EDAC: Remove arbitrary limit on number of channels
[linux-2.6-block.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         unsigned long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = kstrtoul(val, 0, &l);
62         if (ret)
63                 return ret;
64
65         if (l < 1000)
66                 return -EINVAL;
67
68         *((unsigned long *)kp->arg) = l;
69
70         /* notify edac_mc engine to reset the poll period */
71         edac_mc_reset_delay_period(l);
72
73         return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81                  "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84                  "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86                   &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95         [MEM_EMPTY] = "Empty",
96         [MEM_RESERVED] = "Reserved",
97         [MEM_UNKNOWN] = "Unknown",
98         [MEM_FPM] = "FPM",
99         [MEM_EDO] = "EDO",
100         [MEM_BEDO] = "BEDO",
101         [MEM_SDR] = "Unbuffered-SDR",
102         [MEM_RDR] = "Registered-SDR",
103         [MEM_DDR] = "Unbuffered-DDR",
104         [MEM_RDDR] = "Registered-DDR",
105         [MEM_RMBS] = "RMBS",
106         [MEM_DDR2] = "Unbuffered-DDR2",
107         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108         [MEM_RDDR2] = "Registered-DDR2",
109         [MEM_XDR] = "XDR",
110         [MEM_DDR3] = "Unbuffered-DDR3",
111         [MEM_RDDR3] = "Registered-DDR3",
112         [MEM_DDR4] = "Unbuffered-DDR4",
113         [MEM_RDDR4] = "Registered-DDR4"
114 };
115
116 static const char * const dev_types[] = {
117         [DEV_UNKNOWN] = "Unknown",
118         [DEV_X1] = "x1",
119         [DEV_X2] = "x2",
120         [DEV_X4] = "x4",
121         [DEV_X8] = "x8",
122         [DEV_X16] = "x16",
123         [DEV_X32] = "x32",
124         [DEV_X64] = "x64"
125 };
126
127 static const char * const edac_caps[] = {
128         [EDAC_UNKNOWN] = "Unknown",
129         [EDAC_NONE] = "None",
130         [EDAC_RESERVED] = "Reserved",
131         [EDAC_PARITY] = "PARITY",
132         [EDAC_EC] = "EC",
133         [EDAC_SECDED] = "SECDED",
134         [EDAC_S2ECD2ED] = "S2ECD2ED",
135         [EDAC_S4ECD4ED] = "S4ECD4ED",
136         [EDAC_S8ECD8ED] = "S8ECD8ED",
137         [EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152         static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153
154 struct dev_ch_attribute {
155         struct device_attribute attr;
156         int channel;
157 };
158
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160         static struct dev_ch_attribute dev_attr_legacy_##_name = \
161                 { __ATTR(_name, _mode, _show, _store), (_var) }
162
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167                                    struct device_attribute *mattr, char *data)
168 {
169         struct csrow_info *csrow = to_csrow(dev);
170
171         return sprintf(data, "%u\n", csrow->ue_count);
172 }
173
174 static ssize_t csrow_ce_count_show(struct device *dev,
175                                    struct device_attribute *mattr, char *data)
176 {
177         struct csrow_info *csrow = to_csrow(dev);
178
179         return sprintf(data, "%u\n", csrow->ce_count);
180 }
181
182 static ssize_t csrow_size_show(struct device *dev,
183                                struct device_attribute *mattr, char *data)
184 {
185         struct csrow_info *csrow = to_csrow(dev);
186         int i;
187         u32 nr_pages = 0;
188
189         for (i = 0; i < csrow->nr_channels; i++)
190                 nr_pages += csrow->channels[i]->dimm->nr_pages;
191         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193
194 static ssize_t csrow_mem_type_show(struct device *dev,
195                                    struct device_attribute *mattr, char *data)
196 {
197         struct csrow_info *csrow = to_csrow(dev);
198
199         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201
202 static ssize_t csrow_dev_type_show(struct device *dev,
203                                    struct device_attribute *mattr, char *data)
204 {
205         struct csrow_info *csrow = to_csrow(dev);
206
207         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211                                     struct device_attribute *mattr,
212                                     char *data)
213 {
214         struct csrow_info *csrow = to_csrow(dev);
215
216         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221                                        struct device_attribute *mattr,
222                                        char *data)
223 {
224         struct csrow_info *csrow = to_csrow(dev);
225         unsigned chan = to_channel(mattr);
226         struct rank_info *rank = csrow->channels[chan];
227
228         /* if field has not been initialized, there is nothing to send */
229         if (!rank->dimm->label[0])
230                 return 0;
231
232         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
233                         rank->dimm->label);
234 }
235
236 static ssize_t channel_dimm_label_store(struct device *dev,
237                                         struct device_attribute *mattr,
238                                         const char *data, size_t count)
239 {
240         struct csrow_info *csrow = to_csrow(dev);
241         unsigned chan = to_channel(mattr);
242         struct rank_info *rank = csrow->channels[chan];
243
244         ssize_t max_size = 0;
245
246         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
247         strncpy(rank->dimm->label, data, max_size);
248         rank->dimm->label[max_size] = '\0';
249
250         return max_size;
251 }
252
253 /* show function for dynamic chX_ce_count attribute */
254 static ssize_t channel_ce_count_show(struct device *dev,
255                                      struct device_attribute *mattr, char *data)
256 {
257         struct csrow_info *csrow = to_csrow(dev);
258         unsigned chan = to_channel(mattr);
259         struct rank_info *rank = csrow->channels[chan];
260
261         return sprintf(data, "%u\n", rank->ce_count);
262 }
263
264 /* cwrow<id>/attribute files */
265 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
266 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
267 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
268 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
269 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
270 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
271
272 /* default attributes of the CSROW<id> object */
273 static struct attribute *csrow_attrs[] = {
274         &dev_attr_legacy_dev_type.attr,
275         &dev_attr_legacy_mem_type.attr,
276         &dev_attr_legacy_edac_mode.attr,
277         &dev_attr_legacy_size_mb.attr,
278         &dev_attr_legacy_ue_count.attr,
279         &dev_attr_legacy_ce_count.attr,
280         NULL,
281 };
282
283 static struct attribute_group csrow_attr_grp = {
284         .attrs  = csrow_attrs,
285 };
286
287 static const struct attribute_group *csrow_attr_groups[] = {
288         &csrow_attr_grp,
289         NULL
290 };
291
292 static void csrow_attr_release(struct device *dev)
293 {
294         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
295
296         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
297         kfree(csrow);
298 }
299
300 static struct device_type csrow_attr_type = {
301         .groups         = csrow_attr_groups,
302         .release        = csrow_attr_release,
303 };
304
305 /*
306  * possible dynamic channel DIMM Label attribute files
307  *
308  */
309
310 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
311         channel_dimm_label_show, channel_dimm_label_store, 0);
312 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
313         channel_dimm_label_show, channel_dimm_label_store, 1);
314 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
315         channel_dimm_label_show, channel_dimm_label_store, 2);
316 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
317         channel_dimm_label_show, channel_dimm_label_store, 3);
318 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
319         channel_dimm_label_show, channel_dimm_label_store, 4);
320 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
321         channel_dimm_label_show, channel_dimm_label_store, 5);
322
323 /* Total possible dynamic DIMM Label attribute file table */
324 static struct attribute *dynamic_csrow_dimm_attr[] = {
325         &dev_attr_legacy_ch0_dimm_label.attr.attr,
326         &dev_attr_legacy_ch1_dimm_label.attr.attr,
327         &dev_attr_legacy_ch2_dimm_label.attr.attr,
328         &dev_attr_legacy_ch3_dimm_label.attr.attr,
329         &dev_attr_legacy_ch4_dimm_label.attr.attr,
330         &dev_attr_legacy_ch5_dimm_label.attr.attr,
331         NULL
332 };
333
334 /* possible dynamic channel ce_count attribute files */
335 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
336                    channel_ce_count_show, NULL, 0);
337 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
338                    channel_ce_count_show, NULL, 1);
339 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
340                    channel_ce_count_show, NULL, 2);
341 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
342                    channel_ce_count_show, NULL, 3);
343 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
344                    channel_ce_count_show, NULL, 4);
345 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
346                    channel_ce_count_show, NULL, 5);
347
348 /* Total possible dynamic ce_count attribute file table */
349 static struct attribute *dynamic_csrow_ce_count_attr[] = {
350         &dev_attr_legacy_ch0_ce_count.attr.attr,
351         &dev_attr_legacy_ch1_ce_count.attr.attr,
352         &dev_attr_legacy_ch2_ce_count.attr.attr,
353         &dev_attr_legacy_ch3_ce_count.attr.attr,
354         &dev_attr_legacy_ch4_ce_count.attr.attr,
355         &dev_attr_legacy_ch5_ce_count.attr.attr,
356         NULL
357 };
358
359 static umode_t csrow_dev_is_visible(struct kobject *kobj,
360                                     struct attribute *attr, int idx)
361 {
362         struct device *dev = kobj_to_dev(kobj);
363         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
364
365         if (idx >= csrow->nr_channels)
366                 return 0;
367         /* Only expose populated DIMMs */
368         if (!csrow->channels[idx]->dimm->nr_pages)
369                 return 0;
370         return attr->mode;
371 }
372
373
374 static const struct attribute_group csrow_dev_dimm_group = {
375         .attrs = dynamic_csrow_dimm_attr,
376         .is_visible = csrow_dev_is_visible,
377 };
378
379 static const struct attribute_group csrow_dev_ce_count_group = {
380         .attrs = dynamic_csrow_ce_count_attr,
381         .is_visible = csrow_dev_is_visible,
382 };
383
384 static const struct attribute_group *csrow_dev_groups[] = {
385         &csrow_dev_dimm_group,
386         &csrow_dev_ce_count_group,
387         NULL
388 };
389
390 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
391 {
392         int chan, nr_pages = 0;
393
394         for (chan = 0; chan < csrow->nr_channels; chan++)
395                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
396
397         return nr_pages;
398 }
399
400 /* Create a CSROW object under specifed edac_mc_device */
401 static int edac_create_csrow_object(struct mem_ctl_info *mci,
402                                     struct csrow_info *csrow, int index)
403 {
404         csrow->dev.type = &csrow_attr_type;
405         csrow->dev.bus = mci->bus;
406         csrow->dev.groups = csrow_dev_groups;
407         device_initialize(&csrow->dev);
408         csrow->dev.parent = &mci->dev;
409         csrow->mci = mci;
410         dev_set_name(&csrow->dev, "csrow%d", index);
411         dev_set_drvdata(&csrow->dev, csrow);
412
413         edac_dbg(0, "creating (virtual) csrow node %s\n",
414                  dev_name(&csrow->dev));
415
416         return device_add(&csrow->dev);
417 }
418
419 /* Create a CSROW object under specifed edac_mc_device */
420 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
421 {
422         int err, i;
423         struct csrow_info *csrow;
424
425         for (i = 0; i < mci->nr_csrows; i++) {
426                 csrow = mci->csrows[i];
427                 if (!nr_pages_per_csrow(csrow))
428                         continue;
429                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
430                 if (err < 0) {
431                         edac_dbg(1,
432                                  "failure: create csrow objects for csrow %d\n",
433                                  i);
434                         goto error;
435                 }
436         }
437         return 0;
438
439 error:
440         for (--i; i >= 0; i--) {
441                 csrow = mci->csrows[i];
442                 if (!nr_pages_per_csrow(csrow))
443                         continue;
444                 put_device(&mci->csrows[i]->dev);
445         }
446
447         return err;
448 }
449
450 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
451 {
452         int i;
453         struct csrow_info *csrow;
454
455         for (i = mci->nr_csrows - 1; i >= 0; i--) {
456                 csrow = mci->csrows[i];
457                 if (!nr_pages_per_csrow(csrow))
458                         continue;
459                 device_unregister(&mci->csrows[i]->dev);
460         }
461 }
462 #endif
463
464 /*
465  * Per-dimm (or per-rank) devices
466  */
467
468 #define to_dimm(k) container_of(k, struct dimm_info, dev)
469
470 /* show/store functions for DIMM Label attributes */
471 static ssize_t dimmdev_location_show(struct device *dev,
472                                      struct device_attribute *mattr, char *data)
473 {
474         struct dimm_info *dimm = to_dimm(dev);
475
476         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
477 }
478
479 static ssize_t dimmdev_label_show(struct device *dev,
480                                   struct device_attribute *mattr, char *data)
481 {
482         struct dimm_info *dimm = to_dimm(dev);
483
484         /* if field has not been initialized, there is nothing to send */
485         if (!dimm->label[0])
486                 return 0;
487
488         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
489 }
490
491 static ssize_t dimmdev_label_store(struct device *dev,
492                                    struct device_attribute *mattr,
493                                    const char *data,
494                                    size_t count)
495 {
496         struct dimm_info *dimm = to_dimm(dev);
497
498         ssize_t max_size = 0;
499
500         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
501         strncpy(dimm->label, data, max_size);
502         dimm->label[max_size] = '\0';
503
504         return max_size;
505 }
506
507 static ssize_t dimmdev_size_show(struct device *dev,
508                                  struct device_attribute *mattr, char *data)
509 {
510         struct dimm_info *dimm = to_dimm(dev);
511
512         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
513 }
514
515 static ssize_t dimmdev_mem_type_show(struct device *dev,
516                                      struct device_attribute *mattr, char *data)
517 {
518         struct dimm_info *dimm = to_dimm(dev);
519
520         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
521 }
522
523 static ssize_t dimmdev_dev_type_show(struct device *dev,
524                                      struct device_attribute *mattr, char *data)
525 {
526         struct dimm_info *dimm = to_dimm(dev);
527
528         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
529 }
530
531 static ssize_t dimmdev_edac_mode_show(struct device *dev,
532                                       struct device_attribute *mattr,
533                                       char *data)
534 {
535         struct dimm_info *dimm = to_dimm(dev);
536
537         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
538 }
539
540 /* dimm/rank attribute files */
541 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
542                    dimmdev_label_show, dimmdev_label_store);
543 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
544 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
545 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
546 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
547 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
548
549 /* attributes of the dimm<id>/rank<id> object */
550 static struct attribute *dimm_attrs[] = {
551         &dev_attr_dimm_label.attr,
552         &dev_attr_dimm_location.attr,
553         &dev_attr_size.attr,
554         &dev_attr_dimm_mem_type.attr,
555         &dev_attr_dimm_dev_type.attr,
556         &dev_attr_dimm_edac_mode.attr,
557         NULL,
558 };
559
560 static struct attribute_group dimm_attr_grp = {
561         .attrs  = dimm_attrs,
562 };
563
564 static const struct attribute_group *dimm_attr_groups[] = {
565         &dimm_attr_grp,
566         NULL
567 };
568
569 static void dimm_attr_release(struct device *dev)
570 {
571         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
572
573         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
574         kfree(dimm);
575 }
576
577 static struct device_type dimm_attr_type = {
578         .groups         = dimm_attr_groups,
579         .release        = dimm_attr_release,
580 };
581
582 /* Create a DIMM object under specifed memory controller device */
583 static int edac_create_dimm_object(struct mem_ctl_info *mci,
584                                    struct dimm_info *dimm,
585                                    int index)
586 {
587         int err;
588         dimm->mci = mci;
589
590         dimm->dev.type = &dimm_attr_type;
591         dimm->dev.bus = mci->bus;
592         device_initialize(&dimm->dev);
593
594         dimm->dev.parent = &mci->dev;
595         if (mci->csbased)
596                 dev_set_name(&dimm->dev, "rank%d", index);
597         else
598                 dev_set_name(&dimm->dev, "dimm%d", index);
599         dev_set_drvdata(&dimm->dev, dimm);
600         pm_runtime_forbid(&mci->dev);
601
602         err =  device_add(&dimm->dev);
603
604         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
605
606         return err;
607 }
608
609 /*
610  * Memory controller device
611  */
612
613 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
614
615 static ssize_t mci_reset_counters_store(struct device *dev,
616                                         struct device_attribute *mattr,
617                                         const char *data, size_t count)
618 {
619         struct mem_ctl_info *mci = to_mci(dev);
620         int cnt, row, chan, i;
621         mci->ue_mc = 0;
622         mci->ce_mc = 0;
623         mci->ue_noinfo_count = 0;
624         mci->ce_noinfo_count = 0;
625
626         for (row = 0; row < mci->nr_csrows; row++) {
627                 struct csrow_info *ri = mci->csrows[row];
628
629                 ri->ue_count = 0;
630                 ri->ce_count = 0;
631
632                 for (chan = 0; chan < ri->nr_channels; chan++)
633                         ri->channels[chan]->ce_count = 0;
634         }
635
636         cnt = 1;
637         for (i = 0; i < mci->n_layers; i++) {
638                 cnt *= mci->layers[i].size;
639                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
640                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
641         }
642
643         mci->start_time = jiffies;
644         return count;
645 }
646
647 /* Memory scrubbing interface:
648  *
649  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
650  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
651  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
652  *
653  * Negative value still means that an error has occurred while setting
654  * the scrub rate.
655  */
656 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
657                                           struct device_attribute *mattr,
658                                           const char *data, size_t count)
659 {
660         struct mem_ctl_info *mci = to_mci(dev);
661         unsigned long bandwidth = 0;
662         int new_bw = 0;
663
664         if (kstrtoul(data, 10, &bandwidth) < 0)
665                 return -EINVAL;
666
667         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
668         if (new_bw < 0) {
669                 edac_printk(KERN_WARNING, EDAC_MC,
670                             "Error setting scrub rate to: %lu\n", bandwidth);
671                 return -EINVAL;
672         }
673
674         return count;
675 }
676
677 /*
678  * ->get_sdram_scrub_rate() return value semantics same as above.
679  */
680 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
681                                          struct device_attribute *mattr,
682                                          char *data)
683 {
684         struct mem_ctl_info *mci = to_mci(dev);
685         int bandwidth = 0;
686
687         bandwidth = mci->get_sdram_scrub_rate(mci);
688         if (bandwidth < 0) {
689                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
690                 return bandwidth;
691         }
692
693         return sprintf(data, "%d\n", bandwidth);
694 }
695
696 /* default attribute files for the MCI object */
697 static ssize_t mci_ue_count_show(struct device *dev,
698                                  struct device_attribute *mattr,
699                                  char *data)
700 {
701         struct mem_ctl_info *mci = to_mci(dev);
702
703         return sprintf(data, "%d\n", mci->ue_mc);
704 }
705
706 static ssize_t mci_ce_count_show(struct device *dev,
707                                  struct device_attribute *mattr,
708                                  char *data)
709 {
710         struct mem_ctl_info *mci = to_mci(dev);
711
712         return sprintf(data, "%d\n", mci->ce_mc);
713 }
714
715 static ssize_t mci_ce_noinfo_show(struct device *dev,
716                                   struct device_attribute *mattr,
717                                   char *data)
718 {
719         struct mem_ctl_info *mci = to_mci(dev);
720
721         return sprintf(data, "%d\n", mci->ce_noinfo_count);
722 }
723
724 static ssize_t mci_ue_noinfo_show(struct device *dev,
725                                   struct device_attribute *mattr,
726                                   char *data)
727 {
728         struct mem_ctl_info *mci = to_mci(dev);
729
730         return sprintf(data, "%d\n", mci->ue_noinfo_count);
731 }
732
733 static ssize_t mci_seconds_show(struct device *dev,
734                                 struct device_attribute *mattr,
735                                 char *data)
736 {
737         struct mem_ctl_info *mci = to_mci(dev);
738
739         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
740 }
741
742 static ssize_t mci_ctl_name_show(struct device *dev,
743                                  struct device_attribute *mattr,
744                                  char *data)
745 {
746         struct mem_ctl_info *mci = to_mci(dev);
747
748         return sprintf(data, "%s\n", mci->ctl_name);
749 }
750
751 static ssize_t mci_size_mb_show(struct device *dev,
752                                 struct device_attribute *mattr,
753                                 char *data)
754 {
755         struct mem_ctl_info *mci = to_mci(dev);
756         int total_pages = 0, csrow_idx, j;
757
758         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
759                 struct csrow_info *csrow = mci->csrows[csrow_idx];
760
761                 for (j = 0; j < csrow->nr_channels; j++) {
762                         struct dimm_info *dimm = csrow->channels[j]->dimm;
763
764                         total_pages += dimm->nr_pages;
765                 }
766         }
767
768         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
769 }
770
771 static ssize_t mci_max_location_show(struct device *dev,
772                                      struct device_attribute *mattr,
773                                      char *data)
774 {
775         struct mem_ctl_info *mci = to_mci(dev);
776         int i;
777         char *p = data;
778
779         for (i = 0; i < mci->n_layers; i++) {
780                 p += sprintf(p, "%s %d ",
781                              edac_layer_name[mci->layers[i].type],
782                              mci->layers[i].size - 1);
783         }
784
785         return p - data;
786 }
787
788 #ifdef CONFIG_EDAC_DEBUG
789 static ssize_t edac_fake_inject_write(struct file *file,
790                                       const char __user *data,
791                                       size_t count, loff_t *ppos)
792 {
793         struct device *dev = file->private_data;
794         struct mem_ctl_info *mci = to_mci(dev);
795         static enum hw_event_mc_err_type type;
796         u16 errcount = mci->fake_inject_count;
797
798         if (!errcount)
799                 errcount = 1;
800
801         type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
802                                    : HW_EVENT_ERR_CORRECTED;
803
804         printk(KERN_DEBUG
805                "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
806                 errcount,
807                 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
808                 errcount > 1 ? "s" : "",
809                 mci->fake_inject_layer[0],
810                 mci->fake_inject_layer[1],
811                 mci->fake_inject_layer[2]
812                );
813         edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
814                              mci->fake_inject_layer[0],
815                              mci->fake_inject_layer[1],
816                              mci->fake_inject_layer[2],
817                              "FAKE ERROR", "for EDAC testing only");
818
819         return count;
820 }
821
822 static const struct file_operations debug_fake_inject_fops = {
823         .open = simple_open,
824         .write = edac_fake_inject_write,
825         .llseek = generic_file_llseek,
826 };
827 #endif
828
829 /* default Control file */
830 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
831
832 /* default Attribute files */
833 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
834 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
835 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
836 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
837 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
838 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
839 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
840 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
841
842 /* memory scrubber attribute file */
843 DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
844             mci_sdram_scrub_rate_store); /* umode set later in is_visible */
845
846 static struct attribute *mci_attrs[] = {
847         &dev_attr_reset_counters.attr,
848         &dev_attr_mc_name.attr,
849         &dev_attr_size_mb.attr,
850         &dev_attr_seconds_since_reset.attr,
851         &dev_attr_ue_noinfo_count.attr,
852         &dev_attr_ce_noinfo_count.attr,
853         &dev_attr_ue_count.attr,
854         &dev_attr_ce_count.attr,
855         &dev_attr_max_location.attr,
856         &dev_attr_sdram_scrub_rate.attr,
857         NULL
858 };
859
860 static umode_t mci_attr_is_visible(struct kobject *kobj,
861                                    struct attribute *attr, int idx)
862 {
863         struct device *dev = kobj_to_dev(kobj);
864         struct mem_ctl_info *mci = to_mci(dev);
865         umode_t mode = 0;
866
867         if (attr != &dev_attr_sdram_scrub_rate.attr)
868                 return attr->mode;
869         if (mci->get_sdram_scrub_rate)
870                 mode |= S_IRUGO;
871         if (mci->set_sdram_scrub_rate)
872                 mode |= S_IWUSR;
873         return mode;
874 }
875
876 static struct attribute_group mci_attr_grp = {
877         .attrs  = mci_attrs,
878         .is_visible = mci_attr_is_visible,
879 };
880
881 static const struct attribute_group *mci_attr_groups[] = {
882         &mci_attr_grp,
883         NULL
884 };
885
886 static void mci_attr_release(struct device *dev)
887 {
888         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
889
890         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
891         kfree(mci);
892 }
893
894 static struct device_type mci_attr_type = {
895         .groups         = mci_attr_groups,
896         .release        = mci_attr_release,
897 };
898
899 #ifdef CONFIG_EDAC_DEBUG
900 static struct dentry *edac_debugfs;
901
902 int __init edac_debugfs_init(void)
903 {
904         edac_debugfs = debugfs_create_dir("edac", NULL);
905         if (IS_ERR(edac_debugfs)) {
906                 edac_debugfs = NULL;
907                 return -ENOMEM;
908         }
909         return 0;
910 }
911
912 void edac_debugfs_exit(void)
913 {
914         debugfs_remove(edac_debugfs);
915 }
916
917 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
918 {
919         struct dentry *d, *parent;
920         char name[80];
921         int i;
922
923         if (!edac_debugfs)
924                 return -ENODEV;
925
926         d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
927         if (!d)
928                 return -ENOMEM;
929         parent = d;
930
931         for (i = 0; i < mci->n_layers; i++) {
932                 sprintf(name, "fake_inject_%s",
933                              edac_layer_name[mci->layers[i].type]);
934                 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
935                                       &mci->fake_inject_layer[i]);
936                 if (!d)
937                         goto nomem;
938         }
939
940         d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
941                                 &mci->fake_inject_ue);
942         if (!d)
943                 goto nomem;
944
945         d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
946                                 &mci->fake_inject_count);
947         if (!d)
948                 goto nomem;
949
950         d = debugfs_create_file("fake_inject", S_IWUSR, parent,
951                                 &mci->dev,
952                                 &debug_fake_inject_fops);
953         if (!d)
954                 goto nomem;
955
956         mci->debugfs = parent;
957         return 0;
958 nomem:
959         debugfs_remove(mci->debugfs);
960         return -ENOMEM;
961 }
962 #endif
963
964 /*
965  * Create a new Memory Controller kobject instance,
966  *      mc<id> under the 'mc' directory
967  *
968  * Return:
969  *      0       Success
970  *      !0      Failure
971  */
972 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
973                                  const struct attribute_group **groups)
974 {
975         int i, err;
976
977         /*
978          * The memory controller needs its own bus, in order to avoid
979          * namespace conflicts at /sys/bus/edac.
980          */
981         mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
982         if (!mci->bus->name)
983                 return -ENOMEM;
984
985         edac_dbg(0, "creating bus %s\n", mci->bus->name);
986
987         err = bus_register(mci->bus);
988         if (err < 0)
989                 goto fail_free_name;
990
991         /* get the /sys/devices/system/edac subsys reference */
992         mci->dev.type = &mci_attr_type;
993         device_initialize(&mci->dev);
994
995         mci->dev.parent = mci_pdev;
996         mci->dev.bus = mci->bus;
997         mci->dev.groups = groups;
998         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
999         dev_set_drvdata(&mci->dev, mci);
1000         pm_runtime_forbid(&mci->dev);
1001
1002         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1003         err = device_add(&mci->dev);
1004         if (err < 0) {
1005                 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1006                 goto fail_unregister_bus;
1007         }
1008
1009         /*
1010          * Create the dimm/rank devices
1011          */
1012         for (i = 0; i < mci->tot_dimms; i++) {
1013                 struct dimm_info *dimm = mci->dimms[i];
1014                 /* Only expose populated DIMMs */
1015                 if (!dimm->nr_pages)
1016                         continue;
1017
1018 #ifdef CONFIG_EDAC_DEBUG
1019                 edac_dbg(1, "creating dimm%d, located at ", i);
1020                 if (edac_debug_level >= 1) {
1021                         int lay;
1022                         for (lay = 0; lay < mci->n_layers; lay++)
1023                                 printk(KERN_CONT "%s %d ",
1024                                         edac_layer_name[mci->layers[lay].type],
1025                                         dimm->location[lay]);
1026                         printk(KERN_CONT "\n");
1027                 }
1028 #endif
1029                 err = edac_create_dimm_object(mci, dimm, i);
1030                 if (err) {
1031                         edac_dbg(1, "failure: create dimm %d obj\n", i);
1032                         goto fail_unregister_dimm;
1033                 }
1034         }
1035
1036 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1037         err = edac_create_csrow_objects(mci);
1038         if (err < 0)
1039                 goto fail_unregister_dimm;
1040 #endif
1041
1042 #ifdef CONFIG_EDAC_DEBUG
1043         edac_create_debug_nodes(mci);
1044 #endif
1045         return 0;
1046
1047 fail_unregister_dimm:
1048         for (i--; i >= 0; i--) {
1049                 struct dimm_info *dimm = mci->dimms[i];
1050                 if (!dimm->nr_pages)
1051                         continue;
1052
1053                 device_unregister(&dimm->dev);
1054         }
1055         device_unregister(&mci->dev);
1056 fail_unregister_bus:
1057         bus_unregister(mci->bus);
1058 fail_free_name:
1059         kfree(mci->bus->name);
1060         return err;
1061 }
1062
1063 /*
1064  * remove a Memory Controller instance
1065  */
1066 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1067 {
1068         int i;
1069
1070         edac_dbg(0, "\n");
1071
1072 #ifdef CONFIG_EDAC_DEBUG
1073         debugfs_remove(mci->debugfs);
1074 #endif
1075 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1076         edac_delete_csrow_objects(mci);
1077 #endif
1078
1079         for (i = 0; i < mci->tot_dimms; i++) {
1080                 struct dimm_info *dimm = mci->dimms[i];
1081                 if (dimm->nr_pages == 0)
1082                         continue;
1083                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1084                 device_unregister(&dimm->dev);
1085         }
1086 }
1087
1088 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1089 {
1090         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1091         device_unregister(&mci->dev);
1092         bus_unregister(mci->bus);
1093         kfree(mci->bus->name);
1094 }
1095
1096 static void mc_attr_release(struct device *dev)
1097 {
1098         /*
1099          * There's no container structure here, as this is just the mci
1100          * parent device, used to create the /sys/devices/mc sysfs node.
1101          * So, there are no attributes on it.
1102          */
1103         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1104         kfree(dev);
1105 }
1106
1107 static struct device_type mc_attr_type = {
1108         .release        = mc_attr_release,
1109 };
1110 /*
1111  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1112  */
1113 int __init edac_mc_sysfs_init(void)
1114 {
1115         struct bus_type *edac_subsys;
1116         int err;
1117
1118         /* get the /sys/devices/system/edac subsys reference */
1119         edac_subsys = edac_get_sysfs_subsys();
1120         if (edac_subsys == NULL) {
1121                 edac_dbg(1, "no edac_subsys\n");
1122                 err = -EINVAL;
1123                 goto out;
1124         }
1125
1126         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1127         if (!mci_pdev) {
1128                 err = -ENOMEM;
1129                 goto out_put_sysfs;
1130         }
1131
1132         mci_pdev->bus = edac_subsys;
1133         mci_pdev->type = &mc_attr_type;
1134         device_initialize(mci_pdev);
1135         dev_set_name(mci_pdev, "mc");
1136
1137         err = device_add(mci_pdev);
1138         if (err < 0)
1139                 goto out_dev_free;
1140
1141         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1142
1143         return 0;
1144
1145  out_dev_free:
1146         kfree(mci_pdev);
1147  out_put_sysfs:
1148         edac_put_sysfs_subsys();
1149  out:
1150         return err;
1151 }
1152
1153 void edac_mc_sysfs_exit(void)
1154 {
1155         device_unregister(mci_pdev);
1156         edac_put_sysfs_subsys();
1157 }