NVMe: Handle failures differently in nvme_submit_bio_queue()
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
be7b6275 34#include <linux/poison.h>
b60503ba
MW
35#include <linux/sched.h>
36#include <linux/slab.h>
37#include <linux/types.h>
38#include <linux/version.h>
39
40#define NVME_Q_DEPTH 1024
41#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
42#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
43#define NVME_MINORS 64
e85248e5
MW
44#define IO_TIMEOUT (5 * HZ)
45#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
46
47static int nvme_major;
48module_param(nvme_major, int, 0);
49
58ffacb5
MW
50static int use_threaded_interrupts;
51module_param(use_threaded_interrupts, int, 0);
52
b60503ba
MW
53/*
54 * Represents an NVM Express device. Each nvme_dev is a PCI function.
55 */
56struct nvme_dev {
b60503ba
MW
57 struct nvme_queue **queues;
58 u32 __iomem *dbs;
59 struct pci_dev *pci_dev;
091b6092 60 struct dma_pool *prp_page_pool;
99802a7a 61 struct dma_pool *prp_small_pool;
b60503ba
MW
62 int instance;
63 int queue_count;
64 u32 ctrl_config;
65 struct msix_entry *entry;
66 struct nvme_bar __iomem *bar;
67 struct list_head namespaces;
51814232
MW
68 char serial[20];
69 char model[40];
70 char firmware_rev[8];
b60503ba
MW
71};
72
73/*
74 * An NVM Express namespace is equivalent to a SCSI LUN
75 */
76struct nvme_ns {
77 struct list_head list;
78
79 struct nvme_dev *dev;
80 struct request_queue *queue;
81 struct gendisk *disk;
82
83 int ns_id;
84 int lba_shift;
85};
86
87/*
88 * An NVM Express queue. Each device has at least two (one for admin
89 * commands and one for I/O commands).
90 */
91struct nvme_queue {
92 struct device *q_dmadev;
091b6092 93 struct nvme_dev *dev;
b60503ba
MW
94 spinlock_t q_lock;
95 struct nvme_command *sq_cmds;
96 volatile struct nvme_completion *cqes;
97 dma_addr_t sq_dma_addr;
98 dma_addr_t cq_dma_addr;
99 wait_queue_head_t sq_full;
100 struct bio_list sq_cong;
101 u32 __iomem *q_db;
102 u16 q_depth;
103 u16 cq_vector;
104 u16 sq_head;
105 u16 sq_tail;
106 u16 cq_head;
82123460 107 u16 cq_phase;
b60503ba
MW
108 unsigned long cmdid_data[];
109};
110
9294bbed
MW
111static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
112
b60503ba
MW
113/*
114 * Check we didin't inadvertently grow the command struct
115 */
116static inline void _nvme_check_size(void)
117{
118 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
119 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
120 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
121 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
122 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
123 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
124 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
125 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
126 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
127}
128
e85248e5
MW
129struct nvme_cmd_info {
130 unsigned long ctx;
131 unsigned long timeout;
132};
133
134static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
135{
136 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
137}
138
b60503ba
MW
139/**
140 * alloc_cmdid - Allocate a Command ID
141 * @param nvmeq The queue that will be used for this command
142 * @param ctx A pointer that will be passed to the handler
143 * @param handler The ID of the handler to call
144 *
145 * Allocate a Command ID for a queue. The data passed in will
146 * be passed to the completion handler. This is implemented by using
147 * the bottom two bits of the ctx pointer to store the handler ID.
148 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
149 * We can change this if it becomes a problem.
150 */
e85248e5
MW
151static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
152 unsigned timeout)
b60503ba
MW
153{
154 int depth = nvmeq->q_depth;
e85248e5 155 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
156 int cmdid;
157
158 BUG_ON((unsigned long)ctx & 3);
159
160 do {
161 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
162 if (cmdid >= depth)
163 return -EBUSY;
164 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
165
e85248e5
MW
166 info[cmdid].ctx = (unsigned long)ctx | handler;
167 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
168 return cmdid;
169}
170
171static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 172 int handler, unsigned timeout)
b60503ba
MW
173{
174 int cmdid;
175 wait_event_killable(nvmeq->sq_full,
e85248e5 176 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
177 return (cmdid < 0) ? -EINTR : cmdid;
178}
179
180/* If you need more than four handlers, you'll need to change how
be7b6275
MW
181 * alloc_cmdid and nvme_process_cq work. Consider using a special
182 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
183 */
184enum {
185 sync_completion_id = 0,
186 bio_completion_id,
187};
188
be7b6275 189#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
d2d87034
MW
190#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
191#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
192#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 193
b60503ba
MW
194static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
195{
196 unsigned long data;
e85248e5 197 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 198
e85248e5 199 if (cmdid >= nvmeq->q_depth)
48e3d398 200 return CMD_CTX_INVALID;
e85248e5
MW
201 data = info[cmdid].ctx;
202 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
203 clear_bit(cmdid, nvmeq->cmdid_data);
204 wake_up(&nvmeq->sq_full);
205 return data;
206}
207
be7b6275 208static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 209{
e85248e5
MW
210 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
211 info[cmdid].ctx = CMD_CTX_CANCELLED;
3c0cf138
MW
212}
213
b60503ba
MW
214static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
215{
1b23484b
MW
216 int qid, cpu = get_cpu();
217 if (cpu < ns->dev->queue_count)
218 qid = cpu + 1;
219 else
220 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
221 return ns->dev->queues[qid];
b60503ba
MW
222}
223
224static void put_nvmeq(struct nvme_queue *nvmeq)
225{
1b23484b 226 put_cpu();
b60503ba
MW
227}
228
229/**
230 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
231 * @nvmeq: The queue to use
232 * @cmd: The command to send
233 *
234 * Safe to use from interrupt context
235 */
236static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
237{
238 unsigned long flags;
239 u16 tail;
240 /* XXX: Need to check tail isn't going to overrun head */
241 spin_lock_irqsave(&nvmeq->q_lock, flags);
242 tail = nvmeq->sq_tail;
243 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
244 writel(tail, nvmeq->q_db);
245 if (++tail == nvmeq->q_depth)
246 tail = 0;
247 nvmeq->sq_tail = tail;
248 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
249
250 return 0;
251}
252
e025344c
SMM
253struct nvme_prps {
254 int npages;
255 dma_addr_t first_dma;
256 __le64 *list[0];
257};
258
d567760c 259static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
e025344c
SMM
260{
261 const int last_prp = PAGE_SIZE / 8 - 1;
262 int i;
263 dma_addr_t prp_dma;
264
265 if (!prps)
266 return;
267
268 prp_dma = prps->first_dma;
99802a7a
MW
269
270 if (prps->npages == 0)
271 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
e025344c
SMM
272 for (i = 0; i < prps->npages; i++) {
273 __le64 *prp_list = prps->list[i];
274 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
091b6092 275 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
e025344c
SMM
276 prp_dma = next_prp_dma;
277 }
278 kfree(prps);
279}
280
d534df3c 281struct nvme_bio {
b60503ba
MW
282 struct bio *bio;
283 int nents;
e025344c 284 struct nvme_prps *prps;
b60503ba
MW
285 struct scatterlist sg[0];
286};
287
288/* XXX: use a mempool */
d534df3c 289static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 290{
d534df3c 291 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
292 sizeof(struct scatterlist) * nseg, gfp);
293}
294
d534df3c 295static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
b60503ba 296{
d567760c 297 nvme_free_prps(nvmeq->dev, nbio->prps);
d534df3c 298 kfree(nbio);
b60503ba
MW
299}
300
301static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
302 struct nvme_completion *cqe)
303{
d534df3c
MW
304 struct nvme_bio *nbio = ctx;
305 struct bio *bio = nbio->bio;
b60503ba
MW
306 u16 status = le16_to_cpup(&cqe->status) >> 1;
307
d534df3c 308 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
b60503ba 309 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
d534df3c 310 free_nbio(nvmeq, nbio);
b60503ba 311 bio_endio(bio, status ? -EIO : 0);
9294bbed
MW
312 bio = bio_list_pop(&nvmeq->sq_cong);
313 if (bio)
314 nvme_resubmit_bio(nvmeq, bio);
b60503ba
MW
315}
316
ff22b54f 317/* length is in bytes */
d567760c 318static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
e025344c 319 struct nvme_common_command *cmd,
ff22b54f
MW
320 struct scatterlist *sg, int length)
321{
99802a7a 322 struct dma_pool *pool;
ff22b54f
MW
323 int dma_len = sg_dma_len(sg);
324 u64 dma_addr = sg_dma_address(sg);
325 int offset = offset_in_page(dma_addr);
e025344c
SMM
326 __le64 *prp_list;
327 dma_addr_t prp_dma;
328 int nprps, npages, i, prp_page;
329 struct nvme_prps *prps = NULL;
ff22b54f
MW
330
331 cmd->prp1 = cpu_to_le64(dma_addr);
332 length -= (PAGE_SIZE - offset);
333 if (length <= 0)
e025344c 334 return prps;
ff22b54f
MW
335
336 dma_len -= (PAGE_SIZE - offset);
337 if (dma_len) {
338 dma_addr += (PAGE_SIZE - offset);
339 } else {
340 sg = sg_next(sg);
341 dma_addr = sg_dma_address(sg);
342 dma_len = sg_dma_len(sg);
343 }
344
345 if (length <= PAGE_SIZE) {
346 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
347 return prps;
348 }
349
350 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
351 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
352 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
e025344c 353 prp_page = 0;
99802a7a
MW
354 if (nprps <= (256 / 8)) {
355 pool = dev->prp_small_pool;
356 prps->npages = 0;
357 } else {
358 pool = dev->prp_page_pool;
359 prps->npages = npages;
360 }
361
362 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c
SMM
363 prps->list[prp_page++] = prp_list;
364 prps->first_dma = prp_dma;
365 cmd->prp2 = cpu_to_le64(prp_dma);
366 i = 0;
367 for (;;) {
368 if (i == PAGE_SIZE / 8 - 1) {
369 __le64 *old_prp_list = prp_list;
99802a7a 370 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c
SMM
371 prps->list[prp_page++] = prp_list;
372 old_prp_list[i] = cpu_to_le64(prp_dma);
373 i = 0;
374 }
375 prp_list[i++] = cpu_to_le64(dma_addr);
376 dma_len -= PAGE_SIZE;
377 dma_addr += PAGE_SIZE;
378 length -= PAGE_SIZE;
379 if (length <= 0)
380 break;
381 if (dma_len > 0)
382 continue;
383 BUG_ON(dma_len < 0);
384 sg = sg_next(sg);
385 dma_addr = sg_dma_address(sg);
386 dma_len = sg_dma_len(sg);
ff22b54f
MW
387 }
388
e025344c 389 return prps;
ff22b54f
MW
390}
391
d534df3c 392static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
393 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
394{
76830840
MW
395 struct bio_vec *bvec, *bvprv = NULL;
396 struct scatterlist *sg = NULL;
397 int i, nsegs = 0;
b60503ba 398
76830840 399 sg_init_table(nbio->sg, psegs);
b60503ba 400 bio_for_each_segment(bvec, bio, i) {
76830840
MW
401 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
402 sg->length += bvec->bv_len;
403 } else {
404 /* Check bvprv && offset == 0 */
405 sg = sg ? sg + 1 : nbio->sg;
406 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
407 bvec->bv_offset);
408 nsegs++;
409 }
410 bvprv = bvec;
b60503ba 411 }
d534df3c 412 nbio->nents = nsegs;
76830840 413 sg_mark_end(sg);
d534df3c 414 return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
b60503ba
MW
415}
416
417static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
418 struct bio *bio)
419{
ff22b54f 420 struct nvme_command *cmnd;
d534df3c 421 struct nvme_bio *nbio;
b60503ba 422 enum dma_data_direction dma_dir;
eeee3226 423 int cmdid, result = -ENOMEM;
b60503ba
MW
424 u16 control;
425 u32 dsmgmt;
b60503ba
MW
426 int psegs = bio_phys_segments(ns->queue, bio);
427
eeee3226 428 nbio = alloc_nbio(psegs, GFP_ATOMIC);
d534df3c 429 if (!nbio)
eeee3226 430 goto nomem;
d534df3c 431 nbio->bio = bio;
b60503ba 432
eeee3226 433 result = -EBUSY;
d534df3c 434 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
b60503ba 435 if (unlikely(cmdid < 0))
d534df3c 436 goto free_nbio;
b60503ba
MW
437
438 control = 0;
439 if (bio->bi_rw & REQ_FUA)
440 control |= NVME_RW_FUA;
441 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
442 control |= NVME_RW_LR;
443
444 dsmgmt = 0;
445 if (bio->bi_rw & REQ_RAHEAD)
446 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
447
ff22b54f 448 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 449
b8deb62c 450 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 451 if (bio_data_dir(bio)) {
ff22b54f 452 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
453 dma_dir = DMA_TO_DEVICE;
454 } else {
ff22b54f 455 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
456 dma_dir = DMA_FROM_DEVICE;
457 }
458
eeee3226 459 result = -ENOMEM;
1974b1ae 460 if (nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs) == 0)
eeee3226 461 goto free_nbio;
b60503ba 462
ff22b54f
MW
463 cmnd->rw.flags = 1;
464 cmnd->rw.command_id = cmdid;
465 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d567760c 466 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
e025344c 467 bio->bi_size);
ff22b54f
MW
468 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
469 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
470 cmnd->rw.control = cpu_to_le16(control);
471 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba
MW
472
473 writel(nvmeq->sq_tail, nvmeq->q_db);
474 if (++nvmeq->sq_tail == nvmeq->q_depth)
475 nvmeq->sq_tail = 0;
476
1974b1ae
MW
477 return 0;
478
d534df3c
MW
479 free_nbio:
480 free_nbio(nvmeq, nbio);
eeee3226
MW
481 nomem:
482 return result;
b60503ba
MW
483}
484
9294bbed
MW
485static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
486{
487 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
488 if (nvme_submit_bio_queue(nvmeq, ns, bio))
489 bio_list_add_head(&nvmeq->sq_cong, bio);
490 else if (bio_list_empty(&nvmeq->sq_cong))
491 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
492 /* XXX: Need to duplicate the logic from __freed_request here */
493}
494
b60503ba
MW
495/*
496 * NB: return value of non-zero would mean that we were a stacking driver.
497 * make_request must always succeed.
498 */
499static int nvme_make_request(struct request_queue *q, struct bio *bio)
500{
501 struct nvme_ns *ns = q->queuedata;
502 struct nvme_queue *nvmeq = get_nvmeq(ns);
eeee3226
MW
503 int result = -EBUSY;
504
505 spin_lock_irq(&nvmeq->q_lock);
506 if (bio_list_empty(&nvmeq->sq_cong))
507 result = nvme_submit_bio_queue(nvmeq, ns, bio);
508 if (unlikely(result)) {
509 if (bio_list_empty(&nvmeq->sq_cong))
510 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
511 bio_list_add(&nvmeq->sq_cong, bio);
512 }
eeee3226
MW
513
514 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
515 put_nvmeq(nvmeq);
516
517 return 0;
518}
519
520struct sync_cmd_info {
521 struct task_struct *task;
522 u32 result;
523 int status;
524};
525
526static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
527 struct nvme_completion *cqe)
528{
529 struct sync_cmd_info *cmdinfo = ctx;
be7b6275
MW
530 if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
531 return;
b36235df
MW
532 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
533 dev_warn(nvmeq->q_dmadev,
534 "completed id %d twice on queue %d\n",
535 cqe->command_id, le16_to_cpup(&cqe->sq_id));
536 return;
537 }
48e3d398
MW
538 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
539 dev_warn(nvmeq->q_dmadev,
540 "invalid id %d completed on queue %d\n",
541 cqe->command_id, le16_to_cpup(&cqe->sq_id));
542 return;
543 }
b60503ba
MW
544 cmdinfo->result = le32_to_cpup(&cqe->result);
545 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
546 wake_up_process(cmdinfo->task);
547}
548
549typedef void (*completion_fn)(struct nvme_queue *, void *,
550 struct nvme_completion *);
551
552static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
553{
82123460 554 u16 head, phase;
b60503ba
MW
555
556 static const completion_fn completions[4] = {
557 [sync_completion_id] = sync_completion,
558 [bio_completion_id] = bio_completion,
559 };
560
561 head = nvmeq->cq_head;
82123460 562 phase = nvmeq->cq_phase;
b60503ba
MW
563
564 for (;;) {
565 unsigned long data;
566 void *ptr;
567 unsigned char handler;
568 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 569 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
570 break;
571 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
572 if (++head == nvmeq->q_depth) {
573 head = 0;
82123460 574 phase = !phase;
b60503ba
MW
575 }
576
577 data = free_cmdid(nvmeq, cqe.command_id);
578 handler = data & 3;
579 ptr = (void *)(data & ~3UL);
580 completions[handler](nvmeq, ptr, &cqe);
581 }
582
583 /* If the controller ignores the cq head doorbell and continuously
584 * writes to the queue, it is theoretically possible to wrap around
585 * the queue twice and mistakenly return IRQ_NONE. Linux only
586 * requires that 0.1% of your interrupts are handled, so this isn't
587 * a big problem.
588 */
82123460 589 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
590 return IRQ_NONE;
591
592 writel(head, nvmeq->q_db + 1);
593 nvmeq->cq_head = head;
82123460 594 nvmeq->cq_phase = phase;
b60503ba
MW
595
596 return IRQ_HANDLED;
597}
598
599static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
600{
601 irqreturn_t result;
602 struct nvme_queue *nvmeq = data;
603 spin_lock(&nvmeq->q_lock);
604 result = nvme_process_cq(nvmeq);
605 spin_unlock(&nvmeq->q_lock);
606 return result;
607}
608
609static irqreturn_t nvme_irq_check(int irq, void *data)
610{
611 struct nvme_queue *nvmeq = data;
612 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
613 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
614 return IRQ_NONE;
615 return IRQ_WAKE_THREAD;
616}
617
3c0cf138
MW
618static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
619{
620 spin_lock_irq(&nvmeq->q_lock);
be7b6275 621 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
622 spin_unlock_irq(&nvmeq->q_lock);
623}
624
b60503ba
MW
625/*
626 * Returns 0 on success. If the result is negative, it's a Linux error code;
627 * if the result is positive, it's an NVM Express status code
628 */
3c0cf138 629static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 630 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
631{
632 int cmdid;
633 struct sync_cmd_info cmdinfo;
634
635 cmdinfo.task = current;
636 cmdinfo.status = -EINTR;
637
e85248e5
MW
638 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
639 timeout);
b60503ba
MW
640 if (cmdid < 0)
641 return cmdid;
642 cmd->common.command_id = cmdid;
643
3c0cf138
MW
644 set_current_state(TASK_KILLABLE);
645 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
646 schedule();
647
3c0cf138
MW
648 if (cmdinfo.status == -EINTR) {
649 nvme_abort_command(nvmeq, cmdid);
650 return -EINTR;
651 }
652
b60503ba
MW
653 if (result)
654 *result = cmdinfo.result;
655
656 return cmdinfo.status;
657}
658
659static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
660 u32 *result)
661{
e85248e5 662 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
663}
664
665static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
666{
667 int status;
668 struct nvme_command c;
669
670 memset(&c, 0, sizeof(c));
671 c.delete_queue.opcode = opcode;
672 c.delete_queue.qid = cpu_to_le16(id);
673
674 status = nvme_submit_admin_cmd(dev, &c, NULL);
675 if (status)
676 return -EIO;
677 return 0;
678}
679
680static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
681 struct nvme_queue *nvmeq)
682{
683 int status;
684 struct nvme_command c;
685 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
686
687 memset(&c, 0, sizeof(c));
688 c.create_cq.opcode = nvme_admin_create_cq;
689 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
690 c.create_cq.cqid = cpu_to_le16(qid);
691 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
692 c.create_cq.cq_flags = cpu_to_le16(flags);
693 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
694
695 status = nvme_submit_admin_cmd(dev, &c, NULL);
696 if (status)
697 return -EIO;
698 return 0;
699}
700
701static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
702 struct nvme_queue *nvmeq)
703{
704 int status;
705 struct nvme_command c;
706 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
707
708 memset(&c, 0, sizeof(c));
709 c.create_sq.opcode = nvme_admin_create_sq;
710 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
711 c.create_sq.sqid = cpu_to_le16(qid);
712 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
713 c.create_sq.sq_flags = cpu_to_le16(flags);
714 c.create_sq.cqid = cpu_to_le16(qid);
715
716 status = nvme_submit_admin_cmd(dev, &c, NULL);
717 if (status)
718 return -EIO;
719 return 0;
720}
721
722static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
723{
724 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
725}
726
727static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
728{
729 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
730}
731
732static void nvme_free_queue(struct nvme_dev *dev, int qid)
733{
734 struct nvme_queue *nvmeq = dev->queues[qid];
735
736 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
737
738 /* Don't tell the adapter to delete the admin queue */
739 if (qid) {
740 adapter_delete_sq(dev, qid);
741 adapter_delete_cq(dev, qid);
742 }
743
744 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
745 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
746 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
747 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
748 kfree(nvmeq);
749}
750
751static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
752 int depth, int vector)
753{
754 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 755 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
756 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
757 if (!nvmeq)
758 return NULL;
759
760 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
761 &nvmeq->cq_dma_addr, GFP_KERNEL);
762 if (!nvmeq->cqes)
763 goto free_nvmeq;
764 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
765
766 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
767 &nvmeq->sq_dma_addr, GFP_KERNEL);
768 if (!nvmeq->sq_cmds)
769 goto free_cqdma;
770
771 nvmeq->q_dmadev = dmadev;
091b6092 772 nvmeq->dev = dev;
b60503ba
MW
773 spin_lock_init(&nvmeq->q_lock);
774 nvmeq->cq_head = 0;
82123460 775 nvmeq->cq_phase = 1;
b60503ba
MW
776 init_waitqueue_head(&nvmeq->sq_full);
777 bio_list_init(&nvmeq->sq_cong);
778 nvmeq->q_db = &dev->dbs[qid * 2];
779 nvmeq->q_depth = depth;
780 nvmeq->cq_vector = vector;
781
782 return nvmeq;
783
784 free_cqdma:
785 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
786 nvmeq->cq_dma_addr);
787 free_nvmeq:
788 kfree(nvmeq);
789 return NULL;
790}
791
3001082c
MW
792static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
793 const char *name)
794{
58ffacb5
MW
795 if (use_threaded_interrupts)
796 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 797 nvme_irq_check, nvme_irq,
58ffacb5
MW
798 IRQF_DISABLED | IRQF_SHARED,
799 name, nvmeq);
3001082c
MW
800 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
801 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
802}
803
b60503ba
MW
804static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
805 int qid, int cq_size, int vector)
806{
807 int result;
808 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
809
3f85d50b
MW
810 if (!nvmeq)
811 return NULL;
812
b60503ba
MW
813 result = adapter_alloc_cq(dev, qid, nvmeq);
814 if (result < 0)
815 goto free_nvmeq;
816
817 result = adapter_alloc_sq(dev, qid, nvmeq);
818 if (result < 0)
819 goto release_cq;
820
3001082c 821 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
822 if (result < 0)
823 goto release_sq;
824
825 return nvmeq;
826
827 release_sq:
828 adapter_delete_sq(dev, qid);
829 release_cq:
830 adapter_delete_cq(dev, qid);
831 free_nvmeq:
832 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
833 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
834 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
835 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
836 kfree(nvmeq);
837 return NULL;
838}
839
840static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
841{
842 int result;
843 u32 aqa;
844 struct nvme_queue *nvmeq;
845
846 dev->dbs = ((void __iomem *)dev->bar) + 4096;
847
848 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
849 if (!nvmeq)
850 return -ENOMEM;
b60503ba
MW
851
852 aqa = nvmeq->q_depth - 1;
853 aqa |= aqa << 16;
854
855 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
856 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
857 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
858
5911f200 859 writel(0, &dev->bar->cc);
b60503ba
MW
860 writel(aqa, &dev->bar->aqa);
861 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
862 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
863 writel(dev->ctrl_config, &dev->bar->cc);
864
865 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
866 msleep(100);
867 if (fatal_signal_pending(current))
868 return -EINTR;
869 }
870
3001082c 871 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
872 dev->queues[0] = nvmeq;
873 return result;
874}
875
7fc3cdab
MW
876static int nvme_map_user_pages(struct nvme_dev *dev, int write,
877 unsigned long addr, unsigned length,
878 struct scatterlist **sgp)
b60503ba 879{
36c14ed9 880 int i, err, count, nents, offset;
7fc3cdab
MW
881 struct scatterlist *sg;
882 struct page **pages;
36c14ed9
MW
883
884 if (addr & 3)
885 return -EINVAL;
7fc3cdab
MW
886 if (!length)
887 return -EINVAL;
888
36c14ed9 889 offset = offset_in_page(addr);
7fc3cdab
MW
890 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
891 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
892
893 err = get_user_pages_fast(addr, count, 1, pages);
894 if (err < count) {
895 count = err;
896 err = -EFAULT;
897 goto put_pages;
898 }
7fc3cdab
MW
899
900 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 901 sg_init_table(sg, count);
ff22b54f 902 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
903 length -= (PAGE_SIZE - offset);
904 for (i = 1; i < count; i++) {
905 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
906 length -= PAGE_SIZE;
907 }
908
909 err = -ENOMEM;
910 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
911 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
912 if (!nents)
913 goto put_pages;
b60503ba 914
7fc3cdab
MW
915 kfree(pages);
916 *sgp = sg;
917 return nents;
b60503ba 918
7fc3cdab
MW
919 put_pages:
920 for (i = 0; i < count; i++)
921 put_page(pages[i]);
922 kfree(pages);
923 return err;
924}
b60503ba 925
7fc3cdab
MW
926static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
927 unsigned long addr, int length,
928 struct scatterlist *sg, int nents)
929{
930 int i, count;
b60503ba 931
7fc3cdab 932 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 933 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 934
36c14ed9 935 for (i = 0; i < count; i++)
7fc3cdab
MW
936 put_page(sg_page(&sg[i]));
937}
b60503ba 938
7fc3cdab
MW
939static int nvme_submit_user_admin_command(struct nvme_dev *dev,
940 unsigned long addr, unsigned length,
941 struct nvme_command *cmd)
942{
943 int err, nents;
944 struct scatterlist *sg;
e025344c 945 struct nvme_prps *prps;
7fc3cdab
MW
946
947 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
948 if (nents < 0)
949 return nents;
d567760c 950 prps = nvme_setup_prps(dev, &cmd->common, sg, length);
7fc3cdab
MW
951 err = nvme_submit_admin_cmd(dev, cmd, NULL);
952 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
d567760c 953 nvme_free_prps(dev, prps);
7fc3cdab 954 return err ? -EIO : 0;
b60503ba
MW
955}
956
bd38c555 957static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 958{
b60503ba 959 struct nvme_command c;
b60503ba 960
bd38c555
MW
961 memset(&c, 0, sizeof(c));
962 c.identify.opcode = nvme_admin_identify;
963 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
964 c.identify.cns = cpu_to_le32(cns);
965
966 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
967}
968
969static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
970{
971 struct nvme_command c;
b60503ba
MW
972
973 memset(&c, 0, sizeof(c));
974 c.features.opcode = nvme_admin_get_features;
975 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
976 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
977
bd38c555 978 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
979}
980
a53295b6
MW
981static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
982{
983 struct nvme_dev *dev = ns->dev;
984 struct nvme_queue *nvmeq;
985 struct nvme_user_io io;
986 struct nvme_command c;
987 unsigned length;
988 u32 result;
989 int nents, status;
990 struct scatterlist *sg;
e025344c 991 struct nvme_prps *prps;
a53295b6
MW
992
993 if (copy_from_user(&io, uio, sizeof(io)))
994 return -EFAULT;
995 length = io.nblocks << io.block_shift;
996 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
997 if (nents < 0)
998 return nents;
999
1000 memset(&c, 0, sizeof(c));
1001 c.rw.opcode = io.opcode;
1002 c.rw.flags = io.flags;
1003 c.rw.nsid = cpu_to_le32(io.nsid);
1004 c.rw.slba = cpu_to_le64(io.slba);
1005 c.rw.length = cpu_to_le16(io.nblocks - 1);
1006 c.rw.control = cpu_to_le16(io.control);
1007 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1008 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
1009 c.rw.apptag = cpu_to_le16(io.apptag);
1010 c.rw.appmask = cpu_to_le16(io.appmask);
1011 /* XXX: metadata */
d567760c 1012 prps = nvme_setup_prps(dev, &c.common, sg, length);
a53295b6 1013
d567760c 1014 nvmeq = get_nvmeq(ns);
b1ad37ef
MW
1015 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1016 * disabled. We may be preempted at any point, and be rescheduled
1017 * to a different CPU. That will cause cacheline bouncing, but no
1018 * additional races since q_lock already protects against other CPUs.
1019 */
a53295b6 1020 put_nvmeq(nvmeq);
e85248e5 1021 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
a53295b6
MW
1022
1023 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
d567760c 1024 nvme_free_prps(dev, prps);
a53295b6
MW
1025 put_user(result, &uio->result);
1026 return status;
1027}
1028
6ee44cdc
MW
1029static int nvme_download_firmware(struct nvme_ns *ns,
1030 struct nvme_dlfw __user *udlfw)
1031{
1032 struct nvme_dev *dev = ns->dev;
1033 struct nvme_dlfw dlfw;
1034 struct nvme_command c;
1035 int nents, status;
1036 struct scatterlist *sg;
e025344c 1037 struct nvme_prps *prps;
6ee44cdc
MW
1038
1039 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1040 return -EFAULT;
1041 if (dlfw.length >= (1 << 30))
1042 return -EINVAL;
1043
1044 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1045 if (nents < 0)
1046 return nents;
1047
1048 memset(&c, 0, sizeof(c));
1049 c.dlfw.opcode = nvme_admin_download_fw;
1050 c.dlfw.numd = cpu_to_le32(dlfw.length);
1051 c.dlfw.offset = cpu_to_le32(dlfw.offset);
d567760c 1052 prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
6ee44cdc
MW
1053
1054 status = nvme_submit_admin_cmd(dev, &c, NULL);
1055 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
d567760c 1056 nvme_free_prps(dev, prps);
6ee44cdc
MW
1057 return status;
1058}
1059
1060static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1061{
1062 struct nvme_dev *dev = ns->dev;
1063 struct nvme_command c;
1064
1065 memset(&c, 0, sizeof(c));
1066 c.common.opcode = nvme_admin_activate_fw;
1067 c.common.rsvd10[0] = cpu_to_le32(arg);
1068
1069 return nvme_submit_admin_cmd(dev, &c, NULL);
1070}
1071
b60503ba
MW
1072static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1073 unsigned long arg)
1074{
1075 struct nvme_ns *ns = bdev->bd_disk->private_data;
1076
1077 switch (cmd) {
1078 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 1079 return nvme_identify(ns, arg, 0);
b60503ba 1080 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 1081 return nvme_identify(ns, arg, 1);
b60503ba 1082 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 1083 return nvme_get_range_type(ns, arg);
a53295b6
MW
1084 case NVME_IOCTL_SUBMIT_IO:
1085 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
1086 case NVME_IOCTL_DOWNLOAD_FW:
1087 return nvme_download_firmware(ns, (void __user *)arg);
1088 case NVME_IOCTL_ACTIVATE_FW:
1089 return nvme_activate_firmware(ns, arg);
b60503ba
MW
1090 default:
1091 return -ENOTTY;
1092 }
1093}
1094
1095static const struct block_device_operations nvme_fops = {
1096 .owner = THIS_MODULE,
1097 .ioctl = nvme_ioctl,
1098};
1099
1100static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1101 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1102{
1103 struct nvme_ns *ns;
1104 struct gendisk *disk;
1105 int lbaf;
1106
1107 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1108 return NULL;
1109
1110 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1111 if (!ns)
1112 return NULL;
1113 ns->queue = blk_alloc_queue(GFP_KERNEL);
1114 if (!ns->queue)
1115 goto out_free_ns;
1116 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1117 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1118 blk_queue_make_request(ns->queue, nvme_make_request);
1119 ns->dev = dev;
1120 ns->queue->queuedata = ns;
1121
1122 disk = alloc_disk(NVME_MINORS);
1123 if (!disk)
1124 goto out_free_queue;
1125 ns->ns_id = index;
1126 ns->disk = disk;
1127 lbaf = id->flbas & 0xf;
1128 ns->lba_shift = id->lbaf[lbaf].ds;
1129
1130 disk->major = nvme_major;
1131 disk->minors = NVME_MINORS;
1132 disk->first_minor = NVME_MINORS * index;
1133 disk->fops = &nvme_fops;
1134 disk->private_data = ns;
1135 disk->queue = ns->queue;
388f037f 1136 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
1137 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1138 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1139
1140 return ns;
1141
1142 out_free_queue:
1143 blk_cleanup_queue(ns->queue);
1144 out_free_ns:
1145 kfree(ns);
1146 return NULL;
1147}
1148
1149static void nvme_ns_free(struct nvme_ns *ns)
1150{
1151 put_disk(ns->disk);
1152 blk_cleanup_queue(ns->queue);
1153 kfree(ns);
1154}
1155
b3b06812 1156static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1157{
1158 int status;
1159 u32 result;
1160 struct nvme_command c;
b3b06812 1161 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1162
1163 memset(&c, 0, sizeof(c));
1164 c.features.opcode = nvme_admin_get_features;
1165 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1166 c.features.dword11 = cpu_to_le32(q_count);
1167
1168 status = nvme_submit_admin_cmd(dev, &c, &result);
1169 if (status)
1170 return -EIO;
1171 return min(result & 0xffff, result >> 16) + 1;
1172}
1173
b60503ba
MW
1174static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1175{
1b23484b 1176 int result, cpu, i, nr_queues;
b60503ba 1177
1b23484b
MW
1178 nr_queues = num_online_cpus();
1179 result = set_queue_count(dev, nr_queues);
1180 if (result < 0)
1181 return result;
1182 if (result < nr_queues)
1183 nr_queues = result;
b60503ba 1184
1b23484b
MW
1185 /* Deregister the admin queue's interrupt */
1186 free_irq(dev->entry[0].vector, dev->queues[0]);
1187
1188 for (i = 0; i < nr_queues; i++)
1189 dev->entry[i].entry = i;
1190 for (;;) {
1191 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1192 if (result == 0) {
1193 break;
1194 } else if (result > 0) {
1195 nr_queues = result;
1196 continue;
1197 } else {
1198 nr_queues = 1;
1199 break;
1200 }
1201 }
1202
1203 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1204 /* XXX: handle failure here */
1205
1206 cpu = cpumask_first(cpu_online_mask);
1207 for (i = 0; i < nr_queues; i++) {
1208 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1209 cpu = cpumask_next(cpu, cpu_online_mask);
1210 }
1211
1212 for (i = 0; i < nr_queues; i++) {
1213 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1214 NVME_Q_DEPTH, i);
1215 if (!dev->queues[i + 1])
1216 return -ENOMEM;
1217 dev->queue_count++;
1218 }
b60503ba
MW
1219
1220 return 0;
1221}
1222
1223static void nvme_free_queues(struct nvme_dev *dev)
1224{
1225 int i;
1226
1227 for (i = dev->queue_count - 1; i >= 0; i--)
1228 nvme_free_queue(dev, i);
1229}
1230
1231static int __devinit nvme_dev_add(struct nvme_dev *dev)
1232{
1233 int res, nn, i;
1234 struct nvme_ns *ns, *next;
51814232 1235 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1236 void *id;
1237 dma_addr_t dma_addr;
1238 struct nvme_command cid, crt;
1239
1240 res = nvme_setup_io_queues(dev);
1241 if (res)
1242 return res;
1243
1244 /* XXX: Switch to a SG list once prp2 works */
1245 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1246 GFP_KERNEL);
1247
1248 memset(&cid, 0, sizeof(cid));
1249 cid.identify.opcode = nvme_admin_identify;
1250 cid.identify.nsid = 0;
1251 cid.identify.prp1 = cpu_to_le64(dma_addr);
1252 cid.identify.cns = cpu_to_le32(1);
1253
1254 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1255 if (res) {
1256 res = -EIO;
1257 goto out_free;
1258 }
1259
51814232
MW
1260 ctrl = id;
1261 nn = le32_to_cpup(&ctrl->nn);
1262 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1263 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1264 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1265
1266 cid.identify.cns = 0;
1267 memset(&crt, 0, sizeof(crt));
1268 crt.features.opcode = nvme_admin_get_features;
1269 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1270 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1271
1272 for (i = 0; i < nn; i++) {
1273 cid.identify.nsid = cpu_to_le32(i);
1274 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1275 if (res)
1276 continue;
1277
1278 if (((struct nvme_id_ns *)id)->ncap == 0)
1279 continue;
1280
1281 crt.features.nsid = cpu_to_le32(i);
1282 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1283 if (res)
1284 continue;
1285
1286 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1287 if (ns)
1288 list_add_tail(&ns->list, &dev->namespaces);
1289 }
1290 list_for_each_entry(ns, &dev->namespaces, list)
1291 add_disk(ns->disk);
1292
1293 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1294 return 0;
1295
1296 out_free:
1297 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1298 list_del(&ns->list);
1299 nvme_ns_free(ns);
1300 }
1301
1302 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1303 return res;
1304}
1305
1306static int nvme_dev_remove(struct nvme_dev *dev)
1307{
1308 struct nvme_ns *ns, *next;
1309
1310 /* TODO: wait all I/O finished or cancel them */
1311
1312 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1313 list_del(&ns->list);
1314 del_gendisk(ns->disk);
1315 nvme_ns_free(ns);
1316 }
1317
1318 nvme_free_queues(dev);
1319
1320 return 0;
1321}
1322
091b6092
MW
1323static int nvme_setup_prp_pools(struct nvme_dev *dev)
1324{
1325 struct device *dmadev = &dev->pci_dev->dev;
1326 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1327 PAGE_SIZE, PAGE_SIZE, 0);
1328 if (!dev->prp_page_pool)
1329 return -ENOMEM;
1330
99802a7a
MW
1331 /* Optimisation for I/Os between 4k and 128k */
1332 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1333 256, 256, 0);
1334 if (!dev->prp_small_pool) {
1335 dma_pool_destroy(dev->prp_page_pool);
1336 return -ENOMEM;
1337 }
091b6092
MW
1338 return 0;
1339}
1340
1341static void nvme_release_prp_pools(struct nvme_dev *dev)
1342{
1343 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1344 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1345}
1346
b60503ba
MW
1347/* XXX: Use an ida or something to let remove / add work correctly */
1348static void nvme_set_instance(struct nvme_dev *dev)
1349{
1350 static int instance;
1351 dev->instance = instance++;
1352}
1353
1354static void nvme_release_instance(struct nvme_dev *dev)
1355{
1356}
1357
1358static int __devinit nvme_probe(struct pci_dev *pdev,
1359 const struct pci_device_id *id)
1360{
574e8b95 1361 int bars, result = -ENOMEM;
b60503ba
MW
1362 struct nvme_dev *dev;
1363
1364 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1365 if (!dev)
1366 return -ENOMEM;
1367 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1368 GFP_KERNEL);
1369 if (!dev->entry)
1370 goto free;
1b23484b
MW
1371 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1372 GFP_KERNEL);
b60503ba
MW
1373 if (!dev->queues)
1374 goto free;
1375
0ee5a7d7
SMM
1376 if (pci_enable_device_mem(pdev))
1377 goto free;
f64d3365 1378 pci_set_master(pdev);
574e8b95
MW
1379 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1380 if (pci_request_selected_regions(pdev, bars, "nvme"))
1381 goto disable;
0ee5a7d7 1382
b60503ba
MW
1383 INIT_LIST_HEAD(&dev->namespaces);
1384 dev->pci_dev = pdev;
1385 pci_set_drvdata(pdev, dev);
2930353f
MW
1386 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1387 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1388 nvme_set_instance(dev);
53c9577e 1389 dev->entry[0].vector = pdev->irq;
b60503ba 1390
091b6092
MW
1391 result = nvme_setup_prp_pools(dev);
1392 if (result)
1393 goto disable_msix;
1394
b60503ba
MW
1395 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1396 if (!dev->bar) {
1397 result = -ENOMEM;
574e8b95 1398 goto disable_msix;
b60503ba
MW
1399 }
1400
1401 result = nvme_configure_admin_queue(dev);
1402 if (result)
1403 goto unmap;
1404 dev->queue_count++;
1405
1406 result = nvme_dev_add(dev);
1407 if (result)
1408 goto delete;
1409 return 0;
1410
1411 delete:
1412 nvme_free_queues(dev);
1413 unmap:
1414 iounmap(dev->bar);
574e8b95 1415 disable_msix:
b60503ba
MW
1416 pci_disable_msix(pdev);
1417 nvme_release_instance(dev);
091b6092 1418 nvme_release_prp_pools(dev);
574e8b95 1419 disable:
0ee5a7d7 1420 pci_disable_device(pdev);
574e8b95 1421 pci_release_regions(pdev);
b60503ba
MW
1422 free:
1423 kfree(dev->queues);
1424 kfree(dev->entry);
1425 kfree(dev);
1426 return result;
1427}
1428
1429static void __devexit nvme_remove(struct pci_dev *pdev)
1430{
1431 struct nvme_dev *dev = pci_get_drvdata(pdev);
1432 nvme_dev_remove(dev);
1433 pci_disable_msix(pdev);
1434 iounmap(dev->bar);
1435 nvme_release_instance(dev);
091b6092 1436 nvme_release_prp_pools(dev);
0ee5a7d7 1437 pci_disable_device(pdev);
574e8b95 1438 pci_release_regions(pdev);
b60503ba
MW
1439 kfree(dev->queues);
1440 kfree(dev->entry);
1441 kfree(dev);
1442}
1443
1444/* These functions are yet to be implemented */
1445#define nvme_error_detected NULL
1446#define nvme_dump_registers NULL
1447#define nvme_link_reset NULL
1448#define nvme_slot_reset NULL
1449#define nvme_error_resume NULL
1450#define nvme_suspend NULL
1451#define nvme_resume NULL
1452
1453static struct pci_error_handlers nvme_err_handler = {
1454 .error_detected = nvme_error_detected,
1455 .mmio_enabled = nvme_dump_registers,
1456 .link_reset = nvme_link_reset,
1457 .slot_reset = nvme_slot_reset,
1458 .resume = nvme_error_resume,
1459};
1460
1461/* Move to pci_ids.h later */
1462#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1463
1464static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1465 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1466 { 0, }
1467};
1468MODULE_DEVICE_TABLE(pci, nvme_id_table);
1469
1470static struct pci_driver nvme_driver = {
1471 .name = "nvme",
1472 .id_table = nvme_id_table,
1473 .probe = nvme_probe,
1474 .remove = __devexit_p(nvme_remove),
1475 .suspend = nvme_suspend,
1476 .resume = nvme_resume,
1477 .err_handler = &nvme_err_handler,
1478};
1479
1480static int __init nvme_init(void)
1481{
1482 int result;
1483
1484 nvme_major = register_blkdev(nvme_major, "nvme");
1485 if (nvme_major <= 0)
1486 return -EBUSY;
1487
1488 result = pci_register_driver(&nvme_driver);
1489 if (!result)
1490 return 0;
1491
1492 unregister_blkdev(nvme_major, "nvme");
1493 return result;
1494}
1495
1496static void __exit nvme_exit(void)
1497{
1498 pci_unregister_driver(&nvme_driver);
1499 unregister_blkdev(nvme_major, "nvme");
1500}
1501
1502MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1503MODULE_LICENSE("GPL");
db5d0c19 1504MODULE_VERSION("0.2");
b60503ba
MW
1505module_init(nvme_init);
1506module_exit(nvme_exit);