDI TX and PCH FDI RX */
3664                 reg = FDI_TX_CTL(pipe);
3665                 temp = I915_READ(reg);
3666                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3667                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3668                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3669                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3670                 temp |= snb_b_fdi_train_param[j/2];
3671                 temp |= FDI_COMPOSITE_SYNC;
3672                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3673
3674                 I915_WRITE(FDI_RX_MISC(pipe),
3675                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3676
3677                 reg = FDI_RX_CTL(pipe);
3678                 temp = I915_READ(reg);
3679                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3680                 temp |= FDI_COMPOSITE_SYNC;
3681                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3682
3683                 POSTING_READ(reg);
3684                 udelay(1); /* should be 0.5us */
3685
3686                 for (i = 0; i < 4; i++) {
3687                         reg = FDI_RX_IIR(pipe);
3688                         temp = I915_READ(reg);
3689                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691                         if (temp & FDI_RX_BIT_LOCK ||
3692                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3693                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3694                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3695                                               i);
3696                                 break;
3697                         }
3698                         udelay(1); /* should be 0.5us */
3699                 }
3700                 if (i == 4) {
3701                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3702                         continue;
3703                 }
3704
3705                 /* Train 2 */
3706                 reg = FDI_TX_CTL(pipe);
3707                 temp = I915_READ(reg);
3708                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3709                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3710                 I915_WRITE(reg, temp);
3711
3712                 reg = FDI_RX_CTL(pipe);
3713                 temp = I915_READ(reg);
3714                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3715                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3716                 I915_WRITE(reg, temp);
3717
3718                 POSTING_READ(reg);
3719                 udelay(2); /* should be 1.5us */
3720
3721                 for (i = 0; i < 4; i++) {
3722                         reg = FDI_RX_IIR(pipe);
3723                         temp = I915_READ(reg);
3724                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3725
3726                         if (temp & FDI_RX_SYMBOL_LOCK ||
3727                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3728                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3729                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3730                                               i);
3731                                 goto train_done;
3732                         }
3733                         udelay(2); /* should be 1.5us */
3734                 }
3735                 if (i == 4)
3736                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3737         }
3738
3739 train_done:
3740         DRM_DEBUG_KMS("FDI train done.\n");
3741 }
3742
3743 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3744 {
3745         struct drm_device *dev = intel_crtc->base.dev;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747         int pipe = intel_crtc->pipe;
3748         i915_reg_t reg;
3749         u32 temp;
3750
3751         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3752         reg = FDI_RX_CTL(pipe);
3753         temp = I915_READ(reg);
3754         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3755         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3756         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3758
3759         POSTING_READ(reg);
3760         udelay(200);
3761
3762         /* Switch from Rawclk to PCDclk */
3763         temp = I915_READ(reg);
3764         I915_WRITE(reg, temp | FDI_PCDCLK);
3765
3766         POSTING_READ(reg);
3767         udelay(200);
3768
3769         /* Enable CPU FDI TX PLL, always on for Ironlake */
3770         reg = FDI_TX_CTL(pipe);
3771         temp = I915_READ(reg);
3772         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3773                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3774
3775                 POSTING_READ(reg);
3776                 udelay(100);
3777         }
3778 }
3779
3780 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3781 {
3782         struct drm_device *dev = intel_crtc->base.dev;
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784         int pipe = intel_crtc->pipe;
3785         i915_reg_t reg;
3786         u32 temp;
3787
3788         /* Switch from PCDclk to Rawclk */
3789         reg = FDI_RX_CTL(pipe);
3790         temp = I915_READ(reg);
3791         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3792
3793         /* Disable CPU FDI TX PLL */
3794         reg = FDI_TX_CTL(pipe);
3795         temp = I915_READ(reg);
3796         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3797
3798         POSTING_READ(reg);
3799         udelay(100);
3800
3801         reg = FDI_RX_CTL(pipe);
3802         temp = I915_READ(reg);
3803         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3804
3805         /* Wait for the clocks to turn off. */
3806         POSTING_READ(reg);
3807         udelay(100);
3808 }
3809
3810 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3811 {
3812         struct drm_device *dev = crtc->dev;
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3815         int pipe = intel_crtc->pipe;
3816         i915_reg_t reg;
3817         u32 temp;
3818
3819         /* disable CPU FDI tx and PCH FDI rx */
3820         reg = FDI_TX_CTL(pipe);
3821         temp = I915_READ(reg);
3822         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3823         POSTING_READ(reg);
3824
3825         reg = FDI_RX_CTL(pipe);
3826         temp = I915_READ(reg);
3827         temp &= ~(0x7 << 16);
3828         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3829         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3830
3831         POSTING_READ(reg);
3832         udelay(100);
3833
3834         /* Ironlake workaround, disable clock pointer after downing FDI */
3835         if (HAS_PCH_IBX(dev))
3836                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3837
3838         /* still set train pattern 1 */
3839         reg = FDI_TX_CTL(pipe);
3840         temp = I915_READ(reg);
3841         temp &= ~FDI_LINK_TRAIN_NONE;
3842         temp |= FDI_LINK_TRAIN_PATTERN_1;
3843         I915_WRITE(reg, temp);
3844
3845         reg = FDI_RX_CTL(pipe);
3846         temp = I915_READ(reg);
3847         if (HAS_PCH_CPT(dev)) {
3848                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3849                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3850         } else {
3851                 temp &= ~FDI_LINK_TRAIN_NONE;
3852                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3853         }
3854         /* BPC in FDI rx is consistent with that in PIPECONF */
3855         temp &= ~(0x07 << 16);
3856         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3857         I915_WRITE(reg, temp);
3858
3859         POSTING_READ(reg);
3860         udelay(100);
3861 }
3862
3863 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3864 {
3865         struct intel_crtc *crtc;
3866
3867         /* Note that we don't need to be called with mode_config.lock here
3868          * as our list of CRTC objects is static for the lifetime of the
3869          * device and so cannot disappear as we iterate. Similarly, we can
3870          * happily treat the predicates as racy, atomic checks as userspace
3871          * cannot claim and pin a new fb without at least acquring the
3872          * struct_mutex and so serialising with us.
3873          */
3874         for_each_intel_crtc(dev, crtc) {
3875                 if (atomic_read(&crtc->unpin_work_count) == 0)
3876                         continue;
3877
3878                 if (crtc->unpin_work)
3879                         intel_wait_for_vblank(dev, crtc->pipe);
3880
3881                 return true;
3882         }
3883
3884         return false;
3885 }
3886
3887 static void page_flip_completed(struct intel_crtc *intel_crtc)
3888 {
3889         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3890         struct intel_unpin_work *work = intel_crtc->unpin_work;
3891
3892         /* ensure that the unpin work is consistent wrt ->pending. */
3893         smp_rmb();
3894         intel_crtc->unpin_work = NULL;
3895
3896         if (work->event)
3897                 drm_send_vblank_event(intel_crtc->base.dev,
3898                                       intel_crtc->pipe,
3899                                       work->event);
3900
3901         drm_crtc_vblank_put(&intel_crtc->base);
3902
3903         wake_up_all(&dev_priv->pending_flip_queue);
3904         queue_work(dev_priv->wq, &work->work);
3905
3906         trace_i915_flip_complete(intel_crtc->plane,
3907                                  work->pending_flip_obj);
3908 }
3909
3910 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3911 {
3912         struct drm_device *dev = crtc->dev;
3913         struct drm_i915_private *dev_priv = dev->dev_private;
3914         long ret;
3915
3916         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3917
3918         ret = wait_event_interruptible_timeout(
3919                                         dev_priv->pending_flip_queue,
3920                                         !intel_crtc_has_pending_flip(crtc),
3921                                         60*HZ);
3922
3923         if (ret < 0)
3924                 return ret;
3925
3926         if (ret == 0) {
3927                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3928
3929                 spin_lock_irq(&dev->event_lock);
3930                 if (intel_crtc->unpin_work) {
3931                         WARN_ONCE(1, "Removing stuck page flip\n");
3932                         page_flip_completed(intel_crtc);
3933                 }
3934                 spin_unlock_irq(&dev->event_lock);
3935         }
3936
3937         return 0;
3938 }
3939
3940 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3941 {
3942         u32 temp;
3943
3944         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3945
3946         mutex_lock(&dev_priv->sb_lock);
3947
3948         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3949         temp |= SBI_SSCCTL_DISABLE;
3950         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3951
3952         mutex_unlock(&dev_priv->sb_lock);
3953 }
3954
3955 /* Program iCLKIP clock to the desired frequency */
3956 static void lpt_program_iclkip(struct drm_crtc *crtc)
3957 {
3958         struct drm_device *dev = crtc->dev;
3959         struct drm_i915_private *dev_priv = dev->dev_private;
3960         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3961         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3962         u32 temp;
3963
3964         lpt_disable_iclkip(dev_priv);
3965
3966         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3967         if (clock == 20000) {
3968                 auxdiv = 1;
3969                 divsel = 0x41;
3970                 phaseinc = 0x20;
3971         } else {
3972                 /* The iCLK virtual clock root frequency is in MHz,
3973                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3974                  * divisors, it is necessary to divide one by another, so we
3975                  * convert the virtual clock precision to KHz here for higher
3976                  * precision.
3977                  */
3978                 u32 iclk_virtual_root_freq = 172800 * 1000;
3979                 u32 iclk_pi_range = 64;
3980                 u32 desired_divisor, msb_divisor_value, pi_value;
3981
3982                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
3983                 msb_divisor_value = desired_divisor / iclk_pi_range;
3984                 pi_value = desired_divisor % iclk_pi_range;
3985
3986                 auxdiv = 0;
3987                 divsel = msb_divisor_value - 2;
3988                 phaseinc = pi_value;
3989         }
3990
3991         /* This should not happen with any sane values */
3992         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3993                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3994         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3995                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3996
3997         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3998                         clock,
3999                         auxdiv,
4000                         divsel,
4001                         phasedir,
4002                         phaseinc);
4003
4004         mutex_lock(&dev_priv->sb_lock);
4005
4006         /* Program SSCDIVINTPHASE6 */
4007         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4008         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4009         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4010         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4011         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4012         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4013         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4014         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4015
4016         /* Program SSCAUXDIV */
4017         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4018         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4019         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4020         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4021
4022         /* Enable modulator and associated divider */
4023         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4024         temp &= ~SBI_SSCCTL_DISABLE;
4025         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4026
4027         mutex_unlock(&dev_priv->sb_lock);
4028
4029         /* Wait for initialization time */
4030         udelay(24);
4031
4032         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4033 }
4034
4035 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4036                                                 enum pipe pch_transcoder)
4037 {
4038         struct drm_device *dev = crtc->base.dev;
4039         struct drm_i915_private *dev_priv = dev->dev_private;
4040         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4041
4042         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4043                    I915_READ(HTOTAL(cpu_transcoder)));
4044         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4045                    I915_READ(HBLANK(cpu_transcoder)));
4046         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4047                    I915_READ(HSYNC(cpu_transcoder)));
4048
4049         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4050                    I915_READ(VTOTAL(cpu_transcoder)));
4051         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4052                    I915_READ(VBLANK(cpu_transcoder)));
4053         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4054                    I915_READ(VSYNC(cpu_transcoder)));
4055         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4056                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4057 }
4058
4059 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4060 {
4061         struct drm_i915_private *dev_priv = dev->dev_private;
4062         uint32_t temp;
4063
4064         temp = I915_READ(SOUTH_CHICKEN1);
4065         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4066                 return;
4067
4068         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4069         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4070
4071         temp &= ~FDI_BC_BIFURCATION_SELECT;
4072         if (enable)
4073                 temp |= FDI_BC_BIFURCATION_SELECT;
4074
4075         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4076         I915_WRITE(SOUTH_CHICKEN1, temp);
4077         POSTING_READ(SOUTH_CHICKEN1);
4078 }
4079
4080 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4081 {
4082         struct drm_device *dev = intel_crtc->base.dev;
4083
4084         switch (intel_crtc->pipe) {
4085         case PIPE_A:
4086                 break;
4087         case PIPE_B:
4088                 if (intel_crtc->config->fdi_lanes > 2)
4089                         cpt_set_fdi_bc_bifurcation(dev, false);
4090                 else
4091                         cpt_set_fdi_bc_bifurcation(dev, true);
4092
4093                 break;
4094         case PIPE_C:
4095                 cpt_set_fdi_bc_bifurcation(dev, true);
4096
4097                 break;
4098         default:
4099                 BUG();
4100         }
4101 }
4102
4103 /* Return which DP Port should be selected for Transcoder DP control */
4104 static enum port
4105 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4106 {
4107         struct drm_device *dev = crtc->dev;
4108         struct intel_encoder *encoder;
4109
4110         for_each_encoder_on_crtc(dev, crtc, encoder) {
4111                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4112                     encoder->type == INTEL_OUTPUT_EDP)
4113                         return enc_to_dig_port(&encoder->base)->port;
4114         }
4115
4116         return -1;
4117 }
4118
4119 /*
4120  * Enable PCH resources required for PCH ports:
4121  *   - PCH PLLs
4122  *   - FDI training & RX/TX
4123  *   - update transcoder timings
4124  *   - DP transcoding bits
4125  *   - transcoder
4126  */
4127 static void ironlake_pch_enable(struct drm_crtc *crtc)
4128 {
4129         struct drm_device *dev = crtc->dev;
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4132         int pipe = intel_crtc->pipe;
4133         u32 temp;
4134
4135         assert_pch_transcoder_disabled(dev_priv, pipe);
4136
4137         if (IS_IVYBRIDGE(dev))
4138                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4139
4140         /* Write the TU size bits before fdi link training, so that error
4141          * detection works. */
4142         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4143                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4144
4145         /*
4146          * Sometimes spurious CPU pipe underruns happen during FDI
4147          * training, at least with VGA+HDMI cloning. Suppress them.
4148          */
4149         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4150
4151         /* For PCH output, training FDI link */
4152         dev_priv->display.fdi_link_train(crtc);
4153
4154         /* We need to program the right clock selection before writing the pixel
4155          * mutliplier into the DPLL. */
4156         if (HAS_PCH_CPT(dev)) {
4157                 u32 sel;
4158
4159                 temp = I915_READ(PCH_DPLL_SEL);
4160                 temp |= TRANS_DPLL_ENABLE(pipe);
4161                 sel = TRANS_DPLLB_SEL(pipe);
4162                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4163                         temp |= sel;
4164                 else
4165                         temp &= ~sel;
4166                 I915_WRITE(PCH_DPLL_SEL, temp);
4167         }
4168
4169         /* XXX: pch pll's can be enabled any time before we enable the PCH
4170          * transcoder, and we actually should do this to not upset any PCH
4171          * transcoder that already use the clock when we share it.
4172          *
4173          * Note that enable_shared_dpll tries to do the right thing, but
4174          * get_shared_dpll unconditionally resets the pll - we need that to have
4175          * the right LVDS enable sequence. */
4176         intel_enable_shared_dpll(intel_crtc);
4177
4178         /* set transcoder timing, panel must allow it */
4179         assert_panel_unlocked(dev_priv, pipe);
4180         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4181
4182         intel_fdi_normal_train(crtc);
4183
4184         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4185
4186         /* For PCH DP, enable TRANS_DP_CTL */
4187         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4188                 const struct drm_display_mode *adjusted_mode =
4189                         &intel_crtc->config->base.adjusted_mode;
4190                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4191                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4192                 temp = I915_READ(reg);
4193                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4194                           TRANS_DP_SYNC_MASK |
4195                           TRANS_DP_BPC_MASK);
4196                 temp |= TRANS_DP_OUTPUT_ENABLE;
4197                 temp |= bpc << 9; /* same format but at 11:9 */
4198
4199                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4200                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4201                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4202                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4203
4204                 switch (intel_trans_dp_port_sel(crtc)) {
4205                 case PORT_B:
4206                         temp |= TRANS_DP_PORT_SEL_B;
4207                         break;
4208                 case PORT_C:
4209                         temp |= TRANS_DP_PORT_SEL_C;
4210                         break;
4211                 case PORT_D:
4212                         temp |= TRANS_DP_PORT_SEL_D;
4213                         break;
4214                 default:
4215                         BUG();
4216                 }
4217
4218                 I915_WRITE(reg, temp);
4219         }
4220
4221         ironlake_enable_pch_transcoder(dev_priv, pipe);
4222 }
4223
4224 static void lpt_pch_enable(struct drm_crtc *crtc)
4225 {
4226         struct drm_device *dev = crtc->dev;
4227         struct drm_i915_private *dev_priv = dev->dev_private;
4228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4229         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4230
4231         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4232
4233         lpt_program_iclkip(crtc);
4234
4235         /* Set transcoder timing. */
4236         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4237
4238         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4239 }
4240
4241 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4242                                                 struct intel_crtc_state *crtc_state)
4243 {
4244         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4245         struct intel_shared_dpll *pll;
4246         struct intel_shared_dpll_config *shared_dpll;
4247         enum intel_dpll_id i;
4248         int max = dev_priv->num_shared_dpll;
4249
4250         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4251
4252         if (HAS_PCH_IBX(dev_priv->dev)) {
4253                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4254                 i = (enum intel_dpll_id) crtc->pipe;
4255                 pll = &dev_priv->shared_dplls[i];
4256
4257                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4258                               crtc->base.base.id, pll->name);
4259
4260                 WARN_ON(shared_dpll[i].crtc_mask);
4261
4262                 goto found;
4263         }
4264
4265         if (IS_BROXTON(dev_priv->dev)) {
4266                 /* PLL is attached to port in bxt */
4267                 struct intel_encoder *encoder;
4268                 struct intel_digital_port *intel_dig_port;
4269
4270                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4271                 if (WARN_ON(!encoder))
4272                         return NULL;
4273
4274                 intel_dig_port = enc_to_dig_port(&encoder->base);
4275                 /* 1:1 mapping between ports and PLLs */
4276                 i = (enum intel_dpll_id)intel_dig_port->port;
4277                 pll = &dev_priv->shared_dplls[i];
4278                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4279                         crtc->base.base.id, pll->name);
4280                 WARN_ON(shared_dpll[i].crtc_mask);
4281
4282                 goto found;
4283         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4284                 /* Do not consider SPLL */
4285                 max = 2;
4286
4287         for (i = 0; i < max; i++) {
4288                 pll = &dev_priv->shared_dplls[i];
4289
4290                 /* Only want to check enabled timings first */
4291                 if (shared_dpll[i].crtc_mask == 0)
4292                         continue;
4293
4294                 if (memcmp(&crtc_state->dpll_hw_state,
4295                            &shared_dpll[i].hw_state,
4296                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4297                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4298                                       crtc->base.base.id, pll->name,
4299                                       shared_dpll[i].crtc_mask,
4300                                       pll->active);
4301                         goto found;
4302                 }
4303         }
4304
4305         /* Ok no matching timings, maybe there's a free one? */
4306         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4307                 pll = &dev_priv->shared_dplls[i];
4308                 if (shared_dpll[i].crtc_mask == 0) {
4309                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4310                                       crtc->base.base.id, pll->name);
4311                         goto found;
4312                 }
4313         }
4314
4315         return NULL;
4316
4317 found:
4318         if (shared_dpll[i].crtc_mask == 0)
4319                 shared_dpll[i].hw_state =
4320                         crtc_state->dpll_hw_state;
4321
4322         crtc_state->shared_dpll = i;
4323         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4324                          pipe_name(crtc->pipe));
4325
4326         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4327
4328         return pll;
4329 }
4330
4331 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4332 {
4333         struct drm_i915_private *dev_priv = to_i915(state->dev);
4334         struct intel_shared_dpll_config *shared_dpll;
4335         struct intel_shared_dpll *pll;
4336         enum intel_dpll_id i;
4337
4338         if (!to_intel_atomic_state(state)->dpll_set)
4339                 return;
4340
4341         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4342         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4343                 pll = &dev_priv->shared_dplls[i];
4344                 pll->config = shared_dpll[i];
4345         }
4346 }
4347
4348 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4349 {
4350         struct drm_i915_private *dev_priv = dev->dev_private;
4351         i915_reg_t dslreg = PIPEDSL(pipe);
4352         u32 temp;
4353
4354         temp = I915_READ(dslreg);
4355         udelay(500);
4356         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4357                 if (wait_for(I915_READ(dslreg) != temp, 5))
4358                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4359         }
4360 }
4361
4362 static int
4363 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4364                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4365                   int src_w, int src_h, int dst_w, int dst_h)
4366 {
4367         struct intel_crtc_scaler_state *scaler_state =
4368                 &crtc_state->scaler_state;
4369         struct intel_crtc *intel_crtc =
4370                 to_intel_crtc(crtc_state->base.crtc);
4371         int need_scaling;
4372
4373         need_scaling = intel_rotation_90_or_270(rotation) ?
4374                 (src_h != dst_w || src_w != dst_h):
4375                 (src_w != dst_w || src_h != dst_h);
4376
4377         /*
4378          * if plane is being disabled or scaler is no more required or force detach
4379          *  - free scaler binded to this plane/crtc
4380          *  - in order to do this, update crtc->scaler_usage
4381          *
4382          * Here scaler state in crtc_state is set free so that
4383          * scaler can be assigned to other user. Actual register
4384          * update to free the scaler is done in plane/panel-fit programming.
4385          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4386          */
4387         if (force_detach || !need_scaling) {
4388                 if (*scaler_id >= 0) {
4389                         scaler_state->scaler_users &= ~(1 << scaler_user);
4390                         scaler_state->scalers[*scaler_id].in_use = 0;
4391
4392                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4393                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4394                                 intel_crtc->pipe, scaler_user, *scaler_id,
4395                                 scaler_state->scaler_users);
4396                         *scaler_id = -1;
4397                 }
4398                 return 0;
4399         }
4400
4401         /* range checks */
4402         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4403                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4404
4405                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4406                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4407                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4408                         "size is out of scaler range\n",
4409                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4410                 return -EINVAL;
4411         }
4412
4413         /* mark this plane as a scaler user in crtc_state */
4414         scaler_state->scaler_users |= (1 << scaler_user);
4415         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4416                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4417                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4418                 scaler_state->scaler_users);
4419
4420         return 0;
4421 }
4422
4423 /**
4424  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4425  *
4426  * @state: crtc's scaler state
4427  *
4428  * Return
4429  *     0 - scaler_usage updated successfully
4430  *    error - requested scaling cannot be supported or other error condition
4431  */
4432 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4433 {
4434         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4435         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4436
4437         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4438                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4439
4440         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4441                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4442                 state->pipe_src_w, state->pipe_src_h,
4443                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4444 }
4445
4446 /**
4447  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4448  *
4449  * @state: crtc's scaler state
4450  * @plane_state: atomic plane state to update
4451  *
4452  * Return
4453  *     0 - scaler_usage updated successfully
4454  *    error - requested scaling cannot be supported or other error condition
4455  */
4456 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4457                                    struct intel_plane_state *plane_state)
4458 {
4459
4460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4461         struct intel_plane *intel_plane =
4462                 to_intel_plane(plane_state->base.plane);
4463         struct drm_framebuffer *fb = plane_state->base.fb;
4464         int ret;
4465
4466         bool force_detach = !fb || !plane_state->visible;
4467
4468         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4469                       intel_plane->base.base.id, intel_crtc->pipe,
4470                       drm_plane_index(&intel_plane->base));
4471
4472         ret = skl_update_scaler(crtc_state, force_detach,
4473                                 drm_plane_index(&intel_plane->base),
4474                                 &plane_state->scaler_id,
4475                                 plane_state->base.rotation,
4476                                 drm_rect_width(&plane_state->src) >> 16,
4477                                 drm_rect_height(&plane_state->src) >> 16,
4478                                 drm_rect_width(&plane_state->dst),
4479                                 drm_rect_height(&plane_state->dst));
4480
4481         if (ret || plane_state->scaler_id < 0)
4482                 return ret;
4483
4484         /* check colorkey */
4485         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4486                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4487                               intel_plane->base.base.id);
4488                 return -EINVAL;
4489         }
4490
4491         /* Check src format */
4492         switch (fb->pixel_format) {
4493         case DRM_FORMAT_RGB565:
4494         case DRM_FORMAT_XBGR8888:
4495         case DRM_FORMAT_XRGB8888:
4496         case DRM_FORMAT_ABGR8888:
4497         case DRM_FORMAT_ARGB8888:
4498         case DRM_FORMAT_XRGB2101010:
4499         case DRM_FORMAT_XBGR2101010:
4500         case DRM_FORMAT_YUYV:
4501         case DRM_FORMAT_YVYU:
4502         case DRM_FORMAT_UYVY:
4503         case DRM_FORMAT_VYUY:
4504                 break;
4505         default:
4506                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4507                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4508                 return -EINVAL;
4509         }
4510
4511         return 0;
4512 }
4513
4514 static void skylake_scaler_disable(struct intel_crtc *crtc)
4515 {
4516         int i;
4517
4518         for (i = 0; i < crtc->num_scalers; i++)
4519                 skl_detach_scaler(crtc, i);
4520 }
4521
4522 static void skylake_pfit_enable(struct intel_crtc *crtc)
4523 {
4524         struct drm_device *dev = crtc->base.dev;
4525         struct drm_i915_private *dev_priv = dev->dev_private;
4526         int pipe = crtc->pipe;
4527         struct intel_crtc_scaler_state *scaler_state =
4528                 &crtc->config->scaler_state;
4529
4530         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4531
4532         if (crtc->config->pch_pfit.enabled) {
4533                 int id;
4534
4535                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4536                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4537                         return;
4538                 }
4539
4540                 id = scaler_state->scaler_id;
4541                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4542                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4543                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4544                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4545
4546                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4547         }
4548 }
4549
4550 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4551 {
4552         struct drm_device *dev = crtc->base.dev;
4553         struct drm_i915_private *dev_priv = dev->dev_private;
4554         int pipe = crtc->pipe;
4555
4556         if (crtc->config->pch_pfit.enabled) {
4557                 /* Force use of hard-coded filter coefficients
4558                  * as some pre-programmed values are broken,
4559                  * e.g. x201.
4560                  */
4561                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4562                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4563                                                  PF_PIPE_SEL_IVB(pipe));
4564                 else
4565                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4566                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4567                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4568         }
4569 }
4570
4571 void hsw_enable_ips(struct intel_crtc *crtc)
4572 {
4573         struct drm_device *dev = crtc->base.dev;
4574         struct drm_i915_private *dev_priv = dev->dev_private;
4575
4576         if (!crtc->config->ips_enabled)
4577                 return;
4578
4579         /* We can only enable IPS after we enable a plane and wait for a vblank */
4580         intel_wait_for_vblank(dev, crtc->pipe);
4581
4582         assert_plane_enabled(dev_priv, crtc->plane);
4583         if (IS_BROADWELL(dev)) {
4584                 mutex_lock(&dev_priv->rps.hw_lock);
4585                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4586                 mutex_unlock(&dev_priv->rps.hw_lock);
4587                 /* Quoting Art Runyan: "its not safe to expect any particular
4588                  * value in IPS_CTL bit 31 after enabling IPS through the
4589                  * mailbox." Moreover, the mailbox may return a bogus state,
4590                  * so we need to just enable it and continue on.
4591                  */
4592         } else {
4593                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4594                 /* The bit only becomes 1 in the next vblank, so this wait here
4595                  * is essentially intel_wait_for_vblank. If we don't have this
4596                  * and don't wait for vblanks until the end of crtc_enable, then
4597                  * the HW state readout code will complain that the expected
4598                  * IPS_CTL value is not the one we read. */
4599                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4600                         DRM_ERROR("Timed out waiting for IPS enable\n");
4601         }
4602 }
4603
4604 void hsw_disable_ips(struct intel_crtc *crtc)
4605 {
4606         struct drm_device *dev = crtc->base.dev;
4607         struct drm_i915_private *dev_priv = dev->dev_private;
4608
4609         if (!crtc->config->ips_enabled)
4610                 return;
4611
4612         assert_plane_enabled(dev_priv, crtc->plane);
4613         if (IS_BROADWELL(dev)) {
4614                 mutex_lock(&dev_priv->rps.hw_lock);
4615                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4616                 mutex_unlock(&dev_priv->rps.hw_lock);
4617                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4618                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4619                         DRM_ERROR("Timed out waiting for IPS disable\n");
4620         } else {
4621                 I915_WRITE(IPS_CTL, 0);
4622                 POSTING_READ(IPS_CTL);
4623         }
4624
4625         /* We need to wait for a vblank before we can disable the plane. */
4626         intel_wait_for_vblank(dev, crtc->pipe);
4627 }
4628
4629 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4630 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4631 {
4632         struct drm_device *dev = crtc->dev;
4633         struct drm_i915_private *dev_priv = dev->dev_private;
4634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4635         enum pipe pipe = intel_crtc->pipe;
4636         int i;
4637         bool reenable_ips = false;
4638
4639         /* The clocks have to be on to load the palette. */
4640         if (!crtc->state->active)
4641                 return;
4642
4643         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4644                 if (intel_crtc->config->has_dsi_encoder)
4645                         assert_dsi_pll_enabled(dev_priv);
4646                 else
4647                         assert_pll_enabled(dev_priv, pipe);
4648         }
4649
4650         /* Workaround : Do not read or write the pipe palette/gamma data while
4651          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4652          */
4653         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4654             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4655              GAMMA_MODE_MODE_SPLIT)) {
4656                 hsw_disable_ips(intel_crtc);
4657                 reenable_ips = true;
4658         }
4659
4660         for (i = 0; i < 256; i++) {
4661                 i915_reg_t palreg;
4662
4663                 if (HAS_GMCH_DISPLAY(dev))
4664                         palreg = PALETTE(pipe, i);
4665                 else
4666                         palreg = LGC_PALETTE(pipe, i);
4667
4668                 I915_WRITE(palreg,
4669                            (intel_crtc->lut_r[i] << 16) |
4670                            (intel_crtc->lut_g[i] << 8) |
4671                            intel_crtc->lut_b[i]);
4672         }
4673
4674         if (reenable_ips)
4675                 hsw_enable_ips(intel_crtc);
4676 }
4677
4678 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4679 {
4680         if (intel_crtc->overlay) {
4681                 struct drm_device *dev = intel_crtc->base.dev;
4682                 struct drm_i915_private *dev_priv = dev->dev_private;
4683
4684                 mutex_lock(&dev->struct_mutex);
4685                 dev_priv->mm.interruptible = false;
4686                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4687                 dev_priv->mm.interruptible = true;
4688                 mutex_unlock(&dev->struct_mutex);
4689         }
4690
4691         /* Let userspace switch the overlay on again. In most cases userspace
4692          * has to recompute where to put it anyway.
4693          */
4694 }
4695
4696 /**
4697  * intel_post_enable_primary - Perform operations after enabling primary plane
4698  * @crtc: the CRTC whose primary plane was just enabled
4699  *
4700  * Performs potentially sleeping operations that must be done after the primary
4701  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4702  * called due to an explicit primary plane update, or due to an implicit
4703  * re-enable that is caused when a sprite plane is updated to no longer
4704  * completely hide the primary plane.
4705  */
4706 static void
4707 intel_post_enable_primary(struct drm_crtc *crtc)
4708 {
4709         struct drm_device *dev = crtc->dev;
4710         struct drm_i915_private *dev_priv = dev->dev_private;
4711         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4712         int pipe = intel_crtc->pipe;
4713
4714         /*
4715          * FIXME IPS should be fine as long as one plane is
4716          * enabled, but in practice it seems to have problems
4717          * when going from primary only to sprite only and vice
4718          * versa.
4719          */
4720         hsw_enable_ips(intel_crtc);
4721
4722         /*
4723          * Gen2 reports pipe underruns whenever all planes are disabled.
4724          * So don't enable underrun reporting before at least some planes
4725          * are enabled.
4726          * FIXME: Need to fix the logic to work when we turn off all planes
4727          * but leave the pipe running.
4728          */
4729         if (IS_GEN2(dev))
4730                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4731
4732         /* Underruns don't always raise interrupts, so check manually. */
4733         intel_check_cpu_fifo_underruns(dev_priv);
4734         intel_check_pch_fifo_underruns(dev_priv);
4735 }
4736
4737 /**
4738  * intel_pre_disable_primary - Perform operations before disabling primary plane
4739  * @crtc: the CRTC whose primary plane is to be disabled
4740  *
4741  * Performs potentially sleeping operations that must be done before the
4742  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4743  * be called due to an explicit primary plane update, or due to an implicit
4744  * disable that is caused when a sprite plane completely hides the primary
4745  * plane.
4746  */
4747 static void
4748 intel_pre_disable_primary(struct drm_crtc *crtc)
4749 {
4750         struct drm_device *dev = crtc->dev;
4751         struct drm_i915_private *dev_priv = dev->dev_private;
4752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4753         int pipe = intel_crtc->pipe;
4754
4755         /*
4756          * Gen2 reports pipe underruns whenever all planes are disabled.
4757          * So diasble underrun reporting before all the planes get disabled.
4758          * FIXME: Need to fix the logic to work when we turn off all planes
4759          * but leave the pipe running.
4760          */
4761         if (IS_GEN2(dev))
4762                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4763
4764         /*
4765          * Vblank time updates from the shadow to live plane control register
4766          * are blocked if the memory self-refresh mode is active at that
4767          * moment. So to make sure the plane gets truly disabled, disable
4768          * first the self-refresh mode. The self-refresh enable bit in turn
4769          * will be checked/applied by the HW only at the next frame start
4770          * event which is after the vblank start event, so we need to have a
4771          * wait-for-vblank between disabling the plane and the pipe.
4772          */
4773         if (HAS_GMCH_DISPLAY(dev)) {
4774                 intel_set_memory_cxsr(dev_priv, false);
4775                 dev_priv->wm.vlv.cxsr = false;
4776                 intel_wait_for_vblank(dev, pipe);
4777         }
4778
4779         /*
4780          * FIXME IPS should be fine as long as one plane is
4781          * enabled, but in practice it seems to have problems
4782          * when going from primary only to sprite only and vice
4783          * versa.
4784          */
4785         hsw_disable_ips(intel_crtc);
4786 }
4787
4788 static void intel_post_plane_update(struct intel_crtc *crtc)
4789 {
4790         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4791         struct intel_crtc_state *pipe_config =
4792                 to_intel_crtc_state(crtc->base.state);
4793         struct drm_device *dev = crtc->base.dev;
4794
4795         intel_frontbuffer_flip(dev, atomic->fb_bits);
4796
4797         crtc->wm.cxsr_allowed = true;
4798
4799         if (pipe_config->wm_changed && pipe_config->base.active)
4800                 intel_update_watermarks(&crtc->base);
4801
4802         if (atomic->update_fbc)
4803                 intel_fbc_post_update(crtc);
4804
4805         if (atomic->post_enable_primary)
4806                 intel_post_enable_primary(&crtc->base);
4807
4808         memset(atomic, 0, sizeof(*atomic));
4809 }
4810
4811 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4812 {
4813         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4814         struct drm_device *dev = crtc->base.dev;
4815         struct drm_i915_private *dev_priv = dev->dev_private;
4816         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4817         struct intel_crtc_state *pipe_config =
4818                 to_intel_crtc_state(crtc->base.state);
4819         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4820         struct drm_plane *primary = crtc->base.primary;
4821         struct drm_plane_state *old_pri_state =
4822                 drm_atomic_get_existing_plane_state(old_state, primary);
4823         bool modeset = needs_modeset(&pipe_config->base);
4824
4825         if (atomic->update_fbc)
4826                 intel_fbc_pre_update(crtc);
4827
4828         if (old_pri_state) {
4829                 struct intel_plane_state *primary_state =
4830                         to_intel_plane_state(primary->state);
4831                 struct intel_plane_state *old_primary_state =
4832                         to_intel_plane_state(old_pri_state);
4833
4834                 if (old_primary_state->visible &&
4835                     (modeset || !primary_state->visible))
4836                         intel_pre_disable_primary(&crtc->base);
4837         }
4838
4839         if (pipe_config->disable_cxsr) {
4840                 crtc->wm.cxsr_allowed = false;
4841
4842                 if (old_crtc_state->base.active)
4843                         intel_set_memory_cxsr(dev_priv, false);
4844         }
4845
4846         if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4847                 intel_update_watermarks(&crtc->base);
4848 }
4849
4850 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4851 {
4852         struct drm_device *dev = crtc->dev;
4853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854         struct drm_plane *p;
4855         int pipe = intel_crtc->pipe;
4856
4857         intel_crtc_dpms_overlay_disable(intel_crtc);
4858
4859         drm_for_each_plane_mask(p, dev, plane_mask)
4860                 to_intel_plane(p)->disable_plane(p, crtc);
4861
4862         /*
4863          * FIXME: Once we grow proper nuclear flip support out of this we need
4864          * to compute the mask of flip planes precisely. For the time being
4865          * consider this a flip to a NULL plane.
4866          */
4867         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4868 }
4869
4870 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4871 {
4872         struct drm_device *dev = crtc->dev;
4873         struct drm_i915_private *dev_priv = dev->dev_private;
4874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4875         struct intel_encoder *encoder;
4876         int pipe = intel_crtc->pipe;
4877
4878         if (WARN_ON(intel_crtc->active))
4879                 return;
4880
4881         if (intel_crtc->config->has_pch_encoder)
4882                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4883
4884         if (intel_crtc->config->has_pch_encoder)
4885                 intel_prepare_shared_dpll(intel_crtc);
4886
4887         if (intel_crtc->config->has_dp_encoder)
4888                 intel_dp_set_m_n(intel_crtc, M1_N1);
4889
4890         intel_set_pipe_timings(intel_crtc);
4891
4892         if (intel_crtc->config->has_pch_encoder) {
4893                 intel_cpu_transcoder_set_m_n(intel_crtc,
4894                                      &intel_crtc->config->fdi_m_n, NULL);
4895         }
4896
4897         ironlake_set_pipeconf(crtc);
4898
4899         intel_crtc->active = true;
4900
4901         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4902
4903         for_each_encoder_on_crtc(dev, crtc, encoder)
4904                 if (encoder->pre_enable)
4905                         encoder->pre_enable(encoder);
4906
4907         if (intel_crtc->config->has_pch_encoder) {
4908                 /* Note: FDI PLL enabling _must_ be done before we enable the
4909                  * cpu pipes, hence this is separate from all the other fdi/pch
4910                  * enabling. */
4911                 ironlake_fdi_pll_enable(intel_crtc);
4912         } else {
4913                 assert_fdi_tx_disabled(dev_priv, pipe);
4914                 assert_fdi_rx_disabled(dev_priv, pipe);
4915         }
4916
4917         ironlake_pfit_enable(intel_crtc);
4918
4919         /*
4920          * On ILK+ LUT must be loaded before the pipe is running but with
4921          * clocks enabled
4922          */
4923         intel_crtc_load_lut(crtc);
4924
4925         intel_update_watermarks(crtc);
4926         intel_enable_pipe(intel_crtc);
4927
4928         if (intel_crtc->config->has_pch_encoder)
4929                 ironlake_pch_enable(crtc);
4930
4931         assert_vblank_disabled(crtc);
4932         drm_crtc_vblank_on(crtc);
4933
4934         for_each_encoder_on_crtc(dev, crtc, encoder)
4935                 encoder->enable(encoder);
4936
4937         if (HAS_PCH_CPT(dev))
4938                 cpt_verify_modeset(dev, intel_crtc->pipe);
4939
4940         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4941         if (intel_crtc->config->has_pch_encoder)
4942                 intel_wait_for_vblank(dev, pipe);
4943         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4944 }
4945
4946 /* IPS only exists on ULT machines and is tied to pipe A. */
4947 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4948 {
4949         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4950 }
4951
4952 static void haswell_crtc_enable(struct drm_crtc *crtc)
4953 {
4954         struct drm_device *dev = crtc->dev;
4955         struct drm_i915_private *dev_priv = dev->dev_private;
4956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4957         struct intel_encoder *encoder;
4958         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4959         struct intel_crtc_state *pipe_config =
4960                 to_intel_crtc_state(crtc->state);
4961
4962         if (WARN_ON(intel_crtc->active))
4963                 return;
4964
4965         if (intel_crtc->config->has_pch_encoder)
4966                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4967                                                       false);
4968
4969         if (intel_crtc_to_shared_dpll(intel_crtc))
4970                 intel_enable_shared_dpll(intel_crtc);
4971
4972         if (intel_crtc->config->has_dp_encoder)
4973                 intel_dp_set_m_n(intel_crtc, M1_N1);
4974
4975         intel_set_pipe_timings(intel_crtc);
4976
4977         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4978                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4979                            intel_crtc->config->pixel_multiplier - 1);
4980         }
4981
4982         if (intel_crtc->config->has_pch_encoder) {
4983                 intel_cpu_transcoder_set_m_n(intel_crtc,
4984                                      &intel_crtc->config->fdi_m_n, NULL);
4985         }
4986
4987         haswell_set_pipeconf(crtc);
4988
4989         intel_set_pipe_csc(crtc);
4990
4991         intel_crtc->active = true;
4992
4993         if (intel_crtc->config->has_pch_encoder)
4994                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4995         else
4996                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4997
4998         for_each_encoder_on_crtc(dev, crtc, encoder) {
4999                 if (encoder->pre_enable)
5000                         encoder->pre_enable(encoder);
5001         }
5002
5003         if (intel_crtc->config->has_pch_encoder)
5004                 dev_priv->display.fdi_link_train(crtc);
5005
5006         if (!intel_crtc->config->has_dsi_encoder)
5007                 intel_ddi_enable_pipe_clock(intel_crtc);
5008
5009         if (INTEL_INFO(dev)->gen >= 9)
5010                 skylake_pfit_enable(intel_crtc);
5011         else
5012                 ironlake_pfit_enable(intel_crtc);
5013
5014         /*
5015          * On ILK+ LUT must be loaded before the pipe is running but with
5016          * clocks enabled
5017          */
5018         intel_crtc_load_lut(crtc);
5019
5020         intel_ddi_set_pipe_settings(crtc);
5021         if (!intel_crtc->config->has_dsi_encoder)
5022                 intel_ddi_enable_transcoder_func(crtc);
5023
5024         intel_update_watermarks(crtc);
5025         intel_enable_pipe(intel_crtc);
5026
5027         if (intel_crtc->config->has_pch_encoder)
5028                 lpt_pch_enable(crtc);
5029
5030         if (intel_crtc->config->dp_encoder_is_mst)
5031                 intel_ddi_set_vc_payload_alloc(crtc, true);
5032
5033         assert_vblank_disabled(crtc);
5034         drm_crtc_vblank_on(crtc);
5035
5036         for_each_encoder_on_crtc(dev, crtc, encoder) {
5037                 encoder->enable(encoder);
5038                 intel_opregion_notify_encoder(encoder, true);
5039         }
5040
5041         if (intel_crtc->config->has_pch_encoder) {
5042                 intel_wait_for_vblank(dev, pipe);
5043                 intel_wait_for_vblank(dev, pipe);
5044                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5045                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5046                                                       true);
5047         }
5048
5049         /* If we change the relative order between pipe/planes enabling, we need
5050          * to change the workaround. */
5051         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5052         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5053                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5054                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5055         }
5056 }
5057
5058 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5059 {
5060         struct drm_device *dev = crtc->base.dev;
5061         struct drm_i915_private *dev_priv = dev->dev_private;
5062         int pipe = crtc->pipe;
5063
5064         /* To avoid upsetting the power well on haswell only disable the pfit if
5065          * it's in use. The hw state code will make sure we get this right. */
5066         if (force || crtc->config->pch_pfit.enabled) {
5067                 I915_WRITE(PF_CTL(pipe), 0);
5068                 I915_WRITE(PF_WIN_POS(pipe), 0);
5069                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5070         }
5071 }
5072
5073 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5074 {
5075         struct drm_device *dev = crtc->dev;
5076         struct drm_i915_private *dev_priv = dev->dev_private;
5077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078         struct intel_encoder *encoder;
5079         int pipe = intel_crtc->pipe;
5080
5081         if (intel_crtc->config->has_pch_encoder)
5082                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5083
5084         for_each_encoder_on_crtc(dev, crtc, encoder)
5085                 encoder->disable(encoder);
5086
5087         drm_crtc_vblank_off(crtc);
5088         assert_vblank_disabled(crtc);
5089
5090         /*
5091          * Sometimes spurious CPU pipe underruns happen when the
5092          * pipe is already disabled, but FDI RX/TX is still enabled.
5093          * Happens at least with VGA+HDMI cloning. Suppress them.
5094          */
5095         if (intel_crtc->config->has_pch_encoder)
5096                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5097
5098         intel_disable_pipe(intel_crtc);
5099
5100         ironlake_pfit_disable(intel_crtc, false);
5101
5102         if (intel_crtc->config->has_pch_encoder) {
5103                 ironlake_fdi_disable(crtc);
5104                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5105         }
5106
5107         for_each_encoder_on_crtc(dev, crtc, encoder)
5108                 if (encoder->post_disable)
5109                         encoder->post_disable(encoder);
5110
5111         if (intel_crtc->config->has_pch_encoder) {
5112                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5113
5114                 if (HAS_PCH_CPT(dev)) {
5115                         i915_reg_t reg;
5116                         u32 temp;
5117
5118                         /* disable TRANS_DP_CTL */
5119                         reg = TRANS_DP_CTL(pipe);
5120                         temp = I915_READ(reg);
5121                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5122                                   TRANS_DP_PORT_SEL_MASK);
5123                         temp |= TRANS_DP_PORT_SEL_NONE;
5124                         I915_WRITE(reg, temp);
5125
5126                         /* disable DPLL_SEL */
5127                         temp = I915_READ(PCH_DPLL_SEL);
5128                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5129                         I915_WRITE(PCH_DPLL_SEL, temp);
5130                 }
5131
5132                 ironlake_fdi_pll_disable(intel_crtc);
5133         }
5134
5135         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5136 }
5137
5138 static void haswell_crtc_disable(struct drm_crtc *crtc)
5139 {
5140         struct drm_device *dev = crtc->dev;
5141         struct drm_i915_private *dev_priv = dev->dev_private;
5142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5143         struct intel_encoder *encoder;
5144         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5145
5146         if (intel_crtc->config->has_pch_encoder)
5147                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5148                                                       false);
5149
5150         for_each_encoder_on_crtc(dev, crtc, encoder) {
5151                 intel_opregion_notify_encoder(encoder, false);
5152                 encoder->disable(encoder);
5153         }
5154
5155         drm_crtc_vblank_off(crtc);
5156         assert_vblank_disabled(crtc);
5157
5158         intel_disable_pipe(intel_crtc);
5159
5160         if (intel_crtc->config->dp_encoder_is_mst)
5161                 intel_ddi_set_vc_payload_alloc(crtc, false);
5162
5163         if (!intel_crtc->config->has_dsi_encoder)
5164                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5165
5166         if (INTEL_INFO(dev)->gen >= 9)
5167                 skylake_scaler_disable(intel_crtc);
5168         else
5169                 ironlake_pfit_disable(intel_crtc, false);
5170
5171         if (!intel_crtc->config->has_dsi_encoder)
5172                 intel_ddi_disable_pipe_clock(intel_crtc);
5173
5174         for_each_encoder_on_crtc(dev, crtc, encoder)
5175                 if (encoder->post_disable)
5176                         encoder->post_disable(encoder);
5177
5178         if (intel_crtc->config->has_pch_encoder) {
5179                 lpt_disable_pch_transcoder(dev_priv);
5180                 lpt_disable_iclkip(dev_priv);
5181                 intel_ddi_fdi_disable(crtc);
5182
5183                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5184                                                       true);
5185         }
5186 }
5187
5188 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5189 {
5190         struct drm_device *dev = crtc->base.dev;
5191         struct drm_i915_private *dev_priv = dev->dev_private;
5192         struct intel_crtc_state *pipe_config = crtc->config;
5193
5194         if (!pipe_config->gmch_pfit.control)
5195                 return;
5196
5197         /*
5198          * The panel fitter should only be adjusted whilst the pipe is disabled,
5199          * according to register description and PRM.
5200          */
5201         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5202         assert_pipe_disabled(dev_priv, crtc->pipe);
5203
5204         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5205         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5206
5207         /* Border color in case we don't scale up to the full screen. Black by
5208          * default, change to something else for debugging. */
5209         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5210 }
5211
5212 static enum intel_display_power_domain port_to_power_domain(enum port port)
5213 {
5214         switch (port) {
5215         case PORT_A:
5216                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5217         case PORT_B:
5218                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5219         case PORT_C:
5220                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5221         case PORT_D:
5222                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5223         case PORT_E:
5224                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5225         default:
5226                 MISSING_CASE(port);
5227                 return POWER_DOMAIN_PORT_OTHER;
5228         }
5229 }
5230
5231 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5232 {
5233         switch (port) {
5234         case PORT_A:
5235                 return POWER_DOMAIN_AUX_A;
5236         case PORT_B:
5237                 return POWER_DOMAIN_AUX_B;
5238         case PORT_C:
5239                 return POWER_DOMAIN_AUX_C;
5240         case PORT_D:
5241                 return POWER_DOMAIN_AUX_D;
5242         case PORT_E:
5243                 /* FIXME: Check VBT for actual wiring of PORT E */
5244                 return POWER_DOMAIN_AUX_D;
5245         default:
5246                 MISSING_CASE(port);
5247                 return POWER_DOMAIN_AUX_A;
5248         }
5249 }
5250
5251 enum intel_display_power_domain
5252 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5253 {
5254         struct drm_device *dev = intel_encoder->base.dev;
5255         struct intel_digital_port *intel_dig_port;
5256
5257         switch (intel_encoder->type) {
5258         case INTEL_OUTPUT_UNKNOWN:
5259                 /* Only DDI platforms should ever use this output type */
5260                 WARN_ON_ONCE(!HAS_DDI(dev));
5261         case INTEL_OUTPUT_DISPLAYPORT:
5262         case INTEL_OUTPUT_HDMI:
5263         case INTEL_OUTPUT_EDP:
5264                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5265                 return port_to_power_domain(intel_dig_port->port);
5266         case INTEL_OUTPUT_DP_MST:
5267                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5268                 return port_to_power_domain(intel_dig_port->port);
5269         case INTEL_OUTPUT_ANALOG:
5270                 return POWER_DOMAIN_PORT_CRT;
5271         case INTEL_OUTPUT_DSI:
5272                 return POWER_DOMAIN_PORT_DSI;
5273         default:
5274                 return POWER_DOMAIN_PORT_OTHER;
5275         }
5276 }
5277
5278 enum intel_display_power_domain
5279 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5280 {
5281         struct drm_device *dev = intel_encoder->base.dev;
5282         struct intel_digital_port *intel_dig_port;
5283
5284         switch (intel_encoder->type) {
5285         case INTEL_OUTPUT_UNKNOWN:
5286         case INTEL_OUTPUT_HDMI:
5287                 /*
5288                  * Only DDI platforms should ever use these output types.
5289                  * We can get here after the HDMI detect code has already set
5290                  * the type of the shared encoder. Since we can't be sure
5291                  * what's the status of the given connectors, play safe and
5292                  * run the DP detection too.
5293                  */
5294                 WARN_ON_ONCE(!HAS_DDI(dev));
5295         case INTEL_OUTPUT_DISPLAYPORT:
5296         case INTEL_OUTPUT_EDP:
5297                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5298                 return port_to_aux_power_domain(intel_dig_port->port);
5299         case INTEL_OUTPUT_DP_MST:
5300                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5301                 return port_to_aux_power_domain(intel_dig_port->port);
5302         default:
5303                 MISSING_CASE(intel_encoder->type);
5304                 return POWER_DOMAIN_AUX_A;
5305         }
5306 }
5307
5308 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5309                                             struct intel_crtc_state *crtc_state)
5310 {
5311         struct drm_device *dev = crtc->dev;
5312         struct drm_encoder *encoder;
5313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5314         enum pipe pipe = intel_crtc->pipe;
5315         unsigned long mask;
5316         enum transcoder transcoder = crtc_state->cpu_transcoder;
5317
5318         if (!crtc_state->base.active)
5319                 return 0;
5320
5321         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5322         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5323         if (crtc_state->pch_pfit.enabled ||
5324             crtc_state->pch_pfit.force_thru)
5325                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5326
5327         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5328                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5329
5330                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5331         }
5332
5333         return mask;
5334 }
5335
5336 static unsigned long
5337 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5338                                struct intel_crtc_state *crtc_state)
5339 {
5340         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5342         enum intel_display_power_domain domain;
5343         unsigned long domains, new_domains, old_domains;
5344
5345         old_domains = intel_crtc->enabled_power_domains;
5346         intel_crtc->enabled_power_domains = new_domains =
5347                 get_crtc_power_domains(crtc, crtc_state);
5348
5349         domains = new_domains & ~old_domains;
5350
5351         for_each_power_domain(domain, domains)
5352                 intel_display_power_get(dev_priv, domain);
5353
5354         return old_domains & ~new_domains;
5355 }
5356
5357 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5358                                       unsigned long domains)
5359 {
5360         enum intel_display_power_domain domain;
5361
5362         for_each_power_domain(domain, domains)
5363                 intel_display_power_put(dev_priv, domain);
5364 }
5365
5366 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5367 {
5368         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5369
5370         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5371             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5372                 return max_cdclk_freq;
5373         else if (IS_CHERRYVIEW(dev_priv))
5374                 return max_cdclk_freq*95/100;
5375         else if (INTEL_INFO(dev_priv)->gen < 4)
5376                 return 2*max_cdclk_freq*90/100;
5377         else
5378                 return max_cdclk_freq*90/100;
5379 }
5380
5381 static void intel_update_max_cdclk(struct drm_device *dev)
5382 {
5383         struct drm_i915_private *dev_priv = dev->dev_private;
5384
5385         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5386                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5387
5388                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5389                         dev_priv->max_cdclk_freq = 675000;
5390                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5391                         dev_priv->max_cdclk_freq = 540000;
5392                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5393                         dev_priv->max_cdclk_freq = 450000;
5394                 else
5395                         dev_priv->max_cdclk_freq = 337500;
5396         } else if (IS_BROADWELL(dev))  {
5397                 /*
5398                  * FIXME with extra cooling we can allow
5399                  * 540 MHz for ULX and 675 Mhz for ULT.
5400                  * How can we know if extra cooling is
5401                  * available? PCI ID, VTB, something else?
5402                  */
5403                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5404                         dev_priv->max_cdclk_freq = 450000;
5405                 else if (IS_BDW_ULX(dev))
5406                         dev_priv->max_cdclk_freq = 450000;
5407                 else if (IS_BDW_ULT(dev))
5408                         dev_priv->max_cdclk_freq = 540000;
5409                 else
5410                         dev_priv->max_cdclk_freq = 675000;
5411         } else if (IS_CHERRYVIEW(dev)) {
5412                 dev_priv->max_cdclk_freq = 320000;
5413         } else if (IS_VALLEYVIEW(dev)) {
5414                 dev_priv->max_cdclk_freq = 400000;
5415         } else {
5416                 /* otherwise assume cdclk is fixed */
5417                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5418         }
5419
5420         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5421
5422         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5423                          dev_priv->max_cdclk_freq);
5424
5425         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5426                          dev_priv->max_dotclk_freq);
5427 }
5428
5429 static void intel_update_cdclk(struct drm_device *dev)
5430 {
5431         struct drm_i915_private *dev_priv = dev->dev_private;
5432
5433         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5434         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5435                          dev_priv->cdclk_freq);
5436
5437         /*
5438          * Program the gmbus_freq based on the cdclk frequency.
5439          * BSpec erroneously claims we should aim for 4MHz, but
5440          * in fact 1MHz is the correct frequency.
5441          */
5442         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5443                 /*
5444                  * Program the gmbus_freq based on the cdclk frequency.
5445                  * BSpec erroneously claims we should aim for 4MHz, but
5446                  * in fact 1MHz is the correct frequency.
5447                  */
5448                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5449         }
5450
5451         if (dev_priv->max_cdclk_freq == 0)
5452                 intel_update_max_cdclk(dev);
5453 }
5454
5455 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5456 {
5457         struct drm_i915_private *dev_priv = dev->dev_private;
5458         uint32_t divider;
5459         uint32_t ratio;
5460         uint32_t current_freq;
5461         int ret;
5462
5463         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5464         switch (frequency) {
5465         case 144000:
5466                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5467                 ratio = BXT_DE_PLL_RATIO(60);
5468                 break;
5469         case 288000:
5470                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5471                 ratio = BXT_DE_PLL_RATIO(60);
5472                 break;
5473         case 384000:
5474                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5475                 ratio = BXT_DE_PLL_RATIO(60);
5476                 break;
5477         case 576000:
5478                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5479                 ratio = BXT_DE_PLL_RATIO(60);
5480                 break;
5481         case 624000:
5482                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5483                 ratio = BXT_DE_PLL_RATIO(65);
5484                 break;
5485         case 19200:
5486                 /*
5487                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5488                  * to suppress GCC warning.
5489                  */
5490                 ratio = 0;
5491                 divider = 0;
5492                 break;
5493         default:
5494                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5495
5496                 return;
5497         }
5498
5499         mutex_lock(&dev_priv->rps.hw_lock);
5500         /* Inform power controller of upcoming frequency change */
5501         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5502                                       0x80000000);
5503         mutex_unlock(&dev_priv->rps.hw_lock);
5504
5505         if (ret) {
5506                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5507                           ret, frequency);
5508                 return;
5509         }
5510
5511         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5512         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5513         current_freq = current_freq * 500 + 1000;
5514
5515         /*
5516          * DE PLL has to be disabled when
5517          * - setting to 19.2MHz (bypass, PLL isn't used)
5518          * - before setting to 624MHz (PLL needs toggling)
5519          * - before setting to any frequency from 624MHz (PLL needs toggling)
5520          */
5521         if (frequency == 19200 || frequency == 624000 ||
5522             current_freq == 624000) {
5523                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5524                 /* Timeout 200us */
5525                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5526                              1))
5527                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5528         }
5529
5530         if (frequency != 19200) {
5531                 uint32_t val;
5532
5533                 val = I915_READ(BXT_DE_PLL_CTL);
5534                 val &= ~BXT_DE_PLL_RATIO_MASK;
5535                 val |= ratio;
5536                 I915_WRITE(BXT_DE_PLL_CTL, val);
5537
5538                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5539                 /* Timeout 200us */
5540                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5541                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5542
5543                 val = I915_READ(CDCLK_CTL);
5544                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5545                 val |= divider;
5546                 /*
5547                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5548                  * enable otherwise.
5549                  */
5550                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5551                 if (frequency >= 500000)
5552                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5553
5554                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5555                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5556                 val |= (frequency - 1000) / 500;
5557                 I915_WRITE(CDCLK_CTL, val);
5558         }
5559
5560         mutex_lock(&dev_priv->rps.hw_lock);
5561         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5562                                       DIV_ROUND_UP(frequency, 25000));
5563         mutex_unlock(&dev_priv->rps.hw_lock);
5564
5565         if (ret) {
5566                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5567                           ret, frequency);
5568                 return;
5569         }
5570
5571         intel_update_cdclk(dev);
5572 }
5573
5574 void broxton_init_cdclk(struct drm_device *dev)
5575 {
5576         struct drm_i915_private *dev_priv = dev->dev_private;
5577         uint32_t val;
5578
5579         /*
5580          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5581          * or else the reset will hang because there is no PCH to respond.
5582          * Move the handshake programming to initialization sequence.
5583          * Previously was left up to BIOS.
5584          */
5585         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5586         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5587         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5588
5589         /* Enable PG1 for cdclk */
5590         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5591
5592         /* check if cd clock is enabled */
5593         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5594                 DRM_DEBUG_KMS("Display already initialized\n");
5595                 return;
5596         }
5597
5598         /*
5599          * FIXME:
5600          * - The initial CDCLK needs to be read from VBT.
5601          *   Need to make this change after VBT has changes for BXT.
5602          * - check if setting the max (or any) cdclk freq is really necessary
5603          *   here, it belongs to modeset time
5604          */
5605         broxton_set_cdclk(dev, 624000);
5606
5607         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5608         POSTING_READ(DBUF_CTL);
5609
5610         udelay(10);
5611
5612         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5613                 DRM_ERROR("DBuf power enable timeout!\n");
5614 }
5615
5616 void broxton_uninit_cdclk(struct drm_device *dev)
5617 {
5618         struct drm_i915_private *dev_priv = dev->dev_private;
5619
5620         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5621         POSTING_READ(DBUF_CTL);
5622
5623         udelay(10);
5624
5625         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5626                 DRM_ERROR("DBuf power disable timeout!\n");
5627
5628         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5629         broxton_set_cdclk(dev, 19200);
5630
5631         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5632 }
5633
5634 static const struct skl_cdclk_entry {
5635         unsigned int freq;
5636         unsigned int vco;
5637 } skl_cdclk_frequencies[] = {
5638         { .freq = 308570, .vco = 8640 },
5639         { .freq = 337500, .vco = 8100 },
5640         { .freq = 432000, .vco = 8640 },
5641         { .freq = 450000, .vco = 8100 },
5642         { .freq = 540000, .vco = 8100 },
5643         { .freq = 617140, .vco = 8640 },
5644         { .freq = 675000, .vco = 8100 },
5645 };
5646
5647 static unsigned int skl_cdclk_decimal(unsigned int freq)
5648 {
5649         return (freq - 1000) / 500;
5650 }
5651
5652 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5653 {
5654         unsigned int i;
5655
5656         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5657                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5658
5659                 if (e->freq == freq)
5660                         return e->vco;
5661         }
5662
5663         return 8100;
5664 }
5665
5666 static void
5667 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5668 {
5669         unsigned int min_freq;
5670         u32 val;
5671
5672         /* select the minimum CDCLK before enabling DPLL 0 */
5673         val = I915_READ(CDCLK_CTL);
5674         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5675         val |= CDCLK_FREQ_337_308;
5676
5677         if (required_vco == 8640)
5678                 min_freq = 308570;
5679         else
5680                 min_freq = 337500;
5681
5682         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5683
5684         I915_WRITE(CDCLK_CTL, val);
5685         POSTING_READ(CDCLK_CTL);
5686
5687         /*
5688          * We always enable DPLL0 with the lowest link rate possible, but still
5689          * taking into account the VCO required to operate the eDP panel at the
5690          * desired frequency. The usual DP link rates operate with a VCO of
5691          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5692          * The modeset code is responsible for the selection of the exact link
5693          * rate later on, with the constraint of choosing a frequency that
5694          * works with required_vco.
5695          */
5696         val = I915_READ(DPLL_CTRL1);
5697
5698         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5699                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5700         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5701         if (required_vco == 8640)
5702                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5703                                             SKL_DPLL0);
5704         else
5705                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5706                                             SKL_DPLL0);
5707
5708         I915_WRITE(DPLL_CTRL1, val);
5709         POSTING_READ(DPLL_CTRL1);
5710
5711         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5712
5713         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5714                 DRM_ERROR("DPLL0 not locked\n");
5715 }
5716
5717 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5718 {
5719         int ret;
5720         u32 val;
5721
5722         /* inform PCU we want to change CDCLK */
5723         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5724         mutex_lock(&dev_priv->rps.hw_lock);
5725         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5726         mutex_unlock(&dev_priv->rps.hw_lock);
5727
5728         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5729 }
5730
5731 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5732 {
5733         unsigned int i;
5734
5735         for (i = 0; i < 15; i++) {
5736                 if (skl_cdclk_pcu_ready(dev_priv))
5737                         return true;
5738                 udelay(10);
5739         }
5740
5741         return false;
5742 }
5743
5744 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5745 {
5746         struct drm_device *dev = dev_priv->dev;
5747         u32 freq_select, pcu_ack;
5748
5749         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5750
5751         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5752                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5753                 return;
5754         }
5755
5756         /* set CDCLK_CTL */
5757         switch(freq) {
5758         case 450000:
5759         case 432000:
5760                 freq_select = CDCLK_FREQ_450_432;
5761                 pcu_ack = 1;
5762                 break;
5763         case 540000:
5764                 freq_select = CDCLK_FREQ_540;
5765                 pcu_ack = 2;
5766                 break;
5767         case 308570:
5768         case 337500:
5769         default:
5770                 freq_select = CDCLK_FREQ_337_308;
5771                 pcu_ack = 0;
5772                 break;
5773         case 617140:
5774         case 675000:
5775                 freq_select = CDCLK_FREQ_675_617;
5776                 pcu_ack = 3;
5777                 break;
5778         }
5779
5780         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5781         POSTING_READ(CDCLK_CTL);
5782
5783         /* inform PCU of the change */
5784         mutex_lock(&dev_priv->rps.hw_lock);
5785         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5786         mutex_unlock(&dev_priv->rps.hw_lock);
5787
5788         intel_update_cdclk(dev);
5789 }
5790
5791 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5792 {
5793         /* disable DBUF power */
5794         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5795         POSTING_READ(DBUF_CTL);
5796
5797         udelay(10);
5798
5799         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5800                 DRM_ERROR("DBuf power disable timeout\n");
5801
5802         /* disable DPLL0 */
5803         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5804         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5805                 DRM_ERROR("Couldn't disable DPLL0\n");
5806 }
5807
5808 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5809 {
5810         unsigned int required_vco;
5811
5812         /* DPLL0 not enabled (happens on early BIOS versions) */
5813         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5814                 /* enable DPLL0 */
5815                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5816                 skl_dpll0_enable(dev_priv, required_vco);
5817         }
5818
5819         /* set CDCLK to the frequency the BIOS chose */
5820         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5821
5822         /* enable DBUF power */
5823         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5824         POSTING_READ(DBUF_CTL);
5825
5826         udelay(10);
5827
5828         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5829                 DRM_ERROR("DBuf power enable timeout\n");
5830 }
5831
5832 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5833 {
5834         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5835         uint32_t cdctl = I915_READ(CDCLK_CTL);
5836         int freq = dev_priv->skl_boot_cdclk;
5837
5838         /*
5839          * check if the pre-os intialized the display
5840          * There is SWF18 scratchpad register defined which is set by the
5841          * pre-os which can be used by the OS drivers to check the status
5842          */
5843         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5844                 goto sanitize;
5845
5846         /* Is PLL enabled and locked ? */
5847         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5848                 goto sanitize;
5849
5850         /* DPLL okay; verify the cdclock
5851          *
5852          * Noticed in some instances that the freq selection is correct but
5853          * decimal part is programmed wrong from BIOS where pre-os does not
5854          * enable display. Verify the same as well.
5855          */
5856         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5857                 /* All well; nothing to sanitize */
5858                 return false;
5859 sanitize:
5860         /*
5861          * As of now initialize with max cdclk till
5862          * we get dynamic cdclk support
5863          * */
5864         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5865         skl_init_cdclk(dev_priv);
5866
5867         /* we did have to sanitize */
5868         return true;
5869 }
5870
5871 /* Adjust CDclk dividers to allow high res or save power if possible */
5872 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5873 {
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875         u32 val, cmd;
5876
5877         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5878                                         != dev_priv->cdclk_freq);
5879
5880         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5881                 cmd = 2;
5882         else if (cdclk == 266667)
5883                 cmd = 1;
5884         else
5885                 cmd = 0;
5886
5887         mutex_lock(&dev_priv->rps.hw_lock);
5888         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5889         val &= ~DSPFREQGUAR_MASK;
5890         val |= (cmd << DSPFREQGUAR_SHIFT);
5891         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5892         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5893                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5894                      50)) {
5895                 DRM_ERROR("timed out waiting for CDclk change\n");
5896         }
5897         mutex_unlock(&dev_priv->rps.hw_lock);
5898
5899         mutex_lock(&dev_priv->sb_lock);
5900
5901         if (cdclk == 400000) {
5902                 u32 divider;
5903
5904                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5905
5906                 /* adjust cdclk divider */
5907                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5908                 val &= ~CCK_FREQUENCY_VALUES;
5909                 val |= divider;
5910                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5911
5912                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5913                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5914                              50))
5915                         DRM_ERROR("timed out waiting for CDclk change\n");
5916         }
5917
5918         /* adjust self-refresh exit latency value */
5919         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5920         val &= ~0x7f;
5921
5922         /*
5923          * For high bandwidth configs, we set a higher latency in the bunit
5924          * so that the core display fetch happens in time to avoid underruns.
5925          */
5926         if (cdclk == 400000)
5927                 val |= 4500 / 250; /* 4.5 usec */
5928         else
5929                 val |= 3000 / 250; /* 3.0 usec */
5930         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5931
5932         mutex_unlock(&dev_priv->sb_lock);
5933
5934         intel_update_cdclk(dev);
5935 }
5936
5937 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5938 {
5939         struct drm_i915_private *dev_priv = dev->dev_private;
5940         u32 val, cmd;
5941
5942         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5943                                                 != dev_priv->cdclk_freq);
5944
5945         switch (cdclk) {
5946         case 333333:
5947         case 320000:
5948         case 266667:
5949         case 200000:
5950                 break;
5951         default:
5952                 MISSING_CASE(cdclk);
5953                 return;
5954         }
5955
5956         /*
5957          * Specs are full of misinformation, but testing on actual
5958          * hardware has shown that we just need to write the desired
5959          * CCK divider into the Punit register.
5960          */
5961         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5962
5963         mutex_lock(&dev_priv->rps.hw_lock);
5964         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5965         val &= ~DSPFREQGUAR_MASK_CHV;
5966         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5967         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5968         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5969                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5970                      50)) {
5971                 DRM_ERROR("timed out waiting for CDclk change\n");
5972         }
5973         mutex_unlock(&dev_priv->rps.hw_lock);
5974
5975         intel_update_cdclk(dev);
5976 }
5977
5978 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5979                                  int max_pixclk)
5980 {
5981         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5982         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5983
5984         /*
5985          * Really only a few cases to deal with, as only 4 CDclks are supported:
5986          *   200MHz
5987          *   267MHz
5988          *   320/333MHz (depends on HPLL freq)
5989          *   400MHz (VLV only)
5990          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5991          * of the lower bin and adjust if needed.
5992          *
5993          * We seem to get an unstable or solid color picture at 200MHz.
5994          * Not sure what's wrong. For now use 200MHz only when all pipes
5995          * are off.
5996          */
5997         if (!IS_CHERRYVIEW(dev_priv) &&
5998             max_pixclk > freq_320*limit/100)
5999                 return 400000;
6000         else if (max_pixclk > 266667*limit/100)
6001                 return freq_320;
6002         else if (max_pixclk > 0)
6003                 return 266667;
6004         else
6005                 return 200000;
6006 }
6007
6008 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6009                               int max_pixclk)
6010 {
6011         /*
6012          * FIXME:
6013          * - remove the guardband, it's not needed on BXT
6014          * - set 19.2MHz bypass frequency if there are no active pipes
6015          */
6016         if (max_pixclk > 576000*9/10)
6017                 return 624000;
6018         else if (max_pixclk > 384000*9/10)
6019                 return 576000;
6020         else if (max_pixclk > 288000*9/10)
6021                 return 384000;
6022         else if (max_pixclk > 144000*9/10)
6023                 return 288000;
6024         else
6025                 return 144000;
6026 }
6027
6028 /* Compute the max pixel clock for new configuration. */
6029 static int intel_mode_max_pixclk(struct drm_device *dev,
6030                                  struct drm_atomic_state *state)
6031 {
6032         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6033         struct drm_i915_private *dev_priv = dev->dev_private;
6034         struct drm_crtc *crtc;
6035         struct drm_crtc_state *crtc_state;
6036         unsigned max_pixclk = 0, i;
6037         enum pipe pipe;
6038
6039         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6040                sizeof(intel_state->min_pixclk));
6041
6042         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6043                 int pixclk = 0;
6044
6045                 if (crtc_state->enable)
6046                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6047
6048                 intel_state->min_pixclk[i] = pixclk;
6049         }
6050
6051         for_each_pipe(dev_priv, pipe)
6052                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6053
6054         return max_pixclk;
6055 }
6056
6057 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6058 {
6059         struct drm_device *dev = state->dev;
6060         struct drm_i915_private *dev_priv = dev->dev_private;
6061         int max_pixclk = intel_mode_max_pixclk(dev, state);
6062         struct intel_atomic_state *intel_state =
6063                 to_intel_atomic_state(state);
6064
6065         if (max_pixclk < 0)
6066                 return max_pixclk;
6067
6068         intel_state->cdclk = intel_state->dev_cdclk =
6069                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6070
6071         if (!intel_state->active_crtcs)
6072                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6073
6074         return 0;
6075 }
6076
6077 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6078 {
6079         struct drm_device *dev = state->dev;
6080         struct drm_i915_private *dev_priv = dev->dev_private;
6081         int max_pixclk = intel_mode_max_pixclk(dev, state);
6082         struct intel_atomic_state *intel_state =
6083                 to_intel_atomic_state(state);
6084
6085         if (max_pixclk < 0)
6086                 return max_pixclk;
6087
6088         intel_state->cdclk = intel_state->dev_cdclk =
6089                 broxton_calc_cdclk(dev_priv, max_pixclk);
6090
6091         if (!intel_state->active_crtcs)
6092                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6093
6094         return 0;
6095 }
6096
6097 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6098 {
6099         unsigned int credits, default_credits;
6100
6101         if (IS_CHERRYVIEW(dev_priv))
6102                 default_credits = PFI_CREDIT(12);
6103         else
6104                 default_credits = PFI_CREDIT(8);
6105
6106         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6107                 /* CHV suggested value is 31 or 63 */
6108                 if (IS_CHERRYVIEW(dev_priv))
6109                         credits = PFI_CREDIT_63;
6110                 else
6111                         credits = PFI_CREDIT(15);
6112         } else {
6113                 credits = default_credits;
6114         }
6115
6116         /*
6117          * WA - write default credits before re-programming
6118          * FIXME: should we also set the resend bit here?
6119          */
6120         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6121                    default_credits);
6122
6123         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6124                    credits | PFI_CREDIT_RESEND);
6125
6126         /*
6127          * FIXME is this guaranteed to clear
6128          * immediately or should we poll for it?
6129          */
6130         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6131 }
6132
6133 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6134 {
6135         struct drm_device *dev = old_state->dev;
6136         struct drm_i915_private *dev_priv = dev->dev_private;
6137         struct intel_atomic_state *old_intel_state =
6138                 to_intel_atomic_state(old_state);
6139         unsigned req_cdclk = old_intel_state->dev_cdclk;
6140
6141         /*
6142          * FIXME: We can end up here with all power domains off, yet
6143          * with a CDCLK frequency other than the minimum. To account
6144          * for this take the PIPE-A power domain, which covers the HW
6145          * blocks needed for the following programming. This can be
6146          * removed once it's guaranteed that we get here either with
6147          * the minimum CDCLK set, or the required power domains
6148          * enabled.
6149          */
6150         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6151
6152         if (IS_CHERRYVIEW(dev))
6153                 cherryview_set_cdclk(dev, req_cdclk);
6154         else
6155                 valleyview_set_cdclk(dev, req_cdclk);
6156
6157         vlv_program_pfi_credits(dev_priv);
6158
6159         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6160 }
6161
6162 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6163 {
6164         struct drm_device *dev = crtc->dev;
6165         struct drm_i915_private *dev_priv = to_i915(dev);
6166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6167         struct intel_encoder *encoder;
6168         int pipe = intel_crtc->pipe;
6169
6170         if (WARN_ON(intel_crtc->active))
6171                 return;
6172
6173         if (intel_crtc->config->has_dp_encoder)
6174                 intel_dp_set_m_n(intel_crtc, M1_N1);
6175
6176         intel_set_pipe_timings(intel_crtc);
6177
6178         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6179                 struct drm_i915_private *dev_priv = dev->dev_private;
6180
6181                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6182                 I915_WRITE(CHV_CANVAS(pipe), 0);
6183         }
6184
6185         i9xx_set_pipeconf(intel_crtc);
6186
6187         intel_crtc->active = true;
6188
6189         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6190
6191         for_each_encoder_on_crtc(dev, crtc, encoder)
6192                 if (encoder->pre_pll_enable)
6193                         encoder->pre_pll_enable(encoder);
6194
6195         if (!intel_crtc->config->has_dsi_encoder) {
6196                 if (IS_CHERRYVIEW(dev)) {
6197                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6198                         chv_enable_pll(intel_crtc, intel_crtc->config);
6199                 } else {
6200                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6201                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6202                 }
6203         }
6204
6205         for_each_encoder_on_crtc(dev, crtc, encoder)
6206                 if (encoder->pre_enable)
6207                         encoder->pre_enable(encoder);
6208
6209         i9xx_pfit_enable(intel_crtc);
6210
6211         intel_crtc_load_lut(crtc);
6212
6213         intel_enable_pipe(intel_crtc);
6214
6215         assert_vblank_disabled(crtc);
6216         drm_crtc_vblank_on(crtc);
6217
6218         for_each_encoder_on_crtc(dev, crtc, encoder)
6219                 encoder->enable(encoder);
6220 }
6221
6222 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6223 {
6224         struct drm_device *dev = crtc->base.dev;
6225         struct drm_i915_private *dev_priv = dev->dev_private;
6226
6227         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6228         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6229 }
6230
6231 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6232 {
6233         struct drm_device *dev = crtc->dev;
6234         struct drm_i915_private *dev_priv = to_i915(dev);
6235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6236         struct intel_encoder *encoder;
6237         int pipe = intel_crtc->pipe;
6238
6239         if (WARN_ON(intel_crtc->active))
6240                 return;
6241
6242         i9xx_set_pll_dividers(intel_crtc);
6243
6244         if (intel_crtc->config->has_dp_encoder)
6245                 intel_dp_set_m_n(intel_crtc, M1_N1);
6246
6247         intel_set_pipe_timings(intel_crtc);
6248
6249         i9xx_set_pipeconf(intel_crtc);
6250
6251         intel_crtc->active = true;
6252
6253         if (!IS_GEN2(dev))
6254                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6255
6256         for_each_encoder_on_crtc(dev, crtc, encoder)
6257                 if (encoder->pre_enable)
6258                         encoder->pre_enable(encoder);
6259
6260         i9xx_enable_pll(intel_crtc);
6261
6262         i9xx_pfit_enable(intel_crtc);
6263
6264         intel_crtc_load_lut(crtc);
6265
6266         intel_update_watermarks(crtc);
6267         intel_enable_pipe(intel_crtc);
6268
6269         assert_vblank_disabled(crtc);
6270         drm_crtc_vblank_on(crtc);
6271
6272         for_each_encoder_on_crtc(dev, crtc, encoder)
6273                 encoder->enable(encoder);
6274 }
6275
6276 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6277 {
6278         struct drm_device *dev = crtc->base.dev;
6279         struct drm_i915_private *dev_priv = dev->dev_private;
6280
6281         if (!crtc->config->gmch_pfit.control)
6282                 return;
6283
6284         assert_pipe_disabled(dev_priv, crtc->pipe);
6285
6286         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6287                          I915_READ(PFIT_CONTROL));
6288         I915_WRITE(PFIT_CONTROL, 0);
6289 }
6290
6291 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6292 {
6293         struct drm_device *dev = crtc->dev;
6294         struct drm_i915_private *dev_priv = dev->dev_private;
6295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6296         struct intel_encoder *encoder;
6297         int pipe = intel_crtc->pipe;
6298
6299         /*
6300          * On gen2 planes are double buffered but the pipe isn't, so we must
6301          * wait for planes to fully turn off before disabling the pipe.
6302          * We also need to wait on all gmch platforms because of the
6303          * self-refresh mode constraint explained above.
6304          */
6305         intel_wait_for_vblank(dev, pipe);
6306
6307         for_each_encoder_on_crtc(dev, crtc, encoder)
6308                 encoder->disable(encoder);
6309
6310         drm_crtc_vblank_off(crtc);
6311         assert_vblank_disabled(crtc);
6312
6313         intel_disable_pipe(intel_crtc);
6314
6315         i9xx_pfit_disable(intel_crtc);
6316
6317         for_each_encoder_on_crtc(dev, crtc, encoder)
6318                 if (encoder->post_disable)
6319                         encoder->post_disable(encoder);
6320
6321         if (!intel_crtc->config->has_dsi_encoder) {
6322                 if (IS_CHERRYVIEW(dev))
6323                         chv_disable_pll(dev_priv, pipe);
6324                 else if (IS_VALLEYVIEW(dev))
6325                         vlv_disable_pll(dev_priv, pipe);
6326                 else
6327                         i9xx_disable_pll(intel_crtc);
6328         }
6329
6330         for_each_encoder_on_crtc(dev, crtc, encoder)
6331                 if (encoder->post_pll_disable)
6332                         encoder->post_pll_disable(encoder);
6333
6334         if (!IS_GEN2(dev))
6335                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6336 }
6337
6338 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6339 {
6340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6341         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6342         enum intel_display_power_domain domain;
6343         unsigned long domains;
6344
6345         if (!intel_crtc->active)
6346                 return;
6347
6348         if (to_intel_plane_state(crtc->primary->state)->visible) {
6349                 WARN_ON(intel_crtc->unpin_work);
6350
6351                 intel_pre_disable_primary(crtc);
6352
6353                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6354                 to_intel_plane_state(crtc->primary->state)->visible = false;
6355         }
6356
6357         dev_priv->display.crtc_disable(crtc);
6358         intel_crtc->active = false;
6359         intel_fbc_disable(intel_crtc);
6360         intel_update_watermarks(crtc);
6361         intel_disable_shared_dpll(intel_crtc);
6362
6363         domains = intel_crtc->enabled_power_domains;
6364         for_each_power_domain(domain, domains)
6365                 intel_display_power_put(dev_priv, domain);
6366         intel_crtc->enabled_power_domains = 0;
6367
6368         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6369         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6370 }
6371
6372 /*
6373  * turn all crtc's off, but do not adjust state
6374  * This has to be paired with a call to intel_modeset_setup_hw_state.
6375  */
6376 int intel_display_suspend(struct drm_device *dev)
6377 {
6378         struct drm_i915_private *dev_priv = to_i915(dev);
6379         struct drm_atomic_state *state;
6380         int ret;
6381
6382         state = drm_atomic_helper_suspend(dev);
6383         ret = PTR_ERR_OR_ZERO(state);
6384         if (ret)
6385                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6386         else
6387                 dev_priv->modeset_restore_state = state;
6388         return ret;
6389 }
6390
6391 void intel_encoder_destroy(struct drm_encoder *encoder)
6392 {
6393         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6394
6395         drm_encoder_cleanup(encoder);
6396         kfree(intel_encoder);
6397 }
6398
6399 /* Cross check the actual hw state with our own modeset state tracking (and it's
6400  * internal consistency). */
6401 static void intel_connector_check_state(struct intel_connector *connector)
6402 {
6403         struct drm_crtc *crtc = connector->base.state->crtc;
6404
6405         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6406                       connector->base.base.id,
6407                       connector->base.name);
6408
6409         if (connector->get_hw_state(connector)) {
6410                 struct intel_encoder *encoder = connector->encoder;
6411                 struct drm_connector_state *conn_state = connector->base.state;
6412
6413                 I915_STATE_WARN(!crtc,
6414                          "connector enabled without attached crtc\n");
6415
6416                 if (!crtc)
6417                         return;
6418
6419                 I915_STATE_WARN(!crtc->state->active,
6420                       "connector is active, but attached crtc isn't\n");
6421
6422                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6423                         return;
6424
6425                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6426                         "atomic encoder doesn't match attached encoder\n");
6427
6428                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6429                         "attached encoder crtc differs from connector crtc\n");
6430         } else {
6431                 I915_STATE_WARN(crtc && crtc->state->active,
6432                         "attached crtc is active, but connector isn't\n");
6433                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6434                         "best encoder set without crtc!\n");
6435         }
6436 }
6437
6438 int intel_connector_init(struct intel_connector *connector)
6439 {
6440         drm_atomic_helper_connector_reset(&connector->base);
6441
6442         if (!connector->base.state)
6443                 return -ENOMEM;
6444
6445         return 0;
6446 }
6447
6448 struct intel_connector *intel_connector_alloc(void)
6449 {
6450         struct intel_connector *connector;
6451
6452         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6453         if (!connector)
6454                 return NULL;
6455
6456         if (intel_connector_init(connector) < 0) {
6457                 kfree(connector);
6458                 return NULL;
6459         }
6460
6461         return connector;
6462 }
6463
6464 /* Simple connector->get_hw_state implementation for encoders that support only
6465  * one connector and no cloning and hence the encoder state determines the state
6466  * of the connector. */
6467 bool intel_connector_get_hw_state(struct intel_connector *connector)
6468 {
6469         enum pipe pipe = 0;
6470         struct intel_encoder *encoder = connector->encoder;
6471
6472         return encoder->get_hw_state(encoder, &pipe);
6473 }
6474
6475 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6476 {
6477         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6478                 return crtc_state->fdi_lanes;
6479
6480         return 0;
6481 }
6482
6483 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6484                                      struct intel_crtc_state *pipe_config)
6485 {
6486         struct drm_atomic_state *state = pipe_config->base.state;
6487         struct intel_crtc *other_crtc;
6488         struct intel_crtc_state *other_crtc_state;
6489
6490         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6491                       pipe_name(pipe), pipe_config->fdi_lanes);
6492         if (pipe_config->fdi_lanes > 4) {
6493                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6494                               pipe_name(pipe), pipe_config->fdi_lanes);
6495                 return -EINVAL;
6496         }
6497
6498         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6499                 if (pipe_config->fdi_lanes > 2) {
6500                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6501                                       pipe_config->fdi_lanes);
6502                         return -EINVAL;
6503                 } else {
6504                         return 0;
6505                 }
6506         }
6507
6508         if (INTEL_INFO(dev)->num_pipes == 2)
6509                 return 0;
6510
6511         /* Ivybridge 3 pipe is really complicated */
6512         switch (pipe) {
6513         case PIPE_A:
6514                 return 0;
6515         case PIPE_B:
6516                 if (pipe_config->fdi_lanes <= 2)
6517                         return 0;
6518
6519                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6520                 other_crtc_state =
6521                         intel_atomic_get_crtc_state(state, other_crtc);
6522                 if (IS_ERR(other_crtc_state))
6523                         return PTR_ERR(other_crtc_state);
6524
6525                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6526                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6527                                       pipe_name(pipe), pipe_config->fdi_lanes);
6528                         return -EINVAL;
6529                 }
6530                 return 0;
6531         case PIPE_C:
6532                 if (pipe_config->fdi_lanes > 2) {
6533                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6534                                       pipe_name(pipe), pipe_config->fdi_lanes);
6535                         return -EINVAL;
6536                 }
6537
6538                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6539                 other_crtc_state =
6540                         intel_atomic_get_crtc_state(state, other_crtc);
6541                 if (IS_ERR(other_crtc_state))
6542                         return PTR_ERR(other_crtc_state);
6543
6544                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6545                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6546                         return -EINVAL;
6547                 }
6548                 return 0;
6549         default:
6550                 BUG();
6551         }
6552 }
6553
6554 #define RETRY 1
6555 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6556                                        struct intel_crtc_state *pipe_config)
6557 {
6558         struct drm_device *dev = intel_crtc->base.dev;
6559         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6560         int lane, link_bw, fdi_dotclock, ret;
6561         bool needs_recompute = false;
6562
6563 retry:
6564         /* FDI is a binary signal running at ~2.7GHz, encoding
6565          * each output octet as 10 bits. The actual frequency
6566          * is stored as a divider into a 100MHz clock, and the
6567          * mode pixel clock is stored in units of 1KHz.
6568          * Hence the bw of each lane in terms of the mode signal
6569          * is:
6570          */
6571         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6572
6573         fdi_dotclock = adjusted_mode->crtc_clock;
6574
6575         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6576                                            pipe_config->pipe_bpp);
6577
6578         pipe_config->fdi_lanes = lane;
6579
6580         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6581                                link_bw, &pipe_config->fdi_m_n);
6582
6583         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6584                                        intel_crtc->pipe, pipe_config);
6585         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6586                 pipe_config->pipe_bpp -= 2*3;
6587                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6588                               pipe_config->pipe_bpp);
6589                 needs_recompute = true;
6590                 pipe_config->bw_constrained = true;
6591
6592                 goto retry;
6593         }
6594
6595         if (needs_recompute)
6596                 return RETRY;
6597
6598         return ret;
6599 }
6600
6601 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6602                                      struct intel_crtc_state *pipe_config)
6603 {
6604         if (pipe_config->pipe_bpp > 24)
6605                 return false;
6606
6607         /* HSW can handle pixel rate up to cdclk? */
6608         if (IS_HASWELL(dev_priv->dev))
6609                 return true;
6610
6611         /*
6612          * We compare against max which means we must take
6613          * the increased cdclk requirement into account when
6614          * calculating the new cdclk.
6615          *
6616          * Should measure whether using a lower cdclk w/o IPS
6617          */
6618         return ilk_pipe_pixel_rate(pipe_config) <=
6619                 dev_priv->max_cdclk_freq * 95 / 100;
6620 }
6621
6622 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6623                                    struct intel_crtc_state *pipe_config)
6624 {
6625         struct drm_device *dev = crtc->base.dev;
6626         struct drm_i915_private *dev_priv = dev->dev_private;
6627
6628         pipe_config->ips_enabled = i915.enable_ips &&
6629                 hsw_crtc_supports_ips(crtc) &&
6630                 pipe_config_supports_ips(dev_priv, pipe_config);
6631 }
6632
6633 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6634 {
6635         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6636
6637         /* GDG double wide on either pipe, otherwise pipe A only */
6638         return INTEL_INFO(dev_priv)->gen < 4 &&
6639                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6640 }
6641
6642 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6643                                      struct intel_crtc_state *pipe_config)
6644 {
6645         struct drm_device *dev = crtc->base.dev;
6646         struct drm_i915_private *dev_priv = dev->dev_private;
6647         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6648
6649         /* FIXME should check pixel clock limits on all platforms */
6650         if (INTEL_INFO(dev)->gen < 4) {
6651                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6652
6653                 /*
6654                  * Enable double wide mode when the dot clock
6655                  * is > 90% of the (display) core speed.
6656                  */
6657                 if (intel_crtc_supports_double_wide(crtc) &&
6658                     adjusted_mode->crtc_clock > clock_limit) {
6659                         clock_limit *= 2;
6660                         pipe_config->double_wide = true;
6661                 }
6662
6663                 if (adjusted_mode->crtc_clock > clock_limit) {
6664                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6665                                       adjusted_mode->crtc_clock, clock_limit,
6666                                       yesno(pipe_config->double_wide));
6667                         return -EINVAL;
6668                 }
6669         }
6670
6671         /*
6672          * Pipe horizontal size must be even in:
6673          * - DVO ganged mode
6674          * - LVDS dual channel mode
6675          * - Double wide pipe
6676          */
6677         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6678              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6679                 pipe_config->pipe_src_w &= ~1;
6680
6681         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6682          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6683          */
6684         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6685                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6686                 return -EINVAL;
6687
6688         if (HAS_IPS(dev))
6689                 hsw_compute_ips_config(crtc, pipe_config);
6690
6691         if (pipe_config->has_pch_encoder)
6692                 return ironlake_fdi_compute_config(crtc, pipe_config);
6693
6694         return 0;
6695 }
6696
6697 static int skylake_get_display_clock_speed(struct drm_device *dev)
6698 {
6699         struct drm_i915_private *dev_priv = to_i915(dev);
6700         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6701         uint32_t cdctl = I915_READ(CDCLK_CTL);
6702         uint32_t linkrate;
6703
6704         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6705                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6706
6707         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6708                 return 540000;
6709
6710         linkrate = (I915_READ(DPLL_CTRL1) &
6711                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6712
6713         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6714             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6715                 /* vco 8640 */
6716                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6717                 case CDCLK_FREQ_450_432:
6718                         return 432000;
6719                 case CDCLK_FREQ_337_308:
6720                         return 308570;
6721                 case CDCLK_FREQ_675_617:
6722                         return 617140;
6723                 default:
6724                         WARN(1, "Unknown cd freq selection\n");
6725                 }
6726         } else {
6727                 /* vco 8100 */
6728                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6729                 case CDCLK_FREQ_450_432:
6730                         return 450000;
6731                 case CDCLK_FREQ_337_308:
6732                         return 337500;
6733                 case CDCLK_FREQ_675_617:
6734                         return 675000;
6735                 default:
6736                         WARN(1, "Unknown cd freq selection\n");
6737                 }
6738         }
6739
6740         /* error case, do as if DPLL0 isn't enabled */
6741         return 24000;
6742 }
6743
6744 static int broxton_get_display_clock_speed(struct drm_device *dev)
6745 {
6746         struct drm_i915_private *dev_priv = to_i915(dev);
6747         uint32_t cdctl = I915_READ(CDCLK_CTL);
6748         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6749         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6750         int cdclk;
6751
6752         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6753                 return 19200;
6754
6755         cdclk = 19200 * pll_ratio / 2;
6756
6757         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6758         case BXT_CDCLK_CD2X_DIV_SEL_1:
6759                 return cdclk;  /* 576MHz or 624MHz */
6760         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6761                 return cdclk * 2 / 3; /* 384MHz */
6762         case BXT_CDCLK_CD2X_DIV_SEL_2:
6763                 return cdclk / 2; /* 288MHz */
6764         case BXT_CDCLK_CD2X_DIV_SEL_4:
6765                 return cdclk / 4; /* 144MHz */
6766         }
6767
6768         /* error case, do as if DE PLL isn't enabled */
6769         return 19200;
6770 }
6771
6772 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6773 {
6774         struct drm_i915_private *dev_priv = dev->dev_private;
6775         uint32_t lcpll = I915_READ(LCPLL_CTL);
6776         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6777
6778         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6779                 return 800000;
6780         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6781                 return 450000;
6782         else if (freq == LCPLL_CLK_FREQ_450)
6783                 return 450000;
6784         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6785                 return 540000;
6786         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6787                 return 337500;
6788         else
6789                 return 675000;
6790 }
6791
6792 static int haswell_get_display_clock_speed(struct drm_device *dev)
6793 {
6794         struct drm_i915_private *dev_priv = dev->dev_private;
6795         uint32_t lcpll = I915_READ(LCPLL_CTL);
6796         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6797
6798         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6799                 return 800000;
6800         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6801                 return 450000;
6802         else if (freq == LCPLL_CLK_FREQ_450)
6803                 return 450000;
6804         else if (IS_HSW_ULT(dev))
6805                 return 337500;
6806         else
6807                 return 540000;
6808 }
6809
6810 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6811 {
6812         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6813                                       CCK_DISPLAY_CLOCK_CONTROL);
6814 }
6815
6816 static int ilk_get_display_clock_speed(struct drm_device *dev)
6817 {
6818         return 450000;
6819 }
6820
6821 static int i945_get_display_clock_speed(struct drm_device *dev)
6822 {
6823         return 400000;
6824 }
6825
6826 static int i915_get_display_clock_speed(struct drm_device *dev)
6827 {
6828         return 333333;
6829 }
6830
6831 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6832 {
6833         return 200000;
6834 }
6835
6836 static int pnv_get_display_clock_speed(struct drm_device *dev)
6837 {
6838         u16 gcfgc = 0;
6839
6840         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6841
6842         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6843         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6844                 return 266667;
6845         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6846                 return 333333;
6847         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6848                 return 444444;
6849         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6850                 return 200000;
6851         default:
6852                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6853         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6854                 return 133333;
6855         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6856                 return 166667;
6857         }
6858 }
6859
6860 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6861 {
6862         u16 gcfgc = 0;
6863
6864         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6865
6866         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6867                 return 133333;
6868         else {
6869                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6870                 case GC_DISPLAY_CLOCK_333_MHZ:
6871                         return 333333;
6872                 default:
6873                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6874                         return 190000;
6875                 }
6876         }
6877 }
6878
6879 static int i865_get_display_clock_speed(struct drm_device *dev)
6880 {
6881         return 266667;
6882 }
6883
6884 static int i85x_get_display_clock_speed(struct drm_device *dev)
6885 {
6886         u16 hpllcc = 0;
6887
6888         /*
6889          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6890          * encoding is different :(
6891          * FIXME is this the right way to detect 852GM/852GMV?
6892          */
6893         if (dev->pdev->revision == 0x1)
6894                 return 133333;
6895
6896         pci_bus_read_config_word(dev->pdev->bus,
6897                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6898
6899         /* Assume that the hardware is in the high speed state.  This
6900          * should be the default.
6901          */
6902         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6903         case GC_CLOCK_133_200:
6904         case GC_CLOCK_133_200_2:
6905         case GC_CLOCK_100_200:
6906                 return 200000;
6907         case GC_CLOCK_166_250:
6908                 return 250000;
6909         case GC_CLOCK_100_133:
6910                 return 133333;
6911         case GC_CLOCK_133_266:
6912         case GC_CLOCK_133_266_2:
6913         case GC_CLOCK_166_266:
6914                 return 266667;
6915         }
6916
6917         /* Shouldn't happen */
6918         return 0;
6919 }
6920
6921 static int i830_get_display_clock_speed(struct drm_device *dev)
6922 {
6923         return 133333;
6924 }
6925
6926 static unsigned int intel_hpll_vco(struct drm_device *dev)
6927 {
6928         struct drm_i915_private *dev_priv = dev->dev_private;
6929         static const unsigned int blb_vco[8] = {
6930                 [0] = 3200000,
6931                 [1] = 4000000,
6932                 [2] = 5333333,
6933                 [3] = 4800000,
6934                 [4] = 6400000,
6935         };
6936         static const unsigned int pnv_vco[8] = {
6937                 [0] = 3200000,
6938                 [1] = 4000000,
6939                 [2] = 5333333,
6940                 [3] = 4800000,
6941                 [4] = 2666667,
6942         };
6943         static const unsigned int cl_vco[8] = {
6944                 [0] = 3200000,
6945                 [1] = 4000000,
6946                 [2] = 5333333,
6947                 [3] = 6400000,
6948                 [4] = 3333333,
6949                 [5] = 3566667,
6950                 [6] = 4266667,
6951         };
6952         static const unsigned int elk_vco[8] = {
6953                 [0] = 3200000,
6954                 [1] = 4000000,
6955                 [2] = 5333333,
6956                 [3] = 4800000,
6957         };
6958         static const unsigned int ctg_vco[8] = {
6959                 [0] = 3200000,
6960                 [1] = 4000000,
6961                 [2] = 5333333,
6962                 [3] = 6400000,
6963                 [4] = 2666667,
6964                 [5] = 4266667,
6965         };
6966         const unsigned int *vco_table;
6967         unsigned int vco;
6968         uint8_t tmp = 0;
6969
6970         /* FIXME other chipsets? */
6971         if (IS_GM45(dev))
6972                 vco_table = ctg_vco;
6973         else if (IS_G4X(dev))
6974                 vco_table = elk_vco;
6975         else if (IS_CRESTLINE(dev))
6976                 vco_table = cl_vco;
6977         else if (IS_PINEVIEW(dev))
6978                 vco_table = pnv_vco;
6979         else if (IS_G33(dev))
6980                 vco_table = blb_vco;
6981         else
6982                 return 0;
6983
6984         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6985
6986         vco = vco_table[tmp & 0x7];
6987         if (vco == 0)
6988                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6989         else
6990                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6991
6992         return vco;
6993 }
6994
6995 static int gm45_get_display_clock_speed(struct drm_device *dev)
6996 {
6997         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6998         uint16_t tmp = 0;
6999
7000         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7001
7002         cdclk_sel = (tmp >> 12) & 0x1;
7003
7004         switch (vco) {
7005         case 2666667:
7006         case 4000000:
7007         case 5333333:
7008                 return cdclk_sel ? 333333 : 222222;
7009         case 3200000:
7010                 return cdclk_sel ? 320000 : 228571;
7011         default:
7012                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7013                 return 222222;
7014         }
7015 }
7016
7017 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7018 {
7019         static const uint8_t div_3200[] = { 16, 10,  8 };
7020         static const uint8_t div_4000[] = { 20, 12, 10 };
7021         static const uint8_t div_5333[] = { 24, 16, 14 };
7022         const uint8_t *div_table;
7023         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7024         uint16_t tmp = 0;
7025
7026         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7027
7028         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7029
7030         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7031                 goto fail;
7032
7033         switch (vco) {
7034         case 3200000:
7035                 div_table = div_3200;
7036                 break;
7037         case 4000000:
7038                 div_table = div_4000;
7039                 break;
7040         case 5333333:
7041                 div_table = div_5333;
7042                 break;
7043         default:
7044                 goto fail;
7045         }
7046
7047         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7048
7049 fail:
7050         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7051         return 200000;
7052 }
7053
7054 static int g33_get_display_clock_speed(struct drm_device *dev)
7055 {
7056         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7057         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7058         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7059         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7060         const uint8_t *div_table;
7061         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7062         uint16_t tmp = 0;
7063
7064         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7065
7066         cdclk_sel = (tmp >> 4) & 0x7;
7067
7068         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7069                 goto fail;
7070
7071         switch (vco) {
7072         case 3200000:
7073                 div_table = div_3200;
7074                 break;
7075         case 4000000:
7076                 div_table = div_4000;
7077                 break;
7078         case 4800000:
7079                 div_table = div_4800;
7080                 break;
7081         case 5333333:
7082                 div_table = div_5333;
7083                 break;
7084         default:
7085                 goto fail;
7086         }
7087
7088         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7089
7090 fail:
7091         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7092         return 190476;
7093 }
7094
7095 static void
7096 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7097 {
7098         while (*num > DATA_LINK_M_N_MASK ||
7099                *den > DATA_LINK_M_N_MASK) {
7100                 *num >>= 1;
7101                 *den >>= 1;
7102         }
7103 }
7104
7105 static void compute_m_n(unsigned int m, unsigned int n,
7106                         uint32_t *ret_m, uint32_t *ret_n)
7107 {
7108         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7109         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7110         intel_reduce_m_n_ratio(ret_m, ret_n);
7111 }
7112
7113 void
7114 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7115                        int pixel_clock, int link_clock,
7116                        struct intel_link_m_n *m_n)
7117 {
7118         m_n->tu = 64;
7119
7120         compute_m_n(bits_per_pixel * pixel_clock,
7121                     link_clock * nlanes * 8,
7122                     &m_n->gmch_m, &m_n->gmch_n);
7123
7124         compute_m_n(pixel_clock, link_clock,
7125                     &m_n->link_m, &m_n->link_n);
7126 }
7127
7128 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7129 {
7130         if (i915.panel_use_ssc >= 0)
7131                 return i915.panel_use_ssc != 0;
7132         return dev_priv->vbt.lvds_use_ssc
7133                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7134 }
7135
7136 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7137                            int num_connectors)
7138 {
7139         struct drm_device *dev = crtc_state->base.crtc->dev;
7140         struct drm_i915_private *dev_priv = dev->dev_private;
7141         int refclk;
7142
7143         WARN_ON(!crtc_state->base.state);
7144
7145         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7146                 refclk = 100000;
7147         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7148             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7149                 refclk = dev_priv->vbt.lvds_ssc_freq;
7150                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7151         } else if (!IS_GEN2(dev)) {
7152                 refclk = 96000;
7153         } else {
7154                 refclk = 48000;
7155         }
7156
7157         return refclk;
7158 }
7159
7160 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7161 {
7162         return (1 << dpll->n) << 16 | dpll->m2;
7163 }
7164
7165 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7166 {
7167         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7168 }
7169
7170 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7171                                      struct intel_crtc_state *crtc_state,
7172                                      intel_clock_t *reduced_clock)
7173 {
7174         struct drm_device *dev = crtc->base.dev;
7175         u32 fp, fp2 = 0;
7176
7177         if (IS_PINEVIEW(dev)) {
7178                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7179                 if (reduced_clock)
7180                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7181         } else {
7182                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7183                 if (reduced_clock)
7184                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7185         }
7186
7187         crtc_state->dpll_hw_state.fp0 = fp;
7188
7189         crtc->lowfreq_avail = false;
7190         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7191             reduced_clock) {
7192                 crtc_state->dpll_hw_state.fp1 = fp2;
7193                 crtc->lowfreq_avail = true;
7194         } else {
7195                 crtc_state->dpll_hw_state.fp1 = fp;
7196         }
7197 }
7198
7199 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7200                 pipe)
7201 {
7202         u32 reg_val;
7203
7204         /*
7205          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7206          * and set it to a reasonable value instead.
7207          */
7208         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7209         reg_val &= 0xffffff00;
7210         reg_val |= 0x00000030;
7211         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7212
7213         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7214         reg_val &= 0x8cffffff;
7215         reg_val = 0x8c000000;
7216         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7217
7218         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7219         reg_val &= 0xffffff00;
7220         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7221
7222         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7223         reg_val &= 0x00ffffff;
7224         reg_val |= 0xb0000000;
7225         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7226 }
7227
7228 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7229                                          struct intel_link_m_n *m_n)
7230 {
7231         struct drm_device *dev = crtc->base.dev;
7232         struct drm_i915_private *dev_priv = dev->dev_private;
7233         int pipe = crtc->pipe;
7234
7235         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7236         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7237         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7238         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7239 }
7240
7241 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7242                                          struct intel_link_m_n *m_n,
7243                                          struct intel_link_m_n *m2_n2)
7244 {
7245         struct drm_device *dev = crtc->base.dev;
7246         struct drm_i915_private *dev_priv = dev->dev_private;
7247         int pipe = crtc->pipe;
7248         enum transcoder transcoder = crtc->config->cpu_transcoder;
7249
7250         if (INTEL_INFO(dev)->gen >= 5) {
7251                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7252                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7253                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7254                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7255                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7256                  * for gen < 8) and if DRRS is supported (to make sure the
7257                  * registers are not unnecessarily accessed).
7258                  */
7259                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7260                         crtc->config->has_drrs) {
7261                         I915_WRITE(PIPE_DATA_M2(transcoder),
7262                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7263                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7264                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7265                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7266                 }
7267         } else {
7268                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7269                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7270                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7271                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7272         }
7273 }
7274
7275 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7276 {
7277         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7278
7279         if (m_n == M1_N1) {
7280                 dp_m_n = &crtc->config->dp_m_n;
7281                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7282         } else if (m_n == M2_N2) {
7283
7284                 /*
7285                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7286                  * needs to be programmed into M1_N1.
7287                  */
7288                 dp_m_n = &crtc->config->dp_m2_n2;
7289         } else {
7290                 DRM_ERROR("Unsupported divider value\n");
7291                 return;
7292         }
7293
7294         if (crtc->config->has_pch_encoder)
7295                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7296         else
7297                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7298 }
7299
7300 static void vlv_compute_dpll(struct intel_crtc *crtc,
7301                              struct intel_crtc_state *pipe_config)
7302 {
7303         u32 dpll, dpll_md;
7304
7305         /*
7306          * Enable DPIO clock input. We should never disable the reference
7307          * clock for pipe B, since VGA hotplug / manual detection depends
7308          * on it.
7309          */
7310         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7311                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7312         /* We should never disable this, set it here for state tracking */
7313         if (crtc->pipe == PIPE_B)
7314                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7315         dpll |= DPLL_VCO_ENABLE;
7316         pipe_config->dpll_hw_state.dpll = dpll;
7317
7318         dpll_md = (pipe_config->pixel_multiplier - 1)
7319                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7320         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7321 }
7322
7323 static void vlv_prepare_pll(struct intel_crtc *crtc,
7324                             const struct intel_crtc_state *pipe_config)
7325 {
7326         struct drm_device *dev = crtc->base.dev;
7327         struct drm_i915_private *dev_priv = dev->dev_private;
7328         int pipe = crtc->pipe;
7329         u32 mdiv;
7330         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7331         u32 coreclk, reg_val;
7332
7333         mutex_lock(&dev_priv->sb_lock);
7334
7335         bestn = pipe_config->dpll.n;
7336         bestm1 = pipe_config->dpll.m1;
7337         bestm2 = pipe_config->dpll.m2;
7338         bestp1 = pipe_config->dpll.p1;
7339         bestp2 = pipe_config->dpll.p2;
7340
7341         /* See eDP HDMI DPIO driver vbios notes doc */
7342
7343         /* PLL B needs special handling */
7344         if (pipe == PIPE_B)
7345                 vlv_pllb_recal_opamp(dev_priv, pipe);
7346
7347         /* Set up Tx target for periodic Rcomp update */
7348         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7349
7350         /* Disable target IRef on PLL */
7351         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7352         reg_val &= 0x00ffffff;
7353         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7354
7355         /* Disable fast lock */
7356         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7357
7358         /* Set idtafcrecal before PLL is enabled */
7359         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7360         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7361         mdiv |= ((bestn << DPIO_N_SHIFT));
7362         mdiv |= (1 << DPIO_K_SHIFT);
7363
7364         /*
7365          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7366          * but we don't support that).
7367          * Note: don't use the DAC post divider as it seems unstable.
7368          */
7369         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7370         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7371
7372         mdiv |= DPIO_ENABLE_CALIBRATION;
7373         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7374
7375         /* Set HBR and RBR LPF coefficients */
7376         if (pipe_config->port_clock == 162000 ||
7377             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7378             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7379                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7380                                  0x009f0003);
7381         else
7382                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7383                                  0x00d0000f);
7384
7385         if (pipe_config->has_dp_encoder) {
7386                 /* Use SSC source */
7387                 if (pipe == PIPE_A)
7388                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7389                                          0x0df40000);
7390                 else
7391                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7392                                          0x0df70000);
7393         } else { /* HDMI or VGA */
7394                 /* Use bend source */
7395                 if (pipe == PIPE_A)
7396                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7397                                          0x0df70000);
7398                 else
7399                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7400                                          0x0df40000);
7401         }
7402
7403         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7404         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7405         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7406             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7407                 coreclk |= 0x01000000;
7408         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7409
7410         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7411         mutex_unlock(&dev_priv->sb_lock);
7412 }
7413
7414 static void chv_compute_dpll(struct intel_crtc *crtc,
7415                              struct intel_crtc_state *pipe_config)
7416 {
7417         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7418                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7419                 DPLL_VCO_ENABLE;
7420         if (crtc->pipe != PIPE_A)
7421                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7422
7423         pipe_config->dpll_hw_state.dpll_md =
7424                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7425 }
7426
7427 static void chv_prepare_pll(struct intel_crtc *crtc,
7428                             const struct intel_crtc_state *pipe_config)
7429 {
7430         struct drm_device *dev = crtc->base.dev;
7431         struct drm_i915_private *dev_priv = dev->dev_private;
7432         int pipe = crtc->pipe;
7433         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7434         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7435         u32 loopfilter, tribuf_calcntr;
7436         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7437         u32 dpio_val;
7438         int vco;
7439
7440         bestn = pipe_config->dpll.n;
7441         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7442         bestm1 = pipe_config->dpll.m1;
7443         bestm2 = pipe_config->dpll.m2 >> 22;
7444         bestp1 = pipe_config->dpll.p1;
7445         bestp2 = pipe_config->dpll.p2;
7446         vco = pipe_config->dpll.vco;
7447         dpio_val = 0;
7448         loopfilter = 0;
7449
7450         /*
7451          * Enable Refclk and SSC
7452          */
7453         I915_WRITE(dpll_reg,
7454                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7455
7456         mutex_lock(&dev_priv->sb_lock);
7457
7458         /* p1 and p2 divider */
7459         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7460                         5 << DPIO_CHV_S1_DIV_SHIFT |
7461                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7462                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7463                         1 << DPIO_CHV_K_DIV_SHIFT);
7464
7465         /* Feedback post-divider - m2 */
7466         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7467
7468         /* Feedback refclk divider - n and m1 */
7469         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7470                         DPIO_CHV_M1_DIV_BY_2 |
7471                         1 << DPIO_CHV_N_DIV_SHIFT);
7472
7473         /* M2 fraction division */
7474         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7475
7476         /* M2 fraction division enable */
7477         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7478         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7479         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7480         if (bestm2_frac)
7481                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7482         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7483
7484         /* Program digital lock detect threshold */
7485         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7486         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7487                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7488         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7489         if (!bestm2_frac)
7490                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7491         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7492
7493         /* Loop filter */
7494         if (vco == 5400000) {
7495                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7496                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7497                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7498                 tribuf_calcntr = 0x9;
7499         } else if (vco <= 6200000) {
7500                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7501                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7502                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7503                 tribuf_calcntr = 0x9;
7504         } else if (vco <= 6480000) {
7505                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7506                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7507                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7508                 tribuf_calcntr = 0x8;
7509         } else {
7510                 /* Not supported. Apply the same limits as in the max case */
7511                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7512                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7513                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7514                 tribuf_calcntr = 0;
7515         }
7516         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7517
7518         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7519         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7520         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7521         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7522
7523         /* AFC Recal */
7524         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7525                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7526                         DPIO_AFC_RECAL);
7527
7528         mutex_unlock(&dev_priv->sb_lock);
7529 }
7530
7531 /**
7532  * vlv_force_pll_on - forcibly enable just the PLL
7533  * @dev_priv: i915 private structure
7534  * @pipe: pipe PLL to enable
7535  * @dpll: PLL configuration
7536  *
7537  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7538  * in cases where we need the PLL enabled even when @pipe is not going to
7539  * be enabled.
7540  */
7541 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7542                      const struct dpll *dpll)
7543 {
7544         struct intel_crtc *crtc =
7545                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7546         struct intel_crtc_state *pipe_config;
7547
7548         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7549         if (!pipe_config)
7550                 return -ENOMEM;
7551
7552         pipe_config->base.crtc = &crtc->base;
7553         pipe_config->pixel_multiplier = 1;
7554         pipe_config->dpll = *dpll;
7555
7556         if (IS_CHERRYVIEW(dev)) {
7557                 chv_compute_dpll(crtc, pipe_config);
7558                 chv_prepare_pll(crtc, pipe_config);
7559                 chv_enable_pll(crtc, pipe_config);
7560         } else {
7561                 vlv_compute_dpll(crtc, pipe_config);
7562                 vlv_prepare_pll(crtc, pipe_config);
7563                 vlv_enable_pll(crtc, pipe_config);
7564         }
7565
7566         kfree(pipe_config);
7567
7568         return 0;
7569 }
7570
7571 /**
7572  * vlv_force_pll_off - forcibly disable just the PLL
7573  * @dev_priv: i915 private structure
7574  * @pipe: pipe PLL to disable
7575  *
7576  * Disable the PLL for @pipe. To be used in cases where we need
7577  * the PLL enabled even when @pipe is not going to be enabled.
7578  */
7579 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7580 {
7581         if (IS_CHERRYVIEW(dev))
7582                 chv_disable_pll(to_i915(dev), pipe);
7583         else
7584                 vlv_disable_pll(to_i915(dev), pipe);
7585 }
7586
7587 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7588                               struct intel_crtc_state *crtc_state,
7589                               intel_clock_t *reduced_clock,
7590                               int num_connectors)
7591 {
7592         struct drm_device *dev = crtc->base.dev;
7593         struct drm_i915_private *dev_priv = dev->dev_private;
7594         u32 dpll;
7595         bool is_sdvo;
7596         struct dpll *clock = &crtc_state->dpll;
7597
7598         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7599
7600         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7601                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7602
7603         dpll = DPLL_VGA_MODE_DIS;
7604
7605         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7606                 dpll |= DPLLB_MODE_LVDS;
7607         else
7608                 dpll |= DPLLB_MODE_DAC_SERIAL;
7609
7610         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7611                 dpll |= (crtc_state->pixel_multiplier - 1)
7612                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7613         }
7614
7615         if (is_sdvo)
7616                 dpll |= DPLL_SDVO_HIGH_SPEED;
7617
7618         if (crtc_state->has_dp_encoder)
7619                 dpll |= DPLL_SDVO_HIGH_SPEED;
7620
7621         /* compute bitmask from p1 value */
7622         if (IS_PINEVIEW(dev))
7623                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7624         else {
7625                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7626                 if (IS_G4X(dev) && reduced_clock)
7627                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7628         }
7629         switch (clock->p2) {
7630         case 5:
7631                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7632                 break;
7633         case 7:
7634                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7635                 break;
7636         case 10:
7637                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7638                 break;
7639         case 14:
7640                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7641                 break;
7642         }
7643         if (INTEL_INFO(dev)->gen >= 4)
7644                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7645
7646         if (crtc_state->sdvo_tv_clock)
7647                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7648         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7649                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7650                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7651         else
7652                 dpll |= PLL_REF_INPUT_DREFCLK;
7653
7654         dpll |= DPLL_VCO_ENABLE;
7655         crtc_state->dpll_hw_state.dpll = dpll;
7656
7657         if (INTEL_INFO(dev)->gen >= 4) {
7658                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7659                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7660                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7661         }
7662 }
7663
7664 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7665                               struct intel_crtc_state *crtc_state,
7666                               intel_clock_t *reduced_clock,
7667                               int num_connectors)
7668 {
7669         struct drm_device *dev = crtc->base.dev;
7670         struct drm_i915_private *dev_priv = dev->dev_private;
7671         u32 dpll;
7672         struct dpll *clock = &crtc_state->dpll;
7673
7674         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7675
7676         dpll = DPLL_VGA_MODE_DIS;
7677
7678         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7679                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7680         } else {
7681                 if (clock->p1 == 2)
7682                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7683                 else
7684                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7685                 if (clock->p2 == 4)
7686                         dpll |= PLL_P2_DIVIDE_BY_4;
7687         }
7688
7689         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7690                 dpll |= DPLL_DVO_2X_MODE;
7691
7692         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7693                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7694                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7695         else
7696                 dpll |= PLL_REF_INPUT_DREFCLK;
7697
7698         dpll |= DPLL_VCO_ENABLE;
7699         crtc_state->dpll_hw_state.dpll = dpll;
7700 }
7701
7702 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7703 {
7704         struct drm_device *dev = intel_crtc->base.dev;
7705         struct drm_i915_private *dev_priv = dev->dev_private;
7706         enum pipe pipe = intel_crtc->pipe;
7707         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7708         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7709         uint32_t crtc_vtotal, crtc_vblank_end;
7710         int vsyncshift = 0;
7711
7712         /* We need to be careful not to changed the adjusted mode, for otherwise
7713          * the hw state checker will get angry at the mismatch. */
7714         crtc_vtotal = adjusted_mode->crtc_vtotal;
7715         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7716
7717         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7718                 /* the chip adds 2 halflines automatically */
7719                 crtc_vtotal -= 1;
7720                 crtc_vblank_end -= 1;
7721
7722                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7723                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7724                 else
7725                         vsyncshift = adjusted_mode->crtc_hsync_start -
7726                                 adjusted_mode->crtc_htotal / 2;
7727                 if (vsyncshift < 0)
7728                         vsyncshift += adjusted_mode->crtc_htotal;
7729         }
7730
7731         if (INTEL_INFO(dev)->gen > 3)
7732                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7733
7734         I915_WRITE(HTOTAL(cpu_transcoder),
7735                    (adjusted_mode->crtc_hdisplay - 1) |
7736                    ((adjusted_mode->crtc_htotal - 1) << 16));
7737         I915_WRITE(HBLANK(cpu_transcoder),
7738                    (adjusted_mode->crtc_hblank_start - 1) |
7739                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7740         I915_WRITE(HSYNC(cpu_transcoder),
7741                    (adjusted_mode->crtc_hsync_start - 1) |
7742                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7743
7744         I915_WRITE(VTOTAL(cpu_transcoder),
7745                    (adjusted_mode->crtc_vdisplay - 1) |
7746                    ((crtc_vtotal - 1) << 16));
7747         I915_WRITE(VBLANK(cpu_transcoder),
7748                    (adjusted_mode->crtc_vblank_start - 1) |
7749                    ((crtc_vblank_end - 1) << 16));
7750         I915_WRITE(VSYNC(cpu_transcoder),
7751                    (adjusted_mode->crtc_vsync_start - 1) |
7752                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7753
7754         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7755          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7756          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7757          * bits. */
7758         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7759             (pipe == PIPE_B || pipe == PIPE_C))
7760                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7761
7762         /* pipesrc controls the size that is scaled from, which should
7763          * always be the user's requested size.
7764          */
7765         I915_WRITE(PIPESRC(pipe),
7766                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7767                    (intel_crtc->config->pipe_src_h - 1));
7768 }
7769
7770 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7771                                    struct intel_crtc_state *pipe_config)
7772 {
7773         struct drm_device *dev = crtc->base.dev;
7774         struct drm_i915_private *dev_priv = dev->dev_private;
7775         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7776         uint32_t tmp;
7777
7778         tmp = I915_READ(HTOTAL(cpu_transcoder));
7779         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7780         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7781         tmp = I915_READ(HBLANK(cpu_transcoder));
7782         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7783         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7784         tmp = I915_READ(HSYNC(cpu_transcoder));
7785         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7786         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7787
7788         tmp = I915_READ(VTOTAL(cpu_transcoder));
7789         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7790         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7791         tmp = I915_READ(VBLANK(cpu_transcoder));
7792         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7793         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7794         tmp = I915_READ(VSYNC(cpu_transcoder));
7795         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7796         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7797
7798         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7799                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7800                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7801                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7802         }
7803
7804         tmp = I915_READ(PIPESRC(crtc->pipe));
7805         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7806         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7807
7808         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7809         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7810 }
7811
7812 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7813                                  struct intel_crtc_state *pipe_config)
7814 {
7815         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7816         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7817         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7818         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7819
7820         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7821         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7822         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7823         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7824
7825         mode->flags = pipe_config->base.adjusted_mode.flags;
7826         mode->type = DRM_MODE_TYPE_DRIVER;
7827
7828         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7829         mode->flags |= pipe_config->base.adjusted_mode.flags;
7830
7831         mode->hsync = drm_mode_hsync(mode);
7832         mode->vrefresh = drm_mode_vrefresh(mode);
7833         drm_mode_set_name(mode);
7834 }
7835
7836 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7837 {
7838         struct drm_device *dev = intel_crtc->base.dev;
7839         struct drm_i915_private *dev_priv = dev->dev_private;
7840         uint32_t pipeconf;
7841
7842         pipeconf = 0;
7843
7844         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7845             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7846                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7847
7848         if (intel_crtc->config->double_wide)
7849                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7850
7851         /* only g4x and later have fancy bpc/dither controls */
7852         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7853                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7854                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7855                         pipeconf |= PIPECONF_DITHER_EN |
7856                                     PIPECONF_DITHER_TYPE_SP;
7857
7858                 switch (intel_crtc->config->pipe_bpp) {
7859                 case 18:
7860                         pipeconf |= PIPECONF_6BPC;
7861                         break;
7862                 case 24:
7863                         pipeconf |= PIPECONF_8BPC;
7864                         break;
7865                 case 30:
7866                         pipeconf |= PIPECONF_10BPC;
7867                         break;
7868                 default:
7869                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7870                         BUG();
7871                 }
7872         }
7873
7874         if (HAS_PIPE_CXSR(dev)) {
7875                 if (intel_crtc->lowfreq_avail) {
7876                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7877                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7878                 } else {
7879                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7880                 }
7881         }
7882
7883         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7884                 if (INTEL_INFO(dev)->gen < 4 ||
7885                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7886                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7887                 else
7888                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7889         } else
7890                 pipeconf |= PIPECONF_PROGRESSIVE;
7891
7892         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7893              intel_crtc->config->limited_color_range)
7894                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7895
7896         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7897         POSTING_READ(PIPECONF(intel_crtc->pipe));
7898 }
7899
7900 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7901                                    struct intel_crtc_state *crtc_state)
7902 {
7903         struct drm_device *dev = crtc->base.dev;
7904         struct drm_i915_private *dev_priv = dev->dev_private;
7905         int refclk, num_connectors = 0;
7906         intel_clock_t clock;
7907         bool ok;
7908         const intel_limit_t *limit;
7909         struct drm_atomic_state *state = crtc_state->base.state;
7910         struct drm_connector *connector;
7911         struct drm_connector_state *connector_state;
7912         int i;
7913
7914         memset(&crtc_state->dpll_hw_state, 0,
7915                sizeof(crtc_state->dpll_hw_state));
7916
7917         if (crtc_state->has_dsi_encoder)
7918                 return 0;
7919
7920         for_each_connector_in_state(state, connector, connector_state, i) {
7921                 if (connector_state->crtc == &crtc->base)
7922                         num_connectors++;
7923         }
7924
7925         if (!crtc_state->clock_set) {
7926                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7927
7928                 /*
7929                  * Returns a set of divisors for the desired target clock with
7930                  * the given refclk, or FALSE.  The returned values represent
7931                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7932                  * 2) / p1 / p2.
7933                  */
7934                 limit = intel_limit(crtc_state, refclk);
7935                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7936                                                  crtc_state->port_clock,
7937                                                  refclk, NULL, &clock);
7938                 if (!ok) {
7939                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7940                         return -EINVAL;
7941                 }
7942
7943                 /* Compat-code for transition, will disappear. */
7944                 crtc_state->dpll.n = clock.n;
7945                 crtc_state->dpll.m1 = clock.m1;
7946                 crtc_state->dpll.m2 = clock.m2;
7947                 crtc_state->dpll.p1 = clock.p1;
7948                 crtc_state->dpll.p2 = clock.p2;
7949         }
7950
7951         if (IS_GEN2(dev)) {
7952                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7953                                   num_connectors);
7954         } else if (IS_CHERRYVIEW(dev)) {
7955                 chv_compute_dpll(crtc, crtc_state);
7956         } else if (IS_VALLEYVIEW(dev)) {
7957                 vlv_compute_dpll(crtc, crtc_state);
7958         } else {
7959                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7960                                   num_connectors);
7961         }
7962
7963         return 0;
7964 }
7965
7966 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7967                                  struct intel_crtc_state *pipe_config)
7968 {
7969         struct drm_device *dev = crtc->base.dev;
7970         struct drm_i915_private *dev_priv = dev->dev_private;
7971         uint32_t tmp;
7972
7973         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7974                 return;
7975
7976         tmp = I915_READ(PFIT_CONTROL);
7977         if (!(tmp & PFIT_ENABLE))
7978                 return;
7979
7980         /* Check whether the pfit is attached to our pipe. */
7981         if (INTEL_INFO(dev)->gen < 4) {
7982                 if (crtc->pipe != PIPE_B)
7983                         return;
7984         } else {
7985                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7986                         return;
7987         }
7988
7989         pipe_config->gmch_pfit.control = tmp;
7990         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7991         if (INTEL_INFO(dev)->gen < 5)
7992                 pipe_config->gmch_pfit.lvds_border_bits =
7993                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7994 }
7995
7996 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7997                                struct intel_crtc_state *pipe_config)
7998 {
7999         struct drm_device *dev = crtc->base.dev;
8000         struct drm_i915_private *dev_priv = dev->dev_private;
8001         int pipe = pipe_config->cpu_transcoder;
8002         intel_clock_t clock;
8003         u32 mdiv;
8004         int refclk = 100000;
8005
8006         /* In case of MIPI DPLL will not even be used */
8007         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8008                 return;
8009
8010         mutex_lock(&dev_priv->sb_lock);
8011         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8012         mutex_unlock(&dev_priv->sb_lock);
8013
8014         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8015         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8016         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8017         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8018         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8019
8020         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8021 }
8022
8023 static void
8024 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8025                               struct intel_initial_plane_config *plane_config)
8026 {
8027         struct drm_device *dev = crtc->base.dev;
8028         struct drm_i915_private *dev_priv = dev->dev_private;
8029         u32 val, base, offset;
8030         int pipe = crtc->pipe, plane = crtc->plane;
8031         int fourcc, pixel_format;
8032         unsigned int aligned_height;
8033         struct drm_framebuffer *fb;
8034         struct intel_framebuffer *intel_fb;
8035
8036         val = I915_READ(DSPCNTR(plane));
8037         if (!(val & DISPLAY_PLANE_ENABLE))
8038                 return;
8039
8040         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8041         if (!intel_fb) {
8042                 DRM_DEBUG_KMS("failed to alloc fb\n");
8043                 return;
8044         }
8045
8046         fb = &intel_fb->base;
8047
8048         if (INTEL_INFO(dev)->gen >= 4) {
8049                 if (val & DISPPLANE_TILED) {
8050                         plane_config->tiling = I915_TILING_X;
8051                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8052                 }
8053         }
8054
8055         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8056         fourcc = i9xx_format_to_fourcc(pixel_format);
8057         fb->pixel_format = fourcc;
8058         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8059
8060         if (INTEL_INFO(dev)->gen >= 4) {
8061                 if (plane_config->tiling)
8062                         offset = I915_READ(DSPTILEOFF(plane));
8063                 else
8064                         offset = I915_READ(DSPLINOFF(plane));
8065                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8066         } else {
8067                 base = I915_READ(DSPADDR(plane));
8068         }
8069         plane_config->base = base;
8070
8071         val = I915_READ(PIPESRC(pipe));
8072         fb->width = ((val >> 16) & 0xfff) + 1;
8073         fb->height = ((val >> 0) & 0xfff) + 1;
8074
8075         val = I915_READ(DSPSTRIDE(pipe));
8076         fb->pitches[0] = val & 0xffffffc0;
8077
8078         aligned_height = intel_fb_align_height(dev, fb->height,
8079                                                fb->pixel_format,
8080                                                fb->modifier[0]);
8081
8082         plane_config->size = fb->pitches[0] * aligned_height;
8083
8084         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8085                       pipe_name(pipe), plane, fb->width, fb->height,
8086                       fb->bits_per_pixel, base, fb->pitches[0],
8087                       plane_config->size);
8088
8089         plane_config->fb = intel_fb;
8090 }
8091
8092 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8093                                struct intel_crtc_state *pipe_config)
8094 {
8095         struct drm_device *dev = crtc->base.dev;
8096         struct drm_i915_private *dev_priv = dev->dev_private;
8097         int pipe = pipe_config->cpu_transcoder;
8098         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8099         intel_clock_t clock;
8100         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8101         int refclk = 100000;
8102
8103         mutex_lock(&dev_priv->sb_lock);
8104         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8105         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8106         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8107         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8108         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8109         mutex_unlock(&dev_priv->sb_lock);
8110
8111         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8112         clock.m2 = (pll_dw0 & 0xff) << 22;
8113         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8114                 clock.m2 |= pll_dw2 & 0x3fffff;
8115         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8116         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8117         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8118
8119         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8120 }
8121
8122 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8123                                  struct intel_crtc_state *pipe_config)
8124 {
8125         struct drm_device *dev = crtc->base.dev;
8126         struct drm_i915_private *dev_priv = dev->dev_private;
8127         enum intel_display_power_domain power_domain;
8128         uint32_t tmp;
8129         bool ret;
8130
8131         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8132         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8133                 return false;
8134
8135         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8136         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8137
8138         ret = false;
8139
8140         tmp = I915_READ(PIPECONF(crtc->pipe));
8141         if (!(tmp & PIPECONF_ENABLE))
8142                 goto out;
8143
8144         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8145                 switch (tmp & PIPECONF_BPC_MASK) {
8146                 case PIPECONF_6BPC:
8147                         pipe_config->pipe_bpp = 18;
8148                         break;
8149                 case PIPECONF_8BPC:
8150                         pipe_config->pipe_bpp = 24;
8151                         break;
8152                 case PIPECONF_10BPC:
8153                         pipe_config->pipe_bpp = 30;
8154                         break;
8155                 default:
8156                         break;
8157                 }
8158         }
8159
8160         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8161             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8162                 pipe_config->limited_color_range = true;
8163
8164         if (INTEL_INFO(dev)->gen < 4)
8165                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8166
8167         intel_get_pipe_timings(crtc, pipe_config);
8168
8169         i9xx_get_pfit_config(crtc, pipe_config);
8170
8171         if (INTEL_INFO(dev)->gen >= 4) {
8172                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8173                 pipe_config->pixel_multiplier =
8174                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8175                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8176                 pipe_config->dpll_hw_state.dpll_md = tmp;
8177         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8178                 tmp = I915_READ(DPLL(crtc->pipe));
8179                 pipe_config->pixel_multiplier =
8180                         ((tmp & SDVO_MULTIPLIER_MASK)
8181                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8182         } else {
8183                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8184                  * port and will be fixed up in the encoder->get_config
8185                  * function. */
8186                 pipe_config->pixel_multiplier = 1;
8187         }
8188         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8189         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8190                 /*
8191                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8192                  * on 830. Filter it out here so that we don't
8193                  * report errors due to that.
8194                  */
8195                 if (IS_I830(dev))
8196                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8197
8198                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8199                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8200         } else {
8201                 /* Mask out read-only status bits. */
8202                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8203                                                      DPLL_PORTC_READY_MASK |
8204                                                      DPLL_PORTB_READY_MASK);
8205         }
8206
8207         if (IS_CHERRYVIEW(dev))
8208                 chv_crtc_clock_get(crtc, pipe_config);
8209         else if (IS_VALLEYVIEW(dev))
8210                 vlv_crtc_clock_get(crtc, pipe_config);
8211         else
8212                 i9xx_crtc_clock_get(crtc, pipe_config);
8213
8214         /*
8215          * Normally the dotclock is filled in by the encoder .get_config()
8216          * but in case the pipe is enabled w/o any ports we need a sane
8217          * default.
8218          */
8219         pipe_config->base.adjusted_mode.crtc_clock =
8220                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8221
8222         ret = true;
8223
8224 out:
8225         intel_display_power_put(dev_priv, power_domain);
8226
8227         return ret;
8228 }
8229
8230 static void ironlake_init_pch_refclk(struct drm_device *dev)
8231 {
8232         struct drm_i915_private *dev_priv = dev->dev_private;
8233         struct intel_encoder *encoder;
8234         u32 val, final;
8235         bool has_lvds = false;
8236         bool has_cpu_edp = false;
8237         bool has_panel = false;
8238         bool has_ck505 = false;
8239         bool can_ssc = false;
8240
8241         /* We need to take the global config into account */
8242         for_each_intel_encoder(dev, encoder) {
8243                 switch (encoder->type) {
8244                 case INTEL_OUTPUT_LVDS:
8245                         has_panel = true;
8246                         has_lvds = true;
8247                         break;
8248                 case INTEL_OUTPUT_EDP:
8249                         has_panel = true;
8250                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8251                                 has_cpu_edp = true;
8252                         break;
8253                 default:
8254                         break;
8255                 }
8256         }
8257
8258         if (HAS_PCH_IBX(dev)) {
8259                 has_ck505 = dev_priv->vbt.display_clock_mode;
8260                 can_ssc = has_ck505;
8261         } else {
8262                 has_ck505 = false;
8263                 can_ssc = true;
8264         }
8265
8266         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8267                       has_panel, has_lvds, has_ck505);
8268
8269         /* Ironlake: try to setup display ref clock before DPLL
8270          * enabling. This is only under driver's control after
8271          * PCH B stepping, previous chipset stepping should be
8272          * ignoring this setting.
8273          */
8274         val = I915_READ(PCH_DREF_CONTROL);
8275
8276         /* As we must carefully and slowly disable/enable each source in turn,
8277          * compute the final state we want first and check if we need to
8278          * make any changes at all.
8279          */
8280         final = val;
8281         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8282         if (has_ck505)
8283                 final |= DREF_NONSPREAD_CK505_ENABLE;
8284         else
8285                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8286
8287         final &= ~DREF_SSC_SOURCE_MASK;
8288         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8289         final &= ~DREF_SSC1_ENABLE;
8290
8291         if (has_panel) {
8292                 final |= DREF_SSC_SOURCE_ENABLE;
8293
8294                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8295                         final |= DREF_SSC1_ENABLE;
8296
8297                 if (has_cpu_edp) {
8298                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8299                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8300                         else
8301                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8302                 } else
8303                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8304         } else {
8305                 final |= DREF_SSC_SOURCE_DISABLE;
8306                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8307         }
8308
8309         if (final == val)
8310                 return;
8311
8312         /* Always enable nonspread source */
8313         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8314
8315         if (has_ck505)
8316                 val |= DREF_NONSPREAD_CK505_ENABLE;
8317         else
8318                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8319
8320         if (has_panel) {
8321                 val &= ~DREF_SSC_SOURCE_MASK;
8322                 val |= DREF_SSC_SOURCE_ENABLE;
8323
8324                 /* SSC must be turned on before enabling the CPU output  */
8325                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8326                         DRM_DEBUG_KMS("Using SSC on panel\n");
8327                         val |= DREF_SSC1_ENABLE;
8328                 } else
8329                         val &= ~DREF_SSC1_ENABLE;
8330
8331                 /* Get SSC going before enabling the outputs */
8332                 I915_WRITE(PCH_DREF_CONTROL, val);
8333                 POSTING_READ(PCH_DREF_CONTROL);
8334                 udelay(200);
8335
8336                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8337
8338                 /* Enable CPU source on CPU attached eDP */
8339                 if (has_cpu_edp) {
8340                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8341                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8342                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8343                         } else
8344                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8345                 } else
8346                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8347
8348                 I915_WRITE(PCH_DREF_CONTROL, val);
8349                 POSTING_READ(PCH_DREF_CONTROL);
8350                 udelay(200);
8351         } else {
8352                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8353
8354                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8355
8356                 /* Turn off CPU output */
8357                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8358
8359                 I915_WRITE(PCH_DREF_CONTROL, val);
8360                 POSTING_READ(PCH_DREF_CONTROL);
8361                 udelay(200);
8362
8363                 /* Turn off the SSC source */
8364                 val &= ~DREF_SSC_SOURCE_MASK;
8365                 val |= DREF_SSC_SOURCE_DISABLE;
8366
8367                 /* Turn off SSC1 */
8368                 val &= ~DREF_SSC1_ENABLE;
8369
8370                 I915_WRITE(PCH_DREF_CONTROL, val);
8371                 POSTING_READ(PCH_DREF_CONTROL);
8372                 udelay(200);
8373         }
8374
8375         BUG_ON(val != final);
8376 }
8377
8378 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8379 {
8380         uint32_t tmp;
8381
8382         tmp = I915_READ(SOUTH_CHICKEN2);
8383         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8384         I915_WRITE(SOUTH_CHICKEN2, tmp);
8385
8386         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8387                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8388                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8389
8390         tmp = I915_READ(SOUTH_CHICKEN2);
8391         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8392         I915_WRITE(SOUTH_CHICKEN2, tmp);
8393
8394         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8395                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8396                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8397 }
8398
8399 /* WaMPhyProgramming:hsw */
8400 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8401 {
8402         uint32_t tmp;
8403
8404         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8405         tmp &= ~(0xFF << 24);
8406         tmp |= (0x12 << 24);
8407         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8408
8409         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8410         tmp |= (1 << 11);
8411         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8412
8413         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8414         tmp |= (1 << 11);
8415         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8416
8417         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8418         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8419         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8420
8421         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8422         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8423         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8424
8425         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8426         tmp &= ~(7 << 13);
8427         tmp |= (5 << 13);
8428         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8429
8430         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8431         tmp &= ~(7 << 13);
8432         tmp |= (5 << 13);
8433         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8434
8435         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8436         tmp &= ~0xFF;
8437         tmp |= 0x1C;
8438         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8439
8440         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8441         tmp &= ~0xFF;
8442         tmp |= 0x1C;
8443         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8444
8445         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8446         tmp &= ~(0xFF << 16);
8447         tmp |= (0x1C << 16);
8448         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8449
8450         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8451         tmp &= ~(0xFF << 16);
8452         tmp |= (0x1C << 16);
8453         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8454
8455         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8456         tmp |= (1 << 27);
8457         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8458
8459         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8460         tmp |= (1 << 27);
8461         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8462
8463         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8464         tmp &= ~(0xF << 28);
8465         tmp |= (4 << 28);
8466         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8467
8468         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8469         tmp &= ~(0xF << 28);
8470         tmp |= (4 << 28);
8471         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8472 }
8473
8474 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8475  * Programming" based on the parameters passed:
8476  * - Sequence to enable CLKOUT_DP
8477  * - Sequence to enable CLKOUT_DP without spread
8478  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8479  */
8480 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8481                                  bool with_fdi)
8482 {
8483         struct drm_i915_private *dev_priv = dev->dev_private;
8484         uint32_t reg, tmp;
8485
8486         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8487                 with_spread = true;
8488         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8489                 with_fdi = false;
8490
8491         mutex_lock(&dev_priv->sb_lock);
8492
8493         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8494         tmp &= ~SBI_SSCCTL_DISABLE;
8495         tmp |= SBI_SSCCTL_PATHALT;
8496         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8497
8498         udelay(24);
8499
8500         if (with_spread) {
8501                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8502                 tmp &= ~SBI_SSCCTL_PATHALT;
8503                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8504
8505                 if (with_fdi) {
8506                         lpt_reset_fdi_mphy(dev_priv);
8507                         lpt_program_fdi_mphy(dev_priv);
8508                 }
8509         }
8510
8511         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8512         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8513         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8514         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8515
8516         mutex_unlock(&dev_priv->sb_lock);
8517 }
8518
8519 /* Sequence to disable CLKOUT_DP */
8520 static void lpt_disable_clkout_dp(struct drm_device *dev)
8521 {
8522         struct drm_i915_private *dev_priv = dev->dev_private;
8523         uint32_t reg, tmp;
8524
8525         mutex_lock(&dev_priv->sb_lock);
8526
8527         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8528         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8529         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8530         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8531
8532         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8533         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8534                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8535                         tmp |= SBI_SSCCTL_PATHALT;
8536                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8537                         udelay(32);
8538                 }
8539                 tmp |= SBI_SSCCTL_DISABLE;
8540                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8541         }
8542
8543         mutex_unlock(&dev_priv->sb_lock);
8544 }
8545
8546 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8547
8548 static const uint16_t sscdivintphase[] = {
8549         [BEND_IDX( 50)] = 0x3B23,
8550         [BEND_IDX( 45)] = 0x3B23,
8551         [BEND_IDX( 40)] = 0x3C23,
8552         [BEND_IDX( 35)] = 0x3C23,
8553         [BEND_IDX( 30)] = 0x3D23,
8554         [BEND_IDX( 25)] = 0x3D23,
8555         [BEND_IDX( 20)] = 0x3E23,
8556         [BEND_IDX( 15)] = 0x3E23,
8557         [BEND_IDX( 10)] = 0x3F23,
8558         [BEND_IDX(  5)] = 0x3F23,
8559         [BEND_IDX(  0)] = 0x0025,
8560         [BEND_IDX( -5)] = 0x0025,
8561         [BEND_IDX(-10)] = 0x0125,
8562         [BEND_IDX(-15)] = 0x0125,
8563         [BEND_IDX(-20)] = 0x0225,
8564         [BEND_IDX(-25)] = 0x0225,
8565         [BEND_IDX(-30)] = 0x0325,
8566         [BEND_IDX(-35)] = 0x0325,
8567         [BEND_IDX(-40)] = 0x0425,
8568         [BEND_IDX(-45)] = 0x0425,
8569         [BEND_IDX(-50)] = 0x0525,
8570 };
8571
8572 /*
8573  * Bend CLKOUT_DP
8574  * steps -50 to 50 inclusive, in steps of 5
8575  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8576  * change in clock period = -(steps / 10) * 5.787 ps
8577  */
8578 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8579 {
8580         uint32_t tmp;
8581         int idx = BEND_IDX(steps);
8582
8583         if (WARN_ON(steps % 5 != 0))
8584                 return;
8585
8586         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8587                 return;
8588
8589         mutex_lock(&dev_priv->sb_lock);
8590
8591         if (steps % 10 != 0)
8592                 tmp = 0xAAAAAAAB;
8593         else
8594                 tmp = 0x00000000;
8595         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8596
8597         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8598         tmp &= 0xffff0000;
8599         tmp |= sscdivintphase[idx];
8600         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8601
8602         mutex_unlock(&dev_priv->sb_lock);
8603 }
8604
8605 #undef BEND_IDX
8606
8607 static void lpt_init_pch_refclk(struct drm_device *dev)
8608 {
8609         struct intel_encoder *encoder;
8610         bool has_vga = false;
8611
8612         for_each_intel_encoder(dev, encoder) {
8613                 switch (encoder->type) {
8614                 case INTEL_OUTPUT_ANALOG:
8615                         has_vga = true;
8616                         break;
8617                 default:
8618                         break;
8619                 }
8620         }
8621
8622         if (has_vga) {
8623                 lpt_bend_clkout_dp(to_i915(dev), 0);
8624                 lpt_enable_clkout_dp(dev, true, true);
8625         } else {
8626                 lpt_disable_clkout_dp(dev);
8627         }
8628 }
8629
8630 /*
8631  * Initialize reference clocks when the driver loads
8632  */
8633 void intel_init_pch_refclk(struct drm_device *dev)
8634 {
8635         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8636                 ironlake_init_pch_refclk(dev);
8637         else if (HAS_PCH_LPT(dev))
8638                 lpt_init_pch_refclk(dev);
8639 }
8640
8641 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8642 {
8643         struct drm_device *dev = crtc_state->base.crtc->dev;
8644         struct drm_i915_private *dev_priv = dev->dev_private;
8645         struct drm_atomic_state *state = crtc_state->base.state;
8646         struct drm_connector *connector;
8647         struct drm_connector_state *connector_state;
8648         struct intel_encoder *encoder;
8649         int num_connectors = 0, i;
8650         bool is_lvds = false;
8651
8652         for_each_connector_in_state(state, connector, connector_state, i) {
8653                 if (connector_state->crtc != crtc_state->base.crtc)
8654                         continue;
8655
8656                 encoder = to_intel_encoder(connector_state->best_encoder);
8657
8658                 switch (encoder->type) {
8659                 case INTEL_OUTPUT_LVDS:
8660                         is_lvds = true;
8661                         break;
8662                 default:
8663                         break;
8664                 }
8665                 num_connectors++;
8666         }
8667
8668         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8669                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8670                               dev_priv->vbt.lvds_ssc_freq);
8671                 return dev_priv->vbt.lvds_ssc_freq;
8672         }
8673
8674         return 120000;
8675 }
8676
8677 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8678 {
8679         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8680         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8681         int pipe = intel_crtc->pipe;
8682         uint32_t val;
8683
8684         val = 0;
8685
8686         switch (intel_crtc->config->pipe_bpp) {
8687         case 18:
8688                 val |= PIPECONF_6BPC;
8689                 break;
8690         case 24:
8691                 val |= PIPECONF_8BPC;
8692                 break;
8693         case 30:
8694                 val |= PIPECONF_10BPC;
8695                 break;
8696         case 36:
8697                 val |= PIPECONF_12BPC;
8698                 break;
8699         default:
8700                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8701                 BUG();
8702         }
8703
8704         if (intel_crtc->config->dither)
8705                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8706
8707         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8708                 val |= PIPECONF_INTERLACED_ILK;
8709         else
8710                 val |= PIPECONF_PROGRESSIVE;
8711
8712         if (intel_crtc->config->limited_color_range)
8713                 val |= PIPECONF_COLOR_RANGE_SELECT;
8714
8715         I915_WRITE(PIPECONF(pipe), val);
8716         POSTING_READ(PIPECONF(pipe));
8717 }
8718
8719 /*
8720  * Set up the pipe CSC unit.
8721  *
8722  * Currently only full range RGB to limited range RGB conversion
8723  * is supported, but eventually this should handle various
8724  * RGB<->YCbCr scenarios as well.
8725  */
8726 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8727 {
8728         struct drm_device *dev = crtc->dev;
8729         struct drm_i915_private *dev_priv = dev->dev_private;
8730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8731         int pipe = intel_crtc->pipe;
8732         uint16_t coeff = 0x7800; /* 1.0 */
8733
8734         /*
8735          * TODO: Check what kind of values actually come out of the pipe
8736          * with these coeff/postoff values and adjust to get the best
8737          * accuracy. Perhaps we even need to take the bpc value into
8738          * consideration.
8739          */
8740
8741         if (intel_crtc->config->limited_color_range)
8742                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8743
8744         /*
8745          * GY/GU and RY/RU should be the other way around according
8746          * to BSpec, but reality doesn't agree. Just set them up in
8747          * a way that results in the correct picture.
8748          */
8749         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8750         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8751
8752         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8753         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8754
8755         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8756         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8757
8758         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8759         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8760         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8761
8762         if (INTEL_INFO(dev)->gen > 6) {
8763                 uint16_t postoff = 0;
8764
8765                 if (intel_crtc->config->limited_color_range)
8766                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8767
8768                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8769                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8770                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8771
8772                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8773         } else {
8774                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8775
8776                 if (intel_crtc->config->limited_color_range)
8777                         mode |= CSC_BLACK_SCREEN_OFFSET;
8778
8779                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8780         }
8781 }
8782
8783 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8784 {
8785         struct drm_device *dev = crtc->dev;
8786         struct drm_i915_private *dev_priv = dev->dev_private;
8787         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8788         enum pipe pipe = intel_crtc->pipe;
8789         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8790         uint32_t val;
8791
8792         val = 0;
8793
8794         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8795                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8796
8797         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8798                 val |= PIPECONF_INTERLACED_ILK;
8799         else
8800                 val |= PIPECONF_PROGRESSIVE;
8801
8802         I915_WRITE(PIPECONF(cpu_transcoder), val);
8803         POSTING_READ(PIPECONF(cpu_transcoder));
8804
8805         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8806         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8807
8808         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8809                 val = 0;
8810
8811                 switch (intel_crtc->config->pipe_bpp) {
8812                 case 18:
8813                         val |= PIPEMISC_DITHER_6_BPC;
8814                         break;
8815                 case 24:
8816                         val |= PIPEMISC_DITHER_8_BPC;
8817                         break;
8818                 case 30:
8819                         val |= PIPEMISC_DITHER_10_BPC;
8820                         break;
8821                 case 36:
8822                         val |= PIPEMISC_DITHER_12_BPC;
8823                         break;
8824                 default:
8825                         /* Case prevented by pipe_config_set_bpp. */
8826                         BUG();
8827                 }
8828
8829                 if (intel_crtc->config->dither)
8830                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8831
8832                 I915_WRITE(PIPEMISC(pipe), val);
8833         }
8834 }
8835
8836 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8837                                     struct intel_crtc_state *crtc_state,
8838                                     intel_clock_t *clock,
8839                                     bool *has_reduced_clock,
8840                                     intel_clock_t *reduced_clock)
8841 {
8842         struct drm_device *dev = crtc->dev;
8843         struct drm_i915_private *dev_priv = dev->dev_private;
8844         int refclk;
8845         const intel_limit_t *limit;
8846         bool ret;
8847
8848         refclk = ironlake_get_refclk(crtc_state);
8849
8850         /*
8851          * Returns a set of divisors for the desired target clock with the given
8852          * refclk, or FALSE.  The returned values represent the clock equation:
8853          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8854          */
8855         limit = intel_limit(crtc_state, refclk);
8856         ret = dev_priv->display.find_dpll(limit, crtc_state,
8857                                           crtc_state->port_clock,
8858                                           refclk, NULL, clock);
8859         if (!ret)
8860                 return false;
8861
8862         return true;
8863 }
8864
8865 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8866 {
8867         /*
8868          * Account for spread spectrum to avoid
8869          * oversubscribing the link. Max center spread
8870          * is 2.5%; use 5% for safety's sake.
8871          */
8872         u32 bps = target_clock * bpp * 21 / 20;
8873         return DIV_ROUND_UP(bps, link_bw * 8);
8874 }
8875
8876 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8877 {
8878         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8879 }
8880
8881 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8882                                       struct intel_crtc_state *crtc_state,
8883                                       u32 *fp,
8884                                       intel_clock_t *reduced_clock, u32 *fp2)
8885 {
8886         struct drm_crtc *crtc = &intel_crtc->base;
8887         struct drm_device *dev = crtc->dev;
8888         struct drm_i915_private *dev_priv = dev->dev_private;
8889         struct drm_atomic_state *state = crtc_state->base.state;
8890         struct drm_connector *connector;
8891         struct drm_connector_state *connector_state;
8892         struct intel_encoder *encoder;
8893         uint32_t dpll;
8894         int factor, num_connectors = 0, i;
8895         bool is_lvds = false, is_sdvo = false;
8896
8897         for_each_connector_in_state(state, connector, connector_state, i) {
8898                 if (connector_state->crtc != crtc_state->base.crtc)
8899                         continue;
8900
8901                 encoder = to_intel_encoder(connector_state->best_encoder);
8902
8903                 switch (encoder->type) {
8904                 case INTEL_OUTPUT_LVDS:
8905                         is_lvds = true;
8906                         break;
8907                 case INTEL_OUTPUT_SDVO:
8908                 case INTEL_OUTPUT_HDMI:
8909                         is_sdvo = true;
8910                         break;
8911                 default:
8912                         break;
8913                 }
8914
8915                 num_connectors++;
8916         }
8917
8918         /* Enable autotuning of the PLL clock (if permissible) */
8919         factor = 21;
8920         if (is_lvds) {
8921                 if ((intel_panel_use_ssc(dev_priv) &&
8922                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8923                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8924                         factor = 25;
8925         } else if (crtc_state->sdvo_tv_clock)
8926                 factor = 20;
8927
8928         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8929                 *fp |= FP_CB_TUNE;
8930
8931         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8932                 *fp2 |= FP_CB_TUNE;
8933
8934         dpll = 0;
8935
8936         if (is_lvds)
8937                 dpll |= DPLLB_MODE_LVDS;
8938         else
8939                 dpll |= DPLLB_MODE_DAC_SERIAL;
8940
8941         dpll |= (crtc_state->pixel_multiplier - 1)
8942                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8943
8944         if (is_sdvo)
8945                 dpll |= DPLL_SDVO_HIGH_SPEED;
8946         if (crtc_state->has_dp_encoder)
8947                 dpll |= DPLL_SDVO_HIGH_SPEED;
8948
8949         /* compute bitmask from p1 value */
8950         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8951         /* also FPA1 */
8952         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8953
8954         switch (crtc_state->dpll.p2) {
8955         case 5:
8956                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8957                 break;
8958         case 7:
8959                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8960                 break;
8961         case 10:
8962                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8963                 break;
8964         case 14:
8965                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8966                 break;
8967         }
8968
8969         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8970                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8971         else
8972                 dpll |= PLL_REF_INPUT_DREFCLK;
8973
8974         return dpll | DPLL_VCO_ENABLE;
8975 }
8976
8977 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8978                                        struct intel_crtc_state *crtc_state)
8979 {
8980         struct drm_device *dev = crtc->base.dev;
8981         intel_clock_t clock, reduced_clock;
8982         u32 dpll = 0, fp = 0, fp2 = 0;
8983         bool ok, has_reduced_clock = false;
8984         bool is_lvds = false;
8985         struct intel_shared_dpll *pll;
8986
8987         memset(&crtc_state->dpll_hw_state, 0,
8988                sizeof(crtc_state->dpll_hw_state));
8989
8990         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8991
8992         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8993              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8994
8995         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8996                                      &has_reduced_clock, &reduced_clock);
8997         if (!ok && !crtc_state->clock_set) {
8998                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8999                 return -EINVAL;
9000         }
9001         /* Compat-code for transition, will disappear. */
9002         if (!crtc_state->clock_set) {
9003                 crtc_state->dpll.n = clock.n;
9004                 crtc_state->dpll.m1 = clock.m1;
9005                 crtc_state->dpll.m2 = clock.m2;
9006                 crtc_state->dpll.p1 = clock.p1;
9007                 crtc_state->dpll.p2 = clock.p2;
9008         }
9009
9010         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9011         if (crtc_state->has_pch_encoder) {
9012                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9013                 if (has_reduced_clock)
9014                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9015
9016                 dpll = ironlake_compute_dpll(crtc, crtc_state,
9017                                              &fp, &reduced_clock,
9018                                              has_reduced_clock ? &fp2 : NULL);
9019
9020                 crtc_state->dpll_hw_state.dpll = dpll;
9021                 crtc_state->dpll_hw_state.fp0 = fp;
9022                 if (has_reduced_clock)
9023                         crtc_state->dpll_hw_state.fp1 = fp2;
9024                 else
9025                         crtc_state->dpll_hw_state.fp1 = fp;
9026
9027                 pll = intel_get_shared_dpll(crtc, crtc_state);
9028                 if (pll == NULL) {
9029                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9030                                          pipe_name(crtc->pipe));
9031                         return -EINVAL;
9032                 }
9033         }
9034
9035         if (is_lvds && has_reduced_clock)
9036                 crtc->lowfreq_avail = true;
9037         else
9038                 crtc->lowfreq_avail = false;
9039
9040         return 0;
9041 }
9042
9043 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9044                                          struct intel_link_m_n *m_n)
9045 {
9046         struct drm_device *dev = crtc->base.dev;
9047         struct drm_i915_private *dev_priv = dev->dev_private;
9048         enum pipe pipe = crtc->pipe;
9049
9050         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9051         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9052         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9053                 & ~TU_SIZE_MASK;
9054         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9055         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9056                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9057 }
9058
9059 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9060                                          enum transcoder transcoder,
9061                                          struct intel_link_m_n *m_n,
9062                                          struct intel_link_m_n *m2_n2)
9063 {
9064         struct drm_device *dev = crtc->base.dev;
9065         struct drm_i915_private *dev_priv = dev->dev_private;
9066         enum pipe pipe = crtc->pipe;
9067
9068         if (INTEL_INFO(dev)->gen >= 5) {
9069                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9070                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9071                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9072                         & ~TU_SIZE_MASK;
9073                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9074                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9075                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9076                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9077                  * gen < 8) and if DRRS is supported (to make sure the
9078                  * registers are not unnecessarily read).
9079                  */
9080                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9081                         crtc->config->has_drrs) {
9082                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9083                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9084                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9085                                         & ~TU_SIZE_MASK;
9086                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9087                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9088                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9089                 }
9090         } else {
9091                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9092                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9093                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9094                         & ~TU_SIZE_MASK;
9095                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9096                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9097                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9098         }
9099 }
9100
9101 void intel_dp_get_m_n(struct intel_crtc *crtc,
9102                       struct intel_crtc_state *pipe_config)
9103 {
9104         if (pipe_config->has_pch_encoder)
9105                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9106         else
9107                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9108                                              &pipe_config->dp_m_n,
9109                                              &pipe_config->dp_m2_n2);
9110 }
9111
9112 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9113                                         struct intel_crtc_state *pipe_config)
9114 {
9115         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9116                                      &pipe_config->fdi_m_n, NULL);
9117 }
9118
9119 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9120                                     struct intel_crtc_state *pipe_config)
9121 {
9122         struct drm_device *dev = crtc->base.dev;
9123         struct drm_i915_private *dev_priv = dev->dev_private;
9124         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9125         uint32_t ps_ctrl = 0;
9126         int id = -1;
9127         int i;
9128
9129         /* find scaler attached to this pipe */
9130         for (i = 0; i < crtc->num_scalers; i++) {
9131                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9132                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9133                         id = i;
9134                         pipe_config->pch_pfit.enabled = true;
9135                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9136                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9137                         break;
9138                 }
9139         }
9140
9141         scaler_state->scaler_id = id;
9142         if (id >= 0) {
9143                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9144         } else {
9145                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9146         }
9147 }
9148
9149 static void
9150 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9151                                  struct intel_initial_plane_config *plane_config)
9152 {
9153         struct drm_device *dev = crtc->base.dev;
9154         struct drm_i915_private *dev_priv = dev->dev_private;
9155         u32 val, base, offset, stride_mult, tiling;
9156         int pipe = crtc->pipe;
9157         int fourcc, pixel_format;
9158         unsigned int aligned_height;
9159         struct drm_framebuffer *fb;
9160         struct intel_framebuffer *intel_fb;
9161
9162         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9163         if (!intel_fb) {
9164                 DRM_DEBUG_KMS("failed to alloc fb\n");
9165                 return;
9166         }
9167
9168         fb = &intel_fb->base;
9169
9170         val = I915_READ(PLANE_CTL(pipe, 0));
9171         if (!(val & PLANE_CTL_ENABLE))
9172                 goto error;
9173
9174         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9175         fourcc = skl_format_to_fourcc(pixel_format,
9176                                       val & PLANE_CTL_ORDER_RGBX,
9177                                       val & PLANE_CTL_ALPHA_MASK);
9178         fb->pixel_format = fourcc;
9179         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9180
9181         tiling = val & PLANE_CTL_TILED_MASK;
9182         switch (tiling) {
9183         case PLANE_CTL_TILED_LINEAR:
9184                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9185                 break;
9186         case PLANE_CTL_TILED_X:
9187                 plane_config->tiling = I915_TILING_X;
9188                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9189                 break;
9190         case PLANE_CTL_TILED_Y:
9191                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9192                 break;
9193         case PLANE_CTL_TILED_YF:
9194                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9195                 break;
9196         default:
9197                 MISSING_CASE(tiling);
9198                 goto error;
9199         }
9200
9201         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9202         plane_config->base = base;
9203
9204         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9205
9206         val = I915_READ(PLANE_SIZE(pipe, 0));
9207         fb->height = ((val >> 16) & 0xfff) + 1;
9208         fb->width = ((val >> 0) & 0x1fff) + 1;
9209
9210         val = I915_READ(PLANE_STRIDE(pipe, 0));
9211         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9212                                                 fb->pixel_format);
9213         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9214
9215         aligned_height = intel_fb_align_height(dev, fb->height,
9216                                                fb->pixel_format,
9217                                                fb->modifier[0]);
9218
9219         plane_config->size = fb->pitches[0] * aligned_height;
9220
9221         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9222                       pipe_name(pipe), fb->width, fb->height,
9223                       fb->bits_per_pixel, base, fb->pitches[0],
9224                       plane_config->size);
9225
9226         plane_config->fb = intel_fb;
9227         return;
9228
9229 error:
9230         kfree(fb);
9231 }
9232
9233 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9234                                      struct intel_crtc_state *pipe_config)
9235 {
9236         struct drm_device *dev = crtc->base.dev;
9237         struct drm_i915_private *dev_priv = dev->dev_private;
9238         uint32_t tmp;
9239
9240         tmp = I915_READ(PF_CTL(crtc->pipe));
9241
9242         if (tmp & PF_ENABLE) {
9243                 pipe_config->pch_pfit.enabled = true;
9244                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9245                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9246
9247                 /* We currently do not free assignements of panel fitters on
9248                  * ivb/hsw (since we don't use the higher upscaling modes which
9249                  * differentiates them) so just WARN about this case for now. */
9250                 if (IS_GEN7(dev)) {
9251                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9252                                 PF_PIPE_SEL_IVB(crtc->pipe));
9253                 }
9254         }
9255 }
9256
9257 static void
9258 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9259                                   struct intel_initial_plane_config *plane_config)
9260 {
9261         struct drm_device *dev = crtc->base.dev;
9262         struct drm_i915_private *dev_priv = dev->dev_private;
9263         u32 val, base, offset;
9264         int pipe = crtc->pipe;
9265         int fourcc, pixel_format;
9266         unsigned int aligned_height;
9267         struct drm_framebuffer *fb;
9268         struct intel_framebuffer *intel_fb;
9269
9270         val = I915_READ(DSPCNTR(pipe));
9271         if (!(val & DISPLAY_PLANE_ENABLE))
9272                 return;
9273
9274         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9275         if (!intel_fb) {
9276                 DRM_DEBUG_KMS("failed to alloc fb\n");
9277                 return;
9278         }
9279
9280         fb = &intel_fb->base;
9281
9282         if (INTEL_INFO(dev)->gen >= 4) {
9283                 if (val & DISPPLANE_TILED) {
9284                         plane_config->tiling = I915_TILING_X;
9285                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9286                 }
9287         }
9288
9289         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9290         fourcc = i9xx_format_to_fourcc(pixel_format);
9291         fb->pixel_format = fourcc;
9292         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9293
9294         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9295         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9296                 offset = I915_READ(DSPOFFSET(pipe));
9297         } else {
9298                 if (plane_config->tiling)
9299                         offset = I915_READ(DSPTILEOFF(pipe));
9300                 else
9301                         offset = I915_READ(DSPLINOFF(pipe));
9302         }
9303         plane_config->base = base;
9304
9305         val = I915_READ(PIPESRC(pipe));
9306         fb->width = ((val >> 16) & 0xfff) + 1;
9307         fb->height = ((val >> 0) & 0xfff) + 1;
9308
9309         val = I915_READ(DSPSTRIDE(pipe));
9310         fb->pitches[0] = val & 0xffffffc0;
9311
9312         aligned_height = intel_fb_align_height(dev, fb->height,
9313                                                fb->pixel_format,
9314                                                fb->modifier[0]);
9315
9316         plane_config->size = fb->pitches[0] * aligned_height;
9317
9318         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9319                       pipe_name(pipe), fb->width, fb->height,
9320                       fb->bits_per_pixel, base, fb->pitches[0],
9321                       plane_config->size);
9322
9323         plane_config->fb = intel_fb;
9324 }
9325
9326 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9327                                      struct intel_crtc_state *pipe_config)
9328 {
9329         struct drm_device *dev = crtc->base.dev;
9330         struct drm_i915_private *dev_priv = dev->dev_private;
9331         enum intel_display_power_domain power_domain;
9332         uint32_t tmp;
9333         bool ret;
9334
9335         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9336         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9337                 return false;
9338
9339         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9340         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9341
9342         ret = false;
9343         tmp = I915_READ(PIPECONF(crtc->pipe));
9344         if (!(tmp & PIPECONF_ENABLE))
9345                 goto out;
9346
9347         switch (tmp & PIPECONF_BPC_MASK) {
9348         case PIPECONF_6BPC:
9349                 pipe_config->pipe_bpp = 18;
9350                 break;
9351         case PIPECONF_8BPC:
9352                 pipe_config->pipe_bpp = 24;
9353                 break;
9354         case PIPECONF_10BPC:
9355                 pipe_config->pipe_bpp = 30;
9356                 break;
9357         case PIPECONF_12BPC:
9358                 pipe_config->pipe_bpp = 36;
9359                 break;
9360         default:
9361                 break;
9362         }
9363
9364         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9365                 pipe_config->limited_color_range = true;
9366
9367         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9368                 struct intel_shared_dpll *pll;
9369
9370                 pipe_config->has_pch_encoder = true;
9371
9372                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9373                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9374                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9375
9376                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9377
9378                 if (HAS_PCH_IBX(dev_priv->dev)) {
9379                         pipe_config->shared_dpll =
9380                                 (enum intel_dpll_id) crtc->pipe;
9381                 } else {
9382                         tmp = I915_READ(PCH_DPLL_SEL);
9383                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9384                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9385                         else
9386                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9387                 }
9388
9389                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9390
9391                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9392                                            &pipe_config->dpll_hw_state));
9393
9394                 tmp = pipe_config->dpll_hw_state.dpll;
9395                 pipe_config->pixel_multiplier =
9396                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9397                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9398
9399                 ironlake_pch_clock_get(crtc, pipe_config);
9400         } else {
9401                 pipe_config->pixel_multiplier = 1;
9402         }
9403
9404         intel_get_pipe_timings(crtc, pipe_config);
9405
9406         ironlake_get_pfit_config(crtc, pipe_config);
9407
9408         ret = true;
9409
9410 out:
9411         intel_display_power_put(dev_priv, power_domain);
9412
9413         return ret;
9414 }
9415
9416 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9417 {
9418         struct drm_device *dev = dev_priv->dev;
9419         struct intel_crtc *crtc;
9420
9421         for_each_intel_crtc(dev, crtc)
9422                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9423                      pipe_name(crtc->pipe));
9424
9425         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9426         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9427         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9428         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9429         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9430         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9431              "CPU PWM1 enabled\n");
9432         if (IS_HASWELL(dev))
9433                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9434                      "CPU PWM2 enabled\n");
9435         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9436              "PCH PWM1 enabled\n");
9437         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9438              "Utility pin enabled\n");
9439         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9440
9441         /*
9442          * In theory we can still leave IRQs enabled, as long as only the HPD
9443          * interrupts remain enabled. We used to check for that, but since it's
9444          * gen-specific and since we only disable LCPLL after we fully disable
9445          * the interrupts, the check below should be enough.
9446          */
9447         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9448 }
9449
9450 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9451 {
9452         struct drm_device *dev = dev_priv->dev;
9453
9454         if (IS_HASWELL(dev))
9455                 return I915_READ(D_COMP_HSW);
9456         else
9457                 return I915_READ(D_COMP_BDW);
9458 }
9459
9460 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9461 {
9462         struct drm_device *dev = dev_priv->dev;
9463
9464         if (IS_HASWELL(dev)) {
9465                 mutex_lock(&dev_priv->rps.hw_lock);
9466                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9467                                             val))
9468                         DRM_ERROR("Failed to write to D_COMP\n");
9469                 mutex_unlock(&dev_priv->rps.hw_lock);
9470         } else {
9471                 I915_WRITE(D_COMP_BDW, val);
9472                 POSTING_READ(D_COMP_BDW);
9473         }
9474 }
9475
9476 /*
9477  * This function implements pieces of two sequences from BSpec:
9478  * - Sequence for display software to disable LCPLL
9479  * - Sequence for display software to allow package C8+
9480  * The steps implemented here are just the steps that actually touch the LCPLL
9481  * register. Callers should take care of disabling all the display engine
9482  * functions, doing the mode unset, fixing interrupts, etc.
9483  */
9484 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9485                               bool switch_to_fclk, bool allow_power_down)
9486 {
9487         uint32_t val;
9488
9489         assert_can_disable_lcpll(dev_priv);
9490
9491         val = I915_READ(LCPLL_CTL);
9492
9493         if (switch_to_fclk) {
9494                 val |= LCPLL_CD_SOURCE_FCLK;
9495                 I915_WRITE(LCPLL_CTL, val);
9496
9497                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9498                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9499                         DRM_ERROR("Switching to FCLK failed\n");
9500
9501                 val = I915_READ(LCPLL_CTL);
9502         }
9503
9504         val |= LCPLL_PLL_DISABLE;
9505         I915_WRITE(LCPLL_CTL, val);
9506         POSTING_READ(LCPLL_CTL);
9507
9508         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9509                 DRM_ERROR("LCPLL still locked\n");
9510
9511         val = hsw_read_dcomp(dev_priv);
9512         val |= D_COMP_COMP_DISABLE;
9513         hsw_write_dcomp(dev_priv, val);
9514         ndelay(100);
9515
9516         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9517                      1))
9518                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9519
9520         if (allow_power_down) {
9521                 val = I915_READ(LCPLL_CTL);
9522                 val |= LCPLL_POWER_DOWN_ALLOW;
9523                 I915_WRITE(LCPLL_CTL, val);
9524                 POSTING_READ(LCPLL_CTL);
9525         }
9526 }
9527
9528 /*
9529  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9530  * source.
9531  */
9532 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9533 {
9534         uint32_t val;
9535
9536         val = I915_READ(LCPLL_CTL);
9537
9538         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9539                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9540                 return;
9541
9542         /*
9543          * Make sure we're not on PC8 state before disabling PC8, otherwise
9544          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9545          */
9546         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9547
9548         if (val & LCPLL_POWER_DOWN_ALLOW) {
9549                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9550                 I915_WRITE(LCPLL_CTL, val);
9551                 POSTING_READ(LCPLL_CTL);
9552         }
9553
9554         val = hsw_read_dcomp(dev_priv);
9555         val |= D_COMP_COMP_FORCE;
9556         val &= ~D_COMP_COMP_DISABLE;
9557         hsw_write_dcomp(dev_priv, val);
9558
9559         val = I915_READ(LCPLL_CTL);
9560         val &= ~LCPLL_PLL_DISABLE;
9561         I915_WRITE(LCPLL_CTL, val);
9562
9563         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9564                 DRM_ERROR("LCPLL not locked yet\n");
9565
9566         if (val & LCPLL_CD_SOURCE_FCLK) {
9567                 val = I915_READ(LCPLL_CTL);
9568                 val &= ~LCPLL_CD_SOURCE_FCLK;
9569                 I915_WRITE(LCPLL_CTL, val);
9570
9571                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9572                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9573                         DRM_ERROR("Switching back to LCPLL failed\n");
9574         }
9575
9576         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9577         intel_update_cdclk(dev_priv->dev);
9578 }
9579
9580 /*
9581  * Package states C8 and deeper are really deep PC states that can only be
9582  * reached when all the devices on the system allow it, so even if the graphics
9583  * device allows PC8+, it doesn't mean the system will actually get to these
9584  * states. Our driver only allows PC8+ when going into runtime PM.
9585  *
9586  * The requirements for PC8+ are that all the outputs are disabled, the power
9587  * well is disabled and most interrupts are disabled, and these are also
9588  * requirements for runtime PM. When these conditions are met, we manually do
9589  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9590  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9591  * hang the machine.
9592  *
9593  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9594  * the state of some registers, so when we come back from PC8+ we need to
9595  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9596  * need to take care of the registers kept by RC6. Notice that this happens even
9597  * if we don't put the device in PCI D3 state (which is what currently happens
9598  * because of the runtime PM support).
9599  *
9600  * For more, read "Display Sequences for Package C8" on the hardware
9601  * documentation.
9602  */
9603 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9604 {
9605         struct drm_device *dev = dev_priv->dev;
9606         uint32_t val;
9607
9608         DRM_DEBUG_KMS("Enabling package C8+\n");
9609
9610         if (HAS_PCH_LPT_LP(dev)) {
9611                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9612                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9613                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9614         }
9615
9616         lpt_disable_clkout_dp(dev);
9617         hsw_disable_lcpll(dev_priv, true, true);
9618 }
9619
9620 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9621 {
9622         struct drm_device *dev = dev_priv->dev;
9623         uint32_t val;
9624
9625         DRM_DEBUG_KMS("Disabling package C8+\n");
9626
9627         hsw_restore_lcpll(dev_priv);
9628         lpt_init_pch_refclk(dev);
9629
9630         if (HAS_PCH_LPT_LP(dev)) {
9631                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9632                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9633                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9634         }
9635 }
9636
9637 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9638 {
9639         struct drm_device *dev = old_state->dev;
9640         struct intel_atomic_state *old_intel_state =
9641                 to_intel_atomic_state(old_state);
9642         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9643
9644         broxton_set_cdclk(dev, req_cdclk);
9645 }
9646
9647 /* compute the max rate for new configuration */
9648 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9649 {
9650         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9651         struct drm_i915_private *dev_priv = state->dev->dev_private;
9652         struct drm_crtc *crtc;
9653         struct drm_crtc_state *cstate;
9654         struct intel_crtc_state *crtc_state;
9655         unsigned max_pixel_rate = 0, i;
9656         enum pipe pipe;
9657
9658         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9659                sizeof(intel_state->min_pixclk));
9660
9661         for_each_crtc_in_state(state, crtc, cstate, i) {
9662                 int pixel_rate;
9663
9664                 crtc_state = to_intel_crtc_state(cstate);
9665                 if (!crtc_state->base.enable) {
9666                         intel_state->min_pixclk[i] = 0;
9667                         continue;
9668                 }
9669
9670                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9671
9672                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9673                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9674                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9675
9676                 intel_state->min_pixclk[i] = pixel_rate;
9677         }
9678
9679         for_each_pipe(dev_priv, pipe)
9680                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9681
9682         return max_pixel_rate;
9683 }
9684
9685 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9686 {
9687         struct drm_i915_private *dev_priv = dev->dev_private;
9688         uint32_t val, data;
9689         int ret;
9690
9691         if (WARN((I915_READ(LCPLL_CTL) &
9692                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9693                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9694                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9695                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9696                  "trying to change cdclk frequency with cdclk not enabled\n"))
9697                 return;
9698
9699         mutex_lock(&dev_priv->rps.hw_lock);
9700         ret = sandybridge_pcode_write(dev_priv,
9701                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9702         mutex_unlock(&dev_priv->rps.hw_lock);
9703         if (ret) {
9704                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9705                 return;
9706         }
9707
9708         val = I915_READ(LCPLL_CTL);
9709         val |= LCPLL_CD_SOURCE_FCLK;
9710         I915_WRITE(LCPLL_CTL, val);
9711
9712         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9713                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9714                 DRM_ERROR("Switching to FCLK failed\n");
9715
9716         val = I915_READ(LCPLL_CTL);
9717         val &= ~LCPLL_CLK_FREQ_MASK;
9718
9719         switch (cdclk) {
9720         case 450000:
9721                 val |= LCPLL_CLK_FREQ_450;
9722                 data = 0;
9723                 break;
9724         case 540000:
9725                 val |= LCPLL_CLK_FREQ_54O_BDW;
9726                 data = 1;
9727                 break;
9728         case 337500:
9729                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9730                 data = 2;
9731                 break;
9732         case 675000:
9733                 val |= LCPLL_CLK_FREQ_675_BDW;
9734                 data = 3;
9735                 break;
9736         default:
9737                 WARN(1, "invalid cdclk frequency\n");
9738                 return;
9739         }
9740
9741         I915_WRITE(LCPLL_CTL, val);
9742
9743         val = I915_READ(LCPLL_CTL);
9744         val &= ~LCPLL_CD_SOURCE_FCLK;
9745         I915_WRITE(LCPLL_CTL, val);
9746
9747         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9748                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9749                 DRM_ERROR("Switching back to LCPLL failed\n");
9750
9751         mutex_lock(&dev_priv->rps.hw_lock);
9752         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9753         mutex_unlock(&dev_priv->rps.hw_lock);
9754
9755         intel_update_cdclk(dev);
9756
9757         WARN(cdclk != dev_priv->cdclk_freq,
9758              "cdclk requested %d kHz but got %d kHz\n",
9759              cdclk, dev_priv->cdclk_freq);
9760 }
9761
9762 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9763 {
9764         struct drm_i915_private *dev_priv = to_i915(state->dev);
9765         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9766         int max_pixclk = ilk_max_pixel_rate(state);
9767         int cdclk;
9768
9769         /*
9770          * FIXME should also account for plane ratio
9771          * once 64bpp pixel formats are supported.
9772          */
9773         if (max_pixclk > 540000)
9774                 cdclk = 675000;
9775         else if (max_pixclk > 450000)
9776                 cdclk = 540000;
9777         else if (max_pixclk > 337500)
9778                 cdclk = 450000;
9779         else
9780                 cdclk = 337500;
9781
9782         if (cdclk > dev_priv->max_cdclk_freq) {
9783                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9784                               cdclk, dev_priv->max_cdclk_freq);
9785                 return -EINVAL;
9786         }
9787
9788         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9789         if (!intel_state->active_crtcs)
9790                 intel_state->dev_cdclk = 337500;
9791
9792         return 0;
9793 }
9794
9795 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9796 {
9797         struct drm_device *dev = old_state->dev;
9798         struct intel_atomic_state *old_intel_state =
9799                 to_intel_atomic_state(old_state);
9800         unsigned req_cdclk = old_intel_state->dev_cdclk;
9801
9802         broadwell_set_cdclk(dev, req_cdclk);
9803 }
9804
9805 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9806                                       struct intel_crtc_state *crtc_state)
9807 {
9808         struct intel_encoder *intel_encoder =
9809                 intel_ddi_get_crtc_new_encoder(crtc_state);
9810
9811         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9812                 if (!intel_ddi_pll_select(crtc, crtc_state))
9813                         return -EINVAL;
9814         }
9815
9816         crtc->lowfreq_avail = false;
9817
9818         return 0;
9819 }
9820
9821 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9822                                 enum port port,
9823                                 struct intel_crtc_state *pipe_config)
9824 {
9825         switch (port) {
9826         case PORT_A:
9827                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9828                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9829                 break;
9830         case PORT_B:
9831                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9832                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9833                 break;
9834         case PORT_C:
9835                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9836                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9837                 break;
9838         default:
9839                 DRM_ERROR("Incorrect port type\n");
9840         }
9841 }
9842
9843 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9844                                 enum port port,
9845                                 struct intel_crtc_state *pipe_config)
9846 {
9847         u32 temp, dpll_ctl1;
9848
9849         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9850         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9851
9852         switch (pipe_config->ddi_pll_sel) {
9853         case SKL_DPLL0:
9854                 /*
9855                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9856                  * of the shared DPLL framework and thus needs to be read out
9857                  * separately
9858                  */
9859                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9860                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9861                 break;
9862         case SKL_DPLL1:
9863                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9864                 break;
9865         case SKL_DPLL2:
9866                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9867                 break;
9868         case SKL_DPLL3:
9869                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9870                 break;
9871         }
9872 }
9873
9874 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9875                                 enum port port,
9876                                 struct intel_crtc_state *pipe_config)
9877 {
9878         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9879
9880         switch (pipe_config->ddi_pll_sel) {
9881         case PORT_CLK_SEL_WRPLL1:
9882                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9883                 break;
9884         case PORT_CLK_SEL_WRPLL2:
9885                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9886                 break;
9887         case PORT_CLK_SEL_SPLL:
9888                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9889                 break;
9890         }
9891 }
9892
9893 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9894                                        struct intel_crtc_state *pipe_config)
9895 {
9896         struct drm_device *dev = crtc->base.dev;
9897         struct drm_i915_private *dev_priv = dev->dev_private;
9898         struct intel_shared_dpll *pll;
9899         enum port port;
9900         uint32_t tmp;
9901
9902         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9903
9904         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9905
9906         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9907                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9908         else if (IS_BROXTON(dev))
9909                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9910         else
9911                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9912
9913         if (pipe_config->shared_dpll >= 0) {
9914                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9915
9916                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9917                                            &pipe_config->dpll_hw_state));
9918         }
9919
9920         /*
9921          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9922          * DDI E. So just check whether this pipe is wired to DDI E and whether
9923          * the PCH transcoder is on.
9924          */
9925         if (INTEL_INFO(dev)->gen < 9 &&
9926             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9927                 pipe_config->has_pch_encoder = true;
9928
9929                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9930                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9931                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9932
9933                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9934         }
9935 }
9936
9937 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9938                                     struct intel_crtc_state *pipe_config)
9939 {
9940         struct drm_device *dev = crtc->base.dev;
9941         struct drm_i915_private *dev_priv = dev->dev_private;
9942         enum intel_display_power_domain power_domain;
9943         unsigned long power_domain_mask;
9944         uint32_t tmp;
9945         bool ret;
9946
9947         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9948         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9949                 return false;
9950         power_domain_mask = BIT(power_domain);
9951
9952         ret = false;
9953
9954         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9955         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9956
9957         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9958         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9959                 enum pipe trans_edp_pipe;
9960                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9961                 default:
9962                         WARN(1, "unknown pipe linked to edp transcoder\n");
9963                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9964                 case TRANS_DDI_EDP_INPUT_A_ON:
9965                         trans_edp_pipe = PIPE_A;
9966                         break;
9967                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9968                         trans_edp_pipe = PIPE_B;
9969                         break;
9970                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9971                         trans_edp_pipe = PIPE_C;
9972                         break;
9973                 }
9974
9975                 if (trans_edp_pipe == crtc->pipe)
9976                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9977         }
9978
9979         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9980         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9981                 goto out;
9982         power_domain_mask |= BIT(power_domain);
9983
9984         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9985         if (!(tmp & PIPECONF_ENABLE))
9986                 goto out;
9987
9988         haswell_get_ddi_port_state(crtc, pipe_config);
9989
9990         intel_get_pipe_timings(crtc, pipe_config);
9991
9992         if (INTEL_INFO(dev)->gen >= 9) {
9993                 skl_init_scalers(dev, crtc, pipe_config);
9994         }
9995
9996         if (INTEL_INFO(dev)->gen >= 9) {
9997                 pipe_config->scaler_state.scaler_id = -1;
9998                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9999         }
10000
10001         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10002         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10003                 power_domain_mask |= BIT(power_domain);
10004                 if (INTEL_INFO(dev)->gen >= 9)
10005                         skylake_get_pfit_config(crtc, pipe_config);
10006                 else
10007                         ironlake_get_pfit_config(crtc, pipe_config);
10008         }
10009
10010         if (IS_HASWELL(dev))
10011                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10012                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10013
10014         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10015                 pipe_config->pixel_multiplier =
10016                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10017         } else {
10018                 pipe_config->pixel_multiplier = 1;
10019         }
10020
10021         ret = true;
10022
10023 out:
10024         for_each_power_domain(power_domain, power_domain_mask)
10025                 intel_display_power_put(dev_priv, power_domain);
10026
10027         return ret;
10028 }
10029
10030 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10031                                const struct intel_plane_state *plane_state)
10032 {
10033         struct drm_device *dev = crtc->dev;
10034         struct drm_i915_private *dev_priv = dev->dev_private;
10035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10036         uint32_t cntl = 0, size = 0;
10037
10038         if (plane_state && plane_state->visible) {
10039                 unsigned int width = plane_state->base.crtc_w;
10040                 unsigned int height = plane_state->base.crtc_h;
10041                 unsigned int stride = roundup_pow_of_two(width) * 4;
10042
10043                 switch (stride) {
10044                 default:
10045                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10046                                   width, stride);
10047                         stride = 256;
10048                         /* fallthrough */
10049                 case 256:
10050                 case 512:
10051                 case 1024:
10052                 case 2048:
10053                         break;
10054                 }
10055
10056                 cntl |= CURSOR_ENABLE |
10057                         CURSOR_GAMMA_ENABLE |
10058                         CURSOR_FORMAT_ARGB |
10059                         CURSOR_STRIDE(stride);
10060
10061                 size = (height << 12) | width;
10062         }
10063
10064         if (intel_crtc->cursor_cntl != 0 &&
10065             (intel_crtc->cursor_base != base ||
10066              intel_crtc->cursor_size != size ||
10067              intel_crtc->cursor_cntl != cntl)) {
10068                 /* On these chipsets we can only modify the base/size/stride
10069                  * whilst the cursor is disabled.
10070                  */
10071                 I915_WRITE(CURCNTR(PIPE_A), 0);
10072                 POSTING_READ(CURCNTR(PIPE_A));
10073                 intel_crtc->cursor_cntl = 0;
10074         }
10075
10076         if (intel_crtc->cursor_base != base) {
10077                 I915_WRITE(CURBASE(PIPE_A), base);
10078                 intel_crtc->cursor_base = base;
10079         }
10080
10081         if (intel_crtc->cursor_size != size) {
10082                 I915_WRITE(CURSIZE, size);
10083                 intel_crtc->cursor_size = size;
10084         }
10085
10086         if (intel_crtc->cursor_cntl != cntl) {
10087                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10088                 POSTING_READ(CURCNTR(PIPE_A));
10089                 intel_crtc->cursor_cntl = cntl;
10090         }
10091 }
10092
10093 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10094                                const struct intel_plane_state *plane_state)
10095 {
10096         struct drm_device *dev = crtc->dev;
10097         struct drm_i915_private *dev_priv = dev->dev_private;
10098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10099         int pipe = intel_crtc->pipe;
10100         uint32_t cntl = 0;
10101
10102         if (plane_state && plane_state->visible) {
10103                 cntl = MCURSOR_GAMMA_ENABLE;
10104                 switch (plane_state->base.crtc_w) {
10105                         case 64:
10106                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10107                                 break;
10108                         case 128:
10109                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10110                                 break;
10111                         case 256:
10112                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10113                                 break;
10114                         default:
10115                                 MISSING_CASE(plane_state->base.crtc_w);
10116                                 return;
10117                 }
10118                 cntl |= pipe << 28; /* Connect to correct pipe */
10119
10120                 if (HAS_DDI(dev))
10121                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10122
10123                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10124                         cntl |= CURSOR_ROTATE_180;
10125         }
10126
10127         if (intel_crtc->cursor_cntl != cntl) {
10128                 I915_WRITE(CURCNTR(pipe), cntl);
10129                 POSTING_READ(CURCNTR(pipe));
10130                 intel_crtc->cursor_cntl = cntl;
10131         }
10132
10133         /* and commit changes on next vblank */
10134         I915_WRITE(CURBASE(pipe), base);
10135         POSTING_READ(CURBASE(pipe));
10136
10137         intel_crtc->cursor_base = base;
10138 }
10139
10140 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10141 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10142                                      const struct intel_plane_state *plane_state)
10143 {
10144         struct drm_device *dev = crtc->dev;
10145         struct drm_i915_private *dev_priv = dev->dev_private;
10146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10147         int pipe = intel_crtc->pipe;
10148         u32 base = intel_crtc->cursor_addr;
10149         u32 pos = 0;
10150
10151         if (plane_state) {
10152                 int x = plane_state->base.crtc_x;
10153                 int y = plane_state->base.crtc_y;
10154
10155                 if (x < 0) {
10156                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10157                         x = -x;
10158                 }
10159                 pos |= x << CURSOR_X_SHIFT;
10160
10161                 if (y < 0) {
10162                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10163                         y = -y;
10164                 }
10165                 pos |= y << CURSOR_Y_SHIFT;
10166
10167                 /* ILK+ do this automagically */
10168                 if (HAS_GMCH_DISPLAY(dev) &&
10169                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10170                         base += (plane_state->base.crtc_h *
10171                                  plane_state->base.crtc_w - 1) * 4;
10172                 }
10173         }
10174
10175         I915_WRITE(CURPOS(pipe), pos);
10176
10177         if (IS_845G(dev) || IS_I865G(dev))
10178                 i845_update_cursor(crtc, base, plane_state);
10179         else
10180                 i9xx_update_cursor(crtc, base, plane_state);
10181 }
10182
10183 static bool cursor_size_ok(struct drm_device *dev,
10184                            uint32_t width, uint32_t height)
10185 {
10186         if (width == 0 || height == 0)
10187                 return false;
10188
10189         /*
10190          * 845g/865g are special in that they are only limited by
10191          * the width of their cursors, the height is arbitrary up to
10192          * the precision of the register. Everything else requires
10193          * square cursors, limited to a few power-of-two sizes.
10194          */
10195         if (IS_845G(dev) || IS_I865G(dev)) {
10196                 if ((width & 63) != 0)
10197                         return false;
10198
10199                 if (width > (IS_845G(dev) ? 64 : 512))
10200                         return false;
10201
10202                 if (height > 1023)
10203                         return false;
10204         } else {
10205                 switch (width | height) {
10206                 case 256:
10207                 case 128:
10208                         if (IS_GEN2(dev))
10209                                 return false;
10210                 case 64:
10211                         break;
10212                 default:
10213                         return false;
10214                 }
10215         }
10216
10217         return true;
10218 }
10219
10220 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10221                                  u16 *blue, uint32_t start, uint32_t size)
10222 {
10223         int end = (start + size > 256) ? 256 : start + size, i;
10224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10225
10226         for (i = start; i < end; i++) {
10227                 intel_crtc->lut_r[i] = red[i] >> 8;
10228                 intel_crtc->lut_g[i] = green[i] >> 8;
10229                 intel_crtc->lut_b[i] = blue[i] >> 8;
10230         }
10231
10232         intel_crtc_load_lut(crtc);
10233 }
10234
10235 /* VESA 640x480x72Hz mode to set on the pipe */
10236 static struct drm_display_mode load_detect_mode = {
10237         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10238                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10239 };
10240
10241 struct drm_framebuffer *
10242 __intel_framebuffer_create(struct drm_device *dev,
10243                            struct drm_mode_fb_cmd2 *mode_cmd,
10244                            struct drm_i915_gem_object *obj)
10245 {
10246         struct intel_framebuffer *intel_fb;
10247         int ret;
10248
10249         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10250         if (!intel_fb)
10251                 return ERR_PTR(-ENOMEM);
10252
10253         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10254         if (ret)
10255                 goto err;
10256
10257         return &intel_fb->base;
10258
10259 err:
10260         kfree(intel_fb);
10261         return ERR_PTR(ret);
10262 }
10263
10264 static struct drm_framebuffer *
10265 intel_framebuffer_create(struct drm_device *dev,
10266                          struct drm_mode_fb_cmd2 *mode_cmd,
10267                          struct drm_i915_gem_object *obj)
10268 {
10269         struct drm_framebuffer *fb;
10270         int ret;
10271
10272         ret = i915_mutex_lock_interruptible(dev);
10273         if (ret)
10274                 return ERR_PTR(ret);
10275         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10276         mutex_unlock(&dev->struct_mutex);
10277
10278         return fb;
10279 }
10280
10281 static u32
10282 intel_framebuffer_pitch_for_width(int width, int bpp)
10283 {
10284         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10285         return ALIGN(pitch, 64);
10286 }
10287
10288 static u32
10289 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10290 {
10291         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10292         return PAGE_ALIGN(pitch * mode->vdisplay);
10293 }
10294
10295 static struct drm_framebuffer *
10296 intel_framebuffer_create_for_mode(struct drm_device *dev,
10297                                   struct drm_display_mode *mode,
10298                                   int depth, int bpp)
10299 {
10300         struct drm_framebuffer *fb;
10301         struct drm_i915_gem_object *obj;
10302         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10303
10304         obj = i915_gem_alloc_object(dev,
10305                                     intel_framebuffer_size_for_mode(mode, bpp));
10306         if (obj == NULL)
10307                 return ERR_PTR(-ENOMEM);
10308
10309         mode_cmd.width = mode->hdisplay;
10310         mode_cmd.height = mode->vdisplay;
10311         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10312                                                                 bpp);
10313         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10314
10315         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10316         if (IS_ERR(fb))
10317                 drm_gem_object_unreference_unlocked(&obj->base);
10318
10319         return fb;
10320 }
10321
10322 static struct drm_framebuffer *
10323 mode_fits_in_fbdev(struct drm_device *dev,
10324                    struct drm_display_mode *mode)
10325 {
10326 #ifdef CONFIG_DRM_FBDEV_EMULATION
10327         struct drm_i915_private *dev_priv = dev->dev_private;
10328         struct drm_i915_gem_object *obj;
10329         struct drm_framebuffer *fb;
10330
10331         if (!dev_priv->fbdev)
10332                 return NULL;
10333
10334         if (!dev_priv->fbdev->fb)
10335                 return NULL;
10336
10337         obj = dev_priv->fbdev->fb->obj;
10338         BUG_ON(!obj);
10339
10340         fb = &dev_priv->fbdev->fb->base;
10341         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10342                                                                fb->bits_per_pixel))
10343                 return NULL;
10344
10345         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10346                 return NULL;
10347
10348         drm_framebuffer_reference(fb);
10349         return fb;
10350 #else
10351         return NULL;
10352 #endif
10353 }
10354
10355 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10356                                            struct drm_crtc *crtc,
10357                                            struct drm_display_mode *mode,
10358                                            struct drm_framebuffer *fb,
10359                                            int x, int y)
10360 {
10361         struct drm_plane_state *plane_state;
10362         int hdisplay, vdisplay;
10363         int ret;
10364
10365         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10366         if (IS_ERR(plane_state))
10367                 return PTR_ERR(plane_state);
10368
10369         if (mode)
10370                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10371         else
10372                 hdisplay = vdisplay = 0;
10373
10374         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10375         if (ret)
10376                 return ret;
10377         drm_atomic_set_fb_for_plane(plane_state, fb);
10378         plane_state->crtc_x = 0;
10379         plane_state->crtc_y = 0;
10380         plane_state->crtc_w = hdisplay;
10381         plane_state->crtc_h = vdisplay;
10382         plane_state->src_x = x << 16;
10383         plane_state->src_y = y << 16;
10384         plane_state->src_w = hdisplay << 16;
10385         plane_state->src_h = vdisplay << 16;
10386
10387         return 0;
10388 }
10389
10390 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10391                                 struct drm_display_mode *mode,
10392                                 struct intel_load_detect_pipe *old,
10393                                 struct drm_modeset_acquire_ctx *ctx)
10394 {
10395         struct intel_crtc *intel_crtc;
10396         struct intel_encoder *intel_encoder =
10397                 intel_attached_encoder(connector);
10398         struct drm_crtc *possible_crtc;
10399         struct drm_encoder *encoder = &intel_encoder->base;
10400         struct drm_crtc *crtc = NULL;
10401         struct drm_device *dev = encoder->dev;
10402         struct drm_framebuffer *fb;
10403         struct drm_mode_config *config = &dev->mode_config;
10404         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10405         struct drm_connector_state *connector_state;
10406         struct intel_crtc_state *crtc_state;
10407         int ret, i = -1;
10408
10409         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10410                       connector->base.id, connector->name,
10411                       encoder->base.id, encoder->name);
10412
10413         old->restore_state = NULL;
10414
10415 retry:
10416         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10417         if (ret)
10418                 goto fail;
10419
10420         /*
10421          * Algorithm gets a little messy:
10422          *
10423          *   - if the connector already has an assigned crtc, use it (but make
10424          *     sure it's on first)
10425          *
10426          *   - try to find the first unused crtc that can drive this connector,
10427          *     and use that if we find one
10428          */
10429
10430         /* See if we already have a CRTC for this connector */
10431         if (connector->state->crtc) {
10432                 crtc = connector->state->crtc;
10433
10434                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10435                 if (ret)
10436                         goto fail;
10437
10438                 /* Make sure the crtc and connector are running */
10439                 goto found;
10440         }
10441
10442         /* Find an unused one (if possible) */
10443         for_each_crtc(dev, possible_crtc) {
10444                 i++;
10445                 if (!(encoder->possible_crtcs & (1 << i)))
10446                         continue;
10447
10448                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10449                 if (ret)
10450                         goto fail;
10451
10452                 if (possible_crtc->state->enable) {
10453                         drm_modeset_unlock(&possible_crtc->mutex);
10454                         continue;
10455                 }
10456
10457                 crtc = possible_crtc;
10458                 break;
10459         }
10460
10461         /*
10462          * If we didn't find an unused CRTC, don't use any.
10463          */
10464         if (!crtc) {
10465                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10466                 goto fail;
10467         }
10468
10469 found:
10470         intel_crtc = to_intel_crtc(crtc);
10471
10472         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10473         if (ret)
10474                 goto fail;
10475
10476         state = drm_atomic_state_alloc(dev);
10477         restore_state = drm_atomic_state_alloc(dev);
10478         if (!state || !restore_state) {
10479                 ret = -ENOMEM;
10480                 goto fail;
10481         }
10482
10483         state->acquire_ctx = ctx;
10484         restore_state->acquire_ctx = ctx;
10485
10486         connector_state = drm_atomic_get_connector_state(state, connector);
10487         if (IS_ERR(connector_state)) {
10488                 ret = PTR_ERR(connector_state);
10489                 goto fail;
10490         }
10491
10492         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10493         if (ret)
10494                 goto fail;
10495
10496         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10497         if (IS_ERR(crtc_state)) {
10498                 ret = PTR_ERR(crtc_state);
10499                 goto fail;
10500         }
10501
10502         crtc_state->base.active = crtc_state->base.enable = true;
10503
10504         if (!mode)
10505                 mode = &load_detect_mode;
10506
10507         /* We need a framebuffer large enough to accommodate all accesses
10508          * that the plane may generate whilst we perform load detection.
10509          * We can not rely on the fbcon either being present (we get called
10510          * during its initialisation to detect all boot displays, or it may
10511          * not even exist) or that it is large enough to satisfy the
10512          * requested mode.
10513          */
10514         fb = mode_fits_in_fbdev(dev, mode);
10515         if (fb == NULL) {
10516                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10517                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10518         } else
10519                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10520         if (IS_ERR(fb)) {
10521                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10522                 goto fail;
10523         }
10524
10525         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10526         if (ret)
10527                 goto fail;
10528
10529         drm_framebuffer_unreference(fb);
10530
10531         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10532         if (ret)
10533                 goto fail;
10534
10535         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10536         if (!ret)
10537                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10538         if (!ret)
10539                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10540         if (ret) {
10541                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10542                 goto fail;
10543         }
10544
10545         ret = drm_atomic_commit(state);
10546         if (ret) {
10547                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10548                 goto fail;
10549         }
10550
10551         old->restore_state = restore_state;
10552
10553         /* let the connector get through one full cycle before testing */
10554         intel_wait_for_vblank(dev, intel_crtc->pipe);
10555         return true;
10556
10557 fail:
10558         drm_atomic_state_free(state);
10559         drm_atomic_state_free(restore_state);
10560         restore_state = state = NULL;
10561
10562         if (ret == -EDEADLK) {
10563                 drm_modeset_backoff(ctx);
10564                 goto retry;
10565         }
10566
10567         return false;
10568 }
10569
10570 void intel_release_load_detect_pipe(struct drm_connector *connector,
10571                                     struct intel_load_detect_pipe *old,
10572                                     struct drm_modeset_acquire_ctx *ctx)
10573 {
10574         struct intel_encoder *intel_encoder =
10575                 intel_attached_encoder(connector);
10576         struct drm_encoder *encoder = &intel_encoder->base;
10577         struct drm_atomic_state *state = old->restore_state;
10578         int ret;
10579
10580         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10581                       connector->base.id, connector->name,
10582                       encoder->base.id, encoder->name);
10583
10584         if (!state)
10585                 return;
10586
10587         ret = drm_atomic_commit(state);
10588         if (ret) {
10589                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10590                 drm_atomic_state_free(state);
10591         }
10592 }
10593
10594 static int i9xx_pll_refclk(struct drm_device *dev,
10595                            const struct intel_crtc_state *pipe_config)
10596 {
10597         struct drm_i915_private *dev_priv = dev->dev_private;
10598         u32 dpll = pipe_config->dpll_hw_state.dpll;
10599
10600         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10601                 return dev_priv->vbt.lvds_ssc_freq;
10602         else if (HAS_PCH_SPLIT(dev))
10603                 return 120000;
10604         else if (!IS_GEN2(dev))
10605                 return 96000;
10606         else
10607                 return 48000;
10608 }
10609
10610 /* Returns the clock of the currently programmed mode of the given pipe. */
10611 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10612                                 struct intel_crtc_state *pipe_config)
10613 {
10614         struct drm_device *dev = crtc->base.dev;
10615         struct drm_i915_private *dev_priv = dev->dev_private;
10616         int pipe = pipe_config->cpu_transcoder;
10617         u32 dpll = pipe_config->dpll_hw_state.dpll;
10618         u32 fp;
10619         intel_clock_t clock;
10620         int port_clock;
10621         int refclk = i9xx_pll_refclk(dev, pipe_config);
10622
10623         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10624                 fp = pipe_config->dpll_hw_state.fp0;
10625         else
10626                 fp = pipe_config->dpll_hw_state.fp1;
10627
10628         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10629         if (IS_PINEVIEW(dev)) {
10630                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10631                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10632         } else {
10633                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10634                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10635         }
10636
10637         if (!IS_GEN2(dev)) {
10638                 if (IS_PINEVIEW(dev))
10639                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10640                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10641                 else
10642                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10643                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10644
10645                 switch (dpll & DPLL_MODE_MASK) {
10646                 case DPLLB_MODE_DAC_SERIAL:
10647                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10648                                 5 : 10;
10649                         break;
10650                 case DPLLB_MODE_LVDS:
10651                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10652                                 7 : 14;
10653                         break;
10654                 default:
10655                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10656                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10657                         return;
10658                 }
10659
10660                 if (IS_PINEVIEW(dev))
10661                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10662                 else
10663                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10664         } else {
10665                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10666                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10667
10668                 if (is_lvds) {
10669                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10670                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10671
10672                         if (lvds & LVDS_CLKB_POWER_UP)
10673                                 clock.p2 = 7;
10674                         else
10675                                 clock.p2 = 14;
10676                 } else {
10677                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10678                                 clock.p1 = 2;
10679                         else {
10680                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10681                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10682                         }
10683                         if (dpll & PLL_P2_DIVIDE_BY_4)
10684                                 clock.p2 = 4;
10685                         else
10686                                 clock.p2 = 2;
10687                 }
10688
10689                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10690         }
10691
10692         /*
10693          * This value includes pixel_multiplier. We will use
10694          * port_clock to compute adjusted_mode.crtc_clock in the
10695          * encoder's get_config() function.
10696          */
10697         pipe_config->port_clock = port_clock;
10698 }
10699
10700 int intel_dotclock_calculate(int link_freq,
10701                              const struct intel_link_m_n *m_n)
10702 {
10703         /*
10704          * The calculation for the data clock is:
10705          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10706          * But we want to avoid losing precison if possible, so:
10707          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10708          *
10709          * and the link clock is simpler:
10710          * link_clock = (m * link_clock) / n
10711          */
10712
10713         if (!m_n->link_n)
10714                 return 0;
10715
10716         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10717 }
10718
10719 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10720                                    struct intel_crtc_state *pipe_config)
10721 {
10722         struct drm_device *dev = crtc->base.dev;
10723
10724         /* read out port_clock from the DPLL */
10725         i9xx_crtc_clock_get(crtc, pipe_config);
10726
10727         /*
10728          * This value does not include pixel_multiplier.
10729          * We will check that port_clock and adjusted_mode.crtc_clock
10730          * agree once we know their relationship in the encoder's
10731          * get_config() function.
10732          */
10733         pipe_config->base.adjusted_mode.crtc_clock =
10734                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10735                                          &pipe_config->fdi_m_n);
10736 }
10737
10738 /** Returns the currently programmed mode of the given pipe. */
10739 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10740                                              struct drm_crtc *crtc)
10741 {
10742         struct drm_i915_private *dev_priv = dev->dev_private;
10743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10744         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10745         struct drm_display_mode *mode;
10746         struct intel_crtc_state *pipe_config;
10747         int htot = I915_READ(HTOTAL(cpu_transcoder));
10748         int hsync = I915_READ(HSYNC(cpu_transcoder));
10749         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10750         int vsync = I915_READ(VSYNC(cpu_transcoder));
10751         enum pipe pipe = intel_crtc->pipe;
10752
10753         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10754         if (!mode)
10755                 return NULL;
10756
10757         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10758         if (!pipe_config) {
10759                 kfree(mode);
10760                 return NULL;
10761         }
10762
10763         /*
10764          * Construct a pipe_config sufficient for getting the clock info
10765          * back out of crtc_clock_get.
10766          *
10767          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10768          * to use a real value here instead.
10769          */
10770         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10771         pipe_config->pixel_multiplier = 1;
10772         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10773         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10774         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10775         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10776
10777         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10778         mode->hdisplay = (htot & 0xffff) + 1;
10779         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10780         mode->hsync_start = (hsync & 0xffff) + 1;
10781         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10782         mode->vdisplay = (vtot & 0xffff) + 1;
10783         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10784         mode->vsync_start = (vsync & 0xffff) + 1;
10785         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10786
10787         drm_mode_set_name(mode);
10788
10789         kfree(pipe_config);
10790
10791         return mode;
10792 }
10793
10794 void intel_mark_busy(struct drm_device *dev)
10795 {
10796         struct drm_i915_private *dev_priv = dev->dev_private;
10797
10798         if (dev_priv->mm.busy)
10799                 return;
10800
10801         intel_runtime_pm_get(dev_priv);
10802         i915_update_gfx_val(dev_priv);
10803         if (INTEL_INFO(dev)->gen >= 6)
10804                 gen6_rps_busy(dev_priv);
10805         dev_priv->mm.busy = true;
10806 }
10807
10808 void intel_mark_idle(struct drm_device *dev)
10809 {
10810         struct drm_i915_private *dev_priv = dev->dev_private;
10811
10812         if (!dev_priv->mm.busy)
10813                 return;
10814
10815         dev_priv->mm.busy = false;
10816
10817         if (INTEL_INFO(dev)->gen >= 6)
10818                 gen6_rps_idle(dev->dev_private);
10819
10820         intel_runtime_pm_put(dev_priv);
10821 }
10822
10823 static void intel_crtc_destroy(struct drm_crtc *crtc)
10824 {
10825         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10826         struct drm_device *dev = crtc->dev;
10827         struct intel_unpin_work *work;
10828
10829         spin_lock_irq(&dev->event_lock);
10830         work = intel_crtc->unpin_work;
10831         intel_crtc->unpin_work = NULL;
10832         spin_unlock_irq(&dev->event_lock);
10833
10834         if (work) {
10835                 cancel_work_sync(&work->work);
10836                 kfree(work);
10837         }
10838
10839         drm_crtc_cleanup(crtc);
10840
10841         kfree(intel_crtc);
10842 }
10843
10844 static void intel_unpin_work_fn(struct work_struct *__work)
10845 {
10846         struct intel_unpin_work *work =
10847                 container_of(__work, struct intel_unpin_work, work);
10848         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10849         struct drm_device *dev = crtc->base.dev;
10850         struct drm_plane *primary = crtc->base.primary;
10851
10852         mutex_lock(&dev->struct_mutex);
10853         intel_unpin_fb_obj(work->old_fb, primary->state);
10854         drm_gem_object_unreference(&work->pending_flip_obj->base);
10855
10856         if (work->flip_queued_req)
10857                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10858         mutex_unlock(&dev->struct_mutex);
10859
10860         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10861         intel_fbc_post_update(crtc);
10862         drm_framebuffer_unreference(work->old_fb);
10863
10864         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10865         atomic_dec(&crtc->unpin_work_count);
10866
10867         kfree(work);
10868 }
10869
10870 static void do_intel_finish_page_flip(struct drm_device *dev,
10871                                       struct drm_crtc *crtc)
10872 {
10873         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10874         struct intel_unpin_work *work;
10875         unsigned long flags;
10876
10877         /* Ignore early vblank irqs */
10878         if (intel_crtc == NULL)
10879                 return;
10880
10881         /*
10882          * This is called both by irq handlers and the reset code (to complete
10883          * lost pageflips) so needs the full irqsave spinlocks.
10884          */
10885         spin_lock_irqsave(&dev->event_lock, flags);
10886         work = intel_crtc->unpin_work;
10887
10888         /* Ensure we don't miss a work->pending update ... */
10889         smp_rmb();
10890
10891         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10892                 spin_unlock_irqrestore(&dev->event_lock, flags);
10893                 return;
10894         }
10895
10896         page_flip_completed(intel_crtc);
10897
10898         spin_unlock_irqrestore(&dev->event_lock, flags);
10899 }
10900
10901 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10902 {
10903         struct drm_i915_private *dev_priv = dev->dev_private;
10904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10905
10906         do_intel_finish_page_flip(dev, crtc);
10907 }
10908
10909 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10910 {
10911         struct drm_i915_private *dev_priv = dev->dev_private;
10912         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10913
10914         do_intel_finish_page_flip(dev, crtc);
10915 }
10916
10917 /* Is 'a' after or equal to 'b'? */
10918 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10919 {
10920         return !((a - b) & 0x80000000);
10921 }
10922
10923 static bool page_flip_finished(struct intel_crtc *crtc)
10924 {
10925         struct drm_device *dev = crtc->base.dev;
10926         struct drm_i915_private *dev_priv = dev->dev_private;
10927
10928         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10929             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10930                 return true;
10931
10932         /*
10933          * The relevant registers doen't exist on pre-ctg.
10934          * As the flip done interrupt doesn't trigger for mmio
10935          * flips on gmch platforms, a flip count check isn't
10936          * really needed there. But since ctg has the registers,
10937          * include it in the check anyway.
10938          */
10939         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10940                 return true;
10941
10942         /*
10943          * BDW signals flip done immediately if the plane
10944          * is disabled, even if the plane enable is already
10945          * armed to occur at the next vblank :(
10946          */
10947
10948         /*
10949          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10950          * used the same base address. In that case the mmio flip might
10951          * have completed, but the CS hasn't even executed the flip yet.
10952          *
10953          * A flip count check isn't enough as the CS might have updated
10954          * the base address just after start of vblank, but before we
10955          * managed to process the interrupt. This means we'd complete the
10956          * CS flip too soon.
10957          *
10958          * Combining both checks should get us a good enough result. It may
10959          * still happen that the CS flip has been executed, but has not
10960          * yet actually completed. But in case the base address is the same
10961          * anyway, we don't really care.
10962          */
10963         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10964                 crtc->unpin_work->gtt_offset &&
10965                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10966                                     crtc->unpin_work->flip_count);
10967 }
10968
10969 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10970 {
10971         struct drm_i915_private *dev_priv = dev->dev_private;
10972         struct intel_crtc *intel_crtc =
10973                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10974         unsigned long flags;
10975
10976
10977         /*
10978          * This is called both by irq handlers and the reset code (to complete
10979          * lost pageflips) so needs the full irqsave spinlocks.
10980          *
10981          * NB: An MMIO update of the plane base pointer will also
10982          * generate a page-flip completion irq, i.e. every modeset
10983          * is also accompanied by a spurious intel_prepare_page_flip().
10984          */
10985         spin_lock_irqsave(&dev->event_lock, flags);
10986         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10987                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10988         spin_unlock_irqrestore(&dev->event_lock, flags);
10989 }
10990
10991 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10992 {
10993         /* Ensure that the work item is consistent when activating it ... */
10994         smp_wmb();
10995         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10996         /* and that it is marked active as soon as the irq could fire. */
10997         smp_wmb();
10998 }
10999
11000 static int intel_gen2_queue_flip(struct drm_device *dev,
11001                                  struct drm_crtc *crtc,
11002                                  struct drm_framebuffer *fb,
11003                                  struct drm_i915_gem_object *obj,
11004                                  struct drm_i915_gem_request *req,
11005                                  uint32_t flags)
11006 {
11007         struct intel_engine_cs *ring = req->ring;
11008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11009         u32 flip_mask;
11010         int ret;
11011
11012         ret = intel_ring_begin(req, 6);
11013         if (ret)
11014                 return ret;
11015
11016         /* Can't queue multiple flips, so wait for the previous
11017          * one to finish before executing the next.
11018          */
11019         if (intel_crtc->plane)
11020                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11021         else
11022                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11023         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11024         intel_ring_emit(ring, MI_NOOP);
11025         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11026                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11027         intel_ring_emit(ring, fb->pitches[0]);
11028         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11029         intel_ring_emit(ring, 0); /* aux display base address, unused */
11030
11031         intel_mark_page_flip_active(intel_crtc->unpin_work);
11032         return 0;
11033 }
11034
11035 static int intel_gen3_queue_flip(struct drm_device *dev,
11036                                  struct drm_crtc *crtc,
11037                                  struct drm_framebuffer *fb,
11038                                  struct drm_i915_gem_object *obj,
11039                                  struct drm_i915_gem_request *req,
11040                                  uint32_t flags)
11041 {
11042         struct intel_engine_cs *ring = req->ring;
11043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11044         u32 flip_mask;
11045         int ret;
11046
11047         ret = intel_ring_begin(req, 6);
11048         if (ret)
11049                 return ret;
11050
11051         if (intel_crtc->plane)
11052                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11053         else
11054                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11055         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11056         intel_ring_emit(ring, MI_NOOP);
11057         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11058                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11059         intel_ring_emit(ring, fb->pitches[0]);
11060         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11061         intel_ring_emit(ring, MI_NOOP);
11062
11063         intel_mark_page_flip_active(intel_crtc->unpin_work);
11064         return 0;
11065 }
11066
11067 static int intel_gen4_queue_flip(struct drm_device *dev,
11068                                  struct drm_crtc *crtc,
11069                                  struct drm_framebuffer *fb,
11070                                  struct drm_i915_gem_object *obj,
11071                                  struct drm_i915_gem_request *req,
11072                                  uint32_t flags)
11073 {
11074         struct intel_engine_cs *ring = req->ring;
11075         struct drm_i915_private *dev_priv = dev->dev_private;
11076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11077         uint32_t pf, pipesrc;
11078         int ret;
11079
11080         ret = intel_ring_begin(req, 4);
11081         if (ret)
11082                 return ret;
11083
11084         /* i965+ uses the linear or tiled offsets from the
11085          * Display Registers (which do not change across a page-flip)
11086          * so we need only reprogram the base address.
11087          */
11088         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11089                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11090         intel_ring_emit(ring, fb->pitches[0]);
11091         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11092                         obj->tiling_mode);
11093
11094         /* XXX Enabling the panel-fitter across page-flip is so far
11095          * untested on non-native modes, so ignore it for now.
11096          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11097          */
11098         pf = 0;
11099         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11100         intel_ring_emit(ring, pf | pipesrc);
11101
11102         intel_mark_page_flip_active(intel_crtc->unpin_work);
11103         return 0;
11104 }
11105
11106 static int intel_gen6_queue_flip(struct drm_device *dev,
11107                                  struct drm_crtc *crtc,
11108                                  struct drm_framebuffer *fb,
11109                                  struct drm_i915_gem_object *obj,
11110                                  struct drm_i915_gem_request *req,
11111                                  uint32_t flags)
11112 {
11113         struct intel_engine_cs *ring = req->ring;
11114         struct drm_i915_private *dev_priv = dev->dev_private;
11115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11116         uint32_t pf, pipesrc;
11117         int ret;
11118
11119         ret = intel_ring_begin(req, 4);
11120         if (ret)
11121                 return ret;
11122
11123         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11124                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11125         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11126         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11127
11128         /* Contrary to the suggestions in the documentation,
11129          * "Enable Panel Fitter" does not seem to be required when page
11130          * flipping with a non-native mode, and worse causes a normal
11131          * modeset to fail.
11132          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11133          */
11134         pf = 0;
11135         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11136         intel_ring_emit(ring, pf | pipesrc);
11137
11138         intel_mark_page_flip_active(intel_crtc->unpin_work);
11139         return 0;
11140 }
11141
11142 static int intel_gen7_queue_flip(struct drm_device *dev,
11143                                  struct drm_crtc *crtc,
11144                                  struct drm_framebuffer *fb,
11145                                  struct drm_i915_gem_object *obj,
11146                                  struct drm_i915_gem_request *req,
11147                                  uint32_t flags)
11148 {
11149         struct intel_engine_cs *ring = req->ring;
11150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11151         uint32_t plane_bit = 0;
11152         int len, ret;
11153
11154         switch (intel_crtc->plane) {
11155         case PLANE_A:
11156                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11157                 break;
11158         case PLANE_B:
11159                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11160                 break;
11161         case PLANE_C:
11162                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11163                 break;
11164         default:
11165                 WARN_ONCE(1, "unknown plane in flip command\n");
11166                 return -ENODEV;
11167         }
11168
11169         len = 4;
11170         if (ring->id == RCS) {
11171                 len += 6;
11172                 /*
11173                  * On Gen 8, SRM is now taking an extra dword to accommodate
11174                  * 48bits addresses, and we need a NOOP for the batch size to
11175                  * stay even.
11176                  */
11177                 if (IS_GEN8(dev))
11178                         len += 2;
11179         }
11180
11181         /*
11182          * BSpec MI_DISPLAY_FLIP for IVB:
11183          * "The full packet must be contained within the same cache line."
11184          *
11185          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11186          * cacheline, if we ever start emitting more commands before
11187          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11188          * then do the cacheline alignment, and finally emit the
11189          * MI_DISPLAY_FLIP.
11190          */
11191         ret = intel_ring_cacheline_align(req);
11192         if (ret)
11193                 return ret;
11194
11195         ret = intel_ring_begin(req, len);
11196         if (ret)
11197                 return ret;
11198
11199         /* Unmask the flip-done completion message. Note that the bspec says that
11200          * we should do this for both the BCS and RCS, and that we must not unmask
11201          * more than one flip event at any time (or ensure that one flip message
11202          * can be sent by waiting for flip-done prior to queueing new flips).
11203          * Experimentation says that BCS works despite DERRMR masking all
11204          * flip-done completion events and that unmasking all planes at once
11205          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11206          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11207          */
11208         if (ring->id == RCS) {
11209                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11210                 intel_ring_emit_reg(ring, DERRMR);
11211                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11212                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11213                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11214                 if (IS_GEN8(dev))
11215                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11216                                               MI_SRM_LRM_GLOBAL_GTT);
11217                 else
11218                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11219                                               MI_SRM_LRM_GLOBAL_GTT);
11220                 intel_ring_emit_reg(ring, DERRMR);
11221                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11222                 if (IS_GEN8(dev)) {
11223                         intel_ring_emit(ring, 0);
11224                         intel_ring_emit(ring, MI_NOOP);
11225                 }
11226         }
11227
11228         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11229         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11230         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11231         intel_ring_emit(ring, (MI_NOOP));
11232
11233         intel_mark_page_flip_active(intel_crtc->unpin_work);
11234         return 0;
11235 }
11236
11237 static bool use_mmio_flip(struct intel_engine_cs *ring,
11238                           struct drm_i915_gem_object *obj)
11239 {
11240         /*
11241          * This is not being used for older platforms, because
11242          * non-availability of flip done interrupt forces us to use
11243          * CS flips. Older platforms derive flip done using some clever
11244          * tricks involving the flip_pending status bits and vblank irqs.
11245          * So using MMIO flips there would disrupt this mechanism.
11246          */
11247
11248         if (ring == NULL)
11249                 return true;
11250
11251         if (INTEL_INFO(ring->dev)->gen < 5)
11252                 return false;
11253
11254         if (i915.use_mmio_flip < 0)
11255                 return false;
11256         else if (i915.use_mmio_flip > 0)
11257                 return true;
11258         else if (i915.enable_execlists)
11259                 return true;
11260         else if (obj->base.dma_buf &&
11261                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11262                                                        false))
11263                 return true;
11264         else
11265                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11266 }
11267
11268 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11269                              unsigned int rotation,
11270                              struct intel_unpin_work *work)
11271 {
11272         struct drm_device *dev = intel_crtc->base.dev;
11273         struct drm_i915_private *dev_priv = dev->dev_private;
11274         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11275         const enum pipe pipe = intel_crtc->pipe;
11276         u32 ctl, stride, tile_height;
11277
11278         ctl = I915_READ(PLANE_CTL(pipe, 0));
11279         ctl &= ~PLANE_CTL_TILED_MASK;
11280         switch (fb->modifier[0]) {
11281         case DRM_FORMAT_MOD_NONE:
11282                 break;
11283         case I915_FORMAT_MOD_X_TILED:
11284                 ctl |= PLANE_CTL_TILED_X;
11285                 break;
11286         case I915_FORMAT_MOD_Y_TILED:
11287                 ctl |= PLANE_CTL_TILED_Y;
11288                 break;
11289         case I915_FORMAT_MOD_Yf_TILED:
11290                 ctl |= PLANE_CTL_TILED_YF;
11291                 break;
11292         default:
11293                 MISSING_CASE(fb->modifier[0]);
11294         }
11295
11296         /*
11297          * The stride is either expressed as a multiple of 64 bytes chunks for
11298          * linear buffers or in number of tiles for tiled buffers.
11299          */
11300         if (intel_rotation_90_or_270(rotation)) {
11301                 /* stride = Surface height in tiles */
11302                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11303                 stride = DIV_ROUND_UP(fb->height, tile_height);
11304         } else {
11305                 stride = fb->pitches[0] /
11306                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11307                                                   fb->pixel_format);
11308         }
11309
11310         /*
11311          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11312          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11313          */
11314         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11315         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11316
11317         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11318         POSTING_READ(PLANE_SURF(pipe, 0));
11319 }
11320
11321 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11322                              struct intel_unpin_work *work)
11323 {
11324         struct drm_device *dev = intel_crtc->base.dev;
11325         struct drm_i915_private *dev_priv = dev->dev_private;
11326         struct intel_framebuffer *intel_fb =
11327                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11328         struct drm_i915_gem_object *obj = intel_fb->obj;
11329         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11330         u32 dspcntr;
11331
11332         dspcntr = I915_READ(reg);
11333
11334         if (obj->tiling_mode != I915_TILING_NONE)
11335                 dspcntr |= DISPPLANE_TILED;
11336         else
11337                 dspcntr &= ~DISPPLANE_TILED;
11338
11339         I915_WRITE(reg, dspcntr);
11340
11341         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11342         POSTING_READ(DSPSURF(intel_crtc->plane));
11343 }
11344
11345 /*
11346  * XXX: This is the temporary way to update the plane registers until we get
11347  * around to using the usual plane update functions for MMIO flips
11348  */
11349 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11350 {
11351         struct intel_crtc *crtc = mmio_flip->crtc;
11352         struct intel_unpin_work *work;
11353
11354         spin_lock_irq(&crtc->base.dev->event_lock);
11355         work = crtc->unpin_work;
11356         spin_unlock_irq(&crtc->base.dev->event_lock);
11357         if (work == NULL)
11358                 return;
11359
11360         intel_mark_page_flip_active(work);
11361
11362         intel_pipe_update_start(crtc);
11363
11364         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11365                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11366         else
11367                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11368                 ilk_do_mmio_flip(crtc, work);
11369
11370         intel_pipe_update_end(crtc);
11371 }
11372
11373 static void intel_mmio_flip_work_func(struct work_struct *work)
11374 {
11375         struct intel_mmio_flip *mmio_flip =
11376                 container_of(work, struct intel_mmio_flip, work);
11377         struct intel_framebuffer *intel_fb =
11378                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11379         struct drm_i915_gem_object *obj = intel_fb->obj;
11380
11381         if (mmio_flip->req) {
11382                 WARN_ON(__i915_wait_request(mmio_flip->req,
11383                                             mmio_flip->crtc->reset_counter,
11384                                             false, NULL,
11385                                             &mmio_flip->i915->rps.mmioflips));
11386                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11387         }
11388
11389         /* For framebuffer backed by dmabuf, wait for fence */
11390         if (obj->base.dma_buf)
11391                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11392                                                             false, false,
11393                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11394
11395         intel_do_mmio_flip(mmio_flip);
11396         kfree(mmio_flip);
11397 }
11398
11399 static int intel_queue_mmio_flip(struct drm_device *dev,
11400                                  struct drm_crtc *crtc,
11401                                  struct drm_i915_gem_object *obj)
11402 {
11403         struct intel_mmio_flip *mmio_flip;
11404
11405         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11406         if (mmio_flip == NULL)
11407                 return -ENOMEM;
11408
11409         mmio_flip->i915 = to_i915(dev);
11410         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11411         mmio_flip->crtc = to_intel_crtc(crtc);
11412         mmio_flip->rotation = crtc->primary->state->rotation;
11413
11414         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11415         schedule_work(&mmio_flip->work);
11416
11417         return 0;
11418 }
11419
11420 static int intel_default_queue_flip(struct drm_device *dev,
11421                                     struct drm_crtc *crtc,
11422                                     struct drm_framebuffer *fb,
11423                                     struct drm_i915_gem_object *obj,
11424                                     struct drm_i915_gem_request *req,
11425                                     uint32_t flags)
11426 {
11427         return -ENODEV;
11428 }
11429
11430 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11431                                          struct drm_crtc *crtc)
11432 {
11433         struct drm_i915_private *dev_priv = dev->dev_private;
11434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11435         struct intel_unpin_work *work = intel_crtc->unpin_work;
11436         u32 addr;
11437
11438         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11439                 return true;
11440
11441         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11442                 return false;
11443
11444         if (!work->enable_stall_check)
11445                 return false;
11446
11447         if (work->flip_ready_vblank == 0) {
11448                 if (work->flip_queued_req &&
11449                     !i915_gem_request_completed(work->flip_queued_req, true))
11450                         return false;
11451
11452                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11453         }
11454
11455         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11456                 return false;
11457
11458         /* Potential stall - if we see that the flip has happened,
11459          * assume a missed interrupt. */
11460         if (INTEL_INFO(dev)->gen >= 4)
11461                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11462         else
11463                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11464
11465         /* There is a potential issue here with a false positive after a flip
11466          * to the same address. We could address this by checking for a
11467          * non-incrementing frame counter.
11468          */
11469         return addr == work->gtt_offset;
11470 }
11471
11472 void intel_check_page_flip(struct drm_device *dev, int pipe)
11473 {
11474         struct drm_i915_private *dev_priv = dev->dev_private;
11475         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11476         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11477         struct intel_unpin_work *work;
11478
11479         WARN_ON(!in_interrupt());
11480
11481         if (crtc == NULL)
11482                 return;
11483
11484         spin_lock(&dev->event_lock);
11485         work = intel_crtc->unpin_work;
11486         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11487                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11488                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11489                 page_flip_completed(intel_crtc);
11490                 work = NULL;
11491         }
11492         if (work != NULL &&
11493             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11494                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11495         spin_unlock(&dev->event_lock);
11496 }
11497
11498 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11499                                 struct drm_framebuffer *fb,
11500                                 struct drm_pending_vblank_event *event,
11501                                 uint32_t page_flip_flags)
11502 {
11503         struct drm_device *dev = crtc->dev;
11504         struct drm_i915_private *dev_priv = dev->dev_private;
11505         struct drm_framebuffer *old_fb = crtc->primary->fb;
11506         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11507         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11508         struct drm_plane *primary = crtc->primary;
11509         enum pipe pipe = intel_crtc->pipe;
11510         struct intel_unpin_work *work;
11511         struct intel_engine_cs *ring;
11512         bool mmio_flip;
11513         struct drm_i915_gem_request *request = NULL;
11514         int ret;
11515
11516         /*
11517          * drm_mode_page_flip_ioctl() should already catch this, but double
11518          * check to be safe.  In the future we may enable pageflipping from
11519          * a disabled primary plane.
11520          */
11521         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11522                 return -EBUSY;
11523
11524         /* Can't change pixel format via MI display flips. */
11525         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11526                 return -EINVAL;
11527
11528         /*
11529          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11530          * Note that pitch changes could also affect these register.
11531          */
11532         if (INTEL_INFO(dev)->gen > 3 &&
11533             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11534              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11535                 return -EINVAL;
11536
11537         if (i915_terminally_wedged(&dev_priv->gpu_error))
11538                 goto out_hang;
11539
11540         work = kzalloc(sizeof(*work), GFP_KERNEL);
11541         if (work == NULL)
11542                 return -ENOMEM;
11543
11544         work->event = event;
11545         work->crtc = crtc;
11546         work->old_fb = old_fb;
11547         INIT_WORK(&work->work, intel_unpin_work_fn);
11548
11549         ret = drm_crtc_vblank_get(crtc);
11550         if (ret)
11551                 goto free_work;
11552
11553         /* We borrow the event spin lock for protecting unpin_work */
11554         spin_lock_irq(&dev->event_lock);
11555         if (intel_crtc->unpin_work) {
11556                 /* Before declaring the flip queue wedged, check if
11557                  * the hardware completed the operation behind our backs.
11558                  */
11559                 if (__intel_pageflip_stall_check(dev, crtc)) {
11560                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11561                         page_flip_completed(intel_crtc);
11562                 } else {
11563                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11564                         spin_unlock_irq(&dev->event_lock);
11565
11566                         drm_crtc_vblank_put(crtc);
11567                         kfree(work);
11568                         return -EBUSY;
11569                 }
11570         }
11571         intel_crtc->unpin_work = work;
11572         spin_unlock_irq(&dev->event_lock);
11573
11574         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11575                 flush_workqueue(dev_priv->wq);
11576
11577         /* Reference the objects for the scheduled work. */
11578         drm_framebuffer_reference(work->old_fb);
11579         drm_gem_object_reference(&obj->base);
11580
11581         crtc->primary->fb = fb;
11582         update_state_fb(crtc->primary);
11583         intel_fbc_pre_update(intel_crtc);
11584
11585         work->pending_flip_obj = obj;
11586
11587         ret = i915_mutex_lock_interruptible(dev);
11588         if (ret)
11589                 goto cleanup;
11590
11591         atomic_inc(&intel_crtc->unpin_work_count);
11592         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11593
11594         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11595                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11596
11597         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11598                 ring = &dev_priv->ring[BCS];
11599                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11600                         /* vlv: DISPLAY_FLIP fails to change tiling */
11601                         ring = NULL;
11602         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11603                 ring = &dev_priv->ring[BCS];
11604         } else if (INTEL_INFO(dev)->gen >= 7) {
11605                 ring = i915_gem_request_get_ring(obj->last_write_req);
11606                 if (ring == NULL || ring->id != RCS)
11607                         ring = &dev_priv->ring[BCS];
11608         } else {
11609                 ring = &dev_priv->ring[RCS];
11610         }
11611
11612         mmio_flip = use_mmio_flip(ring, obj);
11613
11614         /* When using CS flips, we want to emit semaphores between rings.
11615          * However, when using mmio flips we will create a task to do the
11616          * synchronisation, so all we want here is to pin the framebuffer
11617          * into the display plane and skip any waits.
11618          */
11619         if (!mmio_flip) {
11620                 ret = i915_gem_object_sync(obj, ring, &request);
11621                 if (ret)
11622                         goto cleanup_pending;
11623         }
11624
11625         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11626                                          crtc->primary->state);
11627         if (ret)
11628                 goto cleanup_pending;
11629
11630         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11631                                                   obj, 0);
11632         work->gtt_offset += intel_crtc->dspaddr_offset;
11633
11634         if (mmio_flip) {
11635                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11636                 if (ret)
11637                         goto cleanup_unpin;
11638
11639                 i915_gem_request_assign(&work->flip_queued_req,
11640                                         obj->last_write_req);
11641         } else {
11642                 if (!request) {
11643                         request = i915_gem_request_alloc(ring, NULL);
11644                         if (IS_ERR(request)) {
11645                                 ret = PTR_ERR(request);
11646                                 goto cleanup_unpin;
11647                         }
11648                 }
11649
11650                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11651                                                    page_flip_flags);
11652                 if (ret)
11653                         goto cleanup_unpin;
11654
11655                 i915_gem_request_assign(&work->flip_queued_req, request);
11656         }
11657
11658         if (request)
11659                 i915_add_request_no_flush(request);
11660
11661         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11662         work->enable_stall_check = true;
11663
11664         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11665                           to_intel_plane(primary)->frontbuffer_bit);
11666         mutex_unlock(&dev->struct_mutex);
11667
11668         intel_frontbuffer_flip_prepare(dev,
11669                                        to_intel_plane(primary)->frontbuffer_bit);
11670
11671         trace_i915_flip_request(intel_crtc->plane, obj);
11672
11673         return 0;
11674
11675 cleanup_unpin:
11676         intel_unpin_fb_obj(fb, crtc->primary->state);
11677 cleanup_pending:
11678         if (!IS_ERR_OR_NULL(request))
11679                 i915_gem_request_cancel(request);
11680         atomic_dec(&intel_crtc->unpin_work_count);
11681         mutex_unlock(&dev->struct_mutex);
11682 cleanup:
11683         crtc->primary->fb = old_fb;
11684         update_state_fb(crtc->primary);
11685
11686         drm_gem_object_unreference_unlocked(&obj->base);
11687         drm_framebuffer_unreference(work->old_fb);
11688
11689         spin_lock_irq(&dev->event_lock);
11690         intel_crtc->unpin_work = NULL;
11691         spin_unlock_irq(&dev->event_lock);
11692
11693         drm_crtc_vblank_put(crtc);
11694 free_work:
11695         kfree(work);
11696
11697         if (ret == -EIO) {
11698                 struct drm_atomic_state *state;
11699                 struct drm_plane_state *plane_state;
11700
11701 out_hang:
11702                 state = drm_atomic_state_alloc(dev);
11703                 if (!state)
11704                         return -ENOMEM;
11705                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11706
11707 retry:
11708                 plane_state = drm_atomic_get_plane_state(state, primary);
11709                 ret = PTR_ERR_OR_ZERO(plane_state);
11710                 if (!ret) {
11711                         drm_atomic_set_fb_for_plane(plane_state, fb);
11712
11713                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11714                         if (!ret)
11715                                 ret = drm_atomic_commit(state);
11716                 }
11717
11718                 if (ret == -EDEADLK) {
11719                         drm_modeset_backoff(state->acquire_ctx);
11720                         drm_atomic_state_clear(state);
11721                         goto retry;
11722                 }
11723
11724                 if (ret)
11725                         drm_atomic_state_free(state);
11726
11727                 if (ret == 0 && event) {
11728                         spin_lock_irq(&dev->event_lock);
11729                         drm_send_vblank_event(dev, pipe, event);
11730                         spin_unlock_irq(&dev->event_lock);
11731                 }
11732         }
11733         return ret;
11734 }
11735
11736
11737 /**
11738  * intel_wm_need_update - Check whether watermarks need updating
11739  * @plane: drm plane
11740  * @state: new plane state
11741  *
11742  * Check current plane state versus the new one to determine whether
11743  * watermarks need to be recalculated.
11744  *
11745  * Returns true or false.
11746  */
11747 static bool intel_wm_need_update(struct drm_plane *plane,
11748                                  struct drm_plane_state *state)
11749 {
11750         struct intel_plane_state *new = to_intel_plane_state(state);
11751         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11752
11753         /* Update watermarks on tiling or size changes. */
11754         if (new->visible != cur->visible)
11755                 return true;
11756
11757         if (!cur->base.fb || !new->base.fb)
11758                 return false;
11759
11760         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11761             cur->base.rotation != new->base.rotation ||
11762             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11763             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11764             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11765             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11766                 return true;
11767
11768         return false;
11769 }
11770
11771 static bool needs_scaling(struct intel_plane_state *state)
11772 {
11773         int src_w = drm_rect_width(&state->src) >> 16;
11774         int src_h = drm_rect_height(&state->src) >> 16;
11775         int dst_w = drm_rect_width(&state->dst);
11776         int dst_h = drm_rect_height(&state->dst);
11777
11778         return (src_w != dst_w || src_h != dst_h);
11779 }
11780
11781 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11782                                     struct drm_plane_state *plane_state)
11783 {
11784         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11785         struct drm_crtc *crtc = crtc_state->crtc;
11786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11787         struct drm_plane *plane = plane_state->plane;
11788         struct drm_device *dev = crtc->dev;
11789         struct intel_plane_state *old_plane_state =
11790                 to_intel_plane_state(plane->state);
11791         int idx = intel_crtc->base.base.id, ret;
11792         bool mode_changed = needs_modeset(crtc_state);
11793         bool was_crtc_enabled = crtc->state->active;
11794         bool is_crtc_enabled = crtc_state->active;
11795         bool turn_off, turn_on, visible, was_visible;
11796         struct drm_framebuffer *fb = plane_state->fb;
11797
11798         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11799             plane->type != DRM_PLANE_TYPE_CURSOR) {
11800                 ret = skl_update_scaler_plane(
11801                         to_intel_crtc_state(crtc_state),
11802                         to_intel_plane_state(plane_state));
11803                 if (ret)
11804                         return ret;
11805         }
11806
11807         was_visible = old_plane_state->visible;
11808         visible = to_intel_plane_state(plane_state)->visible;
11809
11810         if (!was_crtc_enabled && WARN_ON(was_visible))
11811                 was_visible = false;
11812
11813         /*
11814          * Visibility is calculated as if the crtc was on, but
11815          * after scaler setup everything depends on it being off
11816          * when the crtc isn't active.
11817          */
11818         if (!is_crtc_enabled)
11819                 to_intel_plane_state(plane_state)->visible = visible = false;
11820
11821         if (!was_visible && !visible)
11822                 return 0;
11823
11824         if (fb != old_plane_state->base.fb)
11825                 pipe_config->fb_changed = true;
11826
11827         turn_off = was_visible && (!visible || mode_changed);
11828         turn_on = visible && (!was_visible || mode_changed);
11829
11830         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11831                          plane->base.id, fb ? fb->base.id : -1);
11832
11833         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11834                          plane->base.id, was_visible, visible,
11835                          turn_off, turn_on, mode_changed);
11836
11837         if (turn_on || turn_off) {
11838                 pipe_config->wm_changed = true;
11839
11840                 /* must disable cxsr around plane enable/disable */
11841                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11842                         pipe_config->disable_cxsr = true;
11843         } else if (intel_wm_need_update(plane, plane_state)) {
11844                 pipe_config->wm_changed = true;
11845         }
11846
11847         if (visible || was_visible)
11848                 intel_crtc->atomic.fb_bits |=
11849                         to_intel_plane(plane)->frontbuffer_bit;
11850
11851         switch (plane->type) {
11852         case DRM_PLANE_TYPE_PRIMARY:
11853                 intel_crtc->atomic.post_enable_primary = turn_on;
11854                 intel_crtc->atomic.update_fbc = true;
11855
11856                 break;
11857         case DRM_PLANE_TYPE_CURSOR:
11858                 break;
11859         case DRM_PLANE_TYPE_OVERLAY:
11860                 /*
11861                  * WaCxSRDisabledForSpriteScaling:ivb
11862                  *
11863                  * cstate->update_wm was already set above, so this flag will
11864                  * take effect when we commit and program watermarks.
11865                  */
11866                 if (IS_IVYBRIDGE(dev) &&
11867                     needs_scaling(to_intel_plane_state(plane_state)) &&
11868                     !needs_scaling(old_plane_state))
11869                         pipe_config->disable_lp_wm = true;
11870
11871                 break;
11872         }
11873         return 0;
11874 }
11875
11876 static bool encoders_cloneable(const struct intel_encoder *a,
11877                                const struct intel_encoder *b)
11878 {
11879         /* masks could be asymmetric, so check both ways */
11880         return a == b || (a->cloneable & (1 << b->type) &&
11881                           b->cloneable & (1 << a->type));
11882 }
11883
11884 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11885                                          struct intel_crtc *crtc,
11886                                          struct intel_encoder *encoder)
11887 {
11888         struct intel_encoder *source_encoder;
11889         struct drm_connector *connector;
11890         struct drm_connector_state *connector_state;
11891         int i;
11892
11893         for_each_connector_in_state(state, connector, connector_state, i) {
11894                 if (connector_state->crtc != &crtc->base)
11895                         continue;
11896
11897                 source_encoder =
11898                         to_intel_encoder(connector_state->best_encoder);
11899                 if (!encoders_cloneable(encoder, source_encoder))
11900                         return false;
11901         }
11902
11903         return true;
11904 }
11905
11906 static bool check_encoder_cloning(struct drm_atomic_state *state,
11907                                   struct intel_crtc *crtc)
11908 {
11909         struct intel_encoder *encoder;
11910         struct drm_connector *connector;
11911         struct drm_connector_state *connector_state;
11912         int i;
11913
11914         for_each_connector_in_state(state, connector, connector_state, i) {
11915                 if (connector_state->crtc != &crtc->base)
11916                         continue;
11917
11918                 encoder = to_intel_encoder(connector_state->best_encoder);
11919                 if (!check_single_encoder_cloning(state, crtc, encoder))
11920                         return false;
11921         }
11922
11923         return true;
11924 }
11925
11926 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11927                                    struct drm_crtc_state *crtc_state)
11928 {
11929         struct drm_device *dev = crtc->dev;
11930         struct drm_i915_private *dev_priv = dev->dev_private;
11931         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11932         struct intel_crtc_state *pipe_config =
11933                 to_intel_crtc_state(crtc_state);
11934         struct drm_atomic_state *state = crtc_state->state;
11935         int ret;
11936         bool mode_changed = needs_modeset(crtc_state);
11937
11938         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11939                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11940                 return -EINVAL;
11941         }
11942
11943         if (mode_changed && !crtc_state->active)
11944                 pipe_config->wm_changed = true;
11945
11946         if (mode_changed && crtc_state->enable &&
11947             dev_priv->display.crtc_compute_clock &&
11948             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11949                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11950                                                            pipe_config);
11951                 if (ret)
11952                         return ret;
11953         }
11954
11955         ret = 0;
11956         if (dev_priv->display.compute_pipe_wm) {
11957                 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11958                 if (ret)
11959                         return ret;
11960         }
11961
11962         if (INTEL_INFO(dev)->gen >= 9) {
11963                 if (mode_changed)
11964                         ret = skl_update_scaler_crtc(pipe_config);
11965
11966                 if (!ret)
11967                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11968                                                          pipe_config);
11969         }
11970
11971         return ret;
11972 }
11973
11974 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11975         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11976         .load_lut = intel_crtc_load_lut,
11977         .atomic_begin = intel_begin_crtc_commit,
11978         .atomic_flush = intel_finish_crtc_commit,
11979         .atomic_check = intel_crtc_atomic_check,
11980 };
11981
11982 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11983 {
11984         struct intel_connector *connector;
11985
11986         for_each_intel_connector(dev, connector) {
11987                 if (connector->base.encoder) {
11988                         connector->base.state->best_encoder =
11989                                 connector->base.encoder;
11990                         connector->base.state->crtc =
11991                                 connector->base.encoder->crtc;
11992                 } else {
11993                         connector->base.state->best_encoder = NULL;
11994                         connector->base.state->crtc = NULL;
11995                 }
11996         }
11997 }
11998
11999 static void
12000 connected_sink_compute_bpp(struct intel_connector *connector,
12001                            struct intel_crtc_state *pipe_config)
12002 {
12003         int bpp = pipe_config->pipe_bpp;
12004
12005         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12006                 connector->base.base.id,
12007                 connector->base.name);
12008
12009         /* Don't use an invalid EDID bpc value */
12010         if (connector->base.display_info.bpc &&
12011             connector->base.display_info.bpc * 3 < bpp) {
12012                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12013                               bpp, connector->base.display_info.bpc*3);
12014                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12015         }
12016
12017         /* Clamp bpp to default limit on screens without EDID 1.4 */
12018         if (connector->base.display_info.bpc == 0) {
12019                 int type = connector->base.connector_type;
12020                 int clamp_bpp = 24;
12021
12022                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12023                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12024                     type == DRM_MODE_CONNECTOR_eDP)
12025                         clamp_bpp = 18;
12026
12027                 if (bpp > clamp_bpp) {
12028                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12029                                       bpp, clamp_bpp);
12030                         pipe_config->pipe_bpp = clamp_bpp;
12031                 }
12032         }
12033 }
12034
12035 static int
12036 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12037                           struct intel_crtc_state *pipe_config)
12038 {
12039         struct drm_device *dev = crtc->base.dev;
12040         struct drm_atomic_state *state;
12041         struct drm_connector *connector;
12042         struct drm_connector_state *connector_state;
12043         int bpp, i;
12044
12045         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12046                 bpp = 10*3;
12047         else if (INTEL_INFO(dev)->gen >= 5)
12048                 bpp = 12*3;
12049         else
12050                 bpp = 8*3;
12051
12052
12053         pipe_config->pipe_bpp = bpp;
12054
12055         state = pipe_config->base.state;
12056
12057         /* Clamp display bpp to EDID value */
12058         for_each_connector_in_state(state, connector, connector_state, i) {
12059                 if (connector_state->crtc != &crtc->base)
12060                         continue;
12061
12062                 connected_sink_compute_bpp(to_intel_connector(connector),
12063                                            pipe_config);
12064         }
12065
12066         return bpp;
12067 }
12068
12069 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12070 {
12071         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12072                         "type: 0x%x flags: 0x%x\n",
12073                 mode->crtc_clock,
12074                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12075                 mode->crtc_hsync_end, mode->crtc_htotal,
12076                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12077                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12078 }
12079
12080 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12081                                    struct intel_crtc_state *pipe_config,
12082                                    const char *context)
12083 {
12084         struct drm_device *dev = crtc->base.dev;
12085         struct drm_plane *plane;
12086         struct intel_plane *intel_plane;
12087         struct intel_plane_state *state;
12088         struct drm_framebuffer *fb;
12089
12090         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12091                       context, pipe_config, pipe_name(crtc->pipe));
12092
12093         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12094         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12095                       pipe_config->pipe_bpp, pipe_config->dither);
12096         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12097                       pipe_config->has_pch_encoder,
12098                       pipe_config->fdi_lanes,
12099                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12100                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12101                       pipe_config->fdi_m_n.tu);
12102         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12103                       pipe_config->has_dp_encoder,
12104                       pipe_config->lane_count,
12105                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12106                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12107                       pipe_config->dp_m_n.tu);
12108
12109         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12110                       pipe_config->has_dp_encoder,
12111                       pipe_config->lane_count,
12112                       pipe_config->dp_m2_n2.gmch_m,
12113                       pipe_config->dp_m2_n2.gmch_n,
12114                       pipe_config->dp_m2_n2.link_m,
12115                       pipe_config->dp_m2_n2.link_n,
12116                       pipe_config->dp_m2_n2.tu);
12117
12118         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12119                       pipe_config->has_audio,
12120                       pipe_config->has_infoframe);
12121
12122         DRM_DEBUG_KMS("requested mode:\n");
12123         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12124         DRM_DEBUG_KMS("adjusted mode:\n");
12125         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12126         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12127         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12128         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12129                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12130         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12131                       crtc->num_scalers,
12132                       pipe_config->scaler_state.scaler_users,
12133                       pipe_config->scaler_state.scaler_id);
12134         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12135                       pipe_config->gmch_pfit.control,
12136                       pipe_config->gmch_pfit.pgm_ratios,
12137                       pipe_config->gmch_pfit.lvds_border_bits);
12138         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12139                       pipe_config->pch_pfit.pos,
12140                       pipe_config->pch_pfit.size,
12141                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12142         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12143         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12144
12145         if (IS_BROXTON(dev)) {
12146                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12147                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12148                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12149                               pipe_config->ddi_pll_sel,
12150                               pipe_config->dpll_hw_state.ebb0,
12151                               pipe_config->dpll_hw_state.ebb4,
12152                               pipe_config->dpll_hw_state.pll0,
12153                               pipe_config->dpll_hw_state.pll1,
12154                               pipe_config->dpll_hw_state.pll2,
12155                               pipe_config->dpll_hw_state.pll3,
12156                               pipe_config->dpll_hw_state.pll6,
12157                               pipe_config->dpll_hw_state.pll8,
12158                               pipe_config->dpll_hw_state.pll9,
12159                               pipe_config->dpll_hw_state.pll10,
12160                               pipe_config->dpll_hw_state.pcsdw12);
12161         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12162                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12163                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12164                               pipe_config->ddi_pll_sel,
12165                               pipe_config->dpll_hw_state.ctrl1,
12166                               pipe_config->dpll_hw_state.cfgcr1,
12167                               pipe_config->dpll_hw_state.cfgcr2);
12168         } else if (HAS_DDI(dev)) {
12169                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12170                               pipe_config->ddi_pll_sel,
12171                               pipe_config->dpll_hw_state.wrpll,
12172                               pipe_config->dpll_hw_state.spll);
12173         } else {
12174                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12175                               "fp0: 0x%x, fp1: 0x%x\n",
12176                               pipe_config->dpll_hw_state.dpll,
12177                               pipe_config->dpll_hw_state.dpll_md,
12178                               pipe_config->dpll_hw_state.fp0,
12179                               pipe_config->dpll_hw_state.fp1);
12180         }
12181
12182         DRM_DEBUG_KMS("planes on this crtc\n");
12183         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12184                 intel_plane = to_intel_plane(plane);
12185                 if (intel_plane->pipe != crtc->pipe)
12186                         continue;
12187
12188                 state = to_intel_plane_state(plane->state);
12189                 fb = state->base.fb;
12190                 if (!fb) {
12191                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12192                                 "disabled, scaler_id = %d\n",
12193                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12194                                 plane->base.id, intel_plane->pipe,
12195                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12196                                 drm_plane_index(plane), state->scaler_id);
12197                         continue;
12198                 }
12199
12200                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12201                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12202                         plane->base.id, intel_plane->pipe,
12203                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12204                         drm_plane_index(plane));
12205                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12206                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12207                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12208                         state->scaler_id,
12209                         state->src.x1 >> 16, state->src.y1 >> 16,
12210                         drm_rect_width(&state->src) >> 16,
12211                         drm_rect_height(&state->src) >> 16,
12212                         state->dst.x1, state->dst.y1,
12213                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12214         }
12215 }
12216
12217 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12218 {
12219         struct drm_device *dev = state->dev;
12220         struct drm_connector *connector;
12221         unsigned int used_ports = 0;
12222
12223         /*
12224          * Walk the connector list instead of the encoder
12225          * list to detect the problem on ddi platforms
12226          * where there's just one encoder per digital port.
12227          */
12228         drm_for_each_connector(connector, dev) {
12229                 struct drm_connector_state *connector_state;
12230                 struct intel_encoder *encoder;
12231
12232                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12233                 if (!connector_state)
12234                         connector_state = connector->state;
12235
12236                 if (!connector_state->best_encoder)
12237                         continue;
12238
12239                 encoder = to_intel_encoder(connector_state->best_encoder);
12240
12241                 WARN_ON(!connector_state->crtc);
12242
12243                 switch (encoder->type) {
12244                         unsigned int port_mask;
12245                 case INTEL_OUTPUT_UNKNOWN:
12246                         if (WARN_ON(!HAS_DDI(dev)))
12247                                 break;
12248                 case INTEL_OUTPUT_DISPLAYPORT:
12249                 case INTEL_OUTPUT_HDMI:
12250                 case INTEL_OUTPUT_EDP:
12251                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12252
12253                         /* the same port mustn't appear more than once */
12254                         if (used_ports & port_mask)
12255                                 return false;
12256
12257                         used_ports |= port_mask;
12258                 default:
12259                         break;
12260                 }
12261         }
12262
12263         return true;
12264 }
12265
12266 static void
12267 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12268 {
12269         struct drm_crtc_state tmp_state;
12270         struct intel_crtc_scaler_state scaler_state;
12271         struct intel_dpll_hw_state dpll_hw_state;
12272         enum intel_dpll_id shared_dpll;
12273         uint32_t ddi_pll_sel;
12274         bool force_thru;
12275
12276         /* FIXME: before the switch to atomic started, a new pipe_config was
12277          * kzalloc'd. Code that depends on any field being zero should be
12278          * fixed, so that the crtc_state can be safely duplicated. For now,
12279          * only fields that are know to not cause problems are preserved. */
12280
12281         tmp_state = crtc_state->base;
12282         scaler_state = crtc_state->scaler_state;
12283         shared_dpll = crtc_state->shared_dpll;
12284         dpll_hw_state = crtc_state->dpll_hw_state;
12285         ddi_pll_sel = crtc_state->ddi_pll_sel;
12286         force_thru = crtc_state->pch_pfit.force_thru;
12287
12288         memset(crtc_state, 0, sizeof *crtc_state);
12289
12290         crtc_state->base = tmp_state;
12291         crtc_state->scaler_state = scaler_state;
12292         crtc_state->shared_dpll = shared_dpll;
12293         crtc_state->dpll_hw_state = dpll_hw_state;
12294         crtc_state->ddi_pll_sel = ddi_pll_sel;
12295         crtc_state->pch_pfit.force_thru = force_thru;
12296 }
12297
12298 static int
12299 intel_modeset_pipe_config(struct drm_crtc *crtc,
12300                           struct intel_crtc_state *pipe_config)
12301 {
12302         struct drm_atomic_state *state = pipe_config->base.state;
12303         struct intel_encoder *encoder;
12304         struct drm_connector *connector;
12305         struct drm_connector_state *connector_state;
12306         int base_bpp, ret = -EINVAL;
12307         int i;
12308         bool retry = true;
12309
12310         clear_intel_crtc_state(pipe_config);
12311
12312         pipe_config->cpu_transcoder =
12313                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12314
12315         /*
12316          * Sanitize sync polarity flags based on requested ones. If neither
12317          * positive or negative polarity is requested, treat this as meaning
12318          * negative polarity.
12319          */
12320         if (!(pipe_config->base.adjusted_mode.flags &
12321               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12322                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12323
12324         if (!(pipe_config->base.adjusted_mode.flags &
12325               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12326                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12327
12328         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12329                                              pipe_config);
12330         if (base_bpp < 0)
12331                 goto fail;
12332
12333         /*
12334          * Determine the real pipe dimensions. Note that stereo modes can
12335          * increase the actual pipe size due to the frame doubling and
12336          * insertion of additional space for blanks between the frame. This
12337          * is stored in the crtc timings. We use the requested mode to do this
12338          * computation to clearly distinguish it from the adjusted mode, which
12339          * can be changed by the connectors in the below retry loop.
12340          */
12341         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12342                                &pipe_config->pipe_src_w,
12343                                &pipe_config->pipe_src_h);
12344
12345 encoder_retry:
12346         /* Ensure the port clock defaults are reset when retrying. */
12347         pipe_config->port_clock = 0;
12348         pipe_config->pixel_multiplier = 1;
12349
12350         /* Fill in default crtc timings, allow encoders to overwrite them. */
12351         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12352                               CRTC_STEREO_DOUBLE);
12353
12354         /* Pass our mode to the connectors and the CRTC to give them a chance to
12355          * adjust it according to limitations or connector properties, and also
12356          * a chance to reject the mode entirely.
12357          */
12358         for_each_connector_in_state(state, connector, connector_state, i) {
12359                 if (connector_state->crtc != crtc)
12360                         continue;
12361
12362                 encoder = to_intel_encoder(connector_state->best_encoder);
12363
12364                 if (!(encoder->compute_config(encoder, pipe_config))) {
12365                         DRM_DEBUG_KMS("Encoder config failure\n");
12366                         goto fail;
12367                 }
12368         }
12369
12370         /* Set default port clock if not overwritten by the encoder. Needs to be
12371          * done afterwards in case the encoder adjusts the mode. */
12372         if (!pipe_config->port_clock)
12373                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12374                         * pipe_config->pixel_multiplier;
12375
12376         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12377         if (ret < 0) {
12378                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12379                 goto fail;
12380         }
12381
12382         if (ret == RETRY) {
12383                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12384                         ret = -EINVAL;
12385                         goto fail;
12386                 }
12387
12388                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12389                 retry = false;
12390                 goto encoder_retry;
12391         }
12392
12393         /* Dithering seems to not pass-through bits correctly when it should, so
12394          * only enable it on 6bpc panels. */
12395         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12396         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12397                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12398
12399 fail:
12400         return ret;
12401 }
12402
12403 static void
12404 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12405 {
12406         struct drm_crtc *crtc;
12407         struct drm_crtc_state *crtc_state;
12408         int i;
12409
12410         /* Double check state. */
12411         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12412                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12413
12414                 /* Update hwmode for vblank functions */
12415                 if (crtc->state->active)
12416                         crtc->hwmode = crtc->state->adjusted_mode;
12417                 else
12418                         crtc->hwmode.crtc_clock = 0;
12419
12420                 /*
12421                  * Update legacy state to satisfy fbc code. This can
12422                  * be removed when fbc uses the atomic state.
12423                  */
12424                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12425                         struct drm_plane_state *plane_state = crtc->primary->state;
12426
12427                         crtc->primary->fb = plane_state->fb;
12428                         crtc->x = plane_state->src_x >> 16;
12429                         crtc->y = plane_state->src_y >> 16;
12430                 }
12431         }
12432 }
12433
12434 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12435 {
12436         int diff;
12437
12438         if (clock1 == clock2)
12439                 return true;
12440
12441         if (!clock1 || !clock2)
12442                 return false;
12443
12444         diff = abs(clock1 - clock2);
12445
12446         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12447                 return true;
12448
12449         return false;
12450 }
12451
12452 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12453         list_for_each_entry((intel_crtc), \
12454                             &(dev)->mode_config.crtc_list, \
12455                             base.head) \
12456                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12457
12458 static bool
12459 intel_compare_m_n(unsigned int m, unsigned int n,
12460                   unsigned int m2, unsigned int n2,
12461                   bool exact)
12462 {
12463         if (m == m2 && n == n2)
12464                 return true;
12465
12466         if (exact || !m || !n || !m2 || !n2)
12467                 return false;
12468
12469         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12470
12471         if (n > n2) {
12472                 while (n > n2) {
12473                         m2 <<= 1;
12474                         n2 <<= 1;
12475                 }
12476         } else if (n < n2) {
12477                 while (n < n2) {
12478                         m <<= 1;
12479                         n <<= 1;
12480                 }
12481         }
12482
12483         if (n != n2)
12484                 return false;
12485
12486         return intel_fuzzy_clock_check(m, m2);
12487 }
12488
12489 static bool
12490 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12491                        struct intel_link_m_n *m2_n2,
12492                        bool adjust)
12493 {
12494         if (m_n->tu == m2_n2->tu &&
12495             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12496                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12497             intel_compare_m_n(m_n->link_m, m_n->link_n,
12498                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12499                 if (adjust)
12500                         *m2_n2 = *m_n;
12501
12502                 return true;
12503         }
12504
12505         return false;
12506 }
12507
12508 static bool
12509 intel_pipe_config_compare(struct drm_device *dev,
12510                           struct intel_crtc_state *current_config,
12511                           struct intel_crtc_state *pipe_config,
12512                           bool adjust)
12513 {
12514         bool ret = true;
12515
12516 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12517         do { \
12518                 if (!adjust) \
12519                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12520                 else \
12521                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12522         } while (0)
12523
12524 #define PIPE_CONF_CHECK_X(name) \
12525         if (current_config->name != pipe_config->name) { \
12526                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12527                           "(expected 0x%08x, found 0x%08x)\n", \
12528                           current_config->name, \
12529                           pipe_config->name); \
12530                 ret = false; \
12531         }
12532
12533 #define PIPE_CONF_CHECK_I(name) \
12534         if (current_config->name != pipe_config->name) { \
12535                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12536                           "(expected %i, found %i)\n", \
12537                           current_config->name, \
12538                           pipe_config->name); \
12539                 ret = false; \
12540         }
12541
12542 #define PIPE_CONF_CHECK_M_N(name) \
12543         if (!intel_compare_link_m_n(&current_config->name, \
12544                                     &pipe_config->name,\
12545                                     adjust)) { \
12546                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12547                           "(expected tu %i gmch %i/%i link %i/%i, " \
12548                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12549                           current_config->name.tu, \
12550                           current_config->name.gmch_m, \
12551                           current_config->name.gmch_n, \
12552                           current_config->name.link_m, \
12553                           current_config->name.link_n, \
12554                           pipe_config->name.tu, \
12555                           pipe_config->name.gmch_m, \
12556                           pipe_config->name.gmch_n, \
12557                           pipe_config->name.link_m, \
12558                           pipe_config->name.link_n); \
12559                 ret = false; \
12560         }
12561
12562 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12563         if (!intel_compare_link_m_n(&current_config->name, \
12564                                     &pipe_config->name, adjust) && \
12565             !intel_compare_link_m_n(&current_config->alt_name, \
12566                                     &pipe_config->name, adjust)) { \
12567                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12568                           "(expected tu %i gmch %i/%i link %i/%i, " \
12569                           "or tu %i gmch %i/%i link %i/%i, " \
12570                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12571                           current_config->name.tu, \
12572                           current_config->name.gmch_m, \
12573                           current_config->name.gmch_n, \
12574                           current_config->name.link_m, \
12575                           current_config->name.link_n, \
12576                           current_config->alt_name.tu, \
12577                           current_config->alt_name.gmch_m, \
12578                           current_config->alt_name.gmch_n, \
12579                           current_config->alt_name.link_m, \
12580                           current_config->alt_name.link_n, \
12581                           pipe_config->name.tu, \
12582                           pipe_config->name.gmch_m, \
12583                           pipe_config->name.gmch_n, \
12584                           pipe_config->name.link_m, \
12585                           pipe_config->name.link_n); \
12586                 ret = false; \
12587         }
12588
12589 /* This is required for BDW+ where there is only one set of registers for
12590  * switching between high and low RR.
12591  * This macro can be used whenever a comparison has to be made between one
12592  * hw state and multiple sw state variables.
12593  */
12594 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12595         if ((current_config->name != pipe_config->name) && \
12596                 (current_config->alt_name != pipe_config->name)) { \
12597                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12598                                   "(expected %i or %i, found %i)\n", \
12599                                   current_config->name, \
12600                                   current_config->alt_name, \
12601                                   pipe_config->name); \
12602                         ret = false; \
12603         }
12604
12605 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12606         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12607                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12608                           "(expected %i, found %i)\n", \
12609                           current_config->name & (mask), \
12610                           pipe_config->name & (mask)); \
12611                 ret = false; \
12612         }
12613
12614 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12615         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12616                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12617                           "(expected %i, found %i)\n", \
12618                           current_config->name, \
12619                           pipe_config->name); \
12620                 ret = false; \
12621         }
12622
12623 #define PIPE_CONF_QUIRK(quirk)  \
12624         ((current_config->quirks | pipe_config->quirks) & (quirk))
12625
12626         PIPE_CONF_CHECK_I(cpu_transcoder);
12627
12628         PIPE_CONF_CHECK_I(has_pch_encoder);
12629         PIPE_CONF_CHECK_I(fdi_lanes);
12630         PIPE_CONF_CHECK_M_N(fdi_m_n);
12631
12632         PIPE_CONF_CHECK_I(has_dp_encoder);
12633         PIPE_CONF_CHECK_I(lane_count);
12634
12635         if (INTEL_INFO(dev)->gen < 8) {
12636                 PIPE_CONF_CHECK_M_N(dp_m_n);
12637
12638                 if (current_config->has_drrs)
12639                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12640         } else
12641                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12642
12643         PIPE_CONF_CHECK_I(has_dsi_encoder);
12644
12645         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12646         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12647         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12648         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12649         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12650         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12651
12652         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12653         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12654         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12655         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12656         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12657         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12658
12659         PIPE_CONF_CHECK_I(pixel_multiplier);
12660         PIPE_CONF_CHECK_I(has_hdmi_sink);
12661         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12662             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12663                 PIPE_CONF_CHECK_I(limited_color_range);
12664         PIPE_CONF_CHECK_I(has_infoframe);
12665
12666         PIPE_CONF_CHECK_I(has_audio);
12667
12668         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12669                               DRM_MODE_FLAG_INTERLACE);
12670
12671         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12672                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12673                                       DRM_MODE_FLAG_PHSYNC);
12674                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12675                                       DRM_MODE_FLAG_NHSYNC);
12676                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12677                                       DRM_MODE_FLAG_PVSYNC);
12678                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12679                                       DRM_MODE_FLAG_NVSYNC);
12680         }
12681
12682         PIPE_CONF_CHECK_X(gmch_pfit.control);
12683         /* pfit ratios are autocomputed by the hw on gen4+ */
12684         if (INTEL_INFO(dev)->gen < 4)
12685                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12686         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12687
12688         if (!adjust) {
12689                 PIPE_CONF_CHECK_I(pipe_src_w);
12690                 PIPE_CONF_CHECK_I(pipe_src_h);
12691
12692                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12693                 if (current_config->pch_pfit.enabled) {
12694                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12695                         PIPE_CONF_CHECK_X(pch_pfit.size);
12696                 }
12697
12698                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12699         }
12700
12701         /* BDW+ don't expose a synchronous way to read the state */
12702         if (IS_HASWELL(dev))
12703                 PIPE_CONF_CHECK_I(ips_enabled);
12704
12705         PIPE_CONF_CHECK_I(double_wide);
12706
12707         PIPE_CONF_CHECK_X(ddi_pll_sel);
12708
12709         PIPE_CONF_CHECK_I(shared_dpll);
12710         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12711         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12712         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12713         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12714         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12715         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12716         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12717         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12718         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12719
12720         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12721                 PIPE_CONF_CHECK_I(pipe_bpp);
12722
12723         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12724         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12725
12726 #undef PIPE_CONF_CHECK_X
12727 #undef PIPE_CONF_CHECK_I
12728 #undef PIPE_CONF_CHECK_I_ALT
12729 #undef PIPE_CONF_CHECK_FLAGS
12730 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12731 #undef PIPE_CONF_QUIRK
12732 #undef INTEL_ERR_OR_DBG_KMS
12733
12734         return ret;
12735 }
12736
12737 static void check_wm_state(struct drm_device *dev)
12738 {
12739         struct drm_i915_private *dev_priv = dev->dev_private;
12740         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12741         struct intel_crtc *intel_crtc;
12742         int plane;
12743
12744         if (INTEL_INFO(dev)->gen < 9)
12745                 return;
12746
12747         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12748         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12749
12750         for_each_intel_crtc(dev, intel_crtc) {
12751                 struct skl_ddb_entry *hw_entry, *sw_entry;
12752                 const enum pipe pipe = intel_crtc->pipe;
12753
12754                 if (!intel_crtc->active)
12755                         continue;
12756
12757                 /* planes */
12758                 for_each_plane(dev_priv, pipe, plane) {
12759                         hw_entry = &hw_ddb.plane[pipe][plane];
12760                         sw_entry = &sw_ddb->plane[pipe][plane];
12761
12762                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12763                                 continue;
12764
12765                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12766                                   "(expected (%u,%u), found (%u,%u))\n",
12767                                   pipe_name(pipe), plane + 1,
12768                                   sw_entry->start, sw_entry->end,
12769                                   hw_entry->start, hw_entry->end);
12770                 }
12771
12772                 /* cursor */
12773                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12774                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12775
12776                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12777                         continue;
12778
12779                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12780                           "(expected (%u,%u), found (%u,%u))\n",
12781                           pipe_name(pipe),
12782                           sw_entry->start, sw_entry->end,
12783                           hw_entry->start, hw_entry->end);
12784         }
12785 }
12786
12787 static void
12788 check_connector_state(struct drm_device *dev,
12789                       struct drm_atomic_state *old_state)
12790 {
12791         struct drm_connector_state *old_conn_state;
12792         struct drm_connector *connector;
12793         int i;
12794
12795         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12796                 struct drm_encoder *encoder = connector->encoder;
12797                 struct drm_connector_state *state = connector->state;
12798
12799                 /* This also checks the encoder/connector hw state with the
12800                  * ->get_hw_state callbacks. */
12801                 intel_connector_check_state(to_intel_connector(connector));
12802
12803                 I915_STATE_WARN(state->best_encoder != encoder,
12804                      "connector's atomic encoder doesn't match legacy encoder\n");
12805         }
12806 }
12807
12808 static void
12809 check_encoder_state(struct drm_device *dev)
12810 {
12811         struct intel_encoder *encoder;
12812         struct intel_connector *connector;
12813
12814         for_each_intel_encoder(dev, encoder) {
12815                 bool enabled = false;
12816                 enum pipe pipe;
12817
12818                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12819                               encoder->base.base.id,
12820                               encoder->base.name);
12821
12822                 for_each_intel_connector(dev, connector) {
12823                         if (connector->base.state->best_encoder != &encoder->base)
12824                                 continue;
12825                         enabled = true;
12826
12827                         I915_STATE_WARN(connector->base.state->crtc !=
12828                                         encoder->base.crtc,
12829                              "connector's crtc doesn't match encoder crtc\n");
12830                 }
12831
12832                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12833                      "encoder's enabled state mismatch "
12834                      "(expected %i, found %i)\n",
12835                      !!encoder->base.crtc, enabled);
12836
12837                 if (!encoder->base.crtc) {
12838                         bool active;
12839
12840                         active = encoder->get_hw_state(encoder, &pipe);
12841                         I915_STATE_WARN(active,
12842                              "encoder detached but still enabled on pipe %c.\n",
12843                              pipe_name(pipe));
12844                 }
12845         }
12846 }
12847
12848 static void
12849 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12850 {
12851         struct drm_i915_private *dev_priv = dev->dev_private;
12852         struct intel_encoder *encoder;
12853         struct drm_crtc_state *old_crtc_state;
12854         struct drm_crtc *crtc;
12855         int i;
12856
12857         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12858                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12859                 struct intel_crtc_state *pipe_config, *sw_config;
12860                 bool active;
12861
12862                 if (!needs_modeset(crtc->state) &&
12863                     !to_intel_crtc_state(crtc->state)->update_pipe)
12864                         continue;
12865
12866                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12867                 pipe_config = to_intel_crtc_state(old_crtc_state);
12868                 memset(pipe_config, 0, sizeof(*pipe_config));
12869                 pipe_config->base.crtc = crtc;
12870                 pipe_config->base.state = old_state;
12871
12872                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12873                               crtc->base.id);
12874
12875                 active = dev_priv->display.get_pipe_config(intel_crtc,
12876                                                            pipe_config);
12877
12878                 /* hw state is inconsistent with the pipe quirk */
12879                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12880                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12881                         active = crtc->state->active;
12882
12883                 I915_STATE_WARN(crtc->state->active != active,
12884                      "crtc active state doesn't match with hw state "
12885                      "(expected %i, found %i)\n", crtc->state->active, active);
12886
12887                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12888                      "transitional active state does not match atomic hw state "
12889                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12890
12891                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12892                         enum pipe pipe;
12893
12894                         active = encoder->get_hw_state(encoder, &pipe);
12895                         I915_STATE_WARN(active != crtc->state->active,
12896                                 "[ENCODER:%i] active %i with crtc active %i\n",
12897                                 encoder->base.base.id, active, crtc->state->active);
12898
12899                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12900                                         "Encoder connected to wrong pipe %c\n",
12901                                         pipe_name(pipe));
12902
12903                         if (active)
12904                                 encoder->get_config(encoder, pipe_config);
12905                 }
12906
12907                 if (!crtc->state->active)
12908                         continue;
12909
12910                 sw_config = to_intel_crtc_state(crtc->state);
12911                 if (!intel_pipe_config_compare(dev, sw_config,
12912                                                pipe_config, false)) {
12913                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12914                         intel_dump_pipe_config(intel_crtc, pipe_config,
12915                                                "[hw state]");
12916                         intel_dump_pipe_config(intel_crtc, sw_config,
12917                                                "[sw state]");
12918                 }
12919         }
12920 }
12921
12922 static void
12923 check_shared_dpll_state(struct drm_device *dev)
12924 {
12925         struct drm_i915_private *dev_priv = dev->dev_private;
12926         struct intel_crtc *crtc;
12927         struct intel_dpll_hw_state dpll_hw_state;
12928         int i;
12929
12930         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12931                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12932                 int enabled_crtcs = 0, active_crtcs = 0;
12933                 bool active;
12934
12935                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12936
12937                 DRM_DEBUG_KMS("%s\n", pll->name);
12938
12939                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12940
12941                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12942                      "more active pll users than references: %i vs %i\n",
12943                      pll->active, hweight32(pll->config.crtc_mask));
12944                 I915_STATE_WARN(pll->active && !pll->on,
12945                      "pll in active use but not on in sw tracking\n");
12946                 I915_STATE_WARN(pll->on && !pll->active,
12947                      "pll in on but not on in use in sw tracking\n");
12948                 I915_STATE_WARN(pll->on != active,
12949                      "pll on state mismatch (expected %i, found %i)\n",
12950                      pll->on, active);
12951
12952                 for_each_intel_crtc(dev, crtc) {
12953                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12954                                 enabled_crtcs++;
12955                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12956                                 active_crtcs++;
12957                 }
12958                 I915_STATE_WARN(pll->active != active_crtcs,
12959                      "pll active crtcs mismatch (expected %i, found %i)\n",
12960                      pll->active, active_crtcs);
12961                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12962                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12963                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12964
12965                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12966                                        sizeof(dpll_hw_state)),
12967                      "pll hw state mismatch\n");
12968         }
12969 }
12970
12971 static void
12972 intel_modeset_check_state(struct drm_device *dev,
12973                           struct drm_atomic_state *old_state)
12974 {
12975         check_wm_state(dev);
12976         check_connector_state(dev, old_state);
12977         check_encoder_state(dev);
12978         check_crtc_state(dev, old_state);
12979         check_shared_dpll_state(dev);
12980 }
12981
12982 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12983                                      int dotclock)
12984 {
12985         /*
12986          * FDI already provided one idea for the dotclock.
12987          * Yell if the encoder disagrees.
12988          */
12989         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12990              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12991              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12992 }
12993
12994 static void update_scanline_offset(struct intel_crtc *crtc)
12995 {
12996         struct drm_device *dev = crtc->base.dev;
12997
12998         /*
12999          * The scanline counter increments at the leading edge of hsync.
13000          *
13001          * On most platforms it starts counting from vtotal-1 on the
13002          * first active line. That means the scanline counter value is
13003          * always one less than what we would expect. Ie. just after
13004          * start of vblank, which also occurs at start of hsync (on the
13005          * last active line), the scanline counter will read vblank_start-1.
13006          *
13007          * On gen2 the scanline counter starts counting from 1 instead
13008          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13009          * to keep the value positive), instead of adding one.
13010          *
13011          * On HSW+ the behaviour of the scanline counter depends on the output
13012          * type. For DP ports it behaves like most other platforms, but on HDMI
13013          * there's an extra 1 line difference. So we need to add two instead of
13014          * one to the value.
13015          */
13016         if (IS_GEN2(dev)) {
13017                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13018                 int vtotal;
13019
13020                 vtotal = adjusted_mode->crtc_vtotal;
13021                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13022                         vtotal /= 2;
13023
13024                 crtc->scanline_offset = vtotal - 1;
13025         } else if (HAS_DDI(dev) &&
13026                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13027                 crtc->scanline_offset = 2;
13028         } else
13029                 crtc->scanline_offset = 1;
13030 }
13031
13032 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13033 {
13034         struct drm_device *dev = state->dev;
13035         struct drm_i915_private *dev_priv = to_i915(dev);
13036         struct intel_shared_dpll_config *shared_dpll = NULL;
13037         struct drm_crtc *crtc;
13038         struct drm_crtc_state *crtc_state;
13039         int i;
13040
13041         if (!dev_priv->display.crtc_compute_clock)
13042                 return;
13043
13044         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13045                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13046                 int old_dpll = to_intel_crtc_state(crtc->state)->shared_dpll;
13047
13048                 if (!needs_modeset(crtc_state))
13049                         continue;
13050
13051                 to_intel_crtc_state(crtc_state)->shared_dpll = DPLL_ID_PRIVATE;
13052
13053                 if (old_dpll == DPLL_ID_PRIVATE)
13054                         continue;
13055
13056                 if (!shared_dpll)
13057                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13058
13059                 shared_dpll[old_dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13060         }
13061 }
13062
13063 /*
13064  * This implements the workaround described in the "notes" section of the mode
13065  * set sequence documentation. When going from no pipes or single pipe to
13066  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13067  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13068  */
13069 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13070 {
13071         struct drm_crtc_state *crtc_state;
13072         struct intel_crtc *intel_crtc;
13073         struct drm_crtc *crtc;
13074         struct intel_crtc_state *first_crtc_state = NULL;
13075         struct intel_crtc_state *other_crtc_state = NULL;
13076         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13077         int i;
13078
13079         /* look at all crtc's that are going to be enabled in during modeset */
13080         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13081                 intel_crtc = to_intel_crtc(crtc);
13082
13083                 if (!crtc_state->active || !needs_modeset(crtc_state))
13084                         continue;
13085
13086                 if (first_crtc_state) {
13087                         other_crtc_state = to_intel_crtc_state(crtc_state);
13088                         break;
13089                 } else {
13090                         first_crtc_state = to_intel_crtc_state(crtc_state);
13091                         first_pipe = intel_crtc->pipe;
13092                 }
13093         }
13094
13095         /* No workaround needed? */
13096         if (!first_crtc_state)
13097                 return 0;
13098
13099         /* w/a possibly needed, check how many crtc's are already enabled. */
13100         for_each_intel_crtc(state->dev, intel_crtc) {
13101                 struct intel_crtc_state *pipe_config;
13102
13103                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13104                 if (IS_ERR(pipe_config))
13105                         return PTR_ERR(pipe_config);
13106
13107                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13108
13109                 if (!pipe_config->base.active ||
13110                     needs_modeset(&pipe_config->base))
13111                         continue;
13112
13113                 /* 2 or more enabled crtcs means no need for w/a */
13114                 if (enabled_pipe != INVALID_PIPE)
13115                         return 0;
13116
13117                 enabled_pipe = intel_crtc->pipe;
13118         }
13119
13120         if (enabled_pipe != INVALID_PIPE)
13121                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13122         else if (other_crtc_state)
13123                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13124
13125         return 0;
13126 }
13127
13128 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13129 {
13130         struct drm_crtc *crtc;
13131         struct drm_crtc_state *crtc_state;
13132         int ret = 0;
13133
13134         /* add all active pipes to the state */
13135         for_each_crtc(state->dev, crtc) {
13136                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13137                 if (IS_ERR(crtc_state))
13138                         return PTR_ERR(crtc_state);
13139
13140                 if (!crtc_state->active || needs_modeset(crtc_state))
13141                         continue;
13142
13143                 crtc_state->mode_changed = true;
13144
13145                 ret = drm_atomic_add_affected_connectors(state, crtc);
13146                 if (ret)
13147                         break;
13148
13149                 ret = drm_atomic_add_affected_planes(state, crtc);
13150                 if (ret)
13151                         break;
13152         }
13153
13154         return ret;
13155 }
13156
13157 static int intel_modeset_checks(struct drm_atomic_state *state)
13158 {
13159         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13160         struct drm_i915_private *dev_priv = state->dev->dev_private;
13161         struct drm_crtc *crtc;
13162         struct drm_crtc_state *crtc_state;
13163         int ret = 0, i;
13164
13165         if (!check_digital_port_conflicts(state)) {
13166                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13167                 return -EINVAL;
13168         }
13169
13170         intel_state->modeset = true;
13171         intel_state->active_crtcs = dev_priv->active_crtcs;
13172
13173         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13174                 if (crtc_state->active)
13175                         intel_state->active_crtcs |= 1 << i;
13176                 else
13177                         intel_state->active_crtcs &= ~(1 << i);
13178         }
13179
13180         /*
13181          * See if the config requires any additional preparation, e.g.
13182          * to adjust global state with pipes off.  We need to do this
13183          * here so we can get the modeset_pipe updated config for the new
13184          * mode set on this crtc.  For other crtcs we need to use the
13185          * adjusted_mode bits in the crtc directly.
13186          */
13187         if (dev_priv->display.modeset_calc_cdclk) {
13188                 ret = dev_priv->display.modeset_calc_cdclk(state);
13189
13190                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13191                         ret = intel_modeset_all_pipes(state);
13192
13193                 if (ret < 0)
13194                         return ret;
13195
13196                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13197                               intel_state->cdclk, intel_state->dev_cdclk);
13198         } else
13199                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13200
13201         intel_modeset_clear_plls(state);
13202
13203         if (IS_HASWELL(dev_priv))
13204                 return haswell_mode_set_planes_workaround(state);
13205
13206         return 0;
13207 }
13208
13209 /*
13210  * Handle calculation of various watermark data at the end of the atomic check
13211  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13212  * handlers to ensure that all derived state has been updated.
13213  */
13214 static void calc_watermark_data(struct drm_atomic_state *state)
13215 {
13216         struct drm_device *dev = state->dev;
13217         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13218         struct drm_crtc *crtc;
13219         struct drm_crtc_state *cstate;
13220         struct drm_plane *plane;
13221         struct drm_plane_state *pstate;
13222
13223         /*
13224          * Calculate watermark configuration details now that derived
13225          * plane/crtc state is all properly updated.
13226          */
13227         drm_for_each_crtc(crtc, dev) {
13228                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13229                         crtc->state;
13230
13231                 if (cstate->active)
13232                         intel_state->wm_config.num_pipes_active++;
13233         }
13234         drm_for_each_legacy_plane(plane, dev) {
13235                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13236                         plane->state;
13237
13238                 if (!to_intel_plane_state(pstate)->visible)
13239                         continue;
13240
13241                 intel_state->wm_config.sprites_enabled = true;
13242                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13243                     pstate->crtc_h != pstate->src_h >> 16)
13244                         intel_state->wm_config.sprites_scaled = true;
13245         }
13246 }
13247
13248 /**
13249  * intel_atomic_check - validate state object
13250  * @dev: drm device
13251  * @state: state to validate
13252  */
13253 static int intel_atomic_check(struct drm_device *dev,
13254                               struct drm_atomic_state *state)
13255 {
13256         struct drm_i915_private *dev_priv = to_i915(dev);
13257         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13258         struct drm_crtc *crtc;
13259         struct drm_crtc_state *crtc_state;
13260         int ret, i;
13261         bool any_ms = false;
13262
13263         ret = drm_atomic_helper_check_modeset(dev, state);
13264         if (ret)
13265                 return ret;
13266
13267         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13268                 struct intel_crtc_state *pipe_config =
13269                         to_intel_crtc_state(crtc_state);
13270
13271                 memset(&to_intel_crtc(crtc)->atomic, 0,
13272                        sizeof(struct intel_crtc_atomic_commit));
13273
13274                 /* Catch I915_MODE_FLAG_INHERITED */
13275                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13276                         crtc_state->mode_changed = true;
13277
13278                 if (!crtc_state->enable) {
13279                         if (needs_modeset(crtc_state))
13280                                 any_ms = true;
13281                         continue;
13282                 }
13283
13284                 if (!needs_modeset(crtc_state))
13285                         continue;
13286
13287                 /* FIXME: For only active_changed we shouldn't need to do any
13288                  * state recomputation at all. */
13289
13290                 ret = drm_atomic_add_affected_connectors(state, crtc);
13291                 if (ret)
13292                         return ret;
13293
13294                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13295                 if (ret)
13296                         return ret;
13297
13298                 if (i915.fastboot &&
13299                     intel_pipe_config_compare(dev,
13300                                         to_intel_crtc_state(crtc->state),
13301                                         pipe_config, true)) {
13302                         crtc_state->mode_changed = false;
13303                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13304                 }
13305
13306                 if (needs_modeset(crtc_state)) {
13307                         any_ms = true;
13308
13309                         ret = drm_atomic_add_affected_planes(state, crtc);
13310                         if (ret)
13311                                 return ret;
13312                 }
13313
13314                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13315                                        needs_modeset(crtc_state) ?
13316                                        "[modeset]" : "[fastset]");
13317         }
13318
13319         if (any_ms) {
13320                 ret = intel_modeset_checks(state);
13321
13322                 if (ret)
13323                         return ret;
13324         } else
13325                 intel_state->cdclk = dev_priv->cdclk_freq;
13326
13327         ret = drm_atomic_helper_check_planes(dev, state);
13328         if (ret)
13329                 return ret;
13330
13331         intel_fbc_choose_crtc(dev_priv, state);
13332         calc_watermark_data(state);
13333
13334         return 0;
13335 }
13336
13337 static int intel_atomic_prepare_commit(struct drm_device *dev,
13338                                        struct drm_atomic_state *state,
13339                                        bool async)
13340 {
13341         struct drm_i915_private *dev_priv = dev->dev_private;
13342         struct drm_plane_state *plane_state;
13343         struct drm_crtc_state *crtc_state;
13344         struct drm_plane *plane;
13345         struct drm_crtc *crtc;
13346         int i, ret;
13347
13348         if (async) {
13349                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13350                 return -EINVAL;
13351         }
13352
13353         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13354                 ret = intel_crtc_wait_for_pending_flips(crtc);
13355                 if (ret)
13356                         return ret;
13357
13358                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13359                         flush_workqueue(dev_priv->wq);
13360         }
13361
13362         ret = mutex_lock_interruptible(&dev->struct_mutex);
13363         if (ret)
13364                 return ret;
13365
13366         ret = drm_atomic_helper_prepare_planes(dev, state);
13367         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13368                 u32 reset_counter;
13369
13370                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13371                 mutex_unlock(&dev->struct_mutex);
13372
13373                 for_each_plane_in_state(state, plane, plane_state, i) {
13374                         struct intel_plane_state *intel_plane_state =
13375                                 to_intel_plane_state(plane_state);
13376
13377                         if (!intel_plane_state->wait_req)
13378                                 continue;
13379
13380                         ret = __i915_wait_request(intel_plane_state->wait_req,
13381                                                   reset_counter, true,
13382                                                   NULL, NULL);
13383
13384                         /* Swallow -EIO errors to allow updates during hw lockup. */
13385                         if (ret == -EIO)
13386                                 ret = 0;
13387
13388                         if (ret)
13389                                 break;
13390                 }
13391
13392                 if (!ret)
13393                         return 0;
13394
13395                 mutex_lock(&dev->struct_mutex);
13396                 drm_atomic_helper_cleanup_planes(dev, state);
13397         }
13398
13399         mutex_unlock(&dev->struct_mutex);
13400         return ret;
13401 }
13402
13403 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13404                                           struct drm_i915_private *dev_priv,
13405                                           unsigned crtc_mask)
13406 {
13407         unsigned last_vblank_count[I915_MAX_PIPES];
13408         enum pipe pipe;
13409         int ret;
13410
13411         if (!crtc_mask)
13412                 return;
13413
13414         for_each_pipe(dev_priv, pipe) {
13415                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13416
13417                 if (!((1 << pipe) & crtc_mask))
13418                         continue;
13419
13420                 ret = drm_crtc_vblank_get(crtc);
13421                 if (WARN_ON(ret != 0)) {
13422                         crtc_mask &= ~(1 << pipe);
13423                         continue;
13424                 }
13425
13426                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13427         }
13428
13429         for_each_pipe(dev_priv, pipe) {
13430                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13431                 long lret;
13432
13433                 if (!((1 << pipe) & crtc_mask))
13434                         continue;
13435
13436                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13437                                 last_vblank_count[pipe] !=
13438                                         drm_crtc_vblank_count(crtc),
13439                                 msecs_to_jiffies(50));
13440
13441                 WARN_ON(!lret);
13442
13443                 drm_crtc_vblank_put(crtc);
13444         }
13445 }
13446
13447 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13448 {
13449         /* fb updated, need to unpin old fb */
13450         if (crtc_state->fb_changed)
13451                 return true;
13452
13453         /* wm changes, need vblank before final wm's */
13454         if (crtc_state->wm_changed)
13455                 return true;
13456
13457         /*
13458          * cxsr is re-enabled after vblank.
13459          * This is already handled by crtc_state->wm_changed,
13460          * but added for clarity.
13461          */
13462         if (crtc_state->disable_cxsr)
13463                 return true;
13464
13465         return false;
13466 }
13467
13468 /**
13469  * intel_atomic_commit - commit validated state object
13470  * @dev: DRM device
13471  * @state: the top-level driver state object
13472  * @async: asynchronous commit
13473  *
13474  * This function commits a top-level state object that has been validated
13475  * with drm_atomic_helper_check().
13476  *
13477  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13478  * we can only handle plane-related operations and do not yet support
13479  * asynchronous commit.
13480  *
13481  * RETURNS
13482  * Zero for success or -errno.
13483  */
13484 static int intel_atomic_commit(struct drm_device *dev,
13485                                struct drm_atomic_state *state,
13486                                bool async)
13487 {
13488         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13489         struct drm_i915_private *dev_priv = dev->dev_private;
13490         struct drm_crtc_state *crtc_state;
13491         struct drm_crtc *crtc;
13492         int ret = 0, i;
13493         bool hw_check = intel_state->modeset;
13494         unsigned long put_domains[I915_MAX_PIPES] = {};
13495         unsigned crtc_vblank_mask = 0;
13496
13497         ret = intel_atomic_prepare_commit(dev, state, async);
13498         if (ret) {
13499                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13500                 return ret;
13501         }
13502
13503         drm_atomic_helper_swap_state(dev, state);
13504         dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13505
13506         if (intel_state->modeset) {
13507                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13508                        sizeof(intel_state->min_pixclk));
13509                 dev_priv->active_crtcs = intel_state->active_crtcs;
13510                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13511
13512                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13513         }
13514
13515         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13516                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13517
13518                 if (needs_modeset(crtc->state) ||
13519                     to_intel_crtc_state(crtc->state)->update_pipe) {
13520                         hw_check = true;
13521
13522                         put_domains[to_intel_crtc(crtc)->pipe] =
13523                                 modeset_get_crtc_power_domains(crtc,
13524                                         to_intel_crtc_state(crtc->state));
13525                 }
13526
13527                 if (!needs_modeset(crtc->state))
13528                         continue;
13529
13530                 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13531
13532                 if (crtc_state->active) {
13533                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13534                         dev_priv->display.crtc_disable(crtc);
13535                         intel_crtc->active = false;
13536                         intel_fbc_disable(intel_crtc);
13537                         intel_disable_shared_dpll(intel_crtc);
13538
13539                         /*
13540                          * Underruns don't always raise
13541                          * interrupts, so check manually.
13542                          */
13543                         intel_check_cpu_fifo_underruns(dev_priv);
13544                         intel_check_pch_fifo_underruns(dev_priv);
13545
13546                         if (!crtc->state->active)
13547                                 intel_update_watermarks(crtc);
13548                 }
13549         }
13550
13551         /* Only after disabling all output pipelines that will be changed can we
13552          * update the the output configuration. */
13553         intel_modeset_update_crtc_state(state);
13554
13555         if (intel_state->modeset) {
13556                 intel_shared_dpll_commit(state);
13557
13558                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13559
13560                 if (dev_priv->display.modeset_commit_cdclk &&
13561                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13562                         dev_priv->display.modeset_commit_cdclk(state);
13563         }
13564
13565         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13566         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13567                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13568                 bool modeset = needs_modeset(crtc->state);
13569                 struct intel_crtc_state *pipe_config =
13570                         to_intel_crtc_state(crtc->state);
13571                 bool update_pipe = !modeset && pipe_config->update_pipe;
13572
13573                 if (modeset && crtc->state->active) {
13574                         update_scanline_offset(to_intel_crtc(crtc));
13575                         dev_priv->display.crtc_enable(crtc);
13576                 }
13577
13578                 if (!modeset)
13579                         intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13580
13581                 if (crtc->state->active && intel_crtc->atomic.update_fbc)
13582                         intel_fbc_enable(intel_crtc);
13583
13584                 if (crtc->state->active &&
13585                     (crtc->state->planes_changed || update_pipe))
13586                         drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13587
13588                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13589                         crtc_vblank_mask |= 1 << i;
13590         }
13591
13592         /* FIXME: add subpixel order */
13593
13594         if (!state->legacy_cursor_update)
13595                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13596
13597         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13598                 intel_post_plane_update(to_intel_crtc(crtc));
13599
13600                 if (put_domains[i])
13601                         modeset_put_power_domains(dev_priv, put_domains[i]);
13602         }
13603
13604         if (intel_state->modeset)
13605                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13606
13607         mutex_lock(&dev->struct_mutex);
13608         drm_atomic_helper_cleanup_planes(dev, state);
13609         mutex_unlock(&dev->struct_mutex);
13610
13611         if (hw_check)
13612                 intel_modeset_check_state(dev, state);
13613
13614         drm_atomic_state_free(state);
13615
13616         /* As one of the primary mmio accessors, KMS has a high likelihood
13617          * of triggering bugs in unclaimed access. After we finish
13618          * modesetting, see if an error has been flagged, and if so
13619          * enable debugging for the next modeset - and hope we catch
13620          * the culprit.
13621          *
13622          * XXX note that we assume display power is on at this point.
13623          * This might hold true now but we need to add pm helper to check
13624          * unclaimed only when the hardware is on, as atomic commits
13625          * can happen also when the device is completely off.
13626          */
13627         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13628
13629         return 0;
13630 }
13631
13632 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13633 {
13634         struct drm_device *dev = crtc->dev;
13635         struct drm_atomic_state *state;
13636         struct drm_crtc_state *crtc_state;
13637         int ret;
13638
13639         state = drm_atomic_state_alloc(dev);
13640         if (!state) {
13641                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13642                               crtc->base.id);
13643                 return;
13644         }
13645
13646         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13647
13648 retry:
13649         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13650         ret = PTR_ERR_OR_ZERO(crtc_state);
13651         if (!ret) {
13652                 if (!crtc_state->active)
13653                         goto out;
13654
13655                 crtc_state->mode_changed = true;
13656                 ret = drm_atomic_commit(state);
13657         }
13658
13659         if (ret == -EDEADLK) {
13660                 drm_atomic_state_clear(state);
13661                 drm_modeset_backoff(state->acquire_ctx);
13662                 goto retry;
13663         }
13664
13665         if (ret)
13666 out:
13667                 drm_atomic_state_free(state);
13668 }
13669
13670 #undef for_each_intel_crtc_masked
13671
13672 static const struct drm_crtc_funcs intel_crtc_funcs = {
13673         .gamma_set = intel_crtc_gamma_set,
13674         .set_config = drm_atomic_helper_set_config,
13675         .destroy = intel_crtc_destroy,
13676         .page_flip = intel_crtc_page_flip,
13677         .atomic_duplicate_state = intel_crtc_duplicate_state,
13678         .atomic_destroy_state = intel_crtc_destroy_state,
13679 };
13680
13681 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13682                                       struct intel_shared_dpll *pll,
13683                                       struct intel_dpll_hw_state *hw_state)
13684 {
13685         uint32_t val;
13686
13687         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
13688                 return false;
13689
13690         val = I915_READ(PCH_DPLL(pll->id));
13691         hw_state->dpll = val;
13692         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13693         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13694
13695         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
13696
13697         return val & DPLL_VCO_ENABLE;
13698 }
13699
13700 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13701                                   struct intel_shared_dpll *pll)
13702 {
13703         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13704         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13705 }
13706
13707 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13708                                 struct intel_shared_dpll *pll)
13709 {
13710         /* PCH refclock must be enabled first */
13711         ibx_assert_pch_refclk_enabled(dev_priv);
13712
13713         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13714
13715         /* Wait for the clocks to stabilize. */
13716         POSTING_READ(PCH_DPLL(pll->id));
13717         udelay(150);
13718
13719         /* The pixel multiplier can only be updated once the
13720          * DPLL is enabled and the clocks are stable.
13721          *
13722          * So write it again.
13723          */
13724         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13725         POSTING_READ(PCH_DPLL(pll->id));
13726         udelay(200);
13727 }
13728
13729 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13730                                  struct intel_shared_dpll *pll)
13731 {
13732         struct drm_device *dev = dev_priv->dev;
13733         struct intel_crtc *crtc;
13734
13735         /* Make sure no transcoder isn't still depending on us. */
13736         for_each_intel_crtc(dev, crtc) {
13737                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13738                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13739         }
13740
13741         I915_WRITE(PCH_DPLL(pll->id), 0);
13742         POSTING_READ(PCH_DPLL(pll->id));
13743         udelay(200);
13744 }
13745
13746 static char *ibx_pch_dpll_names[] = {
13747         "PCH DPLL A",
13748         "PCH DPLL B",
13749 };
13750
13751 static void ibx_pch_dpll_init(struct drm_device *dev)
13752 {
13753         struct drm_i915_private *dev_priv = dev->dev_private;
13754         int i;
13755
13756         dev_priv->num_shared_dpll = 2;
13757
13758         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13759                 dev_priv->shared_dplls[i].id = i;
13760                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13761                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13762                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13763                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13764                 dev_priv->shared_dplls[i].get_hw_state =
13765                         ibx_pch_dpll_get_hw_state;
13766         }
13767 }
13768
13769 static void intel_shared_dpll_init(struct drm_device *dev)
13770 {
13771         struct drm_i915_private *dev_priv = dev->dev_private;
13772
13773         if (HAS_DDI(dev))
13774                 intel_ddi_pll_init(dev);
13775         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13776                 ibx_pch_dpll_init(dev);
13777         else
13778                 dev_priv->num_shared_dpll = 0;
13779
13780         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13781 }
13782
13783 /**
13784  * intel_prepare_plane_fb - Prepare fb for usage on plane
13785  * @plane: drm plane to prepare for
13786  * @fb: framebuffer to prepare for presentation
13787  *
13788  * Prepares a framebuffer for usage on a display plane.  Generally this
13789  * involves pinning the underlying object and updating the frontbuffer tracking
13790  * bits.  Some older platforms need special physical address handling for
13791  * cursor planes.
13792  *
13793  * Must be called with struct_mutex held.
13794  *
13795  * Returns 0 on success, negative error code on failure.
13796  */
13797 int
13798 intel_prepare_plane_fb(struct drm_plane *plane,
13799                        const struct drm_plane_state *new_state)
13800 {
13801         struct drm_device *dev = plane->dev;
13802         struct drm_framebuffer *fb = new_state->fb;
13803         struct intel_plane *intel_plane = to_intel_plane(plane);
13804         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13805         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13806         int ret = 0;
13807
13808         if (!obj && !old_obj)
13809                 return 0;
13810
13811         if (old_obj) {
13812                 struct drm_crtc_state *crtc_state =
13813                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13814
13815                 /* Big Hammer, we also need to ensure that any pending
13816                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13817                  * current scanout is retired before unpinning the old
13818                  * framebuffer. Note that we rely on userspace rendering
13819                  * into the buffer attached to the pipe they are waiting
13820                  * on. If not, userspace generates a GPU hang with IPEHR
13821                  * point to the MI_WAIT_FOR_EVENT.
13822                  *
13823                  * This should only fail upon a hung GPU, in which case we
13824                  * can safely continue.
13825                  */
13826                 if (needs_modeset(crtc_state))
13827                         ret = i915_gem_object_wait_rendering(old_obj, true);
13828
13829                 /* Swallow -EIO errors to allow updates during hw lockup. */
13830                 if (ret && ret != -EIO)
13831                         return ret;
13832         }
13833
13834         /* For framebuffer backed by dmabuf, wait for fence */
13835         if (obj && obj->base.dma_buf) {
13836                 long lret;
13837
13838                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13839                                                            false, true,
13840                                                            MAX_SCHEDULE_TIMEOUT);
13841                 if (lret == -ERESTARTSYS)
13842                         return lret;
13843
13844                 WARN(lret < 0, "waiting returns %li\n", lret);
13845         }
13846
13847         if (!obj) {
13848                 ret = 0;
13849         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13850             INTEL_INFO(dev)->cursor_needs_physical) {
13851                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13852                 ret = i915_gem_object_attach_phys(obj, align);
13853                 if (ret)
13854                         DRM_DEBUG_KMS("failed to attach phys object\n");
13855         } else {
13856                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13857         }
13858
13859         if (ret == 0) {
13860                 if (obj) {
13861                         struct intel_plane_state *plane_state =
13862                                 to_intel_plane_state(new_state);
13863
13864                         i915_gem_request_assign(&plane_state->wait_req,
13865                                                 obj->last_write_req);
13866                 }
13867
13868                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13869         }
13870
13871         return ret;
13872 }
13873
13874 /**
13875  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13876  * @plane: drm plane to clean up for
13877  * @fb: old framebuffer that was on plane
13878  *
13879  * Cleans up a framebuffer that has just been removed from a plane.
13880  *
13881  * Must be called with struct_mutex held.
13882  */
13883 void
13884 intel_cleanup_plane_fb(struct drm_plane *plane,
13885                        const struct drm_plane_state *old_state)
13886 {
13887         struct drm_device *dev = plane->dev;
13888         struct intel_plane *intel_plane = to_intel_plane(plane);
13889         struct intel_plane_state *old_intel_state;
13890         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13891         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13892
13893         old_intel_state = to_intel_plane_state(old_state);
13894
13895         if (!obj && !old_obj)
13896                 return;
13897
13898         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13899             !INTEL_INFO(dev)->cursor_needs_physical))
13900                 intel_unpin_fb_obj(old_state->fb, old_state);
13901
13902         /* prepare_fb aborted? */
13903         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13904             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13905                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13906
13907         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13908
13909 }
13910
13911 int
13912 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13913 {
13914         int max_scale;
13915         struct drm_device *dev;
13916         struct drm_i915_private *dev_priv;
13917         int crtc_clock, cdclk;
13918
13919         if (!intel_crtc || !crtc_state->base.enable)
13920                 return DRM_PLANE_HELPER_NO_SCALING;
13921
13922         dev = intel_crtc->base.dev;
13923         dev_priv = dev->dev_private;
13924         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13925         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13926
13927         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13928                 return DRM_PLANE_HELPER_NO_SCALING;
13929
13930         /*
13931          * skl max scale is lower of:
13932          *    close to 3 but not 3, -1 is for that purpose
13933          *            or
13934          *    cdclk/crtc_clock
13935          */
13936         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13937
13938         return max_scale;
13939 }
13940
13941 static int
13942 intel_check_primary_plane(struct drm_plane *plane,
13943                           struct intel_crtc_state *crtc_state,
13944                           struct intel_plane_state *state)
13945 {
13946         struct drm_crtc *crtc = state->base.crtc;
13947         struct drm_framebuffer *fb = state->base.fb;
13948         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13949         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13950         bool can_position = false;
13951
13952         if (INTEL_INFO(plane->dev)->gen >= 9) {
13953                 /* use scaler when colorkey is not required */
13954                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13955                         min_scale = 1;
13956                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13957                 }
13958                 can_position = true;
13959         }
13960
13961         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13962                                              &state->dst, &state->clip,
13963                                              min_scale, max_scale,
13964                                              can_position, true,
13965                                              &state->visible);
13966 }
13967
13968 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13969                                     struct drm_crtc_state *old_crtc_state)
13970 {
13971         struct drm_device *dev = crtc->dev;
13972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13973         struct intel_crtc_state *old_intel_state =
13974                 to_intel_crtc_state(old_crtc_state);
13975         bool modeset = needs_modeset(crtc->state);
13976
13977         /* Perform vblank evasion around commit operation */
13978         intel_pipe_update_start(intel_crtc);
13979
13980         if (modeset)
13981                 return;
13982
13983         if (to_intel_crtc_state(crtc->state)->update_pipe)
13984                 intel_update_pipe_config(intel_crtc, old_intel_state);
13985         else if (INTEL_INFO(dev)->gen >= 9)
13986                 skl_detach_scalers(intel_crtc);
13987 }
13988
13989 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13990                                      struct drm_crtc_state *old_crtc_state)
13991 {
13992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13993
13994         intel_pipe_update_end(intel_crtc);
13995 }
13996
13997 /**
13998  * intel_plane_destroy - destroy a plane
13999  * @plane: plane to destroy
14000  *
14001  * Common destruction function for all types of planes (primary, cursor,
14002  * sprite).
14003  */
14004 void intel_plane_destroy(struct drm_plane *plane)
14005 {
14006         struct intel_plane *intel_plane = to_intel_plane(plane);
14007         drm_plane_cleanup(plane);
14008         kfree(intel_plane);
14009 }
14010
14011 const struct drm_plane_funcs intel_plane_funcs = {
14012         .update_plane = drm_atomic_helper_update_plane,
14013         .disable_plane = drm_atomic_helper_disable_plane,
14014         .destroy = intel_plane_destroy,
14015         .set_property = drm_atomic_helper_plane_set_property,
14016         .atomic_get_property = intel_plane_atomic_get_property,
14017         .atomic_set_property = intel_plane_atomic_set_property,
14018         .atomic_duplicate_state = intel_plane_duplicate_state,
14019         .atomic_destroy_state = intel_plane_destroy_state,
14020
14021 };
14022
14023 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14024                                                     int pipe)
14025 {
14026         struct intel_plane *primary;
14027         struct intel_plane_state *state;
14028         const uint32_t *intel_primary_formats;
14029         unsigned int num_formats;
14030
14031         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14032         if (primary == NULL)
14033                 return NULL;
14034
14035         state = intel_create_plane_state(&primary->base);
14036         if (!state) {
14037                 kfree(primary);
14038                 return NULL;
14039         }
14040         primary->base.state = &state->base;
14041
14042         primary->can_scale = false;
14043         primary->max_downscale = 1;
14044         if (INTEL_INFO(dev)->gen >= 9) {
14045                 primary->can_scale = true;
14046                 state->scaler_id = -1;
14047         }
14048         primary->pipe = pipe;
14049         primary->plane = pipe;
14050         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14051         primary->check_plane = intel_check_primary_plane;
14052         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14053                 primary->plane = !pipe;
14054
14055         if (INTEL_INFO(dev)->gen >= 9) {
14056                 intel_primary_formats = skl_primary_formats;
14057                 num_formats = ARRAY_SIZE(skl_primary_formats);
14058
14059                 primary->update_plane = skylake_update_primary_plane;
14060                 primary->disable_plane = skylake_disable_primary_plane;
14061         } else if (HAS_PCH_SPLIT(dev)) {
14062                 intel_primary_formats = i965_primary_formats;
14063                 num_formats = ARRAY_SIZE(i965_primary_formats);
14064
14065                 primary->update_plane = ironlake_update_primary_plane;
14066                 primary->disable_plane = i9xx_disable_primary_plane;
14067         } else if (INTEL_INFO(dev)->gen >= 4) {
14068                 intel_primary_formats = i965_primary_formats;
14069                 num_formats = ARRAY_SIZE(i965_primary_formats);
14070
14071                 primary->update_plane = i9xx_update_primary_plane;
14072                 primary->disable_plane = i9xx_disable_primary_plane;
14073         } else {
14074                 intel_primary_formats = i8xx_primary_formats;
14075                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14076
14077                 primary->update_plane = i9xx_update_primary_plane;
14078                 primary->disable_plane = i9xx_disable_primary_plane;
14079         }
14080
14081         drm_universal_plane_init(dev, &primary->base, 0,
14082                                  &intel_plane_funcs,
14083                                  intel_primary_formats, num_formats,
14084                                  DRM_PLANE_TYPE_PRIMARY, NULL);
14085
14086         if (INTEL_INFO(dev)->gen >= 4)
14087                 intel_create_rotation_property(dev, primary);
14088
14089         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14090
14091         return &primary->base;
14092 }
14093
14094 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14095 {
14096         if (!dev->mode_config.rotation_property) {
14097                 unsigned long flags = BIT(DRM_ROTATE_0) |
14098                         BIT(DRM_ROTATE_180);
14099
14100                 if (INTEL_INFO(dev)->gen >= 9)
14101                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14102
14103                 dev->mode_config.rotation_property =
14104                         drm_mode_create_rotation_property(dev, flags);
14105         }
14106         if (dev->mode_config.rotation_property)
14107                 drm_object_attach_property(&plane->base.base,
14108                                 dev->mode_config.rotation_property,
14109                                 plane->base.state->rotation);
14110 }
14111
14112 static int
14113 intel_check_cursor_plane(struct drm_plane *plane,
14114                          struct intel_crtc_state *crtc_state,
14115                          struct intel_plane_state *state)
14116 {
14117         struct drm_crtc *crtc = crtc_state->base.crtc;
14118         struct drm_framebuffer *fb = state->base.fb;
14119         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14120         enum pipe pipe = to_intel_plane(plane)->pipe;
14121         unsigned stride;
14122         int ret;
14123
14124         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14125                                             &state->dst, &state->clip,
14126                                             DRM_PLANE_HELPER_NO_SCALING,
14127                                             DRM_PLANE_HELPER_NO_SCALING,
14128                                             true, true, &state->visible);
14129         if (ret)
14130                 return ret;
14131
14132         /* if we want to turn off the cursor ignore width and height */
14133         if (!obj)
14134                 return 0;
14135
14136         /* Check for which cursor types we support */
14137         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14138                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14139                           state->base.crtc_w, state->base.crtc_h);
14140                 return -EINVAL;
14141         }
14142
14143         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14144         if (obj->base.size < stride * state->base.crtc_h) {
14145                 DRM_DEBUG_KMS("buffer is too small\n");
14146                 return -ENOMEM;
14147         }
14148
14149         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14150                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14151                 return -EINVAL;
14152         }
14153
14154         /*
14155          * There's something wrong with the cursor on CHV pipe C.
14156          * If it straddles the left edge of the screen then
14157          * moving it away from the edge or disabling it often
14158          * results in a pipe underrun, and often that can lead to
14159          * dead pipe (constant underrun reported, and it scans
14160          * out just a solid color). To recover from that, the
14161          * display power well must be turned off and on again.
14162          * Refuse the put the cursor into that compromised position.
14163          */
14164         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14165             state->visible && state->base.crtc_x < 0) {
14166                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14167                 return -EINVAL;
14168         }
14169
14170         return 0;
14171 }
14172
14173 static void
14174 intel_disable_cursor_plane(struct drm_plane *plane,
14175                            struct drm_crtc *crtc)
14176 {
14177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14178
14179         intel_crtc->cursor_addr = 0;
14180         intel_crtc_update_cursor(crtc, NULL);
14181 }
14182
14183 static void
14184 intel_update_cursor_plane(struct drm_plane *plane,
14185                           const struct intel_crtc_state *crtc_state,
14186                           const struct intel_plane_state *state)
14187 {
14188         struct drm_crtc *crtc = crtc_state->base.crtc;
14189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14190         struct drm_device *dev = plane->dev;
14191         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14192         uint32_t addr;
14193
14194         if (!obj)
14195                 addr = 0;
14196         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14197                 addr = i915_gem_obj_ggtt_offset(obj);
14198         else
14199                 addr = obj->phys_handle->busaddr;
14200
14201         intel_crtc->cursor_addr = addr;
14202         intel_crtc_update_cursor(crtc, state);
14203 }
14204
14205 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14206                                                    int pipe)
14207 {
14208         struct intel_plane *cursor;
14209         struct intel_plane_state *state;
14210
14211         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14212         if (cursor == NULL)
14213                 return NULL;
14214
14215         state = intel_create_plane_state(&cursor->base);
14216         if (!state) {
14217                 kfree(cursor);
14218                 return NULL;
14219         }
14220         cursor->base.state = &state->base;
14221
14222         cursor->can_scale = false;
14223         cursor->max_downscale = 1;
14224         cursor->pipe = pipe;
14225         cursor->plane = pipe;
14226         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14227         cursor->check_plane = intel_check_cursor_plane;
14228         cursor->update_plane = intel_update_cursor_plane;
14229         cursor->disable_plane = intel_disable_cursor_plane;
14230
14231         drm_universal_plane_init(dev, &cursor->base, 0,
14232                                  &intel_plane_funcs,
14233                                  intel_cursor_formats,
14234                                  ARRAY_SIZE(intel_cursor_formats),
14235                                  DRM_PLANE_TYPE_CURSOR, NULL);
14236
14237         if (INTEL_INFO(dev)->gen >= 4) {
14238                 if (!dev->mode_config.rotation_property)
14239                         dev->mode_config.rotation_property =
14240                                 drm_mode_create_rotation_property(dev,
14241                                                         BIT(DRM_ROTATE_0) |
14242                                                         BIT(DRM_ROTATE_180));
14243                 if (dev->mode_config.rotation_property)
14244                         drm_object_attach_property(&cursor->base.base,
14245                                 dev->mode_config.rotation_property,
14246                                 state->base.rotation);
14247         }
14248
14249         if (INTEL_INFO(dev)->gen >=9)
14250                 state->scaler_id = -1;
14251
14252         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14253
14254         return &cursor->base;
14255 }
14256
14257 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14258         struct intel_crtc_state *crtc_state)
14259 {
14260         int i;
14261         struct intel_scaler *intel_scaler;
14262         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14263
14264         for (i = 0; i < intel_crtc->num_scalers; i++) {
14265                 intel_scaler = &scaler_state->scalers[i];
14266                 intel_scaler->in_use = 0;
14267                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14268         }
14269
14270         scaler_state->scaler_id = -1;
14271 }
14272
14273 static void intel_crtc_init(struct drm_device *dev, int pipe)
14274 {
14275         struct drm_i915_private *dev_priv = dev->dev_private;
14276         struct intel_crtc *intel_crtc;
14277         struct intel_crtc_state *crtc_state = NULL;
14278         struct drm_plane *primary = NULL;
14279         struct drm_plane *cursor = NULL;
14280         int i, ret;
14281
14282         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14283         if (intel_crtc == NULL)
14284                 return;
14285
14286         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14287         if (!crtc_state)
14288                 goto fail;
14289         intel_crtc->config = crtc_state;
14290         intel_crtc->base.state = &crtc_state->base;
14291         crtc_state->base.crtc = &intel_crtc->base;
14292
14293         /* initialize shared scalers */
14294         if (INTEL_INFO(dev)->gen >= 9) {
14295                 if (pipe == PIPE_C)
14296                         intel_crtc->num_scalers = 1;
14297                 else
14298                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14299
14300                 skl_init_scalers(dev, intel_crtc, crtc_state);
14301         }
14302
14303         primary = intel_primary_plane_create(dev, pipe);
14304         if (!primary)
14305                 goto fail;
14306
14307         cursor = intel_cursor_plane_create(dev, pipe);
14308         if (!cursor)
14309                 goto fail;
14310
14311         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14312                                         cursor, &intel_crtc_funcs, NULL);
14313         if (ret)
14314                 goto fail;
14315
14316         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14317         for (i = 0; i < 256; i++) {
14318                 intel_crtc->lut_r[i] = i;
14319                 intel_crtc->lut_g[i] = i;
14320                 intel_crtc->lut_b[i] = i;
14321         }
14322
14323         /*
14324          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14325          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14326          */
14327         intel_crtc->pipe = pipe;
14328         intel_crtc->plane = pipe;
14329         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14330                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14331                 intel_crtc->plane = !pipe;
14332         }
14333
14334         intel_crtc->cursor_base = ~0;
14335         intel_crtc->cursor_cntl = ~0;
14336         intel_crtc->cursor_size = ~0;
14337
14338         intel_crtc->wm.cxsr_allowed = true;
14339
14340         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14341                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14342         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14343         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14344
14345         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14346
14347         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14348         return;
14349
14350 fail:
14351         if (primary)
14352                 drm_plane_cleanup(primary);
14353         if (cursor)
14354                 drm_plane_cleanup(cursor);
14355         kfree(crtc_state);
14356         kfree(intel_crtc);
14357 }
14358
14359 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14360 {
14361         struct drm_encoder *encoder = connector->base.encoder;
14362         struct drm_device *dev = connector->base.dev;
14363
14364         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14365
14366         if (!encoder || WARN_ON(!encoder->crtc))
14367                 return INVALID_PIPE;
14368
14369         return to_intel_crtc(encoder->crtc)->pipe;
14370 }
14371
14372 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14373                                 struct drm_file *file)
14374 {
14375         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14376         struct drm_crtc *drmmode_crtc;
14377         struct intel_crtc *crtc;
14378
14379         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14380
14381         if (!drmmode_crtc) {
14382                 DRM_ERROR("no such CRTC id\n");
14383                 return -ENOENT;
14384         }
14385
14386         crtc = to_intel_crtc(drmmode_crtc);
14387         pipe_from_crtc_id->pipe = crtc->pipe;
14388
14389         return 0;
14390 }
14391
14392 static int intel_encoder_clones(struct intel_encoder *encoder)
14393 {
14394         struct drm_device *dev = encoder->base.dev;
14395         struct intel_encoder *source_encoder;
14396         int index_mask = 0;
14397         int entry = 0;
14398
14399         for_each_intel_encoder(dev, source_encoder) {
14400                 if (encoders_cloneable(encoder, source_encoder))
14401                         index_mask |= (1 << entry);
14402
14403                 entry++;
14404         }
14405
14406         return index_mask;
14407 }
14408
14409 static bool has_edp_a(struct drm_device *dev)
14410 {
14411         struct drm_i915_private *dev_priv = dev->dev_private;
14412
14413         if (!IS_MOBILE(dev))
14414                 return false;
14415
14416         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14417                 return false;
14418
14419         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14420                 return false;
14421
14422         return true;
14423 }
14424
14425 static bool intel_crt_present(struct drm_device *dev)
14426 {
14427         struct drm_i915_private *dev_priv = dev->dev_private;
14428
14429         if (INTEL_INFO(dev)->gen >= 9)
14430                 return false;
14431
14432         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14433                 return false;
14434
14435         if (IS_CHERRYVIEW(dev))
14436                 return false;
14437
14438         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14439                 return false;
14440
14441         /* DDI E can't be used if DDI A requires 4 lanes */
14442         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14443                 return false;
14444
14445         if (!dev_priv->vbt.int_crt_support)
14446                 return false;
14447
14448         return true;
14449 }
14450
14451 static void intel_setup_outputs(struct drm_device *dev)
14452 {
14453         struct drm_i915_private *dev_priv = dev->dev_private;
14454         struct intel_encoder *encoder;
14455         bool dpd_is_edp = false;
14456
14457         intel_lvds_init(dev);
14458
14459         if (intel_crt_present(dev))
14460                 intel_crt_init(dev);
14461
14462         if (IS_BROXTON(dev)) {
14463                 /*
14464                  * FIXME: Broxton doesn't support port detection via the
14465                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14466                  * detect the ports.
14467                  */
14468                 intel_ddi_init(dev, PORT_A);
14469                 intel_ddi_init(dev, PORT_B);
14470                 intel_ddi_init(dev, PORT_C);
14471         } else if (HAS_DDI(dev)) {
14472                 int found;
14473
14474                 /*
14475                  * Haswell uses DDI functions to detect digital outputs.
14476                  * On SKL pre-D0 the strap isn't connected, so we assume
14477                  * it's there.
14478                  */
14479                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14480                 /* WaIgnoreDDIAStrap: skl */
14481                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14482                         intel_ddi_init(dev, PORT_A);
14483
14484                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14485                  * register */
14486                 found = I915_READ(SFUSE_STRAP);
14487
14488                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14489                         intel_ddi_init(dev, PORT_B);
14490                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14491                         intel_ddi_init(dev, PORT_C);
14492                 if (found & SFUSE_STRAP_DDID_DETECTED)
14493                         intel_ddi_init(dev, PORT_D);
14494                 /*
14495                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14496                  */
14497                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14498                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14499                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14500                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14501                         intel_ddi_init(dev, PORT_E);
14502
14503         } else if (HAS_PCH_SPLIT(dev)) {
14504                 int found;
14505                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14506
14507                 if (has_edp_a(dev))
14508                         intel_dp_init(dev, DP_A, PORT_A);
14509
14510                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14511                         /* PCH SDVOB multiplex with HDMIB */
14512                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14513                         if (!found)
14514                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14515                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14516                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14517                 }
14518
14519                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14520                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14521
14522                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14523                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14524
14525                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14526                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14527
14528                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14529                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14530         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14531                 /*
14532                  * The DP_DETECTED bit is the latched state of the DDC
14533                  * SDA pin at boot. However since eDP doesn't require DDC
14534                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14535                  * eDP ports may have been muxed to an alternate function.
14536                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14537                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14538                  * detect eDP ports.
14539                  */
14540                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14541                     !intel_dp_is_edp(dev, PORT_B))
14542                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14543                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14544                     intel_dp_is_edp(dev, PORT_B))
14545                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14546
14547                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14548                     !intel_dp_is_edp(dev, PORT_C))
14549                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14550                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14551                     intel_dp_is_edp(dev, PORT_C))
14552                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14553
14554                 if (IS_CHERRYVIEW(dev)) {
14555                         /* eDP not supported on port D, so don't check VBT */
14556                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14557                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14558                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14559                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14560                 }
14561
14562                 intel_dsi_init(dev);
14563         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14564                 bool found = false;
14565
14566                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14567                         DRM_DEBUG_KMS("probing SDVOB\n");
14568                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14569                         if (!found && IS_G4X(dev)) {
14570                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14571                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14572                         }
14573
14574                         if (!found && IS_G4X(dev))
14575                                 intel_dp_init(dev, DP_B, PORT_B);
14576                 }
14577
14578                 /* Before G4X SDVOC doesn't have its own detect register */
14579
14580                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14581                         DRM_DEBUG_KMS("probing SDVOC\n");
14582                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14583                 }
14584
14585                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14586
14587                         if (IS_G4X(dev)) {
14588                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14589                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14590                         }
14591                         if (IS_G4X(dev))
14592                                 intel_dp_init(dev, DP_C, PORT_C);
14593                 }
14594
14595                 if (IS_G4X(dev) &&
14596                     (I915_READ(DP_D) & DP_DETECTED))
14597                         intel_dp_init(dev, DP_D, PORT_D);
14598         } else if (IS_GEN2(dev))
14599                 intel_dvo_init(dev);
14600
14601         if (SUPPORTS_TV(dev))
14602                 intel_tv_init(dev);
14603
14604         intel_psr_init(dev);
14605
14606         for_each_intel_encoder(dev, encoder) {
14607                 encoder->base.possible_crtcs = encoder->crtc_mask;
14608                 encoder->base.possible_clones =
14609                         intel_encoder_clones(encoder);
14610         }
14611
14612         intel_init_pch_refclk(dev);
14613
14614         drm_helper_move_panel_connectors_to_head(dev);
14615 }
14616
14617 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14618 {
14619         struct drm_device *dev = fb->dev;
14620         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14621
14622         drm_framebuffer_cleanup(fb);
14623         mutex_lock(&dev->struct_mutex);
14624         WARN_ON(!intel_fb->obj->framebuffer_references--);
14625         drm_gem_object_unreference(&intel_fb->obj->base);
14626         mutex_unlock(&dev->struct_mutex);
14627         kfree(intel_fb);
14628 }
14629
14630 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14631                                                 struct drm_file *file,
14632                                                 unsigned int *handle)
14633 {
14634         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14635         struct drm_i915_gem_object *obj = intel_fb->obj;
14636
14637         if (obj->userptr.mm) {
14638                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14639                 return -EINVAL;
14640         }
14641
14642         return drm_gem_handle_create(file, &obj->base, handle);
14643 }
14644
14645 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14646                                         struct drm_file *file,
14647                                         unsigned flags, unsigned color,
14648                                         struct drm_clip_rect *clips,
14649                                         unsigned num_clips)
14650 {
14651         struct drm_device *dev = fb->dev;
14652         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14653         struct drm_i915_gem_object *obj = intel_fb->obj;
14654
14655         mutex_lock(&dev->struct_mutex);
14656         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14657         mutex_unlock(&dev->struct_mutex);
14658
14659         return 0;
14660 }
14661
14662 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14663         .destroy = intel_user_framebuffer_destroy,
14664         .create_handle = intel_user_framebuffer_create_handle,
14665         .dirty = intel_user_framebuffer_dirty,
14666 };
14667
14668 static
14669 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14670                          uint32_t pixel_format)
14671 {
14672         u32 gen = INTEL_INFO(dev)->gen;
14673
14674         if (gen >= 9) {
14675                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14676
14677                 /* "The stride in bytes must not exceed the of the size of 8K
14678                  *  pixels and 32K bytes."
14679                  */
14680                 return min(8192 * cpp, 32768);
14681         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14682                 return 32*1024;
14683         } else if (gen >= 4) {
14684                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14685                         return 16*1024;
14686                 else
14687                         return 32*1024;
14688         } else if (gen >= 3) {
14689                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14690                         return 8*1024;
14691                 else
14692                         return 16*1024;
14693         } else {
14694                 /* XXX DSPC is limited to 4k tiled */
14695                 return 8*1024;
14696         }
14697 }
14698
14699 static int intel_framebuffer_init(struct drm_device *dev,
14700                                   struct intel_framebuffer *intel_fb,
14701                                   struct drm_mode_fb_cmd2 *mode_cmd,
14702                                   struct drm_i915_gem_object *obj)
14703 {
14704         struct drm_i915_private *dev_priv = to_i915(dev);
14705         unsigned int aligned_height;
14706         int ret;
14707         u32 pitch_limit, stride_alignment;
14708
14709         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14710
14711         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14712                 /* Enforce that fb modifier and tiling mode match, but only for
14713                  * X-tiled. This is needed for FBC. */
14714                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14715                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14716                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14717                         return -EINVAL;
14718                 }
14719         } else {
14720                 if (obj->tiling_mode == I915_TILING_X)
14721                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14722                 else if (obj->tiling_mode == I915_TILING_Y) {
14723                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14724                         return -EINVAL;
14725                 }
14726         }
14727
14728         /* Passed in modifier sanity checking. */
14729         switch (mode_cmd->modifier[0]) {
14730         case I915_FORMAT_MOD_Y_TILED:
14731         case I915_FORMAT_MOD_Yf_TILED:
14732                 if (INTEL_INFO(dev)->gen < 9) {
14733                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14734                                   mode_cmd->modifier[0]);
14735                         return -EINVAL;
14736                 }
14737         case DRM_FORMAT_MOD_NONE:
14738         case I915_FORMAT_MOD_X_TILED:
14739                 break;
14740         default:
14741                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14742                           mode_cmd->modifier[0]);
14743                 return -EINVAL;
14744         }
14745
14746         stride_alignment = intel_fb_stride_alignment(dev_priv,
14747                                                      mode_cmd->modifier[0],
14748                                                      mode_cmd->pixel_format);
14749         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14750                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14751                           mode_cmd->pitches[0], stride_alignment);
14752                 return -EINVAL;
14753         }
14754
14755         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14756                                            mode_cmd->pixel_format);
14757         if (mode_cmd->pitches[0] > pitch_limit) {
14758                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14759                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14760                           "tiled" : "linear",
14761                           mode_cmd->pitches[0], pitch_limit);
14762                 return -EINVAL;
14763         }
14764
14765         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14766             mode_cmd->pitches[0] != obj->stride) {
14767                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14768                           mode_cmd->pitches[0], obj->stride);
14769                 return -EINVAL;
14770         }
14771
14772         /* Reject formats not supported by any plane early. */
14773         switch (mode_cmd->pixel_format) {
14774         case DRM_FORMAT_C8:
14775         case DRM_FORMAT_RGB565:
14776         case DRM_FORMAT_XRGB8888:
14777         case DRM_FORMAT_ARGB8888:
14778                 break;
14779         case DRM_FORMAT_XRGB1555:
14780                 if (INTEL_INFO(dev)->gen > 3) {
14781                         DRM_DEBUG("unsupported pixel format: %s\n",
14782                                   drm_get_format_name(mode_cmd->pixel_format));
14783                         return -EINVAL;
14784                 }
14785                 break;
14786         case DRM_FORMAT_ABGR8888:
14787                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14788                     INTEL_INFO(dev)->gen < 9) {
14789                         DRM_DEBUG("unsupported pixel format: %s\n",
14790                                   drm_get_format_name(mode_cmd->pixel_format));
14791                         return -EINVAL;
14792                 }
14793                 break;
14794         case DRM_FORMAT_XBGR8888:
14795         case DRM_FORMAT_XRGB2101010:
14796         case DRM_FORMAT_XBGR2101010:
14797                 if (INTEL_INFO(dev)->gen < 4) {
14798                         DRM_DEBUG("unsupported pixel format: %s\n",
14799                                   drm_get_format_name(mode_cmd->pixel_format));
14800                         return -EINVAL;
14801                 }
14802                 break;
14803         case DRM_FORMAT_ABGR2101010:
14804                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14805                         DRM_DEBUG("unsupported pixel format: %s\n",
14806                                   drm_get_format_name(mode_cmd->pixel_format));
14807                         return -EINVAL;
14808                 }
14809                 break;
14810         case DRM_FORMAT_YUYV:
14811         case DRM_FORMAT_UYVY:
14812         case DRM_FORMAT_YVYU:
14813         case DRM_FORMAT_VYUY:
14814                 if (INTEL_INFO(dev)->gen < 5) {
14815                         DRM_DEBUG("unsupported pixel format: %s\n",
14816                                   drm_get_format_name(mode_cmd->pixel_format));
14817                         return -EINVAL;
14818                 }
14819                 break;
14820         default:
14821                 DRM_DEBUG("unsupported pixel format: %s\n",
14822                           drm_get_format_name(mode_cmd->pixel_format));
14823                 return -EINVAL;
14824         }
14825
14826         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14827         if (mode_cmd->offsets[0] != 0)
14828                 return -EINVAL;
14829
14830         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14831                                                mode_cmd->pixel_format,
14832                                                mode_cmd->modifier[0]);
14833         /* FIXME drm helper for size checks (especially planar formats)? */
14834         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14835                 return -EINVAL;
14836
14837         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14838         intel_fb->obj = obj;
14839
14840         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14841         if (ret) {
14842                 DRM_ERROR("framebuffer init failed %d\n", ret);
14843                 return ret;
14844         }
14845
14846         intel_fb->obj->framebuffer_references++;
14847
14848         return 0;
14849 }
14850
14851 static struct drm_framebuffer *
14852 intel_user_framebuffer_create(struct drm_device *dev,
14853                               struct drm_file *filp,
14854                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14855 {
14856         struct drm_framebuffer *fb;
14857         struct drm_i915_gem_object *obj;
14858         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14859
14860         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14861                                                 mode_cmd.handles[0]));
14862         if (&obj->base == NULL)
14863                 return ERR_PTR(-ENOENT);
14864
14865         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14866         if (IS_ERR(fb))
14867                 drm_gem_object_unreference_unlocked(&obj->base);
14868
14869         return fb;
14870 }
14871
14872 #ifndef CONFIG_DRM_FBDEV_EMULATION
14873 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14874 {
14875 }
14876 #endif
14877
14878 static const struct drm_mode_config_funcs intel_mode_funcs = {
14879         .fb_create = intel_user_framebuffer_create,
14880         .output_poll_changed = intel_fbdev_output_poll_changed,
14881         .atomic_check = intel_atomic_check,
14882         .atomic_commit = intel_atomic_commit,
14883         .atomic_state_alloc = intel_atomic_state_alloc,
14884         .atomic_state_clear = intel_atomic_state_clear,
14885 };
14886
14887 /* Set up chip specific display functions */
14888 static void intel_init_display(struct drm_device *dev)
14889 {
14890         struct drm_i915_private *dev_priv = dev->dev_private;
14891
14892         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14893                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14894         else if (IS_CHERRYVIEW(dev))
14895                 dev_priv->display.find_dpll = chv_find_best_dpll;
14896         else if (IS_VALLEYVIEW(dev))
14897                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14898         else if (IS_PINEVIEW(dev))
14899                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14900         else
14901                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14902
14903         if (INTEL_INFO(dev)->gen >= 9) {
14904                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14905                 dev_priv->display.get_initial_plane_config =
14906                         skylake_get_initial_plane_config;
14907                 dev_priv->display.crtc_compute_clock =
14908                         haswell_crtc_compute_clock;
14909                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14910                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14911         } else if (HAS_DDI(dev)) {
14912                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14913                 dev_priv->display.get_initial_plane_config =
14914                         ironlake_get_initial_plane_config;
14915                 dev_priv->display.crtc_compute_clock =
14916                         haswell_crtc_compute_clock;
14917                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14918                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14919         } else if (HAS_PCH_SPLIT(dev)) {
14920                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14921                 dev_priv->display.get_initial_plane_config =
14922                         ironlake_get_initial_plane_config;
14923                 dev_priv->display.crtc_compute_clock =
14924                         ironlake_crtc_compute_clock;
14925                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14926                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14927         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14928                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14929                 dev_priv->display.get_initial_plane_config =
14930                         i9xx_get_initial_plane_config;
14931                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14932                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14933                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14934         } else {
14935                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14936                 dev_priv->display.get_initial_plane_config =
14937                         i9xx_get_initial_plane_config;
14938                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14939                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14940                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14941         }
14942
14943         /* Returns the core display clock speed */
14944         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14945                 dev_priv->display.get_display_clock_speed =
14946                         skylake_get_display_clock_speed;
14947         else if (IS_BROXTON(dev))
14948                 dev_priv->display.get_display_clock_speed =
14949                         broxton_get_display_clock_speed;
14950         else if (IS_BROADWELL(dev))
14951                 dev_priv->display.get_display_clock_speed =
14952                         broadwell_get_display_clock_speed;
14953         else if (IS_HASWELL(dev))
14954                 dev_priv->display.get_display_clock_speed =
14955                         haswell_get_display_clock_speed;
14956         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
14957                 dev_priv->display.get_display_clock_speed =
14958                         valleyview_get_display_clock_speed;
14959         else if (IS_GEN5(dev))
14960                 dev_priv->display.get_display_clock_speed =
14961                         ilk_get_display_clock_speed;
14962         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14963                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14964                 dev_priv->display.get_display_clock_speed =
14965                         i945_get_display_clock_speed;
14966         else if (IS_GM45(dev))
14967                 dev_priv->display.get_display_clock_speed =
14968                         gm45_get_display_clock_speed;
14969         else if (IS_CRESTLINE(dev))
14970                 dev_priv->display.get_display_clock_speed =
14971                         i965gm_get_display_clock_speed;
14972         else if (IS_PINEVIEW(dev))
14973                 dev_priv->display.get_display_clock_speed =
14974                         pnv_get_display_clock_speed;
14975         else if (IS_G33(dev) || IS_G4X(dev))
14976                 dev_priv->display.get_display_clock_speed =
14977                         g33_get_display_clock_speed;
14978         else if (IS_I915G(dev))
14979                 dev_priv->display.get_display_clock_speed =
14980                         i915_get_display_clock_speed;
14981         else if (IS_I945GM(dev) || IS_845G(dev))
14982                 dev_priv->display.get_display_clock_speed =
14983                         i9xx_misc_get_display_clock_speed;
14984         else if (IS_I915GM(dev))
14985                 dev_priv->display.get_display_clock_speed =
14986                         i915gm_get_display_clock_speed;
14987         else if (IS_I865G(dev))
14988                 dev_priv->display.get_display_clock_speed =
14989                         i865_get_display_clock_speed;
14990         else if (IS_I85X(dev))
14991                 dev_priv->display.get_display_clock_speed =
14992                         i85x_get_display_clock_speed;
14993         else { /* 830 */
14994                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14995                 dev_priv->display.get_display_clock_speed =
14996                         i830_get_display_clock_speed;
14997         }
14998
14999         if (IS_GEN5(dev)) {
15000                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15001         } else if (IS_GEN6(dev)) {
15002                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15003         } else if (IS_IVYBRIDGE(dev)) {
15004                 /* FIXME: detect B0+ stepping and use auto training */
15005                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15006         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
15007                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15008                 if (IS_BROADWELL(dev)) {
15009                         dev_priv->display.modeset_commit_cdclk =
15010                                 broadwell_modeset_commit_cdclk;
15011                         dev_priv->display.modeset_calc_cdclk =
15012                                 broadwell_modeset_calc_cdclk;
15013                 }
15014         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15015                 dev_priv->display.modeset_commit_cdclk =
15016                         valleyview_modeset_commit_cdclk;
15017                 dev_priv->display.modeset_calc_cdclk =
15018                         valleyview_modeset_calc_cdclk;
15019         } else if (IS_BROXTON(dev)) {
15020                 dev_priv->display.modeset_commit_cdclk =
15021                         broxton_modeset_commit_cdclk;
15022                 dev_priv->display.modeset_calc_cdclk =
15023                         broxton_modeset_calc_cdclk;
15024         }
15025
15026         switch (INTEL_INFO(dev)->gen) {
15027         case 2:
15028                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15029                 break;
15030
15031         case 3:
15032                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15033                 break;
15034
15035         case 4:
15036         case 5:
15037                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15038                 break;
15039
15040         case 6:
15041                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15042                 break;
15043         case 7:
15044         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15045                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15046                 break;
15047         case 9:
15048                 /* Drop through - unsupported since execlist only. */
15049         default:
15050                 /* Default just returns -ENODEV to indicate unsupported */
15051                 dev_priv->display.queue_flip = intel_default_queue_flip;
15052         }
15053
15054         mutex_init(&dev_priv->pps_mutex);
15055 }
15056
15057 /*
15058  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15059  * resume, or other times.  This quirk makes sure that's the case for
15060  * affected systems.
15061  */
15062 static void quirk_pipea_force(struct drm_device *dev)
15063 {
15064         struct drm_i915_private *dev_priv = dev->dev_private;
15065
15066         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15067         DRM_INFO("applying pipe a force quirk\n");
15068 }
15069
15070 static void quirk_pipeb_force(struct drm_device *dev)
15071 {
15072         struct drm_i915_private *dev_priv = dev->dev_private;
15073
15074         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15075         DRM_INFO("applying pipe b force quirk\n");
15076 }
15077
15078 /*
15079  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15080  */
15081 static void quirk_ssc_force_disable(struct drm_device *dev)
15082 {
15083         struct drm_i915_private *dev_priv = dev->dev_private;
15084         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15085         DRM_INFO("applying lvds SSC disable quirk\n");
15086 }
15087
15088 /*
15089  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15090  * brightness value
15091  */
15092 static void quirk_invert_brightness(struct drm_device *dev)
15093 {
15094         struct drm_i915_private *dev_priv = dev->dev_private;
15095         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15096         DRM_INFO("applying inverted panel brightness quirk\n");
15097 }
15098
15099 /* Some VBT's incorrectly indicate no backlight is present */
15100 static void quirk_backlight_present(struct drm_device *dev)
15101 {
15102         struct drm_i915_private *dev_priv = dev->dev_private;
15103         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15104         DRM_INFO("applying backlight present quirk\n");
15105 }
15106
15107 struct intel_quirk {
15108         int device;
15109         int subsystem_vendor;
15110         int subsystem_device;
15111         void (*hook)(struct drm_device *dev);
15112 };
15113
15114 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15115 struct intel_dmi_quirk {
15116         void (*hook)(struct drm_device *dev);
15117         const struct dmi_system_id (*dmi_id_list)[];
15118 };
15119
15120 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15121 {
15122         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15123         return 1;
15124 }
15125
15126 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15127         {
15128                 .dmi_id_list = &(const struct dmi_system_id[]) {
15129                         {
15130                                 .callback = intel_dmi_reverse_brightness,
15131                                 .ident = "NCR Corporation",
15132                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15133                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15134                                 },
15135                         },
15136                         { }  /* terminating entry */
15137                 },
15138                 .hook = quirk_invert_brightness,
15139         },
15140 };
15141
15142 static struct intel_quirk intel_quirks[] = {
15143         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15144         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15145
15146         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15147         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15148
15149         /* 830 needs to leave pipe A & dpll A up */
15150         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15151
15152         /* 830 needs to leave pipe B & dpll B up */
15153         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15154
15155         /* Lenovo U160 cannot use SSC on LVDS */
15156         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15157
15158         /* Sony Vaio Y cannot use SSC on LVDS */
15159         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15160
15161         /* Acer Aspire 5734Z must invert backlight brightness */
15162         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15163
15164         /* Acer/eMachines G725 */
15165         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15166
15167         /* Acer/eMachines e725 */
15168         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15169
15170         /* Acer/Packard Bell NCL20 */
15171         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15172
15173         /* Acer Aspire 4736Z */
15174         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15175
15176         /* Acer Aspire 5336 */
15177         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15178
15179         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15180         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15181
15182         /* Acer C720 Chromebook (Core i3 4005U) */
15183         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15184
15185         /* Apple Macbook 2,1 (Core 2 T7400) */
15186         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15187
15188         /* Apple Macbook 4,1 */
15189         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15190
15191         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15192         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15193
15194         /* HP Chromebook 14 (Celeron 2955U) */
15195         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15196
15197         /* Dell Chromebook 11 */
15198         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15199
15200         /* Dell Chromebook 11 (2015 version) */
15201         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15202 };
15203
15204 static void intel_init_quirks(struct drm_device *dev)
15205 {
15206         struct pci_dev *d = dev->pdev;
15207         int i;
15208
15209         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15210                 struct intel_quirk *q = &intel_quirks[i];
15211
15212                 if (d->device == q->device &&
15213                     (d->subsystem_vendor == q->subsystem_vendor ||
15214                      q->subsystem_vendor == PCI_ANY_ID) &&
15215                     (d->subsystem_device == q->subsystem_device ||
15216                      q->subsystem_device == PCI_ANY_ID))
15217                         q->hook(dev);
15218         }
15219         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15220                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15221                         intel_dmi_quirks[i].hook(dev);
15222         }
15223 }
15224
15225 /* Disable the VGA plane that we never use */
15226 static void i915_disable_vga(struct drm_device *dev)
15227 {
15228         struct drm_i915_private *dev_priv = dev->dev_private;
15229         u8 sr1;
15230         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15231
15232         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15233         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15234         outb(SR01, VGA_SR_INDEX);
15235         sr1 = inb(VGA_SR_DATA);
15236         outb(sr1 | 1<<5, VGA_SR_DATA);
15237         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15238         udelay(300);
15239
15240         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15241         POSTING_READ(vga_reg);
15242 }
15243
15244 void intel_modeset_init_hw(struct drm_device *dev)
15245 {
15246         struct drm_i915_private *dev_priv = dev->dev_private;
15247
15248         intel_update_cdclk(dev);
15249
15250         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15251
15252         intel_init_clock_gating(dev);
15253         intel_enable_gt_powersave(dev);
15254 }
15255
15256 /*
15257  * Calculate what we think the watermarks should be for the state we've read
15258  * out of the hardware and then immediately program those watermarks so that
15259  * we ensure the hardware settings match our internal state.
15260  *
15261  * We can calculate what we think WM's should be by creating a duplicate of the
15262  * current state (which was constructed during hardware readout) and running it
15263  * through the atomic check code to calculate new watermark values in the
15264  * state object.
15265  */
15266 static void sanitize_watermarks(struct drm_device *dev)
15267 {
15268         struct drm_i915_private *dev_priv = to_i915(dev);
15269         struct drm_atomic_state *state;
15270         struct drm_crtc *crtc;
15271         struct drm_crtc_state *cstate;
15272         struct drm_modeset_acquire_ctx ctx;
15273         int ret;
15274         int i;
15275
15276         /* Only supported on platforms that use atomic watermark design */
15277         if (!dev_priv->display.program_watermarks)
15278                 return;
15279
15280         /*
15281          * We need to hold connection_mutex before calling duplicate_state so
15282          * that the connector loop is protected.
15283          */
15284         drm_modeset_acquire_init(&ctx, 0);
15285 retry:
15286         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15287         if (ret == -EDEADLK) {
15288                 drm_modeset_backoff(&ctx);
15289                 goto retry;
15290         } else if (WARN_ON(ret)) {
15291                 goto fail;
15292         }
15293
15294         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15295         if (WARN_ON(IS_ERR(state)))
15296                 goto fail;
15297
15298         ret = intel_atomic_check(dev, state);
15299         if (ret) {
15300                 /*
15301                  * If we fail here, it means that the hardware appears to be
15302                  * programmed in a way that shouldn't be possible, given our
15303                  * understanding of watermark requirements.  This might mean a
15304                  * mistake in the hardware readout code or a mistake in the
15305                  * watermark calculations for a given platform.  Raise a WARN
15306                  * so that this is noticeable.
15307                  *
15308                  * If this actually happens, we'll have to just leave the
15309                  * BIOS-programmed watermarks untouched and hope for the best.
15310                  */
15311                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15312                 goto fail;
15313         }
15314
15315         /* Write calculated watermark values back */
15316         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15317         for_each_crtc_in_state(state, crtc, cstate, i) {
15318                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15319
15320                 dev_priv->display.program_watermarks(cs);
15321         }
15322
15323         drm_atomic_state_free(state);
15324 fail:
15325         drm_modeset_drop_locks(&ctx);
15326         drm_modeset_acquire_fini(&ctx);
15327 }
15328
15329 void intel_modeset_init(struct drm_device *dev)
15330 {
15331         struct drm_i915_private *dev_priv = dev->dev_private;
15332         int sprite, ret;
15333         enum pipe pipe;
15334         struct intel_crtc *crtc;
15335
15336         drm_mode_config_init(dev);
15337
15338         dev->mode_config.min_width = 0;
15339         dev->mode_config.min_height = 0;
15340
15341         dev->mode_config.preferred_depth = 24;
15342         dev->mode_config.prefer_shadow = 1;
15343
15344         dev->mode_config.allow_fb_modifiers = true;
15345
15346         dev->mode_config.funcs = &intel_mode_funcs;
15347
15348         intel_init_quirks(dev);
15349
15350         intel_init_pm(dev);
15351
15352         if (INTEL_INFO(dev)->num_pipes == 0)
15353                 return;
15354
15355         /*
15356          * There may be no VBT; and if the BIOS enabled SSC we can
15357          * just keep using it to avoid unnecessary flicker.  Whereas if the
15358          * BIOS isn't using it, don't assume it will work even if the VBT
15359          * indicates as much.
15360          */
15361         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15362                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15363                                             DREF_SSC1_ENABLE);
15364
15365                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15366                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15367                                      bios_lvds_use_ssc ? "en" : "dis",
15368                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15369                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15370                 }
15371         }
15372
15373         intel_init_display(dev);
15374         intel_init_audio(dev);
15375
15376         if (IS_GEN2(dev)) {
15377                 dev->mode_config.max_width = 2048;
15378                 dev->mode_config.max_height = 2048;
15379         } else if (IS_GEN3(dev)) {
15380                 dev->mode_config.max_width = 4096;
15381                 dev->mode_config.max_height = 4096;
15382         } else {
15383                 dev->mode_config.max_width = 8192;
15384                 dev->mode_config.max_height = 8192;
15385         }
15386
15387         if (IS_845G(dev) || IS_I865G(dev)) {
15388                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15389                 dev->mode_config.cursor_height = 1023;
15390         } else if (IS_GEN2(dev)) {
15391                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15392                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15393         } else {
15394                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15395                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15396         }
15397
15398         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15399
15400         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15401                       INTEL_INFO(dev)->num_pipes,
15402                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15403
15404         for_each_pipe(dev_priv, pipe) {
15405                 intel_crtc_init(dev, pipe);
15406                 for_each_sprite(dev_priv, pipe, sprite) {
15407                         ret = intel_plane_init(dev, pipe, sprite);
15408                         if (ret)
15409                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15410                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15411                 }
15412         }
15413
15414         intel_update_czclk(dev_priv);
15415         intel_update_cdclk(dev);
15416
15417         intel_shared_dpll_init(dev);
15418
15419         /* Just disable it once at startup */
15420         i915_disable_vga(dev);
15421         intel_setup_outputs(dev);
15422
15423         drm_modeset_lock_all(dev);
15424         intel_modeset_setup_hw_state(dev);
15425         drm_modeset_unlock_all(dev);
15426
15427         for_each_intel_crtc(dev, crtc) {
15428                 struct intel_initial_plane_config plane_config = {};
15429
15430                 if (!crtc->active)
15431                         continue;
15432
15433                 /*
15434                  * Note that reserving the BIOS fb up front prevents us
15435                  * from stuffing other stolen allocations like the ring
15436                  * on top.  This prevents some ugliness at boot time, and
15437                  * can even allow for smooth boot transitions if the BIOS
15438                  * fb is large enough for the active pipe configuration.
15439                  */
15440                 dev_priv->display.get_initial_plane_config(crtc,
15441                                                            &plane_config);
15442
15443                 /*
15444                  * If the fb is shared between multiple heads, we'll
15445                  * just get the first one.
15446                  */
15447                 intel_find_initial_plane_obj(crtc, &plane_config);
15448         }
15449
15450         /*
15451          * Make sure hardware watermarks really match the state we read out.
15452          * Note that we need to do this after reconstructing the BIOS fb's
15453          * since the watermark calculation done here will use pstate->fb.
15454          */
15455         sanitize_watermarks(dev);
15456 }
15457
15458 static void intel_enable_pipe_a(struct drm_device *dev)
15459 {
15460         struct intel_connector *connector;
15461         struct drm_connector *crt = NULL;
15462         struct intel_load_detect_pipe load_detect_temp;
15463         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15464
15465         /* We can't just switch on the pipe A, we need to set things up with a
15466          * proper mode and output configuration. As a gross hack, enable pipe A
15467          * by enabling the load detect pipe once. */
15468         for_each_intel_connector(dev, connector) {
15469                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15470                         crt = &connector->base;
15471                         break;
15472                 }
15473         }
15474
15475         if (!crt)
15476                 return;
15477
15478         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15479                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15480 }
15481
15482 static bool
15483 intel_check_plane_mapping(struct intel_crtc *crtc)
15484 {
15485         struct drm_device *dev = crtc->base.dev;
15486         struct drm_i915_private *dev_priv = dev->dev_private;
15487         u32 val;
15488
15489         if (INTEL_INFO(dev)->num_pipes == 1)
15490                 return true;
15491
15492         val = I915_READ(DSPCNTR(!crtc->plane));
15493
15494         if ((val & DISPLAY_PLANE_ENABLE) &&
15495             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15496                 return false;
15497
15498         return true;
15499 }
15500
15501 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15502 {
15503         struct drm_device *dev = crtc->base.dev;
15504         struct intel_encoder *encoder;
15505
15506         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15507                 return true;
15508
15509         return false;
15510 }
15511
15512 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15513 {
15514         struct drm_device *dev = encoder->base.dev;
15515         struct intel_connector *connector;
15516
15517         for_each_connector_on_encoder(dev, &encoder->base, connector)
15518                 return true;
15519
15520         return false;
15521 }
15522
15523 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15524 {
15525         struct drm_device *dev = crtc->base.dev;
15526         struct drm_i915_private *dev_priv = dev->dev_private;
15527         i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15528
15529         /* Clear any frame start delays used for debugging left by the BIOS */
15530         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15531
15532         /* restore vblank interrupts to correct state */
15533         drm_crtc_vblank_reset(&crtc->base);
15534         if (crtc->active) {
15535                 struct intel_plane *plane;
15536
15537                 drm_crtc_vblank_on(&crtc->base);
15538
15539                 /* Disable everything but the primary plane */
15540                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15541                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15542                                 continue;
15543
15544                         plane->disable_plane(&plane->base, &crtc->base);
15545                 }
15546         }
15547
15548         /* We need to sanitize the plane -> pipe mapping first because this will
15549          * disable the crtc (and hence change the state) if it is wrong. Note
15550          * that gen4+ has a fixed plane -> pipe mapping.  */
15551         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15552                 bool plane;
15553
15554                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15555                               crtc->base.base.id);
15556
15557                 /* Pipe has the wrong plane attached and the plane is active.
15558                  * Temporarily change the plane mapping and disable everything
15559                  * ...  */
15560                 plane = crtc->plane;
15561                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15562                 crtc->plane = !plane;
15563                 intel_crtc_disable_noatomic(&crtc->base);
15564                 crtc->plane = plane;
15565         }
15566
15567         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15568             crtc->pipe == PIPE_A && !crtc->active) {
15569                 /* BIOS forgot to enable pipe A, this mostly happens after
15570                  * resume. Force-enable the pipe to fix this, the update_dpms
15571                  * call below we restore the pipe to the right state, but leave
15572                  * the required bits on. */
15573                 intel_enable_pipe_a(dev);
15574         }
15575
15576         /* Adjust the state of the output pipe according to whether we
15577          * have active connectors/encoders. */
15578         if (!intel_crtc_has_encoders(crtc))
15579                 intel_crtc_disable_noatomic(&crtc->base);
15580
15581         if (crtc->active != crtc->base.state->active) {
15582                 struct intel_encoder *encoder;
15583
15584                 /* This can happen either due to bugs in the get_hw_state
15585                  * functions or because of calls to intel_crtc_disable_noatomic,
15586                  * or because the pipe is force-enabled due to the
15587                  * pipe A quirk. */
15588                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15589                               crtc->base.base.id,
15590                               crtc->base.state->enable ? "enabled" : "disabled",
15591                               crtc->active ? "enabled" : "disabled");
15592
15593                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15594                 crtc->base.state->active = crtc->active;
15595                 crtc->base.enabled = crtc->active;
15596                 crtc->base.state->connector_mask = 0;
15597                 crtc->base.state->encoder_mask = 0;
15598
15599                 /* Because we only establish the connector -> encoder ->
15600                  * crtc links if something is active, this means the
15601                  * crtc is now deactivated. Break the links. connector
15602                  * -> encoder links are only establish when things are
15603                  *  actually up, hence no need to break them. */
15604                 WARN_ON(crtc->active);
15605
15606                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15607                         encoder->base.crtc = NULL;
15608         }
15609
15610         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15611                 /*
15612                  * We start out with underrun reporting disabled to avoid races.
15613                  * For correct bookkeeping mark this on active crtcs.
15614                  *
15615                  * Also on gmch platforms we dont have any hardware bits to
15616                  * disable the underrun reporting. Which means we need to start
15617                  * out with underrun reporting disabled also on inactive pipes,
15618                  * since otherwise we'll complain about the garbage we read when
15619                  * e.g. coming up after runtime pm.
15620                  *
15621                  * No protection against concurrent access is required - at
15622                  * worst a fifo underrun happens which also sets this to false.
15623                  */
15624                 crtc->cpu_fifo_underrun_disabled = true;
15625                 crtc->pch_fifo_underrun_disabled = true;
15626         }
15627 }
15628
15629 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15630 {
15631         struct intel_connector *connector;
15632         struct drm_device *dev = encoder->base.dev;
15633
15634         /* We need to check both for a crtc link (meaning that the
15635          * encoder is active and trying to read from a pipe) and the
15636          * pipe itself being active. */
15637         bool has_active_crtc = encoder->base.crtc &&
15638                 to_intel_crtc(encoder->base.crtc)->active;
15639
15640         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15641                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15642                               encoder->base.base.id,
15643                               encoder->base.name);
15644
15645                 /* Connector is active, but has no active pipe. This is
15646                  * fallout from our resume register restoring. Disable
15647                  * the encoder manually again. */
15648                 if (encoder->base.crtc) {
15649                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15650                                       encoder->base.base.id,
15651                                       encoder->base.name);
15652                         encoder->disable(encoder);
15653                         if (encoder->post_disable)
15654                                 encoder->post_disable(encoder);
15655                 }
15656                 encoder->base.crtc = NULL;
15657
15658                 /* Inconsistent output/port/pipe state happens presumably due to
15659                  * a bug in one of the get_hw_state functions. Or someplace else
15660                  * in our code, like the register restore mess on resume. Clamp
15661                  * things to off as a safer default. */
15662                 for_each_intel_connector(dev, connector) {
15663                         if (connector->encoder != encoder)
15664                                 continue;
15665                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15666                         connector->base.encoder = NULL;
15667                 }
15668         }
15669         /* Enabled encoders without active connectors will be fixed in
15670          * the crtc fixup. */
15671 }
15672
15673 void i915_redisable_vga_power_on(struct drm_device *dev)
15674 {
15675         struct drm_i915_private *dev_priv = dev->dev_private;
15676         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15677
15678         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15679                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15680                 i915_disable_vga(dev);
15681         }
15682 }
15683
15684 void i915_redisable_vga(struct drm_device *dev)
15685 {
15686         struct drm_i915_private *dev_priv = dev->dev_private;
15687
15688         /* This function can be called both from intel_modeset_setup_hw_state or
15689          * at a very early point in our resume sequence, where the power well
15690          * structures are not yet restored. Since this function is at a very
15691          * paranoid "someone might have enabled VGA while we were not looking"
15692          * level, just check if the power well is enabled instead of trying to
15693          * follow the "don't touch the power well if we don't need it" policy
15694          * the rest of the driver uses. */
15695         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15696                 return;
15697
15698         i915_redisable_vga_power_on(dev);
15699
15700         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15701 }
15702
15703 static bool primary_get_hw_state(struct intel_plane *plane)
15704 {
15705         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15706
15707         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15708 }
15709
15710 /* FIXME read out full plane state for all planes */
15711 static void readout_plane_state(struct intel_crtc *crtc)
15712 {
15713         struct drm_plane *primary = crtc->base.primary;
15714         struct intel_plane_state *plane_state =
15715                 to_intel_plane_state(primary->state);
15716
15717         plane_state->visible = crtc->active &&
15718                 primary_get_hw_state(to_intel_plane(primary));
15719
15720         if (plane_state->visible)
15721                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15722 }
15723
15724 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15725 {
15726         struct drm_i915_private *dev_priv = dev->dev_private;
15727         enum pipe pipe;
15728         struct intel_crtc *crtc;
15729         struct intel_encoder *encoder;
15730         struct intel_connector *connector;
15731         int i;
15732
15733         dev_priv->active_crtcs = 0;
15734
15735         for_each_intel_crtc(dev, crtc) {
15736                 struct intel_crtc_state *crtc_state = crtc->config;
15737                 int pixclk = 0;
15738
15739                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15740                 memset(crtc_state, 0, sizeof(*crtc_state));
15741                 crtc_state->base.crtc = &crtc->base;
15742
15743                 crtc_state->base.active = crtc_state->base.enable =
15744                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15745
15746                 crtc->base.enabled = crtc_state->base.enable;
15747                 crtc->active = crtc_state->base.active;
15748
15749                 if (crtc_state->base.active) {
15750                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15751
15752                         if (IS_BROADWELL(dev_priv)) {
15753                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15754
15755                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15756                                 if (crtc_state->ips_enabled)
15757                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15758                         } else if (IS_VALLEYVIEW(dev_priv) ||
15759                                    IS_CHERRYVIEW(dev_priv) ||
15760                                    IS_BROXTON(dev_priv))
15761                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15762                         else
15763                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15764                 }
15765
15766                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15767
15768                 readout_plane_state(crtc);
15769
15770                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15771                               crtc->base.base.id,
15772                               crtc->active ? "enabled" : "disabled");
15773         }
15774
15775         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15776                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15777
15778                 pll->on = pll->get_hw_state(dev_priv, pll,
15779                                             &pll->config.hw_state);
15780                 pll->active = 0;
15781                 pll->config.crtc_mask = 0;
15782                 for_each_intel_crtc(dev, crtc) {
15783                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15784                                 pll->active++;
15785                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15786                         }
15787                 }
15788
15789                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15790                               pll->name, pll->config.crtc_mask, pll->on);
15791
15792                 if (pll->config.crtc_mask)
15793                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15794         }
15795
15796         for_each_intel_encoder(dev, encoder) {
15797                 pipe = 0;
15798
15799                 if (encoder->get_hw_state(encoder, &pipe)) {
15800                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15801                         encoder->base.crtc = &crtc->base;
15802                         encoder->get_config(encoder, crtc->config);
15803                 } else {
15804                         encoder->base.crtc = NULL;
15805                 }
15806
15807                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15808                               encoder->base.base.id,
15809                               encoder->base.name,
15810                               encoder->base.crtc ? "enabled" : "disabled",
15811                               pipe_name(pipe));
15812         }
15813
15814         for_each_intel_connector(dev, connector) {
15815                 if (connector->get_hw_state(connector)) {
15816                         connector->base.dpms = DRM_MODE_DPMS_ON;
15817
15818                         encoder = connector->encoder;
15819                         connector->base.encoder = &encoder->base;
15820
15821                         if (encoder->base.crtc &&
15822                             encoder->base.crtc->state->active) {
15823                                 /*
15824                                  * This has to be done during hardware readout
15825                                  * because anything calling .crtc_disable may
15826                                  * rely on the connector_mask being accurate.
15827                                  */
15828                                 encoder->base.crtc->state->connector_mask |=
15829                                         1 << drm_connector_index(&connector->base);
15830                                 encoder->base.crtc->state->encoder_mask |=
15831                                         1 << drm_encoder_index(&encoder->base);
15832                         }
15833
15834                 } else {
15835                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15836                         connector->base.encoder = NULL;
15837                 }
15838                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15839                               connector->base.base.id,
15840                               connector->base.name,
15841                               connector->base.encoder ? "enabled" : "disabled");
15842         }
15843
15844         for_each_intel_crtc(dev, crtc) {
15845                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15846
15847                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15848                 if (crtc->base.state->active) {
15849                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15850                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15851                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15852
15853                         /*
15854                          * The initial mode needs to be set in order to keep
15855                          * the atomic core happy. It wants a valid mode if the
15856                          * crtc's enabled, so we do the above call.
15857                          *
15858                          * At this point some state updated by the connectors
15859                          * in their ->detect() callback has not run yet, so
15860                          * no recalculation can be done yet.
15861                          *
15862                          * Even if we could do a recalculation and modeset
15863                          * right now it would cause a double modeset if
15864                          * fbdev or userspace chooses a different initial mode.
15865                          *
15866                          * If that happens, someone indicated they wanted a
15867                          * mode change, which means it's safe to do a full
15868                          * recalculation.
15869                          */
15870                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15871
15872                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15873                         update_scanline_offset(crtc);
15874                 }
15875         }
15876 }
15877
15878 /* Scan out the current hw modeset state,
15879  * and sanitizes it to the current state
15880  */
15881 static void
15882 intel_modeset_setup_hw_state(struct drm_device *dev)
15883 {
15884         struct drm_i915_private *dev_priv = dev->dev_private;
15885         enum pipe pipe;
15886         struct intel_crtc *crtc;
15887         struct intel_encoder *encoder;
15888         int i;
15889
15890         intel_modeset_readout_hw_state(dev);
15891
15892         /* HW state is read out, now we need to sanitize this mess. */
15893         for_each_intel_encoder(dev, encoder) {
15894                 intel_sanitize_encoder(encoder);
15895         }
15896
15897         for_each_pipe(dev_priv, pipe) {
15898                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15899                 intel_sanitize_crtc(crtc);
15900                 intel_dump_pipe_config(crtc, crtc->config,
15901                                        "[setup_hw_state]");
15902         }
15903
15904         intel_modeset_update_connector_atomic_state(dev);
15905
15906         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15907                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15908
15909                 if (!pll->on || pll->active)
15910                         continue;
15911
15912                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15913
15914                 pll->disable(dev_priv, pll);
15915                 pll->on = false;
15916         }
15917
15918         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15919                 vlv_wm_get_hw_state(dev);
15920         else if (IS_GEN9(dev))
15921                 skl_wm_get_hw_state(dev);
15922         else if (HAS_PCH_SPLIT(dev))
15923                 ilk_wm_get_hw_state(dev);
15924
15925         for_each_intel_crtc(dev, crtc) {
15926                 unsigned long put_domains;
15927
15928                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15929                 if (WARN_ON(put_domains))
15930                         modeset_put_power_domains(dev_priv, put_domains);
15931         }
15932         intel_display_set_init_power(dev_priv, false);
15933
15934         intel_fbc_init_pipe_state(dev_priv);
15935 }
15936
15937 void intel_display_resume(struct drm_device *dev)
15938 {
15939         struct drm_i915_private *dev_priv = to_i915(dev);
15940         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15941         struct drm_modeset_acquire_ctx ctx;
15942         int ret;
15943         bool setup = false;
15944
15945         dev_priv->modeset_restore_state = NULL;
15946
15947         /*
15948          * This is a cludge because with real atomic modeset mode_config.mutex
15949          * won't be taken. Unfortunately some probed state like
15950          * audio_codec_enable is still protected by mode_config.mutex, so lock
15951          * it here for now.
15952          */
15953         mutex_lock(&dev->mode_config.mutex);
15954         drm_modeset_acquire_init(&ctx, 0);
15955
15956 retry:
15957         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15958
15959         if (ret == 0 && !setup) {
15960                 setup = true;
15961
15962                 intel_modeset_setup_hw_state(dev);
15963                 i915_redisable_vga(dev);
15964         }
15965
15966         if (ret == 0 && state) {
15967                 struct drm_crtc_state *crtc_state;
15968                 struct drm_crtc *crtc;
15969                 int i;
15970
15971                 state->acquire_ctx = &ctx;
15972
15973                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15974                         /*
15975                          * Force recalculation even if we restore
15976                          * current state. With fast modeset this may not result
15977                          * in a modeset when the state is compatible.
15978                          */
15979                         crtc_state->mode_changed = true;
15980                 }
15981
15982                 ret = drm_atomic_commit(state);
15983         }
15984
15985         if (ret == -EDEADLK) {
15986                 drm_modeset_backoff(&ctx);
15987                 goto retry;
15988         }
15989
15990         drm_modeset_drop_locks(&ctx);
15991         drm_modeset_acquire_fini(&ctx);
15992         mutex_unlock(&dev->mode_config.mutex);
15993
15994         if (ret) {
15995                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15996                 drm_atomic_state_free(state);
15997         }
15998 }
15999
16000 void intel_modeset_gem_init(struct drm_device *dev)
16001 {
16002         struct drm_crtc *c;
16003         struct drm_i915_gem_object *obj;
16004         int ret;
16005
16006         intel_init_gt_powersave(dev);
16007
16008         intel_modeset_init_hw(dev);
16009
16010         intel_setup_overlay(dev);
16011
16012         /*
16013          * Make sure any fbs we allocated at startup are properly
16014          * pinned & fenced.  When we do the allocation it's too early
16015          * for this.
16016          */
16017         for_each_crtc(dev, c) {
16018                 obj = intel_fb_obj(c->primary->fb);
16019                 if (obj == NULL)
16020                         continue;
16021
16022                 mutex_lock(&dev->struct_mutex);
16023                 ret = intel_pin_and_fence_fb_obj(c->primary,
16024                                                  c->primary->fb,
16025                                                  c->primary->state);
16026                 mutex_unlock(&dev->struct_mutex);
16027                 if (ret) {
16028                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16029                                   to_intel_crtc(c)->pipe);
16030                         drm_framebuffer_unreference(c->primary->fb);
16031                         c->primary->fb = NULL;
16032                         c->primary->crtc = c->primary->state->crtc = NULL;
16033                         update_state_fb(c->primary);
16034                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16035                 }
16036         }
16037
16038         intel_backlight_register(dev);
16039 }
16040
16041 void intel_connector_unregister(struct intel_connector *intel_connector)
16042 {
16043         struct drm_connector *connector = &intel_connector->base;
16044
16045         intel_panel_destroy_backlight(connector);
16046         drm_connector_unregister(connector);
16047 }
16048
16049 void intel_modeset_cleanup(struct drm_device *dev)
16050 {
16051         struct drm_i915_private *dev_priv = dev->dev_private;
16052         struct intel_connector *connector;
16053
16054         intel_disable_gt_powersave(dev);
16055
16056         intel_backlight_unregister(dev);
16057
16058         /*
16059          * Interrupts and polling as the first thing to avoid creating havoc.
16060          * Too much stuff here (turning of connectors, ...) would
16061          * experience fancy races otherwise.
16062          */
16063         intel_irq_uninstall(dev_priv);
16064
16065         /*
16066          * Due to the hpd irq storm handling the hotplug work can re-arm the
16067          * poll handlers. Hence disable polling after hpd handling is shut down.
16068          */
16069         drm_kms_helper_poll_fini(dev);
16070
16071         intel_unregister_dsm_handler();
16072
16073         intel_fbc_global_disable(dev_priv);
16074
16075         /* flush any delayed tasks or pending work */
16076         flush_scheduled_work();
16077
16078         /* destroy the backlight and sysfs files before encoders/connectors */
16079         for_each_intel_connector(dev, connector)
16080                 connector->unregister(connector);
16081
16082         drm_mode_config_cleanup(dev);
16083
16084         intel_cleanup_overlay(dev);
16085
16086         intel_cleanup_gt_powersave(dev);
16087
16088         intel_teardown_gmbus(dev);
16089 }
16090
16091 /*
16092  * Return which encoder is currently attached for connector.
16093  */
16094 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16095 {
16096         return &intel_attached_encoder(connector)->base;
16097 }
16098
16099 void intel_connector_attach_encoder(struct intel_connector *connector,
16100                                     struct intel_encoder *encoder)
16101 {
16102         connector->encoder = encoder;
16103         drm_mode_connector_attach_encoder(&connector->base,
16104                                           &encoder->base);
16105 }
16106
16107 /*
16108  * set vga decode state - true == enable VGA decode
16109  */
16110 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16111 {
16112         struct drm_i915_private *dev_priv = dev->dev_private;
16113         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16114         u16 gmch_ctrl;
16115
16116         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16117                 DRM_ERROR("failed to read control word\n");
16118                 return -EIO;
16119         }
16120
16121         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16122                 return 0;
16123
16124         if (state)
16125                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16126         else
16127                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16128
16129         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16130                 DRM_ERROR("failed to write control word\n");
16131                 return -EIO;
16132         }
16133
16134         return 0;
16135 }
16136
16137 struct intel_display_error_state {
16138
16139         u32 power_well_driver;
16140
16141         int num_transcoders;
16142
16143         struct intel_cursor_error_state {
16144                 u32 control;
16145                 u32 position;
16146                 u32 base;
16147                 u32 size;
16148         } cursor[I915_MAX_PIPES];
16149
16150         struct intel_pipe_error_state {
16151                 bool power_domain_on;
16152                 u32 source;
16153                 u32 stat;
16154         } pipe[I915_MAX_PIPES];
16155
16156         struct intel_plane_error_state {
16157                 u32 control;
16158                 u32 stride;
16159                 u32 size;
16160                 u32 pos;
16161                 u32 addr;
16162                 u32 surface;
16163                 u32 tile_offset;
16164         } plane[I915_MAX_PIPES];
16165
16166         struct intel_transcoder_error_state {
16167                 bool power_domain_on;
16168                 enum transcoder cpu_transcoder;
16169
16170                 u32 conf;
16171
16172                 u32 htotal;
16173                 u32 hblank;
16174                 u32 hsync;
16175                 u32 vtotal;
16176                 u32 vblank;
16177                 u32 vsync;
16178         } transcoder[4];
16179 };
16180
16181 struct intel_display_error_state *
16182 intel_display_capture_error_state(struct drm_device *dev)
16183 {
16184         struct drm_i915_private *dev_priv = dev->dev_private;
16185         struct intel_display_error_state *error;
16186         int transcoders[] = {
16187                 TRANSCODER_A,
16188                 TRANSCODER_B,
16189                 TRANSCODER_C,
16190                 TRANSCODER_EDP,
16191         };
16192         int i;
16193
16194         if (INTEL_INFO(dev)->num_pipes == 0)
16195                 return NULL;
16196
16197         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16198         if (error == NULL)
16199                 return NULL;
16200
16201         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16202                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16203
16204         for_each_pipe(dev_priv, i) {
16205                 error->pipe[i].power_domain_on =
16206                         __intel_display_power_is_enabled(dev_priv,
16207                                                          POWER_DOMAIN_PIPE(i));
16208                 if (!error->pipe[i].power_domain_on)
16209                         continue;
16210
16211                 error->cursor[i].control = I915_READ(CURCNTR(i));
16212                 error->cursor[i].position = I915_READ(CURPOS(i));
16213                 error->cursor[i].base = I915_READ(CURBASE(i));
16214
16215                 error->plane[i].control = I915_READ(DSPCNTR(i));
16216                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16217                 if (INTEL_INFO(dev)->gen <= 3) {
16218                         error->plane[i].size = I915_READ(DSPSIZE(i));
16219                         error->plane[i].pos = I915_READ(DSPPOS(i));
16220                 }
16221                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16222                         error->plane[i].addr = I915_READ(DSPADDR(i));
16223                 if (INTEL_INFO(dev)->gen >= 4) {
16224                         error->plane[i].surface = I915_READ(DSPSURF(i));
16225                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16226                 }
16227
16228                 error->pipe[i].source = I915_READ(PIPESRC(i));
16229
16230                 if (HAS_GMCH_DISPLAY(dev))
16231                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16232         }
16233
16234         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16235         if (HAS_DDI(dev_priv->dev))
16236                 error->num_transcoders++; /* Account for eDP. */
16237
16238         for (i = 0; i < error->num_transcoders; i++) {
16239                 enum transcoder cpu_transcoder = transcoders[i];
16240
16241                 error->transcoder[i].power_domain_on =
16242                         __intel_display_power_is_enabled(dev_priv,
16243                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16244                 if (!error->transcoder[i].power_domain_on)
16245                         continue;
16246
16247                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16248
16249                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16250                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16251                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16252                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16253                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16254                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16255                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16256         }
16257
16258         return error;
16259 }
16260
16261 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16262
16263 void
16264 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16265                                 struct drm_device *dev,
16266                                 struct intel_display_error_state *error)
16267 {
16268         struct drm_i915_private *dev_priv = dev->dev_private;
16269         int i;
16270
16271         if (!error)
16272                 return;
16273
16274         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16275         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16276                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16277                            error->power_well_driver);
16278         for_each_pipe(dev_priv, i) {
16279                 err_printf(m, "Pipe [%d]:\n", i);
16280                 err_printf(m, "  Power: %s\n",
16281                            onoff(error->pipe[i].power_domain_on));
16282                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16283                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16284
16285                 err_printf(m, "Plane [%d]:\n", i);
16286                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16287                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16288                 if (INTEL_INFO(dev)->gen <= 3) {
16289                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16290                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16291                 }
16292                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16293                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16294                 if (INTEL_INFO(dev)->gen >= 4) {
16295                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16296                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16297                 }
16298
16299                 err_printf(m, "Cursor [%d]:\n", i);
16300                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16301                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16302                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16303         }
16304
16305         for (i = 0; i < error->num_transcoders; i++) {
16306                 err_printf(m, "CPU transcoder: %c\n",
16307                            transcoder_name(error->transcoder[i].cpu_transcoder));
16308                 err_printf(m, "  Power: %s\n",
16309                            onoff(error->transcoder[i].power_domain_on));
16310                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16311                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16312                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16313                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16314                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16315                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16316                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16317         }
16318 }