Merge tag 'soundwire-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[linux-2.6-block.git] / arch / mips / kernel / smp-cps.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2013 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
16 #include <linux/irq.h>
17
18 #include <asm/bcache.h>
19 #include <asm/mips-cps.h>
20 #include <asm/mips_mt.h>
21 #include <asm/mipsregs.h>
22 #include <asm/pm-cps.h>
23 #include <asm/r4kcache.h>
24 #include <asm/regdef.h>
25 #include <asm/smp.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 #define BEV_VEC_SIZE    0x500
31 #define BEV_VEC_ALIGN   0x1000
32
33 enum label_id {
34         label_not_nmi = 1,
35 };
36
37 UASM_L_LA(_not_nmi)
38
39 static DECLARE_BITMAP(core_power, NR_CPUS);
40 static uint32_t core_entry_reg;
41 static phys_addr_t cps_vec_pa;
42
43 struct core_boot_config *mips_cps_core_bootcfg;
44
45 static unsigned __init core_vpe_count(unsigned int cluster, unsigned core)
46 {
47         return min(smp_max_threads, mips_cps_numvps(cluster, core));
48 }
49
50 static void __init *mips_cps_build_core_entry(void *addr)
51 {
52         extern void (*nmi_handler)(void);
53         u32 *p = addr;
54         u32 val;
55         struct uasm_label labels[2];
56         struct uasm_reloc relocs[2];
57         struct uasm_label *l = labels;
58         struct uasm_reloc *r = relocs;
59
60         memset(labels, 0, sizeof(labels));
61         memset(relocs, 0, sizeof(relocs));
62
63         uasm_i_mfc0(&p, GPR_K0, C0_STATUS);
64         UASM_i_LA(&p, GPR_T9, ST0_NMI);
65         uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T9);
66
67         uasm_il_bnez(&p, &r, GPR_K0, label_not_nmi);
68         uasm_i_nop(&p);
69         UASM_i_LA(&p, GPR_K0, (long)&nmi_handler);
70
71         uasm_l_not_nmi(&l, p);
72
73         val = CAUSEF_IV;
74         uasm_i_lui(&p, GPR_K0, val >> 16);
75         uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
76         uasm_i_mtc0(&p, GPR_K0, C0_CAUSE);
77         val = ST0_CU1 | ST0_CU0 | ST0_BEV | ST0_KX_IF_64;
78         uasm_i_lui(&p, GPR_K0, val >> 16);
79         uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
80         uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
81         uasm_i_ehb(&p);
82         uasm_i_ori(&p, GPR_A0, 0, read_c0_config() & CONF_CM_CMASK);
83         UASM_i_LA(&p, GPR_A1, (long)mips_gcr_base);
84 #if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT)
85         UASM_i_LA(&p, GPR_T9, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot)));
86 #else
87         UASM_i_LA(&p, GPR_T9, TO_UNCAC(__pa_symbol(mips_cps_core_boot)));
88 #endif
89         uasm_i_jr(&p, GPR_T9);
90         uasm_i_nop(&p);
91
92         uasm_resolve_relocs(relocs, labels);
93
94         return p;
95 }
96
97 static int __init allocate_cps_vecs(void)
98 {
99         /* Try to allocate in KSEG1 first */
100         cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
101                                                 0x0, CSEGX_SIZE - 1);
102
103         if (cps_vec_pa)
104                 core_entry_reg = CKSEG1ADDR(cps_vec_pa) &
105                                         CM_GCR_Cx_RESET_BASE_BEVEXCBASE;
106
107         if (!cps_vec_pa && mips_cm_is64) {
108                 cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
109                                                         0x0, SZ_4G - 1);
110                 if (cps_vec_pa)
111                         core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET_BASE_BEVEXCBASE) |
112                                         CM_GCR_Cx_RESET_BASE_MODE;
113         }
114
115         if (!cps_vec_pa)
116                 return -ENOMEM;
117
118         return 0;
119 }
120
121 static void __init setup_cps_vecs(void)
122 {
123         void *cps_vec;
124
125         cps_vec = (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa);
126         mips_cps_build_core_entry(cps_vec);
127
128         memcpy(cps_vec + 0x200, &excep_tlbfill, 0x80);
129         memcpy(cps_vec + 0x280, &excep_xtlbfill, 0x80);
130         memcpy(cps_vec + 0x300, &excep_cache, 0x80);
131         memcpy(cps_vec + 0x380, &excep_genex, 0x80);
132         memcpy(cps_vec + 0x400, &excep_intex, 0x80);
133         memcpy(cps_vec + 0x480, &excep_ejtag, 0x80);
134
135         /* Make sure no prefetched data in cache */
136         blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa), CKSEG0ADDR_OR_64BIT(cps_vec_pa) + BEV_VEC_SIZE);
137         bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa), BEV_VEC_SIZE);
138         __sync();
139 }
140
141 static void __init cps_smp_setup(void)
142 {
143         unsigned int nclusters, ncores, nvpes, core_vpes;
144         int cl, c, v;
145
146         /* Detect & record VPE topology */
147         nvpes = 0;
148         nclusters = mips_cps_numclusters();
149         pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
150         for (cl = 0; cl < nclusters; cl++) {
151                 if (cl > 0)
152                         pr_cont(",");
153                 pr_cont("{");
154
155                 ncores = mips_cps_numcores(cl);
156                 for (c = 0; c < ncores; c++) {
157                         core_vpes = core_vpe_count(cl, c);
158
159                         if (c > 0)
160                                 pr_cont(",");
161                         pr_cont("%u", core_vpes);
162
163                         /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
164                         if (!cl && !c)
165                                 smp_num_siblings = core_vpes;
166
167                         for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
168                                 cpu_set_cluster(&cpu_data[nvpes + v], cl);
169                                 cpu_set_core(&cpu_data[nvpes + v], c);
170                                 cpu_set_vpe_id(&cpu_data[nvpes + v], v);
171                         }
172
173                         nvpes += core_vpes;
174                 }
175
176                 pr_cont("}");
177         }
178         pr_cont(" total %u\n", nvpes);
179
180         /* Indicate present CPUs (CPU being synonymous with VPE) */
181         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
182                 set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
183                 set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
184                 __cpu_number_map[v] = v;
185                 __cpu_logical_map[v] = v;
186         }
187
188         /* Set a coherent default CCA (CWB) */
189         change_c0_config(CONF_CM_CMASK, 0x5);
190
191         /* Core 0 is powered up (we're running on it) */
192         bitmap_set(core_power, 0, 1);
193
194         /* Initialise core 0 */
195         mips_cps_core_init();
196
197         /* Make core 0 coherent with everything */
198         write_gcr_cl_coherence(0xff);
199
200         if (allocate_cps_vecs())
201                 pr_err("Failed to allocate CPS vectors\n");
202
203         if (core_entry_reg && mips_cm_revision() >= CM_REV_CM3)
204                 write_gcr_bev_base(core_entry_reg);
205
206 #ifdef CONFIG_MIPS_MT_FPAFF
207         /* If we have an FPU, enroll ourselves in the FPU-full mask */
208         if (cpu_has_fpu)
209                 cpumask_set_cpu(0, &mt_fpu_cpumask);
210 #endif /* CONFIG_MIPS_MT_FPAFF */
211 }
212
213 static void __init cps_prepare_cpus(unsigned int max_cpus)
214 {
215         unsigned ncores, core_vpes, c, cca;
216         bool cca_unsuitable, cores_limited;
217
218         mips_mt_set_cpuoptions();
219
220         if (!core_entry_reg) {
221                 pr_err("core_entry address unsuitable, disabling smp-cps\n");
222                 goto err_out;
223         }
224
225         /* Detect whether the CCA is unsuited to multi-core SMP */
226         cca = read_c0_config() & CONF_CM_CMASK;
227         switch (cca) {
228         case 0x4: /* CWBE */
229         case 0x5: /* CWB */
230                 /* The CCA is coherent, multi-core is fine */
231                 cca_unsuitable = false;
232                 break;
233
234         default:
235                 /* CCA is not coherent, multi-core is not usable */
236                 cca_unsuitable = true;
237         }
238
239         /* Warn the user if the CCA prevents multi-core */
240         cores_limited = false;
241         if (cca_unsuitable || cpu_has_dc_aliases) {
242                 for_each_present_cpu(c) {
243                         if (cpus_are_siblings(smp_processor_id(), c))
244                                 continue;
245
246                         set_cpu_present(c, false);
247                         cores_limited = true;
248                 }
249         }
250         if (cores_limited)
251                 pr_warn("Using only one core due to %s%s%s\n",
252                         cca_unsuitable ? "unsuitable CCA" : "",
253                         (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
254                         cpu_has_dc_aliases ? "dcache aliasing" : "");
255
256         setup_cps_vecs();
257
258         /* Allocate core boot configuration structs */
259         ncores = mips_cps_numcores(0);
260         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
261                                         GFP_KERNEL);
262         if (!mips_cps_core_bootcfg) {
263                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
264                 goto err_out;
265         }
266
267         /* Allocate VPE boot configuration structs */
268         for (c = 0; c < ncores; c++) {
269                 core_vpes = core_vpe_count(0, c);
270                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
271                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
272                                 GFP_KERNEL);
273                 if (!mips_cps_core_bootcfg[c].vpe_config) {
274                         pr_err("Failed to allocate %u VPE boot configs\n",
275                                core_vpes);
276                         goto err_out;
277                 }
278         }
279
280         /* Mark this CPU as booted */
281         atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
282                    1 << cpu_vpe_id(&current_cpu_data));
283
284         return;
285 err_out:
286         /* Clean up allocations */
287         if (mips_cps_core_bootcfg) {
288                 for (c = 0; c < ncores; c++)
289                         kfree(mips_cps_core_bootcfg[c].vpe_config);
290                 kfree(mips_cps_core_bootcfg);
291                 mips_cps_core_bootcfg = NULL;
292         }
293
294         /* Effectively disable SMP by declaring CPUs not present */
295         for_each_possible_cpu(c) {
296                 if (c == 0)
297                         continue;
298                 set_cpu_present(c, false);
299         }
300 }
301
302 static void boot_core(unsigned int core, unsigned int vpe_id)
303 {
304         u32 stat, seq_state;
305         unsigned timeout;
306
307         /* Select the appropriate core */
308         mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
309
310         /* Set its reset vector */
311         write_gcr_co_reset_base(core_entry_reg);
312
313         /* Ensure its coherency is disabled */
314         write_gcr_co_coherence(0);
315
316         /* Start it with the legacy memory map and exception base */
317         write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
318
319         /* Ensure the core can access the GCRs */
320         set_gcr_access(1 << core);
321
322         if (mips_cpc_present()) {
323                 /* Reset the core */
324                 mips_cpc_lock_other(core);
325
326                 if (mips_cm_revision() >= CM_REV_CM3) {
327                         /* Run only the requested VP following the reset */
328                         write_cpc_co_vp_stop(0xf);
329                         write_cpc_co_vp_run(1 << vpe_id);
330
331                         /*
332                          * Ensure that the VP_RUN register is written before the
333                          * core leaves reset.
334                          */
335                         wmb();
336                 }
337
338                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
339
340                 timeout = 100;
341                 while (true) {
342                         stat = read_cpc_co_stat_conf();
343                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
344                         seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
345
346                         /* U6 == coherent execution, ie. the core is up */
347                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
348                                 break;
349
350                         /* Delay a little while before we start warning */
351                         if (timeout) {
352                                 timeout--;
353                                 mdelay(10);
354                                 continue;
355                         }
356
357                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
358                                 core, stat);
359                         mdelay(1000);
360                 }
361
362                 mips_cpc_unlock_other();
363         } else {
364                 /* Take the core out of reset */
365                 write_gcr_co_reset_release(0);
366         }
367
368         mips_cm_unlock_other();
369
370         /* The core is now powered up */
371         bitmap_set(core_power, core, 1);
372 }
373
374 static void remote_vpe_boot(void *dummy)
375 {
376         unsigned core = cpu_core(&current_cpu_data);
377         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
378
379         mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
380 }
381
382 static int cps_boot_secondary(int cpu, struct task_struct *idle)
383 {
384         unsigned core = cpu_core(&cpu_data[cpu]);
385         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
386         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
387         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
388         unsigned int remote;
389         int err;
390
391         /* We don't yet support booting CPUs in other clusters */
392         if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
393                 return -ENOSYS;
394
395         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
396         vpe_cfg->sp = __KSTK_TOS(idle);
397         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
398
399         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
400
401         preempt_disable();
402
403         if (!test_bit(core, core_power)) {
404                 /* Boot a VPE on a powered down core */
405                 boot_core(core, vpe_id);
406                 goto out;
407         }
408
409         if (cpu_has_vp) {
410                 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
411                 write_gcr_co_reset_base(core_entry_reg);
412                 mips_cm_unlock_other();
413         }
414
415         if (!cpus_are_siblings(cpu, smp_processor_id())) {
416                 /* Boot a VPE on another powered up core */
417                 for (remote = 0; remote < NR_CPUS; remote++) {
418                         if (!cpus_are_siblings(cpu, remote))
419                                 continue;
420                         if (cpu_online(remote))
421                                 break;
422                 }
423                 if (remote >= NR_CPUS) {
424                         pr_crit("No online CPU in core %u to start CPU%d\n",
425                                 core, cpu);
426                         goto out;
427                 }
428
429                 err = smp_call_function_single(remote, remote_vpe_boot,
430                                                NULL, 1);
431                 if (err)
432                         panic("Failed to call remote CPU\n");
433                 goto out;
434         }
435
436         BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
437
438         /* Boot a VPE on this core */
439         mips_cps_boot_vpes(core_cfg, vpe_id);
440 out:
441         preempt_enable();
442         return 0;
443 }
444
445 static void cps_init_secondary(void)
446 {
447         int core = cpu_core(&current_cpu_data);
448
449         /* Disable MT - we only want to run 1 TC per VPE */
450         if (cpu_has_mipsmt)
451                 dmt();
452
453         if (mips_cm_revision() >= CM_REV_CM3) {
454                 unsigned int ident = read_gic_vl_ident();
455
456                 /*
457                  * Ensure that our calculation of the VP ID matches up with
458                  * what the GIC reports, otherwise we'll have configured
459                  * interrupts incorrectly.
460                  */
461                 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
462         }
463
464         if (core > 0 && !read_gcr_cl_coherence())
465                 pr_warn("Core %u is not in coherent domain\n", core);
466
467         if (cpu_has_veic)
468                 clear_c0_status(ST0_IM);
469         else
470                 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
471                                          STATUSF_IP4 | STATUSF_IP5 |
472                                          STATUSF_IP6 | STATUSF_IP7);
473 }
474
475 static void cps_smp_finish(void)
476 {
477         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
478
479 #ifdef CONFIG_MIPS_MT_FPAFF
480         /* If we have an FPU, enroll ourselves in the FPU-full mask */
481         if (cpu_has_fpu)
482                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
483 #endif /* CONFIG_MIPS_MT_FPAFF */
484
485         local_irq_enable();
486 }
487
488 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE)
489
490 enum cpu_death {
491         CPU_DEATH_HALT,
492         CPU_DEATH_POWER,
493 };
494
495 static void cps_shutdown_this_cpu(enum cpu_death death)
496 {
497         unsigned int cpu, core, vpe_id;
498
499         cpu = smp_processor_id();
500         core = cpu_core(&cpu_data[cpu]);
501
502         if (death == CPU_DEATH_HALT) {
503                 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
504
505                 pr_debug("Halting core %d VP%d\n", core, vpe_id);
506                 if (cpu_has_mipsmt) {
507                         /* Halt this TC */
508                         write_c0_tchalt(TCHALT_H);
509                         instruction_hazard();
510                 } else if (cpu_has_vp) {
511                         write_cpc_cl_vp_stop(1 << vpe_id);
512
513                         /* Ensure that the VP_STOP register is written */
514                         wmb();
515                 }
516         } else {
517                 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
518                         pr_debug("Gating power to core %d\n", core);
519                         /* Power down the core */
520                         cps_pm_enter_state(CPS_PM_POWER_GATED);
521                 }
522         }
523 }
524
525 #ifdef CONFIG_KEXEC_CORE
526
527 static void cps_kexec_nonboot_cpu(void)
528 {
529         if (cpu_has_mipsmt || cpu_has_vp)
530                 cps_shutdown_this_cpu(CPU_DEATH_HALT);
531         else
532                 cps_shutdown_this_cpu(CPU_DEATH_POWER);
533 }
534
535 #endif /* CONFIG_KEXEC_CORE */
536
537 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */
538
539 #ifdef CONFIG_HOTPLUG_CPU
540
541 static int cps_cpu_disable(void)
542 {
543         unsigned cpu = smp_processor_id();
544         struct core_boot_config *core_cfg;
545
546         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
547                 return -EINVAL;
548
549         core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
550         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
551         smp_mb__after_atomic();
552         set_cpu_online(cpu, false);
553         calculate_cpu_foreign_map();
554         irq_migrate_all_off_this_cpu();
555
556         return 0;
557 }
558
559 static unsigned cpu_death_sibling;
560 static enum cpu_death cpu_death;
561
562 void play_dead(void)
563 {
564         unsigned int cpu;
565
566         local_irq_disable();
567         idle_task_exit();
568         cpu = smp_processor_id();
569         cpu_death = CPU_DEATH_POWER;
570
571         pr_debug("CPU%d going offline\n", cpu);
572
573         if (cpu_has_mipsmt || cpu_has_vp) {
574                 /* Look for another online VPE within the core */
575                 for_each_online_cpu(cpu_death_sibling) {
576                         if (!cpus_are_siblings(cpu, cpu_death_sibling))
577                                 continue;
578
579                         /*
580                          * There is an online VPE within the core. Just halt
581                          * this TC and leave the core alone.
582                          */
583                         cpu_death = CPU_DEATH_HALT;
584                         break;
585                 }
586         }
587
588         cpuhp_ap_report_dead();
589
590         cps_shutdown_this_cpu(cpu_death);
591
592         /* This should never be reached */
593         panic("Failed to offline CPU %u", cpu);
594 }
595
596 static void wait_for_sibling_halt(void *ptr_cpu)
597 {
598         unsigned cpu = (unsigned long)ptr_cpu;
599         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
600         unsigned halted;
601         unsigned long flags;
602
603         do {
604                 local_irq_save(flags);
605                 settc(vpe_id);
606                 halted = read_tc_c0_tchalt();
607                 local_irq_restore(flags);
608         } while (!(halted & TCHALT_H));
609 }
610
611 static void cps_cpu_die(unsigned int cpu) { }
612
613 static void cps_cleanup_dead_cpu(unsigned cpu)
614 {
615         unsigned core = cpu_core(&cpu_data[cpu]);
616         unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
617         ktime_t fail_time;
618         unsigned stat;
619         int err;
620
621         /*
622          * Now wait for the CPU to actually offline. Without doing this that
623          * offlining may race with one or more of:
624          *
625          *   - Onlining the CPU again.
626          *   - Powering down the core if another VPE within it is offlined.
627          *   - A sibling VPE entering a non-coherent state.
628          *
629          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
630          * with which we could race, so do nothing.
631          */
632         if (cpu_death == CPU_DEATH_POWER) {
633                 /*
634                  * Wait for the core to enter a powered down or clock gated
635                  * state, the latter happening when a JTAG probe is connected
636                  * in which case the CPC will refuse to power down the core.
637                  */
638                 fail_time = ktime_add_ms(ktime_get(), 2000);
639                 do {
640                         mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
641                         mips_cpc_lock_other(core);
642                         stat = read_cpc_co_stat_conf();
643                         stat &= CPC_Cx_STAT_CONF_SEQSTATE;
644                         stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
645                         mips_cpc_unlock_other();
646                         mips_cm_unlock_other();
647
648                         if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
649                             stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
650                             stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
651                                 break;
652
653                         /*
654                          * The core ought to have powered down, but didn't &
655                          * now we don't really know what state it's in. It's
656                          * likely that its _pwr_up pin has been wired to logic
657                          * 1 & it powered back up as soon as we powered it
658                          * down...
659                          *
660                          * The best we can do is warn the user & continue in
661                          * the hope that the core is doing nothing harmful &
662                          * might behave properly if we online it later.
663                          */
664                         if (WARN(ktime_after(ktime_get(), fail_time),
665                                  "CPU%u hasn't powered down, seq. state %u\n",
666                                  cpu, stat))
667                                 break;
668                 } while (1);
669
670                 /* Indicate the core is powered off */
671                 bitmap_clear(core_power, core, 1);
672         } else if (cpu_has_mipsmt) {
673                 /*
674                  * Have a CPU with access to the offlined CPUs registers wait
675                  * for its TC to halt.
676                  */
677                 err = smp_call_function_single(cpu_death_sibling,
678                                                wait_for_sibling_halt,
679                                                (void *)(unsigned long)cpu, 1);
680                 if (err)
681                         panic("Failed to call remote sibling CPU\n");
682         } else if (cpu_has_vp) {
683                 do {
684                         mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
685                         stat = read_cpc_co_vp_running();
686                         mips_cm_unlock_other();
687                 } while (stat & (1 << vpe_id));
688         }
689 }
690
691 #endif /* CONFIG_HOTPLUG_CPU */
692
693 static const struct plat_smp_ops cps_smp_ops = {
694         .smp_setup              = cps_smp_setup,
695         .prepare_cpus           = cps_prepare_cpus,
696         .boot_secondary         = cps_boot_secondary,
697         .init_secondary         = cps_init_secondary,
698         .smp_finish             = cps_smp_finish,
699         .send_ipi_single        = mips_smp_send_ipi_single,
700         .send_ipi_mask          = mips_smp_send_ipi_mask,
701 #ifdef CONFIG_HOTPLUG_CPU
702         .cpu_disable            = cps_cpu_disable,
703         .cpu_die                = cps_cpu_die,
704         .cleanup_dead_cpu       = cps_cleanup_dead_cpu,
705 #endif
706 #ifdef CONFIG_KEXEC_CORE
707         .kexec_nonboot_cpu      = cps_kexec_nonboot_cpu,
708 #endif
709 };
710
711 bool mips_cps_smp_in_use(void)
712 {
713         extern const struct plat_smp_ops *mp_ops;
714         return mp_ops == &cps_smp_ops;
715 }
716
717 int register_cps_smp_ops(void)
718 {
719         if (!mips_cm_present()) {
720                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
721                 return -ENODEV;
722         }
723
724         /* check we have a GIC - we need one for IPIs */
725         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
726                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
727                 return -ENODEV;
728         }
729
730         register_smp_ops(&cps_smp_ops);
731         return 0;
732 }