Btrfs: update nodatacow code v2
[linux-2.6-block.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/gfp.h>
20#include <linux/slab.h>
d6bfde87 21#include <linux/blkdev.h>
f421950f
CM
22#include <linux/writeback.h>
23#include <linux/pagevec.h>
dc17ff8f
CM
24#include "ctree.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
e6dcd2dc 27#include "extent_io.h"
dc17ff8f 28
e6dcd2dc 29static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 30{
e6dcd2dc
CM
31 if (entry->file_offset + entry->len < entry->file_offset)
32 return (u64)-1;
33 return entry->file_offset + entry->len;
dc17ff8f
CM
34}
35
d352ac68
CM
36/* returns NULL if the insertion worked, or it returns the node it did find
37 * in the tree
38 */
e6dcd2dc
CM
39static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 struct rb_node *node)
dc17ff8f
CM
41{
42 struct rb_node ** p = &root->rb_node;
43 struct rb_node * parent = NULL;
e6dcd2dc 44 struct btrfs_ordered_extent *entry;
dc17ff8f
CM
45
46 while(*p) {
47 parent = *p;
e6dcd2dc 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 49
e6dcd2dc 50 if (file_offset < entry->file_offset)
dc17ff8f 51 p = &(*p)->rb_left;
e6dcd2dc 52 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
53 p = &(*p)->rb_right;
54 else
55 return parent;
56 }
57
58 rb_link_node(node, parent, p);
59 rb_insert_color(node, root);
60 return NULL;
61}
62
d352ac68
CM
63/*
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
66 */
e6dcd2dc
CM
67static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
dc17ff8f
CM
69{
70 struct rb_node * n = root->rb_node;
71 struct rb_node *prev = NULL;
e6dcd2dc
CM
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f
CM
75
76 while(n) {
e6dcd2dc 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
78 prev = n;
79 prev_entry = entry;
dc17ff8f 80
e6dcd2dc 81 if (file_offset < entry->file_offset)
dc17ff8f 82 n = n->rb_left;
e6dcd2dc 83 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
84 n = n->rb_right;
85 else
86 return n;
87 }
88 if (!prev_ret)
89 return NULL;
90
e6dcd2dc
CM
91 while(prev && file_offset >= entry_end(prev_entry)) {
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
99
100 prev = test;
101 }
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
105 while(prev && file_offset < entry_end(prev_entry)) {
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
dc17ff8f
CM
112 }
113 *prev_ret = prev;
114 return NULL;
115}
116
d352ac68
CM
117/*
118 * helper to check if a given offset is inside a given entry
119 */
e6dcd2dc
CM
120static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121{
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
126}
127
d352ac68
CM
128/*
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
131 */
e6dcd2dc
CM
132static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 u64 file_offset)
dc17ff8f 134{
e6dcd2dc 135 struct rb_root *root = &tree->tree;
dc17ff8f
CM
136 struct rb_node *prev;
137 struct rb_node *ret;
e6dcd2dc
CM
138 struct btrfs_ordered_extent *entry;
139
140 if (tree->last) {
141 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 rb_node);
143 if (offset_in_entry(entry, file_offset))
144 return tree->last;
145 }
146 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 147 if (!ret)
e6dcd2dc
CM
148 ret = prev;
149 if (ret)
150 tree->last = ret;
dc17ff8f
CM
151 return ret;
152}
153
eb84ae03
CM
154/* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
156 *
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
159 *
160 * len is the length of the extent
161 *
162 * This also sets the EXTENT_ORDERED bit on the range in the inode.
163 *
164 * The tree is given a single reference on the ordered extent that was
165 * inserted.
166 */
e6dcd2dc 167int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
80ff3856 168 u64 start, u64 len, u64 disk_len, int type)
dc17ff8f 169{
dc17ff8f 170 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
171 struct rb_node *node;
172 struct btrfs_ordered_extent *entry;
dc17ff8f 173
e6dcd2dc
CM
174 tree = &BTRFS_I(inode)->ordered_tree;
175 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
176 if (!entry)
177 return -ENOMEM;
178
e6dcd2dc
CM
179 mutex_lock(&tree->mutex);
180 entry->file_offset = file_offset;
181 entry->start = start;
182 entry->len = len;
c8b97818 183 entry->disk_len = disk_len;
3eaa2885 184 entry->inode = inode;
80ff3856
YZ
185 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_COMPRESSED)
186 set_bit(type, &entry->flags);
3eaa2885 187
e6dcd2dc
CM
188 /* one ref for the tree */
189 atomic_set(&entry->refs, 1);
190 init_waitqueue_head(&entry->wait);
191 INIT_LIST_HEAD(&entry->list);
3eaa2885 192 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 193
e6dcd2dc
CM
194 node = tree_insert(&tree->tree, file_offset,
195 &entry->rb_node);
196 if (node) {
3eaa2885
CM
197 printk("warning dup entry from add_ordered_extent\n");
198 BUG();
e6dcd2dc
CM
199 }
200 set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
201 entry_end(entry) - 1, GFP_NOFS);
1b1e2135 202
3eaa2885
CM
203 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
204 list_add_tail(&entry->root_extent_list,
205 &BTRFS_I(inode)->root->fs_info->ordered_extents);
206 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
207
e6dcd2dc
CM
208 mutex_unlock(&tree->mutex);
209 BUG_ON(node);
dc17ff8f
CM
210 return 0;
211}
212
eb84ae03
CM
213/*
214 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
215 * when an ordered extent is finished. If the list covers more than one
216 * ordered extent, it is split across multiples.
eb84ae03 217 */
3edf7d33
CM
218int btrfs_add_ordered_sum(struct inode *inode,
219 struct btrfs_ordered_extent *entry,
220 struct btrfs_ordered_sum *sum)
dc17ff8f 221{
e6dcd2dc 222 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 223
e6dcd2dc
CM
224 tree = &BTRFS_I(inode)->ordered_tree;
225 mutex_lock(&tree->mutex);
e6dcd2dc
CM
226 list_add_tail(&sum->list, &entry->list);
227 mutex_unlock(&tree->mutex);
228 return 0;
dc17ff8f
CM
229}
230
eb84ae03
CM
231/*
232 * this is used to account for finished IO across a given range
233 * of the file. The IO should not span ordered extents. If
234 * a given ordered_extent is completely done, 1 is returned, otherwise
235 * 0.
236 *
237 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
238 * to make sure this function only returns 1 once for a given ordered extent.
239 */
e6dcd2dc
CM
240int btrfs_dec_test_ordered_pending(struct inode *inode,
241 u64 file_offset, u64 io_size)
dc17ff8f 242{
e6dcd2dc 243 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 244 struct rb_node *node;
e6dcd2dc
CM
245 struct btrfs_ordered_extent *entry;
246 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
247 int ret;
248
249 tree = &BTRFS_I(inode)->ordered_tree;
250 mutex_lock(&tree->mutex);
251 clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
252 GFP_NOFS);
253 node = tree_search(tree, file_offset);
dc17ff8f 254 if (!node) {
e6dcd2dc
CM
255 ret = 1;
256 goto out;
dc17ff8f
CM
257 }
258
e6dcd2dc
CM
259 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
260 if (!offset_in_entry(entry, file_offset)) {
261 ret = 1;
262 goto out;
dc17ff8f 263 }
e6dcd2dc
CM
264
265 ret = test_range_bit(io_tree, entry->file_offset,
266 entry->file_offset + entry->len - 1,
267 EXTENT_ORDERED, 0);
e6dcd2dc
CM
268 if (ret == 0)
269 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
270out:
271 mutex_unlock(&tree->mutex);
272 return ret == 0;
273}
dc17ff8f 274
eb84ae03
CM
275/*
276 * used to drop a reference on an ordered extent. This will free
277 * the extent if the last reference is dropped
278 */
e6dcd2dc
CM
279int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
280{
ba1da2f4
CM
281 struct list_head *cur;
282 struct btrfs_ordered_sum *sum;
283
284 if (atomic_dec_and_test(&entry->refs)) {
285 while(!list_empty(&entry->list)) {
286 cur = entry->list.next;
287 sum = list_entry(cur, struct btrfs_ordered_sum, list);
288 list_del(&sum->list);
289 kfree(sum);
290 }
e6dcd2dc 291 kfree(entry);
ba1da2f4 292 }
e6dcd2dc 293 return 0;
dc17ff8f 294}
cee36a03 295
eb84ae03
CM
296/*
297 * remove an ordered extent from the tree. No references are dropped
298 * but, anyone waiting on this extent is woken up.
299 */
e6dcd2dc
CM
300int btrfs_remove_ordered_extent(struct inode *inode,
301 struct btrfs_ordered_extent *entry)
cee36a03 302{
e6dcd2dc 303 struct btrfs_ordered_inode_tree *tree;
cee36a03 304 struct rb_node *node;
cee36a03 305
e6dcd2dc
CM
306 tree = &BTRFS_I(inode)->ordered_tree;
307 mutex_lock(&tree->mutex);
308 node = &entry->rb_node;
cee36a03 309 rb_erase(node, &tree->tree);
e6dcd2dc
CM
310 tree->last = NULL;
311 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885
CM
312
313 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
314 list_del_init(&entry->root_extent_list);
315 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
316
e6dcd2dc
CM
317 mutex_unlock(&tree->mutex);
318 wake_up(&entry->wait);
319 return 0;
cee36a03
CM
320}
321
d352ac68
CM
322/*
323 * wait for all the ordered extents in a root. This is done when balancing
324 * space between drives.
325 */
7ea394f1 326int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
3eaa2885
CM
327{
328 struct list_head splice;
329 struct list_head *cur;
330 struct btrfs_ordered_extent *ordered;
331 struct inode *inode;
332
333 INIT_LIST_HEAD(&splice);
334
335 spin_lock(&root->fs_info->ordered_extent_lock);
336 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 337 while (!list_empty(&splice)) {
3eaa2885
CM
338 cur = splice.next;
339 ordered = list_entry(cur, struct btrfs_ordered_extent,
340 root_extent_list);
7ea394f1
YZ
341 if (nocow_only &&
342 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5b21f2ed
ZY
343 list_move(&ordered->root_extent_list,
344 &root->fs_info->ordered_extents);
7ea394f1
YZ
345 cond_resched_lock(&root->fs_info->ordered_extent_lock);
346 continue;
347 }
348
3eaa2885
CM
349 list_del_init(&ordered->root_extent_list);
350 atomic_inc(&ordered->refs);
3eaa2885
CM
351
352 /*
5b21f2ed 353 * the inode may be getting freed (in sys_unlink path).
3eaa2885 354 */
5b21f2ed
ZY
355 inode = igrab(ordered->inode);
356
3eaa2885
CM
357 spin_unlock(&root->fs_info->ordered_extent_lock);
358
5b21f2ed
ZY
359 if (inode) {
360 btrfs_start_ordered_extent(inode, ordered, 1);
361 btrfs_put_ordered_extent(ordered);
362 iput(inode);
363 } else {
364 btrfs_put_ordered_extent(ordered);
365 }
3eaa2885
CM
366
367 spin_lock(&root->fs_info->ordered_extent_lock);
368 }
369 spin_unlock(&root->fs_info->ordered_extent_lock);
370 return 0;
371}
372
eb84ae03
CM
373/*
374 * Used to start IO or wait for a given ordered extent to finish.
375 *
376 * If wait is one, this effectively waits on page writeback for all the pages
377 * in the extent, and it waits on the io completion code to insert
378 * metadata into the btree corresponding to the extent
379 */
380void btrfs_start_ordered_extent(struct inode *inode,
381 struct btrfs_ordered_extent *entry,
382 int wait)
e6dcd2dc
CM
383{
384 u64 start = entry->file_offset;
385 u64 end = start + entry->len - 1;
e1b81e67 386
eb84ae03
CM
387 /*
388 * pages in the range can be dirty, clean or writeback. We
389 * start IO on any dirty ones so the wait doesn't stall waiting
390 * for pdflush to find them
391 */
f421950f 392 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
c8b97818 393 if (wait) {
e6dcd2dc
CM
394 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
395 &entry->flags));
c8b97818 396 }
e6dcd2dc 397}
cee36a03 398
eb84ae03
CM
399/*
400 * Used to wait on ordered extents across a large range of bytes.
401 */
cb843a6f 402int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
403{
404 u64 end;
e5a2217e
CM
405 u64 orig_end;
406 u64 wait_end;
e6dcd2dc 407 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
408
409 if (start + len < start) {
f421950f 410 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
411 } else {
412 orig_end = start + len - 1;
f421950f
CM
413 if (orig_end > INT_LIMIT(loff_t))
414 orig_end = INT_LIMIT(loff_t);
e5a2217e 415 }
f421950f 416 wait_end = orig_end;
4a096752 417again:
e5a2217e
CM
418 /* start IO across the range first to instantiate any delalloc
419 * extents
420 */
f421950f
CM
421 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
422
423 btrfs_wait_on_page_writeback_range(inode->i_mapping,
424 start >> PAGE_CACHE_SHIFT,
425 orig_end >> PAGE_CACHE_SHIFT);
e5a2217e 426
f421950f 427 end = orig_end;
e6dcd2dc
CM
428 while(1) {
429 ordered = btrfs_lookup_first_ordered_extent(inode, end);
430 if (!ordered) {
431 break;
432 }
e5a2217e 433 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
434 btrfs_put_ordered_extent(ordered);
435 break;
436 }
437 if (ordered->file_offset + ordered->len < start) {
438 btrfs_put_ordered_extent(ordered);
439 break;
440 }
e5a2217e 441 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
442 end = ordered->file_offset;
443 btrfs_put_ordered_extent(ordered);
e5a2217e 444 if (end == 0 || end == start)
e6dcd2dc
CM
445 break;
446 end--;
447 }
4a096752
CM
448 if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
449 EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
450 printk("inode %lu still ordered or delalloc after wait "
451 "%llu %llu\n", inode->i_ino,
452 (unsigned long long)start,
453 (unsigned long long)orig_end);
454 goto again;
455 }
cb843a6f 456 return 0;
cee36a03
CM
457}
458
eb84ae03
CM
459/*
460 * find an ordered extent corresponding to file_offset. return NULL if
461 * nothing is found, otherwise take a reference on the extent and return it
462 */
e6dcd2dc
CM
463struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
464 u64 file_offset)
465{
466 struct btrfs_ordered_inode_tree *tree;
467 struct rb_node *node;
468 struct btrfs_ordered_extent *entry = NULL;
469
470 tree = &BTRFS_I(inode)->ordered_tree;
471 mutex_lock(&tree->mutex);
472 node = tree_search(tree, file_offset);
473 if (!node)
474 goto out;
475
476 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
477 if (!offset_in_entry(entry, file_offset))
478 entry = NULL;
479 if (entry)
480 atomic_inc(&entry->refs);
481out:
482 mutex_unlock(&tree->mutex);
483 return entry;
484}
485
eb84ae03
CM
486/*
487 * lookup and return any extent before 'file_offset'. NULL is returned
488 * if none is found
489 */
e6dcd2dc
CM
490struct btrfs_ordered_extent *
491btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
492{
493 struct btrfs_ordered_inode_tree *tree;
494 struct rb_node *node;
495 struct btrfs_ordered_extent *entry = NULL;
496
497 tree = &BTRFS_I(inode)->ordered_tree;
498 mutex_lock(&tree->mutex);
499 node = tree_search(tree, file_offset);
500 if (!node)
501 goto out;
502
503 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
504 atomic_inc(&entry->refs);
505out:
506 mutex_unlock(&tree->mutex);
507 return entry;
81d7ed29 508}
dbe674a9 509
eb84ae03
CM
510/*
511 * After an extent is done, call this to conditionally update the on disk
512 * i_size. i_size is updated to cover any fully written part of the file.
513 */
dbe674a9
CM
514int btrfs_ordered_update_i_size(struct inode *inode,
515 struct btrfs_ordered_extent *ordered)
516{
517 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
518 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
519 u64 disk_i_size;
520 u64 new_i_size;
521 u64 i_size_test;
522 struct rb_node *node;
523 struct btrfs_ordered_extent *test;
524
525 mutex_lock(&tree->mutex);
526 disk_i_size = BTRFS_I(inode)->disk_i_size;
527
528 /*
529 * if the disk i_size is already at the inode->i_size, or
530 * this ordered extent is inside the disk i_size, we're done
531 */
532 if (disk_i_size >= inode->i_size ||
533 ordered->file_offset + ordered->len <= disk_i_size) {
534 goto out;
535 }
536
537 /*
538 * we can't update the disk_isize if there are delalloc bytes
539 * between disk_i_size and this ordered extent
540 */
541 if (test_range_bit(io_tree, disk_i_size,
542 ordered->file_offset + ordered->len - 1,
543 EXTENT_DELALLOC, 0)) {
544 goto out;
545 }
546 /*
547 * walk backward from this ordered extent to disk_i_size.
548 * if we find an ordered extent then we can't update disk i_size
549 * yet
550 */
ba1da2f4 551 node = &ordered->rb_node;
dbe674a9 552 while(1) {
ba1da2f4 553 node = rb_prev(node);
dbe674a9
CM
554 if (!node)
555 break;
556 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
557 if (test->file_offset + test->len <= disk_i_size)
558 break;
559 if (test->file_offset >= inode->i_size)
560 break;
561 if (test->file_offset >= disk_i_size)
562 goto out;
563 }
564 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
565
566 /*
567 * at this point, we know we can safely update i_size to at least
568 * the offset from this ordered extent. But, we need to
569 * walk forward and see if ios from higher up in the file have
570 * finished.
571 */
572 node = rb_next(&ordered->rb_node);
573 i_size_test = 0;
574 if (node) {
575 /*
576 * do we have an area where IO might have finished
577 * between our ordered extent and the next one.
578 */
579 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
580 if (test->file_offset > entry_end(ordered)) {
b48652c1 581 i_size_test = test->file_offset;
dbe674a9
CM
582 }
583 } else {
584 i_size_test = i_size_read(inode);
585 }
586
587 /*
588 * i_size_test is the end of a region after this ordered
589 * extent where there are no ordered extents. As long as there
590 * are no delalloc bytes in this area, it is safe to update
591 * disk_i_size to the end of the region.
592 */
593 if (i_size_test > entry_end(ordered) &&
b48652c1 594 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
dbe674a9
CM
595 EXTENT_DELALLOC, 0)) {
596 new_i_size = min_t(u64, i_size_test, i_size_read(inode));
597 }
598 BTRFS_I(inode)->disk_i_size = new_i_size;
599out:
600 mutex_unlock(&tree->mutex);
601 return 0;
602}
ba1da2f4 603
eb84ae03
CM
604/*
605 * search the ordered extents for one corresponding to 'offset' and
606 * try to find a checksum. This is used because we allow pages to
607 * be reclaimed before their checksum is actually put into the btree
608 */
ba1da2f4
CM
609int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
610{
611 struct btrfs_ordered_sum *ordered_sum;
612 struct btrfs_sector_sum *sector_sums;
613 struct btrfs_ordered_extent *ordered;
614 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
615 struct list_head *cur;
3edf7d33
CM
616 unsigned long num_sectors;
617 unsigned long i;
618 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 619 int ret = 1;
ba1da2f4
CM
620
621 ordered = btrfs_lookup_ordered_extent(inode, offset);
622 if (!ordered)
623 return 1;
624
625 mutex_lock(&tree->mutex);
626 list_for_each_prev(cur, &ordered->list) {
627 ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
3edf7d33
CM
628 if (offset >= ordered_sum->file_offset) {
629 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 630 sector_sums = ordered_sum->sums;
3edf7d33
CM
631 for (i = 0; i < num_sectors; i++) {
632 if (sector_sums[i].offset == offset) {
3edf7d33
CM
633 *sum = sector_sums[i].sum;
634 ret = 0;
635 goto out;
636 }
637 }
ba1da2f4
CM
638 }
639 }
640out:
641 mutex_unlock(&tree->mutex);
89642229 642 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
643 return ret;
644}
645
f421950f
CM
646
647/**
648 * taken from mm/filemap.c because it isn't exported
649 *
650 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
651 * @mapping: address space structure to write
652 * @start: offset in bytes where the range starts
653 * @end: offset in bytes where the range ends (inclusive)
654 * @sync_mode: enable synchronous operation
655 *
656 * Start writeback against all of a mapping's dirty pages that lie
657 * within the byte offsets <start, end> inclusive.
658 *
659 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
660 * opposed to a regular memory cleansing writeback. The difference between
661 * these two operations is that if a dirty page/buffer is encountered, it must
662 * be waited upon, and not just skipped over.
663 */
664int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
665 loff_t end, int sync_mode)
666{
667 struct writeback_control wbc = {
668 .sync_mode = sync_mode,
669 .nr_to_write = mapping->nrpages * 2,
670 .range_start = start,
671 .range_end = end,
672 .for_writepages = 1,
673 };
674 return btrfs_writepages(mapping, &wbc);
675}
676
677/**
678 * taken from mm/filemap.c because it isn't exported
679 *
680 * wait_on_page_writeback_range - wait for writeback to complete
681 * @mapping: target address_space
682 * @start: beginning page index
683 * @end: ending page index
684 *
685 * Wait for writeback to complete against pages indexed by start->end
686 * inclusive
687 */
688int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
689 pgoff_t start, pgoff_t end)
690{
691 struct pagevec pvec;
692 int nr_pages;
693 int ret = 0;
694 pgoff_t index;
695
696 if (end < start)
697 return 0;
698
699 pagevec_init(&pvec, 0);
700 index = start;
701 while ((index <= end) &&
702 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
703 PAGECACHE_TAG_WRITEBACK,
704 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
705 unsigned i;
706
707 for (i = 0; i < nr_pages; i++) {
708 struct page *page = pvec.pages[i];
709
710 /* until radix tree lookup accepts end_index */
711 if (page->index > end)
712 continue;
713
714 wait_on_page_writeback(page);
715 if (PageError(page))
716 ret = -EIO;
717 }
718 pagevec_release(&pvec);
719 cond_resched();
720 }
721
722 /* Check for outstanding write errors */
723 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
724 ret = -ENOSPC;
725 if (test_and_clear_bit(AS_EIO, &mapping->flags))
726 ret = -EIO;
727
728 return ret;
729}