Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / fs / exec.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
1da177e4
LT
25#include <linux/slab.h>
26#include <linux/file.h>
9f3acc31 27#include <linux/fdtable.h>
ba92a43d 28#include <linux/mm.h>
1da177e4
LT
29#include <linux/stat.h>
30#include <linux/fcntl.h>
ba92a43d 31#include <linux/swap.h>
74aadce9 32#include <linux/string.h>
1da177e4 33#include <linux/init.h>
ca5b172b 34#include <linux/pagemap.h>
cdd6c482 35#include <linux/perf_event.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/spinlock.h>
38#include <linux/key.h>
39#include <linux/personality.h>
40#include <linux/binfmts.h>
1da177e4 41#include <linux/utsname.h>
84d73786 42#include <linux/pid_namespace.h>
1da177e4
LT
43#include <linux/module.h>
44#include <linux/namei.h>
1da177e4
LT
45#include <linux/mount.h>
46#include <linux/security.h>
47#include <linux/syscalls.h>
8f0ab514 48#include <linux/tsacct_kern.h>
9f46080c 49#include <linux/cn_proc.h>
473ae30b 50#include <linux/audit.h>
6341c393 51#include <linux/tracehook.h>
5f4123be 52#include <linux/kmod.h>
6110e3ab 53#include <linux/fsnotify.h>
5ad4e53b 54#include <linux/fs_struct.h>
61be228a 55#include <linux/pipe_fs_i.h>
3d5992d2 56#include <linux/oom.h>
0e028465 57#include <linux/compat.h>
1da177e4
LT
58
59#include <asm/uaccess.h>
60#include <asm/mmu_context.h>
b6a2fea3 61#include <asm/tlb.h>
a6f76f23 62#include "internal.h"
1da177e4 63
1da177e4 64int core_uses_pid;
71ce92f3 65char core_pattern[CORENAME_MAX_SIZE] = "core";
a293980c 66unsigned int core_pipe_limit;
d6e71144
AC
67int suid_dumpable = 0;
68
1b0d300b
XF
69struct core_name {
70 char *corename;
71 int used, size;
72};
73static atomic_t call_count = ATOMIC_INIT(1);
74
1da177e4
LT
75/* The maximal length of core_pattern is also specified in sysctl.c */
76
e4dc1b14 77static LIST_HEAD(formats);
1da177e4
LT
78static DEFINE_RWLOCK(binfmt_lock);
79
74641f58 80int __register_binfmt(struct linux_binfmt * fmt, int insert)
1da177e4 81{
1da177e4
LT
82 if (!fmt)
83 return -EINVAL;
1da177e4 84 write_lock(&binfmt_lock);
74641f58
IK
85 insert ? list_add(&fmt->lh, &formats) :
86 list_add_tail(&fmt->lh, &formats);
1da177e4
LT
87 write_unlock(&binfmt_lock);
88 return 0;
89}
90
74641f58 91EXPORT_SYMBOL(__register_binfmt);
1da177e4 92
f6b450d4 93void unregister_binfmt(struct linux_binfmt * fmt)
1da177e4 94{
1da177e4 95 write_lock(&binfmt_lock);
e4dc1b14 96 list_del(&fmt->lh);
1da177e4 97 write_unlock(&binfmt_lock);
1da177e4
LT
98}
99
100EXPORT_SYMBOL(unregister_binfmt);
101
102static inline void put_binfmt(struct linux_binfmt * fmt)
103{
104 module_put(fmt->module);
105}
106
107/*
108 * Note that a shared library must be both readable and executable due to
109 * security reasons.
110 *
111 * Also note that we take the address to load from from the file itself.
112 */
1e7bfb21 113SYSCALL_DEFINE1(uselib, const char __user *, library)
1da177e4 114{
964bd183 115 struct file *file;
964bd183
AV
116 char *tmp = getname(library);
117 int error = PTR_ERR(tmp);
47c805dc
AV
118 static const struct open_flags uselib_flags = {
119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121 .intent = LOOKUP_OPEN
122 };
964bd183 123
6e8341a1
AV
124 if (IS_ERR(tmp))
125 goto out;
126
47c805dc 127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
6e8341a1
AV
128 putname(tmp);
129 error = PTR_ERR(file);
130 if (IS_ERR(file))
1da177e4
LT
131 goto out;
132
133 error = -EINVAL;
6e8341a1 134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
1da177e4
LT
135 goto exit;
136
30524472 137 error = -EACCES;
6e8341a1 138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1da177e4
LT
139 goto exit;
140
2a12a9d7 141 fsnotify_open(file);
6110e3ab 142
1da177e4
LT
143 error = -ENOEXEC;
144 if(file->f_op) {
145 struct linux_binfmt * fmt;
146
147 read_lock(&binfmt_lock);
e4dc1b14 148 list_for_each_entry(fmt, &formats, lh) {
1da177e4
LT
149 if (!fmt->load_shlib)
150 continue;
151 if (!try_module_get(fmt->module))
152 continue;
153 read_unlock(&binfmt_lock);
154 error = fmt->load_shlib(file);
155 read_lock(&binfmt_lock);
156 put_binfmt(fmt);
157 if (error != -ENOEXEC)
158 break;
159 }
160 read_unlock(&binfmt_lock);
161 }
6e8341a1 162exit:
1da177e4
LT
163 fput(file);
164out:
165 return error;
1da177e4
LT
166}
167
b6a2fea3 168#ifdef CONFIG_MMU
ae6b585e
ON
169/*
170 * The nascent bprm->mm is not visible until exec_mmap() but it can
171 * use a lot of memory, account these pages in current->mm temporary
172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173 * change the counter back via acct_arg_size(0).
174 */
0e028465 175static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
3c77f845
ON
176{
177 struct mm_struct *mm = current->mm;
178 long diff = (long)(pages - bprm->vma_pages);
179
180 if (!mm || !diff)
181 return;
182
183 bprm->vma_pages = pages;
3c77f845 184 add_mm_counter(mm, MM_ANONPAGES, diff);
3c77f845
ON
185}
186
0e028465 187static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
b6a2fea3
OW
188 int write)
189{
190 struct page *page;
191 int ret;
192
193#ifdef CONFIG_STACK_GROWSUP
194 if (write) {
d05f3169 195 ret = expand_downwards(bprm->vma, pos);
b6a2fea3
OW
196 if (ret < 0)
197 return NULL;
198 }
199#endif
200 ret = get_user_pages(current, bprm->mm, pos,
201 1, write, 1, &page, NULL);
202 if (ret <= 0)
203 return NULL;
204
205 if (write) {
b6a2fea3 206 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
a64e715f
LT
207 struct rlimit *rlim;
208
3c77f845
ON
209 acct_arg_size(bprm, size / PAGE_SIZE);
210
a64e715f
LT
211 /*
212 * We've historically supported up to 32 pages (ARG_MAX)
213 * of argument strings even with small stacks
214 */
215 if (size <= ARG_MAX)
216 return page;
b6a2fea3
OW
217
218 /*
219 * Limit to 1/4-th the stack size for the argv+env strings.
220 * This ensures that:
221 * - the remaining binfmt code will not run out of stack space,
222 * - the program will have a reasonable amount of stack left
223 * to work from.
224 */
a64e715f 225 rlim = current->signal->rlim;
d554ed89 226 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
b6a2fea3
OW
227 put_page(page);
228 return NULL;
229 }
230 }
231
232 return page;
233}
234
235static void put_arg_page(struct page *page)
236{
237 put_page(page);
238}
239
240static void free_arg_page(struct linux_binprm *bprm, int i)
241{
242}
243
244static void free_arg_pages(struct linux_binprm *bprm)
245{
246}
247
248static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
249 struct page *page)
250{
251 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
252}
253
254static int __bprm_mm_init(struct linux_binprm *bprm)
255{
eaccbfa5 256 int err;
b6a2fea3
OW
257 struct vm_area_struct *vma = NULL;
258 struct mm_struct *mm = bprm->mm;
259
260 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
261 if (!vma)
eaccbfa5 262 return -ENOMEM;
b6a2fea3
OW
263
264 down_write(&mm->mmap_sem);
265 vma->vm_mm = mm;
266
267 /*
268 * Place the stack at the largest stack address the architecture
269 * supports. Later, we'll move this to an appropriate place. We don't
270 * use STACK_TOP because that can depend on attributes which aren't
271 * configured yet.
272 */
aacb3d17 273 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
b6a2fea3
OW
274 vma->vm_end = STACK_TOP_MAX;
275 vma->vm_start = vma->vm_end - PAGE_SIZE;
a8bef8ff 276 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
3ed75eb8 277 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
5beb4930 278 INIT_LIST_HEAD(&vma->anon_vma_chain);
462e635e
TO
279
280 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
281 if (err)
282 goto err;
283
b6a2fea3 284 err = insert_vm_struct(mm, vma);
eaccbfa5 285 if (err)
b6a2fea3 286 goto err;
b6a2fea3
OW
287
288 mm->stack_vm = mm->total_vm = 1;
289 up_write(&mm->mmap_sem);
b6a2fea3 290 bprm->p = vma->vm_end - sizeof(void *);
b6a2fea3 291 return 0;
b6a2fea3 292err:
eaccbfa5
LFC
293 up_write(&mm->mmap_sem);
294 bprm->vma = NULL;
295 kmem_cache_free(vm_area_cachep, vma);
b6a2fea3
OW
296 return err;
297}
298
299static bool valid_arg_len(struct linux_binprm *bprm, long len)
300{
301 return len <= MAX_ARG_STRLEN;
302}
303
304#else
305
0e028465 306static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
3c77f845
ON
307{
308}
309
0e028465 310static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
b6a2fea3
OW
311 int write)
312{
313 struct page *page;
314
315 page = bprm->page[pos / PAGE_SIZE];
316 if (!page && write) {
317 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
318 if (!page)
319 return NULL;
320 bprm->page[pos / PAGE_SIZE] = page;
321 }
322
323 return page;
324}
325
326static void put_arg_page(struct page *page)
327{
328}
329
330static void free_arg_page(struct linux_binprm *bprm, int i)
331{
332 if (bprm->page[i]) {
333 __free_page(bprm->page[i]);
334 bprm->page[i] = NULL;
335 }
336}
337
338static void free_arg_pages(struct linux_binprm *bprm)
339{
340 int i;
341
342 for (i = 0; i < MAX_ARG_PAGES; i++)
343 free_arg_page(bprm, i);
344}
345
346static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
347 struct page *page)
348{
349}
350
351static int __bprm_mm_init(struct linux_binprm *bprm)
352{
353 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
354 return 0;
355}
356
357static bool valid_arg_len(struct linux_binprm *bprm, long len)
358{
359 return len <= bprm->p;
360}
361
362#endif /* CONFIG_MMU */
363
364/*
365 * Create a new mm_struct and populate it with a temporary stack
366 * vm_area_struct. We don't have enough context at this point to set the stack
367 * flags, permissions, and offset, so we use temporary values. We'll update
368 * them later in setup_arg_pages().
369 */
370int bprm_mm_init(struct linux_binprm *bprm)
371{
372 int err;
373 struct mm_struct *mm = NULL;
374
375 bprm->mm = mm = mm_alloc();
376 err = -ENOMEM;
377 if (!mm)
378 goto err;
379
380 err = init_new_context(current, mm);
381 if (err)
382 goto err;
383
384 err = __bprm_mm_init(bprm);
385 if (err)
386 goto err;
387
388 return 0;
389
390err:
391 if (mm) {
392 bprm->mm = NULL;
393 mmdrop(mm);
394 }
395
396 return err;
397}
398
ba2d0162 399struct user_arg_ptr {
0e028465
ON
400#ifdef CONFIG_COMPAT
401 bool is_compat;
402#endif
403 union {
404 const char __user *const __user *native;
405#ifdef CONFIG_COMPAT
406 compat_uptr_t __user *compat;
407#endif
408 } ptr;
ba2d0162
ON
409};
410
411static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
1d1dbf81 412{
0e028465
ON
413 const char __user *native;
414
415#ifdef CONFIG_COMPAT
416 if (unlikely(argv.is_compat)) {
417 compat_uptr_t compat;
418
419 if (get_user(compat, argv.ptr.compat + nr))
420 return ERR_PTR(-EFAULT);
1d1dbf81 421
0e028465
ON
422 return compat_ptr(compat);
423 }
424#endif
425
426 if (get_user(native, argv.ptr.native + nr))
1d1dbf81
ON
427 return ERR_PTR(-EFAULT);
428
0e028465 429 return native;
1d1dbf81
ON
430}
431
1da177e4
LT
432/*
433 * count() counts the number of strings in array ARGV.
434 */
ba2d0162 435static int count(struct user_arg_ptr argv, int max)
1da177e4
LT
436{
437 int i = 0;
438
0e028465 439 if (argv.ptr.native != NULL) {
1da177e4 440 for (;;) {
1d1dbf81 441 const char __user *p = get_user_arg_ptr(argv, i);
1da177e4 442
1da177e4
LT
443 if (!p)
444 break;
1d1dbf81
ON
445
446 if (IS_ERR(p))
447 return -EFAULT;
448
362e6663 449 if (i++ >= max)
1da177e4 450 return -E2BIG;
9aea5a65
RM
451
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
1da177e4
LT
454 cond_resched();
455 }
456 }
457 return i;
458}
459
460/*
b6a2fea3
OW
461 * 'copy_strings()' copies argument/environment strings from the old
462 * processes's memory to the new process's stack. The call to get_user_pages()
463 * ensures the destination page is created and not swapped out.
1da177e4 464 */
ba2d0162 465static int copy_strings(int argc, struct user_arg_ptr argv,
75c96f85 466 struct linux_binprm *bprm)
1da177e4
LT
467{
468 struct page *kmapped_page = NULL;
469 char *kaddr = NULL;
b6a2fea3 470 unsigned long kpos = 0;
1da177e4
LT
471 int ret;
472
473 while (argc-- > 0) {
d7627467 474 const char __user *str;
1da177e4
LT
475 int len;
476 unsigned long pos;
477
1d1dbf81
ON
478 ret = -EFAULT;
479 str = get_user_arg_ptr(argv, argc);
480 if (IS_ERR(str))
1da177e4 481 goto out;
1da177e4 482
1d1dbf81
ON
483 len = strnlen_user(str, MAX_ARG_STRLEN);
484 if (!len)
485 goto out;
486
487 ret = -E2BIG;
488 if (!valid_arg_len(bprm, len))
1da177e4 489 goto out;
1da177e4 490
b6a2fea3 491 /* We're going to work our way backwords. */
1da177e4 492 pos = bprm->p;
b6a2fea3
OW
493 str += len;
494 bprm->p -= len;
1da177e4
LT
495
496 while (len > 0) {
1da177e4 497 int offset, bytes_to_copy;
1da177e4 498
9aea5a65
RM
499 if (fatal_signal_pending(current)) {
500 ret = -ERESTARTNOHAND;
501 goto out;
502 }
7993bc1f
RM
503 cond_resched();
504
1da177e4 505 offset = pos % PAGE_SIZE;
b6a2fea3
OW
506 if (offset == 0)
507 offset = PAGE_SIZE;
508
509 bytes_to_copy = offset;
510 if (bytes_to_copy > len)
511 bytes_to_copy = len;
512
513 offset -= bytes_to_copy;
514 pos -= bytes_to_copy;
515 str -= bytes_to_copy;
516 len -= bytes_to_copy;
517
518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 struct page *page;
520
521 page = get_arg_page(bprm, pos, 1);
1da177e4 522 if (!page) {
b6a2fea3 523 ret = -E2BIG;
1da177e4
LT
524 goto out;
525 }
1da177e4 526
b6a2fea3
OW
527 if (kmapped_page) {
528 flush_kernel_dcache_page(kmapped_page);
1da177e4 529 kunmap(kmapped_page);
b6a2fea3
OW
530 put_arg_page(kmapped_page);
531 }
1da177e4
LT
532 kmapped_page = page;
533 kaddr = kmap(kmapped_page);
b6a2fea3
OW
534 kpos = pos & PAGE_MASK;
535 flush_arg_page(bprm, kpos, kmapped_page);
1da177e4 536 }
b6a2fea3 537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
1da177e4
LT
538 ret = -EFAULT;
539 goto out;
540 }
1da177e4
LT
541 }
542 }
543 ret = 0;
544out:
b6a2fea3
OW
545 if (kmapped_page) {
546 flush_kernel_dcache_page(kmapped_page);
1da177e4 547 kunmap(kmapped_page);
b6a2fea3
OW
548 put_arg_page(kmapped_page);
549 }
1da177e4
LT
550 return ret;
551}
552
553/*
554 * Like copy_strings, but get argv and its values from kernel memory.
555 */
ba2d0162 556int copy_strings_kernel(int argc, const char *const *__argv,
d7627467 557 struct linux_binprm *bprm)
1da177e4
LT
558{
559 int r;
560 mm_segment_t oldfs = get_fs();
ba2d0162 561 struct user_arg_ptr argv = {
0e028465 562 .ptr.native = (const char __user *const __user *)__argv,
ba2d0162
ON
563 };
564
1da177e4 565 set_fs(KERNEL_DS);
ba2d0162 566 r = copy_strings(argc, argv, bprm);
1da177e4 567 set_fs(oldfs);
ba2d0162 568
1da177e4
LT
569 return r;
570}
1da177e4
LT
571EXPORT_SYMBOL(copy_strings_kernel);
572
573#ifdef CONFIG_MMU
b6a2fea3 574
1da177e4 575/*
b6a2fea3
OW
576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
577 * the binfmt code determines where the new stack should reside, we shift it to
578 * its final location. The process proceeds as follows:
1da177e4 579 *
b6a2fea3
OW
580 * 1) Use shift to calculate the new vma endpoints.
581 * 2) Extend vma to cover both the old and new ranges. This ensures the
582 * arguments passed to subsequent functions are consistent.
583 * 3) Move vma's page tables to the new range.
584 * 4) Free up any cleared pgd range.
585 * 5) Shrink the vma to cover only the new range.
1da177e4 586 */
b6a2fea3 587static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
1da177e4
LT
588{
589 struct mm_struct *mm = vma->vm_mm;
b6a2fea3
OW
590 unsigned long old_start = vma->vm_start;
591 unsigned long old_end = vma->vm_end;
592 unsigned long length = old_end - old_start;
593 unsigned long new_start = old_start - shift;
594 unsigned long new_end = old_end - shift;
d16dfc55 595 struct mmu_gather tlb;
1da177e4 596
b6a2fea3 597 BUG_ON(new_start > new_end);
1da177e4 598
b6a2fea3
OW
599 /*
600 * ensure there are no vmas between where we want to go
601 * and where we are
602 */
603 if (vma != find_vma(mm, new_start))
604 return -EFAULT;
605
606 /*
607 * cover the whole range: [new_start, old_end)
608 */
5beb4930
RR
609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 return -ENOMEM;
b6a2fea3
OW
611
612 /*
613 * move the page tables downwards, on failure we rely on
614 * process cleanup to remove whatever mess we made.
615 */
616 if (length != move_page_tables(vma, old_start,
617 vma, new_start, length))
618 return -ENOMEM;
619
620 lru_add_drain();
d16dfc55 621 tlb_gather_mmu(&tlb, mm, 0);
b6a2fea3
OW
622 if (new_end > old_start) {
623 /*
624 * when the old and new regions overlap clear from new_end.
625 */
d16dfc55 626 free_pgd_range(&tlb, new_end, old_end, new_end,
b6a2fea3
OW
627 vma->vm_next ? vma->vm_next->vm_start : 0);
628 } else {
629 /*
630 * otherwise, clean from old_start; this is done to not touch
631 * the address space in [new_end, old_start) some architectures
632 * have constraints on va-space that make this illegal (IA64) -
633 * for the others its just a little faster.
634 */
d16dfc55 635 free_pgd_range(&tlb, old_start, old_end, new_end,
b6a2fea3 636 vma->vm_next ? vma->vm_next->vm_start : 0);
1da177e4 637 }
d16dfc55 638 tlb_finish_mmu(&tlb, new_end, old_end);
b6a2fea3
OW
639
640 /*
5beb4930 641 * Shrink the vma to just the new range. Always succeeds.
b6a2fea3
OW
642 */
643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644
645 return 0;
1da177e4
LT
646}
647
b6a2fea3
OW
648/*
649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650 * the stack is optionally relocated, and some extra space is added.
651 */
1da177e4
LT
652int setup_arg_pages(struct linux_binprm *bprm,
653 unsigned long stack_top,
654 int executable_stack)
655{
b6a2fea3
OW
656 unsigned long ret;
657 unsigned long stack_shift;
1da177e4 658 struct mm_struct *mm = current->mm;
b6a2fea3
OW
659 struct vm_area_struct *vma = bprm->vma;
660 struct vm_area_struct *prev = NULL;
661 unsigned long vm_flags;
662 unsigned long stack_base;
803bf5ec
MN
663 unsigned long stack_size;
664 unsigned long stack_expand;
665 unsigned long rlim_stack;
1da177e4
LT
666
667#ifdef CONFIG_STACK_GROWSUP
1da177e4 668 /* Limit stack size to 1GB */
d554ed89 669 stack_base = rlimit_max(RLIMIT_STACK);
1da177e4
LT
670 if (stack_base > (1 << 30))
671 stack_base = 1 << 30;
1da177e4 672
b6a2fea3
OW
673 /* Make sure we didn't let the argument array grow too large. */
674 if (vma->vm_end - vma->vm_start > stack_base)
675 return -ENOMEM;
1da177e4 676
b6a2fea3 677 stack_base = PAGE_ALIGN(stack_top - stack_base);
1da177e4 678
b6a2fea3
OW
679 stack_shift = vma->vm_start - stack_base;
680 mm->arg_start = bprm->p - stack_shift;
681 bprm->p = vma->vm_end - stack_shift;
1da177e4 682#else
b6a2fea3
OW
683 stack_top = arch_align_stack(stack_top);
684 stack_top = PAGE_ALIGN(stack_top);
1b528181
RM
685
686 if (unlikely(stack_top < mmap_min_addr) ||
687 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
688 return -ENOMEM;
689
b6a2fea3
OW
690 stack_shift = vma->vm_end - stack_top;
691
692 bprm->p -= stack_shift;
1da177e4 693 mm->arg_start = bprm->p;
1da177e4
LT
694#endif
695
1da177e4 696 if (bprm->loader)
b6a2fea3
OW
697 bprm->loader -= stack_shift;
698 bprm->exec -= stack_shift;
1da177e4 699
1da177e4 700 down_write(&mm->mmap_sem);
96a8e13e 701 vm_flags = VM_STACK_FLAGS;
b6a2fea3
OW
702
703 /*
704 * Adjust stack execute permissions; explicitly enable for
705 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
706 * (arch default) otherwise.
707 */
708 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
709 vm_flags |= VM_EXEC;
710 else if (executable_stack == EXSTACK_DISABLE_X)
711 vm_flags &= ~VM_EXEC;
712 vm_flags |= mm->def_flags;
a8bef8ff 713 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
b6a2fea3
OW
714
715 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
716 vm_flags);
717 if (ret)
718 goto out_unlock;
719 BUG_ON(prev != vma);
720
721 /* Move stack pages down in memory. */
722 if (stack_shift) {
723 ret = shift_arg_pages(vma, stack_shift);
fc63cf23
AB
724 if (ret)
725 goto out_unlock;
1da177e4
LT
726 }
727
a8bef8ff
MG
728 /* mprotect_fixup is overkill to remove the temporary stack flags */
729 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
730
5ef097dd 731 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
803bf5ec
MN
732 stack_size = vma->vm_end - vma->vm_start;
733 /*
734 * Align this down to a page boundary as expand_stack
735 * will align it up.
736 */
737 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
b6a2fea3 738#ifdef CONFIG_STACK_GROWSUP
803bf5ec
MN
739 if (stack_size + stack_expand > rlim_stack)
740 stack_base = vma->vm_start + rlim_stack;
741 else
742 stack_base = vma->vm_end + stack_expand;
b6a2fea3 743#else
803bf5ec
MN
744 if (stack_size + stack_expand > rlim_stack)
745 stack_base = vma->vm_end - rlim_stack;
746 else
747 stack_base = vma->vm_start - stack_expand;
b6a2fea3 748#endif
3af9e859 749 current->mm->start_stack = bprm->p;
b6a2fea3
OW
750 ret = expand_stack(vma, stack_base);
751 if (ret)
752 ret = -EFAULT;
753
754out_unlock:
1da177e4 755 up_write(&mm->mmap_sem);
fc63cf23 756 return ret;
1da177e4 757}
1da177e4
LT
758EXPORT_SYMBOL(setup_arg_pages);
759
1da177e4
LT
760#endif /* CONFIG_MMU */
761
762struct file *open_exec(const char *name)
763{
1da177e4 764 struct file *file;
e56b6a5d 765 int err;
47c805dc
AV
766 static const struct open_flags open_exec_flags = {
767 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
768 .acc_mode = MAY_EXEC | MAY_OPEN,
769 .intent = LOOKUP_OPEN
770 };
1da177e4 771
47c805dc 772 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
6e8341a1 773 if (IS_ERR(file))
e56b6a5d
CH
774 goto out;
775
776 err = -EACCES;
6e8341a1
AV
777 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
778 goto exit;
e56b6a5d 779
6e8341a1
AV
780 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
781 goto exit;
e56b6a5d 782
2a12a9d7 783 fsnotify_open(file);
6110e3ab 784
e56b6a5d 785 err = deny_write_access(file);
6e8341a1
AV
786 if (err)
787 goto exit;
1da177e4 788
6e8341a1 789out:
e56b6a5d
CH
790 return file;
791
6e8341a1
AV
792exit:
793 fput(file);
e56b6a5d
CH
794 return ERR_PTR(err);
795}
1da177e4
LT
796EXPORT_SYMBOL(open_exec);
797
6777d773
MZ
798int kernel_read(struct file *file, loff_t offset,
799 char *addr, unsigned long count)
1da177e4
LT
800{
801 mm_segment_t old_fs;
802 loff_t pos = offset;
803 int result;
804
805 old_fs = get_fs();
806 set_fs(get_ds());
807 /* The cast to a user pointer is valid due to the set_fs() */
808 result = vfs_read(file, (void __user *)addr, count, &pos);
809 set_fs(old_fs);
810 return result;
811}
812
813EXPORT_SYMBOL(kernel_read);
814
815static int exec_mmap(struct mm_struct *mm)
816{
817 struct task_struct *tsk;
818 struct mm_struct * old_mm, *active_mm;
819
820 /* Notify parent that we're no longer interested in the old VM */
821 tsk = current;
822 old_mm = current->mm;
34e55232 823 sync_mm_rss(tsk, old_mm);
1da177e4
LT
824 mm_release(tsk, old_mm);
825
826 if (old_mm) {
827 /*
828 * Make sure that if there is a core dump in progress
829 * for the old mm, we get out and die instead of going
830 * through with the exec. We must hold mmap_sem around
999d9fc1 831 * checking core_state and changing tsk->mm.
1da177e4
LT
832 */
833 down_read(&old_mm->mmap_sem);
999d9fc1 834 if (unlikely(old_mm->core_state)) {
1da177e4
LT
835 up_read(&old_mm->mmap_sem);
836 return -EINTR;
837 }
838 }
839 task_lock(tsk);
840 active_mm = tsk->active_mm;
841 tsk->mm = mm;
842 tsk->active_mm = mm;
843 activate_mm(active_mm, mm);
3d5992d2
YH
844 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
845 atomic_dec(&old_mm->oom_disable_count);
846 atomic_inc(&tsk->mm->oom_disable_count);
847 }
1da177e4
LT
848 task_unlock(tsk);
849 arch_pick_mmap_layout(mm);
850 if (old_mm) {
851 up_read(&old_mm->mmap_sem);
7dddb12c 852 BUG_ON(active_mm != old_mm);
31a78f23 853 mm_update_next_owner(old_mm);
1da177e4
LT
854 mmput(old_mm);
855 return 0;
856 }
857 mmdrop(active_mm);
858 return 0;
859}
860
861/*
862 * This function makes sure the current process has its own signal table,
863 * so that flush_signal_handlers can later reset the handlers without
864 * disturbing other processes. (Other processes might share the signal
865 * table via the CLONE_SIGHAND option to clone().)
866 */
858119e1 867static int de_thread(struct task_struct *tsk)
1da177e4
LT
868{
869 struct signal_struct *sig = tsk->signal;
b2c903b8 870 struct sighand_struct *oldsighand = tsk->sighand;
1da177e4 871 spinlock_t *lock = &oldsighand->siglock;
1da177e4 872
aafe6c2a 873 if (thread_group_empty(tsk))
1da177e4
LT
874 goto no_thread_group;
875
876 /*
877 * Kill all other threads in the thread group.
1da177e4 878 */
1da177e4 879 spin_lock_irq(lock);
ed5d2cac 880 if (signal_group_exit(sig)) {
1da177e4
LT
881 /*
882 * Another group action in progress, just
883 * return so that the signal is processed.
884 */
885 spin_unlock_irq(lock);
1da177e4
LT
886 return -EAGAIN;
887 }
d344193a 888
ed5d2cac 889 sig->group_exit_task = tsk;
d344193a
ON
890 sig->notify_count = zap_other_threads(tsk);
891 if (!thread_group_leader(tsk))
892 sig->notify_count--;
1da177e4 893
d344193a 894 while (sig->notify_count) {
1da177e4
LT
895 __set_current_state(TASK_UNINTERRUPTIBLE);
896 spin_unlock_irq(lock);
897 schedule();
898 spin_lock_irq(lock);
899 }
1da177e4
LT
900 spin_unlock_irq(lock);
901
902 /*
903 * At this point all other threads have exited, all we have to
904 * do is to wait for the thread group leader to become inactive,
905 * and to assume its PID:
906 */
aafe6c2a 907 if (!thread_group_leader(tsk)) {
8187926b 908 struct task_struct *leader = tsk->group_leader;
6db840fa 909
2800d8d1 910 sig->notify_count = -1; /* for exit_notify() */
6db840fa
ON
911 for (;;) {
912 write_lock_irq(&tasklist_lock);
913 if (likely(leader->exit_state))
914 break;
915 __set_current_state(TASK_UNINTERRUPTIBLE);
916 write_unlock_irq(&tasklist_lock);
917 schedule();
918 }
1da177e4 919
f5e90281
RM
920 /*
921 * The only record we have of the real-time age of a
922 * process, regardless of execs it's done, is start_time.
923 * All the past CPU time is accumulated in signal_struct
924 * from sister threads now dead. But in this non-leader
925 * exec, nothing survives from the original leader thread,
926 * whose birth marks the true age of this process now.
927 * When we take on its identity by switching to its PID, we
928 * also take its birthdate (always earlier than our own).
929 */
aafe6c2a 930 tsk->start_time = leader->start_time;
f5e90281 931
bac0abd6
PE
932 BUG_ON(!same_thread_group(leader, tsk));
933 BUG_ON(has_group_leader_pid(tsk));
1da177e4
LT
934 /*
935 * An exec() starts a new thread group with the
936 * TGID of the previous thread group. Rehash the
937 * two threads with a switched PID, and release
938 * the former thread group leader:
939 */
d73d6529
EB
940
941 /* Become a process group leader with the old leader's pid.
c18258c6
EB
942 * The old leader becomes a thread of the this thread group.
943 * Note: The old leader also uses this pid until release_task
d73d6529
EB
944 * is called. Odd but simple and correct.
945 */
aafe6c2a
EB
946 detach_pid(tsk, PIDTYPE_PID);
947 tsk->pid = leader->pid;
3743ca05 948 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
aafe6c2a
EB
949 transfer_pid(leader, tsk, PIDTYPE_PGID);
950 transfer_pid(leader, tsk, PIDTYPE_SID);
9cd80bbb 951
aafe6c2a 952 list_replace_rcu(&leader->tasks, &tsk->tasks);
9cd80bbb 953 list_replace_init(&leader->sibling, &tsk->sibling);
1da177e4 954
aafe6c2a
EB
955 tsk->group_leader = tsk;
956 leader->group_leader = tsk;
de12a787 957
aafe6c2a 958 tsk->exit_signal = SIGCHLD;
087806b1 959 leader->exit_signal = -1;
962b564c
ON
960
961 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
962 leader->exit_state = EXIT_DEAD;
eac1b5e5
ON
963
964 /*
965 * We are going to release_task()->ptrace_unlink() silently,
966 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
967 * the tracer wont't block again waiting for this thread.
968 */
969 if (unlikely(leader->ptrace))
970 __wake_up_parent(leader, leader->parent);
1da177e4 971 write_unlock_irq(&tasklist_lock);
8187926b
ON
972
973 release_task(leader);
ed5d2cac 974 }
1da177e4 975
6db840fa
ON
976 sig->group_exit_task = NULL;
977 sig->notify_count = 0;
1da177e4
LT
978
979no_thread_group:
1f10206c
JP
980 if (current->mm)
981 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
982
1da177e4 983 exit_itimers(sig);
cbaffba1 984 flush_itimer_signals();
329f7dba 985
b2c903b8
ON
986 if (atomic_read(&oldsighand->count) != 1) {
987 struct sighand_struct *newsighand;
1da177e4 988 /*
b2c903b8
ON
989 * This ->sighand is shared with the CLONE_SIGHAND
990 * but not CLONE_THREAD task, switch to the new one.
1da177e4 991 */
b2c903b8
ON
992 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
993 if (!newsighand)
994 return -ENOMEM;
995
1da177e4
LT
996 atomic_set(&newsighand->count, 1);
997 memcpy(newsighand->action, oldsighand->action,
998 sizeof(newsighand->action));
999
1000 write_lock_irq(&tasklist_lock);
1001 spin_lock(&oldsighand->siglock);
aafe6c2a 1002 rcu_assign_pointer(tsk->sighand, newsighand);
1da177e4
LT
1003 spin_unlock(&oldsighand->siglock);
1004 write_unlock_irq(&tasklist_lock);
1005
fba2afaa 1006 __cleanup_sighand(oldsighand);
1da177e4
LT
1007 }
1008
aafe6c2a 1009 BUG_ON(!thread_group_leader(tsk));
1da177e4
LT
1010 return 0;
1011}
0840a90d 1012
1da177e4
LT
1013/*
1014 * These functions flushes out all traces of the currently running executable
1015 * so that a new one can be started
1016 */
858119e1 1017static void flush_old_files(struct files_struct * files)
1da177e4
LT
1018{
1019 long j = -1;
badf1662 1020 struct fdtable *fdt;
1da177e4
LT
1021
1022 spin_lock(&files->file_lock);
1023 for (;;) {
1024 unsigned long set, i;
1025
1026 j++;
1027 i = j * __NFDBITS;
badf1662 1028 fdt = files_fdtable(files);
bbea9f69 1029 if (i >= fdt->max_fds)
1da177e4 1030 break;
badf1662 1031 set = fdt->close_on_exec->fds_bits[j];
1da177e4
LT
1032 if (!set)
1033 continue;
badf1662 1034 fdt->close_on_exec->fds_bits[j] = 0;
1da177e4
LT
1035 spin_unlock(&files->file_lock);
1036 for ( ; set ; i++,set >>= 1) {
1037 if (set & 1) {
1038 sys_close(i);
1039 }
1040 }
1041 spin_lock(&files->file_lock);
1042
1043 }
1044 spin_unlock(&files->file_lock);
1045}
1046
59714d65 1047char *get_task_comm(char *buf, struct task_struct *tsk)
1da177e4
LT
1048{
1049 /* buf must be at least sizeof(tsk->comm) in size */
1050 task_lock(tsk);
1051 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1052 task_unlock(tsk);
59714d65 1053 return buf;
1da177e4 1054}
7d74f492 1055EXPORT_SYMBOL_GPL(get_task_comm);
1da177e4
LT
1056
1057void set_task_comm(struct task_struct *tsk, char *buf)
1058{
1059 task_lock(tsk);
4614a696 1060
1061 /*
1062 * Threads may access current->comm without holding
1063 * the task lock, so write the string carefully.
1064 * Readers without a lock may see incomplete new
1065 * names but are safe from non-terminating string reads.
1066 */
1067 memset(tsk->comm, 0, TASK_COMM_LEN);
1068 wmb();
1da177e4
LT
1069 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1070 task_unlock(tsk);
cdd6c482 1071 perf_event_comm(tsk);
1da177e4
LT
1072}
1073
1074int flush_old_exec(struct linux_binprm * bprm)
1075{
221af7f8 1076 int retval;
1da177e4
LT
1077
1078 /*
1079 * Make sure we have a private signal table and that
1080 * we are unassociated from the previous thread group.
1081 */
1082 retval = de_thread(current);
1083 if (retval)
1084 goto out;
1085
925d1c40
MH
1086 set_mm_exe_file(bprm->mm, bprm->file);
1087
1da177e4
LT
1088 /*
1089 * Release all of the old mmap stuff
1090 */
3c77f845 1091 acct_arg_size(bprm, 0);
1da177e4
LT
1092 retval = exec_mmap(bprm->mm);
1093 if (retval)
fd8328be 1094 goto out;
1da177e4
LT
1095
1096 bprm->mm = NULL; /* We're using it now */
7ab02af4 1097
dac853ae 1098 set_fs(USER_DS);
98391cf4 1099 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
7ab02af4
LT
1100 flush_thread();
1101 current->personality &= ~bprm->per_clear;
1102
221af7f8
LT
1103 return 0;
1104
1105out:
1106 return retval;
1107}
1108EXPORT_SYMBOL(flush_old_exec);
1109
1b5d783c
AV
1110void would_dump(struct linux_binprm *bprm, struct file *file)
1111{
1112 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1113 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1114}
1115EXPORT_SYMBOL(would_dump);
1116
221af7f8
LT
1117void setup_new_exec(struct linux_binprm * bprm)
1118{
1119 int i, ch;
d7627467 1120 const char *name;
221af7f8
LT
1121 char tcomm[sizeof(current->comm)];
1122
1123 arch_pick_mmap_layout(current->mm);
1da177e4
LT
1124
1125 /* This is the point of no return */
1da177e4
LT
1126 current->sas_ss_sp = current->sas_ss_size = 0;
1127
da9592ed 1128 if (current_euid() == current_uid() && current_egid() == current_gid())
6c5d5238 1129 set_dumpable(current->mm, 1);
d6e71144 1130 else
6c5d5238 1131 set_dumpable(current->mm, suid_dumpable);
d6e71144 1132
1da177e4 1133 name = bprm->filename;
36772092
PBG
1134
1135 /* Copies the binary name from after last slash */
1da177e4
LT
1136 for (i=0; (ch = *(name++)) != '\0';) {
1137 if (ch == '/')
36772092 1138 i = 0; /* overwrite what we wrote */
1da177e4
LT
1139 else
1140 if (i < (sizeof(tcomm) - 1))
1141 tcomm[i++] = ch;
1142 }
1143 tcomm[i] = '\0';
1144 set_task_comm(current, tcomm);
1145
0551fbd2
BH
1146 /* Set the new mm task size. We have to do that late because it may
1147 * depend on TIF_32BIT which is only updated in flush_thread() on
1148 * some architectures like powerpc
1149 */
1150 current->mm->task_size = TASK_SIZE;
1151
a6f76f23
DH
1152 /* install the new credentials */
1153 if (bprm->cred->uid != current_euid() ||
1154 bprm->cred->gid != current_egid()) {
d2d56c5f 1155 current->pdeath_signal = 0;
1b5d783c
AV
1156 } else {
1157 would_dump(bprm, bprm->file);
1158 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1159 set_dumpable(current->mm, suid_dumpable);
1da177e4
LT
1160 }
1161
f65cb45c
IM
1162 /*
1163 * Flush performance counters when crossing a
1164 * security domain:
1165 */
1166 if (!get_dumpable(current->mm))
cdd6c482 1167 perf_event_exit_task(current);
f65cb45c 1168
1da177e4
LT
1169 /* An exec changes our domain. We are no longer part of the thread
1170 group */
1171
1172 current->self_exec_id++;
1173
1174 flush_signal_handlers(current, 0);
1175 flush_old_files(current->files);
1da177e4 1176}
221af7f8 1177EXPORT_SYMBOL(setup_new_exec);
1da177e4 1178
a2a8474c
ON
1179/*
1180 * Prepare credentials and lock ->cred_guard_mutex.
1181 * install_exec_creds() commits the new creds and drops the lock.
1182 * Or, if exec fails before, free_bprm() should release ->cred and
1183 * and unlock.
1184 */
1185int prepare_bprm_creds(struct linux_binprm *bprm)
1186{
9b1bf12d 1187 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
a2a8474c
ON
1188 return -ERESTARTNOINTR;
1189
1190 bprm->cred = prepare_exec_creds();
1191 if (likely(bprm->cred))
1192 return 0;
1193
9b1bf12d 1194 mutex_unlock(&current->signal->cred_guard_mutex);
a2a8474c
ON
1195 return -ENOMEM;
1196}
1197
1198void free_bprm(struct linux_binprm *bprm)
1199{
1200 free_arg_pages(bprm);
1201 if (bprm->cred) {
9b1bf12d 1202 mutex_unlock(&current->signal->cred_guard_mutex);
a2a8474c
ON
1203 abort_creds(bprm->cred);
1204 }
1205 kfree(bprm);
1206}
1207
a6f76f23
DH
1208/*
1209 * install the new credentials for this executable
1210 */
1211void install_exec_creds(struct linux_binprm *bprm)
1212{
1213 security_bprm_committing_creds(bprm);
1214
1215 commit_creds(bprm->cred);
1216 bprm->cred = NULL;
a2a8474c
ON
1217 /*
1218 * cred_guard_mutex must be held at least to this point to prevent
a6f76f23 1219 * ptrace_attach() from altering our determination of the task's
a2a8474c
ON
1220 * credentials; any time after this it may be unlocked.
1221 */
a6f76f23 1222 security_bprm_committed_creds(bprm);
9b1bf12d 1223 mutex_unlock(&current->signal->cred_guard_mutex);
a6f76f23
DH
1224}
1225EXPORT_SYMBOL(install_exec_creds);
1226
1227/*
1228 * determine how safe it is to execute the proposed program
9b1bf12d 1229 * - the caller must hold ->cred_guard_mutex to protect against
a6f76f23
DH
1230 * PTRACE_ATTACH
1231 */
498052bb 1232int check_unsafe_exec(struct linux_binprm *bprm)
a6f76f23 1233{
0bf2f3ae 1234 struct task_struct *p = current, *t;
f1191b50 1235 unsigned n_fs;
498052bb 1236 int res = 0;
a6f76f23 1237
4b9d33e6
TH
1238 if (p->ptrace) {
1239 if (p->ptrace & PT_PTRACE_CAP)
1240 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1241 else
1242 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1243 }
a6f76f23 1244
0bf2f3ae 1245 n_fs = 1;
2a4419b5 1246 spin_lock(&p->fs->lock);
437f7fdb 1247 rcu_read_lock();
0bf2f3ae
DH
1248 for (t = next_thread(p); t != p; t = next_thread(t)) {
1249 if (t->fs == p->fs)
1250 n_fs++;
0bf2f3ae 1251 }
437f7fdb 1252 rcu_read_unlock();
0bf2f3ae 1253
f1191b50 1254 if (p->fs->users > n_fs) {
a6f76f23 1255 bprm->unsafe |= LSM_UNSAFE_SHARE;
498052bb 1256 } else {
8c652f96
ON
1257 res = -EAGAIN;
1258 if (!p->fs->in_exec) {
1259 p->fs->in_exec = 1;
1260 res = 1;
1261 }
498052bb 1262 }
2a4419b5 1263 spin_unlock(&p->fs->lock);
498052bb
AV
1264
1265 return res;
a6f76f23
DH
1266}
1267
1da177e4
LT
1268/*
1269 * Fill the binprm structure from the inode.
1270 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
a6f76f23
DH
1271 *
1272 * This may be called multiple times for binary chains (scripts for example).
1da177e4
LT
1273 */
1274int prepare_binprm(struct linux_binprm *bprm)
1275{
a6f76f23 1276 umode_t mode;
0f7fc9e4 1277 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1da177e4
LT
1278 int retval;
1279
1280 mode = inode->i_mode;
1da177e4
LT
1281 if (bprm->file->f_op == NULL)
1282 return -EACCES;
1283
a6f76f23
DH
1284 /* clear any previous set[ug]id data from a previous binary */
1285 bprm->cred->euid = current_euid();
1286 bprm->cred->egid = current_egid();
1da177e4 1287
a6f76f23 1288 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1da177e4
LT
1289 /* Set-uid? */
1290 if (mode & S_ISUID) {
a6f76f23
DH
1291 bprm->per_clear |= PER_CLEAR_ON_SETID;
1292 bprm->cred->euid = inode->i_uid;
1da177e4
LT
1293 }
1294
1295 /* Set-gid? */
1296 /*
1297 * If setgid is set but no group execute bit then this
1298 * is a candidate for mandatory locking, not a setgid
1299 * executable.
1300 */
1301 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
a6f76f23
DH
1302 bprm->per_clear |= PER_CLEAR_ON_SETID;
1303 bprm->cred->egid = inode->i_gid;
1da177e4
LT
1304 }
1305 }
1306
1307 /* fill in binprm security blob */
a6f76f23 1308 retval = security_bprm_set_creds(bprm);
1da177e4
LT
1309 if (retval)
1310 return retval;
a6f76f23 1311 bprm->cred_prepared = 1;
1da177e4 1312
a6f76f23
DH
1313 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1314 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1da177e4
LT
1315}
1316
1317EXPORT_SYMBOL(prepare_binprm);
1318
4fc75ff4
NP
1319/*
1320 * Arguments are '\0' separated strings found at the location bprm->p
1321 * points to; chop off the first by relocating brpm->p to right after
1322 * the first '\0' encountered.
1323 */
b6a2fea3 1324int remove_arg_zero(struct linux_binprm *bprm)
1da177e4 1325{
b6a2fea3
OW
1326 int ret = 0;
1327 unsigned long offset;
1328 char *kaddr;
1329 struct page *page;
4fc75ff4 1330
b6a2fea3
OW
1331 if (!bprm->argc)
1332 return 0;
1da177e4 1333
b6a2fea3
OW
1334 do {
1335 offset = bprm->p & ~PAGE_MASK;
1336 page = get_arg_page(bprm, bprm->p, 0);
1337 if (!page) {
1338 ret = -EFAULT;
1339 goto out;
1340 }
1341 kaddr = kmap_atomic(page, KM_USER0);
4fc75ff4 1342
b6a2fea3
OW
1343 for (; offset < PAGE_SIZE && kaddr[offset];
1344 offset++, bprm->p++)
1345 ;
4fc75ff4 1346
b6a2fea3
OW
1347 kunmap_atomic(kaddr, KM_USER0);
1348 put_arg_page(page);
4fc75ff4 1349
b6a2fea3
OW
1350 if (offset == PAGE_SIZE)
1351 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1352 } while (offset == PAGE_SIZE);
4fc75ff4 1353
b6a2fea3
OW
1354 bprm->p++;
1355 bprm->argc--;
1356 ret = 0;
4fc75ff4 1357
b6a2fea3
OW
1358out:
1359 return ret;
1da177e4 1360}
1da177e4
LT
1361EXPORT_SYMBOL(remove_arg_zero);
1362
1363/*
1364 * cycle the list of binary formats handler, until one recognizes the image
1365 */
1366int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1367{
85f33466 1368 unsigned int depth = bprm->recursion_depth;
1da177e4
LT
1369 int try,retval;
1370 struct linux_binfmt *fmt;
bb188d7e 1371 pid_t old_pid;
1da177e4 1372
1da177e4
LT
1373 retval = security_bprm_check(bprm);
1374 if (retval)
1375 return retval;
1376
473ae30b
AV
1377 retval = audit_bprm(bprm);
1378 if (retval)
1379 return retval;
1380
bb188d7e
DV
1381 /* Need to fetch pid before load_binary changes it */
1382 rcu_read_lock();
1383 old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1384 rcu_read_unlock();
1385
1da177e4
LT
1386 retval = -ENOENT;
1387 for (try=0; try<2; try++) {
1388 read_lock(&binfmt_lock);
e4dc1b14 1389 list_for_each_entry(fmt, &formats, lh) {
1da177e4
LT
1390 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1391 if (!fn)
1392 continue;
1393 if (!try_module_get(fmt->module))
1394 continue;
1395 read_unlock(&binfmt_lock);
1396 retval = fn(bprm, regs);
85f33466
RM
1397 /*
1398 * Restore the depth counter to its starting value
1399 * in this call, so we don't have to rely on every
1400 * load_binary function to restore it on return.
1401 */
1402 bprm->recursion_depth = depth;
1da177e4 1403 if (retval >= 0) {
85f33466 1404 if (depth == 0)
bb188d7e
DV
1405 ptrace_event(PTRACE_EVENT_EXEC,
1406 old_pid);
1da177e4
LT
1407 put_binfmt(fmt);
1408 allow_write_access(bprm->file);
1409 if (bprm->file)
1410 fput(bprm->file);
1411 bprm->file = NULL;
1412 current->did_exec = 1;
9f46080c 1413 proc_exec_connector(current);
1da177e4
LT
1414 return retval;
1415 }
1416 read_lock(&binfmt_lock);
1417 put_binfmt(fmt);
1418 if (retval != -ENOEXEC || bprm->mm == NULL)
1419 break;
1420 if (!bprm->file) {
1421 read_unlock(&binfmt_lock);
1422 return retval;
1423 }
1424 }
1425 read_unlock(&binfmt_lock);
b4edf8bd 1426#ifdef CONFIG_MODULES
1da177e4
LT
1427 if (retval != -ENOEXEC || bprm->mm == NULL) {
1428 break;
5f4123be 1429 } else {
1da177e4
LT
1430#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1431 if (printable(bprm->buf[0]) &&
1432 printable(bprm->buf[1]) &&
1433 printable(bprm->buf[2]) &&
1434 printable(bprm->buf[3]))
1435 break; /* -ENOEXEC */
91219352
TH
1436 if (try)
1437 break; /* -ENOEXEC */
1da177e4 1438 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1da177e4 1439 }
b4edf8bd
TH
1440#else
1441 break;
1442#endif
1da177e4
LT
1443 }
1444 return retval;
1445}
1446
1447EXPORT_SYMBOL(search_binary_handler);
1448
1449/*
1450 * sys_execve() executes a new program.
1451 */
ba2d0162
ON
1452static int do_execve_common(const char *filename,
1453 struct user_arg_ptr argv,
1454 struct user_arg_ptr envp,
1455 struct pt_regs *regs)
1da177e4
LT
1456{
1457 struct linux_binprm *bprm;
1458 struct file *file;
3b125388 1459 struct files_struct *displaced;
8c652f96 1460 bool clear_in_exec;
1da177e4 1461 int retval;
1da177e4 1462
3b125388 1463 retval = unshare_files(&displaced);
fd8328be
AV
1464 if (retval)
1465 goto out_ret;
1466
1da177e4 1467 retval = -ENOMEM;
11b0b5ab 1468 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1da177e4 1469 if (!bprm)
fd8328be 1470 goto out_files;
1da177e4 1471
a2a8474c
ON
1472 retval = prepare_bprm_creds(bprm);
1473 if (retval)
a6f76f23 1474 goto out_free;
498052bb
AV
1475
1476 retval = check_unsafe_exec(bprm);
8c652f96 1477 if (retval < 0)
a2a8474c 1478 goto out_free;
8c652f96 1479 clear_in_exec = retval;
a2a8474c 1480 current->in_execve = 1;
a6f76f23 1481
1da177e4
LT
1482 file = open_exec(filename);
1483 retval = PTR_ERR(file);
1484 if (IS_ERR(file))
498052bb 1485 goto out_unmark;
1da177e4
LT
1486
1487 sched_exec();
1488
1da177e4
LT
1489 bprm->file = file;
1490 bprm->filename = filename;
1491 bprm->interp = filename;
1da177e4 1492
b6a2fea3
OW
1493 retval = bprm_mm_init(bprm);
1494 if (retval)
1495 goto out_file;
1da177e4 1496
b6a2fea3 1497 bprm->argc = count(argv, MAX_ARG_STRINGS);
1da177e4 1498 if ((retval = bprm->argc) < 0)
a6f76f23 1499 goto out;
1da177e4 1500
b6a2fea3 1501 bprm->envc = count(envp, MAX_ARG_STRINGS);
1da177e4 1502 if ((retval = bprm->envc) < 0)
1da177e4
LT
1503 goto out;
1504
1505 retval = prepare_binprm(bprm);
1506 if (retval < 0)
1507 goto out;
1508
1509 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1510 if (retval < 0)
1511 goto out;
1512
1513 bprm->exec = bprm->p;
1514 retval = copy_strings(bprm->envc, envp, bprm);
1515 if (retval < 0)
1516 goto out;
1517
1518 retval = copy_strings(bprm->argc, argv, bprm);
1519 if (retval < 0)
1520 goto out;
1521
1522 retval = search_binary_handler(bprm,regs);
a6f76f23
DH
1523 if (retval < 0)
1524 goto out;
1da177e4 1525
a6f76f23 1526 /* execve succeeded */
498052bb 1527 current->fs->in_exec = 0;
f9ce1f1c 1528 current->in_execve = 0;
a6f76f23
DH
1529 acct_update_integrals(current);
1530 free_bprm(bprm);
1531 if (displaced)
1532 put_files_struct(displaced);
1533 return retval;
1da177e4 1534
a6f76f23 1535out:
3c77f845
ON
1536 if (bprm->mm) {
1537 acct_arg_size(bprm, 0);
1538 mmput(bprm->mm);
1539 }
1da177e4
LT
1540
1541out_file:
1542 if (bprm->file) {
1543 allow_write_access(bprm->file);
1544 fput(bprm->file);
1545 }
a6f76f23 1546
498052bb 1547out_unmark:
8c652f96
ON
1548 if (clear_in_exec)
1549 current->fs->in_exec = 0;
f9ce1f1c 1550 current->in_execve = 0;
a6f76f23
DH
1551
1552out_free:
08a6fac1 1553 free_bprm(bprm);
1da177e4 1554
fd8328be 1555out_files:
3b125388
AV
1556 if (displaced)
1557 reset_files_struct(displaced);
1da177e4
LT
1558out_ret:
1559 return retval;
1560}
1561
ba2d0162
ON
1562int do_execve(const char *filename,
1563 const char __user *const __user *__argv,
1564 const char __user *const __user *__envp,
1565 struct pt_regs *regs)
1566{
0e028465
ON
1567 struct user_arg_ptr argv = { .ptr.native = __argv };
1568 struct user_arg_ptr envp = { .ptr.native = __envp };
1569 return do_execve_common(filename, argv, envp, regs);
1570}
1571
1572#ifdef CONFIG_COMPAT
1573int compat_do_execve(char *filename,
1574 compat_uptr_t __user *__argv,
1575 compat_uptr_t __user *__envp,
1576 struct pt_regs *regs)
1577{
1578 struct user_arg_ptr argv = {
1579 .is_compat = true,
1580 .ptr.compat = __argv,
1581 };
1582 struct user_arg_ptr envp = {
1583 .is_compat = true,
1584 .ptr.compat = __envp,
1585 };
ba2d0162
ON
1586 return do_execve_common(filename, argv, envp, regs);
1587}
0e028465 1588#endif
ba2d0162 1589
964ee7df 1590void set_binfmt(struct linux_binfmt *new)
1da177e4 1591{
801460d0
HS
1592 struct mm_struct *mm = current->mm;
1593
1594 if (mm->binfmt)
1595 module_put(mm->binfmt->module);
1da177e4 1596
801460d0 1597 mm->binfmt = new;
964ee7df
ON
1598 if (new)
1599 __module_get(new->module);
1da177e4
LT
1600}
1601
1602EXPORT_SYMBOL(set_binfmt);
1603
1b0d300b
XF
1604static int expand_corename(struct core_name *cn)
1605{
1606 char *old_corename = cn->corename;
1607
1608 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1609 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1610
1611 if (!cn->corename) {
1612 kfree(old_corename);
1613 return -ENOMEM;
1614 }
1615
1616 return 0;
1617}
1618
1619static int cn_printf(struct core_name *cn, const char *fmt, ...)
1620{
1621 char *cur;
1622 int need;
1623 int ret;
1624 va_list arg;
1625
1626 va_start(arg, fmt);
1627 need = vsnprintf(NULL, 0, fmt, arg);
1628 va_end(arg);
1629
1630 if (likely(need < cn->size - cn->used - 1))
1631 goto out_printf;
1632
1633 ret = expand_corename(cn);
1634 if (ret)
1635 goto expand_fail;
1636
1637out_printf:
1638 cur = cn->corename + cn->used;
1639 va_start(arg, fmt);
1640 vsnprintf(cur, need + 1, fmt, arg);
1641 va_end(arg);
1642 cn->used += need;
1643 return 0;
1644
1645expand_fail:
1646 return ret;
1647}
1648
2c563731
JS
1649static void cn_escape(char *str)
1650{
1651 for (; *str; str++)
1652 if (*str == '/')
1653 *str = '!';
1654}
1655
57cc083a
JS
1656static int cn_print_exe_file(struct core_name *cn)
1657{
1658 struct file *exe_file;
2c563731 1659 char *pathbuf, *path;
57cc083a
JS
1660 int ret;
1661
1662 exe_file = get_mm_exe_file(current->mm);
2c563731
JS
1663 if (!exe_file) {
1664 char *commstart = cn->corename + cn->used;
1665 ret = cn_printf(cn, "%s (path unknown)", current->comm);
1666 cn_escape(commstart);
1667 return ret;
1668 }
57cc083a
JS
1669
1670 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1671 if (!pathbuf) {
1672 ret = -ENOMEM;
1673 goto put_exe_file;
1674 }
1675
1676 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1677 if (IS_ERR(path)) {
1678 ret = PTR_ERR(path);
1679 goto free_buf;
1680 }
1681
2c563731 1682 cn_escape(path);
57cc083a
JS
1683
1684 ret = cn_printf(cn, "%s", path);
1685
1686free_buf:
1687 kfree(pathbuf);
1688put_exe_file:
1689 fput(exe_file);
1690 return ret;
1691}
1692
1da177e4
LT
1693/* format_corename will inspect the pattern parameter, and output a
1694 * name into corename, which must have space for at least
1695 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1696 */
1b0d300b 1697static int format_corename(struct core_name *cn, long signr)
1da177e4 1698{
86a264ab 1699 const struct cred *cred = current_cred();
565b9b14
ON
1700 const char *pat_ptr = core_pattern;
1701 int ispipe = (*pat_ptr == '|');
1da177e4 1702 int pid_in_pattern = 0;
1b0d300b
XF
1703 int err = 0;
1704
1705 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1706 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1707 cn->used = 0;
1708
1709 if (!cn->corename)
1710 return -ENOMEM;
1da177e4
LT
1711
1712 /* Repeat as long as we have more pattern to process and more output
1713 space */
1714 while (*pat_ptr) {
1715 if (*pat_ptr != '%') {
1b0d300b 1716 if (*pat_ptr == 0)
1da177e4 1717 goto out;
1b0d300b 1718 err = cn_printf(cn, "%c", *pat_ptr++);
1da177e4
LT
1719 } else {
1720 switch (*++pat_ptr) {
1b0d300b 1721 /* single % at the end, drop that */
1da177e4
LT
1722 case 0:
1723 goto out;
1724 /* Double percent, output one percent */
1725 case '%':
1b0d300b 1726 err = cn_printf(cn, "%c", '%');
1da177e4
LT
1727 break;
1728 /* pid */
1729 case 'p':
1730 pid_in_pattern = 1;
1b0d300b
XF
1731 err = cn_printf(cn, "%d",
1732 task_tgid_vnr(current));
1da177e4
LT
1733 break;
1734 /* uid */
1735 case 'u':
1b0d300b 1736 err = cn_printf(cn, "%d", cred->uid);
1da177e4
LT
1737 break;
1738 /* gid */
1739 case 'g':
1b0d300b 1740 err = cn_printf(cn, "%d", cred->gid);
1da177e4
LT
1741 break;
1742 /* signal that caused the coredump */
1743 case 's':
1b0d300b 1744 err = cn_printf(cn, "%ld", signr);
1da177e4
LT
1745 break;
1746 /* UNIX time of coredump */
1747 case 't': {
1748 struct timeval tv;
1749 do_gettimeofday(&tv);
1b0d300b 1750 err = cn_printf(cn, "%lu", tv.tv_sec);
1da177e4
LT
1751 break;
1752 }
1753 /* hostname */
2c563731
JS
1754 case 'h': {
1755 char *namestart = cn->corename + cn->used;
1da177e4 1756 down_read(&uts_sem);
1b0d300b
XF
1757 err = cn_printf(cn, "%s",
1758 utsname()->nodename);
1da177e4 1759 up_read(&uts_sem);
2c563731 1760 cn_escape(namestart);
1da177e4 1761 break;
2c563731 1762 }
1da177e4 1763 /* executable */
2c563731
JS
1764 case 'e': {
1765 char *commstart = cn->corename + cn->used;
1b0d300b 1766 err = cn_printf(cn, "%s", current->comm);
2c563731 1767 cn_escape(commstart);
1da177e4 1768 break;
2c563731 1769 }
57cc083a
JS
1770 case 'E':
1771 err = cn_print_exe_file(cn);
1772 break;
74aadce9
NH
1773 /* core limit size */
1774 case 'c':
1b0d300b
XF
1775 err = cn_printf(cn, "%lu",
1776 rlimit(RLIMIT_CORE));
74aadce9 1777 break;
1da177e4
LT
1778 default:
1779 break;
1780 }
1781 ++pat_ptr;
1782 }
1b0d300b
XF
1783
1784 if (err)
1785 return err;
1da177e4 1786 }
1b0d300b 1787
1da177e4
LT
1788 /* Backward compatibility with core_uses_pid:
1789 *
1790 * If core_pattern does not include a %p (as is the default)
1791 * and core_uses_pid is set, then .%pid will be appended to
c4bbafda 1792 * the filename. Do not do this for piped commands. */
6409324b 1793 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1b0d300b
XF
1794 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1795 if (err)
1796 return err;
1da177e4 1797 }
c4bbafda 1798out:
c4bbafda 1799 return ispipe;
1da177e4
LT
1800}
1801
5c99cbf4 1802static int zap_process(struct task_struct *start, int exit_code)
aceecc04
ON
1803{
1804 struct task_struct *t;
8cd9c249 1805 int nr = 0;
281de339 1806
d5f70c00 1807 start->signal->flags = SIGNAL_GROUP_EXIT;
5c99cbf4 1808 start->signal->group_exit_code = exit_code;
d5f70c00 1809 start->signal->group_stop_count = 0;
aceecc04
ON
1810
1811 t = start;
1812 do {
6dfca329 1813 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
aceecc04 1814 if (t != current && t->mm) {
281de339
ON
1815 sigaddset(&t->pending.signal, SIGKILL);
1816 signal_wake_up(t, 1);
8cd9c249 1817 nr++;
aceecc04 1818 }
e4901f92 1819 } while_each_thread(start, t);
8cd9c249
ON
1820
1821 return nr;
aceecc04
ON
1822}
1823
dcf560c5 1824static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
8cd9c249 1825 struct core_state *core_state, int exit_code)
1da177e4
LT
1826{
1827 struct task_struct *g, *p;
5debfa6d 1828 unsigned long flags;
8cd9c249 1829 int nr = -EAGAIN;
dcf560c5
ON
1830
1831 spin_lock_irq(&tsk->sighand->siglock);
ed5d2cac 1832 if (!signal_group_exit(tsk->signal)) {
8cd9c249 1833 mm->core_state = core_state;
5c99cbf4 1834 nr = zap_process(tsk, exit_code);
1da177e4 1835 }
dcf560c5 1836 spin_unlock_irq(&tsk->sighand->siglock);
8cd9c249
ON
1837 if (unlikely(nr < 0))
1838 return nr;
1da177e4 1839
8cd9c249 1840 if (atomic_read(&mm->mm_users) == nr + 1)
5debfa6d 1841 goto done;
e4901f92
ON
1842 /*
1843 * We should find and kill all tasks which use this mm, and we should
999d9fc1 1844 * count them correctly into ->nr_threads. We don't take tasklist
e4901f92
ON
1845 * lock, but this is safe wrt:
1846 *
1847 * fork:
1848 * None of sub-threads can fork after zap_process(leader). All
1849 * processes which were created before this point should be
1850 * visible to zap_threads() because copy_process() adds the new
1851 * process to the tail of init_task.tasks list, and lock/unlock
1852 * of ->siglock provides a memory barrier.
1853 *
1854 * do_exit:
1855 * The caller holds mm->mmap_sem. This means that the task which
1856 * uses this mm can't pass exit_mm(), so it can't exit or clear
1857 * its ->mm.
1858 *
1859 * de_thread:
1860 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1861 * we must see either old or new leader, this does not matter.
1862 * However, it can change p->sighand, so lock_task_sighand(p)
1863 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1864 * it can't fail.
1865 *
1866 * Note also that "g" can be the old leader with ->mm == NULL
1867 * and already unhashed and thus removed from ->thread_group.
1868 * This is OK, __unhash_process()->list_del_rcu() does not
1869 * clear the ->next pointer, we will find the new leader via
1870 * next_thread().
1871 */
7b1c6154 1872 rcu_read_lock();
aceecc04 1873 for_each_process(g) {
5debfa6d
ON
1874 if (g == tsk->group_leader)
1875 continue;
15b9f360
ON
1876 if (g->flags & PF_KTHREAD)
1877 continue;
aceecc04
ON
1878 p = g;
1879 do {
1880 if (p->mm) {
15b9f360 1881 if (unlikely(p->mm == mm)) {
5debfa6d 1882 lock_task_sighand(p, &flags);
5c99cbf4 1883 nr += zap_process(p, exit_code);
5debfa6d
ON
1884 unlock_task_sighand(p, &flags);
1885 }
aceecc04
ON
1886 break;
1887 }
e4901f92 1888 } while_each_thread(g, p);
aceecc04 1889 }
7b1c6154 1890 rcu_read_unlock();
5debfa6d 1891done:
c5f1cc8c 1892 atomic_set(&core_state->nr_threads, nr);
8cd9c249 1893 return nr;
1da177e4
LT
1894}
1895
9d5b327b 1896static int coredump_wait(int exit_code, struct core_state *core_state)
1da177e4 1897{
dcf560c5
ON
1898 struct task_struct *tsk = current;
1899 struct mm_struct *mm = tsk->mm;
dcf560c5 1900 struct completion *vfork_done;
269b005a 1901 int core_waiters = -EBUSY;
1da177e4 1902
9d5b327b 1903 init_completion(&core_state->startup);
b564daf8
ON
1904 core_state->dumper.task = tsk;
1905 core_state->dumper.next = NULL;
269b005a
ON
1906
1907 down_write(&mm->mmap_sem);
1908 if (!mm->core_state)
1909 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
2384f55f
ON
1910 up_write(&mm->mmap_sem);
1911
dcf560c5
ON
1912 if (unlikely(core_waiters < 0))
1913 goto fail;
1914
1915 /*
1916 * Make sure nobody is waiting for us to release the VM,
1917 * otherwise we can deadlock when we wait on each other
1918 */
1919 vfork_done = tsk->vfork_done;
1920 if (vfork_done) {
1921 tsk->vfork_done = NULL;
1922 complete(vfork_done);
1923 }
1924
2384f55f 1925 if (core_waiters)
9d5b327b 1926 wait_for_completion(&core_state->startup);
dcf560c5 1927fail:
dcf560c5 1928 return core_waiters;
1da177e4
LT
1929}
1930
a94e2d40
ON
1931static void coredump_finish(struct mm_struct *mm)
1932{
1933 struct core_thread *curr, *next;
1934 struct task_struct *task;
1935
1936 next = mm->core_state->dumper.next;
1937 while ((curr = next) != NULL) {
1938 next = curr->next;
1939 task = curr->task;
1940 /*
1941 * see exit_mm(), curr->task must not see
1942 * ->task == NULL before we read ->next.
1943 */
1944 smp_mb();
1945 curr->task = NULL;
1946 wake_up_process(task);
1947 }
1948
1949 mm->core_state = NULL;
1950}
1951
6c5d5238
KH
1952/*
1953 * set_dumpable converts traditional three-value dumpable to two flags and
1954 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1955 * these bits are not changed atomically. So get_dumpable can observe the
1956 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1957 * return either old dumpable or new one by paying attention to the order of
1958 * modifying the bits.
1959 *
1960 * dumpable | mm->flags (binary)
1961 * old new | initial interim final
1962 * ---------+-----------------------
1963 * 0 1 | 00 01 01
1964 * 0 2 | 00 10(*) 11
1965 * 1 0 | 01 00 00
1966 * 1 2 | 01 11 11
1967 * 2 0 | 11 10(*) 00
1968 * 2 1 | 11 11 01
1969 *
1970 * (*) get_dumpable regards interim value of 10 as 11.
1971 */
1972void set_dumpable(struct mm_struct *mm, int value)
1973{
1974 switch (value) {
1975 case 0:
1976 clear_bit(MMF_DUMPABLE, &mm->flags);
1977 smp_wmb();
1978 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1979 break;
1980 case 1:
1981 set_bit(MMF_DUMPABLE, &mm->flags);
1982 smp_wmb();
1983 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1984 break;
1985 case 2:
1986 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1987 smp_wmb();
1988 set_bit(MMF_DUMPABLE, &mm->flags);
1989 break;
1990 }
1991}
6c5d5238 1992
30736a4d 1993static int __get_dumpable(unsigned long mm_flags)
6c5d5238
KH
1994{
1995 int ret;
1996
30736a4d 1997 ret = mm_flags & MMF_DUMPABLE_MASK;
6c5d5238
KH
1998 return (ret >= 2) ? 2 : ret;
1999}
2000
30736a4d
MH
2001int get_dumpable(struct mm_struct *mm)
2002{
2003 return __get_dumpable(mm->flags);
2004}
2005
61be228a
NH
2006static void wait_for_dump_helpers(struct file *file)
2007{
2008 struct pipe_inode_info *pipe;
2009
2010 pipe = file->f_path.dentry->d_inode->i_pipe;
2011
2012 pipe_lock(pipe);
2013 pipe->readers++;
2014 pipe->writers--;
2015
2016 while ((pipe->readers > 1) && (!signal_pending(current))) {
2017 wake_up_interruptible_sync(&pipe->wait);
2018 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2019 pipe_wait(pipe);
2020 }
2021
2022 pipe->readers--;
2023 pipe->writers++;
2024 pipe_unlock(pipe);
2025
2026}
2027
2028
898b374a 2029/*
1bef8291 2030 * umh_pipe_setup
898b374a
NH
2031 * helper function to customize the process used
2032 * to collect the core in userspace. Specifically
2033 * it sets up a pipe and installs it as fd 0 (stdin)
2034 * for the process. Returns 0 on success, or
2035 * PTR_ERR on failure.
2036 * Note that it also sets the core limit to 1. This
2037 * is a special value that we use to trap recursive
2038 * core dumps
2039 */
87966996 2040static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
898b374a
NH
2041{
2042 struct file *rp, *wp;
2043 struct fdtable *fdt;
2044 struct coredump_params *cp = (struct coredump_params *)info->data;
2045 struct files_struct *cf = current->files;
2046
2047 wp = create_write_pipe(0);
2048 if (IS_ERR(wp))
2049 return PTR_ERR(wp);
2050
2051 rp = create_read_pipe(wp, 0);
2052 if (IS_ERR(rp)) {
2053 free_write_pipe(wp);
2054 return PTR_ERR(rp);
2055 }
2056
2057 cp->file = wp;
2058
2059 sys_close(0);
2060 fd_install(0, rp);
2061 spin_lock(&cf->file_lock);
2062 fdt = files_fdtable(cf);
2063 FD_SET(0, fdt->open_fds);
2064 FD_CLR(0, fdt->close_on_exec);
2065 spin_unlock(&cf->file_lock);
2066
2067 /* and disallow core files too */
2068 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2069
2070 return 0;
2071}
2072
8cd3ac3a 2073void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1da177e4 2074{
9d5b327b 2075 struct core_state core_state;
1b0d300b 2076 struct core_name cn;
1da177e4
LT
2077 struct mm_struct *mm = current->mm;
2078 struct linux_binfmt * binfmt;
d84f4f99
DH
2079 const struct cred *old_cred;
2080 struct cred *cred;
1da177e4 2081 int retval = 0;
d6e71144 2082 int flag = 0;
d5bf4c4f 2083 int ispipe;
a293980c 2084 static atomic_t core_dump_count = ATOMIC_INIT(0);
f6151dfe
MH
2085 struct coredump_params cprm = {
2086 .signr = signr,
2087 .regs = regs,
d554ed89 2088 .limit = rlimit(RLIMIT_CORE),
30736a4d
MH
2089 /*
2090 * We must use the same mm->flags while dumping core to avoid
2091 * inconsistency of bit flags, since this flag is not protected
2092 * by any locks.
2093 */
2094 .mm_flags = mm->flags,
f6151dfe 2095 };
1da177e4 2096
0a4ff8c2
SG
2097 audit_core_dumps(signr);
2098
801460d0 2099 binfmt = mm->binfmt;
1da177e4
LT
2100 if (!binfmt || !binfmt->core_dump)
2101 goto fail;
269b005a
ON
2102 if (!__get_dumpable(cprm.mm_flags))
2103 goto fail;
d84f4f99
DH
2104
2105 cred = prepare_creds();
5e43aef5 2106 if (!cred)
d84f4f99 2107 goto fail;
d6e71144
AC
2108 /*
2109 * We cannot trust fsuid as being the "true" uid of the
2110 * process nor do we know its entire history. We only know it
2111 * was tainted so we dump it as root in mode 2.
2112 */
30736a4d
MH
2113 if (__get_dumpable(cprm.mm_flags) == 2) {
2114 /* Setuid core dump mode */
d6e71144 2115 flag = O_EXCL; /* Stop rewrite attacks */
d84f4f99 2116 cred->fsuid = 0; /* Dump root private */
d6e71144 2117 }
1291cf41 2118
9d5b327b 2119 retval = coredump_wait(exit_code, &core_state);
5e43aef5
ON
2120 if (retval < 0)
2121 goto fail_creds;
d84f4f99
DH
2122
2123 old_cred = override_creds(cred);
1da177e4
LT
2124
2125 /*
2126 * Clear any false indication of pending signals that might
2127 * be seen by the filesystem code called to write the core file.
2128 */
1da177e4
LT
2129 clear_thread_flag(TIF_SIGPENDING);
2130
1b0d300b
XF
2131 ispipe = format_corename(&cn, signr);
2132
c4bbafda 2133 if (ispipe) {
d5bf4c4f
ON
2134 int dump_count;
2135 char **helper_argv;
2136
99b64567
ON
2137 if (ispipe < 0) {
2138 printk(KERN_WARNING "format_corename failed\n");
2139 printk(KERN_WARNING "Aborting core\n");
2140 goto fail_corename;
2141 }
2142
898b374a 2143 if (cprm.limit == 1) {
725eae32
NH
2144 /*
2145 * Normally core limits are irrelevant to pipes, since
2146 * we're not writing to the file system, but we use
898b374a
NH
2147 * cprm.limit of 1 here as a speacial value. Any
2148 * non-1 limit gets set to RLIM_INFINITY below, but
725eae32
NH
2149 * a limit of 0 skips the dump. This is a consistent
2150 * way to catch recursive crashes. We can still crash
898b374a 2151 * if the core_pattern binary sets RLIM_CORE = !1
725eae32
NH
2152 * but it runs as root, and can do lots of stupid things
2153 * Note that we use task_tgid_vnr here to grab the pid
2154 * of the process group leader. That way we get the
2155 * right pid if a thread in a multi-threaded
2156 * core_pattern process dies.
2157 */
2158 printk(KERN_WARNING
898b374a 2159 "Process %d(%s) has RLIMIT_CORE set to 1\n",
725eae32
NH
2160 task_tgid_vnr(current), current->comm);
2161 printk(KERN_WARNING "Aborting core\n");
2162 goto fail_unlock;
2163 }
d5bf4c4f 2164 cprm.limit = RLIM_INFINITY;
725eae32 2165
a293980c
NH
2166 dump_count = atomic_inc_return(&core_dump_count);
2167 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2168 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2169 task_tgid_vnr(current), current->comm);
2170 printk(KERN_WARNING "Skipping core dump\n");
2171 goto fail_dropcount;
2172 }
2173
1b0d300b 2174 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
350eaf79
TH
2175 if (!helper_argv) {
2176 printk(KERN_WARNING "%s failed to allocate memory\n",
2177 __func__);
a293980c 2178 goto fail_dropcount;
350eaf79 2179 }
32321137 2180
d5bf4c4f
ON
2181 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2182 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2183 NULL, &cprm);
2184 argv_free(helper_argv);
2185 if (retval) {
d025c9db 2186 printk(KERN_INFO "Core dump to %s pipe failed\n",
1b0d300b 2187 cn.corename);
d5bf4c4f 2188 goto close_fail;
d025c9db 2189 }
c7135411
ON
2190 } else {
2191 struct inode *inode;
2192
2193 if (cprm.limit < binfmt->min_coredump)
2194 goto fail_unlock;
2195
1b0d300b 2196 cprm.file = filp_open(cn.corename,
6d4df677
AD
2197 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2198 0600);
c7135411
ON
2199 if (IS_ERR(cprm.file))
2200 goto fail_unlock;
1da177e4 2201
c7135411
ON
2202 inode = cprm.file->f_path.dentry->d_inode;
2203 if (inode->i_nlink > 1)
2204 goto close_fail;
2205 if (d_unhashed(cprm.file->f_path.dentry))
2206 goto close_fail;
2207 /*
2208 * AK: actually i see no reason to not allow this for named
2209 * pipes etc, but keep the previous behaviour for now.
2210 */
2211 if (!S_ISREG(inode->i_mode))
2212 goto close_fail;
2213 /*
2214 * Dont allow local users get cute and trick others to coredump
2215 * into their pre-created files.
2216 */
2217 if (inode->i_uid != current_fsuid())
2218 goto close_fail;
2219 if (!cprm.file->f_op || !cprm.file->f_op->write)
2220 goto close_fail;
2221 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2222 goto close_fail;
2223 }
1da177e4 2224
c7135411 2225 retval = binfmt->core_dump(&cprm);
1da177e4
LT
2226 if (retval)
2227 current->signal->group_exit_code |= 0x80;
d5bf4c4f 2228
61be228a 2229 if (ispipe && core_pipe_limit)
f6151dfe 2230 wait_for_dump_helpers(cprm.file);
d5bf4c4f
ON
2231close_fail:
2232 if (cprm.file)
2233 filp_close(cprm.file, NULL);
a293980c 2234fail_dropcount:
d5bf4c4f 2235 if (ispipe)
a293980c 2236 atomic_dec(&core_dump_count);
1da177e4 2237fail_unlock:
1b0d300b
XF
2238 kfree(cn.corename);
2239fail_corename:
5e43aef5 2240 coredump_finish(mm);
d84f4f99 2241 revert_creds(old_cred);
5e43aef5 2242fail_creds:
d84f4f99 2243 put_cred(cred);
1da177e4 2244fail:
8cd3ac3a 2245 return;
1da177e4 2246}
3aa0ce82
LT
2247
2248/*
2249 * Core dumping helper functions. These are the only things you should
2250 * do on a core-file: use only these functions to write out all the
2251 * necessary info.
2252 */
2253int dump_write(struct file *file, const void *addr, int nr)
2254{
2255 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2256}
8fd01d6c 2257EXPORT_SYMBOL(dump_write);
3aa0ce82
LT
2258
2259int dump_seek(struct file *file, loff_t off)
2260{
2261 int ret = 1;
2262
2263 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2264 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2265 return 0;
2266 } else {
2267 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2268
2269 if (!buf)
2270 return 0;
2271 while (off > 0) {
2272 unsigned long n = off;
2273
2274 if (n > PAGE_SIZE)
2275 n = PAGE_SIZE;
2276 if (!dump_write(file, buf, n)) {
2277 ret = 0;
2278 break;
2279 }
2280 off -= n;
2281 }
2282 free_page((unsigned long)buf);
2283 }
2284 return ret;
2285}
8fd01d6c 2286EXPORT_SYMBOL(dump_seek);