f3659443f8c2cc14ee46cc878f977eb8f9434685
[linux-2.6-block.git] / drivers / firmware / psci / psci_checker.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2016 ARM Limited
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/atomic.h>
10 #include <linux/completion.h>
11 #include <linux/cpu.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/kernel.h>
15 #include <linux/kthread.h>
16 #include <uapi/linux/sched/types.h>
17 #include <linux/module.h>
18 #include <linux/preempt.h>
19 #include <linux/psci.h>
20 #include <linux/slab.h>
21 #include <linux/tick.h>
22 #include <linux/topology.h>
23
24 #include <asm/cpuidle.h>
25
26 #include <uapi/linux/psci.h>
27
28 #define NUM_SUSPEND_CYCLE (10)
29
30 static unsigned int nb_available_cpus;
31 static int tos_resident_cpu = -1;
32
33 static atomic_t nb_active_threads;
34 static struct completion suspend_threads_started =
35         COMPLETION_INITIALIZER(suspend_threads_started);
36 static struct completion suspend_threads_done =
37         COMPLETION_INITIALIZER(suspend_threads_done);
38
39 /*
40  * We assume that PSCI operations are used if they are available. This is not
41  * necessarily true on arm64, since the decision is based on the
42  * "enable-method" property of each CPU in the DT, but given that there is no
43  * arch-specific way to check this, we assume that the DT is sensible.
44  */
45 static int psci_ops_check(void)
46 {
47         int migrate_type = -1;
48         int cpu;
49
50         if (!(psci_ops.cpu_off && psci_ops.cpu_on && psci_ops.cpu_suspend)) {
51                 pr_warn("Missing PSCI operations, aborting tests\n");
52                 return -EOPNOTSUPP;
53         }
54
55         if (psci_ops.migrate_info_type)
56                 migrate_type = psci_ops.migrate_info_type();
57
58         if (migrate_type == PSCI_0_2_TOS_UP_MIGRATE ||
59             migrate_type == PSCI_0_2_TOS_UP_NO_MIGRATE) {
60                 /* There is a UP Trusted OS, find on which core it resides. */
61                 for_each_online_cpu(cpu)
62                         if (psci_tos_resident_on(cpu)) {
63                                 tos_resident_cpu = cpu;
64                                 break;
65                         }
66                 if (tos_resident_cpu == -1)
67                         pr_warn("UP Trusted OS resides on no online CPU\n");
68         }
69
70         return 0;
71 }
72
73 /*
74  * offlined_cpus is a temporary array but passing it as an argument avoids
75  * multiple allocations.
76  */
77 static unsigned int down_and_up_cpus(const struct cpumask *cpus,
78                                      struct cpumask *offlined_cpus)
79 {
80         int cpu;
81         int err = 0;
82
83         cpumask_clear(offlined_cpus);
84
85         /* Try to power down all CPUs in the mask. */
86         for_each_cpu(cpu, cpus) {
87                 int ret = cpu_down(cpu);
88
89                 /*
90                  * cpu_down() checks the number of online CPUs before the TOS
91                  * resident CPU.
92                  */
93                 if (cpumask_weight(offlined_cpus) + 1 == nb_available_cpus) {
94                         if (ret != -EBUSY) {
95                                 pr_err("Unexpected return code %d while trying "
96                                        "to power down last online CPU %d\n",
97                                        ret, cpu);
98                                 ++err;
99                         }
100                 } else if (cpu == tos_resident_cpu) {
101                         if (ret != -EPERM) {
102                                 pr_err("Unexpected return code %d while trying "
103                                        "to power down TOS resident CPU %d\n",
104                                        ret, cpu);
105                                 ++err;
106                         }
107                 } else if (ret != 0) {
108                         pr_err("Error occurred (%d) while trying "
109                                "to power down CPU %d\n", ret, cpu);
110                         ++err;
111                 }
112
113                 if (ret == 0)
114                         cpumask_set_cpu(cpu, offlined_cpus);
115         }
116
117         /* Try to power up all the CPUs that have been offlined. */
118         for_each_cpu(cpu, offlined_cpus) {
119                 int ret = cpu_up(cpu);
120
121                 if (ret != 0) {
122                         pr_err("Error occurred (%d) while trying "
123                                "to power up CPU %d\n", ret, cpu);
124                         ++err;
125                 } else {
126                         cpumask_clear_cpu(cpu, offlined_cpus);
127                 }
128         }
129
130         /*
131          * Something went bad at some point and some CPUs could not be turned
132          * back on.
133          */
134         WARN_ON(!cpumask_empty(offlined_cpus) ||
135                 num_online_cpus() != nb_available_cpus);
136
137         return err;
138 }
139
140 static void free_cpu_groups(int num, cpumask_var_t **pcpu_groups)
141 {
142         int i;
143         cpumask_var_t *cpu_groups = *pcpu_groups;
144
145         for (i = 0; i < num; ++i)
146                 free_cpumask_var(cpu_groups[i]);
147         kfree(cpu_groups);
148 }
149
150 static int alloc_init_cpu_groups(cpumask_var_t **pcpu_groups)
151 {
152         int num_groups = 0;
153         cpumask_var_t tmp, *cpu_groups;
154
155         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
156                 return -ENOMEM;
157
158         cpu_groups = kcalloc(nb_available_cpus, sizeof(cpu_groups),
159                              GFP_KERNEL);
160         if (!cpu_groups)
161                 return -ENOMEM;
162
163         cpumask_copy(tmp, cpu_online_mask);
164
165         while (!cpumask_empty(tmp)) {
166                 const struct cpumask *cpu_group =
167                         topology_core_cpumask(cpumask_any(tmp));
168
169                 if (!alloc_cpumask_var(&cpu_groups[num_groups], GFP_KERNEL)) {
170                         free_cpu_groups(num_groups, &cpu_groups);
171                         return -ENOMEM;
172                 }
173                 cpumask_copy(cpu_groups[num_groups++], cpu_group);
174                 cpumask_andnot(tmp, tmp, cpu_group);
175         }
176
177         free_cpumask_var(tmp);
178         *pcpu_groups = cpu_groups;
179
180         return num_groups;
181 }
182
183 static int hotplug_tests(void)
184 {
185         int i, nb_cpu_group, err = -ENOMEM;
186         cpumask_var_t offlined_cpus, *cpu_groups;
187         char *page_buf;
188
189         if (!alloc_cpumask_var(&offlined_cpus, GFP_KERNEL))
190                 return err;
191
192         nb_cpu_group = alloc_init_cpu_groups(&cpu_groups);
193         if (nb_cpu_group < 0)
194                 goto out_free_cpus;
195         page_buf = (char *)__get_free_page(GFP_KERNEL);
196         if (!page_buf)
197                 goto out_free_cpu_groups;
198
199         err = 0;
200         /*
201          * Of course the last CPU cannot be powered down and cpu_down() should
202          * refuse doing that.
203          */
204         pr_info("Trying to turn off and on again all CPUs\n");
205         err += down_and_up_cpus(cpu_online_mask, offlined_cpus);
206
207         /*
208          * Take down CPUs by cpu group this time. When the last CPU is turned
209          * off, the cpu group itself should shut down.
210          */
211         for (i = 0; i < nb_cpu_group; ++i) {
212                 ssize_t len = cpumap_print_to_pagebuf(true, page_buf,
213                                                       cpu_groups[i]);
214                 /* Remove trailing newline. */
215                 page_buf[len - 1] = '\0';
216                 pr_info("Trying to turn off and on again group %d (CPUs %s)\n",
217                         i, page_buf);
218                 err += down_and_up_cpus(cpu_groups[i], offlined_cpus);
219         }
220
221         free_page((unsigned long)page_buf);
222 out_free_cpu_groups:
223         free_cpu_groups(nb_cpu_group, &cpu_groups);
224 out_free_cpus:
225         free_cpumask_var(offlined_cpus);
226         return err;
227 }
228
229 static void dummy_callback(struct timer_list *unused) {}
230
231 static int suspend_cpu(int index, bool broadcast)
232 {
233         int ret;
234
235         arch_cpu_idle_enter();
236
237         if (broadcast) {
238                 /*
239                  * The local timer will be shut down, we need to enter tick
240                  * broadcast.
241                  */
242                 ret = tick_broadcast_enter();
243                 if (ret) {
244                         /*
245                          * In the absence of hardware broadcast mechanism,
246                          * this CPU might be used to broadcast wakeups, which
247                          * may be why entering tick broadcast has failed.
248                          * There is little the kernel can do to work around
249                          * that, so enter WFI instead (idle state 0).
250                          */
251                         cpu_do_idle();
252                         ret = 0;
253                         goto out_arch_exit;
254                 }
255         }
256
257         /*
258          * Replicate the common ARM cpuidle enter function
259          * (arm_enter_idle_state).
260          */
261         ret = CPU_PM_CPU_IDLE_ENTER(arm_cpuidle_suspend, index);
262
263         if (broadcast)
264                 tick_broadcast_exit();
265
266 out_arch_exit:
267         arch_cpu_idle_exit();
268
269         return ret;
270 }
271
272 static int suspend_test_thread(void *arg)
273 {
274         int cpu = (long)arg;
275         int i, nb_suspend = 0, nb_shallow_sleep = 0, nb_err = 0;
276         struct sched_param sched_priority = { .sched_priority = MAX_RT_PRIO-1 };
277         struct cpuidle_device *dev;
278         struct cpuidle_driver *drv;
279         /* No need for an actual callback, we just want to wake up the CPU. */
280         struct timer_list wakeup_timer;
281
282         /* Wait for the main thread to give the start signal. */
283         wait_for_completion(&suspend_threads_started);
284
285         /* Set maximum priority to preempt all other threads on this CPU. */
286         if (sched_setscheduler_nocheck(current, SCHED_FIFO, &sched_priority))
287                 pr_warn("Failed to set suspend thread scheduler on CPU %d\n",
288                         cpu);
289
290         dev = this_cpu_read(cpuidle_devices);
291         drv = cpuidle_get_cpu_driver(dev);
292
293         pr_info("CPU %d entering suspend cycles, states 1 through %d\n",
294                 cpu, drv->state_count - 1);
295
296         timer_setup_on_stack(&wakeup_timer, dummy_callback, 0);
297         for (i = 0; i < NUM_SUSPEND_CYCLE; ++i) {
298                 int index;
299                 /*
300                  * Test all possible states, except 0 (which is usually WFI and
301                  * doesn't use PSCI).
302                  */
303                 for (index = 1; index < drv->state_count; ++index) {
304                         struct cpuidle_state *state = &drv->states[index];
305                         bool broadcast = state->flags & CPUIDLE_FLAG_TIMER_STOP;
306                         int ret;
307
308                         /*
309                          * Set the timer to wake this CPU up in some time (which
310                          * should be largely sufficient for entering suspend).
311                          * If the local tick is disabled when entering suspend,
312                          * suspend_cpu() takes care of switching to a broadcast
313                          * tick, so the timer will still wake us up.
314                          */
315                         mod_timer(&wakeup_timer, jiffies +
316                                   usecs_to_jiffies(state->target_residency));
317
318                         /* IRQs must be disabled during suspend operations. */
319                         local_irq_disable();
320
321                         ret = suspend_cpu(index, broadcast);
322
323                         /*
324                          * We have woken up. Re-enable IRQs to handle any
325                          * pending interrupt, do not wait until the end of the
326                          * loop.
327                          */
328                         local_irq_enable();
329
330                         if (ret == index) {
331                                 ++nb_suspend;
332                         } else if (ret >= 0) {
333                                 /* We did not enter the expected state. */
334                                 ++nb_shallow_sleep;
335                         } else {
336                                 pr_err("Failed to suspend CPU %d: error %d "
337                                        "(requested state %d, cycle %d)\n",
338                                        cpu, ret, index, i);
339                                 ++nb_err;
340                         }
341                 }
342         }
343
344         /*
345          * Disable the timer to make sure that the timer will not trigger
346          * later.
347          */
348         del_timer(&wakeup_timer);
349         destroy_timer_on_stack(&wakeup_timer);
350
351         if (atomic_dec_return_relaxed(&nb_active_threads) == 0)
352                 complete(&suspend_threads_done);
353
354         /* Give up on RT scheduling and wait for termination. */
355         sched_priority.sched_priority = 0;
356         if (sched_setscheduler_nocheck(current, SCHED_NORMAL, &sched_priority))
357                 pr_warn("Failed to set suspend thread scheduler on CPU %d\n",
358                         cpu);
359         for (;;) {
360                 /* Needs to be set first to avoid missing a wakeup. */
361                 set_current_state(TASK_INTERRUPTIBLE);
362                 if (kthread_should_park())
363                         break;
364                 schedule();
365         }
366
367         pr_info("CPU %d suspend test results: success %d, shallow states %d, errors %d\n",
368                 cpu, nb_suspend, nb_shallow_sleep, nb_err);
369
370         kthread_parkme();
371
372         return nb_err;
373 }
374
375 static int suspend_tests(void)
376 {
377         int i, cpu, err = 0;
378         struct task_struct **threads;
379         int nb_threads = 0;
380
381         threads = kmalloc_array(nb_available_cpus, sizeof(*threads),
382                                 GFP_KERNEL);
383         if (!threads)
384                 return -ENOMEM;
385
386         /*
387          * Stop cpuidle to prevent the idle tasks from entering a deep sleep
388          * mode, as it might interfere with the suspend threads on other CPUs.
389          * This does not prevent the suspend threads from using cpuidle (only
390          * the idle tasks check this status). Take the idle lock so that
391          * the cpuidle driver and device look-up can be carried out safely.
392          */
393         cpuidle_pause_and_lock();
394
395         for_each_online_cpu(cpu) {
396                 struct task_struct *thread;
397                 /* Check that cpuidle is available on that CPU. */
398                 struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
399                 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
400
401                 if (!dev || !drv) {
402                         pr_warn("cpuidle not available on CPU %d, ignoring\n",
403                                 cpu);
404                         continue;
405                 }
406
407                 thread = kthread_create_on_cpu(suspend_test_thread,
408                                                (void *)(long)cpu, cpu,
409                                                "psci_suspend_test");
410                 if (IS_ERR(thread))
411                         pr_err("Failed to create kthread on CPU %d\n", cpu);
412                 else
413                         threads[nb_threads++] = thread;
414         }
415
416         if (nb_threads < 1) {
417                 err = -ENODEV;
418                 goto out;
419         }
420
421         atomic_set(&nb_active_threads, nb_threads);
422
423         /*
424          * Wake up the suspend threads. To avoid the main thread being preempted
425          * before all the threads have been unparked, the suspend threads will
426          * wait for the completion of suspend_threads_started.
427          */
428         for (i = 0; i < nb_threads; ++i)
429                 wake_up_process(threads[i]);
430         complete_all(&suspend_threads_started);
431
432         wait_for_completion(&suspend_threads_done);
433
434
435         /* Stop and destroy all threads, get return status. */
436         for (i = 0; i < nb_threads; ++i) {
437                 err += kthread_park(threads[i]);
438                 err += kthread_stop(threads[i]);
439         }
440  out:
441         cpuidle_resume_and_unlock();
442         kfree(threads);
443         return err;
444 }
445
446 static int __init psci_checker(void)
447 {
448         int ret;
449
450         /*
451          * Since we're in an initcall, we assume that all the CPUs that all
452          * CPUs that can be onlined have been onlined.
453          *
454          * The tests assume that hotplug is enabled but nobody else is using it,
455          * otherwise the results will be unpredictable. However, since there
456          * is no userspace yet in initcalls, that should be fine, as long as
457          * no torture test is running at the same time (see Kconfig).
458          */
459         nb_available_cpus = num_online_cpus();
460
461         /* Check PSCI operations are set up and working. */
462         ret = psci_ops_check();
463         if (ret)
464                 return ret;
465
466         pr_info("PSCI checker started using %u CPUs\n", nb_available_cpus);
467
468         pr_info("Starting hotplug tests\n");
469         ret = hotplug_tests();
470         if (ret == 0)
471                 pr_info("Hotplug tests passed OK\n");
472         else if (ret > 0)
473                 pr_err("%d error(s) encountered in hotplug tests\n", ret);
474         else {
475                 pr_err("Out of memory\n");
476                 return ret;
477         }
478
479         pr_info("Starting suspend tests (%d cycles per state)\n",
480                 NUM_SUSPEND_CYCLE);
481         ret = suspend_tests();
482         if (ret == 0)
483                 pr_info("Suspend tests passed OK\n");
484         else if (ret > 0)
485                 pr_err("%d error(s) encountered in suspend tests\n", ret);
486         else {
487                 switch (ret) {
488                 case -ENOMEM:
489                         pr_err("Out of memory\n");
490                         break;
491                 case -ENODEV:
492                         pr_warn("Could not start suspend tests on any CPU\n");
493                         break;
494                 }
495         }
496
497         pr_info("PSCI checker completed\n");
498         return ret < 0 ? ret : 0;
499 }
500 late_initcall(psci_checker);