Btrfs: Add delayed iput
[linux-2.6-block.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/gfp.h>
20#include <linux/slab.h>
d6bfde87 21#include <linux/blkdev.h>
f421950f
CM
22#include <linux/writeback.h>
23#include <linux/pagevec.h>
dc17ff8f
CM
24#include "ctree.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
e6dcd2dc 27#include "extent_io.h"
dc17ff8f 28
e6dcd2dc 29static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 30{
e6dcd2dc
CM
31 if (entry->file_offset + entry->len < entry->file_offset)
32 return (u64)-1;
33 return entry->file_offset + entry->len;
dc17ff8f
CM
34}
35
d352ac68
CM
36/* returns NULL if the insertion worked, or it returns the node it did find
37 * in the tree
38 */
e6dcd2dc
CM
39static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 struct rb_node *node)
dc17ff8f 41{
d397712b
CM
42 struct rb_node **p = &root->rb_node;
43 struct rb_node *parent = NULL;
e6dcd2dc 44 struct btrfs_ordered_extent *entry;
dc17ff8f 45
d397712b 46 while (*p) {
dc17ff8f 47 parent = *p;
e6dcd2dc 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 49
e6dcd2dc 50 if (file_offset < entry->file_offset)
dc17ff8f 51 p = &(*p)->rb_left;
e6dcd2dc 52 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
53 p = &(*p)->rb_right;
54 else
55 return parent;
56 }
57
58 rb_link_node(node, parent, p);
59 rb_insert_color(node, root);
60 return NULL;
61}
62
d352ac68
CM
63/*
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
66 */
e6dcd2dc
CM
67static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
dc17ff8f 69{
d397712b 70 struct rb_node *n = root->rb_node;
dc17ff8f 71 struct rb_node *prev = NULL;
e6dcd2dc
CM
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 75
d397712b 76 while (n) {
e6dcd2dc 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
78 prev = n;
79 prev_entry = entry;
dc17ff8f 80
e6dcd2dc 81 if (file_offset < entry->file_offset)
dc17ff8f 82 n = n->rb_left;
e6dcd2dc 83 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
84 n = n->rb_right;
85 else
86 return n;
87 }
88 if (!prev_ret)
89 return NULL;
90
d397712b 91 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
99
100 prev = test;
101 }
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
d397712b 105 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
dc17ff8f
CM
112 }
113 *prev_ret = prev;
114 return NULL;
115}
116
d352ac68
CM
117/*
118 * helper to check if a given offset is inside a given entry
119 */
e6dcd2dc
CM
120static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121{
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
126}
127
d352ac68
CM
128/*
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
131 */
e6dcd2dc
CM
132static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 u64 file_offset)
dc17ff8f 134{
e6dcd2dc 135 struct rb_root *root = &tree->tree;
dc17ff8f
CM
136 struct rb_node *prev;
137 struct rb_node *ret;
e6dcd2dc
CM
138 struct btrfs_ordered_extent *entry;
139
140 if (tree->last) {
141 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 rb_node);
143 if (offset_in_entry(entry, file_offset))
144 return tree->last;
145 }
146 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 147 if (!ret)
e6dcd2dc
CM
148 ret = prev;
149 if (ret)
150 tree->last = ret;
dc17ff8f
CM
151 return ret;
152}
153
eb84ae03
CM
154/* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
156 *
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
159 *
160 * len is the length of the extent
161 *
eb84ae03
CM
162 * The tree is given a single reference on the ordered extent that was
163 * inserted.
164 */
e6dcd2dc 165int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
80ff3856 166 u64 start, u64 len, u64 disk_len, int type)
dc17ff8f 167{
dc17ff8f 168 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
169 struct rb_node *node;
170 struct btrfs_ordered_extent *entry;
dc17ff8f 171
e6dcd2dc
CM
172 tree = &BTRFS_I(inode)->ordered_tree;
173 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
174 if (!entry)
175 return -ENOMEM;
176
e6dcd2dc
CM
177 mutex_lock(&tree->mutex);
178 entry->file_offset = file_offset;
179 entry->start = start;
180 entry->len = len;
c8b97818 181 entry->disk_len = disk_len;
8b62b72b 182 entry->bytes_left = len;
3eaa2885 183 entry->inode = inode;
d899e052 184 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 185 set_bit(type, &entry->flags);
3eaa2885 186
e6dcd2dc
CM
187 /* one ref for the tree */
188 atomic_set(&entry->refs, 1);
189 init_waitqueue_head(&entry->wait);
190 INIT_LIST_HEAD(&entry->list);
3eaa2885 191 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 192
e6dcd2dc
CM
193 node = tree_insert(&tree->tree, file_offset,
194 &entry->rb_node);
d397712b
CM
195 BUG_ON(node);
196
3eaa2885
CM
197 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
198 list_add_tail(&entry->root_extent_list,
199 &BTRFS_I(inode)->root->fs_info->ordered_extents);
200 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
201
e6dcd2dc
CM
202 mutex_unlock(&tree->mutex);
203 BUG_ON(node);
dc17ff8f
CM
204 return 0;
205}
206
eb84ae03
CM
207/*
208 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
209 * when an ordered extent is finished. If the list covers more than one
210 * ordered extent, it is split across multiples.
eb84ae03 211 */
3edf7d33
CM
212int btrfs_add_ordered_sum(struct inode *inode,
213 struct btrfs_ordered_extent *entry,
214 struct btrfs_ordered_sum *sum)
dc17ff8f 215{
e6dcd2dc 216 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 217
e6dcd2dc
CM
218 tree = &BTRFS_I(inode)->ordered_tree;
219 mutex_lock(&tree->mutex);
e6dcd2dc
CM
220 list_add_tail(&sum->list, &entry->list);
221 mutex_unlock(&tree->mutex);
222 return 0;
dc17ff8f
CM
223}
224
eb84ae03
CM
225/*
226 * this is used to account for finished IO across a given range
227 * of the file. The IO should not span ordered extents. If
228 * a given ordered_extent is completely done, 1 is returned, otherwise
229 * 0.
230 *
231 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
232 * to make sure this function only returns 1 once for a given ordered extent.
233 */
e6dcd2dc
CM
234int btrfs_dec_test_ordered_pending(struct inode *inode,
235 u64 file_offset, u64 io_size)
dc17ff8f 236{
e6dcd2dc 237 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 238 struct rb_node *node;
e6dcd2dc 239 struct btrfs_ordered_extent *entry;
e6dcd2dc
CM
240 int ret;
241
242 tree = &BTRFS_I(inode)->ordered_tree;
243 mutex_lock(&tree->mutex);
e6dcd2dc 244 node = tree_search(tree, file_offset);
dc17ff8f 245 if (!node) {
e6dcd2dc
CM
246 ret = 1;
247 goto out;
dc17ff8f
CM
248 }
249
e6dcd2dc
CM
250 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
251 if (!offset_in_entry(entry, file_offset)) {
252 ret = 1;
253 goto out;
dc17ff8f 254 }
e6dcd2dc 255
8b62b72b
CM
256 if (io_size > entry->bytes_left) {
257 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
258 (unsigned long long)entry->bytes_left,
259 (unsigned long long)io_size);
260 }
261 entry->bytes_left -= io_size;
262 if (entry->bytes_left == 0)
e6dcd2dc 263 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
264 else
265 ret = 1;
e6dcd2dc
CM
266out:
267 mutex_unlock(&tree->mutex);
268 return ret == 0;
269}
dc17ff8f 270
eb84ae03
CM
271/*
272 * used to drop a reference on an ordered extent. This will free
273 * the extent if the last reference is dropped
274 */
e6dcd2dc
CM
275int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
276{
ba1da2f4
CM
277 struct list_head *cur;
278 struct btrfs_ordered_sum *sum;
279
280 if (atomic_dec_and_test(&entry->refs)) {
d397712b 281 while (!list_empty(&entry->list)) {
ba1da2f4
CM
282 cur = entry->list.next;
283 sum = list_entry(cur, struct btrfs_ordered_sum, list);
284 list_del(&sum->list);
285 kfree(sum);
286 }
e6dcd2dc 287 kfree(entry);
ba1da2f4 288 }
e6dcd2dc 289 return 0;
dc17ff8f 290}
cee36a03 291
eb84ae03
CM
292/*
293 * remove an ordered extent from the tree. No references are dropped
c2167754
YZ
294 * and you must wake_up entry->wait. You must hold the tree mutex
295 * while you call this function.
eb84ae03 296 */
c2167754 297static int __btrfs_remove_ordered_extent(struct inode *inode,
e6dcd2dc 298 struct btrfs_ordered_extent *entry)
cee36a03 299{
e6dcd2dc 300 struct btrfs_ordered_inode_tree *tree;
cee36a03 301 struct rb_node *node;
cee36a03 302
e6dcd2dc 303 tree = &BTRFS_I(inode)->ordered_tree;
e6dcd2dc 304 node = &entry->rb_node;
cee36a03 305 rb_erase(node, &tree->tree);
e6dcd2dc
CM
306 tree->last = NULL;
307 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885 308
32c00aff
JB
309 spin_lock(&BTRFS_I(inode)->accounting_lock);
310 BTRFS_I(inode)->outstanding_extents--;
311 spin_unlock(&BTRFS_I(inode)->accounting_lock);
312 btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root,
313 inode, 1);
314
3eaa2885
CM
315 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
316 list_del_init(&entry->root_extent_list);
5a3f23d5
CM
317
318 /*
319 * we have no more ordered extents for this inode and
320 * no dirty pages. We can safely remove it from the
321 * list of ordered extents
322 */
323 if (RB_EMPTY_ROOT(&tree->tree) &&
324 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
325 list_del_init(&BTRFS_I(inode)->ordered_operations);
326 }
3eaa2885
CM
327 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
328
c2167754
YZ
329 return 0;
330}
331
332/*
333 * remove an ordered extent from the tree. No references are dropped
334 * but any waiters are woken.
335 */
336int btrfs_remove_ordered_extent(struct inode *inode,
337 struct btrfs_ordered_extent *entry)
338{
339 struct btrfs_ordered_inode_tree *tree;
340 int ret;
341
342 tree = &BTRFS_I(inode)->ordered_tree;
343 mutex_lock(&tree->mutex);
344 ret = __btrfs_remove_ordered_extent(inode, entry);
e6dcd2dc
CM
345 mutex_unlock(&tree->mutex);
346 wake_up(&entry->wait);
c2167754
YZ
347
348 return ret;
cee36a03
CM
349}
350
d352ac68
CM
351/*
352 * wait for all the ordered extents in a root. This is done when balancing
353 * space between drives.
354 */
24bbcf04
YZ
355int btrfs_wait_ordered_extents(struct btrfs_root *root,
356 int nocow_only, int delay_iput)
3eaa2885
CM
357{
358 struct list_head splice;
359 struct list_head *cur;
360 struct btrfs_ordered_extent *ordered;
361 struct inode *inode;
362
363 INIT_LIST_HEAD(&splice);
364
365 spin_lock(&root->fs_info->ordered_extent_lock);
366 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 367 while (!list_empty(&splice)) {
3eaa2885
CM
368 cur = splice.next;
369 ordered = list_entry(cur, struct btrfs_ordered_extent,
370 root_extent_list);
7ea394f1 371 if (nocow_only &&
d899e052
YZ
372 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
373 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
374 list_move(&ordered->root_extent_list,
375 &root->fs_info->ordered_extents);
7ea394f1
YZ
376 cond_resched_lock(&root->fs_info->ordered_extent_lock);
377 continue;
378 }
379
3eaa2885
CM
380 list_del_init(&ordered->root_extent_list);
381 atomic_inc(&ordered->refs);
3eaa2885
CM
382
383 /*
5b21f2ed 384 * the inode may be getting freed (in sys_unlink path).
3eaa2885 385 */
5b21f2ed
ZY
386 inode = igrab(ordered->inode);
387
3eaa2885
CM
388 spin_unlock(&root->fs_info->ordered_extent_lock);
389
5b21f2ed
ZY
390 if (inode) {
391 btrfs_start_ordered_extent(inode, ordered, 1);
392 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
393 if (delay_iput)
394 btrfs_add_delayed_iput(inode);
395 else
396 iput(inode);
5b21f2ed
ZY
397 } else {
398 btrfs_put_ordered_extent(ordered);
399 }
3eaa2885
CM
400
401 spin_lock(&root->fs_info->ordered_extent_lock);
402 }
403 spin_unlock(&root->fs_info->ordered_extent_lock);
404 return 0;
405}
406
5a3f23d5
CM
407/*
408 * this is used during transaction commit to write all the inodes
409 * added to the ordered operation list. These files must be fully on
410 * disk before the transaction commits.
411 *
412 * we have two modes here, one is to just start the IO via filemap_flush
413 * and the other is to wait for all the io. When we wait, we have an
414 * extra check to make sure the ordered operation list really is empty
415 * before we return
416 */
417int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
418{
419 struct btrfs_inode *btrfs_inode;
420 struct inode *inode;
421 struct list_head splice;
422
423 INIT_LIST_HEAD(&splice);
424
425 mutex_lock(&root->fs_info->ordered_operations_mutex);
426 spin_lock(&root->fs_info->ordered_extent_lock);
427again:
428 list_splice_init(&root->fs_info->ordered_operations, &splice);
429
430 while (!list_empty(&splice)) {
431 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
432 ordered_operations);
433
434 inode = &btrfs_inode->vfs_inode;
435
436 list_del_init(&btrfs_inode->ordered_operations);
437
438 /*
439 * the inode may be getting freed (in sys_unlink path).
440 */
441 inode = igrab(inode);
442
443 if (!wait && inode) {
444 list_add_tail(&BTRFS_I(inode)->ordered_operations,
445 &root->fs_info->ordered_operations);
446 }
447 spin_unlock(&root->fs_info->ordered_extent_lock);
448
449 if (inode) {
450 if (wait)
451 btrfs_wait_ordered_range(inode, 0, (u64)-1);
452 else
453 filemap_flush(inode->i_mapping);
24bbcf04 454 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
455 }
456
457 cond_resched();
458 spin_lock(&root->fs_info->ordered_extent_lock);
459 }
460 if (wait && !list_empty(&root->fs_info->ordered_operations))
461 goto again;
462
463 spin_unlock(&root->fs_info->ordered_extent_lock);
464 mutex_unlock(&root->fs_info->ordered_operations_mutex);
465
466 return 0;
467}
468
eb84ae03
CM
469/*
470 * Used to start IO or wait for a given ordered extent to finish.
471 *
472 * If wait is one, this effectively waits on page writeback for all the pages
473 * in the extent, and it waits on the io completion code to insert
474 * metadata into the btree corresponding to the extent
475 */
476void btrfs_start_ordered_extent(struct inode *inode,
477 struct btrfs_ordered_extent *entry,
478 int wait)
e6dcd2dc
CM
479{
480 u64 start = entry->file_offset;
481 u64 end = start + entry->len - 1;
e1b81e67 482
eb84ae03
CM
483 /*
484 * pages in the range can be dirty, clean or writeback. We
485 * start IO on any dirty ones so the wait doesn't stall waiting
486 * for pdflush to find them
487 */
8aa38c31 488 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 489 if (wait) {
e6dcd2dc
CM
490 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
491 &entry->flags));
c8b97818 492 }
e6dcd2dc 493}
cee36a03 494
eb84ae03
CM
495/*
496 * Used to wait on ordered extents across a large range of bytes.
497 */
cb843a6f 498int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
499{
500 u64 end;
e5a2217e
CM
501 u64 orig_end;
502 u64 wait_end;
e6dcd2dc 503 struct btrfs_ordered_extent *ordered;
8b62b72b 504 int found;
e5a2217e
CM
505
506 if (start + len < start) {
f421950f 507 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
508 } else {
509 orig_end = start + len - 1;
f421950f
CM
510 if (orig_end > INT_LIMIT(loff_t))
511 orig_end = INT_LIMIT(loff_t);
e5a2217e 512 }
f421950f 513 wait_end = orig_end;
4a096752 514again:
e5a2217e
CM
515 /* start IO across the range first to instantiate any delalloc
516 * extents
517 */
8aa38c31 518 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
f421950f 519
771ed689
CM
520 /* The compression code will leave pages locked but return from
521 * writepage without setting the page writeback. Starting again
522 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
523 */
8aa38c31 524 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771ed689 525
8aa38c31 526 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 527
f421950f 528 end = orig_end;
8b62b72b 529 found = 0;
d397712b 530 while (1) {
e6dcd2dc 531 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 532 if (!ordered)
e6dcd2dc 533 break;
e5a2217e 534 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
535 btrfs_put_ordered_extent(ordered);
536 break;
537 }
538 if (ordered->file_offset + ordered->len < start) {
539 btrfs_put_ordered_extent(ordered);
540 break;
541 }
8b62b72b 542 found++;
e5a2217e 543 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
544 end = ordered->file_offset;
545 btrfs_put_ordered_extent(ordered);
e5a2217e 546 if (end == 0 || end == start)
e6dcd2dc
CM
547 break;
548 end--;
549 }
8b62b72b
CM
550 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
551 EXTENT_DELALLOC, 0, NULL)) {
771ed689 552 schedule_timeout(1);
4a096752
CM
553 goto again;
554 }
cb843a6f 555 return 0;
cee36a03
CM
556}
557
eb84ae03
CM
558/*
559 * find an ordered extent corresponding to file_offset. return NULL if
560 * nothing is found, otherwise take a reference on the extent and return it
561 */
e6dcd2dc
CM
562struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
563 u64 file_offset)
564{
565 struct btrfs_ordered_inode_tree *tree;
566 struct rb_node *node;
567 struct btrfs_ordered_extent *entry = NULL;
568
569 tree = &BTRFS_I(inode)->ordered_tree;
570 mutex_lock(&tree->mutex);
571 node = tree_search(tree, file_offset);
572 if (!node)
573 goto out;
574
575 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
576 if (!offset_in_entry(entry, file_offset))
577 entry = NULL;
578 if (entry)
579 atomic_inc(&entry->refs);
580out:
581 mutex_unlock(&tree->mutex);
582 return entry;
583}
584
eb84ae03
CM
585/*
586 * lookup and return any extent before 'file_offset'. NULL is returned
587 * if none is found
588 */
e6dcd2dc 589struct btrfs_ordered_extent *
d397712b 590btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
591{
592 struct btrfs_ordered_inode_tree *tree;
593 struct rb_node *node;
594 struct btrfs_ordered_extent *entry = NULL;
595
596 tree = &BTRFS_I(inode)->ordered_tree;
597 mutex_lock(&tree->mutex);
598 node = tree_search(tree, file_offset);
599 if (!node)
600 goto out;
601
602 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
603 atomic_inc(&entry->refs);
604out:
605 mutex_unlock(&tree->mutex);
606 return entry;
81d7ed29 607}
dbe674a9 608
eb84ae03
CM
609/*
610 * After an extent is done, call this to conditionally update the on disk
611 * i_size. i_size is updated to cover any fully written part of the file.
612 */
c2167754 613int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
614 struct btrfs_ordered_extent *ordered)
615{
616 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
617 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
618 u64 disk_i_size;
619 u64 new_i_size;
620 u64 i_size_test;
c2167754 621 u64 i_size = i_size_read(inode);
dbe674a9 622 struct rb_node *node;
c2167754 623 struct rb_node *prev = NULL;
dbe674a9 624 struct btrfs_ordered_extent *test;
c2167754
YZ
625 int ret = 1;
626
627 if (ordered)
628 offset = entry_end(ordered);
dbe674a9
CM
629
630 mutex_lock(&tree->mutex);
631 disk_i_size = BTRFS_I(inode)->disk_i_size;
632
c2167754
YZ
633 /* truncate file */
634 if (disk_i_size > i_size) {
635 BTRFS_I(inode)->disk_i_size = i_size;
636 ret = 0;
637 goto out;
638 }
639
dbe674a9
CM
640 /*
641 * if the disk i_size is already at the inode->i_size, or
642 * this ordered extent is inside the disk i_size, we're done
643 */
c2167754 644 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
645 goto out;
646 }
647
648 /*
649 * we can't update the disk_isize if there are delalloc bytes
650 * between disk_i_size and this ordered extent
651 */
c2167754 652 if (test_range_bit(io_tree, disk_i_size, offset - 1,
9655d298 653 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
654 goto out;
655 }
656 /*
657 * walk backward from this ordered extent to disk_i_size.
658 * if we find an ordered extent then we can't update disk i_size
659 * yet
660 */
c2167754
YZ
661 if (ordered) {
662 node = rb_prev(&ordered->rb_node);
663 } else {
664 prev = tree_search(tree, offset);
665 /*
666 * we insert file extents without involving ordered struct,
667 * so there should be no ordered struct cover this offset
668 */
669 if (prev) {
670 test = rb_entry(prev, struct btrfs_ordered_extent,
671 rb_node);
672 BUG_ON(offset_in_entry(test, offset));
673 }
674 node = prev;
675 }
676 while (node) {
dbe674a9
CM
677 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
678 if (test->file_offset + test->len <= disk_i_size)
679 break;
c2167754 680 if (test->file_offset >= i_size)
dbe674a9
CM
681 break;
682 if (test->file_offset >= disk_i_size)
683 goto out;
c2167754 684 node = rb_prev(node);
dbe674a9 685 }
c2167754 686 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
687
688 /*
689 * at this point, we know we can safely update i_size to at least
690 * the offset from this ordered extent. But, we need to
691 * walk forward and see if ios from higher up in the file have
692 * finished.
693 */
c2167754
YZ
694 if (ordered) {
695 node = rb_next(&ordered->rb_node);
696 } else {
697 if (prev)
698 node = rb_next(prev);
699 else
700 node = rb_first(&tree->tree);
701 }
dbe674a9
CM
702 i_size_test = 0;
703 if (node) {
704 /*
705 * do we have an area where IO might have finished
706 * between our ordered extent and the next one.
707 */
708 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
c2167754 709 if (test->file_offset > offset)
b48652c1 710 i_size_test = test->file_offset;
dbe674a9 711 } else {
c2167754 712 i_size_test = i_size;
dbe674a9
CM
713 }
714
715 /*
716 * i_size_test is the end of a region after this ordered
717 * extent where there are no ordered extents. As long as there
718 * are no delalloc bytes in this area, it is safe to update
719 * disk_i_size to the end of the region.
720 */
c2167754
YZ
721 if (i_size_test > offset &&
722 !test_range_bit(io_tree, offset, i_size_test - 1,
723 EXTENT_DELALLOC, 0, NULL)) {
724 new_i_size = min_t(u64, i_size_test, i_size);
dbe674a9
CM
725 }
726 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 727 ret = 0;
dbe674a9 728out:
c2167754
YZ
729 /*
730 * we need to remove the ordered extent with the tree lock held
731 * so that other people calling this function don't find our fully
732 * processed ordered entry and skip updating the i_size
733 */
734 if (ordered)
735 __btrfs_remove_ordered_extent(inode, ordered);
dbe674a9 736 mutex_unlock(&tree->mutex);
c2167754
YZ
737 if (ordered)
738 wake_up(&ordered->wait);
739 return ret;
dbe674a9 740}
ba1da2f4 741
eb84ae03
CM
742/*
743 * search the ordered extents for one corresponding to 'offset' and
744 * try to find a checksum. This is used because we allow pages to
745 * be reclaimed before their checksum is actually put into the btree
746 */
d20f7043
CM
747int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
748 u32 *sum)
ba1da2f4
CM
749{
750 struct btrfs_ordered_sum *ordered_sum;
751 struct btrfs_sector_sum *sector_sums;
752 struct btrfs_ordered_extent *ordered;
753 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
754 unsigned long num_sectors;
755 unsigned long i;
756 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 757 int ret = 1;
ba1da2f4
CM
758
759 ordered = btrfs_lookup_ordered_extent(inode, offset);
760 if (!ordered)
761 return 1;
762
763 mutex_lock(&tree->mutex);
c6e30871 764 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 765 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 766 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 767 sector_sums = ordered_sum->sums;
3edf7d33 768 for (i = 0; i < num_sectors; i++) {
d20f7043 769 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
770 *sum = sector_sums[i].sum;
771 ret = 0;
772 goto out;
773 }
774 }
ba1da2f4
CM
775 }
776 }
777out:
778 mutex_unlock(&tree->mutex);
89642229 779 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
780 return ret;
781}
782
f421950f 783
5a3f23d5
CM
784/*
785 * add a given inode to the list of inodes that must be fully on
786 * disk before a transaction commit finishes.
787 *
788 * This basically gives us the ext3 style data=ordered mode, and it is mostly
789 * used to make sure renamed files are fully on disk.
790 *
791 * It is a noop if the inode is already fully on disk.
792 *
793 * If trans is not null, we'll do a friendly check for a transaction that
794 * is already flushing things and force the IO down ourselves.
795 */
796int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
797 struct btrfs_root *root,
798 struct inode *inode)
799{
800 u64 last_mod;
801
802 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
803
804 /*
805 * if this file hasn't been changed since the last transaction
806 * commit, we can safely return without doing anything
807 */
808 if (last_mod < root->fs_info->last_trans_committed)
809 return 0;
810
811 /*
812 * the transaction is already committing. Just start the IO and
813 * don't bother with all of this list nonsense
814 */
815 if (trans && root->fs_info->running_transaction->blocked) {
816 btrfs_wait_ordered_range(inode, 0, (u64)-1);
817 return 0;
818 }
819
820 spin_lock(&root->fs_info->ordered_extent_lock);
821 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
822 list_add_tail(&BTRFS_I(inode)->ordered_operations,
823 &root->fs_info->ordered_operations);
824 }
825 spin_unlock(&root->fs_info->ordered_extent_lock);
826
827 return 0;
828}