de4cfbc7ee0df41c3237a6899f6fc796c9520c61
[linux-2.6-block.git] / drivers / char / ipmi / ipmi_si_intf.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/spinlock.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/list.h>
32 #include <linux/notifier.h>
33 #include <linux/mutex.h>
34 #include <linux/kthread.h>
35 #include <asm/irq.h>
36 #include <linux/interrupt.h>
37 #include <linux/rcupdate.h>
38 #include <linux/ipmi.h>
39 #include <linux/ipmi_smi.h>
40 #include "ipmi_si.h"
41 #include <linux/string.h>
42 #include <linux/ctype.h>
43
44 #define PFX "ipmi_si: "
45
46 /* Measure times between events in the driver. */
47 #undef DEBUG_TIMING
48
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC    10000
51 #define SI_USEC_PER_JIFFY       (1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
54                                       short timeout */
55
56 enum si_intf_state {
57         SI_NORMAL,
58         SI_GETTING_FLAGS,
59         SI_GETTING_EVENTS,
60         SI_CLEARING_FLAGS,
61         SI_GETTING_MESSAGES,
62         SI_CHECKING_ENABLES,
63         SI_SETTING_ENABLES
64         /* FIXME - add watchdog stuff. */
65 };
66
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG             2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
71
72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
73
74 static int initialized;
75
76 /*
77  * Indexes into stats[] in smi_info below.
78  */
79 enum si_stat_indexes {
80         /*
81          * Number of times the driver requested a timer while an operation
82          * was in progress.
83          */
84         SI_STAT_short_timeouts = 0,
85
86         /*
87          * Number of times the driver requested a timer while nothing was in
88          * progress.
89          */
90         SI_STAT_long_timeouts,
91
92         /* Number of times the interface was idle while being polled. */
93         SI_STAT_idles,
94
95         /* Number of interrupts the driver handled. */
96         SI_STAT_interrupts,
97
98         /* Number of time the driver got an ATTN from the hardware. */
99         SI_STAT_attentions,
100
101         /* Number of times the driver requested flags from the hardware. */
102         SI_STAT_flag_fetches,
103
104         /* Number of times the hardware didn't follow the state machine. */
105         SI_STAT_hosed_count,
106
107         /* Number of completed messages. */
108         SI_STAT_complete_transactions,
109
110         /* Number of IPMI events received from the hardware. */
111         SI_STAT_events,
112
113         /* Number of watchdog pretimeouts. */
114         SI_STAT_watchdog_pretimeouts,
115
116         /* Number of asynchronous messages received. */
117         SI_STAT_incoming_messages,
118
119
120         /* This *must* remain last, add new values above this. */
121         SI_NUM_STATS
122 };
123
124 struct smi_info {
125         int                    intf_num;
126         struct ipmi_smi        *intf;
127         struct si_sm_data      *si_sm;
128         const struct si_sm_handlers *handlers;
129         spinlock_t             si_lock;
130         struct ipmi_smi_msg    *waiting_msg;
131         struct ipmi_smi_msg    *curr_msg;
132         enum si_intf_state     si_state;
133
134         /*
135          * Used to handle the various types of I/O that can occur with
136          * IPMI
137          */
138         struct si_sm_io io;
139
140         /*
141          * Per-OEM handler, called from handle_flags().  Returns 1
142          * when handle_flags() needs to be re-run or 0 indicating it
143          * set si_state itself.
144          */
145         int (*oem_data_avail_handler)(struct smi_info *smi_info);
146
147         /*
148          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149          * is set to hold the flags until we are done handling everything
150          * from the flags.
151          */
152 #define RECEIVE_MSG_AVAIL       0x01
153 #define EVENT_MSG_BUFFER_FULL   0x02
154 #define WDT_PRE_TIMEOUT_INT     0x08
155 #define OEM0_DATA_AVAIL     0x20
156 #define OEM1_DATA_AVAIL     0x40
157 #define OEM2_DATA_AVAIL     0x80
158 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
159                              OEM1_DATA_AVAIL | \
160                              OEM2_DATA_AVAIL)
161         unsigned char       msg_flags;
162
163         /* Does the BMC have an event buffer? */
164         bool                has_event_buffer;
165
166         /*
167          * If set to true, this will request events the next time the
168          * state machine is idle.
169          */
170         atomic_t            req_events;
171
172         /*
173          * If true, run the state machine to completion on every send
174          * call.  Generally used after a panic to make sure stuff goes
175          * out.
176          */
177         bool                run_to_completion;
178
179         /* The timer for this si. */
180         struct timer_list   si_timer;
181
182         /* This flag is set, if the timer can be set */
183         bool                timer_can_start;
184
185         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
186         bool                timer_running;
187
188         /* The time (in jiffies) the last timeout occurred at. */
189         unsigned long       last_timeout_jiffies;
190
191         /* Are we waiting for the events, pretimeouts, received msgs? */
192         atomic_t            need_watch;
193
194         /*
195          * The driver will disable interrupts when it gets into a
196          * situation where it cannot handle messages due to lack of
197          * memory.  Once that situation clears up, it will re-enable
198          * interrupts.
199          */
200         bool interrupt_disabled;
201
202         /*
203          * Does the BMC support events?
204          */
205         bool supports_event_msg_buff;
206
207         /*
208          * Can we disable interrupts the global enables receive irq
209          * bit?  There are currently two forms of brokenness, some
210          * systems cannot disable the bit (which is technically within
211          * the spec but a bad idea) and some systems have the bit
212          * forced to zero even though interrupts work (which is
213          * clearly outside the spec).  The next bool tells which form
214          * of brokenness is present.
215          */
216         bool cannot_disable_irq;
217
218         /*
219          * Some systems are broken and cannot set the irq enable
220          * bit, even if they support interrupts.
221          */
222         bool irq_enable_broken;
223
224         /*
225          * Did we get an attention that we did not handle?
226          */
227         bool got_attn;
228
229         /* From the get device id response... */
230         struct ipmi_device_id device_id;
231
232         /* Default driver model device. */
233         struct platform_device *pdev;
234
235         /* Have we added the device group to the device? */
236         bool dev_group_added;
237
238         /* Have we added the platform device? */
239         bool pdev_registered;
240
241         /* Counters and things for the proc filesystem. */
242         atomic_t stats[SI_NUM_STATS];
243
244         struct task_struct *thread;
245
246         struct list_head link;
247 };
248
249 #define smi_inc_stat(smi, stat) \
250         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
251 #define smi_get_stat(smi, stat) \
252         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
253
254 #define IPMI_MAX_INTFS 4
255 static int force_kipmid[IPMI_MAX_INTFS];
256 static int num_force_kipmid;
257
258 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
259 static int num_max_busy_us;
260
261 static bool unload_when_empty = true;
262
263 static int try_smi_init(struct smi_info *smi);
264 static void shutdown_one_si(struct smi_info *smi_info);
265 static void cleanup_one_si(struct smi_info *smi_info);
266 static void cleanup_ipmi_si(void);
267
268 #ifdef DEBUG_TIMING
269 void debug_timestamp(char *msg)
270 {
271         struct timespec64 t;
272
273         getnstimeofday64(&t);
274         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
275 }
276 #else
277 #define debug_timestamp(x)
278 #endif
279
280 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
281 static int register_xaction_notifier(struct notifier_block *nb)
282 {
283         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
284 }
285
286 static void deliver_recv_msg(struct smi_info *smi_info,
287                              struct ipmi_smi_msg *msg)
288 {
289         /* Deliver the message to the upper layer. */
290         ipmi_smi_msg_received(smi_info->intf, msg);
291 }
292
293 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
294 {
295         struct ipmi_smi_msg *msg = smi_info->curr_msg;
296
297         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
298                 cCode = IPMI_ERR_UNSPECIFIED;
299         /* else use it as is */
300
301         /* Make it a response */
302         msg->rsp[0] = msg->data[0] | 4;
303         msg->rsp[1] = msg->data[1];
304         msg->rsp[2] = cCode;
305         msg->rsp_size = 3;
306
307         smi_info->curr_msg = NULL;
308         deliver_recv_msg(smi_info, msg);
309 }
310
311 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
312 {
313         int              rv;
314
315         if (!smi_info->waiting_msg) {
316                 smi_info->curr_msg = NULL;
317                 rv = SI_SM_IDLE;
318         } else {
319                 int err;
320
321                 smi_info->curr_msg = smi_info->waiting_msg;
322                 smi_info->waiting_msg = NULL;
323                 debug_timestamp("Start2");
324                 err = atomic_notifier_call_chain(&xaction_notifier_list,
325                                 0, smi_info);
326                 if (err & NOTIFY_STOP_MASK) {
327                         rv = SI_SM_CALL_WITHOUT_DELAY;
328                         goto out;
329                 }
330                 err = smi_info->handlers->start_transaction(
331                         smi_info->si_sm,
332                         smi_info->curr_msg->data,
333                         smi_info->curr_msg->data_size);
334                 if (err)
335                         return_hosed_msg(smi_info, err);
336
337                 rv = SI_SM_CALL_WITHOUT_DELAY;
338         }
339 out:
340         return rv;
341 }
342
343 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
344 {
345         if (!smi_info->timer_can_start)
346                 return;
347         smi_info->last_timeout_jiffies = jiffies;
348         mod_timer(&smi_info->si_timer, new_val);
349         smi_info->timer_running = true;
350 }
351
352 /*
353  * Start a new message and (re)start the timer and thread.
354  */
355 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
356                           unsigned int size)
357 {
358         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
359
360         if (smi_info->thread)
361                 wake_up_process(smi_info->thread);
362
363         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
364 }
365
366 static void start_check_enables(struct smi_info *smi_info)
367 {
368         unsigned char msg[2];
369
370         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
371         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
372
373         start_new_msg(smi_info, msg, 2);
374         smi_info->si_state = SI_CHECKING_ENABLES;
375 }
376
377 static void start_clear_flags(struct smi_info *smi_info)
378 {
379         unsigned char msg[3];
380
381         /* Make sure the watchdog pre-timeout flag is not set at startup. */
382         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
383         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
384         msg[2] = WDT_PRE_TIMEOUT_INT;
385
386         start_new_msg(smi_info, msg, 3);
387         smi_info->si_state = SI_CLEARING_FLAGS;
388 }
389
390 static void start_getting_msg_queue(struct smi_info *smi_info)
391 {
392         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
393         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
394         smi_info->curr_msg->data_size = 2;
395
396         start_new_msg(smi_info, smi_info->curr_msg->data,
397                       smi_info->curr_msg->data_size);
398         smi_info->si_state = SI_GETTING_MESSAGES;
399 }
400
401 static void start_getting_events(struct smi_info *smi_info)
402 {
403         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
404         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
405         smi_info->curr_msg->data_size = 2;
406
407         start_new_msg(smi_info, smi_info->curr_msg->data,
408                       smi_info->curr_msg->data_size);
409         smi_info->si_state = SI_GETTING_EVENTS;
410 }
411
412 /*
413  * When we have a situtaion where we run out of memory and cannot
414  * allocate messages, we just leave them in the BMC and run the system
415  * polled until we can allocate some memory.  Once we have some
416  * memory, we will re-enable the interrupt.
417  *
418  * Note that we cannot just use disable_irq(), since the interrupt may
419  * be shared.
420  */
421 static inline bool disable_si_irq(struct smi_info *smi_info)
422 {
423         if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
424                 smi_info->interrupt_disabled = true;
425                 start_check_enables(smi_info);
426                 return true;
427         }
428         return false;
429 }
430
431 static inline bool enable_si_irq(struct smi_info *smi_info)
432 {
433         if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
434                 smi_info->interrupt_disabled = false;
435                 start_check_enables(smi_info);
436                 return true;
437         }
438         return false;
439 }
440
441 /*
442  * Allocate a message.  If unable to allocate, start the interrupt
443  * disable process and return NULL.  If able to allocate but
444  * interrupts are disabled, free the message and return NULL after
445  * starting the interrupt enable process.
446  */
447 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
448 {
449         struct ipmi_smi_msg *msg;
450
451         msg = ipmi_alloc_smi_msg();
452         if (!msg) {
453                 if (!disable_si_irq(smi_info))
454                         smi_info->si_state = SI_NORMAL;
455         } else if (enable_si_irq(smi_info)) {
456                 ipmi_free_smi_msg(msg);
457                 msg = NULL;
458         }
459         return msg;
460 }
461
462 static void handle_flags(struct smi_info *smi_info)
463 {
464 retry:
465         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
466                 /* Watchdog pre-timeout */
467                 smi_inc_stat(smi_info, watchdog_pretimeouts);
468
469                 start_clear_flags(smi_info);
470                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
471                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
472         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
473                 /* Messages available. */
474                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
475                 if (!smi_info->curr_msg)
476                         return;
477
478                 start_getting_msg_queue(smi_info);
479         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
480                 /* Events available. */
481                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
482                 if (!smi_info->curr_msg)
483                         return;
484
485                 start_getting_events(smi_info);
486         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
487                    smi_info->oem_data_avail_handler) {
488                 if (smi_info->oem_data_avail_handler(smi_info))
489                         goto retry;
490         } else
491                 smi_info->si_state = SI_NORMAL;
492 }
493
494 /*
495  * Global enables we care about.
496  */
497 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
498                              IPMI_BMC_EVT_MSG_INTR)
499
500 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
501                                  bool *irq_on)
502 {
503         u8 enables = 0;
504
505         if (smi_info->supports_event_msg_buff)
506                 enables |= IPMI_BMC_EVT_MSG_BUFF;
507
508         if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
509              smi_info->cannot_disable_irq) &&
510             !smi_info->irq_enable_broken)
511                 enables |= IPMI_BMC_RCV_MSG_INTR;
512
513         if (smi_info->supports_event_msg_buff &&
514             smi_info->io.irq && !smi_info->interrupt_disabled &&
515             !smi_info->irq_enable_broken)
516                 enables |= IPMI_BMC_EVT_MSG_INTR;
517
518         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
519
520         return enables;
521 }
522
523 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
524 {
525         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
526
527         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
528
529         if ((bool)irqstate == irq_on)
530                 return;
531
532         if (irq_on)
533                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
534                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
535         else
536                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
537 }
538
539 static void handle_transaction_done(struct smi_info *smi_info)
540 {
541         struct ipmi_smi_msg *msg;
542
543         debug_timestamp("Done");
544         switch (smi_info->si_state) {
545         case SI_NORMAL:
546                 if (!smi_info->curr_msg)
547                         break;
548
549                 smi_info->curr_msg->rsp_size
550                         = smi_info->handlers->get_result(
551                                 smi_info->si_sm,
552                                 smi_info->curr_msg->rsp,
553                                 IPMI_MAX_MSG_LENGTH);
554
555                 /*
556                  * Do this here becase deliver_recv_msg() releases the
557                  * lock, and a new message can be put in during the
558                  * time the lock is released.
559                  */
560                 msg = smi_info->curr_msg;
561                 smi_info->curr_msg = NULL;
562                 deliver_recv_msg(smi_info, msg);
563                 break;
564
565         case SI_GETTING_FLAGS:
566         {
567                 unsigned char msg[4];
568                 unsigned int  len;
569
570                 /* We got the flags from the SMI, now handle them. */
571                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
572                 if (msg[2] != 0) {
573                         /* Error fetching flags, just give up for now. */
574                         smi_info->si_state = SI_NORMAL;
575                 } else if (len < 4) {
576                         /*
577                          * Hmm, no flags.  That's technically illegal, but
578                          * don't use uninitialized data.
579                          */
580                         smi_info->si_state = SI_NORMAL;
581                 } else {
582                         smi_info->msg_flags = msg[3];
583                         handle_flags(smi_info);
584                 }
585                 break;
586         }
587
588         case SI_CLEARING_FLAGS:
589         {
590                 unsigned char msg[3];
591
592                 /* We cleared the flags. */
593                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
594                 if (msg[2] != 0) {
595                         /* Error clearing flags */
596                         dev_warn(smi_info->io.dev,
597                                  "Error clearing flags: %2.2x\n", msg[2]);
598                 }
599                 smi_info->si_state = SI_NORMAL;
600                 break;
601         }
602
603         case SI_GETTING_EVENTS:
604         {
605                 smi_info->curr_msg->rsp_size
606                         = smi_info->handlers->get_result(
607                                 smi_info->si_sm,
608                                 smi_info->curr_msg->rsp,
609                                 IPMI_MAX_MSG_LENGTH);
610
611                 /*
612                  * Do this here becase deliver_recv_msg() releases the
613                  * lock, and a new message can be put in during the
614                  * time the lock is released.
615                  */
616                 msg = smi_info->curr_msg;
617                 smi_info->curr_msg = NULL;
618                 if (msg->rsp[2] != 0) {
619                         /* Error getting event, probably done. */
620                         msg->done(msg);
621
622                         /* Take off the event flag. */
623                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
624                         handle_flags(smi_info);
625                 } else {
626                         smi_inc_stat(smi_info, events);
627
628                         /*
629                          * Do this before we deliver the message
630                          * because delivering the message releases the
631                          * lock and something else can mess with the
632                          * state.
633                          */
634                         handle_flags(smi_info);
635
636                         deliver_recv_msg(smi_info, msg);
637                 }
638                 break;
639         }
640
641         case SI_GETTING_MESSAGES:
642         {
643                 smi_info->curr_msg->rsp_size
644                         = smi_info->handlers->get_result(
645                                 smi_info->si_sm,
646                                 smi_info->curr_msg->rsp,
647                                 IPMI_MAX_MSG_LENGTH);
648
649                 /*
650                  * Do this here becase deliver_recv_msg() releases the
651                  * lock, and a new message can be put in during the
652                  * time the lock is released.
653                  */
654                 msg = smi_info->curr_msg;
655                 smi_info->curr_msg = NULL;
656                 if (msg->rsp[2] != 0) {
657                         /* Error getting event, probably done. */
658                         msg->done(msg);
659
660                         /* Take off the msg flag. */
661                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
662                         handle_flags(smi_info);
663                 } else {
664                         smi_inc_stat(smi_info, incoming_messages);
665
666                         /*
667                          * Do this before we deliver the message
668                          * because delivering the message releases the
669                          * lock and something else can mess with the
670                          * state.
671                          */
672                         handle_flags(smi_info);
673
674                         deliver_recv_msg(smi_info, msg);
675                 }
676                 break;
677         }
678
679         case SI_CHECKING_ENABLES:
680         {
681                 unsigned char msg[4];
682                 u8 enables;
683                 bool irq_on;
684
685                 /* We got the flags from the SMI, now handle them. */
686                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
687                 if (msg[2] != 0) {
688                         dev_warn(smi_info->io.dev,
689                                  "Couldn't get irq info: %x.\n", msg[2]);
690                         dev_warn(smi_info->io.dev,
691                                  "Maybe ok, but ipmi might run very slowly.\n");
692                         smi_info->si_state = SI_NORMAL;
693                         break;
694                 }
695                 enables = current_global_enables(smi_info, 0, &irq_on);
696                 if (smi_info->io.si_type == SI_BT)
697                         /* BT has its own interrupt enable bit. */
698                         check_bt_irq(smi_info, irq_on);
699                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
700                         /* Enables are not correct, fix them. */
701                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
702                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
703                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
704                         smi_info->handlers->start_transaction(
705                                 smi_info->si_sm, msg, 3);
706                         smi_info->si_state = SI_SETTING_ENABLES;
707                 } else if (smi_info->supports_event_msg_buff) {
708                         smi_info->curr_msg = ipmi_alloc_smi_msg();
709                         if (!smi_info->curr_msg) {
710                                 smi_info->si_state = SI_NORMAL;
711                                 break;
712                         }
713                         start_getting_events(smi_info);
714                 } else {
715                         smi_info->si_state = SI_NORMAL;
716                 }
717                 break;
718         }
719
720         case SI_SETTING_ENABLES:
721         {
722                 unsigned char msg[4];
723
724                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
725                 if (msg[2] != 0)
726                         dev_warn(smi_info->io.dev,
727                                  "Could not set the global enables: 0x%x.\n",
728                                  msg[2]);
729
730                 if (smi_info->supports_event_msg_buff) {
731                         smi_info->curr_msg = ipmi_alloc_smi_msg();
732                         if (!smi_info->curr_msg) {
733                                 smi_info->si_state = SI_NORMAL;
734                                 break;
735                         }
736                         start_getting_events(smi_info);
737                 } else {
738                         smi_info->si_state = SI_NORMAL;
739                 }
740                 break;
741         }
742         }
743 }
744
745 /*
746  * Called on timeouts and events.  Timeouts should pass the elapsed
747  * time, interrupts should pass in zero.  Must be called with
748  * si_lock held and interrupts disabled.
749  */
750 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
751                                            int time)
752 {
753         enum si_sm_result si_sm_result;
754
755 restart:
756         /*
757          * There used to be a loop here that waited a little while
758          * (around 25us) before giving up.  That turned out to be
759          * pointless, the minimum delays I was seeing were in the 300us
760          * range, which is far too long to wait in an interrupt.  So
761          * we just run until the state machine tells us something
762          * happened or it needs a delay.
763          */
764         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
765         time = 0;
766         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
767                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
768
769         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
770                 smi_inc_stat(smi_info, complete_transactions);
771
772                 handle_transaction_done(smi_info);
773                 goto restart;
774         } else if (si_sm_result == SI_SM_HOSED) {
775                 smi_inc_stat(smi_info, hosed_count);
776
777                 /*
778                  * Do the before return_hosed_msg, because that
779                  * releases the lock.
780                  */
781                 smi_info->si_state = SI_NORMAL;
782                 if (smi_info->curr_msg != NULL) {
783                         /*
784                          * If we were handling a user message, format
785                          * a response to send to the upper layer to
786                          * tell it about the error.
787                          */
788                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
789                 }
790                 goto restart;
791         }
792
793         /*
794          * We prefer handling attn over new messages.  But don't do
795          * this if there is not yet an upper layer to handle anything.
796          */
797         if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
798                 unsigned char msg[2];
799
800                 if (smi_info->si_state != SI_NORMAL) {
801                         /*
802                          * We got an ATTN, but we are doing something else.
803                          * Handle the ATTN later.
804                          */
805                         smi_info->got_attn = true;
806                 } else {
807                         smi_info->got_attn = false;
808                         smi_inc_stat(smi_info, attentions);
809
810                         /*
811                          * Got a attn, send down a get message flags to see
812                          * what's causing it.  It would be better to handle
813                          * this in the upper layer, but due to the way
814                          * interrupts work with the SMI, that's not really
815                          * possible.
816                          */
817                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
818                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
819
820                         start_new_msg(smi_info, msg, 2);
821                         smi_info->si_state = SI_GETTING_FLAGS;
822                         goto restart;
823                 }
824         }
825
826         /* If we are currently idle, try to start the next message. */
827         if (si_sm_result == SI_SM_IDLE) {
828                 smi_inc_stat(smi_info, idles);
829
830                 si_sm_result = start_next_msg(smi_info);
831                 if (si_sm_result != SI_SM_IDLE)
832                         goto restart;
833         }
834
835         if ((si_sm_result == SI_SM_IDLE)
836             && (atomic_read(&smi_info->req_events))) {
837                 /*
838                  * We are idle and the upper layer requested that I fetch
839                  * events, so do so.
840                  */
841                 atomic_set(&smi_info->req_events, 0);
842
843                 /*
844                  * Take this opportunity to check the interrupt and
845                  * message enable state for the BMC.  The BMC can be
846                  * asynchronously reset, and may thus get interrupts
847                  * disable and messages disabled.
848                  */
849                 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
850                         start_check_enables(smi_info);
851                 } else {
852                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
853                         if (!smi_info->curr_msg)
854                                 goto out;
855
856                         start_getting_events(smi_info);
857                 }
858                 goto restart;
859         }
860
861         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
862                 /* Ok it if fails, the timer will just go off. */
863                 if (del_timer(&smi_info->si_timer))
864                         smi_info->timer_running = false;
865         }
866
867 out:
868         return si_sm_result;
869 }
870
871 static void check_start_timer_thread(struct smi_info *smi_info)
872 {
873         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
874                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
875
876                 if (smi_info->thread)
877                         wake_up_process(smi_info->thread);
878
879                 start_next_msg(smi_info);
880                 smi_event_handler(smi_info, 0);
881         }
882 }
883
884 static void flush_messages(void *send_info)
885 {
886         struct smi_info *smi_info = send_info;
887         enum si_sm_result result;
888
889         /*
890          * Currently, this function is called only in run-to-completion
891          * mode.  This means we are single-threaded, no need for locks.
892          */
893         result = smi_event_handler(smi_info, 0);
894         while (result != SI_SM_IDLE) {
895                 udelay(SI_SHORT_TIMEOUT_USEC);
896                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
897         }
898 }
899
900 static void sender(void                *send_info,
901                    struct ipmi_smi_msg *msg)
902 {
903         struct smi_info   *smi_info = send_info;
904         unsigned long     flags;
905
906         debug_timestamp("Enqueue");
907
908         if (smi_info->run_to_completion) {
909                 /*
910                  * If we are running to completion, start it.  Upper
911                  * layer will call flush_messages to clear it out.
912                  */
913                 smi_info->waiting_msg = msg;
914                 return;
915         }
916
917         spin_lock_irqsave(&smi_info->si_lock, flags);
918         /*
919          * The following two lines don't need to be under the lock for
920          * the lock's sake, but they do need SMP memory barriers to
921          * avoid getting things out of order.  We are already claiming
922          * the lock, anyway, so just do it under the lock to avoid the
923          * ordering problem.
924          */
925         BUG_ON(smi_info->waiting_msg);
926         smi_info->waiting_msg = msg;
927         check_start_timer_thread(smi_info);
928         spin_unlock_irqrestore(&smi_info->si_lock, flags);
929 }
930
931 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
932 {
933         struct smi_info   *smi_info = send_info;
934
935         smi_info->run_to_completion = i_run_to_completion;
936         if (i_run_to_completion)
937                 flush_messages(smi_info);
938 }
939
940 /*
941  * Use -1 in the nsec value of the busy waiting timespec to tell that
942  * we are spinning in kipmid looking for something and not delaying
943  * between checks
944  */
945 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
946 {
947         ts->tv_nsec = -1;
948 }
949 static inline int ipmi_si_is_busy(struct timespec64 *ts)
950 {
951         return ts->tv_nsec != -1;
952 }
953
954 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
955                                         const struct smi_info *smi_info,
956                                         struct timespec64 *busy_until)
957 {
958         unsigned int max_busy_us = 0;
959
960         if (smi_info->intf_num < num_max_busy_us)
961                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
962         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
963                 ipmi_si_set_not_busy(busy_until);
964         else if (!ipmi_si_is_busy(busy_until)) {
965                 getnstimeofday64(busy_until);
966                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
967         } else {
968                 struct timespec64 now;
969
970                 getnstimeofday64(&now);
971                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
972                         ipmi_si_set_not_busy(busy_until);
973                         return 0;
974                 }
975         }
976         return 1;
977 }
978
979
980 /*
981  * A busy-waiting loop for speeding up IPMI operation.
982  *
983  * Lousy hardware makes this hard.  This is only enabled for systems
984  * that are not BT and do not have interrupts.  It starts spinning
985  * when an operation is complete or until max_busy tells it to stop
986  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
987  * Documentation/IPMI.txt for details.
988  */
989 static int ipmi_thread(void *data)
990 {
991         struct smi_info *smi_info = data;
992         unsigned long flags;
993         enum si_sm_result smi_result;
994         struct timespec64 busy_until;
995
996         ipmi_si_set_not_busy(&busy_until);
997         set_user_nice(current, MAX_NICE);
998         while (!kthread_should_stop()) {
999                 int busy_wait;
1000
1001                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1002                 smi_result = smi_event_handler(smi_info, 0);
1003
1004                 /*
1005                  * If the driver is doing something, there is a possible
1006                  * race with the timer.  If the timer handler see idle,
1007                  * and the thread here sees something else, the timer
1008                  * handler won't restart the timer even though it is
1009                  * required.  So start it here if necessary.
1010                  */
1011                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1012                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1013
1014                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1015                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1016                                                   &busy_until);
1017                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1018                         ; /* do nothing */
1019                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1020                         schedule();
1021                 else if (smi_result == SI_SM_IDLE) {
1022                         if (atomic_read(&smi_info->need_watch)) {
1023                                 schedule_timeout_interruptible(100);
1024                         } else {
1025                                 /* Wait to be woken up when we are needed. */
1026                                 __set_current_state(TASK_INTERRUPTIBLE);
1027                                 schedule();
1028                         }
1029                 } else
1030                         schedule_timeout_interruptible(1);
1031         }
1032         return 0;
1033 }
1034
1035
1036 static void poll(void *send_info)
1037 {
1038         struct smi_info *smi_info = send_info;
1039         unsigned long flags = 0;
1040         bool run_to_completion = smi_info->run_to_completion;
1041
1042         /*
1043          * Make sure there is some delay in the poll loop so we can
1044          * drive time forward and timeout things.
1045          */
1046         udelay(10);
1047         if (!run_to_completion)
1048                 spin_lock_irqsave(&smi_info->si_lock, flags);
1049         smi_event_handler(smi_info, 10);
1050         if (!run_to_completion)
1051                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1052 }
1053
1054 static void request_events(void *send_info)
1055 {
1056         struct smi_info *smi_info = send_info;
1057
1058         if (!smi_info->has_event_buffer)
1059                 return;
1060
1061         atomic_set(&smi_info->req_events, 1);
1062 }
1063
1064 static void set_need_watch(void *send_info, bool enable)
1065 {
1066         struct smi_info *smi_info = send_info;
1067         unsigned long flags;
1068
1069         atomic_set(&smi_info->need_watch, enable);
1070         spin_lock_irqsave(&smi_info->si_lock, flags);
1071         check_start_timer_thread(smi_info);
1072         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1073 }
1074
1075 static void smi_timeout(struct timer_list *t)
1076 {
1077         struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1078         enum si_sm_result smi_result;
1079         unsigned long     flags;
1080         unsigned long     jiffies_now;
1081         long              time_diff;
1082         long              timeout;
1083
1084         spin_lock_irqsave(&(smi_info->si_lock), flags);
1085         debug_timestamp("Timer");
1086
1087         jiffies_now = jiffies;
1088         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1089                      * SI_USEC_PER_JIFFY);
1090         smi_result = smi_event_handler(smi_info, time_diff);
1091
1092         if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1093                 /* Running with interrupts, only do long timeouts. */
1094                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1095                 smi_inc_stat(smi_info, long_timeouts);
1096                 goto do_mod_timer;
1097         }
1098
1099         /*
1100          * If the state machine asks for a short delay, then shorten
1101          * the timer timeout.
1102          */
1103         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1104                 smi_inc_stat(smi_info, short_timeouts);
1105                 timeout = jiffies + 1;
1106         } else {
1107                 smi_inc_stat(smi_info, long_timeouts);
1108                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1109         }
1110
1111 do_mod_timer:
1112         if (smi_result != SI_SM_IDLE)
1113                 smi_mod_timer(smi_info, timeout);
1114         else
1115                 smi_info->timer_running = false;
1116         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1117 }
1118
1119 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1120 {
1121         struct smi_info *smi_info = data;
1122         unsigned long   flags;
1123
1124         if (smi_info->io.si_type == SI_BT)
1125                 /* We need to clear the IRQ flag for the BT interface. */
1126                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1127                                      IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1128                                      | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1129
1130         spin_lock_irqsave(&(smi_info->si_lock), flags);
1131
1132         smi_inc_stat(smi_info, interrupts);
1133
1134         debug_timestamp("Interrupt");
1135
1136         smi_event_handler(smi_info, 0);
1137         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1138         return IRQ_HANDLED;
1139 }
1140
1141 static int smi_start_processing(void            *send_info,
1142                                 struct ipmi_smi *intf)
1143 {
1144         struct smi_info *new_smi = send_info;
1145         int             enable = 0;
1146
1147         new_smi->intf = intf;
1148
1149         /* Set up the timer that drives the interface. */
1150         timer_setup(&new_smi->si_timer, smi_timeout, 0);
1151         new_smi->timer_can_start = true;
1152         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1153
1154         /* Try to claim any interrupts. */
1155         if (new_smi->io.irq_setup) {
1156                 new_smi->io.irq_handler_data = new_smi;
1157                 new_smi->io.irq_setup(&new_smi->io);
1158         }
1159
1160         /*
1161          * Check if the user forcefully enabled the daemon.
1162          */
1163         if (new_smi->intf_num < num_force_kipmid)
1164                 enable = force_kipmid[new_smi->intf_num];
1165         /*
1166          * The BT interface is efficient enough to not need a thread,
1167          * and there is no need for a thread if we have interrupts.
1168          */
1169         else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1170                 enable = 1;
1171
1172         if (enable) {
1173                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1174                                               "kipmi%d", new_smi->intf_num);
1175                 if (IS_ERR(new_smi->thread)) {
1176                         dev_notice(new_smi->io.dev, "Could not start"
1177                                    " kernel thread due to error %ld, only using"
1178                                    " timers to drive the interface\n",
1179                                    PTR_ERR(new_smi->thread));
1180                         new_smi->thread = NULL;
1181                 }
1182         }
1183
1184         return 0;
1185 }
1186
1187 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1188 {
1189         struct smi_info *smi = send_info;
1190
1191         data->addr_src = smi->io.addr_source;
1192         data->dev = smi->io.dev;
1193         data->addr_info = smi->io.addr_info;
1194         get_device(smi->io.dev);
1195
1196         return 0;
1197 }
1198
1199 static void set_maintenance_mode(void *send_info, bool enable)
1200 {
1201         struct smi_info   *smi_info = send_info;
1202
1203         if (!enable)
1204                 atomic_set(&smi_info->req_events, 0);
1205 }
1206
1207 static void shutdown_smi(void *send_info);
1208 static const struct ipmi_smi_handlers handlers = {
1209         .owner                  = THIS_MODULE,
1210         .start_processing       = smi_start_processing,
1211         .shutdown               = shutdown_smi,
1212         .get_smi_info           = get_smi_info,
1213         .sender                 = sender,
1214         .request_events         = request_events,
1215         .set_need_watch         = set_need_watch,
1216         .set_maintenance_mode   = set_maintenance_mode,
1217         .set_run_to_completion  = set_run_to_completion,
1218         .flush_messages         = flush_messages,
1219         .poll                   = poll,
1220 };
1221
1222 static LIST_HEAD(smi_infos);
1223 static DEFINE_MUTEX(smi_infos_lock);
1224 static int smi_num; /* Used to sequence the SMIs */
1225
1226 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1227
1228 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1229 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1230                  " disabled(0).  Normally the IPMI driver auto-detects"
1231                  " this, but the value may be overridden by this parm.");
1232 module_param(unload_when_empty, bool, 0);
1233 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1234                  " specified or found, default is 1.  Setting to 0"
1235                  " is useful for hot add of devices using hotmod.");
1236 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1237 MODULE_PARM_DESC(kipmid_max_busy_us,
1238                  "Max time (in microseconds) to busy-wait for IPMI data before"
1239                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1240                  " if kipmid is using up a lot of CPU time.");
1241
1242 void ipmi_irq_finish_setup(struct si_sm_io *io)
1243 {
1244         if (io->si_type == SI_BT)
1245                 /* Enable the interrupt in the BT interface. */
1246                 io->outputb(io, IPMI_BT_INTMASK_REG,
1247                             IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1248 }
1249
1250 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1251 {
1252         if (io->si_type == SI_BT)
1253                 /* Disable the interrupt in the BT interface. */
1254                 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1255 }
1256
1257 static void std_irq_cleanup(struct si_sm_io *io)
1258 {
1259         ipmi_irq_start_cleanup(io);
1260         free_irq(io->irq, io->irq_handler_data);
1261 }
1262
1263 int ipmi_std_irq_setup(struct si_sm_io *io)
1264 {
1265         int rv;
1266
1267         if (!io->irq)
1268                 return 0;
1269
1270         rv = request_irq(io->irq,
1271                          ipmi_si_irq_handler,
1272                          IRQF_SHARED,
1273                          DEVICE_NAME,
1274                          io->irq_handler_data);
1275         if (rv) {
1276                 dev_warn(io->dev, "%s unable to claim interrupt %d,"
1277                          " running polled\n",
1278                          DEVICE_NAME, io->irq);
1279                 io->irq = 0;
1280         } else {
1281                 io->irq_cleanup = std_irq_cleanup;
1282                 ipmi_irq_finish_setup(io);
1283                 dev_info(io->dev, "Using irq %d\n", io->irq);
1284         }
1285
1286         return rv;
1287 }
1288
1289 static int wait_for_msg_done(struct smi_info *smi_info)
1290 {
1291         enum si_sm_result     smi_result;
1292
1293         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1294         for (;;) {
1295                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1296                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1297                         schedule_timeout_uninterruptible(1);
1298                         smi_result = smi_info->handlers->event(
1299                                 smi_info->si_sm, jiffies_to_usecs(1));
1300                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1301                         smi_result = smi_info->handlers->event(
1302                                 smi_info->si_sm, 0);
1303                 } else
1304                         break;
1305         }
1306         if (smi_result == SI_SM_HOSED)
1307                 /*
1308                  * We couldn't get the state machine to run, so whatever's at
1309                  * the port is probably not an IPMI SMI interface.
1310                  */
1311                 return -ENODEV;
1312
1313         return 0;
1314 }
1315
1316 static int try_get_dev_id(struct smi_info *smi_info)
1317 {
1318         unsigned char         msg[2];
1319         unsigned char         *resp;
1320         unsigned long         resp_len;
1321         int                   rv = 0;
1322
1323         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1324         if (!resp)
1325                 return -ENOMEM;
1326
1327         /*
1328          * Do a Get Device ID command, since it comes back with some
1329          * useful info.
1330          */
1331         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1332         msg[1] = IPMI_GET_DEVICE_ID_CMD;
1333         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1334
1335         rv = wait_for_msg_done(smi_info);
1336         if (rv)
1337                 goto out;
1338
1339         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1340                                                   resp, IPMI_MAX_MSG_LENGTH);
1341
1342         /* Check and record info from the get device id, in case we need it. */
1343         rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1344                         resp + 2, resp_len - 2, &smi_info->device_id);
1345
1346 out:
1347         kfree(resp);
1348         return rv;
1349 }
1350
1351 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1352 {
1353         unsigned char         msg[3];
1354         unsigned char         *resp;
1355         unsigned long         resp_len;
1356         int                   rv;
1357
1358         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1359         if (!resp)
1360                 return -ENOMEM;
1361
1362         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1363         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1364         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1365
1366         rv = wait_for_msg_done(smi_info);
1367         if (rv) {
1368                 dev_warn(smi_info->io.dev,
1369                          "Error getting response from get global enables command: %d\n",
1370                          rv);
1371                 goto out;
1372         }
1373
1374         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1375                                                   resp, IPMI_MAX_MSG_LENGTH);
1376
1377         if (resp_len < 4 ||
1378                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1379                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1380                         resp[2] != 0) {
1381                 dev_warn(smi_info->io.dev,
1382                          "Invalid return from get global enables command: %ld %x %x %x\n",
1383                          resp_len, resp[0], resp[1], resp[2]);
1384                 rv = -EINVAL;
1385                 goto out;
1386         } else {
1387                 *enables = resp[3];
1388         }
1389
1390 out:
1391         kfree(resp);
1392         return rv;
1393 }
1394
1395 /*
1396  * Returns 1 if it gets an error from the command.
1397  */
1398 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1399 {
1400         unsigned char         msg[3];
1401         unsigned char         *resp;
1402         unsigned long         resp_len;
1403         int                   rv;
1404
1405         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1406         if (!resp)
1407                 return -ENOMEM;
1408
1409         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1410         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1411         msg[2] = enables;
1412         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1413
1414         rv = wait_for_msg_done(smi_info);
1415         if (rv) {
1416                 dev_warn(smi_info->io.dev,
1417                          "Error getting response from set global enables command: %d\n",
1418                          rv);
1419                 goto out;
1420         }
1421
1422         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1423                                                   resp, IPMI_MAX_MSG_LENGTH);
1424
1425         if (resp_len < 3 ||
1426                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1427                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1428                 dev_warn(smi_info->io.dev,
1429                          "Invalid return from set global enables command: %ld %x %x\n",
1430                          resp_len, resp[0], resp[1]);
1431                 rv = -EINVAL;
1432                 goto out;
1433         }
1434
1435         if (resp[2] != 0)
1436                 rv = 1;
1437
1438 out:
1439         kfree(resp);
1440         return rv;
1441 }
1442
1443 /*
1444  * Some BMCs do not support clearing the receive irq bit in the global
1445  * enables (even if they don't support interrupts on the BMC).  Check
1446  * for this and handle it properly.
1447  */
1448 static void check_clr_rcv_irq(struct smi_info *smi_info)
1449 {
1450         u8 enables = 0;
1451         int rv;
1452
1453         rv = get_global_enables(smi_info, &enables);
1454         if (!rv) {
1455                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1456                         /* Already clear, should work ok. */
1457                         return;
1458
1459                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1460                 rv = set_global_enables(smi_info, enables);
1461         }
1462
1463         if (rv < 0) {
1464                 dev_err(smi_info->io.dev,
1465                         "Cannot check clearing the rcv irq: %d\n", rv);
1466                 return;
1467         }
1468
1469         if (rv) {
1470                 /*
1471                  * An error when setting the event buffer bit means
1472                  * clearing the bit is not supported.
1473                  */
1474                 dev_warn(smi_info->io.dev,
1475                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1476                 smi_info->cannot_disable_irq = true;
1477         }
1478 }
1479
1480 /*
1481  * Some BMCs do not support setting the interrupt bits in the global
1482  * enables even if they support interrupts.  Clearly bad, but we can
1483  * compensate.
1484  */
1485 static void check_set_rcv_irq(struct smi_info *smi_info)
1486 {
1487         u8 enables = 0;
1488         int rv;
1489
1490         if (!smi_info->io.irq)
1491                 return;
1492
1493         rv = get_global_enables(smi_info, &enables);
1494         if (!rv) {
1495                 enables |= IPMI_BMC_RCV_MSG_INTR;
1496                 rv = set_global_enables(smi_info, enables);
1497         }
1498
1499         if (rv < 0) {
1500                 dev_err(smi_info->io.dev,
1501                         "Cannot check setting the rcv irq: %d\n", rv);
1502                 return;
1503         }
1504
1505         if (rv) {
1506                 /*
1507                  * An error when setting the event buffer bit means
1508                  * setting the bit is not supported.
1509                  */
1510                 dev_warn(smi_info->io.dev,
1511                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1512                 smi_info->cannot_disable_irq = true;
1513                 smi_info->irq_enable_broken = true;
1514         }
1515 }
1516
1517 static int try_enable_event_buffer(struct smi_info *smi_info)
1518 {
1519         unsigned char         msg[3];
1520         unsigned char         *resp;
1521         unsigned long         resp_len;
1522         int                   rv = 0;
1523
1524         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1525         if (!resp)
1526                 return -ENOMEM;
1527
1528         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1529         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1530         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1531
1532         rv = wait_for_msg_done(smi_info);
1533         if (rv) {
1534                 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
1535                 goto out;
1536         }
1537
1538         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1539                                                   resp, IPMI_MAX_MSG_LENGTH);
1540
1541         if (resp_len < 4 ||
1542                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1543                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1544                         resp[2] != 0) {
1545                 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
1546                 rv = -EINVAL;
1547                 goto out;
1548         }
1549
1550         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1551                 /* buffer is already enabled, nothing to do. */
1552                 smi_info->supports_event_msg_buff = true;
1553                 goto out;
1554         }
1555
1556         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1557         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1558         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1559         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1560
1561         rv = wait_for_msg_done(smi_info);
1562         if (rv) {
1563                 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
1564                 goto out;
1565         }
1566
1567         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1568                                                   resp, IPMI_MAX_MSG_LENGTH);
1569
1570         if (resp_len < 3 ||
1571                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1572                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1573                 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
1574                 rv = -EINVAL;
1575                 goto out;
1576         }
1577
1578         if (resp[2] != 0)
1579                 /*
1580                  * An error when setting the event buffer bit means
1581                  * that the event buffer is not supported.
1582                  */
1583                 rv = -ENOENT;
1584         else
1585                 smi_info->supports_event_msg_buff = true;
1586
1587 out:
1588         kfree(resp);
1589         return rv;
1590 }
1591
1592 #ifdef CONFIG_IPMI_PROC_INTERFACE
1593 static int smi_type_proc_show(struct seq_file *m, void *v)
1594 {
1595         struct smi_info *smi = m->private;
1596
1597         seq_printf(m, "%s\n", si_to_str[smi->io.si_type]);
1598
1599         return 0;
1600 }
1601
1602 static int smi_type_proc_open(struct inode *inode, struct file *file)
1603 {
1604         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
1605 }
1606
1607 static const struct file_operations smi_type_proc_ops = {
1608         .open           = smi_type_proc_open,
1609         .read           = seq_read,
1610         .llseek         = seq_lseek,
1611         .release        = single_release,
1612 };
1613
1614 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
1615 {
1616         struct smi_info *smi = m->private;
1617
1618         seq_printf(m, "interrupts_enabled:    %d\n",
1619                        smi->io.irq && !smi->interrupt_disabled);
1620         seq_printf(m, "short_timeouts:        %u\n",
1621                        smi_get_stat(smi, short_timeouts));
1622         seq_printf(m, "long_timeouts:         %u\n",
1623                        smi_get_stat(smi, long_timeouts));
1624         seq_printf(m, "idles:                 %u\n",
1625                        smi_get_stat(smi, idles));
1626         seq_printf(m, "interrupts:            %u\n",
1627                        smi_get_stat(smi, interrupts));
1628         seq_printf(m, "attentions:            %u\n",
1629                        smi_get_stat(smi, attentions));
1630         seq_printf(m, "flag_fetches:          %u\n",
1631                        smi_get_stat(smi, flag_fetches));
1632         seq_printf(m, "hosed_count:           %u\n",
1633                        smi_get_stat(smi, hosed_count));
1634         seq_printf(m, "complete_transactions: %u\n",
1635                        smi_get_stat(smi, complete_transactions));
1636         seq_printf(m, "events:                %u\n",
1637                        smi_get_stat(smi, events));
1638         seq_printf(m, "watchdog_pretimeouts:  %u\n",
1639                        smi_get_stat(smi, watchdog_pretimeouts));
1640         seq_printf(m, "incoming_messages:     %u\n",
1641                        smi_get_stat(smi, incoming_messages));
1642         return 0;
1643 }
1644
1645 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
1646 {
1647         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
1648 }
1649
1650 static const struct file_operations smi_si_stats_proc_ops = {
1651         .open           = smi_si_stats_proc_open,
1652         .read           = seq_read,
1653         .llseek         = seq_lseek,
1654         .release        = single_release,
1655 };
1656
1657 static int smi_params_proc_show(struct seq_file *m, void *v)
1658 {
1659         struct smi_info *smi = m->private;
1660
1661         seq_printf(m,
1662                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1663                    si_to_str[smi->io.si_type],
1664                    addr_space_to_str[smi->io.addr_type],
1665                    smi->io.addr_data,
1666                    smi->io.regspacing,
1667                    smi->io.regsize,
1668                    smi->io.regshift,
1669                    smi->io.irq,
1670                    smi->io.slave_addr);
1671
1672         return 0;
1673 }
1674
1675 static int smi_params_proc_open(struct inode *inode, struct file *file)
1676 {
1677         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
1678 }
1679
1680 static const struct file_operations smi_params_proc_ops = {
1681         .open           = smi_params_proc_open,
1682         .read           = seq_read,
1683         .llseek         = seq_lseek,
1684         .release        = single_release,
1685 };
1686 #endif
1687
1688 #define IPMI_SI_ATTR(name) \
1689 static ssize_t ipmi_##name##_show(struct device *dev,                   \
1690                                   struct device_attribute *attr,        \
1691                                   char *buf)                            \
1692 {                                                                       \
1693         struct smi_info *smi_info = dev_get_drvdata(dev);               \
1694                                                                         \
1695         return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1696 }                                                                       \
1697 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1698
1699 static ssize_t ipmi_type_show(struct device *dev,
1700                               struct device_attribute *attr,
1701                               char *buf)
1702 {
1703         struct smi_info *smi_info = dev_get_drvdata(dev);
1704
1705         return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1706 }
1707 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1708
1709 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1710                                             struct device_attribute *attr,
1711                                             char *buf)
1712 {
1713         struct smi_info *smi_info = dev_get_drvdata(dev);
1714         int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1715
1716         return snprintf(buf, 10, "%d\n", enabled);
1717 }
1718 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1719                    ipmi_interrupts_enabled_show, NULL);
1720
1721 IPMI_SI_ATTR(short_timeouts);
1722 IPMI_SI_ATTR(long_timeouts);
1723 IPMI_SI_ATTR(idles);
1724 IPMI_SI_ATTR(interrupts);
1725 IPMI_SI_ATTR(attentions);
1726 IPMI_SI_ATTR(flag_fetches);
1727 IPMI_SI_ATTR(hosed_count);
1728 IPMI_SI_ATTR(complete_transactions);
1729 IPMI_SI_ATTR(events);
1730 IPMI_SI_ATTR(watchdog_pretimeouts);
1731 IPMI_SI_ATTR(incoming_messages);
1732
1733 static ssize_t ipmi_params_show(struct device *dev,
1734                                 struct device_attribute *attr,
1735                                 char *buf)
1736 {
1737         struct smi_info *smi_info = dev_get_drvdata(dev);
1738
1739         return snprintf(buf, 200,
1740                         "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1741                         si_to_str[smi_info->io.si_type],
1742                         addr_space_to_str[smi_info->io.addr_type],
1743                         smi_info->io.addr_data,
1744                         smi_info->io.regspacing,
1745                         smi_info->io.regsize,
1746                         smi_info->io.regshift,
1747                         smi_info->io.irq,
1748                         smi_info->io.slave_addr);
1749 }
1750 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1751
1752 static struct attribute *ipmi_si_dev_attrs[] = {
1753         &dev_attr_type.attr,
1754         &dev_attr_interrupts_enabled.attr,
1755         &dev_attr_short_timeouts.attr,
1756         &dev_attr_long_timeouts.attr,
1757         &dev_attr_idles.attr,
1758         &dev_attr_interrupts.attr,
1759         &dev_attr_attentions.attr,
1760         &dev_attr_flag_fetches.attr,
1761         &dev_attr_hosed_count.attr,
1762         &dev_attr_complete_transactions.attr,
1763         &dev_attr_events.attr,
1764         &dev_attr_watchdog_pretimeouts.attr,
1765         &dev_attr_incoming_messages.attr,
1766         &dev_attr_params.attr,
1767         NULL
1768 };
1769
1770 static const struct attribute_group ipmi_si_dev_attr_group = {
1771         .attrs          = ipmi_si_dev_attrs,
1772 };
1773
1774 /*
1775  * oem_data_avail_to_receive_msg_avail
1776  * @info - smi_info structure with msg_flags set
1777  *
1778  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1779  * Returns 1 indicating need to re-run handle_flags().
1780  */
1781 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1782 {
1783         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1784                                RECEIVE_MSG_AVAIL);
1785         return 1;
1786 }
1787
1788 /*
1789  * setup_dell_poweredge_oem_data_handler
1790  * @info - smi_info.device_id must be populated
1791  *
1792  * Systems that match, but have firmware version < 1.40 may assert
1793  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1794  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1795  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1796  * as RECEIVE_MSG_AVAIL instead.
1797  *
1798  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1799  * assert the OEM[012] bits, and if it did, the driver would have to
1800  * change to handle that properly, we don't actually check for the
1801  * firmware version.
1802  * Device ID = 0x20                BMC on PowerEdge 8G servers
1803  * Device Revision = 0x80
1804  * Firmware Revision1 = 0x01       BMC version 1.40
1805  * Firmware Revision2 = 0x40       BCD encoded
1806  * IPMI Version = 0x51             IPMI 1.5
1807  * Manufacturer ID = A2 02 00      Dell IANA
1808  *
1809  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1810  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1811  *
1812  */
1813 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1814 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1815 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1816 #define DELL_IANA_MFR_ID 0x0002a2
1817 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1818 {
1819         struct ipmi_device_id *id = &smi_info->device_id;
1820         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1821                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1822                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1823                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1824                         smi_info->oem_data_avail_handler =
1825                                 oem_data_avail_to_receive_msg_avail;
1826                 } else if (ipmi_version_major(id) < 1 ||
1827                            (ipmi_version_major(id) == 1 &&
1828                             ipmi_version_minor(id) < 5)) {
1829                         smi_info->oem_data_avail_handler =
1830                                 oem_data_avail_to_receive_msg_avail;
1831                 }
1832         }
1833 }
1834
1835 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1836 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1837 {
1838         struct ipmi_smi_msg *msg = smi_info->curr_msg;
1839
1840         /* Make it a response */
1841         msg->rsp[0] = msg->data[0] | 4;
1842         msg->rsp[1] = msg->data[1];
1843         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1844         msg->rsp_size = 3;
1845         smi_info->curr_msg = NULL;
1846         deliver_recv_msg(smi_info, msg);
1847 }
1848
1849 /*
1850  * dell_poweredge_bt_xaction_handler
1851  * @info - smi_info.device_id must be populated
1852  *
1853  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1854  * not respond to a Get SDR command if the length of the data
1855  * requested is exactly 0x3A, which leads to command timeouts and no
1856  * data returned.  This intercepts such commands, and causes userspace
1857  * callers to try again with a different-sized buffer, which succeeds.
1858  */
1859
1860 #define STORAGE_NETFN 0x0A
1861 #define STORAGE_CMD_GET_SDR 0x23
1862 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1863                                              unsigned long unused,
1864                                              void *in)
1865 {
1866         struct smi_info *smi_info = in;
1867         unsigned char *data = smi_info->curr_msg->data;
1868         unsigned int size   = smi_info->curr_msg->data_size;
1869         if (size >= 8 &&
1870             (data[0]>>2) == STORAGE_NETFN &&
1871             data[1] == STORAGE_CMD_GET_SDR &&
1872             data[7] == 0x3A) {
1873                 return_hosed_msg_badsize(smi_info);
1874                 return NOTIFY_STOP;
1875         }
1876         return NOTIFY_DONE;
1877 }
1878
1879 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1880         .notifier_call  = dell_poweredge_bt_xaction_handler,
1881 };
1882
1883 /*
1884  * setup_dell_poweredge_bt_xaction_handler
1885  * @info - smi_info.device_id must be filled in already
1886  *
1887  * Fills in smi_info.device_id.start_transaction_pre_hook
1888  * when we know what function to use there.
1889  */
1890 static void
1891 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1892 {
1893         struct ipmi_device_id *id = &smi_info->device_id;
1894         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1895             smi_info->io.si_type == SI_BT)
1896                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1897 }
1898
1899 /*
1900  * setup_oem_data_handler
1901  * @info - smi_info.device_id must be filled in already
1902  *
1903  * Fills in smi_info.device_id.oem_data_available_handler
1904  * when we know what function to use there.
1905  */
1906
1907 static void setup_oem_data_handler(struct smi_info *smi_info)
1908 {
1909         setup_dell_poweredge_oem_data_handler(smi_info);
1910 }
1911
1912 static void setup_xaction_handlers(struct smi_info *smi_info)
1913 {
1914         setup_dell_poweredge_bt_xaction_handler(smi_info);
1915 }
1916
1917 static void check_for_broken_irqs(struct smi_info *smi_info)
1918 {
1919         check_clr_rcv_irq(smi_info);
1920         check_set_rcv_irq(smi_info);
1921 }
1922
1923 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1924 {
1925         if (smi_info->thread != NULL) {
1926                 kthread_stop(smi_info->thread);
1927                 smi_info->thread = NULL;
1928         }
1929
1930         smi_info->timer_can_start = false;
1931         if (smi_info->timer_running)
1932                 del_timer_sync(&smi_info->si_timer);
1933 }
1934
1935 static struct smi_info *find_dup_si(struct smi_info *info)
1936 {
1937         struct smi_info *e;
1938
1939         list_for_each_entry(e, &smi_infos, link) {
1940                 if (e->io.addr_type != info->io.addr_type)
1941                         continue;
1942                 if (e->io.addr_data == info->io.addr_data) {
1943                         /*
1944                          * This is a cheap hack, ACPI doesn't have a defined
1945                          * slave address but SMBIOS does.  Pick it up from
1946                          * any source that has it available.
1947                          */
1948                         if (info->io.slave_addr && !e->io.slave_addr)
1949                                 e->io.slave_addr = info->io.slave_addr;
1950                         return e;
1951                 }
1952         }
1953
1954         return NULL;
1955 }
1956
1957 int ipmi_si_add_smi(struct si_sm_io *io)
1958 {
1959         int rv = 0;
1960         struct smi_info *new_smi, *dup;
1961
1962         if (!io->io_setup) {
1963                 if (io->addr_type == IPMI_IO_ADDR_SPACE) {
1964                         io->io_setup = ipmi_si_port_setup;
1965                 } else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
1966                         io->io_setup = ipmi_si_mem_setup;
1967                 } else {
1968                         return -EINVAL;
1969                 }
1970         }
1971
1972         new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1973         if (!new_smi)
1974                 return -ENOMEM;
1975         spin_lock_init(&new_smi->si_lock);
1976
1977         new_smi->io = *io;
1978
1979         mutex_lock(&smi_infos_lock);
1980         dup = find_dup_si(new_smi);
1981         if (dup) {
1982                 if (new_smi->io.addr_source == SI_ACPI &&
1983                     dup->io.addr_source == SI_SMBIOS) {
1984                         /* We prefer ACPI over SMBIOS. */
1985                         dev_info(dup->io.dev,
1986                                  "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1987                                  si_to_str[new_smi->io.si_type]);
1988                         cleanup_one_si(dup);
1989                 } else {
1990                         dev_info(new_smi->io.dev,
1991                                  "%s-specified %s state machine: duplicate\n",
1992                                  ipmi_addr_src_to_str(new_smi->io.addr_source),
1993                                  si_to_str[new_smi->io.si_type]);
1994                         rv = -EBUSY;
1995                         kfree(new_smi);
1996                         goto out_err;
1997                 }
1998         }
1999
2000         pr_info(PFX "Adding %s-specified %s state machine\n",
2001                 ipmi_addr_src_to_str(new_smi->io.addr_source),
2002                 si_to_str[new_smi->io.si_type]);
2003
2004         list_add_tail(&new_smi->link, &smi_infos);
2005
2006         if (initialized) {
2007                 rv = try_smi_init(new_smi);
2008                 if (rv) {
2009                         cleanup_one_si(new_smi);
2010                         mutex_unlock(&smi_infos_lock);
2011                         return rv;
2012                 }
2013         }
2014 out_err:
2015         mutex_unlock(&smi_infos_lock);
2016         return rv;
2017 }
2018
2019 /*
2020  * Try to start up an interface.  Must be called with smi_infos_lock
2021  * held, primarily to keep smi_num consistent, we only one to do these
2022  * one at a time.
2023  */
2024 static int try_smi_init(struct smi_info *new_smi)
2025 {
2026         int rv = 0;
2027         int i;
2028         char *init_name = NULL;
2029
2030         pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
2031                 ipmi_addr_src_to_str(new_smi->io.addr_source),
2032                 si_to_str[new_smi->io.si_type],
2033                 addr_space_to_str[new_smi->io.addr_type],
2034                 new_smi->io.addr_data,
2035                 new_smi->io.slave_addr, new_smi->io.irq);
2036
2037         switch (new_smi->io.si_type) {
2038         case SI_KCS:
2039                 new_smi->handlers = &kcs_smi_handlers;
2040                 break;
2041
2042         case SI_SMIC:
2043                 new_smi->handlers = &smic_smi_handlers;
2044                 break;
2045
2046         case SI_BT:
2047                 new_smi->handlers = &bt_smi_handlers;
2048                 break;
2049
2050         default:
2051                 /* No support for anything else yet. */
2052                 rv = -EIO;
2053                 goto out_err;
2054         }
2055
2056         new_smi->intf_num = smi_num;
2057
2058         /* Do this early so it's available for logs. */
2059         if (!new_smi->io.dev) {
2060                 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
2061                                       new_smi->intf_num);
2062
2063                 /*
2064                  * If we don't already have a device from something
2065                  * else (like PCI), then register a new one.
2066                  */
2067                 new_smi->pdev = platform_device_alloc("ipmi_si",
2068                                                       new_smi->intf_num);
2069                 if (!new_smi->pdev) {
2070                         pr_err(PFX "Unable to allocate platform device\n");
2071                         rv = -ENOMEM;
2072                         goto out_err;
2073                 }
2074                 new_smi->io.dev = &new_smi->pdev->dev;
2075                 new_smi->io.dev->driver = &ipmi_platform_driver.driver;
2076                 /* Nulled by device_add() */
2077                 new_smi->io.dev->init_name = init_name;
2078         }
2079
2080         /* Allocate the state machine's data and initialize it. */
2081         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2082         if (!new_smi->si_sm) {
2083                 rv = -ENOMEM;
2084                 goto out_err;
2085         }
2086         new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2087                                                            &new_smi->io);
2088
2089         /* Now that we know the I/O size, we can set up the I/O. */
2090         rv = new_smi->io.io_setup(&new_smi->io);
2091         if (rv) {
2092                 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
2093                 goto out_err;
2094         }
2095
2096         /* Do low-level detection first. */
2097         if (new_smi->handlers->detect(new_smi->si_sm)) {
2098                 if (new_smi->io.addr_source)
2099                         dev_err(new_smi->io.dev,
2100                                 "Interface detection failed\n");
2101                 rv = -ENODEV;
2102                 goto out_err;
2103         }
2104
2105         /*
2106          * Attempt a get device id command.  If it fails, we probably
2107          * don't have a BMC here.
2108          */
2109         rv = try_get_dev_id(new_smi);
2110         if (rv) {
2111                 if (new_smi->io.addr_source)
2112                         dev_err(new_smi->io.dev,
2113                                "There appears to be no BMC at this location\n");
2114                 goto out_err;
2115         }
2116
2117         setup_oem_data_handler(new_smi);
2118         setup_xaction_handlers(new_smi);
2119         check_for_broken_irqs(new_smi);
2120
2121         new_smi->waiting_msg = NULL;
2122         new_smi->curr_msg = NULL;
2123         atomic_set(&new_smi->req_events, 0);
2124         new_smi->run_to_completion = false;
2125         for (i = 0; i < SI_NUM_STATS; i++)
2126                 atomic_set(&new_smi->stats[i], 0);
2127
2128         new_smi->interrupt_disabled = true;
2129         atomic_set(&new_smi->need_watch, 0);
2130
2131         rv = try_enable_event_buffer(new_smi);
2132         if (rv == 0)
2133                 new_smi->has_event_buffer = true;
2134
2135         /*
2136          * Start clearing the flags before we enable interrupts or the
2137          * timer to avoid racing with the timer.
2138          */
2139         start_clear_flags(new_smi);
2140
2141         /*
2142          * IRQ is defined to be set when non-zero.  req_events will
2143          * cause a global flags check that will enable interrupts.
2144          */
2145         if (new_smi->io.irq) {
2146                 new_smi->interrupt_disabled = false;
2147                 atomic_set(&new_smi->req_events, 1);
2148         }
2149
2150         if (new_smi->pdev && !new_smi->pdev_registered) {
2151                 rv = platform_device_add(new_smi->pdev);
2152                 if (rv) {
2153                         dev_err(new_smi->io.dev,
2154                                 "Unable to register system interface device: %d\n",
2155                                 rv);
2156                         goto out_err;
2157                 }
2158                 new_smi->pdev_registered = true;
2159         }
2160
2161         dev_set_drvdata(new_smi->io.dev, new_smi);
2162         rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2163         if (rv) {
2164                 dev_err(new_smi->io.dev,
2165                         "Unable to add device attributes: error %d\n",
2166                         rv);
2167                 goto out_err;
2168         }
2169         new_smi->dev_group_added = true;
2170
2171         rv = ipmi_register_smi(&handlers,
2172                                new_smi,
2173                                new_smi->io.dev,
2174                                new_smi->io.slave_addr);
2175         if (rv) {
2176                 dev_err(new_smi->io.dev,
2177                         "Unable to register device: error %d\n",
2178                         rv);
2179                 goto out_err;
2180         }
2181
2182 #ifdef CONFIG_IPMI_PROC_INTERFACE
2183         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2184                                      &smi_type_proc_ops,
2185                                      new_smi);
2186         if (rv) {
2187                 dev_err(new_smi->io.dev,
2188                         "Unable to create proc entry: %d\n", rv);
2189                 goto out_err;
2190         }
2191
2192         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2193                                      &smi_si_stats_proc_ops,
2194                                      new_smi);
2195         if (rv) {
2196                 dev_err(new_smi->io.dev,
2197                         "Unable to create proc entry: %d\n", rv);
2198                 goto out_err;
2199         }
2200
2201         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2202                                      &smi_params_proc_ops,
2203                                      new_smi);
2204         if (rv) {
2205                 dev_err(new_smi->io.dev,
2206                         "Unable to create proc entry: %d\n", rv);
2207                 goto out_err;
2208         }
2209 #endif
2210
2211         /* Don't increment till we know we have succeeded. */
2212         smi_num++;
2213
2214         dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2215                  si_to_str[new_smi->io.si_type]);
2216
2217         WARN_ON(new_smi->io.dev->init_name != NULL);
2218         kfree(init_name);
2219
2220         return 0;
2221
2222 out_err:
2223         shutdown_one_si(new_smi);
2224
2225         kfree(init_name);
2226
2227         return rv;
2228 }
2229
2230 static int init_ipmi_si(void)
2231 {
2232         struct smi_info *e;
2233         enum ipmi_addr_src type = SI_INVALID;
2234
2235         if (initialized)
2236                 return 0;
2237
2238         pr_info("IPMI System Interface driver.\n");
2239
2240         /* If the user gave us a device, they presumably want us to use it */
2241         if (!ipmi_si_hardcode_find_bmc())
2242                 goto do_scan;
2243
2244         ipmi_si_platform_init();
2245
2246         ipmi_si_pci_init();
2247
2248         ipmi_si_parisc_init();
2249
2250         /* We prefer devices with interrupts, but in the case of a machine
2251            with multiple BMCs we assume that there will be several instances
2252            of a given type so if we succeed in registering a type then also
2253            try to register everything else of the same type */
2254 do_scan:
2255         mutex_lock(&smi_infos_lock);
2256         list_for_each_entry(e, &smi_infos, link) {
2257                 /* Try to register a device if it has an IRQ and we either
2258                    haven't successfully registered a device yet or this
2259                    device has the same type as one we successfully registered */
2260                 if (e->io.irq && (!type || e->io.addr_source == type)) {
2261                         if (!try_smi_init(e)) {
2262                                 type = e->io.addr_source;
2263                         }
2264                 }
2265         }
2266
2267         /* type will only have been set if we successfully registered an si */
2268         if (type)
2269                 goto skip_fallback_noirq;
2270
2271         /* Fall back to the preferred device */
2272
2273         list_for_each_entry(e, &smi_infos, link) {
2274                 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2275                         if (!try_smi_init(e)) {
2276                                 type = e->io.addr_source;
2277                         }
2278                 }
2279         }
2280
2281 skip_fallback_noirq:
2282         initialized = 1;
2283         mutex_unlock(&smi_infos_lock);
2284
2285         if (type)
2286                 return 0;
2287
2288         mutex_lock(&smi_infos_lock);
2289         if (unload_when_empty && list_empty(&smi_infos)) {
2290                 mutex_unlock(&smi_infos_lock);
2291                 cleanup_ipmi_si();
2292                 pr_warn(PFX "Unable to find any System Interface(s)\n");
2293                 return -ENODEV;
2294         } else {
2295                 mutex_unlock(&smi_infos_lock);
2296                 return 0;
2297         }
2298 }
2299 module_init(init_ipmi_si);
2300
2301 static void shutdown_smi(void *send_info)
2302 {
2303         struct smi_info *smi_info = send_info;
2304
2305         if (smi_info->dev_group_added) {
2306                 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2307                 smi_info->dev_group_added = false;
2308         }
2309         if (smi_info->io.dev)
2310                 dev_set_drvdata(smi_info->io.dev, NULL);
2311
2312         /*
2313          * Make sure that interrupts, the timer and the thread are
2314          * stopped and will not run again.
2315          */
2316         smi_info->interrupt_disabled = true;
2317         if (smi_info->io.irq_cleanup) {
2318                 smi_info->io.irq_cleanup(&smi_info->io);
2319                 smi_info->io.irq_cleanup = NULL;
2320         }
2321         stop_timer_and_thread(smi_info);
2322
2323         /*
2324          * Wait until we know that we are out of any interrupt
2325          * handlers might have been running before we freed the
2326          * interrupt.
2327          */
2328         synchronize_sched();
2329
2330         /*
2331          * Timeouts are stopped, now make sure the interrupts are off
2332          * in the BMC.  Note that timers and CPU interrupts are off,
2333          * so no need for locks.
2334          */
2335         while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2336                 poll(smi_info);
2337                 schedule_timeout_uninterruptible(1);
2338         }
2339         if (smi_info->handlers)
2340                 disable_si_irq(smi_info);
2341         while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2342                 poll(smi_info);
2343                 schedule_timeout_uninterruptible(1);
2344         }
2345         if (smi_info->handlers)
2346                 smi_info->handlers->cleanup(smi_info->si_sm);
2347
2348         if (smi_info->io.addr_source_cleanup) {
2349                 smi_info->io.addr_source_cleanup(&smi_info->io);
2350                 smi_info->io.addr_source_cleanup = NULL;
2351         }
2352         if (smi_info->io.io_cleanup) {
2353                 smi_info->io.io_cleanup(&smi_info->io);
2354                 smi_info->io.io_cleanup = NULL;
2355         }
2356
2357         kfree(smi_info->si_sm);
2358         smi_info->si_sm = NULL;
2359 }
2360
2361 static void shutdown_one_si(struct smi_info *smi_info)
2362 {
2363         ipmi_smi_t intf = smi_info->intf;
2364
2365         if (!intf)
2366                 return;
2367
2368         smi_info->intf = NULL;
2369         ipmi_unregister_smi(intf);
2370 }
2371
2372 static void cleanup_one_si(struct smi_info *smi_info)
2373 {
2374         if (!smi_info)
2375                 return;
2376
2377         list_del(&smi_info->link);
2378
2379         shutdown_one_si(smi_info);
2380
2381         if (smi_info->pdev) {
2382                 if (smi_info->pdev_registered)
2383                         platform_device_unregister(smi_info->pdev);
2384                 else
2385                         platform_device_put(smi_info->pdev);
2386         }
2387
2388         kfree(smi_info);
2389 }
2390
2391 int ipmi_si_remove_by_dev(struct device *dev)
2392 {
2393         struct smi_info *e;
2394         int rv = -ENOENT;
2395
2396         mutex_lock(&smi_infos_lock);
2397         list_for_each_entry(e, &smi_infos, link) {
2398                 if (e->io.dev == dev) {
2399                         cleanup_one_si(e);
2400                         rv = 0;
2401                         break;
2402                 }
2403         }
2404         mutex_unlock(&smi_infos_lock);
2405
2406         return rv;
2407 }
2408
2409 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2410                             unsigned long addr)
2411 {
2412         /* remove */
2413         struct smi_info *e, *tmp_e;
2414
2415         mutex_lock(&smi_infos_lock);
2416         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2417                 if (e->io.addr_type != addr_space)
2418                         continue;
2419                 if (e->io.si_type != si_type)
2420                         continue;
2421                 if (e->io.addr_data == addr)
2422                         cleanup_one_si(e);
2423         }
2424         mutex_unlock(&smi_infos_lock);
2425 }
2426
2427 static void cleanup_ipmi_si(void)
2428 {
2429         struct smi_info *e, *tmp_e;
2430
2431         if (!initialized)
2432                 return;
2433
2434         ipmi_si_pci_shutdown();
2435
2436         ipmi_si_parisc_shutdown();
2437
2438         ipmi_si_platform_shutdown();
2439
2440         mutex_lock(&smi_infos_lock);
2441         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2442                 cleanup_one_si(e);
2443         mutex_unlock(&smi_infos_lock);
2444 }
2445 module_exit(cleanup_ipmi_si);
2446
2447 MODULE_ALIAS("platform:dmi-ipmi-si");
2448 MODULE_LICENSE("GPL");
2449 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2450 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2451                    " system interfaces.");