Merge branches 'acpi-numa', 'acpi-tables' and 'acpi-osi'
[linux-2.6-block.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT              ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54         acpi_osd_exec_callback function;
55         void *context;
56         struct work_struct work;
57 };
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif                          /*ENABLE_DEBUGGER */
66
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68                                       u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70                                       u32 val_b);
71
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79
80 /*
81  * This list of permanent mappings is for memory that may be accessed from
82  * interrupt context, where we can't do the ioremap().
83  */
84 struct acpi_ioremap {
85         struct list_head list;
86         void __iomem *virt;
87         acpi_physical_address phys;
88         acpi_size size;
89         unsigned long refcount;
90 };
91
92 static LIST_HEAD(acpi_ioremaps);
93 static DEFINE_MUTEX(acpi_ioremap_lock);
94
95 static void __init acpi_request_region (struct acpi_generic_address *gas,
96         unsigned int length, char *desc)
97 {
98         u64 addr;
99
100         /* Handle possible alignment issues */
101         memcpy(&addr, &gas->address, sizeof(addr));
102         if (!addr || !length)
103                 return;
104
105         /* Resources are never freed */
106         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
107                 request_region(addr, length, desc);
108         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
109                 request_mem_region(addr, length, desc);
110 }
111
112 static int __init acpi_reserve_resources(void)
113 {
114         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
115                 "ACPI PM1a_EVT_BLK");
116
117         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
118                 "ACPI PM1b_EVT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
121                 "ACPI PM1a_CNT_BLK");
122
123         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
124                 "ACPI PM1b_CNT_BLK");
125
126         if (acpi_gbl_FADT.pm_timer_length == 4)
127                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
128
129         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130                 "ACPI PM2_CNT_BLK");
131
132         /* Length of GPE blocks must be a non-negative multiple of 2 */
133
134         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
135                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
136                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
137
138         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
139                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
140                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
141
142         return 0;
143 }
144 fs_initcall_sync(acpi_reserve_resources);
145
146 void acpi_os_printf(const char *fmt, ...)
147 {
148         va_list args;
149         va_start(args, fmt);
150         acpi_os_vprintf(fmt, args);
151         va_end(args);
152 }
153 EXPORT_SYMBOL(acpi_os_printf);
154
155 void acpi_os_vprintf(const char *fmt, va_list args)
156 {
157         static char buffer[512];
158
159         vsprintf(buffer, fmt, args);
160
161 #ifdef ENABLE_DEBUGGER
162         if (acpi_in_debugger) {
163                 kdb_printf("%s", buffer);
164         } else {
165                 printk(KERN_CONT "%s", buffer);
166         }
167 #else
168         if (acpi_debugger_write_log(buffer) < 0)
169                 printk(KERN_CONT "%s", buffer);
170 #endif
171 }
172
173 #ifdef CONFIG_KEXEC
174 static unsigned long acpi_rsdp;
175 static int __init setup_acpi_rsdp(char *arg)
176 {
177         if (kstrtoul(arg, 16, &acpi_rsdp))
178                 return -EINVAL;
179         return 0;
180 }
181 early_param("acpi_rsdp", setup_acpi_rsdp);
182 #endif
183
184 acpi_physical_address __init acpi_os_get_root_pointer(void)
185 {
186 #ifdef CONFIG_KEXEC
187         if (acpi_rsdp)
188                 return acpi_rsdp;
189 #endif
190
191         if (efi_enabled(EFI_CONFIG_TABLES)) {
192                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
193                         return efi.acpi20;
194                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
195                         return efi.acpi;
196                 else {
197                         printk(KERN_ERR PREFIX
198                                "System description tables not found\n");
199                         return 0;
200                 }
201         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
202                 acpi_physical_address pa = 0;
203
204                 acpi_find_root_pointer(&pa);
205                 return pa;
206         }
207
208         return 0;
209 }
210
211 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
212 static struct acpi_ioremap *
213 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
214 {
215         struct acpi_ioremap *map;
216
217         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
218                 if (map->phys <= phys &&
219                     phys + size <= map->phys + map->size)
220                         return map;
221
222         return NULL;
223 }
224
225 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
226 static void __iomem *
227 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
228 {
229         struct acpi_ioremap *map;
230
231         map = acpi_map_lookup(phys, size);
232         if (map)
233                 return map->virt + (phys - map->phys);
234
235         return NULL;
236 }
237
238 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
239 {
240         struct acpi_ioremap *map;
241         void __iomem *virt = NULL;
242
243         mutex_lock(&acpi_ioremap_lock);
244         map = acpi_map_lookup(phys, size);
245         if (map) {
246                 virt = map->virt + (phys - map->phys);
247                 map->refcount++;
248         }
249         mutex_unlock(&acpi_ioremap_lock);
250         return virt;
251 }
252 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
253
254 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
255 static struct acpi_ioremap *
256 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
257 {
258         struct acpi_ioremap *map;
259
260         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
261                 if (map->virt <= virt &&
262                     virt + size <= map->virt + map->size)
263                         return map;
264
265         return NULL;
266 }
267
268 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
269 /* ioremap will take care of cache attributes */
270 #define should_use_kmap(pfn)   0
271 #else
272 #define should_use_kmap(pfn)   page_is_ram(pfn)
273 #endif
274
275 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
276 {
277         unsigned long pfn;
278
279         pfn = pg_off >> PAGE_SHIFT;
280         if (should_use_kmap(pfn)) {
281                 if (pg_sz > PAGE_SIZE)
282                         return NULL;
283                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
284         } else
285                 return acpi_os_ioremap(pg_off, pg_sz);
286 }
287
288 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
289 {
290         unsigned long pfn;
291
292         pfn = pg_off >> PAGE_SHIFT;
293         if (should_use_kmap(pfn))
294                 kunmap(pfn_to_page(pfn));
295         else
296                 iounmap(vaddr);
297 }
298
299 /**
300  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
301  * @phys: Start of the physical address range to map.
302  * @size: Size of the physical address range to map.
303  *
304  * Look up the given physical address range in the list of existing ACPI memory
305  * mappings.  If found, get a reference to it and return a pointer to it (its
306  * virtual address).  If not found, map it, add it to that list and return a
307  * pointer to it.
308  *
309  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
310  * routine simply calls __acpi_map_table() to get the job done.
311  */
312 void __iomem *__init_refok
313 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
314 {
315         struct acpi_ioremap *map;
316         void __iomem *virt;
317         acpi_physical_address pg_off;
318         acpi_size pg_sz;
319
320         if (phys > ULONG_MAX) {
321                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
322                 return NULL;
323         }
324
325         if (!acpi_gbl_permanent_mmap)
326                 return __acpi_map_table((unsigned long)phys, size);
327
328         mutex_lock(&acpi_ioremap_lock);
329         /* Check if there's a suitable mapping already. */
330         map = acpi_map_lookup(phys, size);
331         if (map) {
332                 map->refcount++;
333                 goto out;
334         }
335
336         map = kzalloc(sizeof(*map), GFP_KERNEL);
337         if (!map) {
338                 mutex_unlock(&acpi_ioremap_lock);
339                 return NULL;
340         }
341
342         pg_off = round_down(phys, PAGE_SIZE);
343         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
344         virt = acpi_map(pg_off, pg_sz);
345         if (!virt) {
346                 mutex_unlock(&acpi_ioremap_lock);
347                 kfree(map);
348                 return NULL;
349         }
350
351         INIT_LIST_HEAD(&map->list);
352         map->virt = virt;
353         map->phys = pg_off;
354         map->size = pg_sz;
355         map->refcount = 1;
356
357         list_add_tail_rcu(&map->list, &acpi_ioremaps);
358
359 out:
360         mutex_unlock(&acpi_ioremap_lock);
361         return map->virt + (phys - map->phys);
362 }
363 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
364
365 void *__init_refok
366 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
367 {
368         return (void *)acpi_os_map_iomem(phys, size);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
371
372 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
373 {
374         if (!--map->refcount)
375                 list_del_rcu(&map->list);
376 }
377
378 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
379 {
380         if (!map->refcount) {
381                 synchronize_rcu_expedited();
382                 acpi_unmap(map->phys, map->virt);
383                 kfree(map);
384         }
385 }
386
387 /**
388  * acpi_os_unmap_iomem - Drop a memory mapping reference.
389  * @virt: Start of the address range to drop a reference to.
390  * @size: Size of the address range to drop a reference to.
391  *
392  * Look up the given virtual address range in the list of existing ACPI memory
393  * mappings, drop a reference to it and unmap it if there are no more active
394  * references to it.
395  *
396  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
397  * routine simply calls __acpi_unmap_table() to get the job done.  Since
398  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
399  * here.
400  */
401 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
402 {
403         struct acpi_ioremap *map;
404
405         if (!acpi_gbl_permanent_mmap) {
406                 __acpi_unmap_table(virt, size);
407                 return;
408         }
409
410         mutex_lock(&acpi_ioremap_lock);
411         map = acpi_map_lookup_virt(virt, size);
412         if (!map) {
413                 mutex_unlock(&acpi_ioremap_lock);
414                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
415                 return;
416         }
417         acpi_os_drop_map_ref(map);
418         mutex_unlock(&acpi_ioremap_lock);
419
420         acpi_os_map_cleanup(map);
421 }
422 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
423
424 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
425 {
426         return acpi_os_unmap_iomem((void __iomem *)virt, size);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
429
430 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
431 {
432         if (!acpi_gbl_permanent_mmap)
433                 __acpi_unmap_table(virt, size);
434 }
435
436 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
437 {
438         u64 addr;
439         void __iomem *virt;
440
441         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
442                 return 0;
443
444         /* Handle possible alignment issues */
445         memcpy(&addr, &gas->address, sizeof(addr));
446         if (!addr || !gas->bit_width)
447                 return -EINVAL;
448
449         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
450         if (!virt)
451                 return -EIO;
452
453         return 0;
454 }
455 EXPORT_SYMBOL(acpi_os_map_generic_address);
456
457 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
458 {
459         u64 addr;
460         struct acpi_ioremap *map;
461
462         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
463                 return;
464
465         /* Handle possible alignment issues */
466         memcpy(&addr, &gas->address, sizeof(addr));
467         if (!addr || !gas->bit_width)
468                 return;
469
470         mutex_lock(&acpi_ioremap_lock);
471         map = acpi_map_lookup(addr, gas->bit_width / 8);
472         if (!map) {
473                 mutex_unlock(&acpi_ioremap_lock);
474                 return;
475         }
476         acpi_os_drop_map_ref(map);
477         mutex_unlock(&acpi_ioremap_lock);
478
479         acpi_os_map_cleanup(map);
480 }
481 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
482
483 #ifdef ACPI_FUTURE_USAGE
484 acpi_status
485 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
486 {
487         if (!phys || !virt)
488                 return AE_BAD_PARAMETER;
489
490         *phys = virt_to_phys(virt);
491
492         return AE_OK;
493 }
494 #endif
495
496 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
497 static bool acpi_rev_override;
498
499 int __init acpi_rev_override_setup(char *str)
500 {
501         acpi_rev_override = true;
502         return 1;
503 }
504 __setup("acpi_rev_override", acpi_rev_override_setup);
505 #else
506 #define acpi_rev_override       false
507 #endif
508
509 #define ACPI_MAX_OVERRIDE_LEN 100
510
511 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
512
513 acpi_status
514 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
515                             acpi_string *new_val)
516 {
517         if (!init_val || !new_val)
518                 return AE_BAD_PARAMETER;
519
520         *new_val = NULL;
521         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
522                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
523                        acpi_os_name);
524                 *new_val = acpi_os_name;
525         }
526
527         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
528                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
529                 *new_val = (char *)5;
530         }
531
532         return AE_OK;
533 }
534
535 static irqreturn_t acpi_irq(int irq, void *dev_id)
536 {
537         u32 handled;
538
539         handled = (*acpi_irq_handler) (acpi_irq_context);
540
541         if (handled) {
542                 acpi_irq_handled++;
543                 return IRQ_HANDLED;
544         } else {
545                 acpi_irq_not_handled++;
546                 return IRQ_NONE;
547         }
548 }
549
550 acpi_status
551 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
552                                   void *context)
553 {
554         unsigned int irq;
555
556         acpi_irq_stats_init();
557
558         /*
559          * ACPI interrupts different from the SCI in our copy of the FADT are
560          * not supported.
561          */
562         if (gsi != acpi_gbl_FADT.sci_interrupt)
563                 return AE_BAD_PARAMETER;
564
565         if (acpi_irq_handler)
566                 return AE_ALREADY_ACQUIRED;
567
568         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
569                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
570                        gsi);
571                 return AE_OK;
572         }
573
574         acpi_irq_handler = handler;
575         acpi_irq_context = context;
576         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
577                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
578                 acpi_irq_handler = NULL;
579                 return AE_NOT_ACQUIRED;
580         }
581         acpi_sci_irq = irq;
582
583         return AE_OK;
584 }
585
586 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
587 {
588         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
589                 return AE_BAD_PARAMETER;
590
591         free_irq(acpi_sci_irq, acpi_irq);
592         acpi_irq_handler = NULL;
593         acpi_sci_irq = INVALID_ACPI_IRQ;
594
595         return AE_OK;
596 }
597
598 /*
599  * Running in interpreter thread context, safe to sleep
600  */
601
602 void acpi_os_sleep(u64 ms)
603 {
604         msleep(ms);
605 }
606
607 void acpi_os_stall(u32 us)
608 {
609         while (us) {
610                 u32 delay = 1000;
611
612                 if (delay > us)
613                         delay = us;
614                 udelay(delay);
615                 touch_nmi_watchdog();
616                 us -= delay;
617         }
618 }
619
620 /*
621  * Support ACPI 3.0 AML Timer operand
622  * Returns 64-bit free-running, monotonically increasing timer
623  * with 100ns granularity
624  */
625 u64 acpi_os_get_timer(void)
626 {
627         u64 time_ns = ktime_to_ns(ktime_get());
628         do_div(time_ns, 100);
629         return time_ns;
630 }
631
632 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
633 {
634         u32 dummy;
635
636         if (!value)
637                 value = &dummy;
638
639         *value = 0;
640         if (width <= 8) {
641                 *(u8 *) value = inb(port);
642         } else if (width <= 16) {
643                 *(u16 *) value = inw(port);
644         } else if (width <= 32) {
645                 *(u32 *) value = inl(port);
646         } else {
647                 BUG();
648         }
649
650         return AE_OK;
651 }
652
653 EXPORT_SYMBOL(acpi_os_read_port);
654
655 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
656 {
657         if (width <= 8) {
658                 outb(value, port);
659         } else if (width <= 16) {
660                 outw(value, port);
661         } else if (width <= 32) {
662                 outl(value, port);
663         } else {
664                 BUG();
665         }
666
667         return AE_OK;
668 }
669
670 EXPORT_SYMBOL(acpi_os_write_port);
671
672 acpi_status
673 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
674 {
675         void __iomem *virt_addr;
676         unsigned int size = width / 8;
677         bool unmap = false;
678         u64 dummy;
679
680         rcu_read_lock();
681         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
682         if (!virt_addr) {
683                 rcu_read_unlock();
684                 virt_addr = acpi_os_ioremap(phys_addr, size);
685                 if (!virt_addr)
686                         return AE_BAD_ADDRESS;
687                 unmap = true;
688         }
689
690         if (!value)
691                 value = &dummy;
692
693         switch (width) {
694         case 8:
695                 *(u8 *) value = readb(virt_addr);
696                 break;
697         case 16:
698                 *(u16 *) value = readw(virt_addr);
699                 break;
700         case 32:
701                 *(u32 *) value = readl(virt_addr);
702                 break;
703         case 64:
704                 *(u64 *) value = readq(virt_addr);
705                 break;
706         default:
707                 BUG();
708         }
709
710         if (unmap)
711                 iounmap(virt_addr);
712         else
713                 rcu_read_unlock();
714
715         return AE_OK;
716 }
717
718 acpi_status
719 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
720 {
721         void __iomem *virt_addr;
722         unsigned int size = width / 8;
723         bool unmap = false;
724
725         rcu_read_lock();
726         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
727         if (!virt_addr) {
728                 rcu_read_unlock();
729                 virt_addr = acpi_os_ioremap(phys_addr, size);
730                 if (!virt_addr)
731                         return AE_BAD_ADDRESS;
732                 unmap = true;
733         }
734
735         switch (width) {
736         case 8:
737                 writeb(value, virt_addr);
738                 break;
739         case 16:
740                 writew(value, virt_addr);
741                 break;
742         case 32:
743                 writel(value, virt_addr);
744                 break;
745         case 64:
746                 writeq(value, virt_addr);
747                 break;
748         default:
749                 BUG();
750         }
751
752         if (unmap)
753                 iounmap(virt_addr);
754         else
755                 rcu_read_unlock();
756
757         return AE_OK;
758 }
759
760 acpi_status
761 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
762                                u64 *value, u32 width)
763 {
764         int result, size;
765         u32 value32;
766
767         if (!value)
768                 return AE_BAD_PARAMETER;
769
770         switch (width) {
771         case 8:
772                 size = 1;
773                 break;
774         case 16:
775                 size = 2;
776                 break;
777         case 32:
778                 size = 4;
779                 break;
780         default:
781                 return AE_ERROR;
782         }
783
784         result = raw_pci_read(pci_id->segment, pci_id->bus,
785                                 PCI_DEVFN(pci_id->device, pci_id->function),
786                                 reg, size, &value32);
787         *value = value32;
788
789         return (result ? AE_ERROR : AE_OK);
790 }
791
792 acpi_status
793 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
794                                 u64 value, u32 width)
795 {
796         int result, size;
797
798         switch (width) {
799         case 8:
800                 size = 1;
801                 break;
802         case 16:
803                 size = 2;
804                 break;
805         case 32:
806                 size = 4;
807                 break;
808         default:
809                 return AE_ERROR;
810         }
811
812         result = raw_pci_write(pci_id->segment, pci_id->bus,
813                                 PCI_DEVFN(pci_id->device, pci_id->function),
814                                 reg, size, value);
815
816         return (result ? AE_ERROR : AE_OK);
817 }
818
819 static void acpi_os_execute_deferred(struct work_struct *work)
820 {
821         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
822
823         dpc->function(dpc->context);
824         kfree(dpc);
825 }
826
827 #ifdef CONFIG_ACPI_DEBUGGER
828 static struct acpi_debugger acpi_debugger;
829 static bool acpi_debugger_initialized;
830
831 int acpi_register_debugger(struct module *owner,
832                            const struct acpi_debugger_ops *ops)
833 {
834         int ret = 0;
835
836         mutex_lock(&acpi_debugger.lock);
837         if (acpi_debugger.ops) {
838                 ret = -EBUSY;
839                 goto err_lock;
840         }
841
842         acpi_debugger.owner = owner;
843         acpi_debugger.ops = ops;
844
845 err_lock:
846         mutex_unlock(&acpi_debugger.lock);
847         return ret;
848 }
849 EXPORT_SYMBOL(acpi_register_debugger);
850
851 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
852 {
853         mutex_lock(&acpi_debugger.lock);
854         if (ops == acpi_debugger.ops) {
855                 acpi_debugger.ops = NULL;
856                 acpi_debugger.owner = NULL;
857         }
858         mutex_unlock(&acpi_debugger.lock);
859 }
860 EXPORT_SYMBOL(acpi_unregister_debugger);
861
862 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
863 {
864         int ret;
865         int (*func)(acpi_osd_exec_callback, void *);
866         struct module *owner;
867
868         if (!acpi_debugger_initialized)
869                 return -ENODEV;
870         mutex_lock(&acpi_debugger.lock);
871         if (!acpi_debugger.ops) {
872                 ret = -ENODEV;
873                 goto err_lock;
874         }
875         if (!try_module_get(acpi_debugger.owner)) {
876                 ret = -ENODEV;
877                 goto err_lock;
878         }
879         func = acpi_debugger.ops->create_thread;
880         owner = acpi_debugger.owner;
881         mutex_unlock(&acpi_debugger.lock);
882
883         ret = func(function, context);
884
885         mutex_lock(&acpi_debugger.lock);
886         module_put(owner);
887 err_lock:
888         mutex_unlock(&acpi_debugger.lock);
889         return ret;
890 }
891
892 ssize_t acpi_debugger_write_log(const char *msg)
893 {
894         ssize_t ret;
895         ssize_t (*func)(const char *);
896         struct module *owner;
897
898         if (!acpi_debugger_initialized)
899                 return -ENODEV;
900         mutex_lock(&acpi_debugger.lock);
901         if (!acpi_debugger.ops) {
902                 ret = -ENODEV;
903                 goto err_lock;
904         }
905         if (!try_module_get(acpi_debugger.owner)) {
906                 ret = -ENODEV;
907                 goto err_lock;
908         }
909         func = acpi_debugger.ops->write_log;
910         owner = acpi_debugger.owner;
911         mutex_unlock(&acpi_debugger.lock);
912
913         ret = func(msg);
914
915         mutex_lock(&acpi_debugger.lock);
916         module_put(owner);
917 err_lock:
918         mutex_unlock(&acpi_debugger.lock);
919         return ret;
920 }
921
922 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
923 {
924         ssize_t ret;
925         ssize_t (*func)(char *, size_t);
926         struct module *owner;
927
928         if (!acpi_debugger_initialized)
929                 return -ENODEV;
930         mutex_lock(&acpi_debugger.lock);
931         if (!acpi_debugger.ops) {
932                 ret = -ENODEV;
933                 goto err_lock;
934         }
935         if (!try_module_get(acpi_debugger.owner)) {
936                 ret = -ENODEV;
937                 goto err_lock;
938         }
939         func = acpi_debugger.ops->read_cmd;
940         owner = acpi_debugger.owner;
941         mutex_unlock(&acpi_debugger.lock);
942
943         ret = func(buffer, buffer_length);
944
945         mutex_lock(&acpi_debugger.lock);
946         module_put(owner);
947 err_lock:
948         mutex_unlock(&acpi_debugger.lock);
949         return ret;
950 }
951
952 int acpi_debugger_wait_command_ready(void)
953 {
954         int ret;
955         int (*func)(bool, char *, size_t);
956         struct module *owner;
957
958         if (!acpi_debugger_initialized)
959                 return -ENODEV;
960         mutex_lock(&acpi_debugger.lock);
961         if (!acpi_debugger.ops) {
962                 ret = -ENODEV;
963                 goto err_lock;
964         }
965         if (!try_module_get(acpi_debugger.owner)) {
966                 ret = -ENODEV;
967                 goto err_lock;
968         }
969         func = acpi_debugger.ops->wait_command_ready;
970         owner = acpi_debugger.owner;
971         mutex_unlock(&acpi_debugger.lock);
972
973         ret = func(acpi_gbl_method_executing,
974                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
975
976         mutex_lock(&acpi_debugger.lock);
977         module_put(owner);
978 err_lock:
979         mutex_unlock(&acpi_debugger.lock);
980         return ret;
981 }
982
983 int acpi_debugger_notify_command_complete(void)
984 {
985         int ret;
986         int (*func)(void);
987         struct module *owner;
988
989         if (!acpi_debugger_initialized)
990                 return -ENODEV;
991         mutex_lock(&acpi_debugger.lock);
992         if (!acpi_debugger.ops) {
993                 ret = -ENODEV;
994                 goto err_lock;
995         }
996         if (!try_module_get(acpi_debugger.owner)) {
997                 ret = -ENODEV;
998                 goto err_lock;
999         }
1000         func = acpi_debugger.ops->notify_command_complete;
1001         owner = acpi_debugger.owner;
1002         mutex_unlock(&acpi_debugger.lock);
1003
1004         ret = func();
1005
1006         mutex_lock(&acpi_debugger.lock);
1007         module_put(owner);
1008 err_lock:
1009         mutex_unlock(&acpi_debugger.lock);
1010         return ret;
1011 }
1012
1013 int __init acpi_debugger_init(void)
1014 {
1015         mutex_init(&acpi_debugger.lock);
1016         acpi_debugger_initialized = true;
1017         return 0;
1018 }
1019 #endif
1020
1021 /*******************************************************************************
1022  *
1023  * FUNCTION:    acpi_os_execute
1024  *
1025  * PARAMETERS:  Type               - Type of the callback
1026  *              Function           - Function to be executed
1027  *              Context            - Function parameters
1028  *
1029  * RETURN:      Status
1030  *
1031  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1032  *              immediately executes function on a separate thread.
1033  *
1034  ******************************************************************************/
1035
1036 acpi_status acpi_os_execute(acpi_execute_type type,
1037                             acpi_osd_exec_callback function, void *context)
1038 {
1039         acpi_status status = AE_OK;
1040         struct acpi_os_dpc *dpc;
1041         struct workqueue_struct *queue;
1042         int ret;
1043         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1044                           "Scheduling function [%p(%p)] for deferred execution.\n",
1045                           function, context));
1046
1047         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1048                 ret = acpi_debugger_create_thread(function, context);
1049                 if (ret) {
1050                         pr_err("Call to kthread_create() failed.\n");
1051                         status = AE_ERROR;
1052                 }
1053                 goto out_thread;
1054         }
1055
1056         /*
1057          * Allocate/initialize DPC structure.  Note that this memory will be
1058          * freed by the callee.  The kernel handles the work_struct list  in a
1059          * way that allows us to also free its memory inside the callee.
1060          * Because we may want to schedule several tasks with different
1061          * parameters we can't use the approach some kernel code uses of
1062          * having a static work_struct.
1063          */
1064
1065         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1066         if (!dpc)
1067                 return AE_NO_MEMORY;
1068
1069         dpc->function = function;
1070         dpc->context = context;
1071
1072         /*
1073          * To prevent lockdep from complaining unnecessarily, make sure that
1074          * there is a different static lockdep key for each workqueue by using
1075          * INIT_WORK() for each of them separately.
1076          */
1077         if (type == OSL_NOTIFY_HANDLER) {
1078                 queue = kacpi_notify_wq;
1079                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1080         } else if (type == OSL_GPE_HANDLER) {
1081                 queue = kacpid_wq;
1082                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1083         } else {
1084                 pr_err("Unsupported os_execute type %d.\n", type);
1085                 status = AE_ERROR;
1086         }
1087
1088         if (ACPI_FAILURE(status))
1089                 goto err_workqueue;
1090
1091         /*
1092          * On some machines, a software-initiated SMI causes corruption unless
1093          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1094          * typically it's done in GPE-related methods that are run via
1095          * workqueues, so we can avoid the known corruption cases by always
1096          * queueing on CPU 0.
1097          */
1098         ret = queue_work_on(0, queue, &dpc->work);
1099         if (!ret) {
1100                 printk(KERN_ERR PREFIX
1101                           "Call to queue_work() failed.\n");
1102                 status = AE_ERROR;
1103         }
1104 err_workqueue:
1105         if (ACPI_FAILURE(status))
1106                 kfree(dpc);
1107 out_thread:
1108         return status;
1109 }
1110 EXPORT_SYMBOL(acpi_os_execute);
1111
1112 void acpi_os_wait_events_complete(void)
1113 {
1114         /*
1115          * Make sure the GPE handler or the fixed event handler is not used
1116          * on another CPU after removal.
1117          */
1118         if (acpi_sci_irq_valid())
1119                 synchronize_hardirq(acpi_sci_irq);
1120         flush_workqueue(kacpid_wq);
1121         flush_workqueue(kacpi_notify_wq);
1122 }
1123
1124 struct acpi_hp_work {
1125         struct work_struct work;
1126         struct acpi_device *adev;
1127         u32 src;
1128 };
1129
1130 static void acpi_hotplug_work_fn(struct work_struct *work)
1131 {
1132         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1133
1134         acpi_os_wait_events_complete();
1135         acpi_device_hotplug(hpw->adev, hpw->src);
1136         kfree(hpw);
1137 }
1138
1139 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1140 {
1141         struct acpi_hp_work *hpw;
1142
1143         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1144                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1145                   adev, src));
1146
1147         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1148         if (!hpw)
1149                 return AE_NO_MEMORY;
1150
1151         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1152         hpw->adev = adev;
1153         hpw->src = src;
1154         /*
1155          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1156          * the hotplug code may call driver .remove() functions, which may
1157          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1158          * these workqueues.
1159          */
1160         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1161                 kfree(hpw);
1162                 return AE_ERROR;
1163         }
1164         return AE_OK;
1165 }
1166
1167 bool acpi_queue_hotplug_work(struct work_struct *work)
1168 {
1169         return queue_work(kacpi_hotplug_wq, work);
1170 }
1171
1172 acpi_status
1173 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1174 {
1175         struct semaphore *sem = NULL;
1176
1177         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1178         if (!sem)
1179                 return AE_NO_MEMORY;
1180
1181         sema_init(sem, initial_units);
1182
1183         *handle = (acpi_handle *) sem;
1184
1185         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1186                           *handle, initial_units));
1187
1188         return AE_OK;
1189 }
1190
1191 /*
1192  * TODO: A better way to delete semaphores?  Linux doesn't have a
1193  * 'delete_semaphore()' function -- may result in an invalid
1194  * pointer dereference for non-synchronized consumers.  Should
1195  * we at least check for blocked threads and signal/cancel them?
1196  */
1197
1198 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1199 {
1200         struct semaphore *sem = (struct semaphore *)handle;
1201
1202         if (!sem)
1203                 return AE_BAD_PARAMETER;
1204
1205         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1206
1207         BUG_ON(!list_empty(&sem->wait_list));
1208         kfree(sem);
1209         sem = NULL;
1210
1211         return AE_OK;
1212 }
1213
1214 /*
1215  * TODO: Support for units > 1?
1216  */
1217 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1218 {
1219         acpi_status status = AE_OK;
1220         struct semaphore *sem = (struct semaphore *)handle;
1221         long jiffies;
1222         int ret = 0;
1223
1224         if (!acpi_os_initialized)
1225                 return AE_OK;
1226
1227         if (!sem || (units < 1))
1228                 return AE_BAD_PARAMETER;
1229
1230         if (units > 1)
1231                 return AE_SUPPORT;
1232
1233         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1234                           handle, units, timeout));
1235
1236         if (timeout == ACPI_WAIT_FOREVER)
1237                 jiffies = MAX_SCHEDULE_TIMEOUT;
1238         else
1239                 jiffies = msecs_to_jiffies(timeout);
1240
1241         ret = down_timeout(sem, jiffies);
1242         if (ret)
1243                 status = AE_TIME;
1244
1245         if (ACPI_FAILURE(status)) {
1246                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1247                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1248                                   handle, units, timeout,
1249                                   acpi_format_exception(status)));
1250         } else {
1251                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1252                                   "Acquired semaphore[%p|%d|%d]", handle,
1253                                   units, timeout));
1254         }
1255
1256         return status;
1257 }
1258
1259 /*
1260  * TODO: Support for units > 1?
1261  */
1262 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1263 {
1264         struct semaphore *sem = (struct semaphore *)handle;
1265
1266         if (!acpi_os_initialized)
1267                 return AE_OK;
1268
1269         if (!sem || (units < 1))
1270                 return AE_BAD_PARAMETER;
1271
1272         if (units > 1)
1273                 return AE_SUPPORT;
1274
1275         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1276                           units));
1277
1278         up(sem);
1279
1280         return AE_OK;
1281 }
1282
1283 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1284 {
1285 #ifdef ENABLE_DEBUGGER
1286         if (acpi_in_debugger) {
1287                 u32 chars;
1288
1289                 kdb_read(buffer, buffer_length);
1290
1291                 /* remove the CR kdb includes */
1292                 chars = strlen(buffer) - 1;
1293                 buffer[chars] = '\0';
1294         }
1295 #else
1296         int ret;
1297
1298         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1299         if (ret < 0)
1300                 return AE_ERROR;
1301         if (bytes_read)
1302                 *bytes_read = ret;
1303 #endif
1304
1305         return AE_OK;
1306 }
1307 EXPORT_SYMBOL(acpi_os_get_line);
1308
1309 acpi_status acpi_os_wait_command_ready(void)
1310 {
1311         int ret;
1312
1313         ret = acpi_debugger_wait_command_ready();
1314         if (ret < 0)
1315                 return AE_ERROR;
1316         return AE_OK;
1317 }
1318
1319 acpi_status acpi_os_notify_command_complete(void)
1320 {
1321         int ret;
1322
1323         ret = acpi_debugger_notify_command_complete();
1324         if (ret < 0)
1325                 return AE_ERROR;
1326         return AE_OK;
1327 }
1328
1329 acpi_status acpi_os_signal(u32 function, void *info)
1330 {
1331         switch (function) {
1332         case ACPI_SIGNAL_FATAL:
1333                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1334                 break;
1335         case ACPI_SIGNAL_BREAKPOINT:
1336                 /*
1337                  * AML Breakpoint
1338                  * ACPI spec. says to treat it as a NOP unless
1339                  * you are debugging.  So if/when we integrate
1340                  * AML debugger into the kernel debugger its
1341                  * hook will go here.  But until then it is
1342                  * not useful to print anything on breakpoints.
1343                  */
1344                 break;
1345         default:
1346                 break;
1347         }
1348
1349         return AE_OK;
1350 }
1351
1352 static int __init acpi_os_name_setup(char *str)
1353 {
1354         char *p = acpi_os_name;
1355         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1356
1357         if (!str || !*str)
1358                 return 0;
1359
1360         for (; count-- && *str; str++) {
1361                 if (isalnum(*str) || *str == ' ' || *str == ':')
1362                         *p++ = *str;
1363                 else if (*str == '\'' || *str == '"')
1364                         continue;
1365                 else
1366                         break;
1367         }
1368         *p = 0;
1369
1370         return 1;
1371
1372 }
1373
1374 __setup("acpi_os_name=", acpi_os_name_setup);
1375
1376 /*
1377  * Disable the auto-serialization of named objects creation methods.
1378  *
1379  * This feature is enabled by default.  It marks the AML control methods
1380  * that contain the opcodes to create named objects as "Serialized".
1381  */
1382 static int __init acpi_no_auto_serialize_setup(char *str)
1383 {
1384         acpi_gbl_auto_serialize_methods = FALSE;
1385         pr_info("ACPI: auto-serialization disabled\n");
1386
1387         return 1;
1388 }
1389
1390 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1391
1392 /* Check of resource interference between native drivers and ACPI
1393  * OperationRegions (SystemIO and System Memory only).
1394  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1395  * in arbitrary AML code and can interfere with legacy drivers.
1396  * acpi_enforce_resources= can be set to:
1397  *
1398  *   - strict (default) (2)
1399  *     -> further driver trying to access the resources will not load
1400  *   - lax              (1)
1401  *     -> further driver trying to access the resources will load, but you
1402  *     get a system message that something might go wrong...
1403  *
1404  *   - no               (0)
1405  *     -> ACPI Operation Region resources will not be registered
1406  *
1407  */
1408 #define ENFORCE_RESOURCES_STRICT 2
1409 #define ENFORCE_RESOURCES_LAX    1
1410 #define ENFORCE_RESOURCES_NO     0
1411
1412 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1413
1414 static int __init acpi_enforce_resources_setup(char *str)
1415 {
1416         if (str == NULL || *str == '\0')
1417                 return 0;
1418
1419         if (!strcmp("strict", str))
1420                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1421         else if (!strcmp("lax", str))
1422                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1423         else if (!strcmp("no", str))
1424                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1425
1426         return 1;
1427 }
1428
1429 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1430
1431 /* Check for resource conflicts between ACPI OperationRegions and native
1432  * drivers */
1433 int acpi_check_resource_conflict(const struct resource *res)
1434 {
1435         acpi_adr_space_type space_id;
1436         acpi_size length;
1437         u8 warn = 0;
1438         int clash = 0;
1439
1440         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1441                 return 0;
1442         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1443                 return 0;
1444
1445         if (res->flags & IORESOURCE_IO)
1446                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1447         else
1448                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1449
1450         length = resource_size(res);
1451         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1452                 warn = 1;
1453         clash = acpi_check_address_range(space_id, res->start, length, warn);
1454
1455         if (clash) {
1456                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1457                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1458                                 printk(KERN_NOTICE "ACPI: This conflict may"
1459                                        " cause random problems and system"
1460                                        " instability\n");
1461                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1462                                " for this device, you should use it instead of"
1463                                " the native driver\n");
1464                 }
1465                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1466                         return -EBUSY;
1467         }
1468         return 0;
1469 }
1470 EXPORT_SYMBOL(acpi_check_resource_conflict);
1471
1472 int acpi_check_region(resource_size_t start, resource_size_t n,
1473                       const char *name)
1474 {
1475         struct resource res = {
1476                 .start = start,
1477                 .end   = start + n - 1,
1478                 .name  = name,
1479                 .flags = IORESOURCE_IO,
1480         };
1481
1482         return acpi_check_resource_conflict(&res);
1483 }
1484 EXPORT_SYMBOL(acpi_check_region);
1485
1486 /*
1487  * Let drivers know whether the resource checks are effective
1488  */
1489 int acpi_resources_are_enforced(void)
1490 {
1491         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1492 }
1493 EXPORT_SYMBOL(acpi_resources_are_enforced);
1494
1495 /*
1496  * Deallocate the memory for a spinlock.
1497  */
1498 void acpi_os_delete_lock(acpi_spinlock handle)
1499 {
1500         ACPI_FREE(handle);
1501 }
1502
1503 /*
1504  * Acquire a spinlock.
1505  *
1506  * handle is a pointer to the spinlock_t.
1507  */
1508
1509 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1510 {
1511         acpi_cpu_flags flags;
1512         spin_lock_irqsave(lockp, flags);
1513         return flags;
1514 }
1515
1516 /*
1517  * Release a spinlock. See above.
1518  */
1519
1520 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1521 {
1522         spin_unlock_irqrestore(lockp, flags);
1523 }
1524
1525 #ifndef ACPI_USE_LOCAL_CACHE
1526
1527 /*******************************************************************************
1528  *
1529  * FUNCTION:    acpi_os_create_cache
1530  *
1531  * PARAMETERS:  name      - Ascii name for the cache
1532  *              size      - Size of each cached object
1533  *              depth     - Maximum depth of the cache (in objects) <ignored>
1534  *              cache     - Where the new cache object is returned
1535  *
1536  * RETURN:      status
1537  *
1538  * DESCRIPTION: Create a cache object
1539  *
1540  ******************************************************************************/
1541
1542 acpi_status
1543 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1544 {
1545         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1546         if (*cache == NULL)
1547                 return AE_ERROR;
1548         else
1549                 return AE_OK;
1550 }
1551
1552 /*******************************************************************************
1553  *
1554  * FUNCTION:    acpi_os_purge_cache
1555  *
1556  * PARAMETERS:  Cache           - Handle to cache object
1557  *
1558  * RETURN:      Status
1559  *
1560  * DESCRIPTION: Free all objects within the requested cache.
1561  *
1562  ******************************************************************************/
1563
1564 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1565 {
1566         kmem_cache_shrink(cache);
1567         return (AE_OK);
1568 }
1569
1570 /*******************************************************************************
1571  *
1572  * FUNCTION:    acpi_os_delete_cache
1573  *
1574  * PARAMETERS:  Cache           - Handle to cache object
1575  *
1576  * RETURN:      Status
1577  *
1578  * DESCRIPTION: Free all objects within the requested cache and delete the
1579  *              cache object.
1580  *
1581  ******************************************************************************/
1582
1583 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1584 {
1585         kmem_cache_destroy(cache);
1586         return (AE_OK);
1587 }
1588
1589 /*******************************************************************************
1590  *
1591  * FUNCTION:    acpi_os_release_object
1592  *
1593  * PARAMETERS:  Cache       - Handle to cache object
1594  *              Object      - The object to be released
1595  *
1596  * RETURN:      None
1597  *
1598  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1599  *              the object is deleted.
1600  *
1601  ******************************************************************************/
1602
1603 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1604 {
1605         kmem_cache_free(cache, object);
1606         return (AE_OK);
1607 }
1608 #endif
1609
1610 static int __init acpi_no_static_ssdt_setup(char *s)
1611 {
1612         acpi_gbl_disable_ssdt_table_install = TRUE;
1613         pr_info("ACPI: static SSDT installation disabled\n");
1614
1615         return 0;
1616 }
1617
1618 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1619
1620 static int __init acpi_disable_return_repair(char *s)
1621 {
1622         printk(KERN_NOTICE PREFIX
1623                "ACPI: Predefined validation mechanism disabled\n");
1624         acpi_gbl_disable_auto_repair = TRUE;
1625
1626         return 1;
1627 }
1628
1629 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1630
1631 acpi_status __init acpi_os_initialize(void)
1632 {
1633         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1634         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1635         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1636         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1637         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1638                 /*
1639                  * Use acpi_os_map_generic_address to pre-map the reset
1640                  * register if it's in system memory.
1641                  */
1642                 int rv;
1643
1644                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1645                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1646         }
1647         acpi_os_initialized = true;
1648
1649         return AE_OK;
1650 }
1651
1652 acpi_status __init acpi_os_initialize1(void)
1653 {
1654         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1655         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1656         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1657         BUG_ON(!kacpid_wq);
1658         BUG_ON(!kacpi_notify_wq);
1659         BUG_ON(!kacpi_hotplug_wq);
1660         acpi_osi_init();
1661         return AE_OK;
1662 }
1663
1664 acpi_status acpi_os_terminate(void)
1665 {
1666         if (acpi_irq_handler) {
1667                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1668                                                  acpi_irq_handler);
1669         }
1670
1671         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1672         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1673         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1674         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1675         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1676                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1677
1678         destroy_workqueue(kacpid_wq);
1679         destroy_workqueue(kacpi_notify_wq);
1680         destroy_workqueue(kacpi_hotplug_wq);
1681
1682         return AE_OK;
1683 }
1684
1685 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1686                                   u32 pm1b_control)
1687 {
1688         int rc = 0;
1689         if (__acpi_os_prepare_sleep)
1690                 rc = __acpi_os_prepare_sleep(sleep_state,
1691                                              pm1a_control, pm1b_control);
1692         if (rc < 0)
1693                 return AE_ERROR;
1694         else if (rc > 0)
1695                 return AE_CTRL_SKIP;
1696
1697         return AE_OK;
1698 }
1699
1700 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1701                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1702 {
1703         __acpi_os_prepare_sleep = func;
1704 }
1705
1706 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1707                                   u32 val_b)
1708 {
1709         int rc = 0;
1710         if (__acpi_os_prepare_extended_sleep)
1711                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1712                                              val_a, val_b);
1713         if (rc < 0)
1714                 return AE_ERROR;
1715         else if (rc > 0)
1716                 return AE_CTRL_SKIP;
1717
1718         return AE_OK;
1719 }
1720
1721 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1722                                u32 val_a, u32 val_b))
1723 {
1724         __acpi_os_prepare_extended_sleep = func;
1725 }