Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / arch / x86 / platform / uv / uv_time.c
1 /*
2  * SGI RTC clock/timer routines.
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License, or
7  *  (at your option) any later version.
8  *
9  *  This program is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  *  GNU General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program; if not, write to the Free Software
16  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  *
18  *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
19  *  Copyright (c) Dimitri Sivanich
20  */
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
23
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
30
31 #define RTC_NAME                "sgi_rtc"
32
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static int uv_rtc_shutdown(struct clock_event_device *evt);
36
37 static struct clocksource clocksource_uv = {
38         .name           = RTC_NAME,
39         .rating         = 299,
40         .read           = uv_read_rtc,
41         .mask           = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
42         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
43 };
44
45 static struct clock_event_device clock_event_device_uv = {
46         .name                   = RTC_NAME,
47         .features               = CLOCK_EVT_FEAT_ONESHOT,
48         .shift                  = 20,
49         .rating                 = 400,
50         .irq                    = -1,
51         .set_next_event         = uv_rtc_next_event,
52         .set_state_shutdown     = uv_rtc_shutdown,
53         .event_handler          = NULL,
54 };
55
56 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
57
58 /* There is one of these allocated per node */
59 struct uv_rtc_timer_head {
60         spinlock_t      lock;
61         /* next cpu waiting for timer, local node relative: */
62         int             next_cpu;
63         /* number of cpus on this node: */
64         int             ncpus;
65         struct {
66                 int     lcpu;           /* systemwide logical cpu number */
67                 u64     expires;        /* next timer expiration for this cpu */
68         } cpu[1];
69 };
70
71 /*
72  * Access to uv_rtc_timer_head via blade id.
73  */
74 static struct uv_rtc_timer_head         **blade_info __read_mostly;
75
76 static int                              uv_rtc_evt_enable;
77
78 /*
79  * Hardware interface routines
80  */
81
82 /* Send IPIs to another node */
83 static void uv_rtc_send_IPI(int cpu)
84 {
85         unsigned long apicid, val;
86         int pnode;
87
88         apicid = cpu_physical_id(cpu);
89         pnode = uv_apicid_to_pnode(apicid);
90         apicid |= uv_apicid_hibits;
91         val = (1UL << UVH_IPI_INT_SEND_SHFT) |
92               (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
93               (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
94
95         uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
96 }
97
98 /* Check for an RTC interrupt pending */
99 static int uv_intr_pending(int pnode)
100 {
101         if (is_uv1_hub())
102                 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
103                         UV1H_EVENT_OCCURRED0_RTC1_MASK;
104         else if (is_uvx_hub())
105                 return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
106                         UVXH_EVENT_OCCURRED2_RTC_1_MASK;
107         return 0;
108 }
109
110 /* Setup interrupt and return non-zero if early expiration occurred. */
111 static int uv_setup_intr(int cpu, u64 expires)
112 {
113         u64 val;
114         unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
115         int pnode = uv_cpu_to_pnode(cpu);
116
117         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
118                 UVH_RTC1_INT_CONFIG_M_MASK);
119         uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
120
121         if (is_uv1_hub())
122                 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
123                                 UV1H_EVENT_OCCURRED0_RTC1_MASK);
124         else
125                 uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
126                                 UVXH_EVENT_OCCURRED2_RTC_1_MASK);
127
128         val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
129                 ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
130
131         /* Set configuration */
132         uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
133         /* Initialize comparator value */
134         uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
135
136         if (uv_read_rtc(NULL) <= expires)
137                 return 0;
138
139         return !uv_intr_pending(pnode);
140 }
141
142 /*
143  * Per-cpu timer tracking routines
144  */
145
146 static __init void uv_rtc_deallocate_timers(void)
147 {
148         int bid;
149
150         for_each_possible_blade(bid) {
151                 kfree(blade_info[bid]);
152         }
153         kfree(blade_info);
154 }
155
156 /* Allocate per-node list of cpu timer expiration times. */
157 static __init int uv_rtc_allocate_timers(void)
158 {
159         int cpu;
160
161         blade_info = kzalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
162         if (!blade_info)
163                 return -ENOMEM;
164
165         for_each_present_cpu(cpu) {
166                 int nid = cpu_to_node(cpu);
167                 int bid = uv_cpu_to_blade_id(cpu);
168                 int bcpu = uv_cpu_blade_processor_id(cpu);
169                 struct uv_rtc_timer_head *head = blade_info[bid];
170
171                 if (!head) {
172                         head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
173                                 (uv_blade_nr_possible_cpus(bid) *
174                                         2 * sizeof(u64)),
175                                 GFP_KERNEL, nid);
176                         if (!head) {
177                                 uv_rtc_deallocate_timers();
178                                 return -ENOMEM;
179                         }
180                         spin_lock_init(&head->lock);
181                         head->ncpus = uv_blade_nr_possible_cpus(bid);
182                         head->next_cpu = -1;
183                         blade_info[bid] = head;
184                 }
185
186                 head->cpu[bcpu].lcpu = cpu;
187                 head->cpu[bcpu].expires = ULLONG_MAX;
188         }
189
190         return 0;
191 }
192
193 /* Find and set the next expiring timer.  */
194 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
195 {
196         u64 lowest = ULLONG_MAX;
197         int c, bcpu = -1;
198
199         head->next_cpu = -1;
200         for (c = 0; c < head->ncpus; c++) {
201                 u64 exp = head->cpu[c].expires;
202                 if (exp < lowest) {
203                         bcpu = c;
204                         lowest = exp;
205                 }
206         }
207         if (bcpu >= 0) {
208                 head->next_cpu = bcpu;
209                 c = head->cpu[bcpu].lcpu;
210                 if (uv_setup_intr(c, lowest))
211                         /* If we didn't set it up in time, trigger */
212                         uv_rtc_send_IPI(c);
213         } else {
214                 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
215                         UVH_RTC1_INT_CONFIG_M_MASK);
216         }
217 }
218
219 /*
220  * Set expiration time for current cpu.
221  *
222  * Returns 1 if we missed the expiration time.
223  */
224 static int uv_rtc_set_timer(int cpu, u64 expires)
225 {
226         int pnode = uv_cpu_to_pnode(cpu);
227         int bid = uv_cpu_to_blade_id(cpu);
228         struct uv_rtc_timer_head *head = blade_info[bid];
229         int bcpu = uv_cpu_blade_processor_id(cpu);
230         u64 *t = &head->cpu[bcpu].expires;
231         unsigned long flags;
232         int next_cpu;
233
234         spin_lock_irqsave(&head->lock, flags);
235
236         next_cpu = head->next_cpu;
237         *t = expires;
238
239         /* Will this one be next to go off? */
240         if (next_cpu < 0 || bcpu == next_cpu ||
241                         expires < head->cpu[next_cpu].expires) {
242                 head->next_cpu = bcpu;
243                 if (uv_setup_intr(cpu, expires)) {
244                         *t = ULLONG_MAX;
245                         uv_rtc_find_next_timer(head, pnode);
246                         spin_unlock_irqrestore(&head->lock, flags);
247                         return -ETIME;
248                 }
249         }
250
251         spin_unlock_irqrestore(&head->lock, flags);
252         return 0;
253 }
254
255 /*
256  * Unset expiration time for current cpu.
257  *
258  * Returns 1 if this timer was pending.
259  */
260 static int uv_rtc_unset_timer(int cpu, int force)
261 {
262         int pnode = uv_cpu_to_pnode(cpu);
263         int bid = uv_cpu_to_blade_id(cpu);
264         struct uv_rtc_timer_head *head = blade_info[bid];
265         int bcpu = uv_cpu_blade_processor_id(cpu);
266         u64 *t = &head->cpu[bcpu].expires;
267         unsigned long flags;
268         int rc = 0;
269
270         spin_lock_irqsave(&head->lock, flags);
271
272         if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
273                 rc = 1;
274
275         if (rc) {
276                 *t = ULLONG_MAX;
277                 /* Was the hardware setup for this timer? */
278                 if (head->next_cpu == bcpu)
279                         uv_rtc_find_next_timer(head, pnode);
280         }
281
282         spin_unlock_irqrestore(&head->lock, flags);
283
284         return rc;
285 }
286
287
288 /*
289  * Kernel interface routines.
290  */
291
292 /*
293  * Read the RTC.
294  *
295  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
296  * cachelines of it's own page.  This allows faster simultaneous reads
297  * from a given socket.
298  */
299 static cycle_t uv_read_rtc(struct clocksource *cs)
300 {
301         unsigned long offset;
302
303         if (uv_get_min_hub_revision_id() == 1)
304                 offset = 0;
305         else
306                 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
307
308         return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
309 }
310
311 /*
312  * Program the next event, relative to now
313  */
314 static int uv_rtc_next_event(unsigned long delta,
315                              struct clock_event_device *ced)
316 {
317         int ced_cpu = cpumask_first(ced->cpumask);
318
319         return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
320 }
321
322 /*
323  * Shutdown the RTC timer
324  */
325 static int uv_rtc_shutdown(struct clock_event_device *evt)
326 {
327         int ced_cpu = cpumask_first(evt->cpumask);
328
329         uv_rtc_unset_timer(ced_cpu, 1);
330         return 0;
331 }
332
333 static void uv_rtc_interrupt(void)
334 {
335         int cpu = smp_processor_id();
336         struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
337
338         if (!ced || !ced->event_handler)
339                 return;
340
341         if (uv_rtc_unset_timer(cpu, 0) != 1)
342                 return;
343
344         ced->event_handler(ced);
345 }
346
347 static int __init uv_enable_evt_rtc(char *str)
348 {
349         uv_rtc_evt_enable = 1;
350
351         return 1;
352 }
353 __setup("uvrtcevt", uv_enable_evt_rtc);
354
355 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
356 {
357         struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
358
359         *ced = clock_event_device_uv;
360         ced->cpumask = cpumask_of(smp_processor_id());
361         clockevents_register_device(ced);
362 }
363
364 static __init int uv_rtc_setup_clock(void)
365 {
366         int rc;
367
368         if (!is_uv_system())
369                 return -ENODEV;
370
371         rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
372         if (rc)
373                 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
374         else
375                 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
376                         sn_rtc_cycles_per_second/(unsigned long)1E6);
377
378         if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
379                 return rc;
380
381         /* Setup and register clockevents */
382         rc = uv_rtc_allocate_timers();
383         if (rc)
384                 goto error;
385
386         x86_platform_ipi_callback = uv_rtc_interrupt;
387
388         clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
389                                 NSEC_PER_SEC, clock_event_device_uv.shift);
390
391         clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
392                                                 sn_rtc_cycles_per_second;
393
394         clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
395                                 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
396
397         rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
398         if (rc) {
399                 x86_platform_ipi_callback = NULL;
400                 uv_rtc_deallocate_timers();
401                 goto error;
402         }
403
404         printk(KERN_INFO "UV RTC clockevents registered\n");
405
406         return 0;
407
408 error:
409         clocksource_unregister(&clocksource_uv);
410         printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
411
412         return rc;
413 }
414 arch_initcall(uv_rtc_setup_clock);