drm/i915: Leave the aliasing-ppgtt size alone
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35 #include <asm/smp.h>
36
37 #include <drm/i915_drm.h>
38
39 #include "display/intel_frontbuffer.h"
40 #include "gt/intel_gt.h"
41 #include "gt/intel_gt_requests.h"
42
43 #include "i915_drv.h"
44 #include "i915_scatterlist.h"
45 #include "i915_trace.h"
46 #include "i915_vgpu.h"
47
48 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
49
50 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
51 #define DBG(...) trace_printk(__VA_ARGS__)
52 #else
53 #define DBG(...)
54 #endif
55
56 /**
57  * DOC: Global GTT views
58  *
59  * Background and previous state
60  *
61  * Historically objects could exists (be bound) in global GTT space only as
62  * singular instances with a view representing all of the object's backing pages
63  * in a linear fashion. This view will be called a normal view.
64  *
65  * To support multiple views of the same object, where the number of mapped
66  * pages is not equal to the backing store, or where the layout of the pages
67  * is not linear, concept of a GGTT view was added.
68  *
69  * One example of an alternative view is a stereo display driven by a single
70  * image. In this case we would have a framebuffer looking like this
71  * (2x2 pages):
72  *
73  *    12
74  *    34
75  *
76  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
77  * rendering. In contrast, fed to the display engine would be an alternative
78  * view which could look something like this:
79  *
80  *   1212
81  *   3434
82  *
83  * In this example both the size and layout of pages in the alternative view is
84  * different from the normal view.
85  *
86  * Implementation and usage
87  *
88  * GGTT views are implemented using VMAs and are distinguished via enum
89  * i915_ggtt_view_type and struct i915_ggtt_view.
90  *
91  * A new flavour of core GEM functions which work with GGTT bound objects were
92  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
93  * renaming  in large amounts of code. They take the struct i915_ggtt_view
94  * parameter encapsulating all metadata required to implement a view.
95  *
96  * As a helper for callers which are only interested in the normal view,
97  * globally const i915_ggtt_view_normal singleton instance exists. All old core
98  * GEM API functions, the ones not taking the view parameter, are operating on,
99  * or with the normal GGTT view.
100  *
101  * Code wanting to add or use a new GGTT view needs to:
102  *
103  * 1. Add a new enum with a suitable name.
104  * 2. Extend the metadata in the i915_ggtt_view structure if required.
105  * 3. Add support to i915_get_vma_pages().
106  *
107  * New views are required to build a scatter-gather table from within the
108  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
109  * exists for the lifetime of an VMA.
110  *
111  * Core API is designed to have copy semantics which means that passed in
112  * struct i915_ggtt_view does not need to be persistent (left around after
113  * calling the core API functions).
114  *
115  */
116
117 #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
118
119 static int
120 i915_get_ggtt_vma_pages(struct i915_vma *vma);
121
122 static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
123 {
124         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
125
126         /*
127          * Note that as an uncached mmio write, this will flush the
128          * WCB of the writes into the GGTT before it triggers the invalidate.
129          */
130         intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
131 }
132
133 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
134 {
135         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
136         struct drm_i915_private *i915 = ggtt->vm.i915;
137
138         gen6_ggtt_invalidate(ggtt);
139
140         if (INTEL_GEN(i915) >= 12)
141                 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
142                                       GEN12_GUC_TLB_INV_CR_INVALIDATE);
143         else
144                 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
145 }
146
147 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
148 {
149         intel_gtt_chipset_flush();
150 }
151
152 static int ppgtt_bind_vma(struct i915_vma *vma,
153                           enum i915_cache_level cache_level,
154                           u32 flags)
155 {
156         u32 pte_flags;
157         int err;
158
159         if (flags & I915_VMA_ALLOC) {
160                 err = vma->vm->allocate_va_range(vma->vm,
161                                                  vma->node.start, vma->size);
162                 if (err)
163                         return err;
164
165                 set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
166         }
167
168         /* Applicable to VLV, and gen8+ */
169         pte_flags = 0;
170         if (i915_gem_object_is_readonly(vma->obj))
171                 pte_flags |= PTE_READ_ONLY;
172
173         GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)));
174         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
175         wmb();
176
177         return 0;
178 }
179
180 static void ppgtt_unbind_vma(struct i915_vma *vma)
181 {
182         if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)))
183                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
184 }
185
186 static int ppgtt_set_pages(struct i915_vma *vma)
187 {
188         GEM_BUG_ON(vma->pages);
189
190         vma->pages = vma->obj->mm.pages;
191
192         vma->page_sizes = vma->obj->mm.page_sizes;
193
194         return 0;
195 }
196
197 static void clear_pages(struct i915_vma *vma)
198 {
199         GEM_BUG_ON(!vma->pages);
200
201         if (vma->pages != vma->obj->mm.pages) {
202                 sg_free_table(vma->pages);
203                 kfree(vma->pages);
204         }
205         vma->pages = NULL;
206
207         memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
208 }
209
210 static u64 gen8_pte_encode(dma_addr_t addr,
211                            enum i915_cache_level level,
212                            u32 flags)
213 {
214         gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
215
216         if (unlikely(flags & PTE_READ_ONLY))
217                 pte &= ~_PAGE_RW;
218
219         switch (level) {
220         case I915_CACHE_NONE:
221                 pte |= PPAT_UNCACHED;
222                 break;
223         case I915_CACHE_WT:
224                 pte |= PPAT_DISPLAY_ELLC;
225                 break;
226         default:
227                 pte |= PPAT_CACHED;
228                 break;
229         }
230
231         return pte;
232 }
233
234 static u64 gen8_pde_encode(const dma_addr_t addr,
235                            const enum i915_cache_level level)
236 {
237         u64 pde = _PAGE_PRESENT | _PAGE_RW;
238         pde |= addr;
239         if (level != I915_CACHE_NONE)
240                 pde |= PPAT_CACHED_PDE;
241         else
242                 pde |= PPAT_UNCACHED;
243         return pde;
244 }
245
246 static u64 snb_pte_encode(dma_addr_t addr,
247                           enum i915_cache_level level,
248                           u32 flags)
249 {
250         gen6_pte_t pte = GEN6_PTE_VALID;
251         pte |= GEN6_PTE_ADDR_ENCODE(addr);
252
253         switch (level) {
254         case I915_CACHE_L3_LLC:
255         case I915_CACHE_LLC:
256                 pte |= GEN6_PTE_CACHE_LLC;
257                 break;
258         case I915_CACHE_NONE:
259                 pte |= GEN6_PTE_UNCACHED;
260                 break;
261         default:
262                 MISSING_CASE(level);
263         }
264
265         return pte;
266 }
267
268 static u64 ivb_pte_encode(dma_addr_t addr,
269                           enum i915_cache_level level,
270                           u32 flags)
271 {
272         gen6_pte_t pte = GEN6_PTE_VALID;
273         pte |= GEN6_PTE_ADDR_ENCODE(addr);
274
275         switch (level) {
276         case I915_CACHE_L3_LLC:
277                 pte |= GEN7_PTE_CACHE_L3_LLC;
278                 break;
279         case I915_CACHE_LLC:
280                 pte |= GEN6_PTE_CACHE_LLC;
281                 break;
282         case I915_CACHE_NONE:
283                 pte |= GEN6_PTE_UNCACHED;
284                 break;
285         default:
286                 MISSING_CASE(level);
287         }
288
289         return pte;
290 }
291
292 static u64 byt_pte_encode(dma_addr_t addr,
293                           enum i915_cache_level level,
294                           u32 flags)
295 {
296         gen6_pte_t pte = GEN6_PTE_VALID;
297         pte |= GEN6_PTE_ADDR_ENCODE(addr);
298
299         if (!(flags & PTE_READ_ONLY))
300                 pte |= BYT_PTE_WRITEABLE;
301
302         if (level != I915_CACHE_NONE)
303                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
304
305         return pte;
306 }
307
308 static u64 hsw_pte_encode(dma_addr_t addr,
309                           enum i915_cache_level level,
310                           u32 flags)
311 {
312         gen6_pte_t pte = GEN6_PTE_VALID;
313         pte |= HSW_PTE_ADDR_ENCODE(addr);
314
315         if (level != I915_CACHE_NONE)
316                 pte |= HSW_WB_LLC_AGE3;
317
318         return pte;
319 }
320
321 static u64 iris_pte_encode(dma_addr_t addr,
322                            enum i915_cache_level level,
323                            u32 flags)
324 {
325         gen6_pte_t pte = GEN6_PTE_VALID;
326         pte |= HSW_PTE_ADDR_ENCODE(addr);
327
328         switch (level) {
329         case I915_CACHE_NONE:
330                 break;
331         case I915_CACHE_WT:
332                 pte |= HSW_WT_ELLC_LLC_AGE3;
333                 break;
334         default:
335                 pte |= HSW_WB_ELLC_LLC_AGE3;
336                 break;
337         }
338
339         return pte;
340 }
341
342 static void stash_init(struct pagestash *stash)
343 {
344         pagevec_init(&stash->pvec);
345         spin_lock_init(&stash->lock);
346 }
347
348 static struct page *stash_pop_page(struct pagestash *stash)
349 {
350         struct page *page = NULL;
351
352         spin_lock(&stash->lock);
353         if (likely(stash->pvec.nr))
354                 page = stash->pvec.pages[--stash->pvec.nr];
355         spin_unlock(&stash->lock);
356
357         return page;
358 }
359
360 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
361 {
362         unsigned int nr;
363
364         spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
365
366         nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
367         memcpy(stash->pvec.pages + stash->pvec.nr,
368                pvec->pages + pvec->nr - nr,
369                sizeof(pvec->pages[0]) * nr);
370         stash->pvec.nr += nr;
371
372         spin_unlock(&stash->lock);
373
374         pvec->nr -= nr;
375 }
376
377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378 {
379         struct pagevec stack;
380         struct page *page;
381
382         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
383                 i915_gem_shrink_all(vm->i915);
384
385         page = stash_pop_page(&vm->free_pages);
386         if (page)
387                 return page;
388
389         if (!vm->pt_kmap_wc)
390                 return alloc_page(gfp);
391
392         /* Look in our global stash of WC pages... */
393         page = stash_pop_page(&vm->i915->mm.wc_stash);
394         if (page)
395                 return page;
396
397         /*
398          * Otherwise batch allocate pages to amortize cost of set_pages_wc.
399          *
400          * We have to be careful as page allocation may trigger the shrinker
401          * (via direct reclaim) which will fill up the WC stash underneath us.
402          * So we add our WB pages into a temporary pvec on the stack and merge
403          * them into the WC stash after all the allocations are complete.
404          */
405         pagevec_init(&stack);
406         do {
407                 struct page *page;
408
409                 page = alloc_page(gfp);
410                 if (unlikely(!page))
411                         break;
412
413                 stack.pages[stack.nr++] = page;
414         } while (pagevec_space(&stack));
415
416         if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
417                 page = stack.pages[--stack.nr];
418
419                 /* Merge spare WC pages to the global stash */
420                 if (stack.nr)
421                         stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
422
423                 /* Push any surplus WC pages onto the local VM stash */
424                 if (stack.nr)
425                         stash_push_pagevec(&vm->free_pages, &stack);
426         }
427
428         /* Return unwanted leftovers */
429         if (unlikely(stack.nr)) {
430                 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
431                 __pagevec_release(&stack);
432         }
433
434         return page;
435 }
436
437 static void vm_free_pages_release(struct i915_address_space *vm,
438                                   bool immediate)
439 {
440         struct pagevec *pvec = &vm->free_pages.pvec;
441         struct pagevec stack;
442
443         lockdep_assert_held(&vm->free_pages.lock);
444         GEM_BUG_ON(!pagevec_count(pvec));
445
446         if (vm->pt_kmap_wc) {
447                 /*
448                  * When we use WC, first fill up the global stash and then
449                  * only if full immediately free the overflow.
450                  */
451                 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
452
453                 /*
454                  * As we have made some room in the VM's free_pages,
455                  * we can wait for it to fill again. Unless we are
456                  * inside i915_address_space_fini() and must
457                  * immediately release the pages!
458                  */
459                 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
460                         return;
461
462                 /*
463                  * We have to drop the lock to allow ourselves to sleep,
464                  * so take a copy of the pvec and clear the stash for
465                  * others to use it as we sleep.
466                  */
467                 stack = *pvec;
468                 pagevec_reinit(pvec);
469                 spin_unlock(&vm->free_pages.lock);
470
471                 pvec = &stack;
472                 set_pages_array_wb(pvec->pages, pvec->nr);
473
474                 spin_lock(&vm->free_pages.lock);
475         }
476
477         __pagevec_release(pvec);
478 }
479
480 static void vm_free_page(struct i915_address_space *vm, struct page *page)
481 {
482         /*
483          * On !llc, we need to change the pages back to WB. We only do so
484          * in bulk, so we rarely need to change the page attributes here,
485          * but doing so requires a stop_machine() from deep inside arch/x86/mm.
486          * To make detection of the possible sleep more likely, use an
487          * unconditional might_sleep() for everybody.
488          */
489         might_sleep();
490         spin_lock(&vm->free_pages.lock);
491         while (!pagevec_space(&vm->free_pages.pvec))
492                 vm_free_pages_release(vm, false);
493         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
494         pagevec_add(&vm->free_pages.pvec, page);
495         spin_unlock(&vm->free_pages.lock);
496 }
497
498 static void i915_address_space_fini(struct i915_address_space *vm)
499 {
500         spin_lock(&vm->free_pages.lock);
501         if (pagevec_count(&vm->free_pages.pvec))
502                 vm_free_pages_release(vm, true);
503         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
504         spin_unlock(&vm->free_pages.lock);
505
506         drm_mm_takedown(&vm->mm);
507
508         mutex_destroy(&vm->mutex);
509 }
510
511 void __i915_vm_close(struct i915_address_space *vm)
512 {
513         struct i915_vma *vma, *vn;
514
515         mutex_lock(&vm->mutex);
516         list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
517                 struct drm_i915_gem_object *obj = vma->obj;
518
519                 /* Keep the obj (and hence the vma) alive as _we_ destroy it */
520                 if (!kref_get_unless_zero(&obj->base.refcount))
521                         continue;
522
523                 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
524                 WARN_ON(__i915_vma_unbind(vma));
525                 i915_vma_destroy(vma);
526
527                 i915_gem_object_put(obj);
528         }
529         GEM_BUG_ON(!list_empty(&vm->bound_list));
530         mutex_unlock(&vm->mutex);
531 }
532
533 static void __i915_vm_release(struct work_struct *work)
534 {
535         struct i915_address_space *vm =
536                 container_of(work, struct i915_address_space, rcu.work);
537
538         vm->cleanup(vm);
539         i915_address_space_fini(vm);
540
541         kfree(vm);
542 }
543
544 void i915_vm_release(struct kref *kref)
545 {
546         struct i915_address_space *vm =
547                 container_of(kref, struct i915_address_space, ref);
548
549         GEM_BUG_ON(i915_is_ggtt(vm));
550         trace_i915_ppgtt_release(vm);
551
552         queue_rcu_work(vm->i915->wq, &vm->rcu);
553 }
554
555 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
556 {
557         kref_init(&vm->ref);
558         INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
559         atomic_set(&vm->open, 1);
560
561         /*
562          * The vm->mutex must be reclaim safe (for use in the shrinker).
563          * Do a dummy acquire now under fs_reclaim so that any allocation
564          * attempt holding the lock is immediately reported by lockdep.
565          */
566         mutex_init(&vm->mutex);
567         lockdep_set_subclass(&vm->mutex, subclass);
568         i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
569
570         GEM_BUG_ON(!vm->total);
571         drm_mm_init(&vm->mm, 0, vm->total);
572         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
573
574         stash_init(&vm->free_pages);
575
576         INIT_LIST_HEAD(&vm->bound_list);
577 }
578
579 static int __setup_page_dma(struct i915_address_space *vm,
580                             struct i915_page_dma *p,
581                             gfp_t gfp)
582 {
583         p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
584         if (unlikely(!p->page))
585                 return -ENOMEM;
586
587         p->daddr = dma_map_page_attrs(vm->dma,
588                                       p->page, 0, PAGE_SIZE,
589                                       PCI_DMA_BIDIRECTIONAL,
590                                       DMA_ATTR_SKIP_CPU_SYNC |
591                                       DMA_ATTR_NO_WARN);
592         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
593                 vm_free_page(vm, p->page);
594                 return -ENOMEM;
595         }
596
597         return 0;
598 }
599
600 static int setup_page_dma(struct i915_address_space *vm,
601                           struct i915_page_dma *p)
602 {
603         return __setup_page_dma(vm, p, __GFP_HIGHMEM);
604 }
605
606 static void cleanup_page_dma(struct i915_address_space *vm,
607                              struct i915_page_dma *p)
608 {
609         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
610         vm_free_page(vm, p->page);
611 }
612
613 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
614
615 static void
616 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
617 {
618         kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
619 }
620
621 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
622 #define fill32_px(px, v) do {                                           \
623         u64 v__ = lower_32_bits(v);                                     \
624         fill_px((px), v__ << 32 | v__);                                 \
625 } while (0)
626
627 static int
628 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
629 {
630         unsigned long size;
631
632         /*
633          * In order to utilize 64K pages for an object with a size < 2M, we will
634          * need to support a 64K scratch page, given that every 16th entry for a
635          * page-table operating in 64K mode must point to a properly aligned 64K
636          * region, including any PTEs which happen to point to scratch.
637          *
638          * This is only relevant for the 48b PPGTT where we support
639          * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
640          * scratch (read-only) between all vm, we create one 64k scratch page
641          * for all.
642          */
643         size = I915_GTT_PAGE_SIZE_4K;
644         if (i915_vm_is_4lvl(vm) &&
645             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
646                 size = I915_GTT_PAGE_SIZE_64K;
647                 gfp |= __GFP_NOWARN;
648         }
649         gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
650
651         do {
652                 unsigned int order = get_order(size);
653                 struct page *page;
654                 dma_addr_t addr;
655
656                 page = alloc_pages(gfp, order);
657                 if (unlikely(!page))
658                         goto skip;
659
660                 addr = dma_map_page_attrs(vm->dma,
661                                           page, 0, size,
662                                           PCI_DMA_BIDIRECTIONAL,
663                                           DMA_ATTR_SKIP_CPU_SYNC |
664                                           DMA_ATTR_NO_WARN);
665                 if (unlikely(dma_mapping_error(vm->dma, addr)))
666                         goto free_page;
667
668                 if (unlikely(!IS_ALIGNED(addr, size)))
669                         goto unmap_page;
670
671                 vm->scratch[0].base.page = page;
672                 vm->scratch[0].base.daddr = addr;
673                 vm->scratch_order = order;
674                 return 0;
675
676 unmap_page:
677                 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
678 free_page:
679                 __free_pages(page, order);
680 skip:
681                 if (size == I915_GTT_PAGE_SIZE_4K)
682                         return -ENOMEM;
683
684                 size = I915_GTT_PAGE_SIZE_4K;
685                 gfp &= ~__GFP_NOWARN;
686         } while (1);
687 }
688
689 static void cleanup_scratch_page(struct i915_address_space *vm)
690 {
691         struct i915_page_dma *p = px_base(&vm->scratch[0]);
692         unsigned int order = vm->scratch_order;
693
694         dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
695                        PCI_DMA_BIDIRECTIONAL);
696         __free_pages(p->page, order);
697 }
698
699 static void free_scratch(struct i915_address_space *vm)
700 {
701         int i;
702
703         if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
704                 return;
705
706         for (i = 1; i <= vm->top; i++) {
707                 if (!px_dma(&vm->scratch[i]))
708                         break;
709                 cleanup_page_dma(vm, px_base(&vm->scratch[i]));
710         }
711
712         cleanup_scratch_page(vm);
713 }
714
715 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
716 {
717         struct i915_page_table *pt;
718
719         pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
720         if (unlikely(!pt))
721                 return ERR_PTR(-ENOMEM);
722
723         if (unlikely(setup_page_dma(vm, &pt->base))) {
724                 kfree(pt);
725                 return ERR_PTR(-ENOMEM);
726         }
727
728         atomic_set(&pt->used, 0);
729         return pt;
730 }
731
732 static struct i915_page_directory *__alloc_pd(size_t sz)
733 {
734         struct i915_page_directory *pd;
735
736         pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
737         if (unlikely(!pd))
738                 return NULL;
739
740         spin_lock_init(&pd->lock);
741         return pd;
742 }
743
744 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
745 {
746         struct i915_page_directory *pd;
747
748         pd = __alloc_pd(sizeof(*pd));
749         if (unlikely(!pd))
750                 return ERR_PTR(-ENOMEM);
751
752         if (unlikely(setup_page_dma(vm, px_base(pd)))) {
753                 kfree(pd);
754                 return ERR_PTR(-ENOMEM);
755         }
756
757         return pd;
758 }
759
760 static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
761 {
762         cleanup_page_dma(vm, pd);
763         kfree(pd);
764 }
765
766 #define free_px(vm, px) free_pd(vm, px_base(px))
767
768 static inline void
769 write_dma_entry(struct i915_page_dma * const pdma,
770                 const unsigned short idx,
771                 const u64 encoded_entry)
772 {
773         u64 * const vaddr = kmap_atomic(pdma->page);
774
775         vaddr[idx] = encoded_entry;
776         kunmap_atomic(vaddr);
777 }
778
779 static inline void
780 __set_pd_entry(struct i915_page_directory * const pd,
781                const unsigned short idx,
782                struct i915_page_dma * const to,
783                u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
784 {
785         /* Each thread pre-pins the pd, and we may have a thread per pde. */
786         GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
787
788         atomic_inc(px_used(pd));
789         pd->entry[idx] = to;
790         write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
791 }
792
793 #define set_pd_entry(pd, idx, to) \
794         __set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
795
796 static inline void
797 clear_pd_entry(struct i915_page_directory * const pd,
798                const unsigned short idx,
799                const struct i915_page_scratch * const scratch)
800 {
801         GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
802
803         write_dma_entry(px_base(pd), idx, scratch->encode);
804         pd->entry[idx] = NULL;
805         atomic_dec(px_used(pd));
806 }
807
808 static bool
809 release_pd_entry(struct i915_page_directory * const pd,
810                  const unsigned short idx,
811                  struct i915_page_table * const pt,
812                  const struct i915_page_scratch * const scratch)
813 {
814         bool free = false;
815
816         if (atomic_add_unless(&pt->used, -1, 1))
817                 return false;
818
819         spin_lock(&pd->lock);
820         if (atomic_dec_and_test(&pt->used)) {
821                 clear_pd_entry(pd, idx, scratch);
822                 free = true;
823         }
824         spin_unlock(&pd->lock);
825
826         return free;
827 }
828
829 static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
830 {
831         struct drm_i915_private *dev_priv = ppgtt->vm.i915;
832         enum vgt_g2v_type msg;
833         int i;
834
835         if (create)
836                 atomic_inc(px_used(ppgtt->pd)); /* never remove */
837         else
838                 atomic_dec(px_used(ppgtt->pd));
839
840         mutex_lock(&dev_priv->vgpu.lock);
841
842         if (i915_vm_is_4lvl(&ppgtt->vm)) {
843                 const u64 daddr = px_dma(ppgtt->pd);
844
845                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
846                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
847
848                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
849                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
850         } else {
851                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
852                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
853
854                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
855                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
856                 }
857
858                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
859                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
860         }
861
862         /* g2v_notify atomically (via hv trap) consumes the message packet. */
863         I915_WRITE(vgtif_reg(g2v_notify), msg);
864
865         mutex_unlock(&dev_priv->vgpu.lock);
866 }
867
868 /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
869 #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
870 #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
871 #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
872 #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
873 #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
874 #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
875 #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
876
877 static inline unsigned int
878 gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
879 {
880         const int shift = gen8_pd_shift(lvl);
881         const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
882
883         GEM_BUG_ON(start >= end);
884         end += ~mask >> gen8_pd_shift(1);
885
886         *idx = i915_pde_index(start, shift);
887         if ((start ^ end) & mask)
888                 return GEN8_PDES - *idx;
889         else
890                 return i915_pde_index(end, shift) - *idx;
891 }
892
893 static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
894 {
895         const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
896
897         GEM_BUG_ON(start >= end);
898         return (start ^ end) & mask && (start & ~mask) == 0;
899 }
900
901 static inline unsigned int gen8_pt_count(u64 start, u64 end)
902 {
903         GEM_BUG_ON(start >= end);
904         if ((start ^ end) >> gen8_pd_shift(1))
905                 return GEN8_PDES - (start & (GEN8_PDES - 1));
906         else
907                 return end - start;
908 }
909
910 static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
911 {
912         unsigned int shift = __gen8_pte_shift(vm->top);
913         return (vm->total + (1ull << shift) - 1) >> shift;
914 }
915
916 static inline struct i915_page_directory *
917 gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
918 {
919         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
920
921         if (vm->top == 2)
922                 return ppgtt->pd;
923         else
924                 return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
925 }
926
927 static inline struct i915_page_directory *
928 gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
929 {
930         return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
931 }
932
933 static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
934                                  struct i915_page_directory *pd,
935                                  int count, int lvl)
936 {
937         if (lvl) {
938                 void **pde = pd->entry;
939
940                 do {
941                         if (!*pde)
942                                 continue;
943
944                         __gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
945                 } while (pde++, --count);
946         }
947
948         free_px(vm, pd);
949 }
950
951 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
952 {
953         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
954
955         if (intel_vgpu_active(vm->i915))
956                 gen8_ppgtt_notify_vgt(ppgtt, false);
957
958         __gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
959         free_scratch(vm);
960 }
961
962 static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
963                               struct i915_page_directory * const pd,
964                               u64 start, const u64 end, int lvl)
965 {
966         const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
967         unsigned int idx, len;
968
969         GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
970
971         len = gen8_pd_range(start, end, lvl--, &idx);
972         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
973             __func__, vm, lvl + 1, start, end,
974             idx, len, atomic_read(px_used(pd)));
975         GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
976
977         do {
978                 struct i915_page_table *pt = pd->entry[idx];
979
980                 if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
981                     gen8_pd_contains(start, end, lvl)) {
982                         DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
983                             __func__, vm, lvl + 1, idx, start, end);
984                         clear_pd_entry(pd, idx, scratch);
985                         __gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
986                         start += (u64)I915_PDES << gen8_pd_shift(lvl);
987                         continue;
988                 }
989
990                 if (lvl) {
991                         start = __gen8_ppgtt_clear(vm, as_pd(pt),
992                                                    start, end, lvl);
993                 } else {
994                         unsigned int count;
995                         u64 *vaddr;
996
997                         count = gen8_pt_count(start, end);
998                         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
999                             __func__, vm, lvl, start, end,
1000                             gen8_pd_index(start, 0), count,
1001                             atomic_read(&pt->used));
1002                         GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
1003
1004                         vaddr = kmap_atomic_px(pt);
1005                         memset64(vaddr + gen8_pd_index(start, 0),
1006                                  vm->scratch[0].encode,
1007                                  count);
1008                         kunmap_atomic(vaddr);
1009
1010                         atomic_sub(count, &pt->used);
1011                         start += count;
1012                 }
1013
1014                 if (release_pd_entry(pd, idx, pt, scratch))
1015                         free_px(vm, pt);
1016         } while (idx++, --len);
1017
1018         return start;
1019 }
1020
1021 static void gen8_ppgtt_clear(struct i915_address_space *vm,
1022                              u64 start, u64 length)
1023 {
1024         GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1025         GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1026         GEM_BUG_ON(range_overflows(start, length, vm->total));
1027
1028         start >>= GEN8_PTE_SHIFT;
1029         length >>= GEN8_PTE_SHIFT;
1030         GEM_BUG_ON(length == 0);
1031
1032         __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1033                            start, start + length, vm->top);
1034 }
1035
1036 static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
1037                               struct i915_page_directory * const pd,
1038                               u64 * const start, const u64 end, int lvl)
1039 {
1040         const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
1041         struct i915_page_table *alloc = NULL;
1042         unsigned int idx, len;
1043         int ret = 0;
1044
1045         GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
1046
1047         len = gen8_pd_range(*start, end, lvl--, &idx);
1048         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1049             __func__, vm, lvl + 1, *start, end,
1050             idx, len, atomic_read(px_used(pd)));
1051         GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
1052
1053         spin_lock(&pd->lock);
1054         GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
1055         do {
1056                 struct i915_page_table *pt = pd->entry[idx];
1057
1058                 if (!pt) {
1059                         spin_unlock(&pd->lock);
1060
1061                         DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
1062                             __func__, vm, lvl + 1, idx);
1063
1064                         pt = fetch_and_zero(&alloc);
1065                         if (lvl) {
1066                                 if (!pt) {
1067                                         pt = &alloc_pd(vm)->pt;
1068                                         if (IS_ERR(pt)) {
1069                                                 ret = PTR_ERR(pt);
1070                                                 goto out;
1071                                         }
1072                                 }
1073
1074                                 fill_px(pt, vm->scratch[lvl].encode);
1075                         } else {
1076                                 if (!pt) {
1077                                         pt = alloc_pt(vm);
1078                                         if (IS_ERR(pt)) {
1079                                                 ret = PTR_ERR(pt);
1080                                                 goto out;
1081                                         }
1082                                 }
1083
1084                                 if (intel_vgpu_active(vm->i915) ||
1085                                     gen8_pt_count(*start, end) < I915_PDES)
1086                                         fill_px(pt, vm->scratch[lvl].encode);
1087                         }
1088
1089                         spin_lock(&pd->lock);
1090                         if (likely(!pd->entry[idx]))
1091                                 set_pd_entry(pd, idx, pt);
1092                         else
1093                                 alloc = pt, pt = pd->entry[idx];
1094                 }
1095
1096                 if (lvl) {
1097                         atomic_inc(&pt->used);
1098                         spin_unlock(&pd->lock);
1099
1100                         ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
1101                                                  start, end, lvl);
1102                         if (unlikely(ret)) {
1103                                 if (release_pd_entry(pd, idx, pt, scratch))
1104                                         free_px(vm, pt);
1105                                 goto out;
1106                         }
1107
1108                         spin_lock(&pd->lock);
1109                         atomic_dec(&pt->used);
1110                         GEM_BUG_ON(!atomic_read(&pt->used));
1111                 } else {
1112                         unsigned int count = gen8_pt_count(*start, end);
1113
1114                         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1115                             __func__, vm, lvl, *start, end,
1116                             gen8_pd_index(*start, 0), count,
1117                             atomic_read(&pt->used));
1118
1119                         atomic_add(count, &pt->used);
1120                         /* All other pdes may be simultaneously removed */
1121                         GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1122                         *start += count;
1123                 }
1124         } while (idx++, --len);
1125         spin_unlock(&pd->lock);
1126 out:
1127         if (alloc)
1128                 free_px(vm, alloc);
1129         return ret;
1130 }
1131
1132 static int gen8_ppgtt_alloc(struct i915_address_space *vm,
1133                             u64 start, u64 length)
1134 {
1135         u64 from;
1136         int err;
1137
1138         GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1139         GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1140         GEM_BUG_ON(range_overflows(start, length, vm->total));
1141
1142         start >>= GEN8_PTE_SHIFT;
1143         length >>= GEN8_PTE_SHIFT;
1144         GEM_BUG_ON(length == 0);
1145         from = start;
1146
1147         err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
1148                                  &start, start + length, vm->top);
1149         if (unlikely(err && from != start))
1150                 __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1151                                    from, start, vm->top);
1152
1153         return err;
1154 }
1155
1156 static inline struct sgt_dma {
1157         struct scatterlist *sg;
1158         dma_addr_t dma, max;
1159 } sgt_dma(struct i915_vma *vma) {
1160         struct scatterlist *sg = vma->pages->sgl;
1161         dma_addr_t addr = sg_dma_address(sg);
1162         return (struct sgt_dma) { sg, addr, addr + sg->length };
1163 }
1164
1165 static __always_inline u64
1166 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
1167                       struct i915_page_directory *pdp,
1168                       struct sgt_dma *iter,
1169                       u64 idx,
1170                       enum i915_cache_level cache_level,
1171                       u32 flags)
1172 {
1173         struct i915_page_directory *pd;
1174         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1175         gen8_pte_t *vaddr;
1176
1177         pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
1178         vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1179         do {
1180                 vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1181
1182                 iter->dma += I915_GTT_PAGE_SIZE;
1183                 if (iter->dma >= iter->max) {
1184                         iter->sg = __sg_next(iter->sg);
1185                         if (!iter->sg) {
1186                                 idx = 0;
1187                                 break;
1188                         }
1189
1190                         iter->dma = sg_dma_address(iter->sg);
1191                         iter->max = iter->dma + iter->sg->length;
1192                 }
1193
1194                 if (gen8_pd_index(++idx, 0) == 0) {
1195                         if (gen8_pd_index(idx, 1) == 0) {
1196                                 /* Limited by sg length for 3lvl */
1197                                 if (gen8_pd_index(idx, 2) == 0)
1198                                         break;
1199
1200                                 pd = pdp->entry[gen8_pd_index(idx, 2)];
1201                         }
1202
1203                         kunmap_atomic(vaddr);
1204                         vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1205                 }
1206         } while (1);
1207         kunmap_atomic(vaddr);
1208
1209         return idx;
1210 }
1211
1212 static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
1213                                    struct sgt_dma *iter,
1214                                    enum i915_cache_level cache_level,
1215                                    u32 flags)
1216 {
1217         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1218         u64 start = vma->node.start;
1219         dma_addr_t rem = iter->sg->length;
1220
1221         GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));
1222
1223         do {
1224                 struct i915_page_directory * const pdp =
1225                         gen8_pdp_for_page_address(vma->vm, start);
1226                 struct i915_page_directory * const pd =
1227                         i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1228                 gen8_pte_t encode = pte_encode;
1229                 unsigned int maybe_64K = -1;
1230                 unsigned int page_size;
1231                 gen8_pte_t *vaddr;
1232                 u16 index;
1233
1234                 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1235                     IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1236                     rem >= I915_GTT_PAGE_SIZE_2M &&
1237                     !__gen8_pte_index(start, 0)) {
1238                         index = __gen8_pte_index(start, 1);
1239                         encode |= GEN8_PDE_PS_2M;
1240                         page_size = I915_GTT_PAGE_SIZE_2M;
1241
1242                         vaddr = kmap_atomic_px(pd);
1243                 } else {
1244                         struct i915_page_table *pt =
1245                                 i915_pt_entry(pd, __gen8_pte_index(start, 1));
1246
1247                         index = __gen8_pte_index(start, 0);
1248                         page_size = I915_GTT_PAGE_SIZE;
1249
1250                         if (!index &&
1251                             vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1252                             IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1253                             (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1254                              rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
1255                                 maybe_64K = __gen8_pte_index(start, 1);
1256
1257                         vaddr = kmap_atomic_px(pt);
1258                 }
1259
1260                 do {
1261                         GEM_BUG_ON(iter->sg->length < page_size);
1262                         vaddr[index++] = encode | iter->dma;
1263
1264                         start += page_size;
1265                         iter->dma += page_size;
1266                         rem -= page_size;
1267                         if (iter->dma >= iter->max) {
1268                                 iter->sg = __sg_next(iter->sg);
1269                                 if (!iter->sg)
1270                                         break;
1271
1272                                 rem = iter->sg->length;
1273                                 iter->dma = sg_dma_address(iter->sg);
1274                                 iter->max = iter->dma + rem;
1275
1276                                 if (maybe_64K != -1 && index < I915_PDES &&
1277                                     !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1278                                       (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1279                                        rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
1280                                         maybe_64K = -1;
1281
1282                                 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1283                                         break;
1284                         }
1285                 } while (rem >= page_size && index < I915_PDES);
1286
1287                 kunmap_atomic(vaddr);
1288
1289                 /*
1290                  * Is it safe to mark the 2M block as 64K? -- Either we have
1291                  * filled whole page-table with 64K entries, or filled part of
1292                  * it and have reached the end of the sg table and we have
1293                  * enough padding.
1294                  */
1295                 if (maybe_64K != -1 &&
1296                     (index == I915_PDES ||
1297                      (i915_vm_has_scratch_64K(vma->vm) &&
1298                       !iter->sg && IS_ALIGNED(vma->node.start +
1299                                               vma->node.size,
1300                                               I915_GTT_PAGE_SIZE_2M)))) {
1301                         vaddr = kmap_atomic_px(pd);
1302                         vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1303                         kunmap_atomic(vaddr);
1304                         page_size = I915_GTT_PAGE_SIZE_64K;
1305
1306                         /*
1307                          * We write all 4K page entries, even when using 64K
1308                          * pages. In order to verify that the HW isn't cheating
1309                          * by using the 4K PTE instead of the 64K PTE, we want
1310                          * to remove all the surplus entries. If the HW skipped
1311                          * the 64K PTE, it will read/write into the scratch page
1312                          * instead - which we detect as missing results during
1313                          * selftests.
1314                          */
1315                         if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1316                                 u16 i;
1317
1318                                 encode = vma->vm->scratch[0].encode;
1319                                 vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
1320
1321                                 for (i = 1; i < index; i += 16)
1322                                         memset64(vaddr + i, encode, 15);
1323
1324                                 kunmap_atomic(vaddr);
1325                         }
1326                 }
1327
1328                 vma->page_sizes.gtt |= page_size;
1329         } while (iter->sg);
1330 }
1331
1332 static void gen8_ppgtt_insert(struct i915_address_space *vm,
1333                               struct i915_vma *vma,
1334                               enum i915_cache_level cache_level,
1335                               u32 flags)
1336 {
1337         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1338         struct sgt_dma iter = sgt_dma(vma);
1339
1340         if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1341                 gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
1342         } else  {
1343                 u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1344
1345                 do {
1346                         struct i915_page_directory * const pdp =
1347                                 gen8_pdp_for_page_index(vm, idx);
1348
1349                         idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
1350                                                     cache_level, flags);
1351                 } while (idx);
1352
1353                 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1354         }
1355 }
1356
1357 static int gen8_init_scratch(struct i915_address_space *vm)
1358 {
1359         int ret;
1360         int i;
1361
1362         /*
1363          * If everybody agrees to not to write into the scratch page,
1364          * we can reuse it for all vm, keeping contexts and processes separate.
1365          */
1366         if (vm->has_read_only &&
1367             vm->i915->kernel_context &&
1368             vm->i915->kernel_context->vm) {
1369                 struct i915_address_space *clone =
1370                         rcu_dereference_protected(vm->i915->kernel_context->vm,
1371                                                   true); /* static */
1372
1373                 GEM_BUG_ON(!clone->has_read_only);
1374
1375                 vm->scratch_order = clone->scratch_order;
1376                 memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
1377                 px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1378                 return 0;
1379         }
1380
1381         ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1382         if (ret)
1383                 return ret;
1384
1385         vm->scratch[0].encode =
1386                 gen8_pte_encode(px_dma(&vm->scratch[0]),
1387                                 I915_CACHE_LLC, vm->has_read_only);
1388
1389         for (i = 1; i <= vm->top; i++) {
1390                 if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
1391                         goto free_scratch;
1392
1393                 fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
1394                 vm->scratch[i].encode =
1395                         gen8_pde_encode(px_dma(&vm->scratch[i]),
1396                                         I915_CACHE_LLC);
1397         }
1398
1399         return 0;
1400
1401 free_scratch:
1402         free_scratch(vm);
1403         return -ENOMEM;
1404 }
1405
1406 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1407 {
1408         struct i915_address_space *vm = &ppgtt->vm;
1409         struct i915_page_directory *pd = ppgtt->pd;
1410         unsigned int idx;
1411
1412         GEM_BUG_ON(vm->top != 2);
1413         GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1414
1415         for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
1416                 struct i915_page_directory *pde;
1417
1418                 pde = alloc_pd(vm);
1419                 if (IS_ERR(pde))
1420                         return PTR_ERR(pde);
1421
1422                 fill_px(pde, vm->scratch[1].encode);
1423                 set_pd_entry(pd, idx, pde);
1424                 atomic_inc(px_used(pde)); /* keep pinned */
1425         }
1426         wmb();
1427
1428         return 0;
1429 }
1430
1431 static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1432 {
1433         struct drm_i915_private *i915 = gt->i915;
1434
1435         ppgtt->vm.gt = gt;
1436         ppgtt->vm.i915 = i915;
1437         ppgtt->vm.dma = &i915->drm.pdev->dev;
1438         ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1439
1440         i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1441
1442         ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1443         ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1444         ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1445         ppgtt->vm.vma_ops.clear_pages = clear_pages;
1446 }
1447
1448 static struct i915_page_directory *
1449 gen8_alloc_top_pd(struct i915_address_space *vm)
1450 {
1451         const unsigned int count = gen8_pd_top_count(vm);
1452         struct i915_page_directory *pd;
1453
1454         GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1455
1456         pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
1457         if (unlikely(!pd))
1458                 return ERR_PTR(-ENOMEM);
1459
1460         if (unlikely(setup_page_dma(vm, px_base(pd)))) {
1461                 kfree(pd);
1462                 return ERR_PTR(-ENOMEM);
1463         }
1464
1465         fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1466         atomic_inc(px_used(pd)); /* mark as pinned */
1467         return pd;
1468 }
1469
1470 /*
1471  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1472  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1473  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1474  * space.
1475  *
1476  */
1477 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1478 {
1479         struct i915_ppgtt *ppgtt;
1480         int err;
1481
1482         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1483         if (!ppgtt)
1484                 return ERR_PTR(-ENOMEM);
1485
1486         ppgtt_init(ppgtt, &i915->gt);
1487         ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1488
1489         /*
1490          * From bdw, there is hw support for read-only pages in the PPGTT.
1491          *
1492          * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1493          * for now.
1494          *
1495          * Gen12 has inherited the same read-only fault issue from gen11.
1496          */
1497         ppgtt->vm.has_read_only = !IS_GEN_RANGE(i915, 11, 12);
1498
1499         /* There are only few exceptions for gen >=6. chv and bxt.
1500          * And we are not sure about the latter so play safe for now.
1501          */
1502         if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1503                 ppgtt->vm.pt_kmap_wc = true;
1504
1505         err = gen8_init_scratch(&ppgtt->vm);
1506         if (err)
1507                 goto err_free;
1508
1509         ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
1510         if (IS_ERR(ppgtt->pd)) {
1511                 err = PTR_ERR(ppgtt->pd);
1512                 goto err_free_scratch;
1513         }
1514
1515         if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1516                 err = gen8_preallocate_top_level_pdp(ppgtt);
1517                 if (err)
1518                         goto err_free_pd;
1519         }
1520
1521         ppgtt->vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1522         ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1523         ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1524         ppgtt->vm.clear_range = gen8_ppgtt_clear;
1525
1526         if (intel_vgpu_active(i915))
1527                 gen8_ppgtt_notify_vgt(ppgtt, true);
1528
1529         ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1530
1531         return ppgtt;
1532
1533 err_free_pd:
1534         __gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1535                              gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1536 err_free_scratch:
1537         free_scratch(&ppgtt->vm);
1538 err_free:
1539         kfree(ppgtt);
1540         return ERR_PTR(err);
1541 }
1542
1543 /* Write pde (index) from the page directory @pd to the page table @pt */
1544 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1545                                   const unsigned int pde,
1546                                   const struct i915_page_table *pt)
1547 {
1548         /* Caller needs to make sure the write completes if necessary */
1549         iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1550                   ppgtt->pd_addr + pde);
1551 }
1552
1553 static void gen7_ppgtt_enable(struct intel_gt *gt)
1554 {
1555         struct drm_i915_private *i915 = gt->i915;
1556         struct intel_uncore *uncore = gt->uncore;
1557         struct intel_engine_cs *engine;
1558         enum intel_engine_id id;
1559         u32 ecochk;
1560
1561         intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1562
1563         ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
1564         if (IS_HASWELL(i915)) {
1565                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1566         } else {
1567                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1568                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1569         }
1570         intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1571
1572         for_each_engine(engine, gt, id) {
1573                 /* GFX_MODE is per-ring on gen7+ */
1574                 ENGINE_WRITE(engine,
1575                              RING_MODE_GEN7,
1576                              _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1577         }
1578 }
1579
1580 static void gen6_ppgtt_enable(struct intel_gt *gt)
1581 {
1582         struct intel_uncore *uncore = gt->uncore;
1583
1584         intel_uncore_rmw(uncore,
1585                          GAC_ECO_BITS,
1586                          0,
1587                          ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
1588
1589         intel_uncore_rmw(uncore,
1590                          GAB_CTL,
1591                          0,
1592                          GAB_CTL_CONT_AFTER_PAGEFAULT);
1593
1594         intel_uncore_rmw(uncore,
1595                          GAM_ECOCHK,
1596                          0,
1597                          ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1598
1599         if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
1600                 intel_uncore_write(uncore,
1601                                    GFX_MODE,
1602                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1603 }
1604
1605 /* PPGTT support for Sandybdrige/Gen6 and later */
1606 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1607                                    u64 start, u64 length)
1608 {
1609         struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1610         const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1611         const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1612         unsigned int pde = first_entry / GEN6_PTES;
1613         unsigned int pte = first_entry % GEN6_PTES;
1614         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1615
1616         while (num_entries) {
1617                 struct i915_page_table * const pt =
1618                         i915_pt_entry(ppgtt->base.pd, pde++);
1619                 const unsigned int count = min(num_entries, GEN6_PTES - pte);
1620                 gen6_pte_t *vaddr;
1621
1622                 GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1623
1624                 num_entries -= count;
1625
1626                 GEM_BUG_ON(count > atomic_read(&pt->used));
1627                 if (!atomic_sub_return(count, &pt->used))
1628                         ppgtt->scan_for_unused_pt = true;
1629
1630                 /*
1631                  * Note that the hw doesn't support removing PDE on the fly
1632                  * (they are cached inside the context with no means to
1633                  * invalidate the cache), so we can only reset the PTE
1634                  * entries back to scratch.
1635                  */
1636
1637                 vaddr = kmap_atomic_px(pt);
1638                 memset32(vaddr + pte, scratch_pte, count);
1639                 kunmap_atomic(vaddr);
1640
1641                 pte = 0;
1642         }
1643 }
1644
1645 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1646                                       struct i915_vma *vma,
1647                                       enum i915_cache_level cache_level,
1648                                       u32 flags)
1649 {
1650         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1651         struct i915_page_directory * const pd = ppgtt->pd;
1652         unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1653         unsigned act_pt = first_entry / GEN6_PTES;
1654         unsigned act_pte = first_entry % GEN6_PTES;
1655         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1656         struct sgt_dma iter = sgt_dma(vma);
1657         gen6_pte_t *vaddr;
1658
1659         GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1660
1661         vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1662         do {
1663                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1664
1665                 iter.dma += I915_GTT_PAGE_SIZE;
1666                 if (iter.dma == iter.max) {
1667                         iter.sg = __sg_next(iter.sg);
1668                         if (!iter.sg)
1669                                 break;
1670
1671                         iter.dma = sg_dma_address(iter.sg);
1672                         iter.max = iter.dma + iter.sg->length;
1673                 }
1674
1675                 if (++act_pte == GEN6_PTES) {
1676                         kunmap_atomic(vaddr);
1677                         vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1678                         act_pte = 0;
1679                 }
1680         } while (1);
1681         kunmap_atomic(vaddr);
1682
1683         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1684 }
1685
1686 static int gen6_alloc_va_range(struct i915_address_space *vm,
1687                                u64 start, u64 length)
1688 {
1689         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1690         struct i915_page_directory * const pd = ppgtt->base.pd;
1691         struct i915_page_table *pt, *alloc = NULL;
1692         intel_wakeref_t wakeref;
1693         u64 from = start;
1694         unsigned int pde;
1695         bool flush = false;
1696         int ret = 0;
1697
1698         wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1699
1700         spin_lock(&pd->lock);
1701         gen6_for_each_pde(pt, pd, start, length, pde) {
1702                 const unsigned int count = gen6_pte_count(start, length);
1703
1704                 if (px_base(pt) == px_base(&vm->scratch[1])) {
1705                         spin_unlock(&pd->lock);
1706
1707                         pt = fetch_and_zero(&alloc);
1708                         if (!pt)
1709                                 pt = alloc_pt(vm);
1710                         if (IS_ERR(pt)) {
1711                                 ret = PTR_ERR(pt);
1712                                 goto unwind_out;
1713                         }
1714
1715                         fill32_px(pt, vm->scratch[0].encode);
1716
1717                         spin_lock(&pd->lock);
1718                         if (pd->entry[pde] == &vm->scratch[1]) {
1719                                 pd->entry[pde] = pt;
1720                                 if (i915_vma_is_bound(ppgtt->vma,
1721                                                       I915_VMA_GLOBAL_BIND)) {
1722                                         gen6_write_pde(ppgtt, pde, pt);
1723                                         flush = true;
1724                                 }
1725                         } else {
1726                                 alloc = pt;
1727                                 pt = pd->entry[pde];
1728                         }
1729                 }
1730
1731                 atomic_add(count, &pt->used);
1732         }
1733         spin_unlock(&pd->lock);
1734
1735         if (flush)
1736                 gen6_ggtt_invalidate(vm->gt->ggtt);
1737
1738         goto out;
1739
1740 unwind_out:
1741         gen6_ppgtt_clear_range(vm, from, start - from);
1742 out:
1743         if (alloc)
1744                 free_px(vm, alloc);
1745         intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1746         return ret;
1747 }
1748
1749 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1750 {
1751         struct i915_address_space * const vm = &ppgtt->base.vm;
1752         struct i915_page_directory * const pd = ppgtt->base.pd;
1753         int ret;
1754
1755         ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1756         if (ret)
1757                 return ret;
1758
1759         vm->scratch[0].encode =
1760                 vm->pte_encode(px_dma(&vm->scratch[0]),
1761                                I915_CACHE_NONE, PTE_READ_ONLY);
1762
1763         if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1764                 cleanup_scratch_page(vm);
1765                 return -ENOMEM;
1766         }
1767
1768         fill32_px(&vm->scratch[1], vm->scratch[0].encode);
1769         memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1770
1771         return 0;
1772 }
1773
1774 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1775 {
1776         struct i915_page_directory * const pd = ppgtt->base.pd;
1777         struct i915_page_dma * const scratch =
1778                 px_base(&ppgtt->base.vm.scratch[1]);
1779         struct i915_page_table *pt;
1780         u32 pde;
1781
1782         gen6_for_all_pdes(pt, pd, pde)
1783                 if (px_base(pt) != scratch)
1784                         free_px(&ppgtt->base.vm, pt);
1785 }
1786
1787 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1788 {
1789         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1790
1791         i915_vma_destroy(ppgtt->vma);
1792
1793         gen6_ppgtt_free_pd(ppgtt);
1794         free_scratch(vm);
1795
1796         mutex_destroy(&ppgtt->pin_mutex);
1797         kfree(ppgtt->base.pd);
1798 }
1799
1800 static int pd_vma_set_pages(struct i915_vma *vma)
1801 {
1802         vma->pages = ERR_PTR(-ENODEV);
1803         return 0;
1804 }
1805
1806 static void pd_vma_clear_pages(struct i915_vma *vma)
1807 {
1808         GEM_BUG_ON(!vma->pages);
1809
1810         vma->pages = NULL;
1811 }
1812
1813 static int pd_vma_bind(struct i915_vma *vma,
1814                        enum i915_cache_level cache_level,
1815                        u32 unused)
1816 {
1817         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1818         struct gen6_ppgtt *ppgtt = vma->private;
1819         u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1820         struct i915_page_table *pt;
1821         unsigned int pde;
1822
1823         px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1824         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1825
1826         gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1827                 gen6_write_pde(ppgtt, pde, pt);
1828
1829         gen6_ggtt_invalidate(ggtt);
1830
1831         return 0;
1832 }
1833
1834 static void pd_vma_unbind(struct i915_vma *vma)
1835 {
1836         struct gen6_ppgtt *ppgtt = vma->private;
1837         struct i915_page_directory * const pd = ppgtt->base.pd;
1838         struct i915_page_dma * const scratch =
1839                 px_base(&ppgtt->base.vm.scratch[1]);
1840         struct i915_page_table *pt;
1841         unsigned int pde;
1842
1843         if (!ppgtt->scan_for_unused_pt)
1844                 return;
1845
1846         /* Free all no longer used page tables */
1847         gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1848                 if (px_base(pt) == scratch || atomic_read(&pt->used))
1849                         continue;
1850
1851                 free_px(&ppgtt->base.vm, pt);
1852                 pd->entry[pde] = scratch;
1853         }
1854
1855         ppgtt->scan_for_unused_pt = false;
1856 }
1857
1858 static const struct i915_vma_ops pd_vma_ops = {
1859         .set_pages = pd_vma_set_pages,
1860         .clear_pages = pd_vma_clear_pages,
1861         .bind_vma = pd_vma_bind,
1862         .unbind_vma = pd_vma_unbind,
1863 };
1864
1865 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1866 {
1867         struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1868         struct i915_vma *vma;
1869
1870         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1871         GEM_BUG_ON(size > ggtt->vm.total);
1872
1873         vma = i915_vma_alloc();
1874         if (!vma)
1875                 return ERR_PTR(-ENOMEM);
1876
1877         i915_active_init(&vma->active, NULL, NULL);
1878
1879         mutex_init(&vma->pages_mutex);
1880         vma->vm = i915_vm_get(&ggtt->vm);
1881         vma->ops = &pd_vma_ops;
1882         vma->private = ppgtt;
1883
1884         vma->size = size;
1885         vma->fence_size = size;
1886         atomic_set(&vma->flags, I915_VMA_GGTT);
1887         vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1888
1889         INIT_LIST_HEAD(&vma->obj_link);
1890         INIT_LIST_HEAD(&vma->closed_link);
1891
1892         return vma;
1893 }
1894
1895 int gen6_ppgtt_pin(struct i915_ppgtt *base)
1896 {
1897         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1898         int err = 0;
1899
1900         GEM_BUG_ON(!atomic_read(&ppgtt->base.vm.open));
1901
1902         /*
1903          * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1904          * which will be pinned into every active context.
1905          * (When vma->pin_count becomes atomic, I expect we will naturally
1906          * need a larger, unpacked, type and kill this redundancy.)
1907          */
1908         if (atomic_add_unless(&ppgtt->pin_count, 1, 0))
1909                 return 0;
1910
1911         if (mutex_lock_interruptible(&ppgtt->pin_mutex))
1912                 return -EINTR;
1913
1914         /*
1915          * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1916          * allocator works in address space sizes, so it's multiplied by page
1917          * size. We allocate at the top of the GTT to avoid fragmentation.
1918          */
1919         if (!atomic_read(&ppgtt->pin_count)) {
1920                 err = i915_vma_pin(ppgtt->vma,
1921                                    0, GEN6_PD_ALIGN,
1922                                    PIN_GLOBAL | PIN_HIGH);
1923         }
1924         if (!err)
1925                 atomic_inc(&ppgtt->pin_count);
1926         mutex_unlock(&ppgtt->pin_mutex);
1927
1928         return err;
1929 }
1930
1931 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1932 {
1933         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1934
1935         GEM_BUG_ON(!atomic_read(&ppgtt->pin_count));
1936         if (atomic_dec_and_test(&ppgtt->pin_count))
1937                 i915_vma_unpin(ppgtt->vma);
1938 }
1939
1940 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1941 {
1942         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1943
1944         if (!atomic_read(&ppgtt->pin_count))
1945                 return;
1946
1947         i915_vma_unpin(ppgtt->vma);
1948         atomic_set(&ppgtt->pin_count, 0);
1949 }
1950
1951 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1952 {
1953         struct i915_ggtt * const ggtt = &i915->ggtt;
1954         struct gen6_ppgtt *ppgtt;
1955         int err;
1956
1957         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1958         if (!ppgtt)
1959                 return ERR_PTR(-ENOMEM);
1960
1961         mutex_init(&ppgtt->pin_mutex);
1962
1963         ppgtt_init(&ppgtt->base, &i915->gt);
1964         ppgtt->base.vm.top = 1;
1965
1966         ppgtt->base.vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1967         ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1968         ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
1969         ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
1970         ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1971
1972         ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
1973
1974         ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1975         if (!ppgtt->base.pd) {
1976                 err = -ENOMEM;
1977                 goto err_free;
1978         }
1979
1980         err = gen6_ppgtt_init_scratch(ppgtt);
1981         if (err)
1982                 goto err_pd;
1983
1984         ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
1985         if (IS_ERR(ppgtt->vma)) {
1986                 err = PTR_ERR(ppgtt->vma);
1987                 goto err_scratch;
1988         }
1989
1990         return &ppgtt->base;
1991
1992 err_scratch:
1993         free_scratch(&ppgtt->base.vm);
1994 err_pd:
1995         kfree(ppgtt->base.pd);
1996 err_free:
1997         kfree(ppgtt);
1998         return ERR_PTR(err);
1999 }
2000
2001 static void gtt_write_workarounds(struct intel_gt *gt)
2002 {
2003         struct drm_i915_private *i915 = gt->i915;
2004         struct intel_uncore *uncore = gt->uncore;
2005
2006         /* This function is for gtt related workarounds. This function is
2007          * called on driver load and after a GPU reset, so you can place
2008          * workarounds here even if they get overwritten by GPU reset.
2009          */
2010         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2011         if (IS_BROADWELL(i915))
2012                 intel_uncore_write(uncore,
2013                                    GEN8_L3_LRA_1_GPGPU,
2014                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2015         else if (IS_CHERRYVIEW(i915))
2016                 intel_uncore_write(uncore,
2017                                    GEN8_L3_LRA_1_GPGPU,
2018                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2019         else if (IS_GEN9_LP(i915))
2020                 intel_uncore_write(uncore,
2021                                    GEN8_L3_LRA_1_GPGPU,
2022                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2023         else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
2024                 intel_uncore_write(uncore,
2025                                    GEN8_L3_LRA_1_GPGPU,
2026                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2027
2028         /*
2029          * To support 64K PTEs we need to first enable the use of the
2030          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2031          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2032          * shouldn't be needed after GEN10.
2033          *
2034          * 64K pages were first introduced from BDW+, although technically they
2035          * only *work* from gen9+. For pre-BDW we instead have the option for
2036          * 32K pages, but we don't currently have any support for it in our
2037          * driver.
2038          */
2039         if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
2040             INTEL_GEN(i915) <= 10)
2041                 intel_uncore_rmw(uncore,
2042                                  GEN8_GAMW_ECO_DEV_RW_IA,
2043                                  0,
2044                                  GAMW_ECO_ENABLE_64K_IPS_FIELD);
2045
2046         if (IS_GEN_RANGE(i915, 8, 11)) {
2047                 bool can_use_gtt_cache = true;
2048
2049                 /*
2050                  * According to the BSpec if we use 2M/1G pages then we also
2051                  * need to disable the GTT cache. At least on BDW we can see
2052                  * visual corruption when using 2M pages, and not disabling the
2053                  * GTT cache.
2054                  */
2055                 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
2056                         can_use_gtt_cache = false;
2057
2058                 /* WaGttCachingOffByDefault */
2059                 intel_uncore_write(uncore,
2060                                    HSW_GTT_CACHE_EN,
2061                                    can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
2062                 WARN_ON_ONCE(can_use_gtt_cache &&
2063                              intel_uncore_read(uncore,
2064                                                HSW_GTT_CACHE_EN) == 0);
2065         }
2066 }
2067
2068 int i915_ppgtt_init_hw(struct intel_gt *gt)
2069 {
2070         struct drm_i915_private *i915 = gt->i915;
2071
2072         gtt_write_workarounds(gt);
2073
2074         if (IS_GEN(i915, 6))
2075                 gen6_ppgtt_enable(gt);
2076         else if (IS_GEN(i915, 7))
2077                 gen7_ppgtt_enable(gt);
2078
2079         return 0;
2080 }
2081
2082 static struct i915_ppgtt *
2083 __ppgtt_create(struct drm_i915_private *i915)
2084 {
2085         if (INTEL_GEN(i915) < 8)
2086                 return gen6_ppgtt_create(i915);
2087         else
2088                 return gen8_ppgtt_create(i915);
2089 }
2090
2091 struct i915_ppgtt *
2092 i915_ppgtt_create(struct drm_i915_private *i915)
2093 {
2094         struct i915_ppgtt *ppgtt;
2095
2096         ppgtt = __ppgtt_create(i915);
2097         if (IS_ERR(ppgtt))
2098                 return ppgtt;
2099
2100         trace_i915_ppgtt_create(&ppgtt->vm);
2101
2102         return ppgtt;
2103 }
2104
2105 /* Certain Gen5 chipsets require require idling the GPU before
2106  * unmapping anything from the GTT when VT-d is enabled.
2107  */
2108 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2109 {
2110         /* Query intel_iommu to see if we need the workaround. Presumably that
2111          * was loaded first.
2112          */
2113         return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2114 }
2115
2116 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2117 {
2118         struct drm_i915_private *i915 = ggtt->vm.i915;
2119
2120         /* Don't bother messing with faults pre GEN6 as we have little
2121          * documentation supporting that it's a good idea.
2122          */
2123         if (INTEL_GEN(i915) < 6)
2124                 return;
2125
2126         intel_gt_check_and_clear_faults(ggtt->vm.gt);
2127
2128         ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2129
2130         ggtt->invalidate(ggtt);
2131 }
2132
2133 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
2134 {
2135         ggtt_suspend_mappings(&i915->ggtt);
2136 }
2137
2138 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2139                                struct sg_table *pages)
2140 {
2141         do {
2142                 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2143                                      pages->sgl, pages->nents,
2144                                      PCI_DMA_BIDIRECTIONAL,
2145                                      DMA_ATTR_NO_WARN))
2146                         return 0;
2147
2148                 /*
2149                  * If the DMA remap fails, one cause can be that we have
2150                  * too many objects pinned in a small remapping table,
2151                  * such as swiotlb. Incrementally purge all other objects and
2152                  * try again - if there are no more pages to remove from
2153                  * the DMA remapper, i915_gem_shrink will return 0.
2154                  */
2155                 GEM_BUG_ON(obj->mm.pages == pages);
2156         } while (i915_gem_shrink(to_i915(obj->base.dev),
2157                                  obj->base.size >> PAGE_SHIFT, NULL,
2158                                  I915_SHRINK_BOUND |
2159                                  I915_SHRINK_UNBOUND));
2160
2161         return -ENOSPC;
2162 }
2163
2164 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2165 {
2166         writeq(pte, addr);
2167 }
2168
2169 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2170                                   dma_addr_t addr,
2171                                   u64 offset,
2172                                   enum i915_cache_level level,
2173                                   u32 unused)
2174 {
2175         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2176         gen8_pte_t __iomem *pte =
2177                 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2178
2179         gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2180
2181         ggtt->invalidate(ggtt);
2182 }
2183
2184 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2185                                      struct i915_vma *vma,
2186                                      enum i915_cache_level level,
2187                                      u32 flags)
2188 {
2189         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2190         struct sgt_iter sgt_iter;
2191         gen8_pte_t __iomem *gtt_entries;
2192         const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2193         dma_addr_t addr;
2194
2195         /*
2196          * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2197          * not to allow the user to override access to a read only page.
2198          */
2199
2200         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2201         gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2202         for_each_sgt_daddr(addr, sgt_iter, vma->pages)
2203                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2204
2205         /*
2206          * We want to flush the TLBs only after we're certain all the PTE
2207          * updates have finished.
2208          */
2209         ggtt->invalidate(ggtt);
2210 }
2211
2212 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2213                                   dma_addr_t addr,
2214                                   u64 offset,
2215                                   enum i915_cache_level level,
2216                                   u32 flags)
2217 {
2218         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2219         gen6_pte_t __iomem *pte =
2220                 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2221
2222         iowrite32(vm->pte_encode(addr, level, flags), pte);
2223
2224         ggtt->invalidate(ggtt);
2225 }
2226
2227 /*
2228  * Binds an object into the global gtt with the specified cache level. The object
2229  * will be accessible to the GPU via commands whose operands reference offsets
2230  * within the global GTT as well as accessible by the GPU through the GMADR
2231  * mapped BAR (dev_priv->mm.gtt->gtt).
2232  */
2233 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2234                                      struct i915_vma *vma,
2235                                      enum i915_cache_level level,
2236                                      u32 flags)
2237 {
2238         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2239         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2240         unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2241         struct sgt_iter iter;
2242         dma_addr_t addr;
2243         for_each_sgt_daddr(addr, iter, vma->pages)
2244                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2245
2246         /*
2247          * We want to flush the TLBs only after we're certain all the PTE
2248          * updates have finished.
2249          */
2250         ggtt->invalidate(ggtt);
2251 }
2252
2253 static void nop_clear_range(struct i915_address_space *vm,
2254                             u64 start, u64 length)
2255 {
2256 }
2257
2258 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2259                                   u64 start, u64 length)
2260 {
2261         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2262         unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2263         unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2264         const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2265         gen8_pte_t __iomem *gtt_base =
2266                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2267         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2268         int i;
2269
2270         if (WARN(num_entries > max_entries,
2271                  "First entry = %d; Num entries = %d (max=%d)\n",
2272                  first_entry, num_entries, max_entries))
2273                 num_entries = max_entries;
2274
2275         for (i = 0; i < num_entries; i++)
2276                 gen8_set_pte(&gtt_base[i], scratch_pte);
2277 }
2278
2279 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2280 {
2281         struct drm_i915_private *dev_priv = vm->i915;
2282
2283         /*
2284          * Make sure the internal GAM fifo has been cleared of all GTT
2285          * writes before exiting stop_machine(). This guarantees that
2286          * any aperture accesses waiting to start in another process
2287          * cannot back up behind the GTT writes causing a hang.
2288          * The register can be any arbitrary GAM register.
2289          */
2290         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2291 }
2292
2293 struct insert_page {
2294         struct i915_address_space *vm;
2295         dma_addr_t addr;
2296         u64 offset;
2297         enum i915_cache_level level;
2298 };
2299
2300 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2301 {
2302         struct insert_page *arg = _arg;
2303
2304         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2305         bxt_vtd_ggtt_wa(arg->vm);
2306
2307         return 0;
2308 }
2309
2310 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2311                                           dma_addr_t addr,
2312                                           u64 offset,
2313                                           enum i915_cache_level level,
2314                                           u32 unused)
2315 {
2316         struct insert_page arg = { vm, addr, offset, level };
2317
2318         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2319 }
2320
2321 struct insert_entries {
2322         struct i915_address_space *vm;
2323         struct i915_vma *vma;
2324         enum i915_cache_level level;
2325         u32 flags;
2326 };
2327
2328 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2329 {
2330         struct insert_entries *arg = _arg;
2331
2332         gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2333         bxt_vtd_ggtt_wa(arg->vm);
2334
2335         return 0;
2336 }
2337
2338 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2339                                              struct i915_vma *vma,
2340                                              enum i915_cache_level level,
2341                                              u32 flags)
2342 {
2343         struct insert_entries arg = { vm, vma, level, flags };
2344
2345         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2346 }
2347
2348 struct clear_range {
2349         struct i915_address_space *vm;
2350         u64 start;
2351         u64 length;
2352 };
2353
2354 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2355 {
2356         struct clear_range *arg = _arg;
2357
2358         gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2359         bxt_vtd_ggtt_wa(arg->vm);
2360
2361         return 0;
2362 }
2363
2364 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2365                                           u64 start,
2366                                           u64 length)
2367 {
2368         struct clear_range arg = { vm, start, length };
2369
2370         stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2371 }
2372
2373 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2374                                   u64 start, u64 length)
2375 {
2376         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2377         unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2378         unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2379         gen6_pte_t scratch_pte, __iomem *gtt_base =
2380                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2381         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2382         int i;
2383
2384         if (WARN(num_entries > max_entries,
2385                  "First entry = %d; Num entries = %d (max=%d)\n",
2386                  first_entry, num_entries, max_entries))
2387                 num_entries = max_entries;
2388
2389         scratch_pte = vm->scratch[0].encode;
2390         for (i = 0; i < num_entries; i++)
2391                 iowrite32(scratch_pte, &gtt_base[i]);
2392 }
2393
2394 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2395                                   dma_addr_t addr,
2396                                   u64 offset,
2397                                   enum i915_cache_level cache_level,
2398                                   u32 unused)
2399 {
2400         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2401                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2402
2403         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2404 }
2405
2406 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2407                                      struct i915_vma *vma,
2408                                      enum i915_cache_level cache_level,
2409                                      u32 unused)
2410 {
2411         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2412                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2413
2414         intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2415                                     flags);
2416 }
2417
2418 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2419                                   u64 start, u64 length)
2420 {
2421         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2422 }
2423
2424 static int ggtt_bind_vma(struct i915_vma *vma,
2425                          enum i915_cache_level cache_level,
2426                          u32 flags)
2427 {
2428         struct drm_i915_private *i915 = vma->vm->i915;
2429         struct drm_i915_gem_object *obj = vma->obj;
2430         intel_wakeref_t wakeref;
2431         u32 pte_flags;
2432
2433         /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2434         pte_flags = 0;
2435         if (i915_gem_object_is_readonly(obj))
2436                 pte_flags |= PTE_READ_ONLY;
2437
2438         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2439                 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2440
2441         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2442
2443         /*
2444          * Without aliasing PPGTT there's no difference between
2445          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2446          * upgrade to both bound if we bind either to avoid double-binding.
2447          */
2448         atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
2449
2450         return 0;
2451 }
2452
2453 static void ggtt_unbind_vma(struct i915_vma *vma)
2454 {
2455         struct drm_i915_private *i915 = vma->vm->i915;
2456         intel_wakeref_t wakeref;
2457
2458         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2459                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2460 }
2461
2462 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2463                                  enum i915_cache_level cache_level,
2464                                  u32 flags)
2465 {
2466         struct drm_i915_private *i915 = vma->vm->i915;
2467         u32 pte_flags;
2468         int ret;
2469
2470         /* Currently applicable only to VLV */
2471         pte_flags = 0;
2472         if (i915_gem_object_is_readonly(vma->obj))
2473                 pte_flags |= PTE_READ_ONLY;
2474
2475         if (flags & I915_VMA_LOCAL_BIND) {
2476                 struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2477
2478                 if (flags & I915_VMA_ALLOC) {
2479                         ret = alias->vm.allocate_va_range(&alias->vm,
2480                                                           vma->node.start,
2481                                                           vma->size);
2482                         if (ret)
2483                                 return ret;
2484
2485                         set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
2486                 }
2487
2488                 GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
2489                                      __i915_vma_flags(vma)));
2490                 alias->vm.insert_entries(&alias->vm, vma,
2491                                          cache_level, pte_flags);
2492         }
2493
2494         if (flags & I915_VMA_GLOBAL_BIND) {
2495                 intel_wakeref_t wakeref;
2496
2497                 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2498                         vma->vm->insert_entries(vma->vm, vma,
2499                                                 cache_level, pte_flags);
2500                 }
2501         }
2502
2503         return 0;
2504 }
2505
2506 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2507 {
2508         struct drm_i915_private *i915 = vma->vm->i915;
2509
2510         if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
2511                 struct i915_address_space *vm = vma->vm;
2512                 intel_wakeref_t wakeref;
2513
2514                 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2515                         vm->clear_range(vm, vma->node.start, vma->size);
2516         }
2517
2518         if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
2519                 struct i915_address_space *vm =
2520                         &i915_vm_to_ggtt(vma->vm)->alias->vm;
2521
2522                 vm->clear_range(vm, vma->node.start, vma->size);
2523         }
2524 }
2525
2526 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2527                                struct sg_table *pages)
2528 {
2529         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2530         struct device *kdev = &dev_priv->drm.pdev->dev;
2531         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2532
2533         if (unlikely(ggtt->do_idle_maps)) {
2534                 /* XXX This does not prevent more requests being submitted! */
2535                 if (intel_gt_retire_requests_timeout(ggtt->vm.gt,
2536                                                      -MAX_SCHEDULE_TIMEOUT)) {
2537                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2538                         /* Wait a bit, in hopes it avoids the hang */
2539                         udelay(10);
2540                 }
2541         }
2542
2543         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2544 }
2545
2546 static int ggtt_set_pages(struct i915_vma *vma)
2547 {
2548         int ret;
2549
2550         GEM_BUG_ON(vma->pages);
2551
2552         ret = i915_get_ggtt_vma_pages(vma);
2553         if (ret)
2554                 return ret;
2555
2556         vma->page_sizes = vma->obj->mm.page_sizes;
2557
2558         return 0;
2559 }
2560
2561 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
2562                                    unsigned long color,
2563                                    u64 *start,
2564                                    u64 *end)
2565 {
2566         if (i915_node_color_differs(node, color))
2567                 *start += I915_GTT_PAGE_SIZE;
2568
2569         /* Also leave a space between the unallocated reserved node after the
2570          * GTT and any objects within the GTT, i.e. we use the color adjustment
2571          * to insert a guard page to prevent prefetches crossing over the
2572          * GTT boundary.
2573          */
2574         node = list_next_entry(node, node_list);
2575         if (node->color != color)
2576                 *end -= I915_GTT_PAGE_SIZE;
2577 }
2578
2579 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2580 {
2581         struct i915_ppgtt *ppgtt;
2582         int err;
2583
2584         ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2585         if (IS_ERR(ppgtt))
2586                 return PTR_ERR(ppgtt);
2587
2588         if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2589                 err = -ENODEV;
2590                 goto err_ppgtt;
2591         }
2592
2593         /*
2594          * Note we only pre-allocate as far as the end of the global
2595          * GTT. On 48b / 4-level page-tables, the difference is very,
2596          * very significant! We have to preallocate as GVT/vgpu does
2597          * not like the page directory disappearing.
2598          */
2599         err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2600         if (err)
2601                 goto err_ppgtt;
2602
2603         ggtt->alias = ppgtt;
2604         ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
2605
2606         GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2607         ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2608
2609         GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2610         ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2611
2612         return 0;
2613
2614 err_ppgtt:
2615         i915_vm_put(&ppgtt->vm);
2616         return err;
2617 }
2618
2619 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2620 {
2621         struct i915_ppgtt *ppgtt;
2622
2623         ppgtt = fetch_and_zero(&ggtt->alias);
2624         if (!ppgtt)
2625                 return;
2626
2627         i915_vm_put(&ppgtt->vm);
2628
2629         ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2630         ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2631 }
2632
2633 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2634 {
2635         u64 size;
2636         int ret;
2637
2638         if (!USES_GUC(ggtt->vm.i915))
2639                 return 0;
2640
2641         GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2642         size = ggtt->vm.total - GUC_GGTT_TOP;
2643
2644         ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2645                                    GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2646                                    PIN_NOEVICT);
2647         if (ret)
2648                 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2649
2650         return ret;
2651 }
2652
2653 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2654 {
2655         if (drm_mm_node_allocated(&ggtt->uc_fw))
2656                 drm_mm_remove_node(&ggtt->uc_fw);
2657 }
2658
2659 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
2660 {
2661         ggtt_release_guc_top(ggtt);
2662         if (drm_mm_node_allocated(&ggtt->error_capture))
2663                 drm_mm_remove_node(&ggtt->error_capture);
2664 }
2665
2666 static int init_ggtt(struct i915_ggtt *ggtt)
2667 {
2668         /* Let GEM Manage all of the aperture.
2669          *
2670          * However, leave one page at the end still bound to the scratch page.
2671          * There are a number of places where the hardware apparently prefetches
2672          * past the end of the object, and we've seen multiple hangs with the
2673          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2674          * aperture.  One page should be enough to keep any prefetching inside
2675          * of the aperture.
2676          */
2677         unsigned long hole_start, hole_end;
2678         struct drm_mm_node *entry;
2679         int ret;
2680
2681         /*
2682          * GuC requires all resources that we're sharing with it to be placed in
2683          * non-WOPCM memory. If GuC is not present or not in use we still need a
2684          * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2685          * why.
2686          */
2687         ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2688                                intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2689
2690         ret = intel_vgt_balloon(ggtt);
2691         if (ret)
2692                 return ret;
2693
2694         if (ggtt->mappable_end) {
2695                 /* Reserve a mappable slot for our lockless error capture */
2696                 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2697                                                   PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2698                                                   0, ggtt->mappable_end,
2699                                                   DRM_MM_INSERT_LOW);
2700                 if (ret)
2701                         return ret;
2702         }
2703
2704         /*
2705          * The upper portion of the GuC address space has a sizeable hole
2706          * (several MB) that is inaccessible by GuC. Reserve this range within
2707          * GGTT as it can comfortably hold GuC/HuC firmware images.
2708          */
2709         ret = ggtt_reserve_guc_top(ggtt);
2710         if (ret)
2711                 goto err;
2712
2713         /* Clear any non-preallocated blocks */
2714         drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2715                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2716                               hole_start, hole_end);
2717                 ggtt->vm.clear_range(&ggtt->vm, hole_start,
2718                                      hole_end - hole_start);
2719         }
2720
2721         /* And finally clear the reserved guard page */
2722         ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2723
2724         return 0;
2725
2726 err:
2727         cleanup_init_ggtt(ggtt);
2728         return ret;
2729 }
2730
2731 int i915_init_ggtt(struct drm_i915_private *i915)
2732 {
2733         int ret;
2734
2735         ret = init_ggtt(&i915->ggtt);
2736         if (ret)
2737                 return ret;
2738
2739         if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2740                 ret = init_aliasing_ppgtt(&i915->ggtt);
2741                 if (ret)
2742                         cleanup_init_ggtt(&i915->ggtt);
2743         }
2744
2745         return 0;
2746 }
2747
2748 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2749 {
2750         struct i915_vma *vma, *vn;
2751
2752         atomic_set(&ggtt->vm.open, 0);
2753
2754         rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
2755         flush_workqueue(ggtt->vm.i915->wq);
2756
2757         mutex_lock(&ggtt->vm.mutex);
2758
2759         list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2760                 WARN_ON(__i915_vma_unbind(vma));
2761
2762         if (drm_mm_node_allocated(&ggtt->error_capture))
2763                 drm_mm_remove_node(&ggtt->error_capture);
2764
2765         ggtt_release_guc_top(ggtt);
2766         intel_vgt_deballoon(ggtt);
2767
2768         ggtt->vm.cleanup(&ggtt->vm);
2769
2770         mutex_unlock(&ggtt->vm.mutex);
2771         i915_address_space_fini(&ggtt->vm);
2772
2773         arch_phys_wc_del(ggtt->mtrr);
2774
2775         if (ggtt->iomap.size)
2776                 io_mapping_fini(&ggtt->iomap);
2777 }
2778
2779 /**
2780  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2781  * @i915: i915 device
2782  */
2783 void i915_ggtt_driver_release(struct drm_i915_private *i915)
2784 {
2785         struct pagevec *pvec;
2786
2787         fini_aliasing_ppgtt(&i915->ggtt);
2788
2789         ggtt_cleanup_hw(&i915->ggtt);
2790
2791         pvec = &i915->mm.wc_stash.pvec;
2792         if (pvec->nr) {
2793                 set_pages_array_wb(pvec->pages, pvec->nr);
2794                 __pagevec_release(pvec);
2795         }
2796 }
2797
2798 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2799 {
2800         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2801         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2802         return snb_gmch_ctl << 20;
2803 }
2804
2805 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2806 {
2807         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2808         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2809         if (bdw_gmch_ctl)
2810                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2811
2812 #ifdef CONFIG_X86_32
2813         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2814         if (bdw_gmch_ctl > 4)
2815                 bdw_gmch_ctl = 4;
2816 #endif
2817
2818         return bdw_gmch_ctl << 20;
2819 }
2820
2821 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2822 {
2823         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2824         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2825
2826         if (gmch_ctrl)
2827                 return 1 << (20 + gmch_ctrl);
2828
2829         return 0;
2830 }
2831
2832 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2833 {
2834         struct drm_i915_private *dev_priv = ggtt->vm.i915;
2835         struct pci_dev *pdev = dev_priv->drm.pdev;
2836         phys_addr_t phys_addr;
2837         int ret;
2838
2839         /* For Modern GENs the PTEs and register space are split in the BAR */
2840         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2841
2842         /*
2843          * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2844          * will be dropped. For WC mappings in general we have 64 byte burst
2845          * writes when the WC buffer is flushed, so we can't use it, but have to
2846          * resort to an uncached mapping. The WC issue is easily caught by the
2847          * readback check when writing GTT PTE entries.
2848          */
2849         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2850                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2851         else
2852                 ggtt->gsm = ioremap_wc(phys_addr, size);
2853         if (!ggtt->gsm) {
2854                 DRM_ERROR("Failed to map the ggtt page table\n");
2855                 return -ENOMEM;
2856         }
2857
2858         ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2859         if (ret) {
2860                 DRM_ERROR("Scratch setup failed\n");
2861                 /* iounmap will also get called at remove, but meh */
2862                 iounmap(ggtt->gsm);
2863                 return ret;
2864         }
2865
2866         ggtt->vm.scratch[0].encode =
2867                 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2868                                     I915_CACHE_NONE, 0);
2869
2870         return 0;
2871 }
2872
2873 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
2874 {
2875         /* TGL doesn't support LLC or AGE settings */
2876         intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
2877         intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
2878         intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
2879         intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
2880         intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
2881         intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
2882         intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
2883         intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
2884 }
2885
2886 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
2887 {
2888         intel_uncore_write(uncore,
2889                            GEN10_PAT_INDEX(0),
2890                            GEN8_PPAT_WB | GEN8_PPAT_LLC);
2891         intel_uncore_write(uncore,
2892                            GEN10_PAT_INDEX(1),
2893                            GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2894         intel_uncore_write(uncore,
2895                            GEN10_PAT_INDEX(2),
2896                            GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2897         intel_uncore_write(uncore,
2898                            GEN10_PAT_INDEX(3),
2899                            GEN8_PPAT_UC);
2900         intel_uncore_write(uncore,
2901                            GEN10_PAT_INDEX(4),
2902                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2903         intel_uncore_write(uncore,
2904                            GEN10_PAT_INDEX(5),
2905                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2906         intel_uncore_write(uncore,
2907                            GEN10_PAT_INDEX(6),
2908                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2909         intel_uncore_write(uncore,
2910                            GEN10_PAT_INDEX(7),
2911                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2912 }
2913
2914 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2915  * bits. When using advanced contexts each context stores its own PAT, but
2916  * writing this data shouldn't be harmful even in those cases. */
2917 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
2918 {
2919         u64 pat;
2920
2921         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |      /* for normal objects, no eLLC */
2922               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |  /* for something pointing to ptes? */
2923               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |  /* for scanout with eLLC */
2924               GEN8_PPAT(3, GEN8_PPAT_UC) |                      /* Uncached objects, mostly for scanout */
2925               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2926               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2927               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2928               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2929
2930         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2931         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2932 }
2933
2934 static void chv_setup_private_ppat(struct intel_uncore *uncore)
2935 {
2936         u64 pat;
2937
2938         /*
2939          * Map WB on BDW to snooped on CHV.
2940          *
2941          * Only the snoop bit has meaning for CHV, the rest is
2942          * ignored.
2943          *
2944          * The hardware will never snoop for certain types of accesses:
2945          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2946          * - PPGTT page tables
2947          * - some other special cycles
2948          *
2949          * As with BDW, we also need to consider the following for GT accesses:
2950          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2951          * so RTL will always use the value corresponding to
2952          * pat_sel = 000".
2953          * Which means we must set the snoop bit in PAT entry 0
2954          * in order to keep the global status page working.
2955          */
2956
2957         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2958               GEN8_PPAT(1, 0) |
2959               GEN8_PPAT(2, 0) |
2960               GEN8_PPAT(3, 0) |
2961               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2962               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2963               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2964               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2965
2966         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2967         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2968 }
2969
2970 static void gen6_gmch_remove(struct i915_address_space *vm)
2971 {
2972         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2973
2974         iounmap(ggtt->gsm);
2975         cleanup_scratch_page(vm);
2976 }
2977
2978 static void setup_private_pat(struct intel_uncore *uncore)
2979 {
2980         struct drm_i915_private *i915 = uncore->i915;
2981
2982         GEM_BUG_ON(INTEL_GEN(i915) < 8);
2983
2984         if (INTEL_GEN(i915) >= 12)
2985                 tgl_setup_private_ppat(uncore);
2986         else if (INTEL_GEN(i915) >= 10)
2987                 cnl_setup_private_ppat(uncore);
2988         else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
2989                 chv_setup_private_ppat(uncore);
2990         else
2991                 bdw_setup_private_ppat(uncore);
2992 }
2993
2994 static struct resource pci_resource(struct pci_dev *pdev, int bar)
2995 {
2996         return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
2997                                                pci_resource_len(pdev, bar));
2998 }
2999
3000 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3001 {
3002         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3003         struct pci_dev *pdev = dev_priv->drm.pdev;
3004         unsigned int size;
3005         u16 snb_gmch_ctl;
3006         int err;
3007
3008         /* TODO: We're not aware of mappable constraints on gen8 yet */
3009         if (!IS_DGFX(dev_priv)) {
3010                 ggtt->gmadr = pci_resource(pdev, 2);
3011                 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3012         }
3013
3014         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3015         if (!err)
3016                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3017         if (err)
3018                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3019
3020         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3021         if (IS_CHERRYVIEW(dev_priv))
3022                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3023         else
3024                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3025
3026         ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3027         ggtt->vm.cleanup = gen6_gmch_remove;
3028         ggtt->vm.insert_page = gen8_ggtt_insert_page;
3029         ggtt->vm.clear_range = nop_clear_range;
3030         if (intel_scanout_needs_vtd_wa(dev_priv))
3031                 ggtt->vm.clear_range = gen8_ggtt_clear_range;
3032
3033         ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3034
3035         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3036         if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3037             IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3038                 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3039                 ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3040                 if (ggtt->vm.clear_range != nop_clear_range)
3041                         ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3042         }
3043
3044         ggtt->invalidate = gen6_ggtt_invalidate;
3045
3046         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3047         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3048         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3049         ggtt->vm.vma_ops.clear_pages = clear_pages;
3050
3051         ggtt->vm.pte_encode = gen8_pte_encode;
3052
3053         setup_private_pat(ggtt->vm.gt->uncore);
3054
3055         return ggtt_probe_common(ggtt, size);
3056 }
3057
3058 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3059 {
3060         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3061         struct pci_dev *pdev = dev_priv->drm.pdev;
3062         unsigned int size;
3063         u16 snb_gmch_ctl;
3064         int err;
3065
3066         ggtt->gmadr =
3067                 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3068                                                  pci_resource_len(pdev, 2));
3069         ggtt->mappable_end = resource_size(&ggtt->gmadr);
3070
3071         /* 64/512MB is the current min/max we actually know of, but this is just
3072          * a coarse sanity check.
3073          */
3074         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3075                 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3076                 return -ENXIO;
3077         }
3078
3079         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3080         if (!err)
3081                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3082         if (err)
3083                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3084         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3085
3086         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3087         ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3088
3089         ggtt->vm.clear_range = nop_clear_range;
3090         if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3091                 ggtt->vm.clear_range = gen6_ggtt_clear_range;
3092         ggtt->vm.insert_page = gen6_ggtt_insert_page;
3093         ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3094         ggtt->vm.cleanup = gen6_gmch_remove;
3095
3096         ggtt->invalidate = gen6_ggtt_invalidate;
3097
3098         if (HAS_EDRAM(dev_priv))
3099                 ggtt->vm.pte_encode = iris_pte_encode;
3100         else if (IS_HASWELL(dev_priv))
3101                 ggtt->vm.pte_encode = hsw_pte_encode;
3102         else if (IS_VALLEYVIEW(dev_priv))
3103                 ggtt->vm.pte_encode = byt_pte_encode;
3104         else if (INTEL_GEN(dev_priv) >= 7)
3105                 ggtt->vm.pte_encode = ivb_pte_encode;
3106         else
3107                 ggtt->vm.pte_encode = snb_pte_encode;
3108
3109         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3110         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3111         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3112         ggtt->vm.vma_ops.clear_pages = clear_pages;
3113
3114         return ggtt_probe_common(ggtt, size);
3115 }
3116
3117 static void i915_gmch_remove(struct i915_address_space *vm)
3118 {
3119         intel_gmch_remove();
3120 }
3121
3122 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3123 {
3124         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3125         phys_addr_t gmadr_base;
3126         int ret;
3127
3128         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3129         if (!ret) {
3130                 DRM_ERROR("failed to set up gmch\n");
3131                 return -EIO;
3132         }
3133
3134         intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3135
3136         ggtt->gmadr =
3137                 (struct resource) DEFINE_RES_MEM(gmadr_base,
3138                                                  ggtt->mappable_end);
3139
3140         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3141         ggtt->vm.insert_page = i915_ggtt_insert_page;
3142         ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3143         ggtt->vm.clear_range = i915_ggtt_clear_range;
3144         ggtt->vm.cleanup = i915_gmch_remove;
3145
3146         ggtt->invalidate = gmch_ggtt_invalidate;
3147
3148         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3149         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3150         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3151         ggtt->vm.vma_ops.clear_pages = clear_pages;
3152
3153         if (unlikely(ggtt->do_idle_maps))
3154                 dev_notice(dev_priv->drm.dev,
3155                            "Applying Ironlake quirks for intel_iommu\n");
3156
3157         return 0;
3158 }
3159
3160 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3161 {
3162         struct drm_i915_private *i915 = gt->i915;
3163         int ret;
3164
3165         ggtt->vm.gt = gt;
3166         ggtt->vm.i915 = i915;
3167         ggtt->vm.dma = &i915->drm.pdev->dev;
3168
3169         if (INTEL_GEN(i915) <= 5)
3170                 ret = i915_gmch_probe(ggtt);
3171         else if (INTEL_GEN(i915) < 8)
3172                 ret = gen6_gmch_probe(ggtt);
3173         else
3174                 ret = gen8_gmch_probe(ggtt);
3175         if (ret)
3176                 return ret;
3177
3178         if ((ggtt->vm.total - 1) >> 32) {
3179                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3180                           " of address space! Found %lldM!\n",
3181                           ggtt->vm.total >> 20);
3182                 ggtt->vm.total = 1ULL << 32;
3183                 ggtt->mappable_end =
3184                         min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3185         }
3186
3187         if (ggtt->mappable_end > ggtt->vm.total) {
3188                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3189                           " aperture=%pa, total=%llx\n",
3190                           &ggtt->mappable_end, ggtt->vm.total);
3191                 ggtt->mappable_end = ggtt->vm.total;
3192         }
3193
3194         /* GMADR is the PCI mmio aperture into the global GTT. */
3195         DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3196         DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3197         DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3198                          (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3199
3200         return 0;
3201 }
3202
3203 /**
3204  * i915_ggtt_probe_hw - Probe GGTT hardware location
3205  * @i915: i915 device
3206  */
3207 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
3208 {
3209         int ret;
3210
3211         ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3212         if (ret)
3213                 return ret;
3214
3215         if (intel_vtd_active())
3216                 dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3217
3218         return 0;
3219 }
3220
3221 static int ggtt_init_hw(struct i915_ggtt *ggtt)
3222 {
3223         struct drm_i915_private *i915 = ggtt->vm.i915;
3224
3225         i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3226
3227         ggtt->vm.is_ggtt = true;
3228
3229         /* Only VLV supports read-only GGTT mappings */
3230         ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3231
3232         if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3233                 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
3234
3235         if (ggtt->mappable_end) {
3236                 if (!io_mapping_init_wc(&ggtt->iomap,
3237                                         ggtt->gmadr.start,
3238                                         ggtt->mappable_end)) {
3239                         ggtt->vm.cleanup(&ggtt->vm);
3240                         return -EIO;
3241                 }
3242
3243                 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
3244                                               ggtt->mappable_end);
3245         }
3246
3247         i915_ggtt_init_fences(ggtt);
3248
3249         return 0;
3250 }
3251
3252 /**
3253  * i915_ggtt_init_hw - Initialize GGTT hardware
3254  * @dev_priv: i915 device
3255  */
3256 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3257 {
3258         int ret;
3259
3260         stash_init(&dev_priv->mm.wc_stash);
3261
3262         /* Note that we use page colouring to enforce a guard page at the
3263          * end of the address space. This is required as the CS may prefetch
3264          * beyond the end of the batch buffer, across the page boundary,
3265          * and beyond the end of the GTT if we do not provide a guard.
3266          */
3267         ret = ggtt_init_hw(&dev_priv->ggtt);
3268         if (ret)
3269                 return ret;
3270
3271         return 0;
3272 }
3273
3274 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3275 {
3276         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3277                 return -EIO;
3278
3279         return 0;
3280 }
3281
3282 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3283 {
3284         GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3285
3286         ggtt->invalidate = guc_ggtt_invalidate;
3287
3288         ggtt->invalidate(ggtt);
3289 }
3290
3291 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3292 {
3293         /* XXX Temporary pardon for error unload */
3294         if (ggtt->invalidate == gen6_ggtt_invalidate)
3295                 return;
3296
3297         /* We should only be called after i915_ggtt_enable_guc() */
3298         GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3299
3300         ggtt->invalidate = gen6_ggtt_invalidate;
3301
3302         ggtt->invalidate(ggtt);
3303 }
3304
3305 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3306 {
3307         struct i915_vma *vma, *vn;
3308         bool flush = false;
3309         int open;
3310
3311         intel_gt_check_and_clear_faults(ggtt->vm.gt);
3312
3313         mutex_lock(&ggtt->vm.mutex);
3314
3315         /* First fill our portion of the GTT with scratch pages */
3316         ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3317
3318         /* Skip rewriting PTE on VMA unbind. */
3319         open = atomic_xchg(&ggtt->vm.open, 0);
3320
3321         /* clflush objects bound into the GGTT and rebind them. */
3322         list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3323                 struct drm_i915_gem_object *obj = vma->obj;
3324
3325                 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
3326                         continue;
3327
3328                 if (!__i915_vma_unbind(vma))
3329                         continue;
3330
3331                 clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
3332                 WARN_ON(i915_vma_bind(vma,
3333                                       obj ? obj->cache_level : 0,
3334                                       PIN_GLOBAL, NULL));
3335                 if (obj) { /* only used during resume => exclusive access */
3336                         flush |= fetch_and_zero(&obj->write_domain);
3337                         obj->read_domains |= I915_GEM_DOMAIN_GTT;
3338                 }
3339         }
3340
3341         atomic_set(&ggtt->vm.open, open);
3342         ggtt->invalidate(ggtt);
3343
3344         mutex_unlock(&ggtt->vm.mutex);
3345
3346         if (flush)
3347                 wbinvd_on_all_cpus();
3348 }
3349
3350 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
3351 {
3352         struct i915_ggtt *ggtt = &i915->ggtt;
3353
3354         ggtt_restore_mappings(ggtt);
3355
3356         if (INTEL_GEN(i915) >= 8)
3357                 setup_private_pat(ggtt->vm.gt->uncore);
3358 }
3359
3360 static struct scatterlist *
3361 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3362              unsigned int width, unsigned int height,
3363              unsigned int stride,
3364              struct sg_table *st, struct scatterlist *sg)
3365 {
3366         unsigned int column, row;
3367         unsigned int src_idx;
3368
3369         for (column = 0; column < width; column++) {
3370                 src_idx = stride * (height - 1) + column + offset;
3371                 for (row = 0; row < height; row++) {
3372                         st->nents++;
3373                         /* We don't need the pages, but need to initialize
3374                          * the entries so the sg list can be happily traversed.
3375                          * The only thing we need are DMA addresses.
3376                          */
3377                         sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3378                         sg_dma_address(sg) =
3379                                 i915_gem_object_get_dma_address(obj, src_idx);
3380                         sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3381                         sg = sg_next(sg);
3382                         src_idx -= stride;
3383                 }
3384         }
3385
3386         return sg;
3387 }
3388
3389 static noinline struct sg_table *
3390 intel_rotate_pages(struct intel_rotation_info *rot_info,
3391                    struct drm_i915_gem_object *obj)
3392 {
3393         unsigned int size = intel_rotation_info_size(rot_info);
3394         struct sg_table *st;
3395         struct scatterlist *sg;
3396         int ret = -ENOMEM;
3397         int i;
3398
3399         /* Allocate target SG list. */
3400         st = kmalloc(sizeof(*st), GFP_KERNEL);
3401         if (!st)
3402                 goto err_st_alloc;
3403
3404         ret = sg_alloc_table(st, size, GFP_KERNEL);
3405         if (ret)
3406                 goto err_sg_alloc;
3407
3408         st->nents = 0;
3409         sg = st->sgl;
3410
3411         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3412                 sg = rotate_pages(obj, rot_info->plane[i].offset,
3413                                   rot_info->plane[i].width, rot_info->plane[i].height,
3414                                   rot_info->plane[i].stride, st, sg);
3415         }
3416
3417         return st;
3418
3419 err_sg_alloc:
3420         kfree(st);
3421 err_st_alloc:
3422
3423         DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3424                          obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3425
3426         return ERR_PTR(ret);
3427 }
3428
3429 static struct scatterlist *
3430 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3431             unsigned int width, unsigned int height,
3432             unsigned int stride,
3433             struct sg_table *st, struct scatterlist *sg)
3434 {
3435         unsigned int row;
3436
3437         for (row = 0; row < height; row++) {
3438                 unsigned int left = width * I915_GTT_PAGE_SIZE;
3439
3440                 while (left) {
3441                         dma_addr_t addr;
3442                         unsigned int length;
3443
3444                         /* We don't need the pages, but need to initialize
3445                          * the entries so the sg list can be happily traversed.
3446                          * The only thing we need are DMA addresses.
3447                          */
3448
3449                         addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3450
3451                         length = min(left, length);
3452
3453                         st->nents++;
3454
3455                         sg_set_page(sg, NULL, length, 0);
3456                         sg_dma_address(sg) = addr;
3457                         sg_dma_len(sg) = length;
3458                         sg = sg_next(sg);
3459
3460                         offset += length / I915_GTT_PAGE_SIZE;
3461                         left -= length;
3462                 }
3463
3464                 offset += stride - width;
3465         }
3466
3467         return sg;
3468 }
3469
3470 static noinline struct sg_table *
3471 intel_remap_pages(struct intel_remapped_info *rem_info,
3472                   struct drm_i915_gem_object *obj)
3473 {
3474         unsigned int size = intel_remapped_info_size(rem_info);
3475         struct sg_table *st;
3476         struct scatterlist *sg;
3477         int ret = -ENOMEM;
3478         int i;
3479
3480         /* Allocate target SG list. */
3481         st = kmalloc(sizeof(*st), GFP_KERNEL);
3482         if (!st)
3483                 goto err_st_alloc;
3484
3485         ret = sg_alloc_table(st, size, GFP_KERNEL);
3486         if (ret)
3487                 goto err_sg_alloc;
3488
3489         st->nents = 0;
3490         sg = st->sgl;
3491
3492         for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3493                 sg = remap_pages(obj, rem_info->plane[i].offset,
3494                                  rem_info->plane[i].width, rem_info->plane[i].height,
3495                                  rem_info->plane[i].stride, st, sg);
3496         }
3497
3498         i915_sg_trim(st);
3499
3500         return st;
3501
3502 err_sg_alloc:
3503         kfree(st);
3504 err_st_alloc:
3505
3506         DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3507                          obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3508
3509         return ERR_PTR(ret);
3510 }
3511
3512 static noinline struct sg_table *
3513 intel_partial_pages(const struct i915_ggtt_view *view,
3514                     struct drm_i915_gem_object *obj)
3515 {
3516         struct sg_table *st;
3517         struct scatterlist *sg, *iter;
3518         unsigned int count = view->partial.size;
3519         unsigned int offset;
3520         int ret = -ENOMEM;
3521
3522         st = kmalloc(sizeof(*st), GFP_KERNEL);
3523         if (!st)
3524                 goto err_st_alloc;
3525
3526         ret = sg_alloc_table(st, count, GFP_KERNEL);
3527         if (ret)
3528                 goto err_sg_alloc;
3529
3530         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3531         GEM_BUG_ON(!iter);
3532
3533         sg = st->sgl;
3534         st->nents = 0;
3535         do {
3536                 unsigned int len;
3537
3538                 len = min(iter->length - (offset << PAGE_SHIFT),
3539                           count << PAGE_SHIFT);
3540                 sg_set_page(sg, NULL, len, 0);
3541                 sg_dma_address(sg) =
3542                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3543                 sg_dma_len(sg) = len;
3544
3545                 st->nents++;
3546                 count -= len >> PAGE_SHIFT;
3547                 if (count == 0) {
3548                         sg_mark_end(sg);
3549                         i915_sg_trim(st); /* Drop any unused tail entries. */
3550
3551                         return st;
3552                 }
3553
3554                 sg = __sg_next(sg);
3555                 iter = __sg_next(iter);
3556                 offset = 0;
3557         } while (1);
3558
3559 err_sg_alloc:
3560         kfree(st);
3561 err_st_alloc:
3562         return ERR_PTR(ret);
3563 }
3564
3565 static int
3566 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3567 {
3568         int ret;
3569
3570         /* The vma->pages are only valid within the lifespan of the borrowed
3571          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3572          * must be the vma->pages. A simple rule is that vma->pages must only
3573          * be accessed when the obj->mm.pages are pinned.
3574          */
3575         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3576
3577         switch (vma->ggtt_view.type) {
3578         default:
3579                 GEM_BUG_ON(vma->ggtt_view.type);
3580                 /* fall through */
3581         case I915_GGTT_VIEW_NORMAL:
3582                 vma->pages = vma->obj->mm.pages;
3583                 return 0;
3584
3585         case I915_GGTT_VIEW_ROTATED:
3586                 vma->pages =
3587                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3588                 break;
3589
3590         case I915_GGTT_VIEW_REMAPPED:
3591                 vma->pages =
3592                         intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3593                 break;
3594
3595         case I915_GGTT_VIEW_PARTIAL:
3596                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3597                 break;
3598         }
3599
3600         ret = 0;
3601         if (IS_ERR(vma->pages)) {
3602                 ret = PTR_ERR(vma->pages);
3603                 vma->pages = NULL;
3604                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3605                           vma->ggtt_view.type, ret);
3606         }
3607         return ret;
3608 }
3609
3610 /**
3611  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3612  * @vm: the &struct i915_address_space
3613  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3614  * @size: how much space to allocate inside the GTT,
3615  *        must be #I915_GTT_PAGE_SIZE aligned
3616  * @offset: where to insert inside the GTT,
3617  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3618  *          (@offset + @size) must fit within the address space
3619  * @color: color to apply to node, if this node is not from a VMA,
3620  *         color must be #I915_COLOR_UNEVICTABLE
3621  * @flags: control search and eviction behaviour
3622  *
3623  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3624  * the address space (using @size and @color). If the @node does not fit, it
3625  * tries to evict any overlapping nodes from the GTT, including any
3626  * neighbouring nodes if the colors do not match (to ensure guard pages between
3627  * differing domains). See i915_gem_evict_for_node() for the gory details
3628  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3629  * evicting active overlapping objects, and any overlapping node that is pinned
3630  * or marked as unevictable will also result in failure.
3631  *
3632  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3633  * asked to wait for eviction and interrupted.
3634  */
3635 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3636                          struct drm_mm_node *node,
3637                          u64 size, u64 offset, unsigned long color,
3638                          unsigned int flags)
3639 {
3640         int err;
3641
3642         GEM_BUG_ON(!size);
3643         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3644         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3645         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3646         GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3647         GEM_BUG_ON(drm_mm_node_allocated(node));
3648
3649         node->size = size;
3650         node->start = offset;
3651         node->color = color;
3652
3653         err = drm_mm_reserve_node(&vm->mm, node);
3654         if (err != -ENOSPC)
3655                 return err;
3656
3657         if (flags & PIN_NOEVICT)
3658                 return -ENOSPC;
3659
3660         err = i915_gem_evict_for_node(vm, node, flags);
3661         if (err == 0)
3662                 err = drm_mm_reserve_node(&vm->mm, node);
3663
3664         return err;
3665 }
3666
3667 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3668 {
3669         u64 range, addr;
3670
3671         GEM_BUG_ON(range_overflows(start, len, end));
3672         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3673
3674         range = round_down(end - len, align) - round_up(start, align);
3675         if (range) {
3676                 if (sizeof(unsigned long) == sizeof(u64)) {
3677                         addr = get_random_long();
3678                 } else {
3679                         addr = get_random_int();
3680                         if (range > U32_MAX) {
3681                                 addr <<= 32;
3682                                 addr |= get_random_int();
3683                         }
3684                 }
3685                 div64_u64_rem(addr, range, &addr);
3686                 start += addr;
3687         }
3688
3689         return round_up(start, align);
3690 }
3691
3692 /**
3693  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3694  * @vm: the &struct i915_address_space
3695  * @node: the &struct drm_mm_node (typically i915_vma.node)
3696  * @size: how much space to allocate inside the GTT,
3697  *        must be #I915_GTT_PAGE_SIZE aligned
3698  * @alignment: required alignment of starting offset, may be 0 but
3699  *             if specified, this must be a power-of-two and at least
3700  *             #I915_GTT_MIN_ALIGNMENT
3701  * @color: color to apply to node
3702  * @start: start of any range restriction inside GTT (0 for all),
3703  *         must be #I915_GTT_PAGE_SIZE aligned
3704  * @end: end of any range restriction inside GTT (U64_MAX for all),
3705  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3706  * @flags: control search and eviction behaviour
3707  *
3708  * i915_gem_gtt_insert() first searches for an available hole into which
3709  * is can insert the node. The hole address is aligned to @alignment and
3710  * its @size must then fit entirely within the [@start, @end] bounds. The
3711  * nodes on either side of the hole must match @color, or else a guard page
3712  * will be inserted between the two nodes (or the node evicted). If no
3713  * suitable hole is found, first a victim is randomly selected and tested
3714  * for eviction, otherwise then the LRU list of objects within the GTT
3715  * is scanned to find the first set of replacement nodes to create the hole.
3716  * Those old overlapping nodes are evicted from the GTT (and so must be
3717  * rebound before any future use). Any node that is currently pinned cannot
3718  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3719  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3720  * searching for an eviction candidate. See i915_gem_evict_something() for
3721  * the gory details on the eviction algorithm.
3722  *
3723  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3724  * asked to wait for eviction and interrupted.
3725  */
3726 int i915_gem_gtt_insert(struct i915_address_space *vm,
3727                         struct drm_mm_node *node,
3728                         u64 size, u64 alignment, unsigned long color,
3729                         u64 start, u64 end, unsigned int flags)
3730 {
3731         enum drm_mm_insert_mode mode;
3732         u64 offset;
3733         int err;
3734
3735         lockdep_assert_held(&vm->mutex);
3736
3737         GEM_BUG_ON(!size);
3738         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3739         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3740         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3741         GEM_BUG_ON(start >= end);
3742         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3743         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3744         GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3745         GEM_BUG_ON(drm_mm_node_allocated(node));
3746
3747         if (unlikely(range_overflows(start, size, end)))
3748                 return -ENOSPC;
3749
3750         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3751                 return -ENOSPC;
3752
3753         mode = DRM_MM_INSERT_BEST;
3754         if (flags & PIN_HIGH)
3755                 mode = DRM_MM_INSERT_HIGHEST;
3756         if (flags & PIN_MAPPABLE)
3757                 mode = DRM_MM_INSERT_LOW;
3758
3759         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3760          * so we know that we always have a minimum alignment of 4096.
3761          * The drm_mm range manager is optimised to return results
3762          * with zero alignment, so where possible use the optimal
3763          * path.
3764          */
3765         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3766         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3767                 alignment = 0;
3768
3769         err = drm_mm_insert_node_in_range(&vm->mm, node,
3770                                           size, alignment, color,
3771                                           start, end, mode);
3772         if (err != -ENOSPC)
3773                 return err;
3774
3775         if (mode & DRM_MM_INSERT_ONCE) {
3776                 err = drm_mm_insert_node_in_range(&vm->mm, node,
3777                                                   size, alignment, color,
3778                                                   start, end,
3779                                                   DRM_MM_INSERT_BEST);
3780                 if (err != -ENOSPC)
3781                         return err;
3782         }
3783
3784         if (flags & PIN_NOEVICT)
3785                 return -ENOSPC;
3786
3787         /*
3788          * No free space, pick a slot at random.
3789          *
3790          * There is a pathological case here using a GTT shared between
3791          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3792          *
3793          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3794          *         (64k objects)             (448k objects)
3795          *
3796          * Now imagine that the eviction LRU is ordered top-down (just because
3797          * pathology meets real life), and that we need to evict an object to
3798          * make room inside the aperture. The eviction scan then has to walk
3799          * the 448k list before it finds one within range. And now imagine that
3800          * it has to search for a new hole between every byte inside the memcpy,
3801          * for several simultaneous clients.
3802          *
3803          * On a full-ppgtt system, if we have run out of available space, there
3804          * will be lots and lots of objects in the eviction list! Again,
3805          * searching that LRU list may be slow if we are also applying any
3806          * range restrictions (e.g. restriction to low 4GiB) and so, for
3807          * simplicity and similarilty between different GTT, try the single
3808          * random replacement first.
3809          */
3810         offset = random_offset(start, end,
3811                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3812         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3813         if (err != -ENOSPC)
3814                 return err;
3815
3816         if (flags & PIN_NOSEARCH)
3817                 return -ENOSPC;
3818
3819         /* Randomly selected placement is pinned, do a search */
3820         err = i915_gem_evict_something(vm, size, alignment, color,
3821                                        start, end, flags);
3822         if (err)
3823                 return err;
3824
3825         return drm_mm_insert_node_in_range(&vm->mm, node,
3826                                            size, alignment, color,
3827                                            start, end, DRM_MM_INSERT_EVICT);
3828 }
3829
3830 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3831 #include "selftests/mock_gtt.c"
3832 #include "selftests/i915_gem_gtt.c"
3833 #endif