Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
2d55cd5f 41#include <linux/timer.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_NR_AEN_COMMANDS 1
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
9d43cf64 59
58ffacb5
MW
60static int use_threaded_interrupts;
61module_param(use_threaded_interrupts, int, 0);
62
8ffaadf7
JD
63static bool use_cmb_sqes = true;
64module_param(use_cmb_sqes, bool, 0644);
65MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
9a6b9458 67static struct workqueue_struct *nvme_workq;
1fa6aead 68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
4cc06521 72static int nvme_reset(struct nvme_dev *dev);
a0fa9647 73static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 75
1c63dc66
CH
76/*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79struct nvme_dev {
1c63dc66
CH
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
1c63dc66
CH
92 struct msix_entry *entry;
93 void __iomem *bar;
1c63dc66 94 struct work_struct reset_work;
1c63dc66 95 struct work_struct scan_work;
5c8809e6 96 struct work_struct remove_work;
9396dec9 97 struct work_struct async_work;
2d55cd5f 98 struct timer_list watchdog_timer;
77bf25ea 99 struct mutex shutdown_lock;
1c63dc66 100 bool subsystem;
1c63dc66
CH
101 void __iomem *cmb;
102 dma_addr_t cmb_dma_addr;
103 u64 cmb_size;
104 u32 cmbsz;
fd634f41 105 unsigned long flags;
db3cbfff 106
fd634f41 107#define NVME_CTRL_RESETTING 0
646017a6 108#define NVME_CTRL_REMOVING 1
1c63dc66
CH
109
110 struct nvme_ctrl ctrl;
db3cbfff 111 struct completion ioq_wait;
4d115420 112};
1fa6aead 113
1c63dc66
CH
114static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115{
116 return container_of(ctrl, struct nvme_dev, ctrl);
117}
118
b60503ba
MW
119/*
120 * An NVM Express queue. Each device has at least two (one for admin
121 * commands and one for I/O commands).
122 */
123struct nvme_queue {
124 struct device *q_dmadev;
091b6092 125 struct nvme_dev *dev;
3193f07b 126 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
127 spinlock_t q_lock;
128 struct nvme_command *sq_cmds;
8ffaadf7 129 struct nvme_command __iomem *sq_cmds_io;
b60503ba 130 volatile struct nvme_completion *cqes;
42483228 131 struct blk_mq_tags **tags;
b60503ba
MW
132 dma_addr_t sq_dma_addr;
133 dma_addr_t cq_dma_addr;
b60503ba
MW
134 u32 __iomem *q_db;
135 u16 q_depth;
6222d172 136 s16 cq_vector;
b60503ba
MW
137 u16 sq_tail;
138 u16 cq_head;
c30341dc 139 u16 qid;
e9539f47
MW
140 u8 cq_phase;
141 u8 cqe_seen;
b60503ba
MW
142};
143
71bd150c
CH
144/*
145 * The nvme_iod describes the data in an I/O, including the list of PRP
146 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 147 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
148 * allocated to store the PRP list.
149 */
150struct nvme_iod {
f4800d6d
CH
151 struct nvme_queue *nvmeq;
152 int aborted;
71bd150c 153 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
154 int nents; /* Used in scatterlist */
155 int length; /* Of data, in bytes */
156 dma_addr_t first_dma;
bf684057 157 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
158 struct scatterlist *sg;
159 struct scatterlist inline_sg[0];
b60503ba
MW
160};
161
162/*
163 * Check we didin't inadvertently grow the command struct
164 */
165static inline void _nvme_check_size(void)
166{
167 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 172 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 173 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
174 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 178 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
179}
180
ac3dd5bd
JA
181/*
182 * Max size of iod being embedded in the request payload
183 */
184#define NVME_INT_PAGES 2
5fd4ce1b 185#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
186
187/*
188 * Will slightly overestimate the number of pages needed. This is OK
189 * as it only leads to a small amount of wasted memory for the lifetime of
190 * the I/O.
191 */
192static int nvme_npages(unsigned size, struct nvme_dev *dev)
193{
5fd4ce1b
CH
194 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195 dev->ctrl.page_size);
ac3dd5bd
JA
196 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197}
198
f4800d6d
CH
199static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200 unsigned int size, unsigned int nseg)
ac3dd5bd 201{
f4800d6d
CH
202 return sizeof(__le64 *) * nvme_npages(size, dev) +
203 sizeof(struct scatterlist) * nseg;
204}
ac3dd5bd 205
f4800d6d
CH
206static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207{
208 return sizeof(struct nvme_iod) +
209 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
210}
211
a4aea562
MB
212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
e85248e5 214{
a4aea562
MB
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
42483228
KB
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
a4aea562 222 hctx->driver_data = nvmeq;
42483228 223 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 224 return 0;
e85248e5
MW
225}
226
4af0e21c
KB
227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228{
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232}
233
a4aea562
MB
234static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
22404274 237{
a4aea562 238 struct nvme_dev *dev = data;
f4800d6d 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
f4800d6d 243 iod->nvmeq = nvmeq;
a4aea562 244 return 0;
22404274
KB
245}
246
a4aea562
MB
247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
b60503ba 249{
a4aea562 250 struct nvme_dev *dev = data;
42483228 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 252
42483228
KB
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 255
42483228 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
257 hctx->driver_data = nvmeq;
258 return 0;
b60503ba
MW
259}
260
a4aea562
MB
261static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
f4800d6d 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
f4800d6d 270 iod->nvmeq = nvmeq;
a4aea562
MB
271 return 0;
272}
273
646017a6
KB
274static void nvme_queue_scan(struct nvme_dev *dev)
275{
276 /*
277 * Do not queue new scan work when a controller is reset during
278 * removal.
279 */
280 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
281 return;
282 queue_work(nvme_workq, &dev->scan_work);
283}
284
adf68f21
CH
285static void nvme_complete_async_event(struct nvme_dev *dev,
286 struct nvme_completion *cqe)
a4aea562 287{
adf68f21
CH
288 u16 status = le16_to_cpu(cqe->status) >> 1;
289 u32 result = le32_to_cpu(cqe->result);
a4aea562 290
9396dec9 291 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
adf68f21 292 ++dev->ctrl.event_limit;
9396dec9
CH
293 queue_work(nvme_workq, &dev->async_work);
294 }
295
a5768aa8
KB
296 if (status != NVME_SC_SUCCESS)
297 return;
298
299 switch (result & 0xff07) {
300 case NVME_AER_NOTICE_NS_CHANGED:
1b3c47c1 301 dev_info(dev->ctrl.device, "rescanning\n");
646017a6 302 nvme_queue_scan(dev);
a5768aa8 303 default:
1b3c47c1 304 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
a4aea562 305 }
b60503ba
MW
306}
307
308/**
adf68f21 309 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
310 * @nvmeq: The queue to use
311 * @cmd: The command to send
312 *
313 * Safe to use from interrupt context
314 */
e3f879bf
SB
315static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
316 struct nvme_command *cmd)
b60503ba 317{
a4aea562
MB
318 u16 tail = nvmeq->sq_tail;
319
8ffaadf7
JD
320 if (nvmeq->sq_cmds_io)
321 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
322 else
323 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
324
b60503ba
MW
325 if (++tail == nvmeq->q_depth)
326 tail = 0;
7547881d 327 writel(tail, nvmeq->q_db);
b60503ba 328 nvmeq->sq_tail = tail;
b60503ba
MW
329}
330
f4800d6d 331static __le64 **iod_list(struct request *req)
b60503ba 332{
f4800d6d
CH
333 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
334 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
335}
336
f4800d6d 337static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 338{
f4800d6d
CH
339 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
340 int nseg = rq->nr_phys_segments;
341 unsigned size;
ac3dd5bd 342
f4800d6d
CH
343 if (rq->cmd_flags & REQ_DISCARD)
344 size = sizeof(struct nvme_dsm_range);
345 else
346 size = blk_rq_bytes(rq);
ac3dd5bd 347
f4800d6d
CH
348 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
349 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
350 if (!iod->sg)
351 return BLK_MQ_RQ_QUEUE_BUSY;
352 } else {
353 iod->sg = iod->inline_sg;
ac3dd5bd
JA
354 }
355
f4800d6d
CH
356 iod->aborted = 0;
357 iod->npages = -1;
358 iod->nents = 0;
359 iod->length = size;
360 return 0;
ac3dd5bd
JA
361}
362
f4800d6d 363static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 364{
f4800d6d 365 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 366 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 367 int i;
f4800d6d 368 __le64 **list = iod_list(req);
eca18b23
MW
369 dma_addr_t prp_dma = iod->first_dma;
370
371 if (iod->npages == 0)
372 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
373 for (i = 0; i < iod->npages; i++) {
374 __le64 *prp_list = list[i];
375 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
376 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
377 prp_dma = next_prp_dma;
378 }
ac3dd5bd 379
f4800d6d
CH
380 if (iod->sg != iod->inline_sg)
381 kfree(iod->sg);
b4ff9c8d
KB
382}
383
52b68d7e 384#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
385static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
386{
387 if (be32_to_cpu(pi->ref_tag) == v)
388 pi->ref_tag = cpu_to_be32(p);
389}
390
391static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
392{
393 if (be32_to_cpu(pi->ref_tag) == p)
394 pi->ref_tag = cpu_to_be32(v);
395}
396
397/**
398 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
399 *
400 * The virtual start sector is the one that was originally submitted by the
401 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
402 * start sector may be different. Remap protection information to match the
403 * physical LBA on writes, and back to the original seed on reads.
404 *
405 * Type 0 and 3 do not have a ref tag, so no remapping required.
406 */
407static void nvme_dif_remap(struct request *req,
408 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
409{
410 struct nvme_ns *ns = req->rq_disk->private_data;
411 struct bio_integrity_payload *bip;
412 struct t10_pi_tuple *pi;
413 void *p, *pmap;
414 u32 i, nlb, ts, phys, virt;
415
416 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
417 return;
418
419 bip = bio_integrity(req->bio);
420 if (!bip)
421 return;
422
423 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
424
425 p = pmap;
426 virt = bip_get_seed(bip);
427 phys = nvme_block_nr(ns, blk_rq_pos(req));
428 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 429 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
430
431 for (i = 0; i < nlb; i++, virt++, phys++) {
432 pi = (struct t10_pi_tuple *)p;
433 dif_swap(phys, virt, pi);
434 p += ts;
435 }
436 kunmap_atomic(pmap);
437}
52b68d7e
KB
438#else /* CONFIG_BLK_DEV_INTEGRITY */
439static void nvme_dif_remap(struct request *req,
440 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
441{
442}
443static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
444{
445}
446static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
447{
448}
52b68d7e
KB
449#endif
450
f4800d6d 451static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 452 int total_len)
ff22b54f 453{
f4800d6d 454 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 455 struct dma_pool *pool;
eca18b23
MW
456 int length = total_len;
457 struct scatterlist *sg = iod->sg;
ff22b54f
MW
458 int dma_len = sg_dma_len(sg);
459 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 460 u32 page_size = dev->ctrl.page_size;
f137e0f1 461 int offset = dma_addr & (page_size - 1);
e025344c 462 __le64 *prp_list;
f4800d6d 463 __le64 **list = iod_list(req);
e025344c 464 dma_addr_t prp_dma;
eca18b23 465 int nprps, i;
ff22b54f 466
1d090624 467 length -= (page_size - offset);
ff22b54f 468 if (length <= 0)
69d2b571 469 return true;
ff22b54f 470
1d090624 471 dma_len -= (page_size - offset);
ff22b54f 472 if (dma_len) {
1d090624 473 dma_addr += (page_size - offset);
ff22b54f
MW
474 } else {
475 sg = sg_next(sg);
476 dma_addr = sg_dma_address(sg);
477 dma_len = sg_dma_len(sg);
478 }
479
1d090624 480 if (length <= page_size) {
edd10d33 481 iod->first_dma = dma_addr;
69d2b571 482 return true;
e025344c
SMM
483 }
484
1d090624 485 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
486 if (nprps <= (256 / 8)) {
487 pool = dev->prp_small_pool;
eca18b23 488 iod->npages = 0;
99802a7a
MW
489 } else {
490 pool = dev->prp_page_pool;
eca18b23 491 iod->npages = 1;
99802a7a
MW
492 }
493
69d2b571 494 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 495 if (!prp_list) {
edd10d33 496 iod->first_dma = dma_addr;
eca18b23 497 iod->npages = -1;
69d2b571 498 return false;
b77954cb 499 }
eca18b23
MW
500 list[0] = prp_list;
501 iod->first_dma = prp_dma;
e025344c
SMM
502 i = 0;
503 for (;;) {
1d090624 504 if (i == page_size >> 3) {
e025344c 505 __le64 *old_prp_list = prp_list;
69d2b571 506 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 507 if (!prp_list)
69d2b571 508 return false;
eca18b23 509 list[iod->npages++] = prp_list;
7523d834
MW
510 prp_list[0] = old_prp_list[i - 1];
511 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
512 i = 1;
e025344c
SMM
513 }
514 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
515 dma_len -= page_size;
516 dma_addr += page_size;
517 length -= page_size;
e025344c
SMM
518 if (length <= 0)
519 break;
520 if (dma_len > 0)
521 continue;
522 BUG_ON(dma_len < 0);
523 sg = sg_next(sg);
524 dma_addr = sg_dma_address(sg);
525 dma_len = sg_dma_len(sg);
ff22b54f
MW
526 }
527
69d2b571 528 return true;
ff22b54f
MW
529}
530
f4800d6d 531static int nvme_map_data(struct nvme_dev *dev, struct request *req,
ba1ca37e 532 struct nvme_command *cmnd)
d29ec824 533{
f4800d6d 534 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
535 struct request_queue *q = req->q;
536 enum dma_data_direction dma_dir = rq_data_dir(req) ?
537 DMA_TO_DEVICE : DMA_FROM_DEVICE;
538 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 539
ba1ca37e
CH
540 sg_init_table(iod->sg, req->nr_phys_segments);
541 iod->nents = blk_rq_map_sg(q, req, iod->sg);
542 if (!iod->nents)
543 goto out;
d29ec824 544
ba1ca37e
CH
545 ret = BLK_MQ_RQ_QUEUE_BUSY;
546 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
547 goto out;
d29ec824 548
f4800d6d 549 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
ba1ca37e 550 goto out_unmap;
0e5e4f0e 551
ba1ca37e
CH
552 ret = BLK_MQ_RQ_QUEUE_ERROR;
553 if (blk_integrity_rq(req)) {
554 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
555 goto out_unmap;
0e5e4f0e 556
bf684057
CH
557 sg_init_table(&iod->meta_sg, 1);
558 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 559 goto out_unmap;
0e5e4f0e 560
ba1ca37e
CH
561 if (rq_data_dir(req))
562 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 563
bf684057 564 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 565 goto out_unmap;
d29ec824 566 }
00df5cb4 567
ba1ca37e
CH
568 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
569 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
570 if (blk_integrity_rq(req))
bf684057 571 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 572 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 573
ba1ca37e
CH
574out_unmap:
575 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
576out:
577 return ret;
00df5cb4
MW
578}
579
f4800d6d 580static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 581{
f4800d6d 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
583 enum dma_data_direction dma_dir = rq_data_dir(req) ?
584 DMA_TO_DEVICE : DMA_FROM_DEVICE;
585
586 if (iod->nents) {
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588 if (blk_integrity_rq(req)) {
589 if (!rq_data_dir(req))
590 nvme_dif_remap(req, nvme_dif_complete);
bf684057 591 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 592 }
e19b127f 593 }
e1e5e564 594
f4800d6d 595 nvme_free_iod(dev, req);
d4f6c3ab 596}
b60503ba 597
a4aea562
MB
598/*
599 * We reuse the small pool to allocate the 16-byte range here as it is not
600 * worth having a special pool for these or additional cases to handle freeing
601 * the iod.
602 */
ba1ca37e 603static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
f4800d6d 604 struct request *req, struct nvme_command *cmnd)
0e5e4f0e 605{
f4800d6d 606 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e 607 struct nvme_dsm_range *range;
b60503ba 608
ba1ca37e
CH
609 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
610 &iod->first_dma);
611 if (!range)
612 return BLK_MQ_RQ_QUEUE_BUSY;
f4800d6d 613 iod_list(req)[0] = (__le64 *)range;
ba1ca37e 614 iod->npages = 0;
0e5e4f0e 615
0e5e4f0e 616 range->cattr = cpu_to_le32(0);
a4aea562
MB
617 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
618 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 619
ba1ca37e
CH
620 memset(cmnd, 0, sizeof(*cmnd));
621 cmnd->dsm.opcode = nvme_cmd_dsm;
622 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
623 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
624 cmnd->dsm.nr = 0;
625 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
626 return BLK_MQ_RQ_QUEUE_OK;
edd10d33
KB
627}
628
d29ec824
CH
629/*
630 * NOTE: ns is NULL when called on the admin queue.
631 */
a4aea562
MB
632static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
633 const struct blk_mq_queue_data *bd)
edd10d33 634{
a4aea562
MB
635 struct nvme_ns *ns = hctx->queue->queuedata;
636 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 637 struct nvme_dev *dev = nvmeq->dev;
a4aea562 638 struct request *req = bd->rq;
ba1ca37e
CH
639 struct nvme_command cmnd;
640 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 641
e1e5e564
KB
642 /*
643 * If formated with metadata, require the block layer provide a buffer
644 * unless this namespace is formated such that the metadata can be
645 * stripped/generated by the controller with PRACT=1.
646 */
d29ec824 647 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
648 if (!(ns->pi_type && ns->ms == 8) &&
649 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 650 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
651 return BLK_MQ_RQ_QUEUE_OK;
652 }
653 }
654
f4800d6d
CH
655 ret = nvme_init_iod(req, dev);
656 if (ret)
657 return ret;
a4aea562 658
a4aea562 659 if (req->cmd_flags & REQ_DISCARD) {
f4800d6d 660 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
ba1ca37e
CH
661 } else {
662 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
663 memcpy(&cmnd, req->cmd, sizeof(cmnd));
664 else if (req->cmd_flags & REQ_FLUSH)
665 nvme_setup_flush(ns, &cmnd);
666 else
667 nvme_setup_rw(ns, req, &cmnd);
a4aea562 668
ba1ca37e 669 if (req->nr_phys_segments)
f4800d6d 670 ret = nvme_map_data(dev, req, &cmnd);
edd10d33 671 }
a4aea562 672
ba1ca37e
CH
673 if (ret)
674 goto out;
a4aea562 675
ba1ca37e 676 cmnd.common.command_id = req->tag;
aae239e1 677 blk_mq_start_request(req);
a4aea562 678
ba1ca37e 679 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 680 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
681 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
682 ret = BLK_MQ_RQ_QUEUE_BUSY;
683 else
684 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20
KB
685 spin_unlock_irq(&nvmeq->q_lock);
686 goto out;
687 }
ba1ca37e 688 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
689 nvme_process_cq(nvmeq);
690 spin_unlock_irq(&nvmeq->q_lock);
691 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 692out:
f4800d6d 693 nvme_free_iod(dev, req);
ba1ca37e 694 return ret;
b60503ba 695}
e1e5e564 696
eee417b0
CH
697static void nvme_complete_rq(struct request *req)
698{
f4800d6d
CH
699 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 701 int error = 0;
e1e5e564 702
f4800d6d 703 nvme_unmap_data(dev, req);
e1e5e564 704
eee417b0
CH
705 if (unlikely(req->errors)) {
706 if (nvme_req_needs_retry(req, req->errors)) {
707 nvme_requeue_req(req);
708 return;
e1e5e564 709 }
1974b1ae 710
eee417b0
CH
711 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
712 error = req->errors;
713 else
714 error = nvme_error_status(req->errors);
715 }
a4aea562 716
f4800d6d 717 if (unlikely(iod->aborted)) {
1b3c47c1 718 dev_warn(dev->ctrl.device,
eee417b0
CH
719 "completing aborted command with status: %04x\n",
720 req->errors);
721 }
a4aea562 722
eee417b0 723 blk_mq_end_request(req, error);
b60503ba
MW
724}
725
d783e0bd
MR
726/* We read the CQE phase first to check if the rest of the entry is valid */
727static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
728 u16 phase)
729{
730 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
731}
732
a0fa9647 733static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 734{
82123460 735 u16 head, phase;
b60503ba 736
b60503ba 737 head = nvmeq->cq_head;
82123460 738 phase = nvmeq->cq_phase;
b60503ba 739
d783e0bd 740 while (nvme_cqe_valid(nvmeq, head, phase)) {
b60503ba 741 struct nvme_completion cqe = nvmeq->cqes[head];
eee417b0 742 struct request *req;
adf68f21 743
b60503ba
MW
744 if (++head == nvmeq->q_depth) {
745 head = 0;
82123460 746 phase = !phase;
b60503ba 747 }
adf68f21 748
a0fa9647
JA
749 if (tag && *tag == cqe.command_id)
750 *tag = -1;
adf68f21 751
aae239e1 752 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 753 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
754 "invalid id %d completed on queue %d\n",
755 cqe.command_id, le16_to_cpu(cqe.sq_id));
756 continue;
757 }
758
adf68f21
CH
759 /*
760 * AEN requests are special as they don't time out and can
761 * survive any kind of queue freeze and often don't respond to
762 * aborts. We don't even bother to allocate a struct request
763 * for them but rather special case them here.
764 */
765 if (unlikely(nvmeq->qid == 0 &&
766 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
767 nvme_complete_async_event(nvmeq->dev, &cqe);
768 continue;
769 }
770
eee417b0 771 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
1cb3cce5
CH
772 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
773 memcpy(req->special, &cqe, sizeof(cqe));
d783e0bd 774 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
eee417b0 775
b60503ba
MW
776 }
777
778 /* If the controller ignores the cq head doorbell and continuously
779 * writes to the queue, it is theoretically possible to wrap around
780 * the queue twice and mistakenly return IRQ_NONE. Linux only
781 * requires that 0.1% of your interrupts are handled, so this isn't
782 * a big problem.
783 */
82123460 784 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 785 return;
b60503ba 786
604e8c8d
KB
787 if (likely(nvmeq->cq_vector >= 0))
788 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 789 nvmeq->cq_head = head;
82123460 790 nvmeq->cq_phase = phase;
b60503ba 791
e9539f47 792 nvmeq->cqe_seen = 1;
a0fa9647
JA
793}
794
795static void nvme_process_cq(struct nvme_queue *nvmeq)
796{
797 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
798}
799
800static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
801{
802 irqreturn_t result;
803 struct nvme_queue *nvmeq = data;
804 spin_lock(&nvmeq->q_lock);
e9539f47
MW
805 nvme_process_cq(nvmeq);
806 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
807 nvmeq->cqe_seen = 0;
58ffacb5
MW
808 spin_unlock(&nvmeq->q_lock);
809 return result;
810}
811
812static irqreturn_t nvme_irq_check(int irq, void *data)
813{
814 struct nvme_queue *nvmeq = data;
d783e0bd
MR
815 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
816 return IRQ_WAKE_THREAD;
817 return IRQ_NONE;
58ffacb5
MW
818}
819
a0fa9647
JA
820static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
821{
822 struct nvme_queue *nvmeq = hctx->driver_data;
823
d783e0bd 824 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
a0fa9647
JA
825 spin_lock_irq(&nvmeq->q_lock);
826 __nvme_process_cq(nvmeq, &tag);
827 spin_unlock_irq(&nvmeq->q_lock);
828
829 if (tag == -1)
830 return 1;
831 }
832
833 return 0;
834}
835
9396dec9 836static void nvme_async_event_work(struct work_struct *work)
b60503ba 837{
9396dec9
CH
838 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
839 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 840 struct nvme_command c;
b60503ba 841
a4aea562
MB
842 memset(&c, 0, sizeof(c));
843 c.common.opcode = nvme_admin_async_event;
3c0cf138 844
9396dec9
CH
845 spin_lock_irq(&nvmeq->q_lock);
846 while (dev->ctrl.event_limit > 0) {
847 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
848 --dev->ctrl.event_limit;
849 __nvme_submit_cmd(nvmeq, &c);
850 }
851 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
852}
853
b60503ba 854static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 855{
b60503ba
MW
856 struct nvme_command c;
857
858 memset(&c, 0, sizeof(c));
859 c.delete_queue.opcode = opcode;
860 c.delete_queue.qid = cpu_to_le16(id);
861
1c63dc66 862 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
863}
864
b60503ba
MW
865static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
866 struct nvme_queue *nvmeq)
867{
b60503ba
MW
868 struct nvme_command c;
869 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
870
d29ec824
CH
871 /*
872 * Note: we (ab)use the fact the the prp fields survive if no data
873 * is attached to the request.
874 */
b60503ba
MW
875 memset(&c, 0, sizeof(c));
876 c.create_cq.opcode = nvme_admin_create_cq;
877 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
878 c.create_cq.cqid = cpu_to_le16(qid);
879 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
880 c.create_cq.cq_flags = cpu_to_le16(flags);
881 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
882
1c63dc66 883 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
884}
885
886static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
887 struct nvme_queue *nvmeq)
888{
b60503ba
MW
889 struct nvme_command c;
890 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
891
d29ec824
CH
892 /*
893 * Note: we (ab)use the fact the the prp fields survive if no data
894 * is attached to the request.
895 */
b60503ba
MW
896 memset(&c, 0, sizeof(c));
897 c.create_sq.opcode = nvme_admin_create_sq;
898 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
899 c.create_sq.sqid = cpu_to_le16(qid);
900 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
901 c.create_sq.sq_flags = cpu_to_le16(flags);
902 c.create_sq.cqid = cpu_to_le16(qid);
903
1c63dc66 904 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
905}
906
907static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
908{
909 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
910}
911
912static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
913{
914 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
915}
916
e7a2a87d 917static void abort_endio(struct request *req, int error)
bc5fc7e4 918{
f4800d6d
CH
919 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
920 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 921 u16 status = req->errors;
e44ac588 922
1cb3cce5 923 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 924 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 925 blk_mq_free_request(req);
bc5fc7e4
MW
926}
927
31c7c7d2 928static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 929{
f4800d6d
CH
930 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
931 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 932 struct nvme_dev *dev = nvmeq->dev;
a4aea562 933 struct request *abort_req;
a4aea562 934 struct nvme_command cmd;
c30341dc 935
31c7c7d2 936 /*
fd634f41
CH
937 * Shutdown immediately if controller times out while starting. The
938 * reset work will see the pci device disabled when it gets the forced
939 * cancellation error. All outstanding requests are completed on
940 * shutdown, so we return BLK_EH_HANDLED.
941 */
942 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1b3c47c1 943 dev_warn(dev->ctrl.device,
fd634f41
CH
944 "I/O %d QID %d timeout, disable controller\n",
945 req->tag, nvmeq->qid);
a5cdb68c 946 nvme_dev_disable(dev, false);
fd634f41
CH
947 req->errors = NVME_SC_CANCELLED;
948 return BLK_EH_HANDLED;
c30341dc
KB
949 }
950
fd634f41
CH
951 /*
952 * Shutdown the controller immediately and schedule a reset if the
953 * command was already aborted once before and still hasn't been
954 * returned to the driver, or if this is the admin queue.
31c7c7d2 955 */
f4800d6d 956 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 957 dev_warn(dev->ctrl.device,
e1569a16
KB
958 "I/O %d QID %d timeout, reset controller\n",
959 req->tag, nvmeq->qid);
a5cdb68c 960 nvme_dev_disable(dev, false);
e1569a16 961 queue_work(nvme_workq, &dev->reset_work);
c30341dc 962
e1569a16
KB
963 /*
964 * Mark the request as handled, since the inline shutdown
965 * forces all outstanding requests to complete.
966 */
967 req->errors = NVME_SC_CANCELLED;
968 return BLK_EH_HANDLED;
c30341dc 969 }
c30341dc 970
f4800d6d 971 iod->aborted = 1;
c30341dc 972
e7a2a87d 973 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 974 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 975 return BLK_EH_RESET_TIMER;
6bf25d16 976 }
a4aea562 977
c30341dc
KB
978 memset(&cmd, 0, sizeof(cmd));
979 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 980 cmd.abort.cid = req->tag;
c30341dc 981 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 982
1b3c47c1
SG
983 dev_warn(nvmeq->dev->ctrl.device,
984 "I/O %d QID %d timeout, aborting\n",
985 req->tag, nvmeq->qid);
e7a2a87d
CH
986
987 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
988 BLK_MQ_REQ_NOWAIT);
989 if (IS_ERR(abort_req)) {
990 atomic_inc(&dev->ctrl.abort_limit);
991 return BLK_EH_RESET_TIMER;
992 }
993
994 abort_req->timeout = ADMIN_TIMEOUT;
995 abort_req->end_io_data = NULL;
996 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 997
31c7c7d2
CH
998 /*
999 * The aborted req will be completed on receiving the abort req.
1000 * We enable the timer again. If hit twice, it'll cause a device reset,
1001 * as the device then is in a faulty state.
1002 */
1003 return BLK_EH_RESET_TIMER;
c30341dc
KB
1004}
1005
42483228 1006static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1007{
a4aea562 1008 struct nvme_queue *nvmeq = data;
aae239e1 1009 int status;
cef6a948
KB
1010
1011 if (!blk_mq_request_started(req))
1012 return;
a09115b2 1013
237045fc 1014 dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
aae239e1 1015 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
a4aea562 1016
1d49c38c 1017 status = NVME_SC_ABORT_REQ;
cef6a948 1018 if (blk_queue_dying(req->q))
aae239e1
CH
1019 status |= NVME_SC_DNR;
1020 blk_mq_complete_request(req, status);
a4aea562 1021}
22404274 1022
a4aea562
MB
1023static void nvme_free_queue(struct nvme_queue *nvmeq)
1024{
9e866774
MW
1025 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1026 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1027 if (nvmeq->sq_cmds)
1028 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1029 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1030 kfree(nvmeq);
1031}
1032
a1a5ef99 1033static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1034{
1035 int i;
1036
a1a5ef99 1037 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1038 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1039 dev->queue_count--;
a4aea562 1040 dev->queues[i] = NULL;
f435c282 1041 nvme_free_queue(nvmeq);
121c7ad4 1042 }
22404274
KB
1043}
1044
4d115420
KB
1045/**
1046 * nvme_suspend_queue - put queue into suspended state
1047 * @nvmeq - queue to suspend
4d115420
KB
1048 */
1049static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1050{
2b25d981 1051 int vector;
b60503ba 1052
a09115b2 1053 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1054 if (nvmeq->cq_vector == -1) {
1055 spin_unlock_irq(&nvmeq->q_lock);
1056 return 1;
1057 }
1058 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1059 nvmeq->dev->online_queues--;
2b25d981 1060 nvmeq->cq_vector = -1;
a09115b2
MW
1061 spin_unlock_irq(&nvmeq->q_lock);
1062
1c63dc66 1063 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1064 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1065
aba2080f
MW
1066 irq_set_affinity_hint(vector, NULL);
1067 free_irq(vector, nvmeq);
b60503ba 1068
4d115420
KB
1069 return 0;
1070}
b60503ba 1071
4d115420
KB
1072static void nvme_clear_queue(struct nvme_queue *nvmeq)
1073{
22404274 1074 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1075 if (nvmeq->tags && *nvmeq->tags)
1076 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1077 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1078}
1079
a5cdb68c 1080static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1081{
a5cdb68c 1082 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1083
1084 if (!nvmeq)
1085 return;
1086 if (nvme_suspend_queue(nvmeq))
1087 return;
1088
a5cdb68c
KB
1089 if (shutdown)
1090 nvme_shutdown_ctrl(&dev->ctrl);
1091 else
1092 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1093 dev->bar + NVME_REG_CAP));
07836e65
KB
1094
1095 spin_lock_irq(&nvmeq->q_lock);
1096 nvme_process_cq(nvmeq);
1097 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1098}
1099
8ffaadf7
JD
1100static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1101 int entry_size)
1102{
1103 int q_depth = dev->q_depth;
5fd4ce1b
CH
1104 unsigned q_size_aligned = roundup(q_depth * entry_size,
1105 dev->ctrl.page_size);
8ffaadf7
JD
1106
1107 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1108 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1109 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1110 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1111
1112 /*
1113 * Ensure the reduced q_depth is above some threshold where it
1114 * would be better to map queues in system memory with the
1115 * original depth
1116 */
1117 if (q_depth < 64)
1118 return -ENOMEM;
1119 }
1120
1121 return q_depth;
1122}
1123
1124static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1125 int qid, int depth)
1126{
1127 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1128 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1129 dev->ctrl.page_size);
8ffaadf7
JD
1130 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1131 nvmeq->sq_cmds_io = dev->cmb + offset;
1132 } else {
1133 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1134 &nvmeq->sq_dma_addr, GFP_KERNEL);
1135 if (!nvmeq->sq_cmds)
1136 return -ENOMEM;
1137 }
1138
1139 return 0;
1140}
1141
b60503ba 1142static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1143 int depth)
b60503ba 1144{
a4aea562 1145 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1146 if (!nvmeq)
1147 return NULL;
1148
e75ec752 1149 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1150 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1151 if (!nvmeq->cqes)
1152 goto free_nvmeq;
b60503ba 1153
8ffaadf7 1154 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1155 goto free_cqdma;
1156
e75ec752 1157 nvmeq->q_dmadev = dev->dev;
091b6092 1158 nvmeq->dev = dev;
3193f07b 1159 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1160 dev->ctrl.instance, qid);
b60503ba
MW
1161 spin_lock_init(&nvmeq->q_lock);
1162 nvmeq->cq_head = 0;
82123460 1163 nvmeq->cq_phase = 1;
b80d5ccc 1164 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1165 nvmeq->q_depth = depth;
c30341dc 1166 nvmeq->qid = qid;
758dd7fd 1167 nvmeq->cq_vector = -1;
a4aea562 1168 dev->queues[qid] = nvmeq;
36a7e993
JD
1169 dev->queue_count++;
1170
b60503ba
MW
1171 return nvmeq;
1172
1173 free_cqdma:
e75ec752 1174 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1175 nvmeq->cq_dma_addr);
1176 free_nvmeq:
1177 kfree(nvmeq);
1178 return NULL;
1179}
1180
3001082c
MW
1181static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1182 const char *name)
1183{
58ffacb5
MW
1184 if (use_threaded_interrupts)
1185 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1186 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1187 name, nvmeq);
3001082c 1188 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1189 IRQF_SHARED, name, nvmeq);
3001082c
MW
1190}
1191
22404274 1192static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1193{
22404274 1194 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1195
7be50e93 1196 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1197 nvmeq->sq_tail = 0;
1198 nvmeq->cq_head = 0;
1199 nvmeq->cq_phase = 1;
b80d5ccc 1200 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1201 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1202 dev->online_queues++;
7be50e93 1203 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1204}
1205
1206static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1207{
1208 struct nvme_dev *dev = nvmeq->dev;
1209 int result;
3f85d50b 1210
2b25d981 1211 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1212 result = adapter_alloc_cq(dev, qid, nvmeq);
1213 if (result < 0)
22404274 1214 return result;
b60503ba
MW
1215
1216 result = adapter_alloc_sq(dev, qid, nvmeq);
1217 if (result < 0)
1218 goto release_cq;
1219
3193f07b 1220 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1221 if (result < 0)
1222 goto release_sq;
1223
22404274 1224 nvme_init_queue(nvmeq, qid);
22404274 1225 return result;
b60503ba
MW
1226
1227 release_sq:
1228 adapter_delete_sq(dev, qid);
1229 release_cq:
1230 adapter_delete_cq(dev, qid);
22404274 1231 return result;
b60503ba
MW
1232}
1233
a4aea562 1234static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1235 .queue_rq = nvme_queue_rq,
eee417b0 1236 .complete = nvme_complete_rq,
a4aea562
MB
1237 .map_queue = blk_mq_map_queue,
1238 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1239 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1240 .init_request = nvme_admin_init_request,
1241 .timeout = nvme_timeout,
1242};
1243
1244static struct blk_mq_ops nvme_mq_ops = {
1245 .queue_rq = nvme_queue_rq,
eee417b0 1246 .complete = nvme_complete_rq,
a4aea562
MB
1247 .map_queue = blk_mq_map_queue,
1248 .init_hctx = nvme_init_hctx,
1249 .init_request = nvme_init_request,
1250 .timeout = nvme_timeout,
a0fa9647 1251 .poll = nvme_poll,
a4aea562
MB
1252};
1253
ea191d2f
KB
1254static void nvme_dev_remove_admin(struct nvme_dev *dev)
1255{
1c63dc66 1256 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1257 /*
1258 * If the controller was reset during removal, it's possible
1259 * user requests may be waiting on a stopped queue. Start the
1260 * queue to flush these to completion.
1261 */
1262 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1263 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1264 blk_mq_free_tag_set(&dev->admin_tagset);
1265 }
1266}
1267
a4aea562
MB
1268static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1269{
1c63dc66 1270 if (!dev->ctrl.admin_q) {
a4aea562
MB
1271 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1272 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1273
1274 /*
1275 * Subtract one to leave an empty queue entry for 'Full Queue'
1276 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1277 */
1278 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1279 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1280 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1281 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1282 dev->admin_tagset.driver_data = dev;
1283
1284 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1285 return -ENOMEM;
1286
1c63dc66
CH
1287 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1288 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1289 blk_mq_free_tag_set(&dev->admin_tagset);
1290 return -ENOMEM;
1291 }
1c63dc66 1292 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1293 nvme_dev_remove_admin(dev);
1c63dc66 1294 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1295 return -ENODEV;
1296 }
0fb59cbc 1297 } else
25646264 1298 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1299
1300 return 0;
1301}
1302
8d85fce7 1303static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1304{
ba47e386 1305 int result;
b60503ba 1306 u32 aqa;
7a67cbea 1307 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1308 struct nvme_queue *nvmeq;
1309
7a67cbea 1310 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1311 NVME_CAP_NSSRC(cap) : 0;
1312
7a67cbea
CH
1313 if (dev->subsystem &&
1314 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1315 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1316
5fd4ce1b 1317 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1318 if (result < 0)
1319 return result;
b60503ba 1320
a4aea562 1321 nvmeq = dev->queues[0];
cd638946 1322 if (!nvmeq) {
2b25d981 1323 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1324 if (!nvmeq)
1325 return -ENOMEM;
cd638946 1326 }
b60503ba
MW
1327
1328 aqa = nvmeq->q_depth - 1;
1329 aqa |= aqa << 16;
1330
7a67cbea
CH
1331 writel(aqa, dev->bar + NVME_REG_AQA);
1332 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1333 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1334
5fd4ce1b 1335 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1336 if (result)
a4aea562
MB
1337 goto free_nvmeq;
1338
2b25d981 1339 nvmeq->cq_vector = 0;
3193f07b 1340 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1341 if (result) {
1342 nvmeq->cq_vector = -1;
0fb59cbc 1343 goto free_nvmeq;
758dd7fd 1344 }
025c557a 1345
b60503ba 1346 return result;
a4aea562 1347
a4aea562
MB
1348 free_nvmeq:
1349 nvme_free_queues(dev, 0);
1350 return result;
b60503ba
MW
1351}
1352
2d55cd5f 1353static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1354{
2d55cd5f
CH
1355 struct nvme_dev *dev = (struct nvme_dev *)data;
1356 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1357
2d55cd5f
CH
1358 /*
1359 * Skip controllers currently under reset.
1360 */
1361 if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1362 ((csts & NVME_CSTS_CFS) ||
1363 (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1364 if (queue_work(nvme_workq, &dev->reset_work)) {
1365 dev_warn(dev->dev,
1366 "Failed status: 0x%x, reset controller.\n",
1367 csts);
1fa6aead 1368 }
2d55cd5f 1369 return;
1fa6aead 1370 }
2d55cd5f
CH
1371
1372 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1373}
1374
749941f2 1375static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1376{
949928c1 1377 unsigned i, max;
749941f2 1378 int ret = 0;
42f61420 1379
749941f2
CH
1380 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1381 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1382 ret = -ENOMEM;
42f61420 1383 break;
749941f2
CH
1384 }
1385 }
42f61420 1386
949928c1
KB
1387 max = min(dev->max_qid, dev->queue_count - 1);
1388 for (i = dev->online_queues; i <= max; i++) {
749941f2
CH
1389 ret = nvme_create_queue(dev->queues[i], i);
1390 if (ret) {
2659e57b 1391 nvme_free_queues(dev, i);
42f61420 1392 break;
2659e57b 1393 }
27e8166c 1394 }
749941f2
CH
1395
1396 /*
1397 * Ignore failing Create SQ/CQ commands, we can continue with less
1398 * than the desired aount of queues, and even a controller without
1399 * I/O queues an still be used to issue admin commands. This might
1400 * be useful to upgrade a buggy firmware for example.
1401 */
1402 return ret >= 0 ? 0 : ret;
b60503ba
MW
1403}
1404
8ffaadf7
JD
1405static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1406{
1407 u64 szu, size, offset;
1408 u32 cmbloc;
1409 resource_size_t bar_size;
1410 struct pci_dev *pdev = to_pci_dev(dev->dev);
1411 void __iomem *cmb;
1412 dma_addr_t dma_addr;
1413
1414 if (!use_cmb_sqes)
1415 return NULL;
1416
7a67cbea 1417 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1418 if (!(NVME_CMB_SZ(dev->cmbsz)))
1419 return NULL;
1420
7a67cbea 1421 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1422
1423 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1424 size = szu * NVME_CMB_SZ(dev->cmbsz);
1425 offset = szu * NVME_CMB_OFST(cmbloc);
1426 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1427
1428 if (offset > bar_size)
1429 return NULL;
1430
1431 /*
1432 * Controllers may support a CMB size larger than their BAR,
1433 * for example, due to being behind a bridge. Reduce the CMB to
1434 * the reported size of the BAR
1435 */
1436 if (size > bar_size - offset)
1437 size = bar_size - offset;
1438
1439 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1440 cmb = ioremap_wc(dma_addr, size);
1441 if (!cmb)
1442 return NULL;
1443
1444 dev->cmb_dma_addr = dma_addr;
1445 dev->cmb_size = size;
1446 return cmb;
1447}
1448
1449static inline void nvme_release_cmb(struct nvme_dev *dev)
1450{
1451 if (dev->cmb) {
1452 iounmap(dev->cmb);
1453 dev->cmb = NULL;
1454 }
1455}
1456
9d713c2b
KB
1457static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1458{
b80d5ccc 1459 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1460}
1461
8d85fce7 1462static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1463{
a4aea562 1464 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1465 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1466 int result, i, vecs, nr_io_queues, size;
b60503ba 1467
42f61420 1468 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1469 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1470 if (result < 0)
1b23484b 1471 return result;
9a0be7ab
CH
1472
1473 /*
1474 * Degraded controllers might return an error when setting the queue
1475 * count. We still want to be able to bring them online and offer
1476 * access to the admin queue, as that might be only way to fix them up.
1477 */
1478 if (result > 0) {
1b3c47c1
SG
1479 dev_err(dev->ctrl.device,
1480 "Could not set queue count (%d)\n", result);
a5229050 1481 return 0;
9a0be7ab 1482 }
b60503ba 1483
8ffaadf7
JD
1484 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1485 result = nvme_cmb_qdepth(dev, nr_io_queues,
1486 sizeof(struct nvme_command));
1487 if (result > 0)
1488 dev->q_depth = result;
1489 else
1490 nvme_release_cmb(dev);
1491 }
1492
9d713c2b
KB
1493 size = db_bar_size(dev, nr_io_queues);
1494 if (size > 8192) {
f1938f6e 1495 iounmap(dev->bar);
9d713c2b
KB
1496 do {
1497 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1498 if (dev->bar)
1499 break;
1500 if (!--nr_io_queues)
1501 return -ENOMEM;
1502 size = db_bar_size(dev, nr_io_queues);
1503 } while (1);
7a67cbea 1504 dev->dbs = dev->bar + 4096;
5a92e700 1505 adminq->q_db = dev->dbs;
f1938f6e
MW
1506 }
1507
9d713c2b 1508 /* Deregister the admin queue's interrupt */
3193f07b 1509 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1510
e32efbfc
JA
1511 /*
1512 * If we enable msix early due to not intx, disable it again before
1513 * setting up the full range we need.
1514 */
a5229050
KB
1515 if (pdev->msi_enabled)
1516 pci_disable_msi(pdev);
1517 else if (pdev->msix_enabled)
e32efbfc
JA
1518 pci_disable_msix(pdev);
1519
be577fab 1520 for (i = 0; i < nr_io_queues; i++)
1b23484b 1521 dev->entry[i].entry = i;
be577fab
AG
1522 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1523 if (vecs < 0) {
1524 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1525 if (vecs < 0) {
1526 vecs = 1;
1527 } else {
1528 for (i = 0; i < vecs; i++)
1529 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1530 }
1531 }
1532
063a8096
MW
1533 /*
1534 * Should investigate if there's a performance win from allocating
1535 * more queues than interrupt vectors; it might allow the submission
1536 * path to scale better, even if the receive path is limited by the
1537 * number of interrupts.
1538 */
1539 nr_io_queues = vecs;
42f61420 1540 dev->max_qid = nr_io_queues;
063a8096 1541
3193f07b 1542 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1543 if (result) {
1544 adminq->cq_vector = -1;
22404274 1545 goto free_queues;
758dd7fd 1546 }
749941f2 1547 return nvme_create_io_queues(dev);
b60503ba 1548
22404274 1549 free_queues:
a1a5ef99 1550 nvme_free_queues(dev, 1);
22404274 1551 return result;
b60503ba
MW
1552}
1553
bda4e0fb 1554static void nvme_set_irq_hints(struct nvme_dev *dev)
a5768aa8 1555{
bda4e0fb
KB
1556 struct nvme_queue *nvmeq;
1557 int i;
a5768aa8 1558
bda4e0fb
KB
1559 for (i = 0; i < dev->online_queues; i++) {
1560 nvmeq = dev->queues[i];
a5768aa8 1561
bda4e0fb
KB
1562 if (!nvmeq->tags || !(*nvmeq->tags))
1563 continue;
a5768aa8 1564
bda4e0fb
KB
1565 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1566 blk_mq_tags_cpumask(*nvmeq->tags));
a5768aa8 1567 }
a5768aa8
KB
1568}
1569
a5768aa8 1570static void nvme_dev_scan(struct work_struct *work)
a5768aa8 1571{
a5768aa8 1572 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1573
1574 if (!dev->tagset.tags)
1575 return;
5bae7f73 1576 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1577 nvme_set_irq_hints(dev);
a5768aa8
KB
1578}
1579
db3cbfff 1580static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1581{
db3cbfff 1582 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1583
db3cbfff
KB
1584 blk_mq_free_request(req);
1585 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1586}
1587
db3cbfff 1588static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1589{
db3cbfff 1590 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1591
db3cbfff
KB
1592 if (!error) {
1593 unsigned long flags;
1594
1595 spin_lock_irqsave(&nvmeq->q_lock, flags);
1596 nvme_process_cq(nvmeq);
1597 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1598 }
db3cbfff
KB
1599
1600 nvme_del_queue_end(req, error);
a5768aa8
KB
1601}
1602
db3cbfff 1603static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1604{
db3cbfff
KB
1605 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1606 struct request *req;
1607 struct nvme_command cmd;
bda4e0fb 1608
db3cbfff
KB
1609 memset(&cmd, 0, sizeof(cmd));
1610 cmd.delete_queue.opcode = opcode;
1611 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1612
db3cbfff
KB
1613 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1614 if (IS_ERR(req))
1615 return PTR_ERR(req);
bda4e0fb 1616
db3cbfff
KB
1617 req->timeout = ADMIN_TIMEOUT;
1618 req->end_io_data = nvmeq;
1619
1620 blk_execute_rq_nowait(q, NULL, req, false,
1621 opcode == nvme_admin_delete_cq ?
1622 nvme_del_cq_end : nvme_del_queue_end);
1623 return 0;
bda4e0fb
KB
1624}
1625
db3cbfff 1626static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1627{
db3cbfff
KB
1628 int pass;
1629 unsigned long timeout;
1630 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1631
db3cbfff
KB
1632 for (pass = 0; pass < 2; pass++) {
1633 int sent = 0, i = dev->queue_count - 1;
1634
1635 reinit_completion(&dev->ioq_wait);
1636 retry:
1637 timeout = ADMIN_TIMEOUT;
1638 for (; i > 0; i--) {
1639 struct nvme_queue *nvmeq = dev->queues[i];
1640
1641 if (!pass)
1642 nvme_suspend_queue(nvmeq);
1643 if (nvme_delete_queue(nvmeq, opcode))
1644 break;
1645 ++sent;
1646 }
1647 while (sent--) {
1648 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1649 if (timeout == 0)
1650 return;
1651 if (i)
1652 goto retry;
1653 }
1654 opcode = nvme_admin_delete_cq;
1655 }
a5768aa8
KB
1656}
1657
422ef0c7
MW
1658/*
1659 * Return: error value if an error occurred setting up the queues or calling
1660 * Identify Device. 0 if these succeeded, even if adding some of the
1661 * namespaces failed. At the moment, these failures are silent. TBD which
1662 * failures should be reported.
1663 */
8d85fce7 1664static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1665{
5bae7f73 1666 if (!dev->ctrl.tagset) {
ffe7704d
KB
1667 dev->tagset.ops = &nvme_mq_ops;
1668 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1669 dev->tagset.timeout = NVME_IO_TIMEOUT;
1670 dev->tagset.numa_node = dev_to_node(dev->dev);
1671 dev->tagset.queue_depth =
a4aea562 1672 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1673 dev->tagset.cmd_size = nvme_cmd_size(dev);
1674 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1675 dev->tagset.driver_data = dev;
b60503ba 1676
ffe7704d
KB
1677 if (blk_mq_alloc_tag_set(&dev->tagset))
1678 return 0;
5bae7f73 1679 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1680 } else {
1681 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1682
1683 /* Free previously allocated queues that are no longer usable */
1684 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1685 }
949928c1 1686
646017a6 1687 nvme_queue_scan(dev);
e1e5e564 1688 return 0;
b60503ba
MW
1689}
1690
b00a726a 1691static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1692{
42f61420 1693 u64 cap;
b00a726a 1694 int result = -ENOMEM;
e75ec752 1695 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1696
1697 if (pci_enable_device_mem(pdev))
1698 return result;
1699
0877cb0d 1700 pci_set_master(pdev);
0877cb0d 1701
e75ec752
CH
1702 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1703 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1704 goto disable;
0877cb0d 1705
7a67cbea 1706 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1707 result = -ENODEV;
b00a726a 1708 goto disable;
0e53d180 1709 }
e32efbfc
JA
1710
1711 /*
a5229050
KB
1712 * Some devices and/or platforms don't advertise or work with INTx
1713 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1714 * adjust this later.
e32efbfc 1715 */
a5229050
KB
1716 if (pci_enable_msix(pdev, dev->entry, 1)) {
1717 pci_enable_msi(pdev);
1718 dev->entry[0].vector = pdev->irq;
1719 }
1720
1721 if (!dev->entry[0].vector) {
1722 result = -ENODEV;
1723 goto disable;
e32efbfc
JA
1724 }
1725
7a67cbea
CH
1726 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1727
42f61420
KB
1728 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1729 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1730 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1731
1732 /*
1733 * Temporary fix for the Apple controller found in the MacBook8,1 and
1734 * some MacBook7,1 to avoid controller resets and data loss.
1735 */
1736 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1737 dev->q_depth = 2;
1738 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1739 "queue depth=%u to work around controller resets\n",
1740 dev->q_depth);
1741 }
1742
7a67cbea 1743 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1744 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1745
a0a3408e
KB
1746 pci_enable_pcie_error_reporting(pdev);
1747 pci_save_state(pdev);
0877cb0d
KB
1748 return 0;
1749
1750 disable:
0877cb0d
KB
1751 pci_disable_device(pdev);
1752 return result;
1753}
1754
1755static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1756{
1757 if (dev->bar)
1758 iounmap(dev->bar);
1759 pci_release_regions(to_pci_dev(dev->dev));
1760}
1761
1762static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1763{
e75ec752
CH
1764 struct pci_dev *pdev = to_pci_dev(dev->dev);
1765
1766 if (pdev->msi_enabled)
1767 pci_disable_msi(pdev);
1768 else if (pdev->msix_enabled)
1769 pci_disable_msix(pdev);
0877cb0d 1770
a0a3408e
KB
1771 if (pci_is_enabled(pdev)) {
1772 pci_disable_pcie_error_reporting(pdev);
e75ec752 1773 pci_disable_device(pdev);
4d115420 1774 }
4d115420
KB
1775}
1776
a5cdb68c 1777static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1778{
22404274 1779 int i;
7c1b2450 1780 u32 csts = -1;
22404274 1781
2d55cd5f 1782 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1783
77bf25ea 1784 mutex_lock(&dev->shutdown_lock);
b00a726a 1785 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1786 nvme_stop_queues(&dev->ctrl);
7a67cbea 1787 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1788 }
7c1b2450 1789 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 1790 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 1791 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 1792 nvme_suspend_queue(nvmeq);
4d115420
KB
1793 }
1794 } else {
1795 nvme_disable_io_queues(dev);
a5cdb68c 1796 nvme_disable_admin_queue(dev, shutdown);
4d115420 1797 }
b00a726a 1798 nvme_pci_disable(dev);
07836e65
KB
1799
1800 for (i = dev->queue_count - 1; i >= 0; i--)
1801 nvme_clear_queue(dev->queues[i]);
77bf25ea 1802 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1803}
1804
091b6092
MW
1805static int nvme_setup_prp_pools(struct nvme_dev *dev)
1806{
e75ec752 1807 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1808 PAGE_SIZE, PAGE_SIZE, 0);
1809 if (!dev->prp_page_pool)
1810 return -ENOMEM;
1811
99802a7a 1812 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1813 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1814 256, 256, 0);
1815 if (!dev->prp_small_pool) {
1816 dma_pool_destroy(dev->prp_page_pool);
1817 return -ENOMEM;
1818 }
091b6092
MW
1819 return 0;
1820}
1821
1822static void nvme_release_prp_pools(struct nvme_dev *dev)
1823{
1824 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1825 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1826}
1827
1673f1f0 1828static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1829{
1673f1f0 1830 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1831
e75ec752 1832 put_device(dev->dev);
4af0e21c
KB
1833 if (dev->tagset.tags)
1834 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1835 if (dev->ctrl.admin_q)
1836 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1837 kfree(dev->queues);
1838 kfree(dev->entry);
1839 kfree(dev);
1840}
1841
f58944e2
KB
1842static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1843{
237045fc 1844 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1845
1846 kref_get(&dev->ctrl.kref);
69d9a99c 1847 nvme_dev_disable(dev, false);
f58944e2
KB
1848 if (!schedule_work(&dev->remove_work))
1849 nvme_put_ctrl(&dev->ctrl);
1850}
1851
fd634f41 1852static void nvme_reset_work(struct work_struct *work)
5e82e952 1853{
fd634f41 1854 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1855 int result = -ENODEV;
5e82e952 1856
fd634f41
CH
1857 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1858 goto out;
5e82e952 1859
fd634f41
CH
1860 /*
1861 * If we're called to reset a live controller first shut it down before
1862 * moving on.
1863 */
b00a726a 1864 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1865 nvme_dev_disable(dev, false);
5e82e952 1866
9bf2b972
KB
1867 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
1868 goto out;
1869
fd634f41 1870 set_bit(NVME_CTRL_RESETTING, &dev->flags);
f0b50732 1871
b00a726a 1872 result = nvme_pci_enable(dev);
f0b50732 1873 if (result)
3cf519b5 1874 goto out;
f0b50732
KB
1875
1876 result = nvme_configure_admin_queue(dev);
1877 if (result)
f58944e2 1878 goto out;
f0b50732 1879
a4aea562 1880 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1881 result = nvme_alloc_admin_tags(dev);
1882 if (result)
f58944e2 1883 goto out;
b9afca3e 1884
ce4541f4
CH
1885 result = nvme_init_identify(&dev->ctrl);
1886 if (result)
f58944e2 1887 goto out;
ce4541f4 1888
f0b50732 1889 result = nvme_setup_io_queues(dev);
badc34d4 1890 if (result)
f58944e2 1891 goto out;
f0b50732 1892
adf68f21 1893 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
9396dec9 1894 queue_work(nvme_workq, &dev->async_work);
3cf519b5 1895
2d55cd5f 1896 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1897
2659e57b
CH
1898 /*
1899 * Keep the controller around but remove all namespaces if we don't have
1900 * any working I/O queue.
1901 */
3cf519b5 1902 if (dev->online_queues < 2) {
1b3c47c1 1903 dev_warn(dev->ctrl.device, "IO queues not created\n");
5bae7f73 1904 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1905 } else {
25646264 1906 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1907 nvme_dev_add(dev);
1908 }
1909
fd634f41 1910 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 1911 return;
f0b50732 1912
3cf519b5 1913 out:
f58944e2 1914 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1915}
1916
5c8809e6 1917static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1918{
5c8809e6 1919 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1920 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1921
69d9a99c 1922 nvme_kill_queues(&dev->ctrl);
9a6b9458 1923 if (pci_get_drvdata(pdev))
c81f4975 1924 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 1925 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1926}
1927
4cc06521 1928static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1929{
1c63dc66 1930 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1931 return -ENODEV;
ffe7704d 1932
846cc05f
CH
1933 if (!queue_work(nvme_workq, &dev->reset_work))
1934 return -EBUSY;
ffe7704d 1935
846cc05f 1936 flush_work(&dev->reset_work);
846cc05f 1937 return 0;
9a6b9458
KB
1938}
1939
1c63dc66 1940static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1941{
1c63dc66 1942 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1943 return 0;
9ca97374
TH
1944}
1945
5fd4ce1b 1946static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1947{
5fd4ce1b
CH
1948 writel(val, to_nvme_dev(ctrl)->bar + off);
1949 return 0;
1950}
4cc06521 1951
7fd8930f
CH
1952static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1953{
1954 *val = readq(to_nvme_dev(ctrl)->bar + off);
1955 return 0;
4cc06521
KB
1956}
1957
5bae7f73 1958static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
4cc06521 1959{
5bae7f73 1960 struct nvme_dev *dev = to_nvme_dev(ctrl);
4cc06521 1961
5bae7f73
CH
1962 return !dev->bar || dev->online_queues < 2;
1963}
4cc06521 1964
f3ca80fc
CH
1965static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1966{
1967 return nvme_reset(to_nvme_dev(ctrl));
4cc06521 1968}
f3ca80fc 1969
1c63dc66 1970static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
e439bb12 1971 .module = THIS_MODULE,
1c63dc66 1972 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1973 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1974 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 1975 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 1976 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1977 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66 1978};
4cc06521 1979
b00a726a
KB
1980static int nvme_dev_map(struct nvme_dev *dev)
1981{
1982 int bars;
1983 struct pci_dev *pdev = to_pci_dev(dev->dev);
1984
1985 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1986 if (!bars)
1987 return -ENODEV;
1988 if (pci_request_selected_regions(pdev, bars, "nvme"))
1989 return -ENODEV;
1990
1991 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1992 if (!dev->bar)
1993 goto release;
1994
1995 return 0;
1996 release:
1997 pci_release_regions(pdev);
1998 return -ENODEV;
1999}
2000
8d85fce7 2001static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2002{
a4aea562 2003 int node, result = -ENOMEM;
b60503ba
MW
2004 struct nvme_dev *dev;
2005
a4aea562
MB
2006 node = dev_to_node(&pdev->dev);
2007 if (node == NUMA_NO_NODE)
2008 set_dev_node(&pdev->dev, 0);
2009
2010 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2011 if (!dev)
2012 return -ENOMEM;
a4aea562
MB
2013 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2014 GFP_KERNEL, node);
b60503ba
MW
2015 if (!dev->entry)
2016 goto free;
a4aea562
MB
2017 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2018 GFP_KERNEL, node);
b60503ba
MW
2019 if (!dev->queues)
2020 goto free;
2021
e75ec752 2022 dev->dev = get_device(&pdev->dev);
9a6b9458 2023 pci_set_drvdata(pdev, dev);
1c63dc66 2024
b00a726a
KB
2025 result = nvme_dev_map(dev);
2026 if (result)
2027 goto free;
2028
f3ca80fc 2029 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 2030 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2031 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
9396dec9 2032 INIT_WORK(&dev->async_work, nvme_async_event_work);
2d55cd5f
CH
2033 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2034 (unsigned long)dev);
77bf25ea 2035 mutex_init(&dev->shutdown_lock);
db3cbfff 2036 init_completion(&dev->ioq_wait);
b60503ba 2037
091b6092
MW
2038 result = nvme_setup_prp_pools(dev);
2039 if (result)
a96d4f5c 2040 goto put_pci;
4cc06521 2041
f3ca80fc
CH
2042 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2043 id->driver_data);
4cc06521 2044 if (result)
2e1d8448 2045 goto release_pools;
740216fc 2046
1b3c47c1
SG
2047 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2048
92f7a162 2049 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2050 return 0;
2051
0877cb0d 2052 release_pools:
091b6092 2053 nvme_release_prp_pools(dev);
a96d4f5c 2054 put_pci:
e75ec752 2055 put_device(dev->dev);
b00a726a 2056 nvme_dev_unmap(dev);
b60503ba
MW
2057 free:
2058 kfree(dev->queues);
2059 kfree(dev->entry);
2060 kfree(dev);
2061 return result;
2062}
2063
f0d54a54
KB
2064static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2065{
a6739479 2066 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2067
a6739479 2068 if (prepare)
a5cdb68c 2069 nvme_dev_disable(dev, false);
a6739479 2070 else
92f7a162 2071 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
2072}
2073
09ece142
KB
2074static void nvme_shutdown(struct pci_dev *pdev)
2075{
2076 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2077 nvme_dev_disable(dev, true);
09ece142
KB
2078}
2079
f58944e2
KB
2080/*
2081 * The driver's remove may be called on a device in a partially initialized
2082 * state. This function must not have any dependencies on the device state in
2083 * order to proceed.
2084 */
8d85fce7 2085static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2086{
2087 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2088
646017a6 2089 set_bit(NVME_CTRL_REMOVING, &dev->flags);
9a6b9458 2090 pci_set_drvdata(pdev, NULL);
9396dec9 2091 flush_work(&dev->async_work);
9bf2b972 2092 flush_work(&dev->reset_work);
a5768aa8 2093 flush_work(&dev->scan_work);
5bae7f73 2094 nvme_remove_namespaces(&dev->ctrl);
53029b04 2095 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2096 nvme_dev_disable(dev, true);
ff23a2a1 2097 flush_work(&dev->reset_work);
a4aea562 2098 nvme_dev_remove_admin(dev);
a1a5ef99 2099 nvme_free_queues(dev, 0);
8ffaadf7 2100 nvme_release_cmb(dev);
9a6b9458 2101 nvme_release_prp_pools(dev);
b00a726a 2102 nvme_dev_unmap(dev);
1673f1f0 2103 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2104}
2105
671a6018 2106#ifdef CONFIG_PM_SLEEP
cd638946
KB
2107static int nvme_suspend(struct device *dev)
2108{
2109 struct pci_dev *pdev = to_pci_dev(dev);
2110 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2111
a5cdb68c 2112 nvme_dev_disable(ndev, true);
cd638946
KB
2113 return 0;
2114}
2115
2116static int nvme_resume(struct device *dev)
2117{
2118 struct pci_dev *pdev = to_pci_dev(dev);
2119 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2120
92f7a162 2121 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2122 return 0;
cd638946 2123}
671a6018 2124#endif
cd638946
KB
2125
2126static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2127
a0a3408e
KB
2128static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2129 pci_channel_state_t state)
2130{
2131 struct nvme_dev *dev = pci_get_drvdata(pdev);
2132
2133 /*
2134 * A frozen channel requires a reset. When detected, this method will
2135 * shutdown the controller to quiesce. The controller will be restarted
2136 * after the slot reset through driver's slot_reset callback.
2137 */
1b3c47c1 2138 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
a0a3408e
KB
2139 switch (state) {
2140 case pci_channel_io_normal:
2141 return PCI_ERS_RESULT_CAN_RECOVER;
2142 case pci_channel_io_frozen:
a5cdb68c 2143 nvme_dev_disable(dev, false);
a0a3408e
KB
2144 return PCI_ERS_RESULT_NEED_RESET;
2145 case pci_channel_io_perm_failure:
2146 return PCI_ERS_RESULT_DISCONNECT;
2147 }
2148 return PCI_ERS_RESULT_NEED_RESET;
2149}
2150
2151static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2152{
2153 struct nvme_dev *dev = pci_get_drvdata(pdev);
2154
1b3c47c1 2155 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e
KB
2156 pci_restore_state(pdev);
2157 queue_work(nvme_workq, &dev->reset_work);
2158 return PCI_ERS_RESULT_RECOVERED;
2159}
2160
2161static void nvme_error_resume(struct pci_dev *pdev)
2162{
2163 pci_cleanup_aer_uncorrect_error_status(pdev);
2164}
2165
1d352035 2166static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2167 .error_detected = nvme_error_detected,
b60503ba
MW
2168 .slot_reset = nvme_slot_reset,
2169 .resume = nvme_error_resume,
f0d54a54 2170 .reset_notify = nvme_reset_notify,
b60503ba
MW
2171};
2172
2173/* Move to pci_ids.h later */
2174#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2175
6eb0d698 2176static const struct pci_device_id nvme_id_table[] = {
106198ed 2177 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2178 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2179 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2180 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2181 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
b60503ba 2182 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2183 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2184 { 0, }
2185};
2186MODULE_DEVICE_TABLE(pci, nvme_id_table);
2187
2188static struct pci_driver nvme_driver = {
2189 .name = "nvme",
2190 .id_table = nvme_id_table,
2191 .probe = nvme_probe,
8d85fce7 2192 .remove = nvme_remove,
09ece142 2193 .shutdown = nvme_shutdown,
cd638946
KB
2194 .driver = {
2195 .pm = &nvme_dev_pm_ops,
2196 },
b60503ba
MW
2197 .err_handler = &nvme_err_handler,
2198};
2199
2200static int __init nvme_init(void)
2201{
0ac13140 2202 int result;
1fa6aead 2203
92f7a162 2204 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2205 if (!nvme_workq)
b9afca3e 2206 return -ENOMEM;
9a6b9458 2207
f3db22fe
KB
2208 result = pci_register_driver(&nvme_driver);
2209 if (result)
576d55d6 2210 destroy_workqueue(nvme_workq);
b60503ba
MW
2211 return result;
2212}
2213
2214static void __exit nvme_exit(void)
2215{
2216 pci_unregister_driver(&nvme_driver);
9a6b9458 2217 destroy_workqueue(nvme_workq);
21bd78bc 2218 _nvme_check_size();
b60503ba
MW
2219}
2220
2221MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2222MODULE_LICENSE("GPL");
c78b4713 2223MODULE_VERSION("1.0");
b60503ba
MW
2224module_init(nvme_init);
2225module_exit(nvme_exit);