ACPI / SBS: Add 5 us delay to fix SBS hangs on MacBook
[linux-2.6-block.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define SECTOR_SHIFT    9
59 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
60
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69         unsigned int counter;
70
71         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72         if (counter <= (unsigned int)INT_MAX)
73                 return (int)counter;
74
75         atomic_dec(v);
76
77         return -EINVAL;
78 }
79
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83         int counter;
84
85         counter = atomic_dec_return(v);
86         if (counter >= 0)
87                 return counter;
88
89         atomic_inc(v);
90
91         return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR            256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
98
99 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
100 #define RBD_MAX_SNAP_NAME_LEN   \
101                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102
103 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
104
105 #define RBD_SNAP_HEAD_NAME      "-"
106
107 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
108
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX    64
112
113 #define RBD_OBJ_PREFIX_LEN_MAX  64
114
115 /* Feature bits */
116
117 #define RBD_FEATURE_LAYERING    (1<<0)
118 #define RBD_FEATURE_STRIPINGV2  (1<<1)
119 #define RBD_FEATURES_ALL \
120             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121
122 /* Features supported by this (client software) implementation. */
123
124 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
125
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN            32
133 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
134
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139         /* These six fields never change for a given rbd image */
140         char *object_prefix;
141         __u8 obj_order;
142         __u8 crypt_type;
143         __u8 comp_type;
144         u64 stripe_unit;
145         u64 stripe_count;
146         u64 features;           /* Might be changeable someday? */
147
148         /* The remaining fields need to be updated occasionally */
149         u64 image_size;
150         struct ceph_snap_context *snapc;
151         char *snap_names;       /* format 1 only */
152         u64 *snap_sizes;        /* format 1 only */
153 };
154
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181         u64             pool_id;
182         const char      *pool_name;
183
184         const char      *image_id;
185         const char      *image_name;
186
187         u64             snap_id;
188         const char      *snap_name;
189
190         struct kref     kref;
191 };
192
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197         struct ceph_client      *client;
198         struct kref             kref;
199         struct list_head        node;
200 };
201
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204
205 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
206
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209
210 enum obj_request_type {
211         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213
214 enum obj_operation_type {
215         OBJ_OP_WRITE,
216         OBJ_OP_READ,
217         OBJ_OP_DISCARD,
218 };
219
220 enum obj_req_flags {
221         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
222         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
223         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
224         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
225 };
226
227 struct rbd_obj_request {
228         const char              *object_name;
229         u64                     offset;         /* object start byte */
230         u64                     length;         /* bytes from offset */
231         unsigned long           flags;
232
233         /*
234          * An object request associated with an image will have its
235          * img_data flag set; a standalone object request will not.
236          *
237          * A standalone object request will have which == BAD_WHICH
238          * and a null obj_request pointer.
239          *
240          * An object request initiated in support of a layered image
241          * object (to check for its existence before a write) will
242          * have which == BAD_WHICH and a non-null obj_request pointer.
243          *
244          * Finally, an object request for rbd image data will have
245          * which != BAD_WHICH, and will have a non-null img_request
246          * pointer.  The value of which will be in the range
247          * 0..(img_request->obj_request_count-1).
248          */
249         union {
250                 struct rbd_obj_request  *obj_request;   /* STAT op */
251                 struct {
252                         struct rbd_img_request  *img_request;
253                         u64                     img_offset;
254                         /* links for img_request->obj_requests list */
255                         struct list_head        links;
256                 };
257         };
258         u32                     which;          /* posn image request list */
259
260         enum obj_request_type   type;
261         union {
262                 struct bio      *bio_list;
263                 struct {
264                         struct page     **pages;
265                         u32             page_count;
266                 };
267         };
268         struct page             **copyup_pages;
269         u32                     copyup_page_count;
270
271         struct ceph_osd_request *osd_req;
272
273         u64                     xferred;        /* bytes transferred */
274         int                     result;
275
276         rbd_obj_callback_t      callback;
277         struct completion       completion;
278
279         struct kref             kref;
280 };
281
282 enum img_req_flags {
283         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
284         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
285         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
286         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
287 };
288
289 struct rbd_img_request {
290         struct rbd_device       *rbd_dev;
291         u64                     offset; /* starting image byte offset */
292         u64                     length; /* byte count from offset */
293         unsigned long           flags;
294         union {
295                 u64                     snap_id;        /* for reads */
296                 struct ceph_snap_context *snapc;        /* for writes */
297         };
298         union {
299                 struct request          *rq;            /* block request */
300                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
301         };
302         struct page             **copyup_pages;
303         u32                     copyup_page_count;
304         spinlock_t              completion_lock;/* protects next_completion */
305         u32                     next_completion;
306         rbd_img_callback_t      callback;
307         u64                     xferred;/* aggregate bytes transferred */
308         int                     result; /* first nonzero obj_request result */
309
310         u32                     obj_request_count;
311         struct list_head        obj_requests;   /* rbd_obj_request structs */
312
313         struct kref             kref;
314 };
315
316 #define for_each_obj_request(ireq, oreq) \
317         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322
323 struct rbd_mapping {
324         u64                     size;
325         u64                     features;
326         bool                    read_only;
327 };
328
329 /*
330  * a single device
331  */
332 struct rbd_device {
333         int                     dev_id;         /* blkdev unique id */
334
335         int                     major;          /* blkdev assigned major */
336         int                     minor;
337         struct gendisk          *disk;          /* blkdev's gendisk and rq */
338
339         u32                     image_format;   /* Either 1 or 2 */
340         struct rbd_client       *rbd_client;
341
342         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343
344         spinlock_t              lock;           /* queue, flags, open_count */
345
346         struct rbd_image_header header;
347         unsigned long           flags;          /* possibly lock protected */
348         struct rbd_spec         *spec;
349
350         char                    *header_name;
351
352         struct ceph_file_layout layout;
353
354         struct ceph_osd_event   *watch_event;
355         struct rbd_obj_request  *watch_request;
356
357         struct rbd_spec         *parent_spec;
358         u64                     parent_overlap;
359         atomic_t                parent_ref;
360         struct rbd_device       *parent;
361
362         /* Block layer tags. */
363         struct blk_mq_tag_set   tag_set;
364
365         /* protects updating the header */
366         struct rw_semaphore     header_rwsem;
367
368         struct rbd_mapping      mapping;
369
370         struct list_head        node;
371
372         /* sysfs related */
373         struct device           dev;
374         unsigned long           open_count;     /* protected by lock */
375 };
376
377 /*
378  * Flag bits for rbd_dev->flags.  If atomicity is required,
379  * rbd_dev->lock is used to protect access.
380  *
381  * Currently, only the "removing" flag (which is coupled with the
382  * "open_count" field) requires atomic access.
383  */
384 enum rbd_dev_flags {
385         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
386         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
387 };
388
389 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
390
391 static LIST_HEAD(rbd_dev_list);    /* devices */
392 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393
394 static LIST_HEAD(rbd_client_list);              /* clients */
395 static DEFINE_SPINLOCK(rbd_client_list_lock);
396
397 /* Slab caches for frequently-allocated structures */
398
399 static struct kmem_cache        *rbd_img_request_cache;
400 static struct kmem_cache        *rbd_obj_request_cache;
401 static struct kmem_cache        *rbd_segment_name_cache;
402
403 static int rbd_major;
404 static DEFINE_IDA(rbd_dev_id_ida);
405
406 static struct workqueue_struct *rbd_wq;
407
408 /*
409  * Default to false for now, as single-major requires >= 0.75 version of
410  * userspace rbd utility.
411  */
412 static bool single_major = false;
413 module_param(single_major, bool, S_IRUGO);
414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
415
416 static int rbd_img_request_submit(struct rbd_img_request *img_request);
417
418 static void rbd_dev_device_release(struct device *dev);
419
420 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
421                        size_t count);
422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
423                           size_t count);
424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
425                                     size_t count);
426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
427                                        size_t count);
428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
429 static void rbd_spec_put(struct rbd_spec *spec);
430
431 static int rbd_dev_id_to_minor(int dev_id)
432 {
433         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
434 }
435
436 static int minor_to_rbd_dev_id(int minor)
437 {
438         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
439 }
440
441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
445
446 static struct attribute *rbd_bus_attrs[] = {
447         &bus_attr_add.attr,
448         &bus_attr_remove.attr,
449         &bus_attr_add_single_major.attr,
450         &bus_attr_remove_single_major.attr,
451         NULL,
452 };
453
454 static umode_t rbd_bus_is_visible(struct kobject *kobj,
455                                   struct attribute *attr, int index)
456 {
457         if (!single_major &&
458             (attr == &bus_attr_add_single_major.attr ||
459              attr == &bus_attr_remove_single_major.attr))
460                 return 0;
461
462         return attr->mode;
463 }
464
465 static const struct attribute_group rbd_bus_group = {
466         .attrs = rbd_bus_attrs,
467         .is_visible = rbd_bus_is_visible,
468 };
469 __ATTRIBUTE_GROUPS(rbd_bus);
470
471 static struct bus_type rbd_bus_type = {
472         .name           = "rbd",
473         .bus_groups     = rbd_bus_groups,
474 };
475
476 static void rbd_root_dev_release(struct device *dev)
477 {
478 }
479
480 static struct device rbd_root_dev = {
481         .init_name =    "rbd",
482         .release =      rbd_root_dev_release,
483 };
484
485 static __printf(2, 3)
486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
487 {
488         struct va_format vaf;
489         va_list args;
490
491         va_start(args, fmt);
492         vaf.fmt = fmt;
493         vaf.va = &args;
494
495         if (!rbd_dev)
496                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
497         else if (rbd_dev->disk)
498                 printk(KERN_WARNING "%s: %s: %pV\n",
499                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
500         else if (rbd_dev->spec && rbd_dev->spec->image_name)
501                 printk(KERN_WARNING "%s: image %s: %pV\n",
502                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
503         else if (rbd_dev->spec && rbd_dev->spec->image_id)
504                 printk(KERN_WARNING "%s: id %s: %pV\n",
505                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
506         else    /* punt */
507                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
508                         RBD_DRV_NAME, rbd_dev, &vaf);
509         va_end(args);
510 }
511
512 #ifdef RBD_DEBUG
513 #define rbd_assert(expr)                                                \
514                 if (unlikely(!(expr))) {                                \
515                         printk(KERN_ERR "\nAssertion failure in %s() "  \
516                                                 "at line %d:\n\n"       \
517                                         "\trbd_assert(%s);\n\n",        \
518                                         __func__, __LINE__, #expr);     \
519                         BUG();                                          \
520                 }
521 #else /* !RBD_DEBUG */
522 #  define rbd_assert(expr)      ((void) 0)
523 #endif /* !RBD_DEBUG */
524
525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
528
529 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
531 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
534                                         u64 snap_id);
535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
536                                 u8 *order, u64 *snap_size);
537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
538                 u64 *snap_features);
539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
540
541 static int rbd_open(struct block_device *bdev, fmode_t mode)
542 {
543         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
544         bool removing = false;
545
546         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
547                 return -EROFS;
548
549         spin_lock_irq(&rbd_dev->lock);
550         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
551                 removing = true;
552         else
553                 rbd_dev->open_count++;
554         spin_unlock_irq(&rbd_dev->lock);
555         if (removing)
556                 return -ENOENT;
557
558         (void) get_device(&rbd_dev->dev);
559
560         return 0;
561 }
562
563 static void rbd_release(struct gendisk *disk, fmode_t mode)
564 {
565         struct rbd_device *rbd_dev = disk->private_data;
566         unsigned long open_count_before;
567
568         spin_lock_irq(&rbd_dev->lock);
569         open_count_before = rbd_dev->open_count--;
570         spin_unlock_irq(&rbd_dev->lock);
571         rbd_assert(open_count_before > 0);
572
573         put_device(&rbd_dev->dev);
574 }
575
576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
577 {
578         int ret = 0;
579         int val;
580         bool ro;
581         bool ro_changed = false;
582
583         /* get_user() may sleep, so call it before taking rbd_dev->lock */
584         if (get_user(val, (int __user *)(arg)))
585                 return -EFAULT;
586
587         ro = val ? true : false;
588         /* Snapshot doesn't allow to write*/
589         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
590                 return -EROFS;
591
592         spin_lock_irq(&rbd_dev->lock);
593         /* prevent others open this device */
594         if (rbd_dev->open_count > 1) {
595                 ret = -EBUSY;
596                 goto out;
597         }
598
599         if (rbd_dev->mapping.read_only != ro) {
600                 rbd_dev->mapping.read_only = ro;
601                 ro_changed = true;
602         }
603
604 out:
605         spin_unlock_irq(&rbd_dev->lock);
606         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
607         if (ret == 0 && ro_changed)
608                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
609
610         return ret;
611 }
612
613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
614                         unsigned int cmd, unsigned long arg)
615 {
616         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
617         int ret = 0;
618
619         switch (cmd) {
620         case BLKROSET:
621                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
622                 break;
623         default:
624                 ret = -ENOTTY;
625         }
626
627         return ret;
628 }
629
630 #ifdef CONFIG_COMPAT
631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
632                                 unsigned int cmd, unsigned long arg)
633 {
634         return rbd_ioctl(bdev, mode, cmd, arg);
635 }
636 #endif /* CONFIG_COMPAT */
637
638 static const struct block_device_operations rbd_bd_ops = {
639         .owner                  = THIS_MODULE,
640         .open                   = rbd_open,
641         .release                = rbd_release,
642         .ioctl                  = rbd_ioctl,
643 #ifdef CONFIG_COMPAT
644         .compat_ioctl           = rbd_compat_ioctl,
645 #endif
646 };
647
648 /*
649  * Initialize an rbd client instance.  Success or not, this function
650  * consumes ceph_opts.  Caller holds client_mutex.
651  */
652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
653 {
654         struct rbd_client *rbdc;
655         int ret = -ENOMEM;
656
657         dout("%s:\n", __func__);
658         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659         if (!rbdc)
660                 goto out_opt;
661
662         kref_init(&rbdc->kref);
663         INIT_LIST_HEAD(&rbdc->node);
664
665         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
666         if (IS_ERR(rbdc->client))
667                 goto out_rbdc;
668         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
669
670         ret = ceph_open_session(rbdc->client);
671         if (ret < 0)
672                 goto out_client;
673
674         spin_lock(&rbd_client_list_lock);
675         list_add_tail(&rbdc->node, &rbd_client_list);
676         spin_unlock(&rbd_client_list_lock);
677
678         dout("%s: rbdc %p\n", __func__, rbdc);
679
680         return rbdc;
681 out_client:
682         ceph_destroy_client(rbdc->client);
683 out_rbdc:
684         kfree(rbdc);
685 out_opt:
686         if (ceph_opts)
687                 ceph_destroy_options(ceph_opts);
688         dout("%s: error %d\n", __func__, ret);
689
690         return ERR_PTR(ret);
691 }
692
693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
694 {
695         kref_get(&rbdc->kref);
696
697         return rbdc;
698 }
699
700 /*
701  * Find a ceph client with specific addr and configuration.  If
702  * found, bump its reference count.
703  */
704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
705 {
706         struct rbd_client *client_node;
707         bool found = false;
708
709         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
710                 return NULL;
711
712         spin_lock(&rbd_client_list_lock);
713         list_for_each_entry(client_node, &rbd_client_list, node) {
714                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
715                         __rbd_get_client(client_node);
716
717                         found = true;
718                         break;
719                 }
720         }
721         spin_unlock(&rbd_client_list_lock);
722
723         return found ? client_node : NULL;
724 }
725
726 /*
727  * mount options
728  */
729 enum {
730         Opt_last_int,
731         /* int args above */
732         Opt_last_string,
733         /* string args above */
734         Opt_read_only,
735         Opt_read_write,
736         /* Boolean args above */
737         Opt_last_bool,
738 };
739
740 static match_table_t rbd_opts_tokens = {
741         /* int args above */
742         /* string args above */
743         {Opt_read_only, "read_only"},
744         {Opt_read_only, "ro"},          /* Alternate spelling */
745         {Opt_read_write, "read_write"},
746         {Opt_read_write, "rw"},         /* Alternate spelling */
747         /* Boolean args above */
748         {-1, NULL}
749 };
750
751 struct rbd_options {
752         bool    read_only;
753 };
754
755 #define RBD_READ_ONLY_DEFAULT   false
756
757 static int parse_rbd_opts_token(char *c, void *private)
758 {
759         struct rbd_options *rbd_opts = private;
760         substring_t argstr[MAX_OPT_ARGS];
761         int token, intval, ret;
762
763         token = match_token(c, rbd_opts_tokens, argstr);
764         if (token < 0)
765                 return -EINVAL;
766
767         if (token < Opt_last_int) {
768                 ret = match_int(&argstr[0], &intval);
769                 if (ret < 0) {
770                         pr_err("bad mount option arg (not int) "
771                                "at '%s'\n", c);
772                         return ret;
773                 }
774                 dout("got int token %d val %d\n", token, intval);
775         } else if (token > Opt_last_int && token < Opt_last_string) {
776                 dout("got string token %d val %s\n", token,
777                      argstr[0].from);
778         } else if (token > Opt_last_string && token < Opt_last_bool) {
779                 dout("got Boolean token %d\n", token);
780         } else {
781                 dout("got token %d\n", token);
782         }
783
784         switch (token) {
785         case Opt_read_only:
786                 rbd_opts->read_only = true;
787                 break;
788         case Opt_read_write:
789                 rbd_opts->read_only = false;
790                 break;
791         default:
792                 rbd_assert(false);
793                 break;
794         }
795         return 0;
796 }
797
798 static char* obj_op_name(enum obj_operation_type op_type)
799 {
800         switch (op_type) {
801         case OBJ_OP_READ:
802                 return "read";
803         case OBJ_OP_WRITE:
804                 return "write";
805         case OBJ_OP_DISCARD:
806                 return "discard";
807         default:
808                 return "???";
809         }
810 }
811
812 /*
813  * Get a ceph client with specific addr and configuration, if one does
814  * not exist create it.  Either way, ceph_opts is consumed by this
815  * function.
816  */
817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
818 {
819         struct rbd_client *rbdc;
820
821         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
822         rbdc = rbd_client_find(ceph_opts);
823         if (rbdc)       /* using an existing client */
824                 ceph_destroy_options(ceph_opts);
825         else
826                 rbdc = rbd_client_create(ceph_opts);
827         mutex_unlock(&client_mutex);
828
829         return rbdc;
830 }
831
832 /*
833  * Destroy ceph client
834  *
835  * Caller must hold rbd_client_list_lock.
836  */
837 static void rbd_client_release(struct kref *kref)
838 {
839         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
840
841         dout("%s: rbdc %p\n", __func__, rbdc);
842         spin_lock(&rbd_client_list_lock);
843         list_del(&rbdc->node);
844         spin_unlock(&rbd_client_list_lock);
845
846         ceph_destroy_client(rbdc->client);
847         kfree(rbdc);
848 }
849
850 /*
851  * Drop reference to ceph client node. If it's not referenced anymore, release
852  * it.
853  */
854 static void rbd_put_client(struct rbd_client *rbdc)
855 {
856         if (rbdc)
857                 kref_put(&rbdc->kref, rbd_client_release);
858 }
859
860 static bool rbd_image_format_valid(u32 image_format)
861 {
862         return image_format == 1 || image_format == 2;
863 }
864
865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
866 {
867         size_t size;
868         u32 snap_count;
869
870         /* The header has to start with the magic rbd header text */
871         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
872                 return false;
873
874         /* The bio layer requires at least sector-sized I/O */
875
876         if (ondisk->options.order < SECTOR_SHIFT)
877                 return false;
878
879         /* If we use u64 in a few spots we may be able to loosen this */
880
881         if (ondisk->options.order > 8 * sizeof (int) - 1)
882                 return false;
883
884         /*
885          * The size of a snapshot header has to fit in a size_t, and
886          * that limits the number of snapshots.
887          */
888         snap_count = le32_to_cpu(ondisk->snap_count);
889         size = SIZE_MAX - sizeof (struct ceph_snap_context);
890         if (snap_count > size / sizeof (__le64))
891                 return false;
892
893         /*
894          * Not only that, but the size of the entire the snapshot
895          * header must also be representable in a size_t.
896          */
897         size -= snap_count * sizeof (__le64);
898         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
899                 return false;
900
901         return true;
902 }
903
904 /*
905  * Fill an rbd image header with information from the given format 1
906  * on-disk header.
907  */
908 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
909                                  struct rbd_image_header_ondisk *ondisk)
910 {
911         struct rbd_image_header *header = &rbd_dev->header;
912         bool first_time = header->object_prefix == NULL;
913         struct ceph_snap_context *snapc;
914         char *object_prefix = NULL;
915         char *snap_names = NULL;
916         u64 *snap_sizes = NULL;
917         u32 snap_count;
918         size_t size;
919         int ret = -ENOMEM;
920         u32 i;
921
922         /* Allocate this now to avoid having to handle failure below */
923
924         if (first_time) {
925                 size_t len;
926
927                 len = strnlen(ondisk->object_prefix,
928                                 sizeof (ondisk->object_prefix));
929                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
930                 if (!object_prefix)
931                         return -ENOMEM;
932                 memcpy(object_prefix, ondisk->object_prefix, len);
933                 object_prefix[len] = '\0';
934         }
935
936         /* Allocate the snapshot context and fill it in */
937
938         snap_count = le32_to_cpu(ondisk->snap_count);
939         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
940         if (!snapc)
941                 goto out_err;
942         snapc->seq = le64_to_cpu(ondisk->snap_seq);
943         if (snap_count) {
944                 struct rbd_image_snap_ondisk *snaps;
945                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
946
947                 /* We'll keep a copy of the snapshot names... */
948
949                 if (snap_names_len > (u64)SIZE_MAX)
950                         goto out_2big;
951                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
952                 if (!snap_names)
953                         goto out_err;
954
955                 /* ...as well as the array of their sizes. */
956
957                 size = snap_count * sizeof (*header->snap_sizes);
958                 snap_sizes = kmalloc(size, GFP_KERNEL);
959                 if (!snap_sizes)
960                         goto out_err;
961
962                 /*
963                  * Copy the names, and fill in each snapshot's id
964                  * and size.
965                  *
966                  * Note that rbd_dev_v1_header_info() guarantees the
967                  * ondisk buffer we're working with has
968                  * snap_names_len bytes beyond the end of the
969                  * snapshot id array, this memcpy() is safe.
970                  */
971                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
972                 snaps = ondisk->snaps;
973                 for (i = 0; i < snap_count; i++) {
974                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
975                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
976                 }
977         }
978
979         /* We won't fail any more, fill in the header */
980
981         if (first_time) {
982                 header->object_prefix = object_prefix;
983                 header->obj_order = ondisk->options.order;
984                 header->crypt_type = ondisk->options.crypt_type;
985                 header->comp_type = ondisk->options.comp_type;
986                 /* The rest aren't used for format 1 images */
987                 header->stripe_unit = 0;
988                 header->stripe_count = 0;
989                 header->features = 0;
990         } else {
991                 ceph_put_snap_context(header->snapc);
992                 kfree(header->snap_names);
993                 kfree(header->snap_sizes);
994         }
995
996         /* The remaining fields always get updated (when we refresh) */
997
998         header->image_size = le64_to_cpu(ondisk->image_size);
999         header->snapc = snapc;
1000         header->snap_names = snap_names;
1001         header->snap_sizes = snap_sizes;
1002
1003         return 0;
1004 out_2big:
1005         ret = -EIO;
1006 out_err:
1007         kfree(snap_sizes);
1008         kfree(snap_names);
1009         ceph_put_snap_context(snapc);
1010         kfree(object_prefix);
1011
1012         return ret;
1013 }
1014
1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1016 {
1017         const char *snap_name;
1018
1019         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1020
1021         /* Skip over names until we find the one we are looking for */
1022
1023         snap_name = rbd_dev->header.snap_names;
1024         while (which--)
1025                 snap_name += strlen(snap_name) + 1;
1026
1027         return kstrdup(snap_name, GFP_KERNEL);
1028 }
1029
1030 /*
1031  * Snapshot id comparison function for use with qsort()/bsearch().
1032  * Note that result is for snapshots in *descending* order.
1033  */
1034 static int snapid_compare_reverse(const void *s1, const void *s2)
1035 {
1036         u64 snap_id1 = *(u64 *)s1;
1037         u64 snap_id2 = *(u64 *)s2;
1038
1039         if (snap_id1 < snap_id2)
1040                 return 1;
1041         return snap_id1 == snap_id2 ? 0 : -1;
1042 }
1043
1044 /*
1045  * Search a snapshot context to see if the given snapshot id is
1046  * present.
1047  *
1048  * Returns the position of the snapshot id in the array if it's found,
1049  * or BAD_SNAP_INDEX otherwise.
1050  *
1051  * Note: The snapshot array is in kept sorted (by the osd) in
1052  * reverse order, highest snapshot id first.
1053  */
1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1055 {
1056         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1057         u64 *found;
1058
1059         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1060                                 sizeof (snap_id), snapid_compare_reverse);
1061
1062         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1063 }
1064
1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066                                         u64 snap_id)
1067 {
1068         u32 which;
1069         const char *snap_name;
1070
1071         which = rbd_dev_snap_index(rbd_dev, snap_id);
1072         if (which == BAD_SNAP_INDEX)
1073                 return ERR_PTR(-ENOENT);
1074
1075         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1076         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1077 }
1078
1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1080 {
1081         if (snap_id == CEPH_NOSNAP)
1082                 return RBD_SNAP_HEAD_NAME;
1083
1084         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1085         if (rbd_dev->image_format == 1)
1086                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1087
1088         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1089 }
1090
1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1092                                 u64 *snap_size)
1093 {
1094         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1095         if (snap_id == CEPH_NOSNAP) {
1096                 *snap_size = rbd_dev->header.image_size;
1097         } else if (rbd_dev->image_format == 1) {
1098                 u32 which;
1099
1100                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1101                 if (which == BAD_SNAP_INDEX)
1102                         return -ENOENT;
1103
1104                 *snap_size = rbd_dev->header.snap_sizes[which];
1105         } else {
1106                 u64 size = 0;
1107                 int ret;
1108
1109                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1110                 if (ret)
1111                         return ret;
1112
1113                 *snap_size = size;
1114         }
1115         return 0;
1116 }
1117
1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1119                         u64 *snap_features)
1120 {
1121         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1122         if (snap_id == CEPH_NOSNAP) {
1123                 *snap_features = rbd_dev->header.features;
1124         } else if (rbd_dev->image_format == 1) {
1125                 *snap_features = 0;     /* No features for format 1 */
1126         } else {
1127                 u64 features = 0;
1128                 int ret;
1129
1130                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131                 if (ret)
1132                         return ret;
1133
1134                 *snap_features = features;
1135         }
1136         return 0;
1137 }
1138
1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1140 {
1141         u64 snap_id = rbd_dev->spec->snap_id;
1142         u64 size = 0;
1143         u64 features = 0;
1144         int ret;
1145
1146         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1147         if (ret)
1148                 return ret;
1149         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150         if (ret)
1151                 return ret;
1152
1153         rbd_dev->mapping.size = size;
1154         rbd_dev->mapping.features = features;
1155
1156         return 0;
1157 }
1158
1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1160 {
1161         rbd_dev->mapping.size = 0;
1162         rbd_dev->mapping.features = 0;
1163 }
1164
1165 static void rbd_segment_name_free(const char *name)
1166 {
1167         /* The explicit cast here is needed to drop the const qualifier */
1168
1169         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1170 }
1171
1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1173 {
1174         char *name;
1175         u64 segment;
1176         int ret;
1177         char *name_format;
1178
1179         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1180         if (!name)
1181                 return NULL;
1182         segment = offset >> rbd_dev->header.obj_order;
1183         name_format = "%s.%012llx";
1184         if (rbd_dev->image_format == 2)
1185                 name_format = "%s.%016llx";
1186         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1187                         rbd_dev->header.object_prefix, segment);
1188         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1189                 pr_err("error formatting segment name for #%llu (%d)\n",
1190                         segment, ret);
1191                 rbd_segment_name_free(name);
1192                 name = NULL;
1193         }
1194
1195         return name;
1196 }
1197
1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1199 {
1200         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201
1202         return offset & (segment_size - 1);
1203 }
1204
1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1206                                 u64 offset, u64 length)
1207 {
1208         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1209
1210         offset &= segment_size - 1;
1211
1212         rbd_assert(length <= U64_MAX - offset);
1213         if (offset + length > segment_size)
1214                 length = segment_size - offset;
1215
1216         return length;
1217 }
1218
1219 /*
1220  * returns the size of an object in the image
1221  */
1222 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1223 {
1224         return 1 << header->obj_order;
1225 }
1226
1227 /*
1228  * bio helpers
1229  */
1230
1231 static void bio_chain_put(struct bio *chain)
1232 {
1233         struct bio *tmp;
1234
1235         while (chain) {
1236                 tmp = chain;
1237                 chain = chain->bi_next;
1238                 bio_put(tmp);
1239         }
1240 }
1241
1242 /*
1243  * zeros a bio chain, starting at specific offset
1244  */
1245 static void zero_bio_chain(struct bio *chain, int start_ofs)
1246 {
1247         struct bio_vec bv;
1248         struct bvec_iter iter;
1249         unsigned long flags;
1250         void *buf;
1251         int pos = 0;
1252
1253         while (chain) {
1254                 bio_for_each_segment(bv, chain, iter) {
1255                         if (pos + bv.bv_len > start_ofs) {
1256                                 int remainder = max(start_ofs - pos, 0);
1257                                 buf = bvec_kmap_irq(&bv, &flags);
1258                                 memset(buf + remainder, 0,
1259                                        bv.bv_len - remainder);
1260                                 flush_dcache_page(bv.bv_page);
1261                                 bvec_kunmap_irq(buf, &flags);
1262                         }
1263                         pos += bv.bv_len;
1264                 }
1265
1266                 chain = chain->bi_next;
1267         }
1268 }
1269
1270 /*
1271  * similar to zero_bio_chain(), zeros data defined by a page array,
1272  * starting at the given byte offset from the start of the array and
1273  * continuing up to the given end offset.  The pages array is
1274  * assumed to be big enough to hold all bytes up to the end.
1275  */
1276 static void zero_pages(struct page **pages, u64 offset, u64 end)
1277 {
1278         struct page **page = &pages[offset >> PAGE_SHIFT];
1279
1280         rbd_assert(end > offset);
1281         rbd_assert(end - offset <= (u64)SIZE_MAX);
1282         while (offset < end) {
1283                 size_t page_offset;
1284                 size_t length;
1285                 unsigned long flags;
1286                 void *kaddr;
1287
1288                 page_offset = offset & ~PAGE_MASK;
1289                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1290                 local_irq_save(flags);
1291                 kaddr = kmap_atomic(*page);
1292                 memset(kaddr + page_offset, 0, length);
1293                 flush_dcache_page(*page);
1294                 kunmap_atomic(kaddr);
1295                 local_irq_restore(flags);
1296
1297                 offset += length;
1298                 page++;
1299         }
1300 }
1301
1302 /*
1303  * Clone a portion of a bio, starting at the given byte offset
1304  * and continuing for the number of bytes indicated.
1305  */
1306 static struct bio *bio_clone_range(struct bio *bio_src,
1307                                         unsigned int offset,
1308                                         unsigned int len,
1309                                         gfp_t gfpmask)
1310 {
1311         struct bio *bio;
1312
1313         bio = bio_clone(bio_src, gfpmask);
1314         if (!bio)
1315                 return NULL;    /* ENOMEM */
1316
1317         bio_advance(bio, offset);
1318         bio->bi_iter.bi_size = len;
1319
1320         return bio;
1321 }
1322
1323 /*
1324  * Clone a portion of a bio chain, starting at the given byte offset
1325  * into the first bio in the source chain and continuing for the
1326  * number of bytes indicated.  The result is another bio chain of
1327  * exactly the given length, or a null pointer on error.
1328  *
1329  * The bio_src and offset parameters are both in-out.  On entry they
1330  * refer to the first source bio and the offset into that bio where
1331  * the start of data to be cloned is located.
1332  *
1333  * On return, bio_src is updated to refer to the bio in the source
1334  * chain that contains first un-cloned byte, and *offset will
1335  * contain the offset of that byte within that bio.
1336  */
1337 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1338                                         unsigned int *offset,
1339                                         unsigned int len,
1340                                         gfp_t gfpmask)
1341 {
1342         struct bio *bi = *bio_src;
1343         unsigned int off = *offset;
1344         struct bio *chain = NULL;
1345         struct bio **end;
1346
1347         /* Build up a chain of clone bios up to the limit */
1348
1349         if (!bi || off >= bi->bi_iter.bi_size || !len)
1350                 return NULL;            /* Nothing to clone */
1351
1352         end = &chain;
1353         while (len) {
1354                 unsigned int bi_size;
1355                 struct bio *bio;
1356
1357                 if (!bi) {
1358                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1359                         goto out_err;   /* EINVAL; ran out of bio's */
1360                 }
1361                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1362                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1363                 if (!bio)
1364                         goto out_err;   /* ENOMEM */
1365
1366                 *end = bio;
1367                 end = &bio->bi_next;
1368
1369                 off += bi_size;
1370                 if (off == bi->bi_iter.bi_size) {
1371                         bi = bi->bi_next;
1372                         off = 0;
1373                 }
1374                 len -= bi_size;
1375         }
1376         *bio_src = bi;
1377         *offset = off;
1378
1379         return chain;
1380 out_err:
1381         bio_chain_put(chain);
1382
1383         return NULL;
1384 }
1385
1386 /*
1387  * The default/initial value for all object request flags is 0.  For
1388  * each flag, once its value is set to 1 it is never reset to 0
1389  * again.
1390  */
1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1392 {
1393         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1394                 struct rbd_device *rbd_dev;
1395
1396                 rbd_dev = obj_request->img_request->rbd_dev;
1397                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1398                         obj_request);
1399         }
1400 }
1401
1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1403 {
1404         smp_mb();
1405         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1406 }
1407
1408 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1409 {
1410         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1411                 struct rbd_device *rbd_dev = NULL;
1412
1413                 if (obj_request_img_data_test(obj_request))
1414                         rbd_dev = obj_request->img_request->rbd_dev;
1415                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1416                         obj_request);
1417         }
1418 }
1419
1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1421 {
1422         smp_mb();
1423         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424 }
1425
1426 /*
1427  * This sets the KNOWN flag after (possibly) setting the EXISTS
1428  * flag.  The latter is set based on the "exists" value provided.
1429  *
1430  * Note that for our purposes once an object exists it never goes
1431  * away again.  It's possible that the response from two existence
1432  * checks are separated by the creation of the target object, and
1433  * the first ("doesn't exist") response arrives *after* the second
1434  * ("does exist").  In that case we ignore the second one.
1435  */
1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437                                 bool exists)
1438 {
1439         if (exists)
1440                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1441         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442         smp_mb();
1443 }
1444
1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1446 {
1447         smp_mb();
1448         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1449 }
1450
1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1452 {
1453         smp_mb();
1454         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1455 }
1456
1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1458 {
1459         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1460
1461         return obj_request->img_offset <
1462             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1463 }
1464
1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1466 {
1467         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1468                 atomic_read(&obj_request->kref.refcount));
1469         kref_get(&obj_request->kref);
1470 }
1471
1472 static void rbd_obj_request_destroy(struct kref *kref);
1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1474 {
1475         rbd_assert(obj_request != NULL);
1476         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1477                 atomic_read(&obj_request->kref.refcount));
1478         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1479 }
1480
1481 static void rbd_img_request_get(struct rbd_img_request *img_request)
1482 {
1483         dout("%s: img %p (was %d)\n", __func__, img_request,
1484              atomic_read(&img_request->kref.refcount));
1485         kref_get(&img_request->kref);
1486 }
1487
1488 static bool img_request_child_test(struct rbd_img_request *img_request);
1489 static void rbd_parent_request_destroy(struct kref *kref);
1490 static void rbd_img_request_destroy(struct kref *kref);
1491 static void rbd_img_request_put(struct rbd_img_request *img_request)
1492 {
1493         rbd_assert(img_request != NULL);
1494         dout("%s: img %p (was %d)\n", __func__, img_request,
1495                 atomic_read(&img_request->kref.refcount));
1496         if (img_request_child_test(img_request))
1497                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1498         else
1499                 kref_put(&img_request->kref, rbd_img_request_destroy);
1500 }
1501
1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1503                                         struct rbd_obj_request *obj_request)
1504 {
1505         rbd_assert(obj_request->img_request == NULL);
1506
1507         /* Image request now owns object's original reference */
1508         obj_request->img_request = img_request;
1509         obj_request->which = img_request->obj_request_count;
1510         rbd_assert(!obj_request_img_data_test(obj_request));
1511         obj_request_img_data_set(obj_request);
1512         rbd_assert(obj_request->which != BAD_WHICH);
1513         img_request->obj_request_count++;
1514         list_add_tail(&obj_request->links, &img_request->obj_requests);
1515         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1516                 obj_request->which);
1517 }
1518
1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1520                                         struct rbd_obj_request *obj_request)
1521 {
1522         rbd_assert(obj_request->which != BAD_WHICH);
1523
1524         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1525                 obj_request->which);
1526         list_del(&obj_request->links);
1527         rbd_assert(img_request->obj_request_count > 0);
1528         img_request->obj_request_count--;
1529         rbd_assert(obj_request->which == img_request->obj_request_count);
1530         obj_request->which = BAD_WHICH;
1531         rbd_assert(obj_request_img_data_test(obj_request));
1532         rbd_assert(obj_request->img_request == img_request);
1533         obj_request->img_request = NULL;
1534         obj_request->callback = NULL;
1535         rbd_obj_request_put(obj_request);
1536 }
1537
1538 static bool obj_request_type_valid(enum obj_request_type type)
1539 {
1540         switch (type) {
1541         case OBJ_REQUEST_NODATA:
1542         case OBJ_REQUEST_BIO:
1543         case OBJ_REQUEST_PAGES:
1544                 return true;
1545         default:
1546                 return false;
1547         }
1548 }
1549
1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1551                                 struct rbd_obj_request *obj_request)
1552 {
1553         dout("%s %p\n", __func__, obj_request);
1554         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1555 }
1556
1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1558 {
1559         dout("%s %p\n", __func__, obj_request);
1560         ceph_osdc_cancel_request(obj_request->osd_req);
1561 }
1562
1563 /*
1564  * Wait for an object request to complete.  If interrupted, cancel the
1565  * underlying osd request.
1566  */
1567 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1568 {
1569         int ret;
1570
1571         dout("%s %p\n", __func__, obj_request);
1572
1573         ret = wait_for_completion_interruptible(&obj_request->completion);
1574         if (ret < 0) {
1575                 dout("%s %p interrupted\n", __func__, obj_request);
1576                 rbd_obj_request_end(obj_request);
1577                 return ret;
1578         }
1579
1580         dout("%s %p done\n", __func__, obj_request);
1581         return 0;
1582 }
1583
1584 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1585 {
1586
1587         dout("%s: img %p\n", __func__, img_request);
1588
1589         /*
1590          * If no error occurred, compute the aggregate transfer
1591          * count for the image request.  We could instead use
1592          * atomic64_cmpxchg() to update it as each object request
1593          * completes; not clear which way is better off hand.
1594          */
1595         if (!img_request->result) {
1596                 struct rbd_obj_request *obj_request;
1597                 u64 xferred = 0;
1598
1599                 for_each_obj_request(img_request, obj_request)
1600                         xferred += obj_request->xferred;
1601                 img_request->xferred = xferred;
1602         }
1603
1604         if (img_request->callback)
1605                 img_request->callback(img_request);
1606         else
1607                 rbd_img_request_put(img_request);
1608 }
1609
1610 /*
1611  * The default/initial value for all image request flags is 0.  Each
1612  * is conditionally set to 1 at image request initialization time
1613  * and currently never change thereafter.
1614  */
1615 static void img_request_write_set(struct rbd_img_request *img_request)
1616 {
1617         set_bit(IMG_REQ_WRITE, &img_request->flags);
1618         smp_mb();
1619 }
1620
1621 static bool img_request_write_test(struct rbd_img_request *img_request)
1622 {
1623         smp_mb();
1624         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1625 }
1626
1627 /*
1628  * Set the discard flag when the img_request is an discard request
1629  */
1630 static void img_request_discard_set(struct rbd_img_request *img_request)
1631 {
1632         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1633         smp_mb();
1634 }
1635
1636 static bool img_request_discard_test(struct rbd_img_request *img_request)
1637 {
1638         smp_mb();
1639         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1640 }
1641
1642 static void img_request_child_set(struct rbd_img_request *img_request)
1643 {
1644         set_bit(IMG_REQ_CHILD, &img_request->flags);
1645         smp_mb();
1646 }
1647
1648 static void img_request_child_clear(struct rbd_img_request *img_request)
1649 {
1650         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1651         smp_mb();
1652 }
1653
1654 static bool img_request_child_test(struct rbd_img_request *img_request)
1655 {
1656         smp_mb();
1657         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1658 }
1659
1660 static void img_request_layered_set(struct rbd_img_request *img_request)
1661 {
1662         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1663         smp_mb();
1664 }
1665
1666 static void img_request_layered_clear(struct rbd_img_request *img_request)
1667 {
1668         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1669         smp_mb();
1670 }
1671
1672 static bool img_request_layered_test(struct rbd_img_request *img_request)
1673 {
1674         smp_mb();
1675         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1676 }
1677
1678 static enum obj_operation_type
1679 rbd_img_request_op_type(struct rbd_img_request *img_request)
1680 {
1681         if (img_request_write_test(img_request))
1682                 return OBJ_OP_WRITE;
1683         else if (img_request_discard_test(img_request))
1684                 return OBJ_OP_DISCARD;
1685         else
1686                 return OBJ_OP_READ;
1687 }
1688
1689 static void
1690 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1691 {
1692         u64 xferred = obj_request->xferred;
1693         u64 length = obj_request->length;
1694
1695         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1696                 obj_request, obj_request->img_request, obj_request->result,
1697                 xferred, length);
1698         /*
1699          * ENOENT means a hole in the image.  We zero-fill the entire
1700          * length of the request.  A short read also implies zero-fill
1701          * to the end of the request.  An error requires the whole
1702          * length of the request to be reported finished with an error
1703          * to the block layer.  In each case we update the xferred
1704          * count to indicate the whole request was satisfied.
1705          */
1706         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1707         if (obj_request->result == -ENOENT) {
1708                 if (obj_request->type == OBJ_REQUEST_BIO)
1709                         zero_bio_chain(obj_request->bio_list, 0);
1710                 else
1711                         zero_pages(obj_request->pages, 0, length);
1712                 obj_request->result = 0;
1713         } else if (xferred < length && !obj_request->result) {
1714                 if (obj_request->type == OBJ_REQUEST_BIO)
1715                         zero_bio_chain(obj_request->bio_list, xferred);
1716                 else
1717                         zero_pages(obj_request->pages, xferred, length);
1718         }
1719         obj_request->xferred = length;
1720         obj_request_done_set(obj_request);
1721 }
1722
1723 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1724 {
1725         dout("%s: obj %p cb %p\n", __func__, obj_request,
1726                 obj_request->callback);
1727         if (obj_request->callback)
1728                 obj_request->callback(obj_request);
1729         else
1730                 complete_all(&obj_request->completion);
1731 }
1732
1733 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1734 {
1735         dout("%s: obj %p\n", __func__, obj_request);
1736         obj_request_done_set(obj_request);
1737 }
1738
1739 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1740 {
1741         struct rbd_img_request *img_request = NULL;
1742         struct rbd_device *rbd_dev = NULL;
1743         bool layered = false;
1744
1745         if (obj_request_img_data_test(obj_request)) {
1746                 img_request = obj_request->img_request;
1747                 layered = img_request && img_request_layered_test(img_request);
1748                 rbd_dev = img_request->rbd_dev;
1749         }
1750
1751         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1752                 obj_request, img_request, obj_request->result,
1753                 obj_request->xferred, obj_request->length);
1754         if (layered && obj_request->result == -ENOENT &&
1755                         obj_request->img_offset < rbd_dev->parent_overlap)
1756                 rbd_img_parent_read(obj_request);
1757         else if (img_request)
1758                 rbd_img_obj_request_read_callback(obj_request);
1759         else
1760                 obj_request_done_set(obj_request);
1761 }
1762
1763 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1764 {
1765         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1766                 obj_request->result, obj_request->length);
1767         /*
1768          * There is no such thing as a successful short write.  Set
1769          * it to our originally-requested length.
1770          */
1771         obj_request->xferred = obj_request->length;
1772         obj_request_done_set(obj_request);
1773 }
1774
1775 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1776 {
1777         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1778                 obj_request->result, obj_request->length);
1779         /*
1780          * There is no such thing as a successful short discard.  Set
1781          * it to our originally-requested length.
1782          */
1783         obj_request->xferred = obj_request->length;
1784         /* discarding a non-existent object is not a problem */
1785         if (obj_request->result == -ENOENT)
1786                 obj_request->result = 0;
1787         obj_request_done_set(obj_request);
1788 }
1789
1790 /*
1791  * For a simple stat call there's nothing to do.  We'll do more if
1792  * this is part of a write sequence for a layered image.
1793  */
1794 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1795 {
1796         dout("%s: obj %p\n", __func__, obj_request);
1797         obj_request_done_set(obj_request);
1798 }
1799
1800 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1801                                 struct ceph_msg *msg)
1802 {
1803         struct rbd_obj_request *obj_request = osd_req->r_priv;
1804         u16 opcode;
1805
1806         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1807         rbd_assert(osd_req == obj_request->osd_req);
1808         if (obj_request_img_data_test(obj_request)) {
1809                 rbd_assert(obj_request->img_request);
1810                 rbd_assert(obj_request->which != BAD_WHICH);
1811         } else {
1812                 rbd_assert(obj_request->which == BAD_WHICH);
1813         }
1814
1815         if (osd_req->r_result < 0)
1816                 obj_request->result = osd_req->r_result;
1817
1818         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1819
1820         /*
1821          * We support a 64-bit length, but ultimately it has to be
1822          * passed to the block layer, which just supports a 32-bit
1823          * length field.
1824          */
1825         obj_request->xferred = osd_req->r_reply_op_len[0];
1826         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1827
1828         opcode = osd_req->r_ops[0].op;
1829         switch (opcode) {
1830         case CEPH_OSD_OP_READ:
1831                 rbd_osd_read_callback(obj_request);
1832                 break;
1833         case CEPH_OSD_OP_SETALLOCHINT:
1834                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1835                 /* fall through */
1836         case CEPH_OSD_OP_WRITE:
1837                 rbd_osd_write_callback(obj_request);
1838                 break;
1839         case CEPH_OSD_OP_STAT:
1840                 rbd_osd_stat_callback(obj_request);
1841                 break;
1842         case CEPH_OSD_OP_DELETE:
1843         case CEPH_OSD_OP_TRUNCATE:
1844         case CEPH_OSD_OP_ZERO:
1845                 rbd_osd_discard_callback(obj_request);
1846                 break;
1847         case CEPH_OSD_OP_CALL:
1848         case CEPH_OSD_OP_NOTIFY_ACK:
1849         case CEPH_OSD_OP_WATCH:
1850                 rbd_osd_trivial_callback(obj_request);
1851                 break;
1852         default:
1853                 rbd_warn(NULL, "%s: unsupported op %hu",
1854                         obj_request->object_name, (unsigned short) opcode);
1855                 break;
1856         }
1857
1858         if (obj_request_done_test(obj_request))
1859                 rbd_obj_request_complete(obj_request);
1860 }
1861
1862 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1863 {
1864         struct rbd_img_request *img_request = obj_request->img_request;
1865         struct ceph_osd_request *osd_req = obj_request->osd_req;
1866         u64 snap_id;
1867
1868         rbd_assert(osd_req != NULL);
1869
1870         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1871         ceph_osdc_build_request(osd_req, obj_request->offset,
1872                         NULL, snap_id, NULL);
1873 }
1874
1875 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1876 {
1877         struct rbd_img_request *img_request = obj_request->img_request;
1878         struct ceph_osd_request *osd_req = obj_request->osd_req;
1879         struct ceph_snap_context *snapc;
1880         struct timespec mtime = CURRENT_TIME;
1881
1882         rbd_assert(osd_req != NULL);
1883
1884         snapc = img_request ? img_request->snapc : NULL;
1885         ceph_osdc_build_request(osd_req, obj_request->offset,
1886                         snapc, CEPH_NOSNAP, &mtime);
1887 }
1888
1889 /*
1890  * Create an osd request.  A read request has one osd op (read).
1891  * A write request has either one (watch) or two (hint+write) osd ops.
1892  * (All rbd data writes are prefixed with an allocation hint op, but
1893  * technically osd watch is a write request, hence this distinction.)
1894  */
1895 static struct ceph_osd_request *rbd_osd_req_create(
1896                                         struct rbd_device *rbd_dev,
1897                                         enum obj_operation_type op_type,
1898                                         unsigned int num_ops,
1899                                         struct rbd_obj_request *obj_request)
1900 {
1901         struct ceph_snap_context *snapc = NULL;
1902         struct ceph_osd_client *osdc;
1903         struct ceph_osd_request *osd_req;
1904
1905         if (obj_request_img_data_test(obj_request) &&
1906                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1907                 struct rbd_img_request *img_request = obj_request->img_request;
1908                 if (op_type == OBJ_OP_WRITE) {
1909                         rbd_assert(img_request_write_test(img_request));
1910                 } else {
1911                         rbd_assert(img_request_discard_test(img_request));
1912                 }
1913                 snapc = img_request->snapc;
1914         }
1915
1916         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1917
1918         /* Allocate and initialize the request, for the num_ops ops */
1919
1920         osdc = &rbd_dev->rbd_client->client->osdc;
1921         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1922                                           GFP_ATOMIC);
1923         if (!osd_req)
1924                 return NULL;    /* ENOMEM */
1925
1926         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1927                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1928         else
1929                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1930
1931         osd_req->r_callback = rbd_osd_req_callback;
1932         osd_req->r_priv = obj_request;
1933
1934         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1935         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1936
1937         return osd_req;
1938 }
1939
1940 /*
1941  * Create a copyup osd request based on the information in the object
1942  * request supplied.  A copyup request has two or three osd ops, a
1943  * copyup method call, potentially a hint op, and a write or truncate
1944  * or zero op.
1945  */
1946 static struct ceph_osd_request *
1947 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1948 {
1949         struct rbd_img_request *img_request;
1950         struct ceph_snap_context *snapc;
1951         struct rbd_device *rbd_dev;
1952         struct ceph_osd_client *osdc;
1953         struct ceph_osd_request *osd_req;
1954         int num_osd_ops = 3;
1955
1956         rbd_assert(obj_request_img_data_test(obj_request));
1957         img_request = obj_request->img_request;
1958         rbd_assert(img_request);
1959         rbd_assert(img_request_write_test(img_request) ||
1960                         img_request_discard_test(img_request));
1961
1962         if (img_request_discard_test(img_request))
1963                 num_osd_ops = 2;
1964
1965         /* Allocate and initialize the request, for all the ops */
1966
1967         snapc = img_request->snapc;
1968         rbd_dev = img_request->rbd_dev;
1969         osdc = &rbd_dev->rbd_client->client->osdc;
1970         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1971                                                 false, GFP_ATOMIC);
1972         if (!osd_req)
1973                 return NULL;    /* ENOMEM */
1974
1975         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1976         osd_req->r_callback = rbd_osd_req_callback;
1977         osd_req->r_priv = obj_request;
1978
1979         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1980         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1981
1982         return osd_req;
1983 }
1984
1985
1986 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1987 {
1988         ceph_osdc_put_request(osd_req);
1989 }
1990
1991 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1992
1993 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1994                                                 u64 offset, u64 length,
1995                                                 enum obj_request_type type)
1996 {
1997         struct rbd_obj_request *obj_request;
1998         size_t size;
1999         char *name;
2000
2001         rbd_assert(obj_request_type_valid(type));
2002
2003         size = strlen(object_name) + 1;
2004         name = kmalloc(size, GFP_KERNEL);
2005         if (!name)
2006                 return NULL;
2007
2008         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2009         if (!obj_request) {
2010                 kfree(name);
2011                 return NULL;
2012         }
2013
2014         obj_request->object_name = memcpy(name, object_name, size);
2015         obj_request->offset = offset;
2016         obj_request->length = length;
2017         obj_request->flags = 0;
2018         obj_request->which = BAD_WHICH;
2019         obj_request->type = type;
2020         INIT_LIST_HEAD(&obj_request->links);
2021         init_completion(&obj_request->completion);
2022         kref_init(&obj_request->kref);
2023
2024         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2025                 offset, length, (int)type, obj_request);
2026
2027         return obj_request;
2028 }
2029
2030 static void rbd_obj_request_destroy(struct kref *kref)
2031 {
2032         struct rbd_obj_request *obj_request;
2033
2034         obj_request = container_of(kref, struct rbd_obj_request, kref);
2035
2036         dout("%s: obj %p\n", __func__, obj_request);
2037
2038         rbd_assert(obj_request->img_request == NULL);
2039         rbd_assert(obj_request->which == BAD_WHICH);
2040
2041         if (obj_request->osd_req)
2042                 rbd_osd_req_destroy(obj_request->osd_req);
2043
2044         rbd_assert(obj_request_type_valid(obj_request->type));
2045         switch (obj_request->type) {
2046         case OBJ_REQUEST_NODATA:
2047                 break;          /* Nothing to do */
2048         case OBJ_REQUEST_BIO:
2049                 if (obj_request->bio_list)
2050                         bio_chain_put(obj_request->bio_list);
2051                 break;
2052         case OBJ_REQUEST_PAGES:
2053                 if (obj_request->pages)
2054                         ceph_release_page_vector(obj_request->pages,
2055                                                 obj_request->page_count);
2056                 break;
2057         }
2058
2059         kfree(obj_request->object_name);
2060         obj_request->object_name = NULL;
2061         kmem_cache_free(rbd_obj_request_cache, obj_request);
2062 }
2063
2064 /* It's OK to call this for a device with no parent */
2065
2066 static void rbd_spec_put(struct rbd_spec *spec);
2067 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2068 {
2069         rbd_dev_remove_parent(rbd_dev);
2070         rbd_spec_put(rbd_dev->parent_spec);
2071         rbd_dev->parent_spec = NULL;
2072         rbd_dev->parent_overlap = 0;
2073 }
2074
2075 /*
2076  * Parent image reference counting is used to determine when an
2077  * image's parent fields can be safely torn down--after there are no
2078  * more in-flight requests to the parent image.  When the last
2079  * reference is dropped, cleaning them up is safe.
2080  */
2081 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2082 {
2083         int counter;
2084
2085         if (!rbd_dev->parent_spec)
2086                 return;
2087
2088         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2089         if (counter > 0)
2090                 return;
2091
2092         /* Last reference; clean up parent data structures */
2093
2094         if (!counter)
2095                 rbd_dev_unparent(rbd_dev);
2096         else
2097                 rbd_warn(rbd_dev, "parent reference underflow");
2098 }
2099
2100 /*
2101  * If an image has a non-zero parent overlap, get a reference to its
2102  * parent.
2103  *
2104  * Returns true if the rbd device has a parent with a non-zero
2105  * overlap and a reference for it was successfully taken, or
2106  * false otherwise.
2107  */
2108 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2109 {
2110         int counter = 0;
2111
2112         if (!rbd_dev->parent_spec)
2113                 return false;
2114
2115         down_read(&rbd_dev->header_rwsem);
2116         if (rbd_dev->parent_overlap)
2117                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2118         up_read(&rbd_dev->header_rwsem);
2119
2120         if (counter < 0)
2121                 rbd_warn(rbd_dev, "parent reference overflow");
2122
2123         return counter > 0;
2124 }
2125
2126 /*
2127  * Caller is responsible for filling in the list of object requests
2128  * that comprises the image request, and the Linux request pointer
2129  * (if there is one).
2130  */
2131 static struct rbd_img_request *rbd_img_request_create(
2132                                         struct rbd_device *rbd_dev,
2133                                         u64 offset, u64 length,
2134                                         enum obj_operation_type op_type,
2135                                         struct ceph_snap_context *snapc)
2136 {
2137         struct rbd_img_request *img_request;
2138
2139         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2140         if (!img_request)
2141                 return NULL;
2142
2143         img_request->rq = NULL;
2144         img_request->rbd_dev = rbd_dev;
2145         img_request->offset = offset;
2146         img_request->length = length;
2147         img_request->flags = 0;
2148         if (op_type == OBJ_OP_DISCARD) {
2149                 img_request_discard_set(img_request);
2150                 img_request->snapc = snapc;
2151         } else if (op_type == OBJ_OP_WRITE) {
2152                 img_request_write_set(img_request);
2153                 img_request->snapc = snapc;
2154         } else {
2155                 img_request->snap_id = rbd_dev->spec->snap_id;
2156         }
2157         if (rbd_dev_parent_get(rbd_dev))
2158                 img_request_layered_set(img_request);
2159         spin_lock_init(&img_request->completion_lock);
2160         img_request->next_completion = 0;
2161         img_request->callback = NULL;
2162         img_request->result = 0;
2163         img_request->obj_request_count = 0;
2164         INIT_LIST_HEAD(&img_request->obj_requests);
2165         kref_init(&img_request->kref);
2166
2167         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2168                 obj_op_name(op_type), offset, length, img_request);
2169
2170         return img_request;
2171 }
2172
2173 static void rbd_img_request_destroy(struct kref *kref)
2174 {
2175         struct rbd_img_request *img_request;
2176         struct rbd_obj_request *obj_request;
2177         struct rbd_obj_request *next_obj_request;
2178
2179         img_request = container_of(kref, struct rbd_img_request, kref);
2180
2181         dout("%s: img %p\n", __func__, img_request);
2182
2183         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2184                 rbd_img_obj_request_del(img_request, obj_request);
2185         rbd_assert(img_request->obj_request_count == 0);
2186
2187         if (img_request_layered_test(img_request)) {
2188                 img_request_layered_clear(img_request);
2189                 rbd_dev_parent_put(img_request->rbd_dev);
2190         }
2191
2192         if (img_request_write_test(img_request) ||
2193                 img_request_discard_test(img_request))
2194                 ceph_put_snap_context(img_request->snapc);
2195
2196         kmem_cache_free(rbd_img_request_cache, img_request);
2197 }
2198
2199 static struct rbd_img_request *rbd_parent_request_create(
2200                                         struct rbd_obj_request *obj_request,
2201                                         u64 img_offset, u64 length)
2202 {
2203         struct rbd_img_request *parent_request;
2204         struct rbd_device *rbd_dev;
2205
2206         rbd_assert(obj_request->img_request);
2207         rbd_dev = obj_request->img_request->rbd_dev;
2208
2209         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2210                                                 length, OBJ_OP_READ, NULL);
2211         if (!parent_request)
2212                 return NULL;
2213
2214         img_request_child_set(parent_request);
2215         rbd_obj_request_get(obj_request);
2216         parent_request->obj_request = obj_request;
2217
2218         return parent_request;
2219 }
2220
2221 static void rbd_parent_request_destroy(struct kref *kref)
2222 {
2223         struct rbd_img_request *parent_request;
2224         struct rbd_obj_request *orig_request;
2225
2226         parent_request = container_of(kref, struct rbd_img_request, kref);
2227         orig_request = parent_request->obj_request;
2228
2229         parent_request->obj_request = NULL;
2230         rbd_obj_request_put(orig_request);
2231         img_request_child_clear(parent_request);
2232
2233         rbd_img_request_destroy(kref);
2234 }
2235
2236 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2237 {
2238         struct rbd_img_request *img_request;
2239         unsigned int xferred;
2240         int result;
2241         bool more;
2242
2243         rbd_assert(obj_request_img_data_test(obj_request));
2244         img_request = obj_request->img_request;
2245
2246         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2247         xferred = (unsigned int)obj_request->xferred;
2248         result = obj_request->result;
2249         if (result) {
2250                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2251                 enum obj_operation_type op_type;
2252
2253                 if (img_request_discard_test(img_request))
2254                         op_type = OBJ_OP_DISCARD;
2255                 else if (img_request_write_test(img_request))
2256                         op_type = OBJ_OP_WRITE;
2257                 else
2258                         op_type = OBJ_OP_READ;
2259
2260                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2261                         obj_op_name(op_type), obj_request->length,
2262                         obj_request->img_offset, obj_request->offset);
2263                 rbd_warn(rbd_dev, "  result %d xferred %x",
2264                         result, xferred);
2265                 if (!img_request->result)
2266                         img_request->result = result;
2267         }
2268
2269         /* Image object requests don't own their page array */
2270
2271         if (obj_request->type == OBJ_REQUEST_PAGES) {
2272                 obj_request->pages = NULL;
2273                 obj_request->page_count = 0;
2274         }
2275
2276         if (img_request_child_test(img_request)) {
2277                 rbd_assert(img_request->obj_request != NULL);
2278                 more = obj_request->which < img_request->obj_request_count - 1;
2279         } else {
2280                 rbd_assert(img_request->rq != NULL);
2281
2282                 more = blk_update_request(img_request->rq, result, xferred);
2283                 if (!more)
2284                         __blk_mq_end_request(img_request->rq, result);
2285         }
2286
2287         return more;
2288 }
2289
2290 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2291 {
2292         struct rbd_img_request *img_request;
2293         u32 which = obj_request->which;
2294         bool more = true;
2295
2296         rbd_assert(obj_request_img_data_test(obj_request));
2297         img_request = obj_request->img_request;
2298
2299         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2300         rbd_assert(img_request != NULL);
2301         rbd_assert(img_request->obj_request_count > 0);
2302         rbd_assert(which != BAD_WHICH);
2303         rbd_assert(which < img_request->obj_request_count);
2304
2305         spin_lock_irq(&img_request->completion_lock);
2306         if (which != img_request->next_completion)
2307                 goto out;
2308
2309         for_each_obj_request_from(img_request, obj_request) {
2310                 rbd_assert(more);
2311                 rbd_assert(which < img_request->obj_request_count);
2312
2313                 if (!obj_request_done_test(obj_request))
2314                         break;
2315                 more = rbd_img_obj_end_request(obj_request);
2316                 which++;
2317         }
2318
2319         rbd_assert(more ^ (which == img_request->obj_request_count));
2320         img_request->next_completion = which;
2321 out:
2322         spin_unlock_irq(&img_request->completion_lock);
2323         rbd_img_request_put(img_request);
2324
2325         if (!more)
2326                 rbd_img_request_complete(img_request);
2327 }
2328
2329 /*
2330  * Add individual osd ops to the given ceph_osd_request and prepare
2331  * them for submission. num_ops is the current number of
2332  * osd operations already to the object request.
2333  */
2334 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2335                                 struct ceph_osd_request *osd_request,
2336                                 enum obj_operation_type op_type,
2337                                 unsigned int num_ops)
2338 {
2339         struct rbd_img_request *img_request = obj_request->img_request;
2340         struct rbd_device *rbd_dev = img_request->rbd_dev;
2341         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2342         u64 offset = obj_request->offset;
2343         u64 length = obj_request->length;
2344         u64 img_end;
2345         u16 opcode;
2346
2347         if (op_type == OBJ_OP_DISCARD) {
2348                 if (!offset && length == object_size &&
2349                     (!img_request_layered_test(img_request) ||
2350                      !obj_request_overlaps_parent(obj_request))) {
2351                         opcode = CEPH_OSD_OP_DELETE;
2352                 } else if ((offset + length == object_size)) {
2353                         opcode = CEPH_OSD_OP_TRUNCATE;
2354                 } else {
2355                         down_read(&rbd_dev->header_rwsem);
2356                         img_end = rbd_dev->header.image_size;
2357                         up_read(&rbd_dev->header_rwsem);
2358
2359                         if (obj_request->img_offset + length == img_end)
2360                                 opcode = CEPH_OSD_OP_TRUNCATE;
2361                         else
2362                                 opcode = CEPH_OSD_OP_ZERO;
2363                 }
2364         } else if (op_type == OBJ_OP_WRITE) {
2365                 opcode = CEPH_OSD_OP_WRITE;
2366                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2367                                         object_size, object_size);
2368                 num_ops++;
2369         } else {
2370                 opcode = CEPH_OSD_OP_READ;
2371         }
2372
2373         if (opcode == CEPH_OSD_OP_DELETE)
2374                 osd_req_op_init(osd_request, num_ops, opcode);
2375         else
2376                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2377                                        offset, length, 0, 0);
2378
2379         if (obj_request->type == OBJ_REQUEST_BIO)
2380                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2381                                         obj_request->bio_list, length);
2382         else if (obj_request->type == OBJ_REQUEST_PAGES)
2383                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2384                                         obj_request->pages, length,
2385                                         offset & ~PAGE_MASK, false, false);
2386
2387         /* Discards are also writes */
2388         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2389                 rbd_osd_req_format_write(obj_request);
2390         else
2391                 rbd_osd_req_format_read(obj_request);
2392 }
2393
2394 /*
2395  * Split up an image request into one or more object requests, each
2396  * to a different object.  The "type" parameter indicates whether
2397  * "data_desc" is the pointer to the head of a list of bio
2398  * structures, or the base of a page array.  In either case this
2399  * function assumes data_desc describes memory sufficient to hold
2400  * all data described by the image request.
2401  */
2402 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2403                                         enum obj_request_type type,
2404                                         void *data_desc)
2405 {
2406         struct rbd_device *rbd_dev = img_request->rbd_dev;
2407         struct rbd_obj_request *obj_request = NULL;
2408         struct rbd_obj_request *next_obj_request;
2409         struct bio *bio_list = NULL;
2410         unsigned int bio_offset = 0;
2411         struct page **pages = NULL;
2412         enum obj_operation_type op_type;
2413         u64 img_offset;
2414         u64 resid;
2415
2416         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2417                 (int)type, data_desc);
2418
2419         img_offset = img_request->offset;
2420         resid = img_request->length;
2421         rbd_assert(resid > 0);
2422         op_type = rbd_img_request_op_type(img_request);
2423
2424         if (type == OBJ_REQUEST_BIO) {
2425                 bio_list = data_desc;
2426                 rbd_assert(img_offset ==
2427                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2428         } else if (type == OBJ_REQUEST_PAGES) {
2429                 pages = data_desc;
2430         }
2431
2432         while (resid) {
2433                 struct ceph_osd_request *osd_req;
2434                 const char *object_name;
2435                 u64 offset;
2436                 u64 length;
2437
2438                 object_name = rbd_segment_name(rbd_dev, img_offset);
2439                 if (!object_name)
2440                         goto out_unwind;
2441                 offset = rbd_segment_offset(rbd_dev, img_offset);
2442                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2443                 obj_request = rbd_obj_request_create(object_name,
2444                                                 offset, length, type);
2445                 /* object request has its own copy of the object name */
2446                 rbd_segment_name_free(object_name);
2447                 if (!obj_request)
2448                         goto out_unwind;
2449
2450                 /*
2451                  * set obj_request->img_request before creating the
2452                  * osd_request so that it gets the right snapc
2453                  */
2454                 rbd_img_obj_request_add(img_request, obj_request);
2455
2456                 if (type == OBJ_REQUEST_BIO) {
2457                         unsigned int clone_size;
2458
2459                         rbd_assert(length <= (u64)UINT_MAX);
2460                         clone_size = (unsigned int)length;
2461                         obj_request->bio_list =
2462                                         bio_chain_clone_range(&bio_list,
2463                                                                 &bio_offset,
2464                                                                 clone_size,
2465                                                                 GFP_ATOMIC);
2466                         if (!obj_request->bio_list)
2467                                 goto out_unwind;
2468                 } else if (type == OBJ_REQUEST_PAGES) {
2469                         unsigned int page_count;
2470
2471                         obj_request->pages = pages;
2472                         page_count = (u32)calc_pages_for(offset, length);
2473                         obj_request->page_count = page_count;
2474                         if ((offset + length) & ~PAGE_MASK)
2475                                 page_count--;   /* more on last page */
2476                         pages += page_count;
2477                 }
2478
2479                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2480                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2481                                         obj_request);
2482                 if (!osd_req)
2483                         goto out_unwind;
2484
2485                 obj_request->osd_req = osd_req;
2486                 obj_request->callback = rbd_img_obj_callback;
2487                 obj_request->img_offset = img_offset;
2488
2489                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2490
2491                 rbd_img_request_get(img_request);
2492
2493                 img_offset += length;
2494                 resid -= length;
2495         }
2496
2497         return 0;
2498
2499 out_unwind:
2500         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2501                 rbd_img_obj_request_del(img_request, obj_request);
2502
2503         return -ENOMEM;
2504 }
2505
2506 static void
2507 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2508 {
2509         struct rbd_img_request *img_request;
2510         struct rbd_device *rbd_dev;
2511         struct page **pages;
2512         u32 page_count;
2513
2514         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2515                 obj_request->type == OBJ_REQUEST_NODATA);
2516         rbd_assert(obj_request_img_data_test(obj_request));
2517         img_request = obj_request->img_request;
2518         rbd_assert(img_request);
2519
2520         rbd_dev = img_request->rbd_dev;
2521         rbd_assert(rbd_dev);
2522
2523         pages = obj_request->copyup_pages;
2524         rbd_assert(pages != NULL);
2525         obj_request->copyup_pages = NULL;
2526         page_count = obj_request->copyup_page_count;
2527         rbd_assert(page_count);
2528         obj_request->copyup_page_count = 0;
2529         ceph_release_page_vector(pages, page_count);
2530
2531         /*
2532          * We want the transfer count to reflect the size of the
2533          * original write request.  There is no such thing as a
2534          * successful short write, so if the request was successful
2535          * we can just set it to the originally-requested length.
2536          */
2537         if (!obj_request->result)
2538                 obj_request->xferred = obj_request->length;
2539
2540         /* Finish up with the normal image object callback */
2541
2542         rbd_img_obj_callback(obj_request);
2543 }
2544
2545 static void
2546 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2547 {
2548         struct rbd_obj_request *orig_request;
2549         struct ceph_osd_request *osd_req;
2550         struct ceph_osd_client *osdc;
2551         struct rbd_device *rbd_dev;
2552         struct page **pages;
2553         enum obj_operation_type op_type;
2554         u32 page_count;
2555         int img_result;
2556         u64 parent_length;
2557
2558         rbd_assert(img_request_child_test(img_request));
2559
2560         /* First get what we need from the image request */
2561
2562         pages = img_request->copyup_pages;
2563         rbd_assert(pages != NULL);
2564         img_request->copyup_pages = NULL;
2565         page_count = img_request->copyup_page_count;
2566         rbd_assert(page_count);
2567         img_request->copyup_page_count = 0;
2568
2569         orig_request = img_request->obj_request;
2570         rbd_assert(orig_request != NULL);
2571         rbd_assert(obj_request_type_valid(orig_request->type));
2572         img_result = img_request->result;
2573         parent_length = img_request->length;
2574         rbd_assert(parent_length == img_request->xferred);
2575         rbd_img_request_put(img_request);
2576
2577         rbd_assert(orig_request->img_request);
2578         rbd_dev = orig_request->img_request->rbd_dev;
2579         rbd_assert(rbd_dev);
2580
2581         /*
2582          * If the overlap has become 0 (most likely because the
2583          * image has been flattened) we need to free the pages
2584          * and re-submit the original write request.
2585          */
2586         if (!rbd_dev->parent_overlap) {
2587                 struct ceph_osd_client *osdc;
2588
2589                 ceph_release_page_vector(pages, page_count);
2590                 osdc = &rbd_dev->rbd_client->client->osdc;
2591                 img_result = rbd_obj_request_submit(osdc, orig_request);
2592                 if (!img_result)
2593                         return;
2594         }
2595
2596         if (img_result)
2597                 goto out_err;
2598
2599         /*
2600          * The original osd request is of no use to use any more.
2601          * We need a new one that can hold the three ops in a copyup
2602          * request.  Allocate the new copyup osd request for the
2603          * original request, and release the old one.
2604          */
2605         img_result = -ENOMEM;
2606         osd_req = rbd_osd_req_create_copyup(orig_request);
2607         if (!osd_req)
2608                 goto out_err;
2609         rbd_osd_req_destroy(orig_request->osd_req);
2610         orig_request->osd_req = osd_req;
2611         orig_request->copyup_pages = pages;
2612         orig_request->copyup_page_count = page_count;
2613
2614         /* Initialize the copyup op */
2615
2616         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2617         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2618                                                 false, false);
2619
2620         /* Add the other op(s) */
2621
2622         op_type = rbd_img_request_op_type(orig_request->img_request);
2623         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2624
2625         /* All set, send it off. */
2626
2627         orig_request->callback = rbd_img_obj_copyup_callback;
2628         osdc = &rbd_dev->rbd_client->client->osdc;
2629         img_result = rbd_obj_request_submit(osdc, orig_request);
2630         if (!img_result)
2631                 return;
2632 out_err:
2633         /* Record the error code and complete the request */
2634
2635         orig_request->result = img_result;
2636         orig_request->xferred = 0;
2637         obj_request_done_set(orig_request);
2638         rbd_obj_request_complete(orig_request);
2639 }
2640
2641 /*
2642  * Read from the parent image the range of data that covers the
2643  * entire target of the given object request.  This is used for
2644  * satisfying a layered image write request when the target of an
2645  * object request from the image request does not exist.
2646  *
2647  * A page array big enough to hold the returned data is allocated
2648  * and supplied to rbd_img_request_fill() as the "data descriptor."
2649  * When the read completes, this page array will be transferred to
2650  * the original object request for the copyup operation.
2651  *
2652  * If an error occurs, record it as the result of the original
2653  * object request and mark it done so it gets completed.
2654  */
2655 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2656 {
2657         struct rbd_img_request *img_request = NULL;
2658         struct rbd_img_request *parent_request = NULL;
2659         struct rbd_device *rbd_dev;
2660         u64 img_offset;
2661         u64 length;
2662         struct page **pages = NULL;
2663         u32 page_count;
2664         int result;
2665
2666         rbd_assert(obj_request_img_data_test(obj_request));
2667         rbd_assert(obj_request_type_valid(obj_request->type));
2668
2669         img_request = obj_request->img_request;
2670         rbd_assert(img_request != NULL);
2671         rbd_dev = img_request->rbd_dev;
2672         rbd_assert(rbd_dev->parent != NULL);
2673
2674         /*
2675          * Determine the byte range covered by the object in the
2676          * child image to which the original request was to be sent.
2677          */
2678         img_offset = obj_request->img_offset - obj_request->offset;
2679         length = (u64)1 << rbd_dev->header.obj_order;
2680
2681         /*
2682          * There is no defined parent data beyond the parent
2683          * overlap, so limit what we read at that boundary if
2684          * necessary.
2685          */
2686         if (img_offset + length > rbd_dev->parent_overlap) {
2687                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2688                 length = rbd_dev->parent_overlap - img_offset;
2689         }
2690
2691         /*
2692          * Allocate a page array big enough to receive the data read
2693          * from the parent.
2694          */
2695         page_count = (u32)calc_pages_for(0, length);
2696         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2697         if (IS_ERR(pages)) {
2698                 result = PTR_ERR(pages);
2699                 pages = NULL;
2700                 goto out_err;
2701         }
2702
2703         result = -ENOMEM;
2704         parent_request = rbd_parent_request_create(obj_request,
2705                                                 img_offset, length);
2706         if (!parent_request)
2707                 goto out_err;
2708
2709         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2710         if (result)
2711                 goto out_err;
2712         parent_request->copyup_pages = pages;
2713         parent_request->copyup_page_count = page_count;
2714
2715         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2716         result = rbd_img_request_submit(parent_request);
2717         if (!result)
2718                 return 0;
2719
2720         parent_request->copyup_pages = NULL;
2721         parent_request->copyup_page_count = 0;
2722         parent_request->obj_request = NULL;
2723         rbd_obj_request_put(obj_request);
2724 out_err:
2725         if (pages)
2726                 ceph_release_page_vector(pages, page_count);
2727         if (parent_request)
2728                 rbd_img_request_put(parent_request);
2729         obj_request->result = result;
2730         obj_request->xferred = 0;
2731         obj_request_done_set(obj_request);
2732
2733         return result;
2734 }
2735
2736 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2737 {
2738         struct rbd_obj_request *orig_request;
2739         struct rbd_device *rbd_dev;
2740         int result;
2741
2742         rbd_assert(!obj_request_img_data_test(obj_request));
2743
2744         /*
2745          * All we need from the object request is the original
2746          * request and the result of the STAT op.  Grab those, then
2747          * we're done with the request.
2748          */
2749         orig_request = obj_request->obj_request;
2750         obj_request->obj_request = NULL;
2751         rbd_obj_request_put(orig_request);
2752         rbd_assert(orig_request);
2753         rbd_assert(orig_request->img_request);
2754
2755         result = obj_request->result;
2756         obj_request->result = 0;
2757
2758         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2759                 obj_request, orig_request, result,
2760                 obj_request->xferred, obj_request->length);
2761         rbd_obj_request_put(obj_request);
2762
2763         /*
2764          * If the overlap has become 0 (most likely because the
2765          * image has been flattened) we need to free the pages
2766          * and re-submit the original write request.
2767          */
2768         rbd_dev = orig_request->img_request->rbd_dev;
2769         if (!rbd_dev->parent_overlap) {
2770                 struct ceph_osd_client *osdc;
2771
2772                 osdc = &rbd_dev->rbd_client->client->osdc;
2773                 result = rbd_obj_request_submit(osdc, orig_request);
2774                 if (!result)
2775                         return;
2776         }
2777
2778         /*
2779          * Our only purpose here is to determine whether the object
2780          * exists, and we don't want to treat the non-existence as
2781          * an error.  If something else comes back, transfer the
2782          * error to the original request and complete it now.
2783          */
2784         if (!result) {
2785                 obj_request_existence_set(orig_request, true);
2786         } else if (result == -ENOENT) {
2787                 obj_request_existence_set(orig_request, false);
2788         } else if (result) {
2789                 orig_request->result = result;
2790                 goto out;
2791         }
2792
2793         /*
2794          * Resubmit the original request now that we have recorded
2795          * whether the target object exists.
2796          */
2797         orig_request->result = rbd_img_obj_request_submit(orig_request);
2798 out:
2799         if (orig_request->result)
2800                 rbd_obj_request_complete(orig_request);
2801 }
2802
2803 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2804 {
2805         struct rbd_obj_request *stat_request;
2806         struct rbd_device *rbd_dev;
2807         struct ceph_osd_client *osdc;
2808         struct page **pages = NULL;
2809         u32 page_count;
2810         size_t size;
2811         int ret;
2812
2813         /*
2814          * The response data for a STAT call consists of:
2815          *     le64 length;
2816          *     struct {
2817          *         le32 tv_sec;
2818          *         le32 tv_nsec;
2819          *     } mtime;
2820          */
2821         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2822         page_count = (u32)calc_pages_for(0, size);
2823         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2824         if (IS_ERR(pages))
2825                 return PTR_ERR(pages);
2826
2827         ret = -ENOMEM;
2828         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2829                                                         OBJ_REQUEST_PAGES);
2830         if (!stat_request)
2831                 goto out;
2832
2833         rbd_obj_request_get(obj_request);
2834         stat_request->obj_request = obj_request;
2835         stat_request->pages = pages;
2836         stat_request->page_count = page_count;
2837
2838         rbd_assert(obj_request->img_request);
2839         rbd_dev = obj_request->img_request->rbd_dev;
2840         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2841                                                    stat_request);
2842         if (!stat_request->osd_req)
2843                 goto out;
2844         stat_request->callback = rbd_img_obj_exists_callback;
2845
2846         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2847         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2848                                         false, false);
2849         rbd_osd_req_format_read(stat_request);
2850
2851         osdc = &rbd_dev->rbd_client->client->osdc;
2852         ret = rbd_obj_request_submit(osdc, stat_request);
2853 out:
2854         if (ret)
2855                 rbd_obj_request_put(obj_request);
2856
2857         return ret;
2858 }
2859
2860 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2861 {
2862         struct rbd_img_request *img_request;
2863         struct rbd_device *rbd_dev;
2864
2865         rbd_assert(obj_request_img_data_test(obj_request));
2866
2867         img_request = obj_request->img_request;
2868         rbd_assert(img_request);
2869         rbd_dev = img_request->rbd_dev;
2870
2871         /* Reads */
2872         if (!img_request_write_test(img_request) &&
2873             !img_request_discard_test(img_request))
2874                 return true;
2875
2876         /* Non-layered writes */
2877         if (!img_request_layered_test(img_request))
2878                 return true;
2879
2880         /*
2881          * Layered writes outside of the parent overlap range don't
2882          * share any data with the parent.
2883          */
2884         if (!obj_request_overlaps_parent(obj_request))
2885                 return true;
2886
2887         /*
2888          * Entire-object layered writes - we will overwrite whatever
2889          * parent data there is anyway.
2890          */
2891         if (!obj_request->offset &&
2892             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2893                 return true;
2894
2895         /*
2896          * If the object is known to already exist, its parent data has
2897          * already been copied.
2898          */
2899         if (obj_request_known_test(obj_request) &&
2900             obj_request_exists_test(obj_request))
2901                 return true;
2902
2903         return false;
2904 }
2905
2906 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2907 {
2908         if (img_obj_request_simple(obj_request)) {
2909                 struct rbd_device *rbd_dev;
2910                 struct ceph_osd_client *osdc;
2911
2912                 rbd_dev = obj_request->img_request->rbd_dev;
2913                 osdc = &rbd_dev->rbd_client->client->osdc;
2914
2915                 return rbd_obj_request_submit(osdc, obj_request);
2916         }
2917
2918         /*
2919          * It's a layered write.  The target object might exist but
2920          * we may not know that yet.  If we know it doesn't exist,
2921          * start by reading the data for the full target object from
2922          * the parent so we can use it for a copyup to the target.
2923          */
2924         if (obj_request_known_test(obj_request))
2925                 return rbd_img_obj_parent_read_full(obj_request);
2926
2927         /* We don't know whether the target exists.  Go find out. */
2928
2929         return rbd_img_obj_exists_submit(obj_request);
2930 }
2931
2932 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2933 {
2934         struct rbd_obj_request *obj_request;
2935         struct rbd_obj_request *next_obj_request;
2936
2937         dout("%s: img %p\n", __func__, img_request);
2938         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2939                 int ret;
2940
2941                 ret = rbd_img_obj_request_submit(obj_request);
2942                 if (ret)
2943                         return ret;
2944         }
2945
2946         return 0;
2947 }
2948
2949 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2950 {
2951         struct rbd_obj_request *obj_request;
2952         struct rbd_device *rbd_dev;
2953         u64 obj_end;
2954         u64 img_xferred;
2955         int img_result;
2956
2957         rbd_assert(img_request_child_test(img_request));
2958
2959         /* First get what we need from the image request and release it */
2960
2961         obj_request = img_request->obj_request;
2962         img_xferred = img_request->xferred;
2963         img_result = img_request->result;
2964         rbd_img_request_put(img_request);
2965
2966         /*
2967          * If the overlap has become 0 (most likely because the
2968          * image has been flattened) we need to re-submit the
2969          * original request.
2970          */
2971         rbd_assert(obj_request);
2972         rbd_assert(obj_request->img_request);
2973         rbd_dev = obj_request->img_request->rbd_dev;
2974         if (!rbd_dev->parent_overlap) {
2975                 struct ceph_osd_client *osdc;
2976
2977                 osdc = &rbd_dev->rbd_client->client->osdc;
2978                 img_result = rbd_obj_request_submit(osdc, obj_request);
2979                 if (!img_result)
2980                         return;
2981         }
2982
2983         obj_request->result = img_result;
2984         if (obj_request->result)
2985                 goto out;
2986
2987         /*
2988          * We need to zero anything beyond the parent overlap
2989          * boundary.  Since rbd_img_obj_request_read_callback()
2990          * will zero anything beyond the end of a short read, an
2991          * easy way to do this is to pretend the data from the
2992          * parent came up short--ending at the overlap boundary.
2993          */
2994         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2995         obj_end = obj_request->img_offset + obj_request->length;
2996         if (obj_end > rbd_dev->parent_overlap) {
2997                 u64 xferred = 0;
2998
2999                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3000                         xferred = rbd_dev->parent_overlap -
3001                                         obj_request->img_offset;
3002
3003                 obj_request->xferred = min(img_xferred, xferred);
3004         } else {
3005                 obj_request->xferred = img_xferred;
3006         }
3007 out:
3008         rbd_img_obj_request_read_callback(obj_request);
3009         rbd_obj_request_complete(obj_request);
3010 }
3011
3012 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3013 {
3014         struct rbd_img_request *img_request;
3015         int result;
3016
3017         rbd_assert(obj_request_img_data_test(obj_request));
3018         rbd_assert(obj_request->img_request != NULL);
3019         rbd_assert(obj_request->result == (s32) -ENOENT);
3020         rbd_assert(obj_request_type_valid(obj_request->type));
3021
3022         /* rbd_read_finish(obj_request, obj_request->length); */
3023         img_request = rbd_parent_request_create(obj_request,
3024                                                 obj_request->img_offset,
3025                                                 obj_request->length);
3026         result = -ENOMEM;
3027         if (!img_request)
3028                 goto out_err;
3029
3030         if (obj_request->type == OBJ_REQUEST_BIO)
3031                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3032                                                 obj_request->bio_list);
3033         else
3034                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3035                                                 obj_request->pages);
3036         if (result)
3037                 goto out_err;
3038
3039         img_request->callback = rbd_img_parent_read_callback;
3040         result = rbd_img_request_submit(img_request);
3041         if (result)
3042                 goto out_err;
3043
3044         return;
3045 out_err:
3046         if (img_request)
3047                 rbd_img_request_put(img_request);
3048         obj_request->result = result;
3049         obj_request->xferred = 0;
3050         obj_request_done_set(obj_request);
3051 }
3052
3053 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3054 {
3055         struct rbd_obj_request *obj_request;
3056         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3057         int ret;
3058
3059         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3060                                                         OBJ_REQUEST_NODATA);
3061         if (!obj_request)
3062                 return -ENOMEM;
3063
3064         ret = -ENOMEM;
3065         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3066                                                   obj_request);
3067         if (!obj_request->osd_req)
3068                 goto out;
3069
3070         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3071                                         notify_id, 0, 0);
3072         rbd_osd_req_format_read(obj_request);
3073
3074         ret = rbd_obj_request_submit(osdc, obj_request);
3075         if (ret)
3076                 goto out;
3077         ret = rbd_obj_request_wait(obj_request);
3078 out:
3079         rbd_obj_request_put(obj_request);
3080
3081         return ret;
3082 }
3083
3084 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3085 {
3086         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3087         int ret;
3088
3089         if (!rbd_dev)
3090                 return;
3091
3092         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3093                 rbd_dev->header_name, (unsigned long long)notify_id,
3094                 (unsigned int)opcode);
3095
3096         /*
3097          * Until adequate refresh error handling is in place, there is
3098          * not much we can do here, except warn.
3099          *
3100          * See http://tracker.ceph.com/issues/5040
3101          */
3102         ret = rbd_dev_refresh(rbd_dev);
3103         if (ret)
3104                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3105
3106         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3107         if (ret)
3108                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3109 }
3110
3111 /*
3112  * Send a (un)watch request and wait for the ack.  Return a request
3113  * with a ref held on success or error.
3114  */
3115 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3116                                                 struct rbd_device *rbd_dev,
3117                                                 bool watch)
3118 {
3119         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3120         struct rbd_obj_request *obj_request;
3121         int ret;
3122
3123         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3124                                              OBJ_REQUEST_NODATA);
3125         if (!obj_request)
3126                 return ERR_PTR(-ENOMEM);
3127
3128         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3129                                                   obj_request);
3130         if (!obj_request->osd_req) {
3131                 ret = -ENOMEM;
3132                 goto out;
3133         }
3134
3135         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3136                               rbd_dev->watch_event->cookie, 0, watch);
3137         rbd_osd_req_format_write(obj_request);
3138
3139         if (watch)
3140                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3141
3142         ret = rbd_obj_request_submit(osdc, obj_request);
3143         if (ret)
3144                 goto out;
3145
3146         ret = rbd_obj_request_wait(obj_request);
3147         if (ret)
3148                 goto out;
3149
3150         ret = obj_request->result;
3151         if (ret) {
3152                 if (watch)
3153                         rbd_obj_request_end(obj_request);
3154                 goto out;
3155         }
3156
3157         return obj_request;
3158
3159 out:
3160         rbd_obj_request_put(obj_request);
3161         return ERR_PTR(ret);
3162 }
3163
3164 /*
3165  * Initiate a watch request, synchronously.
3166  */
3167 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3168 {
3169         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3170         struct rbd_obj_request *obj_request;
3171         int ret;
3172
3173         rbd_assert(!rbd_dev->watch_event);
3174         rbd_assert(!rbd_dev->watch_request);
3175
3176         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3177                                      &rbd_dev->watch_event);
3178         if (ret < 0)
3179                 return ret;
3180
3181         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3182         if (IS_ERR(obj_request)) {
3183                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3184                 rbd_dev->watch_event = NULL;
3185                 return PTR_ERR(obj_request);
3186         }
3187
3188         /*
3189          * A watch request is set to linger, so the underlying osd
3190          * request won't go away until we unregister it.  We retain
3191          * a pointer to the object request during that time (in
3192          * rbd_dev->watch_request), so we'll keep a reference to it.
3193          * We'll drop that reference after we've unregistered it in
3194          * rbd_dev_header_unwatch_sync().
3195          */
3196         rbd_dev->watch_request = obj_request;
3197
3198         return 0;
3199 }
3200
3201 /*
3202  * Tear down a watch request, synchronously.
3203  */
3204 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3205 {
3206         struct rbd_obj_request *obj_request;
3207
3208         rbd_assert(rbd_dev->watch_event);
3209         rbd_assert(rbd_dev->watch_request);
3210
3211         rbd_obj_request_end(rbd_dev->watch_request);
3212         rbd_obj_request_put(rbd_dev->watch_request);
3213         rbd_dev->watch_request = NULL;
3214
3215         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3216         if (!IS_ERR(obj_request))
3217                 rbd_obj_request_put(obj_request);
3218         else
3219                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3220                          PTR_ERR(obj_request));
3221
3222         ceph_osdc_cancel_event(rbd_dev->watch_event);
3223         rbd_dev->watch_event = NULL;
3224 }
3225
3226 /*
3227  * Synchronous osd object method call.  Returns the number of bytes
3228  * returned in the outbound buffer, or a negative error code.
3229  */
3230 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3231                              const char *object_name,
3232                              const char *class_name,
3233                              const char *method_name,
3234                              const void *outbound,
3235                              size_t outbound_size,
3236                              void *inbound,
3237                              size_t inbound_size)
3238 {
3239         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3240         struct rbd_obj_request *obj_request;
3241         struct page **pages;
3242         u32 page_count;
3243         int ret;
3244
3245         /*
3246          * Method calls are ultimately read operations.  The result
3247          * should placed into the inbound buffer provided.  They
3248          * also supply outbound data--parameters for the object
3249          * method.  Currently if this is present it will be a
3250          * snapshot id.
3251          */
3252         page_count = (u32)calc_pages_for(0, inbound_size);
3253         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3254         if (IS_ERR(pages))
3255                 return PTR_ERR(pages);
3256
3257         ret = -ENOMEM;
3258         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3259                                                         OBJ_REQUEST_PAGES);
3260         if (!obj_request)
3261                 goto out;
3262
3263         obj_request->pages = pages;
3264         obj_request->page_count = page_count;
3265
3266         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3267                                                   obj_request);
3268         if (!obj_request->osd_req)
3269                 goto out;
3270
3271         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3272                                         class_name, method_name);
3273         if (outbound_size) {
3274                 struct ceph_pagelist *pagelist;
3275
3276                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3277                 if (!pagelist)
3278                         goto out;
3279
3280                 ceph_pagelist_init(pagelist);
3281                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3282                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3283                                                 pagelist);
3284         }
3285         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3286                                         obj_request->pages, inbound_size,
3287                                         0, false, false);
3288         rbd_osd_req_format_read(obj_request);
3289
3290         ret = rbd_obj_request_submit(osdc, obj_request);
3291         if (ret)
3292                 goto out;
3293         ret = rbd_obj_request_wait(obj_request);
3294         if (ret)
3295                 goto out;
3296
3297         ret = obj_request->result;
3298         if (ret < 0)
3299                 goto out;
3300
3301         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3302         ret = (int)obj_request->xferred;
3303         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3304 out:
3305         if (obj_request)
3306                 rbd_obj_request_put(obj_request);
3307         else
3308                 ceph_release_page_vector(pages, page_count);
3309
3310         return ret;
3311 }
3312
3313 static void rbd_queue_workfn(struct work_struct *work)
3314 {
3315         struct request *rq = blk_mq_rq_from_pdu(work);
3316         struct rbd_device *rbd_dev = rq->q->queuedata;
3317         struct rbd_img_request *img_request;
3318         struct ceph_snap_context *snapc = NULL;
3319         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3320         u64 length = blk_rq_bytes(rq);
3321         enum obj_operation_type op_type;
3322         u64 mapping_size;
3323         int result;
3324
3325         if (rq->cmd_type != REQ_TYPE_FS) {
3326                 dout("%s: non-fs request type %d\n", __func__,
3327                         (int) rq->cmd_type);
3328                 result = -EIO;
3329                 goto err;
3330         }
3331
3332         if (rq->cmd_flags & REQ_DISCARD)
3333                 op_type = OBJ_OP_DISCARD;
3334         else if (rq->cmd_flags & REQ_WRITE)
3335                 op_type = OBJ_OP_WRITE;
3336         else
3337                 op_type = OBJ_OP_READ;
3338
3339         /* Ignore/skip any zero-length requests */
3340
3341         if (!length) {
3342                 dout("%s: zero-length request\n", __func__);
3343                 result = 0;
3344                 goto err_rq;
3345         }
3346
3347         /* Only reads are allowed to a read-only device */
3348
3349         if (op_type != OBJ_OP_READ) {
3350                 if (rbd_dev->mapping.read_only) {
3351                         result = -EROFS;
3352                         goto err_rq;
3353                 }
3354                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3355         }
3356
3357         /*
3358          * Quit early if the mapped snapshot no longer exists.  It's
3359          * still possible the snapshot will have disappeared by the
3360          * time our request arrives at the osd, but there's no sense in
3361          * sending it if we already know.
3362          */
3363         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3364                 dout("request for non-existent snapshot");
3365                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3366                 result = -ENXIO;
3367                 goto err_rq;
3368         }
3369
3370         if (offset && length > U64_MAX - offset + 1) {
3371                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3372                          length);
3373                 result = -EINVAL;
3374                 goto err_rq;    /* Shouldn't happen */
3375         }
3376
3377         blk_mq_start_request(rq);
3378
3379         down_read(&rbd_dev->header_rwsem);
3380         mapping_size = rbd_dev->mapping.size;
3381         if (op_type != OBJ_OP_READ) {
3382                 snapc = rbd_dev->header.snapc;
3383                 ceph_get_snap_context(snapc);
3384         }
3385         up_read(&rbd_dev->header_rwsem);
3386
3387         if (offset + length > mapping_size) {
3388                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3389                          length, mapping_size);
3390                 result = -EIO;
3391                 goto err_rq;
3392         }
3393
3394         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3395                                              snapc);
3396         if (!img_request) {
3397                 result = -ENOMEM;
3398                 goto err_rq;
3399         }
3400         img_request->rq = rq;
3401
3402         if (op_type == OBJ_OP_DISCARD)
3403                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3404                                               NULL);
3405         else
3406                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3407                                               rq->bio);
3408         if (result)
3409                 goto err_img_request;
3410
3411         result = rbd_img_request_submit(img_request);
3412         if (result)
3413                 goto err_img_request;
3414
3415         return;
3416
3417 err_img_request:
3418         rbd_img_request_put(img_request);
3419 err_rq:
3420         if (result)
3421                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3422                          obj_op_name(op_type), length, offset, result);
3423         ceph_put_snap_context(snapc);
3424 err:
3425         blk_mq_end_request(rq, result);
3426 }
3427
3428 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3429                 const struct blk_mq_queue_data *bd)
3430 {
3431         struct request *rq = bd->rq;
3432         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3433
3434         queue_work(rbd_wq, work);
3435         return BLK_MQ_RQ_QUEUE_OK;
3436 }
3437
3438 /*
3439  * a queue callback. Makes sure that we don't create a bio that spans across
3440  * multiple osd objects. One exception would be with a single page bios,
3441  * which we handle later at bio_chain_clone_range()
3442  */
3443 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3444                           struct bio_vec *bvec)
3445 {
3446         struct rbd_device *rbd_dev = q->queuedata;
3447         sector_t sector_offset;
3448         sector_t sectors_per_obj;
3449         sector_t obj_sector_offset;
3450         int ret;
3451
3452         /*
3453          * Find how far into its rbd object the partition-relative
3454          * bio start sector is to offset relative to the enclosing
3455          * device.
3456          */
3457         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3458         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3459         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3460
3461         /*
3462          * Compute the number of bytes from that offset to the end
3463          * of the object.  Account for what's already used by the bio.
3464          */
3465         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3466         if (ret > bmd->bi_size)
3467                 ret -= bmd->bi_size;
3468         else
3469                 ret = 0;
3470
3471         /*
3472          * Don't send back more than was asked for.  And if the bio
3473          * was empty, let the whole thing through because:  "Note
3474          * that a block device *must* allow a single page to be
3475          * added to an empty bio."
3476          */
3477         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3478         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3479                 ret = (int) bvec->bv_len;
3480
3481         return ret;
3482 }
3483
3484 static void rbd_free_disk(struct rbd_device *rbd_dev)
3485 {
3486         struct gendisk *disk = rbd_dev->disk;
3487
3488         if (!disk)
3489                 return;
3490
3491         rbd_dev->disk = NULL;
3492         if (disk->flags & GENHD_FL_UP) {
3493                 del_gendisk(disk);
3494                 if (disk->queue)
3495                         blk_cleanup_queue(disk->queue);
3496                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3497         }
3498         put_disk(disk);
3499 }
3500
3501 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3502                                 const char *object_name,
3503                                 u64 offset, u64 length, void *buf)
3504
3505 {
3506         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3507         struct rbd_obj_request *obj_request;
3508         struct page **pages = NULL;
3509         u32 page_count;
3510         size_t size;
3511         int ret;
3512
3513         page_count = (u32) calc_pages_for(offset, length);
3514         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3515         if (IS_ERR(pages))
3516                 return PTR_ERR(pages);
3517
3518         ret = -ENOMEM;
3519         obj_request = rbd_obj_request_create(object_name, offset, length,
3520                                                         OBJ_REQUEST_PAGES);
3521         if (!obj_request)
3522                 goto out;
3523
3524         obj_request->pages = pages;
3525         obj_request->page_count = page_count;
3526
3527         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3528                                                   obj_request);
3529         if (!obj_request->osd_req)
3530                 goto out;
3531
3532         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3533                                         offset, length, 0, 0);
3534         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3535                                         obj_request->pages,
3536                                         obj_request->length,
3537                                         obj_request->offset & ~PAGE_MASK,
3538                                         false, false);
3539         rbd_osd_req_format_read(obj_request);
3540
3541         ret = rbd_obj_request_submit(osdc, obj_request);
3542         if (ret)
3543                 goto out;
3544         ret = rbd_obj_request_wait(obj_request);
3545         if (ret)
3546                 goto out;
3547
3548         ret = obj_request->result;
3549         if (ret < 0)
3550                 goto out;
3551
3552         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3553         size = (size_t) obj_request->xferred;
3554         ceph_copy_from_page_vector(pages, buf, 0, size);
3555         rbd_assert(size <= (size_t)INT_MAX);
3556         ret = (int)size;
3557 out:
3558         if (obj_request)
3559                 rbd_obj_request_put(obj_request);
3560         else
3561                 ceph_release_page_vector(pages, page_count);
3562
3563         return ret;
3564 }
3565
3566 /*
3567  * Read the complete header for the given rbd device.  On successful
3568  * return, the rbd_dev->header field will contain up-to-date
3569  * information about the image.
3570  */
3571 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3572 {
3573         struct rbd_image_header_ondisk *ondisk = NULL;
3574         u32 snap_count = 0;
3575         u64 names_size = 0;
3576         u32 want_count;
3577         int ret;
3578
3579         /*
3580          * The complete header will include an array of its 64-bit
3581          * snapshot ids, followed by the names of those snapshots as
3582          * a contiguous block of NUL-terminated strings.  Note that
3583          * the number of snapshots could change by the time we read
3584          * it in, in which case we re-read it.
3585          */
3586         do {
3587                 size_t size;
3588
3589                 kfree(ondisk);
3590
3591                 size = sizeof (*ondisk);
3592                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3593                 size += names_size;
3594                 ondisk = kmalloc(size, GFP_KERNEL);
3595                 if (!ondisk)
3596                         return -ENOMEM;
3597
3598                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3599                                        0, size, ondisk);
3600                 if (ret < 0)
3601                         goto out;
3602                 if ((size_t)ret < size) {
3603                         ret = -ENXIO;
3604                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3605                                 size, ret);
3606                         goto out;
3607                 }
3608                 if (!rbd_dev_ondisk_valid(ondisk)) {
3609                         ret = -ENXIO;
3610                         rbd_warn(rbd_dev, "invalid header");
3611                         goto out;
3612                 }
3613
3614                 names_size = le64_to_cpu(ondisk->snap_names_len);
3615                 want_count = snap_count;
3616                 snap_count = le32_to_cpu(ondisk->snap_count);
3617         } while (snap_count != want_count);
3618
3619         ret = rbd_header_from_disk(rbd_dev, ondisk);
3620 out:
3621         kfree(ondisk);
3622
3623         return ret;
3624 }
3625
3626 /*
3627  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3628  * has disappeared from the (just updated) snapshot context.
3629  */
3630 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3631 {
3632         u64 snap_id;
3633
3634         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3635                 return;
3636
3637         snap_id = rbd_dev->spec->snap_id;
3638         if (snap_id == CEPH_NOSNAP)
3639                 return;
3640
3641         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3642                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3643 }
3644
3645 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3646 {
3647         sector_t size;
3648         bool removing;
3649
3650         /*
3651          * Don't hold the lock while doing disk operations,
3652          * or lock ordering will conflict with the bdev mutex via:
3653          * rbd_add() -> blkdev_get() -> rbd_open()
3654          */
3655         spin_lock_irq(&rbd_dev->lock);
3656         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3657         spin_unlock_irq(&rbd_dev->lock);
3658         /*
3659          * If the device is being removed, rbd_dev->disk has
3660          * been destroyed, so don't try to update its size
3661          */
3662         if (!removing) {
3663                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3664                 dout("setting size to %llu sectors", (unsigned long long)size);
3665                 set_capacity(rbd_dev->disk, size);
3666                 revalidate_disk(rbd_dev->disk);
3667         }
3668 }
3669
3670 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3671 {
3672         u64 mapping_size;
3673         int ret;
3674
3675         down_write(&rbd_dev->header_rwsem);
3676         mapping_size = rbd_dev->mapping.size;
3677
3678         ret = rbd_dev_header_info(rbd_dev);
3679         if (ret)
3680                 goto out;
3681
3682         /*
3683          * If there is a parent, see if it has disappeared due to the
3684          * mapped image getting flattened.
3685          */
3686         if (rbd_dev->parent) {
3687                 ret = rbd_dev_v2_parent_info(rbd_dev);
3688                 if (ret)
3689                         goto out;
3690         }
3691
3692         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3693                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3694         } else {
3695                 /* validate mapped snapshot's EXISTS flag */
3696                 rbd_exists_validate(rbd_dev);
3697         }
3698
3699 out:
3700         up_write(&rbd_dev->header_rwsem);
3701         if (!ret && mapping_size != rbd_dev->mapping.size)
3702                 rbd_dev_update_size(rbd_dev);
3703
3704         return ret;
3705 }
3706
3707 static int rbd_init_request(void *data, struct request *rq,
3708                 unsigned int hctx_idx, unsigned int request_idx,
3709                 unsigned int numa_node)
3710 {
3711         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3712
3713         INIT_WORK(work, rbd_queue_workfn);
3714         return 0;
3715 }
3716
3717 static struct blk_mq_ops rbd_mq_ops = {
3718         .queue_rq       = rbd_queue_rq,
3719         .map_queue      = blk_mq_map_queue,
3720         .init_request   = rbd_init_request,
3721 };
3722
3723 static int rbd_init_disk(struct rbd_device *rbd_dev)
3724 {
3725         struct gendisk *disk;
3726         struct request_queue *q;
3727         u64 segment_size;
3728         int err;
3729
3730         /* create gendisk info */
3731         disk = alloc_disk(single_major ?
3732                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3733                           RBD_MINORS_PER_MAJOR);
3734         if (!disk)
3735                 return -ENOMEM;
3736
3737         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3738                  rbd_dev->dev_id);
3739         disk->major = rbd_dev->major;
3740         disk->first_minor = rbd_dev->minor;
3741         if (single_major)
3742                 disk->flags |= GENHD_FL_EXT_DEVT;
3743         disk->fops = &rbd_bd_ops;
3744         disk->private_data = rbd_dev;
3745
3746         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3747         rbd_dev->tag_set.ops = &rbd_mq_ops;
3748         rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3749         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3750         rbd_dev->tag_set.flags =
3751                 BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3752         rbd_dev->tag_set.nr_hw_queues = 1;
3753         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3754
3755         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3756         if (err)
3757                 goto out_disk;
3758
3759         q = blk_mq_init_queue(&rbd_dev->tag_set);
3760         if (IS_ERR(q)) {
3761                 err = PTR_ERR(q);
3762                 goto out_tag_set;
3763         }
3764
3765         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3766         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3767
3768         /* set io sizes to object size */
3769         segment_size = rbd_obj_bytes(&rbd_dev->header);
3770         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3771         blk_queue_max_segment_size(q, segment_size);
3772         blk_queue_io_min(q, segment_size);
3773         blk_queue_io_opt(q, segment_size);
3774
3775         /* enable the discard support */
3776         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3777         q->limits.discard_granularity = segment_size;
3778         q->limits.discard_alignment = segment_size;
3779         q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3780         q->limits.discard_zeroes_data = 1;
3781
3782         blk_queue_merge_bvec(q, rbd_merge_bvec);
3783         disk->queue = q;
3784
3785         q->queuedata = rbd_dev;
3786
3787         rbd_dev->disk = disk;
3788
3789         return 0;
3790 out_tag_set:
3791         blk_mq_free_tag_set(&rbd_dev->tag_set);
3792 out_disk:
3793         put_disk(disk);
3794         return err;
3795 }
3796
3797 /*
3798   sysfs
3799 */
3800
3801 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3802 {
3803         return container_of(dev, struct rbd_device, dev);
3804 }
3805
3806 static ssize_t rbd_size_show(struct device *dev,
3807                              struct device_attribute *attr, char *buf)
3808 {
3809         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3810
3811         return sprintf(buf, "%llu\n",
3812                 (unsigned long long)rbd_dev->mapping.size);
3813 }
3814
3815 /*
3816  * Note this shows the features for whatever's mapped, which is not
3817  * necessarily the base image.
3818  */
3819 static ssize_t rbd_features_show(struct device *dev,
3820                              struct device_attribute *attr, char *buf)
3821 {
3822         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823
3824         return sprintf(buf, "0x%016llx\n",
3825                         (unsigned long long)rbd_dev->mapping.features);
3826 }
3827
3828 static ssize_t rbd_major_show(struct device *dev,
3829                               struct device_attribute *attr, char *buf)
3830 {
3831         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3832
3833         if (rbd_dev->major)
3834                 return sprintf(buf, "%d\n", rbd_dev->major);
3835
3836         return sprintf(buf, "(none)\n");
3837 }
3838
3839 static ssize_t rbd_minor_show(struct device *dev,
3840                               struct device_attribute *attr, char *buf)
3841 {
3842         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843
3844         return sprintf(buf, "%d\n", rbd_dev->minor);
3845 }
3846
3847 static ssize_t rbd_client_id_show(struct device *dev,
3848                                   struct device_attribute *attr, char *buf)
3849 {
3850         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3851
3852         return sprintf(buf, "client%lld\n",
3853                         ceph_client_id(rbd_dev->rbd_client->client));
3854 }
3855
3856 static ssize_t rbd_pool_show(struct device *dev,
3857                              struct device_attribute *attr, char *buf)
3858 {
3859         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860
3861         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3862 }
3863
3864 static ssize_t rbd_pool_id_show(struct device *dev,
3865                              struct device_attribute *attr, char *buf)
3866 {
3867         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3868
3869         return sprintf(buf, "%llu\n",
3870                         (unsigned long long) rbd_dev->spec->pool_id);
3871 }
3872
3873 static ssize_t rbd_name_show(struct device *dev,
3874                              struct device_attribute *attr, char *buf)
3875 {
3876         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3877
3878         if (rbd_dev->spec->image_name)
3879                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3880
3881         return sprintf(buf, "(unknown)\n");
3882 }
3883
3884 static ssize_t rbd_image_id_show(struct device *dev,
3885                              struct device_attribute *attr, char *buf)
3886 {
3887         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3888
3889         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3890 }
3891
3892 /*
3893  * Shows the name of the currently-mapped snapshot (or
3894  * RBD_SNAP_HEAD_NAME for the base image).
3895  */
3896 static ssize_t rbd_snap_show(struct device *dev,
3897                              struct device_attribute *attr,
3898                              char *buf)
3899 {
3900         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3901
3902         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3903 }
3904
3905 /*
3906  * For a v2 image, shows the chain of parent images, separated by empty
3907  * lines.  For v1 images or if there is no parent, shows "(no parent
3908  * image)".
3909  */
3910 static ssize_t rbd_parent_show(struct device *dev,
3911                                struct device_attribute *attr,
3912                                char *buf)
3913 {
3914         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915         ssize_t count = 0;
3916
3917         if (!rbd_dev->parent)
3918                 return sprintf(buf, "(no parent image)\n");
3919
3920         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3921                 struct rbd_spec *spec = rbd_dev->parent_spec;
3922
3923                 count += sprintf(&buf[count], "%s"
3924                             "pool_id %llu\npool_name %s\n"
3925                             "image_id %s\nimage_name %s\n"
3926                             "snap_id %llu\nsnap_name %s\n"
3927                             "overlap %llu\n",
3928                             !count ? "" : "\n", /* first? */
3929                             spec->pool_id, spec->pool_name,
3930                             spec->image_id, spec->image_name ?: "(unknown)",
3931                             spec->snap_id, spec->snap_name,
3932                             rbd_dev->parent_overlap);
3933         }
3934
3935         return count;
3936 }
3937
3938 static ssize_t rbd_image_refresh(struct device *dev,
3939                                  struct device_attribute *attr,
3940                                  const char *buf,
3941                                  size_t size)
3942 {
3943         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3944         int ret;
3945
3946         ret = rbd_dev_refresh(rbd_dev);
3947         if (ret)
3948                 return ret;
3949
3950         return size;
3951 }
3952
3953 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3954 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3955 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3956 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3957 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3958 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3959 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3960 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3961 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3962 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3963 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3964 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3965
3966 static struct attribute *rbd_attrs[] = {
3967         &dev_attr_size.attr,
3968         &dev_attr_features.attr,
3969         &dev_attr_major.attr,
3970         &dev_attr_minor.attr,
3971         &dev_attr_client_id.attr,
3972         &dev_attr_pool.attr,
3973         &dev_attr_pool_id.attr,
3974         &dev_attr_name.attr,
3975         &dev_attr_image_id.attr,
3976         &dev_attr_current_snap.attr,
3977         &dev_attr_parent.attr,
3978         &dev_attr_refresh.attr,
3979         NULL
3980 };
3981
3982 static struct attribute_group rbd_attr_group = {
3983         .attrs = rbd_attrs,
3984 };
3985
3986 static const struct attribute_group *rbd_attr_groups[] = {
3987         &rbd_attr_group,
3988         NULL
3989 };
3990
3991 static void rbd_sysfs_dev_release(struct device *dev)
3992 {
3993 }
3994
3995 static struct device_type rbd_device_type = {
3996         .name           = "rbd",
3997         .groups         = rbd_attr_groups,
3998         .release        = rbd_sysfs_dev_release,
3999 };
4000
4001 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4002 {
4003         kref_get(&spec->kref);
4004
4005         return spec;
4006 }
4007
4008 static void rbd_spec_free(struct kref *kref);
4009 static void rbd_spec_put(struct rbd_spec *spec)
4010 {
4011         if (spec)
4012                 kref_put(&spec->kref, rbd_spec_free);
4013 }
4014
4015 static struct rbd_spec *rbd_spec_alloc(void)
4016 {
4017         struct rbd_spec *spec;
4018
4019         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4020         if (!spec)
4021                 return NULL;
4022
4023         spec->pool_id = CEPH_NOPOOL;
4024         spec->snap_id = CEPH_NOSNAP;
4025         kref_init(&spec->kref);
4026
4027         return spec;
4028 }
4029
4030 static void rbd_spec_free(struct kref *kref)
4031 {
4032         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4033
4034         kfree(spec->pool_name);
4035         kfree(spec->image_id);
4036         kfree(spec->image_name);
4037         kfree(spec->snap_name);
4038         kfree(spec);
4039 }
4040
4041 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4042                                 struct rbd_spec *spec)
4043 {
4044         struct rbd_device *rbd_dev;
4045
4046         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4047         if (!rbd_dev)
4048                 return NULL;
4049
4050         spin_lock_init(&rbd_dev->lock);
4051         rbd_dev->flags = 0;
4052         atomic_set(&rbd_dev->parent_ref, 0);
4053         INIT_LIST_HEAD(&rbd_dev->node);
4054         init_rwsem(&rbd_dev->header_rwsem);
4055
4056         rbd_dev->spec = spec;
4057         rbd_dev->rbd_client = rbdc;
4058
4059         /* Initialize the layout used for all rbd requests */
4060
4061         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4062         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4063         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4064         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4065
4066         return rbd_dev;
4067 }
4068
4069 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4070 {
4071         rbd_put_client(rbd_dev->rbd_client);
4072         rbd_spec_put(rbd_dev->spec);
4073         kfree(rbd_dev);
4074 }
4075
4076 /*
4077  * Get the size and object order for an image snapshot, or if
4078  * snap_id is CEPH_NOSNAP, gets this information for the base
4079  * image.
4080  */
4081 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4082                                 u8 *order, u64 *snap_size)
4083 {
4084         __le64 snapid = cpu_to_le64(snap_id);
4085         int ret;
4086         struct {
4087                 u8 order;
4088                 __le64 size;
4089         } __attribute__ ((packed)) size_buf = { 0 };
4090
4091         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4092                                 "rbd", "get_size",
4093                                 &snapid, sizeof (snapid),
4094                                 &size_buf, sizeof (size_buf));
4095         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4096         if (ret < 0)
4097                 return ret;
4098         if (ret < sizeof (size_buf))
4099                 return -ERANGE;
4100
4101         if (order) {
4102                 *order = size_buf.order;
4103                 dout("  order %u", (unsigned int)*order);
4104         }
4105         *snap_size = le64_to_cpu(size_buf.size);
4106
4107         dout("  snap_id 0x%016llx snap_size = %llu\n",
4108                 (unsigned long long)snap_id,
4109                 (unsigned long long)*snap_size);
4110
4111         return 0;
4112 }
4113
4114 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4115 {
4116         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4117                                         &rbd_dev->header.obj_order,
4118                                         &rbd_dev->header.image_size);
4119 }
4120
4121 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4122 {
4123         void *reply_buf;
4124         int ret;
4125         void *p;
4126
4127         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4128         if (!reply_buf)
4129                 return -ENOMEM;
4130
4131         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4132                                 "rbd", "get_object_prefix", NULL, 0,
4133                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4134         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4135         if (ret < 0)
4136                 goto out;
4137
4138         p = reply_buf;
4139         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4140                                                 p + ret, NULL, GFP_NOIO);
4141         ret = 0;
4142
4143         if (IS_ERR(rbd_dev->header.object_prefix)) {
4144                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4145                 rbd_dev->header.object_prefix = NULL;
4146         } else {
4147                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4148         }
4149 out:
4150         kfree(reply_buf);
4151
4152         return ret;
4153 }
4154
4155 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4156                 u64 *snap_features)
4157 {
4158         __le64 snapid = cpu_to_le64(snap_id);
4159         struct {
4160                 __le64 features;
4161                 __le64 incompat;
4162         } __attribute__ ((packed)) features_buf = { 0 };
4163         u64 incompat;
4164         int ret;
4165
4166         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4167                                 "rbd", "get_features",
4168                                 &snapid, sizeof (snapid),
4169                                 &features_buf, sizeof (features_buf));
4170         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4171         if (ret < 0)
4172                 return ret;
4173         if (ret < sizeof (features_buf))
4174                 return -ERANGE;
4175
4176         incompat = le64_to_cpu(features_buf.incompat);
4177         if (incompat & ~RBD_FEATURES_SUPPORTED)
4178                 return -ENXIO;
4179
4180         *snap_features = le64_to_cpu(features_buf.features);
4181
4182         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4183                 (unsigned long long)snap_id,
4184                 (unsigned long long)*snap_features,
4185                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4186
4187         return 0;
4188 }
4189
4190 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4191 {
4192         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4193                                                 &rbd_dev->header.features);
4194 }
4195
4196 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4197 {
4198         struct rbd_spec *parent_spec;
4199         size_t size;
4200         void *reply_buf = NULL;
4201         __le64 snapid;
4202         void *p;
4203         void *end;
4204         u64 pool_id;
4205         char *image_id;
4206         u64 snap_id;
4207         u64 overlap;
4208         int ret;
4209
4210         parent_spec = rbd_spec_alloc();
4211         if (!parent_spec)
4212                 return -ENOMEM;
4213
4214         size = sizeof (__le64) +                                /* pool_id */
4215                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4216                 sizeof (__le64) +                               /* snap_id */
4217                 sizeof (__le64);                                /* overlap */
4218         reply_buf = kmalloc(size, GFP_KERNEL);
4219         if (!reply_buf) {
4220                 ret = -ENOMEM;
4221                 goto out_err;
4222         }
4223
4224         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4225         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4226                                 "rbd", "get_parent",
4227                                 &snapid, sizeof (snapid),
4228                                 reply_buf, size);
4229         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4230         if (ret < 0)
4231                 goto out_err;
4232
4233         p = reply_buf;
4234         end = reply_buf + ret;
4235         ret = -ERANGE;
4236         ceph_decode_64_safe(&p, end, pool_id, out_err);
4237         if (pool_id == CEPH_NOPOOL) {
4238                 /*
4239                  * Either the parent never existed, or we have
4240                  * record of it but the image got flattened so it no
4241                  * longer has a parent.  When the parent of a
4242                  * layered image disappears we immediately set the
4243                  * overlap to 0.  The effect of this is that all new
4244                  * requests will be treated as if the image had no
4245                  * parent.
4246                  */
4247                 if (rbd_dev->parent_overlap) {
4248                         rbd_dev->parent_overlap = 0;
4249                         rbd_dev_parent_put(rbd_dev);
4250                         pr_info("%s: clone image has been flattened\n",
4251                                 rbd_dev->disk->disk_name);
4252                 }
4253
4254                 goto out;       /* No parent?  No problem. */
4255         }
4256
4257         /* The ceph file layout needs to fit pool id in 32 bits */
4258
4259         ret = -EIO;
4260         if (pool_id > (u64)U32_MAX) {
4261                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4262                         (unsigned long long)pool_id, U32_MAX);
4263                 goto out_err;
4264         }
4265
4266         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4267         if (IS_ERR(image_id)) {
4268                 ret = PTR_ERR(image_id);
4269                 goto out_err;
4270         }
4271         ceph_decode_64_safe(&p, end, snap_id, out_err);
4272         ceph_decode_64_safe(&p, end, overlap, out_err);
4273
4274         /*
4275          * The parent won't change (except when the clone is
4276          * flattened, already handled that).  So we only need to
4277          * record the parent spec we have not already done so.
4278          */
4279         if (!rbd_dev->parent_spec) {
4280                 parent_spec->pool_id = pool_id;
4281                 parent_spec->image_id = image_id;
4282                 parent_spec->snap_id = snap_id;
4283                 rbd_dev->parent_spec = parent_spec;
4284                 parent_spec = NULL;     /* rbd_dev now owns this */
4285         } else {
4286                 kfree(image_id);
4287         }
4288
4289         /*
4290          * We always update the parent overlap.  If it's zero we issue
4291          * a warning, as we will proceed as if there was no parent.
4292          */
4293         if (!overlap) {
4294                 if (parent_spec) {
4295                         /* refresh, careful to warn just once */
4296                         if (rbd_dev->parent_overlap)
4297                                 rbd_warn(rbd_dev,
4298                                     "clone now standalone (overlap became 0)");
4299                 } else {
4300                         /* initial probe */
4301                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4302                 }
4303         }
4304         rbd_dev->parent_overlap = overlap;
4305
4306 out:
4307         ret = 0;
4308 out_err:
4309         kfree(reply_buf);
4310         rbd_spec_put(parent_spec);
4311
4312         return ret;
4313 }
4314
4315 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4316 {
4317         struct {
4318                 __le64 stripe_unit;
4319                 __le64 stripe_count;
4320         } __attribute__ ((packed)) striping_info_buf = { 0 };
4321         size_t size = sizeof (striping_info_buf);
4322         void *p;
4323         u64 obj_size;
4324         u64 stripe_unit;
4325         u64 stripe_count;
4326         int ret;
4327
4328         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4329                                 "rbd", "get_stripe_unit_count", NULL, 0,
4330                                 (char *)&striping_info_buf, size);
4331         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4332         if (ret < 0)
4333                 return ret;
4334         if (ret < size)
4335                 return -ERANGE;
4336
4337         /*
4338          * We don't actually support the "fancy striping" feature
4339          * (STRIPINGV2) yet, but if the striping sizes are the
4340          * defaults the behavior is the same as before.  So find
4341          * out, and only fail if the image has non-default values.
4342          */
4343         ret = -EINVAL;
4344         obj_size = (u64)1 << rbd_dev->header.obj_order;
4345         p = &striping_info_buf;
4346         stripe_unit = ceph_decode_64(&p);
4347         if (stripe_unit != obj_size) {
4348                 rbd_warn(rbd_dev, "unsupported stripe unit "
4349                                 "(got %llu want %llu)",
4350                                 stripe_unit, obj_size);
4351                 return -EINVAL;
4352         }
4353         stripe_count = ceph_decode_64(&p);
4354         if (stripe_count != 1) {
4355                 rbd_warn(rbd_dev, "unsupported stripe count "
4356                                 "(got %llu want 1)", stripe_count);
4357                 return -EINVAL;
4358         }
4359         rbd_dev->header.stripe_unit = stripe_unit;
4360         rbd_dev->header.stripe_count = stripe_count;
4361
4362         return 0;
4363 }
4364
4365 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4366 {
4367         size_t image_id_size;
4368         char *image_id;
4369         void *p;
4370         void *end;
4371         size_t size;
4372         void *reply_buf = NULL;
4373         size_t len = 0;
4374         char *image_name = NULL;
4375         int ret;
4376
4377         rbd_assert(!rbd_dev->spec->image_name);
4378
4379         len = strlen(rbd_dev->spec->image_id);
4380         image_id_size = sizeof (__le32) + len;
4381         image_id = kmalloc(image_id_size, GFP_KERNEL);
4382         if (!image_id)
4383                 return NULL;
4384
4385         p = image_id;
4386         end = image_id + image_id_size;
4387         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4388
4389         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4390         reply_buf = kmalloc(size, GFP_KERNEL);
4391         if (!reply_buf)
4392                 goto out;
4393
4394         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4395                                 "rbd", "dir_get_name",
4396                                 image_id, image_id_size,
4397                                 reply_buf, size);
4398         if (ret < 0)
4399                 goto out;
4400         p = reply_buf;
4401         end = reply_buf + ret;
4402
4403         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4404         if (IS_ERR(image_name))
4405                 image_name = NULL;
4406         else
4407                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4408 out:
4409         kfree(reply_buf);
4410         kfree(image_id);
4411
4412         return image_name;
4413 }
4414
4415 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4416 {
4417         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4418         const char *snap_name;
4419         u32 which = 0;
4420
4421         /* Skip over names until we find the one we are looking for */
4422
4423         snap_name = rbd_dev->header.snap_names;
4424         while (which < snapc->num_snaps) {
4425                 if (!strcmp(name, snap_name))
4426                         return snapc->snaps[which];
4427                 snap_name += strlen(snap_name) + 1;
4428                 which++;
4429         }
4430         return CEPH_NOSNAP;
4431 }
4432
4433 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4434 {
4435         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4436         u32 which;
4437         bool found = false;
4438         u64 snap_id;
4439
4440         for (which = 0; !found && which < snapc->num_snaps; which++) {
4441                 const char *snap_name;
4442
4443                 snap_id = snapc->snaps[which];
4444                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4445                 if (IS_ERR(snap_name)) {
4446                         /* ignore no-longer existing snapshots */
4447                         if (PTR_ERR(snap_name) == -ENOENT)
4448                                 continue;
4449                         else
4450                                 break;
4451                 }
4452                 found = !strcmp(name, snap_name);
4453                 kfree(snap_name);
4454         }
4455         return found ? snap_id : CEPH_NOSNAP;
4456 }
4457
4458 /*
4459  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4460  * no snapshot by that name is found, or if an error occurs.
4461  */
4462 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4463 {
4464         if (rbd_dev->image_format == 1)
4465                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4466
4467         return rbd_v2_snap_id_by_name(rbd_dev, name);
4468 }
4469
4470 /*
4471  * An image being mapped will have everything but the snap id.
4472  */
4473 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4474 {
4475         struct rbd_spec *spec = rbd_dev->spec;
4476
4477         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4478         rbd_assert(spec->image_id && spec->image_name);
4479         rbd_assert(spec->snap_name);
4480
4481         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4482                 u64 snap_id;
4483
4484                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4485                 if (snap_id == CEPH_NOSNAP)
4486                         return -ENOENT;
4487
4488                 spec->snap_id = snap_id;
4489         } else {
4490                 spec->snap_id = CEPH_NOSNAP;
4491         }
4492
4493         return 0;
4494 }
4495
4496 /*
4497  * A parent image will have all ids but none of the names.
4498  *
4499  * All names in an rbd spec are dynamically allocated.  It's OK if we
4500  * can't figure out the name for an image id.
4501  */
4502 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4503 {
4504         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4505         struct rbd_spec *spec = rbd_dev->spec;
4506         const char *pool_name;
4507         const char *image_name;
4508         const char *snap_name;
4509         int ret;
4510
4511         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4512         rbd_assert(spec->image_id);
4513         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4514
4515         /* Get the pool name; we have to make our own copy of this */
4516
4517         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4518         if (!pool_name) {
4519                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4520                 return -EIO;
4521         }
4522         pool_name = kstrdup(pool_name, GFP_KERNEL);
4523         if (!pool_name)
4524                 return -ENOMEM;
4525
4526         /* Fetch the image name; tolerate failure here */
4527
4528         image_name = rbd_dev_image_name(rbd_dev);
4529         if (!image_name)
4530                 rbd_warn(rbd_dev, "unable to get image name");
4531
4532         /* Fetch the snapshot name */
4533
4534         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4535         if (IS_ERR(snap_name)) {
4536                 ret = PTR_ERR(snap_name);
4537                 goto out_err;
4538         }
4539
4540         spec->pool_name = pool_name;
4541         spec->image_name = image_name;
4542         spec->snap_name = snap_name;
4543
4544         return 0;
4545
4546 out_err:
4547         kfree(image_name);
4548         kfree(pool_name);
4549         return ret;
4550 }
4551
4552 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4553 {
4554         size_t size;
4555         int ret;
4556         void *reply_buf;
4557         void *p;
4558         void *end;
4559         u64 seq;
4560         u32 snap_count;
4561         struct ceph_snap_context *snapc;
4562         u32 i;
4563
4564         /*
4565          * We'll need room for the seq value (maximum snapshot id),
4566          * snapshot count, and array of that many snapshot ids.
4567          * For now we have a fixed upper limit on the number we're
4568          * prepared to receive.
4569          */
4570         size = sizeof (__le64) + sizeof (__le32) +
4571                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4572         reply_buf = kzalloc(size, GFP_KERNEL);
4573         if (!reply_buf)
4574                 return -ENOMEM;
4575
4576         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4577                                 "rbd", "get_snapcontext", NULL, 0,
4578                                 reply_buf, size);
4579         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4580         if (ret < 0)
4581                 goto out;
4582
4583         p = reply_buf;
4584         end = reply_buf + ret;
4585         ret = -ERANGE;
4586         ceph_decode_64_safe(&p, end, seq, out);
4587         ceph_decode_32_safe(&p, end, snap_count, out);
4588
4589         /*
4590          * Make sure the reported number of snapshot ids wouldn't go
4591          * beyond the end of our buffer.  But before checking that,
4592          * make sure the computed size of the snapshot context we
4593          * allocate is representable in a size_t.
4594          */
4595         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4596                                  / sizeof (u64)) {
4597                 ret = -EINVAL;
4598                 goto out;
4599         }
4600         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4601                 goto out;
4602         ret = 0;
4603
4604         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4605         if (!snapc) {
4606                 ret = -ENOMEM;
4607                 goto out;
4608         }
4609         snapc->seq = seq;
4610         for (i = 0; i < snap_count; i++)
4611                 snapc->snaps[i] = ceph_decode_64(&p);
4612
4613         ceph_put_snap_context(rbd_dev->header.snapc);
4614         rbd_dev->header.snapc = snapc;
4615
4616         dout("  snap context seq = %llu, snap_count = %u\n",
4617                 (unsigned long long)seq, (unsigned int)snap_count);
4618 out:
4619         kfree(reply_buf);
4620
4621         return ret;
4622 }
4623
4624 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4625                                         u64 snap_id)
4626 {
4627         size_t size;
4628         void *reply_buf;
4629         __le64 snapid;
4630         int ret;
4631         void *p;
4632         void *end;
4633         char *snap_name;
4634
4635         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4636         reply_buf = kmalloc(size, GFP_KERNEL);
4637         if (!reply_buf)
4638                 return ERR_PTR(-ENOMEM);
4639
4640         snapid = cpu_to_le64(snap_id);
4641         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4642                                 "rbd", "get_snapshot_name",
4643                                 &snapid, sizeof (snapid),
4644                                 reply_buf, size);
4645         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4646         if (ret < 0) {
4647                 snap_name = ERR_PTR(ret);
4648                 goto out;
4649         }
4650
4651         p = reply_buf;
4652         end = reply_buf + ret;
4653         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4654         if (IS_ERR(snap_name))
4655                 goto out;
4656
4657         dout("  snap_id 0x%016llx snap_name = %s\n",
4658                 (unsigned long long)snap_id, snap_name);
4659 out:
4660         kfree(reply_buf);
4661
4662         return snap_name;
4663 }
4664
4665 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4666 {
4667         bool first_time = rbd_dev->header.object_prefix == NULL;
4668         int ret;
4669
4670         ret = rbd_dev_v2_image_size(rbd_dev);
4671         if (ret)
4672                 return ret;
4673
4674         if (first_time) {
4675                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4676                 if (ret)
4677                         return ret;
4678         }
4679
4680         ret = rbd_dev_v2_snap_context(rbd_dev);
4681         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4682
4683         return ret;
4684 }
4685
4686 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4687 {
4688         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4689
4690         if (rbd_dev->image_format == 1)
4691                 return rbd_dev_v1_header_info(rbd_dev);
4692
4693         return rbd_dev_v2_header_info(rbd_dev);
4694 }
4695
4696 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4697 {
4698         struct device *dev;
4699         int ret;
4700
4701         dev = &rbd_dev->dev;
4702         dev->bus = &rbd_bus_type;
4703         dev->type = &rbd_device_type;
4704         dev->parent = &rbd_root_dev;
4705         dev->release = rbd_dev_device_release;
4706         dev_set_name(dev, "%d", rbd_dev->dev_id);
4707         ret = device_register(dev);
4708
4709         return ret;
4710 }
4711
4712 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4713 {
4714         device_unregister(&rbd_dev->dev);
4715 }
4716
4717 /*
4718  * Get a unique rbd identifier for the given new rbd_dev, and add
4719  * the rbd_dev to the global list.
4720  */
4721 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4722 {
4723         int new_dev_id;
4724
4725         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4726                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4727                                     GFP_KERNEL);
4728         if (new_dev_id < 0)
4729                 return new_dev_id;
4730
4731         rbd_dev->dev_id = new_dev_id;
4732
4733         spin_lock(&rbd_dev_list_lock);
4734         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4735         spin_unlock(&rbd_dev_list_lock);
4736
4737         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4738
4739         return 0;
4740 }
4741
4742 /*
4743  * Remove an rbd_dev from the global list, and record that its
4744  * identifier is no longer in use.
4745  */
4746 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4747 {
4748         spin_lock(&rbd_dev_list_lock);
4749         list_del_init(&rbd_dev->node);
4750         spin_unlock(&rbd_dev_list_lock);
4751
4752         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4753
4754         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4755 }
4756
4757 /*
4758  * Skips over white space at *buf, and updates *buf to point to the
4759  * first found non-space character (if any). Returns the length of
4760  * the token (string of non-white space characters) found.  Note
4761  * that *buf must be terminated with '\0'.
4762  */
4763 static inline size_t next_token(const char **buf)
4764 {
4765         /*
4766         * These are the characters that produce nonzero for
4767         * isspace() in the "C" and "POSIX" locales.
4768         */
4769         const char *spaces = " \f\n\r\t\v";
4770
4771         *buf += strspn(*buf, spaces);   /* Find start of token */
4772
4773         return strcspn(*buf, spaces);   /* Return token length */
4774 }
4775
4776 /*
4777  * Finds the next token in *buf, dynamically allocates a buffer big
4778  * enough to hold a copy of it, and copies the token into the new
4779  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4780  * that a duplicate buffer is created even for a zero-length token.
4781  *
4782  * Returns a pointer to the newly-allocated duplicate, or a null
4783  * pointer if memory for the duplicate was not available.  If
4784  * the lenp argument is a non-null pointer, the length of the token
4785  * (not including the '\0') is returned in *lenp.
4786  *
4787  * If successful, the *buf pointer will be updated to point beyond
4788  * the end of the found token.
4789  *
4790  * Note: uses GFP_KERNEL for allocation.
4791  */
4792 static inline char *dup_token(const char **buf, size_t *lenp)
4793 {
4794         char *dup;
4795         size_t len;
4796
4797         len = next_token(buf);
4798         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4799         if (!dup)
4800                 return NULL;
4801         *(dup + len) = '\0';
4802         *buf += len;
4803
4804         if (lenp)
4805                 *lenp = len;
4806
4807         return dup;
4808 }
4809
4810 /*
4811  * Parse the options provided for an "rbd add" (i.e., rbd image
4812  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4813  * and the data written is passed here via a NUL-terminated buffer.
4814  * Returns 0 if successful or an error code otherwise.
4815  *
4816  * The information extracted from these options is recorded in
4817  * the other parameters which return dynamically-allocated
4818  * structures:
4819  *  ceph_opts
4820  *      The address of a pointer that will refer to a ceph options
4821  *      structure.  Caller must release the returned pointer using
4822  *      ceph_destroy_options() when it is no longer needed.
4823  *  rbd_opts
4824  *      Address of an rbd options pointer.  Fully initialized by
4825  *      this function; caller must release with kfree().
4826  *  spec
4827  *      Address of an rbd image specification pointer.  Fully
4828  *      initialized by this function based on parsed options.
4829  *      Caller must release with rbd_spec_put().
4830  *
4831  * The options passed take this form:
4832  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4833  * where:
4834  *  <mon_addrs>
4835  *      A comma-separated list of one or more monitor addresses.
4836  *      A monitor address is an ip address, optionally followed
4837  *      by a port number (separated by a colon).
4838  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4839  *  <options>
4840  *      A comma-separated list of ceph and/or rbd options.
4841  *  <pool_name>
4842  *      The name of the rados pool containing the rbd image.
4843  *  <image_name>
4844  *      The name of the image in that pool to map.
4845  *  <snap_id>
4846  *      An optional snapshot id.  If provided, the mapping will
4847  *      present data from the image at the time that snapshot was
4848  *      created.  The image head is used if no snapshot id is
4849  *      provided.  Snapshot mappings are always read-only.
4850  */
4851 static int rbd_add_parse_args(const char *buf,
4852                                 struct ceph_options **ceph_opts,
4853                                 struct rbd_options **opts,
4854                                 struct rbd_spec **rbd_spec)
4855 {
4856         size_t len;
4857         char *options;
4858         const char *mon_addrs;
4859         char *snap_name;
4860         size_t mon_addrs_size;
4861         struct rbd_spec *spec = NULL;
4862         struct rbd_options *rbd_opts = NULL;
4863         struct ceph_options *copts;
4864         int ret;
4865
4866         /* The first four tokens are required */
4867
4868         len = next_token(&buf);
4869         if (!len) {
4870                 rbd_warn(NULL, "no monitor address(es) provided");
4871                 return -EINVAL;
4872         }
4873         mon_addrs = buf;
4874         mon_addrs_size = len + 1;
4875         buf += len;
4876
4877         ret = -EINVAL;
4878         options = dup_token(&buf, NULL);
4879         if (!options)
4880                 return -ENOMEM;
4881         if (!*options) {
4882                 rbd_warn(NULL, "no options provided");
4883                 goto out_err;
4884         }
4885
4886         spec = rbd_spec_alloc();
4887         if (!spec)
4888                 goto out_mem;
4889
4890         spec->pool_name = dup_token(&buf, NULL);
4891         if (!spec->pool_name)
4892                 goto out_mem;
4893         if (!*spec->pool_name) {
4894                 rbd_warn(NULL, "no pool name provided");
4895                 goto out_err;
4896         }
4897
4898         spec->image_name = dup_token(&buf, NULL);
4899         if (!spec->image_name)
4900                 goto out_mem;
4901         if (!*spec->image_name) {
4902                 rbd_warn(NULL, "no image name provided");
4903                 goto out_err;
4904         }
4905
4906         /*
4907          * Snapshot name is optional; default is to use "-"
4908          * (indicating the head/no snapshot).
4909          */
4910         len = next_token(&buf);
4911         if (!len) {
4912                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4913                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4914         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4915                 ret = -ENAMETOOLONG;
4916                 goto out_err;
4917         }
4918         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4919         if (!snap_name)
4920                 goto out_mem;
4921         *(snap_name + len) = '\0';
4922         spec->snap_name = snap_name;
4923
4924         /* Initialize all rbd options to the defaults */
4925
4926         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4927         if (!rbd_opts)
4928                 goto out_mem;
4929
4930         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4931
4932         copts = ceph_parse_options(options, mon_addrs,
4933                                         mon_addrs + mon_addrs_size - 1,
4934                                         parse_rbd_opts_token, rbd_opts);
4935         if (IS_ERR(copts)) {
4936                 ret = PTR_ERR(copts);
4937                 goto out_err;
4938         }
4939         kfree(options);
4940
4941         *ceph_opts = copts;
4942         *opts = rbd_opts;
4943         *rbd_spec = spec;
4944
4945         return 0;
4946 out_mem:
4947         ret = -ENOMEM;
4948 out_err:
4949         kfree(rbd_opts);
4950         rbd_spec_put(spec);
4951         kfree(options);
4952
4953         return ret;
4954 }
4955
4956 /*
4957  * Return pool id (>= 0) or a negative error code.
4958  */
4959 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4960 {
4961         u64 newest_epoch;
4962         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4963         int tries = 0;
4964         int ret;
4965
4966 again:
4967         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4968         if (ret == -ENOENT && tries++ < 1) {
4969                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4970                                                &newest_epoch);
4971                 if (ret < 0)
4972                         return ret;
4973
4974                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4975                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4976                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4977                                                      newest_epoch, timeout);
4978                         goto again;
4979                 } else {
4980                         /* the osdmap we have is new enough */
4981                         return -ENOENT;
4982                 }
4983         }
4984
4985         return ret;
4986 }
4987
4988 /*
4989  * An rbd format 2 image has a unique identifier, distinct from the
4990  * name given to it by the user.  Internally, that identifier is
4991  * what's used to specify the names of objects related to the image.
4992  *
4993  * A special "rbd id" object is used to map an rbd image name to its
4994  * id.  If that object doesn't exist, then there is no v2 rbd image
4995  * with the supplied name.
4996  *
4997  * This function will record the given rbd_dev's image_id field if
4998  * it can be determined, and in that case will return 0.  If any
4999  * errors occur a negative errno will be returned and the rbd_dev's
5000  * image_id field will be unchanged (and should be NULL).
5001  */
5002 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5003 {
5004         int ret;
5005         size_t size;
5006         char *object_name;
5007         void *response;
5008         char *image_id;
5009
5010         /*
5011          * When probing a parent image, the image id is already
5012          * known (and the image name likely is not).  There's no
5013          * need to fetch the image id again in this case.  We
5014          * do still need to set the image format though.
5015          */
5016         if (rbd_dev->spec->image_id) {
5017                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5018
5019                 return 0;
5020         }
5021
5022         /*
5023          * First, see if the format 2 image id file exists, and if
5024          * so, get the image's persistent id from it.
5025          */
5026         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5027         object_name = kmalloc(size, GFP_NOIO);
5028         if (!object_name)
5029                 return -ENOMEM;
5030         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5031         dout("rbd id object name is %s\n", object_name);
5032
5033         /* Response will be an encoded string, which includes a length */
5034
5035         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5036         response = kzalloc(size, GFP_NOIO);
5037         if (!response) {
5038                 ret = -ENOMEM;
5039                 goto out;
5040         }
5041
5042         /* If it doesn't exist we'll assume it's a format 1 image */
5043
5044         ret = rbd_obj_method_sync(rbd_dev, object_name,
5045                                 "rbd", "get_id", NULL, 0,
5046                                 response, RBD_IMAGE_ID_LEN_MAX);
5047         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5048         if (ret == -ENOENT) {
5049                 image_id = kstrdup("", GFP_KERNEL);
5050                 ret = image_id ? 0 : -ENOMEM;
5051                 if (!ret)
5052                         rbd_dev->image_format = 1;
5053         } else if (ret >= 0) {
5054                 void *p = response;
5055
5056                 image_id = ceph_extract_encoded_string(&p, p + ret,
5057                                                 NULL, GFP_NOIO);
5058                 ret = PTR_ERR_OR_ZERO(image_id);
5059                 if (!ret)
5060                         rbd_dev->image_format = 2;
5061         }
5062
5063         if (!ret) {
5064                 rbd_dev->spec->image_id = image_id;
5065                 dout("image_id is %s\n", image_id);
5066         }
5067 out:
5068         kfree(response);
5069         kfree(object_name);
5070
5071         return ret;
5072 }
5073
5074 /*
5075  * Undo whatever state changes are made by v1 or v2 header info
5076  * call.
5077  */
5078 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5079 {
5080         struct rbd_image_header *header;
5081
5082         rbd_dev_parent_put(rbd_dev);
5083
5084         /* Free dynamic fields from the header, then zero it out */
5085
5086         header = &rbd_dev->header;
5087         ceph_put_snap_context(header->snapc);
5088         kfree(header->snap_sizes);
5089         kfree(header->snap_names);
5090         kfree(header->object_prefix);
5091         memset(header, 0, sizeof (*header));
5092 }
5093
5094 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5095 {
5096         int ret;
5097
5098         ret = rbd_dev_v2_object_prefix(rbd_dev);
5099         if (ret)
5100                 goto out_err;
5101
5102         /*
5103          * Get the and check features for the image.  Currently the
5104          * features are assumed to never change.
5105          */
5106         ret = rbd_dev_v2_features(rbd_dev);
5107         if (ret)
5108                 goto out_err;
5109
5110         /* If the image supports fancy striping, get its parameters */
5111
5112         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5113                 ret = rbd_dev_v2_striping_info(rbd_dev);
5114                 if (ret < 0)
5115                         goto out_err;
5116         }
5117         /* No support for crypto and compression type format 2 images */
5118
5119         return 0;
5120 out_err:
5121         rbd_dev->header.features = 0;
5122         kfree(rbd_dev->header.object_prefix);
5123         rbd_dev->header.object_prefix = NULL;
5124
5125         return ret;
5126 }
5127
5128 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5129 {
5130         struct rbd_device *parent = NULL;
5131         struct rbd_spec *parent_spec;
5132         struct rbd_client *rbdc;
5133         int ret;
5134
5135         if (!rbd_dev->parent_spec)
5136                 return 0;
5137         /*
5138          * We need to pass a reference to the client and the parent
5139          * spec when creating the parent rbd_dev.  Images related by
5140          * parent/child relationships always share both.
5141          */
5142         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5143         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5144
5145         ret = -ENOMEM;
5146         parent = rbd_dev_create(rbdc, parent_spec);
5147         if (!parent)
5148                 goto out_err;
5149
5150         ret = rbd_dev_image_probe(parent, false);
5151         if (ret < 0)
5152                 goto out_err;
5153         rbd_dev->parent = parent;
5154         atomic_set(&rbd_dev->parent_ref, 1);
5155
5156         return 0;
5157 out_err:
5158         if (parent) {
5159                 rbd_dev_unparent(rbd_dev);
5160                 kfree(rbd_dev->header_name);
5161                 rbd_dev_destroy(parent);
5162         } else {
5163                 rbd_put_client(rbdc);
5164                 rbd_spec_put(parent_spec);
5165         }
5166
5167         return ret;
5168 }
5169
5170 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5171 {
5172         int ret;
5173
5174         /* Get an id and fill in device name. */
5175
5176         ret = rbd_dev_id_get(rbd_dev);
5177         if (ret)
5178                 return ret;
5179
5180         BUILD_BUG_ON(DEV_NAME_LEN
5181                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5182         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5183
5184         /* Record our major and minor device numbers. */
5185
5186         if (!single_major) {
5187                 ret = register_blkdev(0, rbd_dev->name);
5188                 if (ret < 0)
5189                         goto err_out_id;
5190
5191                 rbd_dev->major = ret;
5192                 rbd_dev->minor = 0;
5193         } else {
5194                 rbd_dev->major = rbd_major;
5195                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5196         }
5197
5198         /* Set up the blkdev mapping. */
5199
5200         ret = rbd_init_disk(rbd_dev);
5201         if (ret)
5202                 goto err_out_blkdev;
5203
5204         ret = rbd_dev_mapping_set(rbd_dev);
5205         if (ret)
5206                 goto err_out_disk;
5207
5208         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5209         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5210
5211         ret = rbd_bus_add_dev(rbd_dev);
5212         if (ret)
5213                 goto err_out_mapping;
5214
5215         /* Everything's ready.  Announce the disk to the world. */
5216
5217         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5218         add_disk(rbd_dev->disk);
5219
5220         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5221                 (unsigned long long) rbd_dev->mapping.size);
5222
5223         return ret;
5224
5225 err_out_mapping:
5226         rbd_dev_mapping_clear(rbd_dev);
5227 err_out_disk:
5228         rbd_free_disk(rbd_dev);
5229 err_out_blkdev:
5230         if (!single_major)
5231                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5232 err_out_id:
5233         rbd_dev_id_put(rbd_dev);
5234         rbd_dev_mapping_clear(rbd_dev);
5235
5236         return ret;
5237 }
5238
5239 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5240 {
5241         struct rbd_spec *spec = rbd_dev->spec;
5242         size_t size;
5243
5244         /* Record the header object name for this rbd image. */
5245
5246         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5247
5248         if (rbd_dev->image_format == 1)
5249                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5250         else
5251                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5252
5253         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5254         if (!rbd_dev->header_name)
5255                 return -ENOMEM;
5256
5257         if (rbd_dev->image_format == 1)
5258                 sprintf(rbd_dev->header_name, "%s%s",
5259                         spec->image_name, RBD_SUFFIX);
5260         else
5261                 sprintf(rbd_dev->header_name, "%s%s",
5262                         RBD_HEADER_PREFIX, spec->image_id);
5263         return 0;
5264 }
5265
5266 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5267 {
5268         rbd_dev_unprobe(rbd_dev);
5269         kfree(rbd_dev->header_name);
5270         rbd_dev->header_name = NULL;
5271         rbd_dev->image_format = 0;
5272         kfree(rbd_dev->spec->image_id);
5273         rbd_dev->spec->image_id = NULL;
5274
5275         rbd_dev_destroy(rbd_dev);
5276 }
5277
5278 /*
5279  * Probe for the existence of the header object for the given rbd
5280  * device.  If this image is the one being mapped (i.e., not a
5281  * parent), initiate a watch on its header object before using that
5282  * object to get detailed information about the rbd image.
5283  */
5284 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5285 {
5286         int ret;
5287
5288         /*
5289          * Get the id from the image id object.  Unless there's an
5290          * error, rbd_dev->spec->image_id will be filled in with
5291          * a dynamically-allocated string, and rbd_dev->image_format
5292          * will be set to either 1 or 2.
5293          */
5294         ret = rbd_dev_image_id(rbd_dev);
5295         if (ret)
5296                 return ret;
5297
5298         ret = rbd_dev_header_name(rbd_dev);
5299         if (ret)
5300                 goto err_out_format;
5301
5302         if (mapping) {
5303                 ret = rbd_dev_header_watch_sync(rbd_dev);
5304                 if (ret) {
5305                         if (ret == -ENOENT)
5306                                 pr_info("image %s/%s does not exist\n",
5307                                         rbd_dev->spec->pool_name,
5308                                         rbd_dev->spec->image_name);
5309                         goto out_header_name;
5310                 }
5311         }
5312
5313         ret = rbd_dev_header_info(rbd_dev);
5314         if (ret)
5315                 goto err_out_watch;
5316
5317         /*
5318          * If this image is the one being mapped, we have pool name and
5319          * id, image name and id, and snap name - need to fill snap id.
5320          * Otherwise this is a parent image, identified by pool, image
5321          * and snap ids - need to fill in names for those ids.
5322          */
5323         if (mapping)
5324                 ret = rbd_spec_fill_snap_id(rbd_dev);
5325         else
5326                 ret = rbd_spec_fill_names(rbd_dev);
5327         if (ret) {
5328                 if (ret == -ENOENT)
5329                         pr_info("snap %s/%s@%s does not exist\n",
5330                                 rbd_dev->spec->pool_name,
5331                                 rbd_dev->spec->image_name,
5332                                 rbd_dev->spec->snap_name);
5333                 goto err_out_probe;
5334         }
5335
5336         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5337                 ret = rbd_dev_v2_parent_info(rbd_dev);
5338                 if (ret)
5339                         goto err_out_probe;
5340
5341                 /*
5342                  * Need to warn users if this image is the one being
5343                  * mapped and has a parent.
5344                  */
5345                 if (mapping && rbd_dev->parent_spec)
5346                         rbd_warn(rbd_dev,
5347                                  "WARNING: kernel layering is EXPERIMENTAL!");
5348         }
5349
5350         ret = rbd_dev_probe_parent(rbd_dev);
5351         if (ret)
5352                 goto err_out_probe;
5353
5354         dout("discovered format %u image, header name is %s\n",
5355                 rbd_dev->image_format, rbd_dev->header_name);
5356         return 0;
5357
5358 err_out_probe:
5359         rbd_dev_unprobe(rbd_dev);
5360 err_out_watch:
5361         if (mapping)
5362                 rbd_dev_header_unwatch_sync(rbd_dev);
5363 out_header_name:
5364         kfree(rbd_dev->header_name);
5365         rbd_dev->header_name = NULL;
5366 err_out_format:
5367         rbd_dev->image_format = 0;
5368         kfree(rbd_dev->spec->image_id);
5369         rbd_dev->spec->image_id = NULL;
5370         return ret;
5371 }
5372
5373 static ssize_t do_rbd_add(struct bus_type *bus,
5374                           const char *buf,
5375                           size_t count)
5376 {
5377         struct rbd_device *rbd_dev = NULL;
5378         struct ceph_options *ceph_opts = NULL;
5379         struct rbd_options *rbd_opts = NULL;
5380         struct rbd_spec *spec = NULL;
5381         struct rbd_client *rbdc;
5382         bool read_only;
5383         int rc = -ENOMEM;
5384
5385         if (!try_module_get(THIS_MODULE))
5386                 return -ENODEV;
5387
5388         /* parse add command */
5389         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5390         if (rc < 0)
5391                 goto err_out_module;
5392         read_only = rbd_opts->read_only;
5393         kfree(rbd_opts);
5394         rbd_opts = NULL;        /* done with this */
5395
5396         rbdc = rbd_get_client(ceph_opts);
5397         if (IS_ERR(rbdc)) {
5398                 rc = PTR_ERR(rbdc);
5399                 goto err_out_args;
5400         }
5401
5402         /* pick the pool */
5403         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5404         if (rc < 0) {
5405                 if (rc == -ENOENT)
5406                         pr_info("pool %s does not exist\n", spec->pool_name);
5407                 goto err_out_client;
5408         }
5409         spec->pool_id = (u64)rc;
5410
5411         /* The ceph file layout needs to fit pool id in 32 bits */
5412
5413         if (spec->pool_id > (u64)U32_MAX) {
5414                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5415                                 (unsigned long long)spec->pool_id, U32_MAX);
5416                 rc = -EIO;
5417                 goto err_out_client;
5418         }
5419
5420         rbd_dev = rbd_dev_create(rbdc, spec);
5421         if (!rbd_dev)
5422                 goto err_out_client;
5423         rbdc = NULL;            /* rbd_dev now owns this */
5424         spec = NULL;            /* rbd_dev now owns this */
5425
5426         rc = rbd_dev_image_probe(rbd_dev, true);
5427         if (rc < 0)
5428                 goto err_out_rbd_dev;
5429
5430         /* If we are mapping a snapshot it must be marked read-only */
5431
5432         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5433                 read_only = true;
5434         rbd_dev->mapping.read_only = read_only;
5435
5436         rc = rbd_dev_device_setup(rbd_dev);
5437         if (rc) {
5438                 /*
5439                  * rbd_dev_header_unwatch_sync() can't be moved into
5440                  * rbd_dev_image_release() without refactoring, see
5441                  * commit 1f3ef78861ac.
5442                  */
5443                 rbd_dev_header_unwatch_sync(rbd_dev);
5444                 rbd_dev_image_release(rbd_dev);
5445                 goto err_out_module;
5446         }
5447
5448         return count;
5449
5450 err_out_rbd_dev:
5451         rbd_dev_destroy(rbd_dev);
5452 err_out_client:
5453         rbd_put_client(rbdc);
5454 err_out_args:
5455         rbd_spec_put(spec);
5456 err_out_module:
5457         module_put(THIS_MODULE);
5458
5459         dout("Error adding device %s\n", buf);
5460
5461         return (ssize_t)rc;
5462 }
5463
5464 static ssize_t rbd_add(struct bus_type *bus,
5465                        const char *buf,
5466                        size_t count)
5467 {
5468         if (single_major)
5469                 return -EINVAL;
5470
5471         return do_rbd_add(bus, buf, count);
5472 }
5473
5474 static ssize_t rbd_add_single_major(struct bus_type *bus,
5475                                     const char *buf,
5476                                     size_t count)
5477 {
5478         return do_rbd_add(bus, buf, count);
5479 }
5480
5481 static void rbd_dev_device_release(struct device *dev)
5482 {
5483         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5484
5485         rbd_free_disk(rbd_dev);
5486         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5487         rbd_dev_mapping_clear(rbd_dev);
5488         if (!single_major)
5489                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5490         rbd_dev_id_put(rbd_dev);
5491         rbd_dev_mapping_clear(rbd_dev);
5492 }
5493
5494 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5495 {
5496         while (rbd_dev->parent) {
5497                 struct rbd_device *first = rbd_dev;
5498                 struct rbd_device *second = first->parent;
5499                 struct rbd_device *third;
5500
5501                 /*
5502                  * Follow to the parent with no grandparent and
5503                  * remove it.
5504                  */
5505                 while (second && (third = second->parent)) {
5506                         first = second;
5507                         second = third;
5508                 }
5509                 rbd_assert(second);
5510                 rbd_dev_image_release(second);
5511                 first->parent = NULL;
5512                 first->parent_overlap = 0;
5513
5514                 rbd_assert(first->parent_spec);
5515                 rbd_spec_put(first->parent_spec);
5516                 first->parent_spec = NULL;
5517         }
5518 }
5519
5520 static ssize_t do_rbd_remove(struct bus_type *bus,
5521                              const char *buf,
5522                              size_t count)
5523 {
5524         struct rbd_device *rbd_dev = NULL;
5525         struct list_head *tmp;
5526         int dev_id;
5527         unsigned long ul;
5528         bool already = false;
5529         int ret;
5530
5531         ret = kstrtoul(buf, 10, &ul);
5532         if (ret)
5533                 return ret;
5534
5535         /* convert to int; abort if we lost anything in the conversion */
5536         dev_id = (int)ul;
5537         if (dev_id != ul)
5538                 return -EINVAL;
5539
5540         ret = -ENOENT;
5541         spin_lock(&rbd_dev_list_lock);
5542         list_for_each(tmp, &rbd_dev_list) {
5543                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5544                 if (rbd_dev->dev_id == dev_id) {
5545                         ret = 0;
5546                         break;
5547                 }
5548         }
5549         if (!ret) {
5550                 spin_lock_irq(&rbd_dev->lock);
5551                 if (rbd_dev->open_count)
5552                         ret = -EBUSY;
5553                 else
5554                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5555                                                         &rbd_dev->flags);
5556                 spin_unlock_irq(&rbd_dev->lock);
5557         }
5558         spin_unlock(&rbd_dev_list_lock);
5559         if (ret < 0 || already)
5560                 return ret;
5561
5562         rbd_dev_header_unwatch_sync(rbd_dev);
5563         /*
5564          * flush remaining watch callbacks - these must be complete
5565          * before the osd_client is shutdown
5566          */
5567         dout("%s: flushing notifies", __func__);
5568         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5569
5570         /*
5571          * Don't free anything from rbd_dev->disk until after all
5572          * notifies are completely processed. Otherwise
5573          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5574          * in a potential use after free of rbd_dev->disk or rbd_dev.
5575          */
5576         rbd_bus_del_dev(rbd_dev);
5577         rbd_dev_image_release(rbd_dev);
5578         module_put(THIS_MODULE);
5579
5580         return count;
5581 }
5582
5583 static ssize_t rbd_remove(struct bus_type *bus,
5584                           const char *buf,
5585                           size_t count)
5586 {
5587         if (single_major)
5588                 return -EINVAL;
5589
5590         return do_rbd_remove(bus, buf, count);
5591 }
5592
5593 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5594                                        const char *buf,
5595                                        size_t count)
5596 {
5597         return do_rbd_remove(bus, buf, count);
5598 }
5599
5600 /*
5601  * create control files in sysfs
5602  * /sys/bus/rbd/...
5603  */
5604 static int rbd_sysfs_init(void)
5605 {
5606         int ret;
5607
5608         ret = device_register(&rbd_root_dev);
5609         if (ret < 0)
5610                 return ret;
5611
5612         ret = bus_register(&rbd_bus_type);
5613         if (ret < 0)
5614                 device_unregister(&rbd_root_dev);
5615
5616         return ret;
5617 }
5618
5619 static void rbd_sysfs_cleanup(void)
5620 {
5621         bus_unregister(&rbd_bus_type);
5622         device_unregister(&rbd_root_dev);
5623 }
5624
5625 static int rbd_slab_init(void)
5626 {
5627         rbd_assert(!rbd_img_request_cache);
5628         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5629                                         sizeof (struct rbd_img_request),
5630                                         __alignof__(struct rbd_img_request),
5631                                         0, NULL);
5632         if (!rbd_img_request_cache)
5633                 return -ENOMEM;
5634
5635         rbd_assert(!rbd_obj_request_cache);
5636         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5637                                         sizeof (struct rbd_obj_request),
5638                                         __alignof__(struct rbd_obj_request),
5639                                         0, NULL);
5640         if (!rbd_obj_request_cache)
5641                 goto out_err;
5642
5643         rbd_assert(!rbd_segment_name_cache);
5644         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5645                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5646         if (rbd_segment_name_cache)
5647                 return 0;
5648 out_err:
5649         if (rbd_obj_request_cache) {
5650                 kmem_cache_destroy(rbd_obj_request_cache);
5651                 rbd_obj_request_cache = NULL;
5652         }
5653
5654         kmem_cache_destroy(rbd_img_request_cache);
5655         rbd_img_request_cache = NULL;
5656
5657         return -ENOMEM;
5658 }
5659
5660 static void rbd_slab_exit(void)
5661 {
5662         rbd_assert(rbd_segment_name_cache);
5663         kmem_cache_destroy(rbd_segment_name_cache);
5664         rbd_segment_name_cache = NULL;
5665
5666         rbd_assert(rbd_obj_request_cache);
5667         kmem_cache_destroy(rbd_obj_request_cache);
5668         rbd_obj_request_cache = NULL;
5669
5670         rbd_assert(rbd_img_request_cache);
5671         kmem_cache_destroy(rbd_img_request_cache);
5672         rbd_img_request_cache = NULL;
5673 }
5674
5675 static int __init rbd_init(void)
5676 {
5677         int rc;
5678
5679         if (!libceph_compatible(NULL)) {
5680                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5681                 return -EINVAL;
5682         }
5683
5684         rc = rbd_slab_init();
5685         if (rc)
5686                 return rc;
5687
5688         /*
5689          * The number of active work items is limited by the number of
5690          * rbd devices * queue depth, so leave @max_active at default.
5691          */
5692         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5693         if (!rbd_wq) {
5694                 rc = -ENOMEM;
5695                 goto err_out_slab;
5696         }
5697
5698         if (single_major) {
5699                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5700                 if (rbd_major < 0) {
5701                         rc = rbd_major;
5702                         goto err_out_wq;
5703                 }
5704         }
5705
5706         rc = rbd_sysfs_init();
5707         if (rc)
5708                 goto err_out_blkdev;
5709
5710         if (single_major)
5711                 pr_info("loaded (major %d)\n", rbd_major);
5712         else
5713                 pr_info("loaded\n");
5714
5715         return 0;
5716
5717 err_out_blkdev:
5718         if (single_major)
5719                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5720 err_out_wq:
5721         destroy_workqueue(rbd_wq);
5722 err_out_slab:
5723         rbd_slab_exit();
5724         return rc;
5725 }
5726
5727 static void __exit rbd_exit(void)
5728 {
5729         ida_destroy(&rbd_dev_id_ida);
5730         rbd_sysfs_cleanup();
5731         if (single_major)
5732                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5733         destroy_workqueue(rbd_wq);
5734         rbd_slab_exit();
5735 }
5736
5737 module_init(rbd_init);
5738 module_exit(rbd_exit);
5739
5740 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5741 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5742 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5743 /* following authorship retained from original osdblk.c */
5744 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5745
5746 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5747 MODULE_LICENSE("GPL");