blk-mq: fix calling unplug callbacks with preempt disabled
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
320ae51f
JA
25
26#include <trace/events/block.h>
27
28#include <linux/blk-mq.h>
29#include "blk.h"
30#include "blk-mq.h"
31#include "blk-mq-tag.h"
32
33static DEFINE_MUTEX(all_q_mutex);
34static LIST_HEAD(all_q_list);
35
36static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
320ae51f
JA
38/*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42{
43 unsigned int i;
44
569fd0ce 45 for (i = 0; i < hctx->ctx_map.size; i++)
1429d7c9 46 if (hctx->ctx_map.map[i].word)
320ae51f
JA
47 return true;
48
49 return false;
50}
51
1429d7c9
JA
52static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54{
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56}
57
58#define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
320ae51f
JA
61/*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66{
1429d7c9
JA
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71}
72
73static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75{
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
79}
80
b4c6a028 81void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 82{
4ecd4fef 83 int freeze_depth;
cddd5d17 84
4ecd4fef
CH
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
3ef28e83 87 percpu_ref_kill(&q->q_usage_counter);
b94ec296 88 blk_mq_run_hw_queues(q, false);
cddd5d17 89 }
f3af020b 90}
b4c6a028 91EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
92
93static void blk_mq_freeze_queue_wait(struct request_queue *q)
94{
3ef28e83 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
96}
97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
f3af020b
TH
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
aed3ea94
JA
138void blk_mq_wake_waiters(struct request_queue *q)
139{
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
153}
154
320ae51f
JA
155bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156{
157 return blk_mq_has_free_tags(hctx->tags);
158}
159EXPORT_SYMBOL(blk_mq_can_queue);
160
94eddfbe
JA
161static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
320ae51f 163{
94eddfbe
JA
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
af76e555
CH
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
320ae51f 170 rq->mq_ctx = ctx;
0d2602ca 171 rq->cmd_flags |= rw_flags;
af76e555
CH
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
af76e555
CH
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
176 rq->rq_disk = NULL;
177 rq->part = NULL;
3ee32372 178 rq->start_time = jiffies;
af76e555
CH
179#ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
0fec08b4 181 set_start_time_ns(rq);
af76e555
CH
182 rq->io_start_time_ns = 0;
183#endif
184 rq->nr_phys_segments = 0;
185#if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187#endif
af76e555
CH
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
af76e555 191
6f4a1626
TB
192 rq->cmd = rq->__cmd;
193
af76e555
CH
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
af76e555 199 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
200 rq->timeout = 0;
201
af76e555
CH
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
320ae51f
JA
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207}
208
5dee8577 209static struct request *
cb96a42c 210__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
211{
212 struct request *rq;
213 unsigned int tag;
214
cb96a42c 215 tag = blk_mq_get_tag(data);
5dee8577 216 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 217 rq = data->hctx->tags->rqs[tag];
5dee8577 218
cb96a42c 219 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 220 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 221 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
222 }
223
224 rq->tag = tag;
cb96a42c 225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
226 return rq;
227 }
228
229 return NULL;
230}
231
4ce01dd1
CH
232struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
233 bool reserved)
320ae51f 234{
d852564f
CH
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
320ae51f 237 struct request *rq;
cb96a42c 238 struct blk_mq_alloc_data alloc_data;
a492f075 239 int ret;
320ae51f 240
3ef28e83 241 ret = blk_queue_enter(q, gfp);
a492f075
JL
242 if (ret)
243 return ERR_PTR(ret);
320ae51f 244
d852564f
CH
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
d0164adc 247 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_DIRECT_RECLAIM,
cb96a42c 248 reserved, ctx, hctx);
d852564f 249
cb96a42c 250 rq = __blk_mq_alloc_request(&alloc_data, rw);
d0164adc 251 if (!rq && (gfp & __GFP_DIRECT_RECLAIM)) {
d852564f
CH
252 __blk_mq_run_hw_queue(hctx);
253 blk_mq_put_ctx(ctx);
254
255 ctx = blk_mq_get_ctx(q);
256 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
257 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
258 hctx);
259 rq = __blk_mq_alloc_request(&alloc_data, rw);
260 ctx = alloc_data.ctx;
d852564f
CH
261 }
262 blk_mq_put_ctx(ctx);
c76541a9 263 if (!rq) {
3ef28e83 264 blk_queue_exit(q);
a492f075 265 return ERR_PTR(-EWOULDBLOCK);
c76541a9 266 }
320ae51f
JA
267 return rq;
268}
4bb659b1 269EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 270
320ae51f
JA
271static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
272 struct blk_mq_ctx *ctx, struct request *rq)
273{
274 const int tag = rq->tag;
275 struct request_queue *q = rq->q;
276
0d2602ca
JA
277 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
278 atomic_dec(&hctx->nr_active);
683d0e12 279 rq->cmd_flags = 0;
0d2602ca 280
af76e555 281 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 282 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
3ef28e83 283 blk_queue_exit(q);
320ae51f
JA
284}
285
7c7f2f2b 286void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
287{
288 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
289
290 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 291 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
292
293}
294EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
295
296void blk_mq_free_request(struct request *rq)
297{
298 struct blk_mq_hw_ctx *hctx;
299 struct request_queue *q = rq->q;
300
301 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
302 blk_mq_free_hctx_request(hctx, rq);
320ae51f 303}
1a3b595a 304EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 305
c8a446ad 306inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 307{
0d11e6ac
ML
308 blk_account_io_done(rq);
309
91b63639 310 if (rq->end_io) {
320ae51f 311 rq->end_io(rq, error);
91b63639
CH
312 } else {
313 if (unlikely(blk_bidi_rq(rq)))
314 blk_mq_free_request(rq->next_rq);
320ae51f 315 blk_mq_free_request(rq);
91b63639 316 }
320ae51f 317}
c8a446ad 318EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 319
c8a446ad 320void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
321{
322 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
323 BUG();
c8a446ad 324 __blk_mq_end_request(rq, error);
63151a44 325}
c8a446ad 326EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 327
30a91cb4 328static void __blk_mq_complete_request_remote(void *data)
320ae51f 329{
3d6efbf6 330 struct request *rq = data;
320ae51f 331
30a91cb4 332 rq->q->softirq_done_fn(rq);
320ae51f 333}
320ae51f 334
ed851860 335static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
336{
337 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 338 bool shared = false;
320ae51f
JA
339 int cpu;
340
38535201 341 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
342 rq->q->softirq_done_fn(rq);
343 return;
344 }
320ae51f
JA
345
346 cpu = get_cpu();
38535201
CH
347 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
348 shared = cpus_share_cache(cpu, ctx->cpu);
349
350 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 351 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
352 rq->csd.info = rq;
353 rq->csd.flags = 0;
c46fff2a 354 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 355 } else {
30a91cb4 356 rq->q->softirq_done_fn(rq);
3d6efbf6 357 }
320ae51f
JA
358 put_cpu();
359}
30a91cb4 360
1fa8cc52 361static void __blk_mq_complete_request(struct request *rq)
ed851860
JA
362{
363 struct request_queue *q = rq->q;
364
365 if (!q->softirq_done_fn)
c8a446ad 366 blk_mq_end_request(rq, rq->errors);
ed851860
JA
367 else
368 blk_mq_ipi_complete_request(rq);
369}
370
30a91cb4
CH
371/**
372 * blk_mq_complete_request - end I/O on a request
373 * @rq: the request being processed
374 *
375 * Description:
376 * Ends all I/O on a request. It does not handle partial completions.
377 * The actual completion happens out-of-order, through a IPI handler.
378 **/
f4829a9b 379void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 380{
95f09684
JA
381 struct request_queue *q = rq->q;
382
383 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 384 return;
f4829a9b
CH
385 if (!blk_mark_rq_complete(rq)) {
386 rq->errors = error;
ed851860 387 __blk_mq_complete_request(rq);
f4829a9b 388 }
30a91cb4
CH
389}
390EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 391
973c0191
KB
392int blk_mq_request_started(struct request *rq)
393{
394 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
395}
396EXPORT_SYMBOL_GPL(blk_mq_request_started);
397
e2490073 398void blk_mq_start_request(struct request *rq)
320ae51f
JA
399{
400 struct request_queue *q = rq->q;
401
402 trace_block_rq_issue(q, rq);
403
742ee69b 404 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
405 if (unlikely(blk_bidi_rq(rq)))
406 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 407
2b8393b4 408 blk_add_timer(rq);
87ee7b11 409
538b7534
JA
410 /*
411 * Ensure that ->deadline is visible before set the started
412 * flag and clear the completed flag.
413 */
414 smp_mb__before_atomic();
415
87ee7b11
JA
416 /*
417 * Mark us as started and clear complete. Complete might have been
418 * set if requeue raced with timeout, which then marked it as
419 * complete. So be sure to clear complete again when we start
420 * the request, otherwise we'll ignore the completion event.
421 */
4b570521
JA
422 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
423 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
424 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
425 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
426
427 if (q->dma_drain_size && blk_rq_bytes(rq)) {
428 /*
429 * Make sure space for the drain appears. We know we can do
430 * this because max_hw_segments has been adjusted to be one
431 * fewer than the device can handle.
432 */
433 rq->nr_phys_segments++;
434 }
320ae51f 435}
e2490073 436EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 437
ed0791b2 438static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
439{
440 struct request_queue *q = rq->q;
441
442 trace_block_rq_requeue(q, rq);
49f5baa5 443
e2490073
CH
444 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
445 if (q->dma_drain_size && blk_rq_bytes(rq))
446 rq->nr_phys_segments--;
447 }
320ae51f
JA
448}
449
ed0791b2
CH
450void blk_mq_requeue_request(struct request *rq)
451{
ed0791b2 452 __blk_mq_requeue_request(rq);
ed0791b2 453
ed0791b2 454 BUG_ON(blk_queued_rq(rq));
6fca6a61 455 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
456}
457EXPORT_SYMBOL(blk_mq_requeue_request);
458
6fca6a61
CH
459static void blk_mq_requeue_work(struct work_struct *work)
460{
461 struct request_queue *q =
462 container_of(work, struct request_queue, requeue_work);
463 LIST_HEAD(rq_list);
464 struct request *rq, *next;
465 unsigned long flags;
466
467 spin_lock_irqsave(&q->requeue_lock, flags);
468 list_splice_init(&q->requeue_list, &rq_list);
469 spin_unlock_irqrestore(&q->requeue_lock, flags);
470
471 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
472 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 continue;
474
475 rq->cmd_flags &= ~REQ_SOFTBARRIER;
476 list_del_init(&rq->queuelist);
477 blk_mq_insert_request(rq, true, false, false);
478 }
479
480 while (!list_empty(&rq_list)) {
481 rq = list_entry(rq_list.next, struct request, queuelist);
482 list_del_init(&rq->queuelist);
483 blk_mq_insert_request(rq, false, false, false);
484 }
485
8b957415
JA
486 /*
487 * Use the start variant of queue running here, so that running
488 * the requeue work will kick stopped queues.
489 */
490 blk_mq_start_hw_queues(q);
6fca6a61
CH
491}
492
493void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
494{
495 struct request_queue *q = rq->q;
496 unsigned long flags;
497
498 /*
499 * We abuse this flag that is otherwise used by the I/O scheduler to
500 * request head insertation from the workqueue.
501 */
502 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
503
504 spin_lock_irqsave(&q->requeue_lock, flags);
505 if (at_head) {
506 rq->cmd_flags |= REQ_SOFTBARRIER;
507 list_add(&rq->queuelist, &q->requeue_list);
508 } else {
509 list_add_tail(&rq->queuelist, &q->requeue_list);
510 }
511 spin_unlock_irqrestore(&q->requeue_lock, flags);
512}
513EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
514
c68ed59f
KB
515void blk_mq_cancel_requeue_work(struct request_queue *q)
516{
517 cancel_work_sync(&q->requeue_work);
518}
519EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
520
6fca6a61
CH
521void blk_mq_kick_requeue_list(struct request_queue *q)
522{
523 kblockd_schedule_work(&q->requeue_work);
524}
525EXPORT_SYMBOL(blk_mq_kick_requeue_list);
526
1885b24d
JA
527void blk_mq_abort_requeue_list(struct request_queue *q)
528{
529 unsigned long flags;
530 LIST_HEAD(rq_list);
531
532 spin_lock_irqsave(&q->requeue_lock, flags);
533 list_splice_init(&q->requeue_list, &rq_list);
534 spin_unlock_irqrestore(&q->requeue_lock, flags);
535
536 while (!list_empty(&rq_list)) {
537 struct request *rq;
538
539 rq = list_first_entry(&rq_list, struct request, queuelist);
540 list_del_init(&rq->queuelist);
541 rq->errors = -EIO;
542 blk_mq_end_request(rq, rq->errors);
543 }
544}
545EXPORT_SYMBOL(blk_mq_abort_requeue_list);
546
0e62f51f
JA
547struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
548{
0048b483 549 return tags->rqs[tag];
24d2f903
CH
550}
551EXPORT_SYMBOL(blk_mq_tag_to_rq);
552
320ae51f 553struct blk_mq_timeout_data {
46f92d42
CH
554 unsigned long next;
555 unsigned int next_set;
320ae51f
JA
556};
557
90415837 558void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 559{
46f92d42
CH
560 struct blk_mq_ops *ops = req->q->mq_ops;
561 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
562
563 /*
564 * We know that complete is set at this point. If STARTED isn't set
565 * anymore, then the request isn't active and the "timeout" should
566 * just be ignored. This can happen due to the bitflag ordering.
567 * Timeout first checks if STARTED is set, and if it is, assumes
568 * the request is active. But if we race with completion, then
569 * we both flags will get cleared. So check here again, and ignore
570 * a timeout event with a request that isn't active.
571 */
46f92d42
CH
572 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
573 return;
87ee7b11 574
46f92d42 575 if (ops->timeout)
0152fb6b 576 ret = ops->timeout(req, reserved);
46f92d42
CH
577
578 switch (ret) {
579 case BLK_EH_HANDLED:
580 __blk_mq_complete_request(req);
581 break;
582 case BLK_EH_RESET_TIMER:
583 blk_add_timer(req);
584 blk_clear_rq_complete(req);
585 break;
586 case BLK_EH_NOT_HANDLED:
587 break;
588 default:
589 printk(KERN_ERR "block: bad eh return: %d\n", ret);
590 break;
591 }
87ee7b11 592}
5b3f25fc 593
81481eb4
CH
594static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
595 struct request *rq, void *priv, bool reserved)
596{
597 struct blk_mq_timeout_data *data = priv;
87ee7b11 598
eb130dbf
KB
599 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
600 /*
601 * If a request wasn't started before the queue was
602 * marked dying, kill it here or it'll go unnoticed.
603 */
f4829a9b
CH
604 if (unlikely(blk_queue_dying(rq->q)))
605 blk_mq_complete_request(rq, -EIO);
46f92d42 606 return;
eb130dbf 607 }
5b3f25fc
KB
608 if (rq->cmd_flags & REQ_NO_TIMEOUT)
609 return;
87ee7b11 610
46f92d42
CH
611 if (time_after_eq(jiffies, rq->deadline)) {
612 if (!blk_mark_rq_complete(rq))
0152fb6b 613 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
614 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
615 data->next = rq->deadline;
616 data->next_set = 1;
617 }
87ee7b11
JA
618}
619
81481eb4 620static void blk_mq_rq_timer(unsigned long priv)
320ae51f 621{
81481eb4
CH
622 struct request_queue *q = (struct request_queue *)priv;
623 struct blk_mq_timeout_data data = {
624 .next = 0,
625 .next_set = 0,
626 };
81481eb4 627 int i;
320ae51f 628
0bf6cd5b 629 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 630
81481eb4
CH
631 if (data.next_set) {
632 data.next = blk_rq_timeout(round_jiffies_up(data.next));
633 mod_timer(&q->timeout, data.next);
0d2602ca 634 } else {
0bf6cd5b
CH
635 struct blk_mq_hw_ctx *hctx;
636
f054b56c
ML
637 queue_for_each_hw_ctx(q, hctx, i) {
638 /* the hctx may be unmapped, so check it here */
639 if (blk_mq_hw_queue_mapped(hctx))
640 blk_mq_tag_idle(hctx);
641 }
0d2602ca 642 }
320ae51f
JA
643}
644
645/*
646 * Reverse check our software queue for entries that we could potentially
647 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
648 * too much time checking for merges.
649 */
650static bool blk_mq_attempt_merge(struct request_queue *q,
651 struct blk_mq_ctx *ctx, struct bio *bio)
652{
653 struct request *rq;
654 int checked = 8;
655
656 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
657 int el_ret;
658
659 if (!checked--)
660 break;
661
662 if (!blk_rq_merge_ok(rq, bio))
663 continue;
664
665 el_ret = blk_try_merge(rq, bio);
666 if (el_ret == ELEVATOR_BACK_MERGE) {
667 if (bio_attempt_back_merge(q, rq, bio)) {
668 ctx->rq_merged++;
669 return true;
670 }
671 break;
672 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
673 if (bio_attempt_front_merge(q, rq, bio)) {
674 ctx->rq_merged++;
675 return true;
676 }
677 break;
678 }
679 }
680
681 return false;
682}
683
1429d7c9
JA
684/*
685 * Process software queues that have been marked busy, splicing them
686 * to the for-dispatch
687 */
688static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
689{
690 struct blk_mq_ctx *ctx;
691 int i;
692
569fd0ce 693 for (i = 0; i < hctx->ctx_map.size; i++) {
1429d7c9
JA
694 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
695 unsigned int off, bit;
696
697 if (!bm->word)
698 continue;
699
700 bit = 0;
701 off = i * hctx->ctx_map.bits_per_word;
702 do {
703 bit = find_next_bit(&bm->word, bm->depth, bit);
704 if (bit >= bm->depth)
705 break;
706
707 ctx = hctx->ctxs[bit + off];
708 clear_bit(bit, &bm->word);
709 spin_lock(&ctx->lock);
710 list_splice_tail_init(&ctx->rq_list, list);
711 spin_unlock(&ctx->lock);
712
713 bit++;
714 } while (1);
715 }
716}
717
320ae51f
JA
718/*
719 * Run this hardware queue, pulling any software queues mapped to it in.
720 * Note that this function currently has various problems around ordering
721 * of IO. In particular, we'd like FIFO behaviour on handling existing
722 * items on the hctx->dispatch list. Ignore that for now.
723 */
724static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
725{
726 struct request_queue *q = hctx->queue;
320ae51f
JA
727 struct request *rq;
728 LIST_HEAD(rq_list);
74c45052
JA
729 LIST_HEAD(driver_list);
730 struct list_head *dptr;
1429d7c9 731 int queued;
320ae51f 732
fd1270d5 733 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 734
5d12f905 735 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
736 return;
737
738 hctx->run++;
739
740 /*
741 * Touch any software queue that has pending entries.
742 */
1429d7c9 743 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
744
745 /*
746 * If we have previous entries on our dispatch list, grab them
747 * and stuff them at the front for more fair dispatch.
748 */
749 if (!list_empty_careful(&hctx->dispatch)) {
750 spin_lock(&hctx->lock);
751 if (!list_empty(&hctx->dispatch))
752 list_splice_init(&hctx->dispatch, &rq_list);
753 spin_unlock(&hctx->lock);
754 }
755
74c45052
JA
756 /*
757 * Start off with dptr being NULL, so we start the first request
758 * immediately, even if we have more pending.
759 */
760 dptr = NULL;
761
320ae51f
JA
762 /*
763 * Now process all the entries, sending them to the driver.
764 */
1429d7c9 765 queued = 0;
320ae51f 766 while (!list_empty(&rq_list)) {
74c45052 767 struct blk_mq_queue_data bd;
320ae51f
JA
768 int ret;
769
770 rq = list_first_entry(&rq_list, struct request, queuelist);
771 list_del_init(&rq->queuelist);
320ae51f 772
74c45052
JA
773 bd.rq = rq;
774 bd.list = dptr;
775 bd.last = list_empty(&rq_list);
776
777 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
778 switch (ret) {
779 case BLK_MQ_RQ_QUEUE_OK:
780 queued++;
781 continue;
782 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 783 list_add(&rq->queuelist, &rq_list);
ed0791b2 784 __blk_mq_requeue_request(rq);
320ae51f
JA
785 break;
786 default:
787 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 788 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 789 rq->errors = -EIO;
c8a446ad 790 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
791 break;
792 }
793
794 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
795 break;
74c45052
JA
796
797 /*
798 * We've done the first request. If we have more than 1
799 * left in the list, set dptr to defer issue.
800 */
801 if (!dptr && rq_list.next != rq_list.prev)
802 dptr = &driver_list;
320ae51f
JA
803 }
804
805 if (!queued)
806 hctx->dispatched[0]++;
807 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
808 hctx->dispatched[ilog2(queued) + 1]++;
809
810 /*
811 * Any items that need requeuing? Stuff them into hctx->dispatch,
812 * that is where we will continue on next queue run.
813 */
814 if (!list_empty(&rq_list)) {
815 spin_lock(&hctx->lock);
816 list_splice(&rq_list, &hctx->dispatch);
817 spin_unlock(&hctx->lock);
9ba52e58
SL
818 /*
819 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
820 * it's possible the queue is stopped and restarted again
821 * before this. Queue restart will dispatch requests. And since
822 * requests in rq_list aren't added into hctx->dispatch yet,
823 * the requests in rq_list might get lost.
824 *
825 * blk_mq_run_hw_queue() already checks the STOPPED bit
826 **/
827 blk_mq_run_hw_queue(hctx, true);
320ae51f
JA
828 }
829}
830
506e931f
JA
831/*
832 * It'd be great if the workqueue API had a way to pass
833 * in a mask and had some smarts for more clever placement.
834 * For now we just round-robin here, switching for every
835 * BLK_MQ_CPU_WORK_BATCH queued items.
836 */
837static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
838{
b657d7e6
CH
839 if (hctx->queue->nr_hw_queues == 1)
840 return WORK_CPU_UNBOUND;
506e931f
JA
841
842 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 843 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
844
845 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
846 if (next_cpu >= nr_cpu_ids)
847 next_cpu = cpumask_first(hctx->cpumask);
848
849 hctx->next_cpu = next_cpu;
850 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
851
852 return cpu;
506e931f
JA
853 }
854
b657d7e6 855 return hctx->next_cpu;
506e931f
JA
856}
857
320ae51f
JA
858void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
859{
19c66e59
ML
860 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
861 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
862 return;
863
398205b8 864 if (!async) {
2a90d4aa
PB
865 int cpu = get_cpu();
866 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 867 __blk_mq_run_hw_queue(hctx);
2a90d4aa 868 put_cpu();
398205b8
PB
869 return;
870 }
e4043dcf 871
2a90d4aa 872 put_cpu();
e4043dcf 873 }
398205b8 874
b657d7e6
CH
875 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
876 &hctx->run_work, 0);
320ae51f
JA
877}
878
b94ec296 879void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
880{
881 struct blk_mq_hw_ctx *hctx;
882 int i;
883
884 queue_for_each_hw_ctx(q, hctx, i) {
885 if ((!blk_mq_hctx_has_pending(hctx) &&
886 list_empty_careful(&hctx->dispatch)) ||
5d12f905 887 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
888 continue;
889
b94ec296 890 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
891 }
892}
b94ec296 893EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f
JA
894
895void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
896{
70f4db63
CH
897 cancel_delayed_work(&hctx->run_work);
898 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
899 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
900}
901EXPORT_SYMBOL(blk_mq_stop_hw_queue);
902
280d45f6
CH
903void blk_mq_stop_hw_queues(struct request_queue *q)
904{
905 struct blk_mq_hw_ctx *hctx;
906 int i;
907
908 queue_for_each_hw_ctx(q, hctx, i)
909 blk_mq_stop_hw_queue(hctx);
910}
911EXPORT_SYMBOL(blk_mq_stop_hw_queues);
912
320ae51f
JA
913void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
914{
915 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 916
0ffbce80 917 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
918}
919EXPORT_SYMBOL(blk_mq_start_hw_queue);
920
2f268556
CH
921void blk_mq_start_hw_queues(struct request_queue *q)
922{
923 struct blk_mq_hw_ctx *hctx;
924 int i;
925
926 queue_for_each_hw_ctx(q, hctx, i)
927 blk_mq_start_hw_queue(hctx);
928}
929EXPORT_SYMBOL(blk_mq_start_hw_queues);
930
1b4a3258 931void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
932{
933 struct blk_mq_hw_ctx *hctx;
934 int i;
935
936 queue_for_each_hw_ctx(q, hctx, i) {
937 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
938 continue;
939
940 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 941 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
942 }
943}
944EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
945
70f4db63 946static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
947{
948 struct blk_mq_hw_ctx *hctx;
949
70f4db63 950 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 951
320ae51f
JA
952 __blk_mq_run_hw_queue(hctx);
953}
954
70f4db63
CH
955static void blk_mq_delay_work_fn(struct work_struct *work)
956{
957 struct blk_mq_hw_ctx *hctx;
958
959 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
960
961 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
962 __blk_mq_run_hw_queue(hctx);
963}
964
965void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
966{
19c66e59
ML
967 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
968 return;
70f4db63 969
b657d7e6
CH
970 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
971 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
972}
973EXPORT_SYMBOL(blk_mq_delay_queue);
974
cfd0c552
ML
975static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
976 struct blk_mq_ctx *ctx,
977 struct request *rq,
978 bool at_head)
320ae51f 979{
01b983c9
JA
980 trace_block_rq_insert(hctx->queue, rq);
981
72a0a36e
CH
982 if (at_head)
983 list_add(&rq->queuelist, &ctx->rq_list);
984 else
985 list_add_tail(&rq->queuelist, &ctx->rq_list);
cfd0c552 986}
4bb659b1 987
cfd0c552
ML
988static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
989 struct request *rq, bool at_head)
990{
991 struct blk_mq_ctx *ctx = rq->mq_ctx;
992
993 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
320ae51f 994 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
995}
996
eeabc850
CH
997void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
998 bool async)
320ae51f 999{
eeabc850 1000 struct request_queue *q = rq->q;
320ae51f 1001 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
1002 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1003
1004 current_ctx = blk_mq_get_ctx(q);
1005 if (!cpu_online(ctx->cpu))
1006 rq->mq_ctx = ctx = current_ctx;
320ae51f 1007
320ae51f
JA
1008 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1009
a57a178a
CH
1010 spin_lock(&ctx->lock);
1011 __blk_mq_insert_request(hctx, rq, at_head);
1012 spin_unlock(&ctx->lock);
320ae51f 1013
320ae51f
JA
1014 if (run_queue)
1015 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
1016
1017 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1018}
1019
1020static void blk_mq_insert_requests(struct request_queue *q,
1021 struct blk_mq_ctx *ctx,
1022 struct list_head *list,
1023 int depth,
1024 bool from_schedule)
1025
1026{
1027 struct blk_mq_hw_ctx *hctx;
1028 struct blk_mq_ctx *current_ctx;
1029
1030 trace_block_unplug(q, depth, !from_schedule);
1031
1032 current_ctx = blk_mq_get_ctx(q);
1033
1034 if (!cpu_online(ctx->cpu))
1035 ctx = current_ctx;
1036 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1037
1038 /*
1039 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1040 * offline now
1041 */
1042 spin_lock(&ctx->lock);
1043 while (!list_empty(list)) {
1044 struct request *rq;
1045
1046 rq = list_first_entry(list, struct request, queuelist);
1047 list_del_init(&rq->queuelist);
1048 rq->mq_ctx = ctx;
cfd0c552 1049 __blk_mq_insert_req_list(hctx, ctx, rq, false);
320ae51f 1050 }
cfd0c552 1051 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1052 spin_unlock(&ctx->lock);
1053
320ae51f 1054 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1055 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1056}
1057
1058static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1059{
1060 struct request *rqa = container_of(a, struct request, queuelist);
1061 struct request *rqb = container_of(b, struct request, queuelist);
1062
1063 return !(rqa->mq_ctx < rqb->mq_ctx ||
1064 (rqa->mq_ctx == rqb->mq_ctx &&
1065 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1066}
1067
1068void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1069{
1070 struct blk_mq_ctx *this_ctx;
1071 struct request_queue *this_q;
1072 struct request *rq;
1073 LIST_HEAD(list);
1074 LIST_HEAD(ctx_list);
1075 unsigned int depth;
1076
1077 list_splice_init(&plug->mq_list, &list);
1078
1079 list_sort(NULL, &list, plug_ctx_cmp);
1080
1081 this_q = NULL;
1082 this_ctx = NULL;
1083 depth = 0;
1084
1085 while (!list_empty(&list)) {
1086 rq = list_entry_rq(list.next);
1087 list_del_init(&rq->queuelist);
1088 BUG_ON(!rq->q);
1089 if (rq->mq_ctx != this_ctx) {
1090 if (this_ctx) {
1091 blk_mq_insert_requests(this_q, this_ctx,
1092 &ctx_list, depth,
1093 from_schedule);
1094 }
1095
1096 this_ctx = rq->mq_ctx;
1097 this_q = rq->q;
1098 depth = 0;
1099 }
1100
1101 depth++;
1102 list_add_tail(&rq->queuelist, &ctx_list);
1103 }
1104
1105 /*
1106 * If 'this_ctx' is set, we know we have entries to complete
1107 * on 'ctx_list'. Do those.
1108 */
1109 if (this_ctx) {
1110 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1111 from_schedule);
1112 }
1113}
1114
1115static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1116{
1117 init_request_from_bio(rq, bio);
4b570521 1118
3ee32372 1119 if (blk_do_io_stat(rq))
4b570521 1120 blk_account_io_start(rq, 1);
320ae51f
JA
1121}
1122
274a5843
JA
1123static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1124{
1125 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1126 !blk_queue_nomerges(hctx->queue);
1127}
1128
07068d5b
JA
1129static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1130 struct blk_mq_ctx *ctx,
1131 struct request *rq, struct bio *bio)
320ae51f 1132{
e18378a6 1133 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
07068d5b
JA
1134 blk_mq_bio_to_request(rq, bio);
1135 spin_lock(&ctx->lock);
1136insert_rq:
1137 __blk_mq_insert_request(hctx, rq, false);
1138 spin_unlock(&ctx->lock);
1139 return false;
1140 } else {
274a5843
JA
1141 struct request_queue *q = hctx->queue;
1142
07068d5b
JA
1143 spin_lock(&ctx->lock);
1144 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1145 blk_mq_bio_to_request(rq, bio);
1146 goto insert_rq;
1147 }
320ae51f 1148
07068d5b
JA
1149 spin_unlock(&ctx->lock);
1150 __blk_mq_free_request(hctx, ctx, rq);
1151 return true;
14ec77f3 1152 }
07068d5b 1153}
14ec77f3 1154
07068d5b
JA
1155struct blk_map_ctx {
1156 struct blk_mq_hw_ctx *hctx;
1157 struct blk_mq_ctx *ctx;
1158};
1159
1160static struct request *blk_mq_map_request(struct request_queue *q,
1161 struct bio *bio,
1162 struct blk_map_ctx *data)
1163{
1164 struct blk_mq_hw_ctx *hctx;
1165 struct blk_mq_ctx *ctx;
1166 struct request *rq;
1167 int rw = bio_data_dir(bio);
cb96a42c 1168 struct blk_mq_alloc_data alloc_data;
320ae51f 1169
3ef28e83 1170 blk_queue_enter_live(q);
320ae51f
JA
1171 ctx = blk_mq_get_ctx(q);
1172 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1173
07068d5b 1174 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1175 rw |= REQ_SYNC;
07068d5b 1176
320ae51f 1177 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1178 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1179 hctx);
1180 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1181 if (unlikely(!rq)) {
793597a6 1182 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1183 blk_mq_put_ctx(ctx);
1184 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1185
1186 ctx = blk_mq_get_ctx(q);
320ae51f 1187 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c 1188 blk_mq_set_alloc_data(&alloc_data, q,
71baba4b 1189 __GFP_RECLAIM|__GFP_HIGH, false, ctx, hctx);
cb96a42c
ML
1190 rq = __blk_mq_alloc_request(&alloc_data, rw);
1191 ctx = alloc_data.ctx;
1192 hctx = alloc_data.hctx;
320ae51f
JA
1193 }
1194
1195 hctx->queued++;
07068d5b
JA
1196 data->hctx = hctx;
1197 data->ctx = ctx;
1198 return rq;
1199}
1200
7b371636 1201static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
f984df1f
SL
1202{
1203 int ret;
1204 struct request_queue *q = rq->q;
1205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1206 rq->mq_ctx->cpu);
1207 struct blk_mq_queue_data bd = {
1208 .rq = rq,
1209 .list = NULL,
1210 .last = 1
1211 };
7b371636 1212 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
f984df1f
SL
1213
1214 /*
1215 * For OK queue, we are done. For error, kill it. Any other
1216 * error (busy), just add it to our list as we previously
1217 * would have done
1218 */
1219 ret = q->mq_ops->queue_rq(hctx, &bd);
7b371636
JA
1220 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1221 *cookie = new_cookie;
f984df1f 1222 return 0;
7b371636 1223 }
f984df1f 1224
7b371636
JA
1225 __blk_mq_requeue_request(rq);
1226
1227 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1228 *cookie = BLK_QC_T_NONE;
1229 rq->errors = -EIO;
1230 blk_mq_end_request(rq, rq->errors);
1231 return 0;
f984df1f 1232 }
7b371636
JA
1233
1234 return -1;
f984df1f
SL
1235}
1236
07068d5b
JA
1237/*
1238 * Multiple hardware queue variant. This will not use per-process plugs,
1239 * but will attempt to bypass the hctx queueing if we can go straight to
1240 * hardware for SYNC IO.
1241 */
dece1635 1242static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b
JA
1243{
1244 const int is_sync = rw_is_sync(bio->bi_rw);
1245 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1246 struct blk_map_ctx data;
1247 struct request *rq;
f984df1f
SL
1248 unsigned int request_count = 0;
1249 struct blk_plug *plug;
5b3f341f 1250 struct request *same_queue_rq = NULL;
7b371636 1251 blk_qc_t cookie;
07068d5b
JA
1252
1253 blk_queue_bounce(q, &bio);
1254
1255 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1256 bio_io_error(bio);
dece1635 1257 return BLK_QC_T_NONE;
07068d5b
JA
1258 }
1259
54efd50b
KO
1260 blk_queue_split(q, &bio, q->bio_split);
1261
0809e3ac
JM
1262 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1263 if (blk_attempt_plug_merge(q, bio, &request_count,
1264 &same_queue_rq))
dece1635 1265 return BLK_QC_T_NONE;
0809e3ac
JM
1266 } else
1267 request_count = blk_plug_queued_count(q);
f984df1f 1268
07068d5b
JA
1269 rq = blk_mq_map_request(q, bio, &data);
1270 if (unlikely(!rq))
dece1635 1271 return BLK_QC_T_NONE;
07068d5b 1272
7b371636 1273 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
07068d5b
JA
1274
1275 if (unlikely(is_flush_fua)) {
1276 blk_mq_bio_to_request(rq, bio);
1277 blk_insert_flush(rq);
1278 goto run_queue;
1279 }
1280
f984df1f 1281 plug = current->plug;
e167dfb5
JA
1282 /*
1283 * If the driver supports defer issued based on 'last', then
1284 * queue it up like normal since we can potentially save some
1285 * CPU this way.
1286 */
f984df1f
SL
1287 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1288 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1289 struct request *old_rq = NULL;
07068d5b
JA
1290
1291 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1292
1293 /*
b094f89c 1294 * We do limited pluging. If the bio can be merged, do that.
f984df1f
SL
1295 * Otherwise the existing request in the plug list will be
1296 * issued. So the plug list will have one request at most
07068d5b 1297 */
f984df1f 1298 if (plug) {
5b3f341f
SL
1299 /*
1300 * The plug list might get flushed before this. If that
b094f89c
JA
1301 * happens, same_queue_rq is invalid and plug list is
1302 * empty
1303 */
5b3f341f
SL
1304 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1305 old_rq = same_queue_rq;
f984df1f 1306 list_del_init(&old_rq->queuelist);
07068d5b 1307 }
f984df1f
SL
1308 list_add_tail(&rq->queuelist, &plug->mq_list);
1309 } else /* is_sync */
1310 old_rq = rq;
1311 blk_mq_put_ctx(data.ctx);
1312 if (!old_rq)
7b371636
JA
1313 goto done;
1314 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1315 goto done;
f984df1f 1316 blk_mq_insert_request(old_rq, false, true, true);
7b371636 1317 goto done;
07068d5b
JA
1318 }
1319
1320 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1321 /*
1322 * For a SYNC request, send it to the hardware immediately. For
1323 * an ASYNC request, just ensure that we run it later on. The
1324 * latter allows for merging opportunities and more efficient
1325 * dispatching.
1326 */
1327run_queue:
1328 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1329 }
07068d5b 1330 blk_mq_put_ctx(data.ctx);
7b371636
JA
1331done:
1332 return cookie;
07068d5b
JA
1333}
1334
1335/*
1336 * Single hardware queue variant. This will attempt to use any per-process
1337 * plug for merging and IO deferral.
1338 */
dece1635 1339static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
07068d5b
JA
1340{
1341 const int is_sync = rw_is_sync(bio->bi_rw);
1342 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
e6c4438b
JM
1343 struct blk_plug *plug;
1344 unsigned int request_count = 0;
07068d5b
JA
1345 struct blk_map_ctx data;
1346 struct request *rq;
7b371636 1347 blk_qc_t cookie;
07068d5b 1348
07068d5b
JA
1349 blk_queue_bounce(q, &bio);
1350
1351 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1352 bio_io_error(bio);
dece1635 1353 return BLK_QC_T_NONE;
07068d5b
JA
1354 }
1355
54efd50b
KO
1356 blk_queue_split(q, &bio, q->bio_split);
1357
e6c4438b 1358 if (!is_flush_fua && !blk_queue_nomerges(q) &&
5b3f341f 1359 blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1360 return BLK_QC_T_NONE;
07068d5b
JA
1361
1362 rq = blk_mq_map_request(q, bio, &data);
ff87bcec 1363 if (unlikely(!rq))
dece1635 1364 return BLK_QC_T_NONE;
320ae51f 1365
7b371636 1366 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
320ae51f
JA
1367
1368 if (unlikely(is_flush_fua)) {
1369 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1370 blk_insert_flush(rq);
1371 goto run_queue;
1372 }
1373
1374 /*
1375 * A task plug currently exists. Since this is completely lockless,
1376 * utilize that to temporarily store requests until the task is
1377 * either done or scheduled away.
1378 */
e6c4438b
JM
1379 plug = current->plug;
1380 if (plug) {
1381 blk_mq_bio_to_request(rq, bio);
676d0607 1382 if (!request_count)
e6c4438b 1383 trace_block_plug(q);
b094f89c
JA
1384
1385 blk_mq_put_ctx(data.ctx);
1386
1387 if (request_count >= BLK_MAX_REQUEST_COUNT) {
e6c4438b
JM
1388 blk_flush_plug_list(plug, false);
1389 trace_block_plug(q);
320ae51f 1390 }
b094f89c 1391
e6c4438b 1392 list_add_tail(&rq->queuelist, &plug->mq_list);
7b371636 1393 return cookie;
320ae51f
JA
1394 }
1395
07068d5b
JA
1396 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1397 /*
1398 * For a SYNC request, send it to the hardware immediately. For
1399 * an ASYNC request, just ensure that we run it later on. The
1400 * latter allows for merging opportunities and more efficient
1401 * dispatching.
1402 */
1403run_queue:
1404 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1405 }
1406
07068d5b 1407 blk_mq_put_ctx(data.ctx);
7b371636 1408 return cookie;
320ae51f
JA
1409}
1410
1411/*
1412 * Default mapping to a software queue, since we use one per CPU.
1413 */
1414struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1415{
1416 return q->queue_hw_ctx[q->mq_map[cpu]];
1417}
1418EXPORT_SYMBOL(blk_mq_map_queue);
1419
24d2f903
CH
1420static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1421 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1422{
e9b267d9 1423 struct page *page;
320ae51f 1424
24d2f903 1425 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1426 int i;
320ae51f 1427
24d2f903
CH
1428 for (i = 0; i < tags->nr_tags; i++) {
1429 if (!tags->rqs[i])
e9b267d9 1430 continue;
24d2f903
CH
1431 set->ops->exit_request(set->driver_data, tags->rqs[i],
1432 hctx_idx, i);
a5164405 1433 tags->rqs[i] = NULL;
e9b267d9 1434 }
320ae51f 1435 }
320ae51f 1436
24d2f903
CH
1437 while (!list_empty(&tags->page_list)) {
1438 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1439 list_del_init(&page->lru);
f75782e4
CM
1440 /*
1441 * Remove kmemleak object previously allocated in
1442 * blk_mq_init_rq_map().
1443 */
1444 kmemleak_free(page_address(page));
320ae51f
JA
1445 __free_pages(page, page->private);
1446 }
1447
24d2f903 1448 kfree(tags->rqs);
320ae51f 1449
24d2f903 1450 blk_mq_free_tags(tags);
320ae51f
JA
1451}
1452
1453static size_t order_to_size(unsigned int order)
1454{
4ca08500 1455 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1456}
1457
24d2f903
CH
1458static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1459 unsigned int hctx_idx)
320ae51f 1460{
24d2f903 1461 struct blk_mq_tags *tags;
320ae51f
JA
1462 unsigned int i, j, entries_per_page, max_order = 4;
1463 size_t rq_size, left;
1464
24d2f903 1465 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1466 set->numa_node,
1467 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1468 if (!tags)
1469 return NULL;
320ae51f 1470
24d2f903
CH
1471 INIT_LIST_HEAD(&tags->page_list);
1472
a5164405
JA
1473 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1474 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1475 set->numa_node);
24d2f903
CH
1476 if (!tags->rqs) {
1477 blk_mq_free_tags(tags);
1478 return NULL;
1479 }
320ae51f
JA
1480
1481 /*
1482 * rq_size is the size of the request plus driver payload, rounded
1483 * to the cacheline size
1484 */
24d2f903 1485 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1486 cache_line_size());
24d2f903 1487 left = rq_size * set->queue_depth;
320ae51f 1488
24d2f903 1489 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1490 int this_order = max_order;
1491 struct page *page;
1492 int to_do;
1493 void *p;
1494
1495 while (left < order_to_size(this_order - 1) && this_order)
1496 this_order--;
1497
1498 do {
a5164405 1499 page = alloc_pages_node(set->numa_node,
ac211175 1500 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1501 this_order);
320ae51f
JA
1502 if (page)
1503 break;
1504 if (!this_order--)
1505 break;
1506 if (order_to_size(this_order) < rq_size)
1507 break;
1508 } while (1);
1509
1510 if (!page)
24d2f903 1511 goto fail;
320ae51f
JA
1512
1513 page->private = this_order;
24d2f903 1514 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1515
1516 p = page_address(page);
f75782e4
CM
1517 /*
1518 * Allow kmemleak to scan these pages as they contain pointers
1519 * to additional allocations like via ops->init_request().
1520 */
1521 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
320ae51f 1522 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1523 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1524 left -= to_do * rq_size;
1525 for (j = 0; j < to_do; j++) {
24d2f903
CH
1526 tags->rqs[i] = p;
1527 if (set->ops->init_request) {
1528 if (set->ops->init_request(set->driver_data,
1529 tags->rqs[i], hctx_idx, i,
a5164405
JA
1530 set->numa_node)) {
1531 tags->rqs[i] = NULL;
24d2f903 1532 goto fail;
a5164405 1533 }
e9b267d9
CH
1534 }
1535
320ae51f
JA
1536 p += rq_size;
1537 i++;
1538 }
1539 }
24d2f903 1540 return tags;
320ae51f 1541
24d2f903 1542fail:
24d2f903
CH
1543 blk_mq_free_rq_map(set, tags, hctx_idx);
1544 return NULL;
320ae51f
JA
1545}
1546
1429d7c9
JA
1547static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1548{
1549 kfree(bitmap->map);
1550}
1551
1552static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1553{
1554 unsigned int bpw = 8, total, num_maps, i;
1555
1556 bitmap->bits_per_word = bpw;
1557
1558 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1559 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1560 GFP_KERNEL, node);
1561 if (!bitmap->map)
1562 return -ENOMEM;
1563
1429d7c9
JA
1564 total = nr_cpu_ids;
1565 for (i = 0; i < num_maps; i++) {
1566 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1567 total -= bitmap->map[i].depth;
1568 }
1569
1570 return 0;
1571}
1572
484b4061
JA
1573static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1574{
1575 struct request_queue *q = hctx->queue;
1576 struct blk_mq_ctx *ctx;
1577 LIST_HEAD(tmp);
1578
1579 /*
1580 * Move ctx entries to new CPU, if this one is going away.
1581 */
1582 ctx = __blk_mq_get_ctx(q, cpu);
1583
1584 spin_lock(&ctx->lock);
1585 if (!list_empty(&ctx->rq_list)) {
1586 list_splice_init(&ctx->rq_list, &tmp);
1587 blk_mq_hctx_clear_pending(hctx, ctx);
1588 }
1589 spin_unlock(&ctx->lock);
1590
1591 if (list_empty(&tmp))
1592 return NOTIFY_OK;
1593
1594 ctx = blk_mq_get_ctx(q);
1595 spin_lock(&ctx->lock);
1596
1597 while (!list_empty(&tmp)) {
1598 struct request *rq;
1599
1600 rq = list_first_entry(&tmp, struct request, queuelist);
1601 rq->mq_ctx = ctx;
1602 list_move_tail(&rq->queuelist, &ctx->rq_list);
1603 }
1604
1605 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1606 blk_mq_hctx_mark_pending(hctx, ctx);
1607
1608 spin_unlock(&ctx->lock);
1609
1610 blk_mq_run_hw_queue(hctx, true);
1611 blk_mq_put_ctx(ctx);
1612 return NOTIFY_OK;
1613}
1614
484b4061
JA
1615static int blk_mq_hctx_notify(void *data, unsigned long action,
1616 unsigned int cpu)
1617{
1618 struct blk_mq_hw_ctx *hctx = data;
1619
1620 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1621 return blk_mq_hctx_cpu_offline(hctx, cpu);
2a34c087
ML
1622
1623 /*
1624 * In case of CPU online, tags may be reallocated
1625 * in blk_mq_map_swqueue() after mapping is updated.
1626 */
484b4061
JA
1627
1628 return NOTIFY_OK;
1629}
1630
c3b4afca 1631/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1632static void blk_mq_exit_hctx(struct request_queue *q,
1633 struct blk_mq_tag_set *set,
1634 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1635{
f70ced09
ML
1636 unsigned flush_start_tag = set->queue_depth;
1637
08e98fc6
ML
1638 blk_mq_tag_idle(hctx);
1639
f70ced09
ML
1640 if (set->ops->exit_request)
1641 set->ops->exit_request(set->driver_data,
1642 hctx->fq->flush_rq, hctx_idx,
1643 flush_start_tag + hctx_idx);
1644
08e98fc6
ML
1645 if (set->ops->exit_hctx)
1646 set->ops->exit_hctx(hctx, hctx_idx);
1647
1648 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1649 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1650 blk_mq_free_bitmap(&hctx->ctx_map);
1651}
1652
624dbe47
ML
1653static void blk_mq_exit_hw_queues(struct request_queue *q,
1654 struct blk_mq_tag_set *set, int nr_queue)
1655{
1656 struct blk_mq_hw_ctx *hctx;
1657 unsigned int i;
1658
1659 queue_for_each_hw_ctx(q, hctx, i) {
1660 if (i == nr_queue)
1661 break;
08e98fc6 1662 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1663 }
624dbe47
ML
1664}
1665
1666static void blk_mq_free_hw_queues(struct request_queue *q,
1667 struct blk_mq_tag_set *set)
1668{
1669 struct blk_mq_hw_ctx *hctx;
1670 unsigned int i;
1671
e09aae7e 1672 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1673 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1674}
1675
08e98fc6
ML
1676static int blk_mq_init_hctx(struct request_queue *q,
1677 struct blk_mq_tag_set *set,
1678 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1679{
08e98fc6 1680 int node;
f70ced09 1681 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1682
1683 node = hctx->numa_node;
1684 if (node == NUMA_NO_NODE)
1685 node = hctx->numa_node = set->numa_node;
1686
1687 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1688 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1689 spin_lock_init(&hctx->lock);
1690 INIT_LIST_HEAD(&hctx->dispatch);
1691 hctx->queue = q;
1692 hctx->queue_num = hctx_idx;
2404e607 1693 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6
ML
1694
1695 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1696 blk_mq_hctx_notify, hctx);
1697 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1698
1699 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1700
1701 /*
08e98fc6
ML
1702 * Allocate space for all possible cpus to avoid allocation at
1703 * runtime
320ae51f 1704 */
08e98fc6
ML
1705 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1706 GFP_KERNEL, node);
1707 if (!hctx->ctxs)
1708 goto unregister_cpu_notifier;
320ae51f 1709
08e98fc6
ML
1710 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1711 goto free_ctxs;
320ae51f 1712
08e98fc6 1713 hctx->nr_ctx = 0;
320ae51f 1714
08e98fc6
ML
1715 if (set->ops->init_hctx &&
1716 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1717 goto free_bitmap;
320ae51f 1718
f70ced09
ML
1719 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1720 if (!hctx->fq)
1721 goto exit_hctx;
320ae51f 1722
f70ced09
ML
1723 if (set->ops->init_request &&
1724 set->ops->init_request(set->driver_data,
1725 hctx->fq->flush_rq, hctx_idx,
1726 flush_start_tag + hctx_idx, node))
1727 goto free_fq;
320ae51f 1728
08e98fc6 1729 return 0;
320ae51f 1730
f70ced09
ML
1731 free_fq:
1732 kfree(hctx->fq);
1733 exit_hctx:
1734 if (set->ops->exit_hctx)
1735 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1736 free_bitmap:
1737 blk_mq_free_bitmap(&hctx->ctx_map);
1738 free_ctxs:
1739 kfree(hctx->ctxs);
1740 unregister_cpu_notifier:
1741 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1742
08e98fc6
ML
1743 return -1;
1744}
320ae51f 1745
08e98fc6
ML
1746static int blk_mq_init_hw_queues(struct request_queue *q,
1747 struct blk_mq_tag_set *set)
1748{
1749 struct blk_mq_hw_ctx *hctx;
1750 unsigned int i;
320ae51f 1751
08e98fc6
ML
1752 /*
1753 * Initialize hardware queues
1754 */
1755 queue_for_each_hw_ctx(q, hctx, i) {
1756 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1757 break;
1758 }
1759
1760 if (i == q->nr_hw_queues)
1761 return 0;
1762
1763 /*
1764 * Init failed
1765 */
624dbe47 1766 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1767
1768 return 1;
1769}
1770
1771static void blk_mq_init_cpu_queues(struct request_queue *q,
1772 unsigned int nr_hw_queues)
1773{
1774 unsigned int i;
1775
1776 for_each_possible_cpu(i) {
1777 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1778 struct blk_mq_hw_ctx *hctx;
1779
1780 memset(__ctx, 0, sizeof(*__ctx));
1781 __ctx->cpu = i;
1782 spin_lock_init(&__ctx->lock);
1783 INIT_LIST_HEAD(&__ctx->rq_list);
1784 __ctx->queue = q;
1785
1786 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1787 if (!cpu_online(i))
1788 continue;
1789
e4043dcf 1790 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1791
320ae51f
JA
1792 /*
1793 * Set local node, IFF we have more than one hw queue. If
1794 * not, we remain on the home node of the device
1795 */
1796 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1797 hctx->numa_node = cpu_to_node(i);
1798 }
1799}
1800
5778322e
AM
1801static void blk_mq_map_swqueue(struct request_queue *q,
1802 const struct cpumask *online_mask)
320ae51f
JA
1803{
1804 unsigned int i;
1805 struct blk_mq_hw_ctx *hctx;
1806 struct blk_mq_ctx *ctx;
2a34c087 1807 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1808
60de074b
AM
1809 /*
1810 * Avoid others reading imcomplete hctx->cpumask through sysfs
1811 */
1812 mutex_lock(&q->sysfs_lock);
1813
320ae51f 1814 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1815 cpumask_clear(hctx->cpumask);
320ae51f
JA
1816 hctx->nr_ctx = 0;
1817 }
1818
1819 /*
1820 * Map software to hardware queues
1821 */
1822 queue_for_each_ctx(q, ctx, i) {
1823 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1824 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
1825 continue;
1826
320ae51f 1827 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1828 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1829 ctx->index_hw = hctx->nr_ctx;
1830 hctx->ctxs[hctx->nr_ctx++] = ctx;
1831 }
506e931f 1832
60de074b
AM
1833 mutex_unlock(&q->sysfs_lock);
1834
506e931f 1835 queue_for_each_hw_ctx(q, hctx, i) {
889fa31f
CY
1836 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1837
484b4061 1838 /*
a68aafa5
JA
1839 * If no software queues are mapped to this hardware queue,
1840 * disable it and free the request entries.
484b4061
JA
1841 */
1842 if (!hctx->nr_ctx) {
484b4061
JA
1843 if (set->tags[i]) {
1844 blk_mq_free_rq_map(set, set->tags[i], i);
1845 set->tags[i] = NULL;
484b4061 1846 }
2a34c087 1847 hctx->tags = NULL;
484b4061
JA
1848 continue;
1849 }
1850
2a34c087
ML
1851 /* unmapped hw queue can be remapped after CPU topo changed */
1852 if (!set->tags[i])
1853 set->tags[i] = blk_mq_init_rq_map(set, i);
1854 hctx->tags = set->tags[i];
1855 WARN_ON(!hctx->tags);
1856
889fa31f
CY
1857 /*
1858 * Set the map size to the number of mapped software queues.
1859 * This is more accurate and more efficient than looping
1860 * over all possibly mapped software queues.
1861 */
569fd0ce 1862 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
889fa31f 1863
484b4061
JA
1864 /*
1865 * Initialize batch roundrobin counts
1866 */
506e931f
JA
1867 hctx->next_cpu = cpumask_first(hctx->cpumask);
1868 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1869 }
1356aae0
AM
1870
1871 queue_for_each_ctx(q, ctx, i) {
5778322e 1872 if (!cpumask_test_cpu(i, online_mask))
1356aae0
AM
1873 continue;
1874
1875 hctx = q->mq_ops->map_queue(q, i);
1876 cpumask_set_cpu(i, hctx->tags->cpumask);
1877 }
320ae51f
JA
1878}
1879
2404e607 1880static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
1881{
1882 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
1883 int i;
1884
2404e607
JM
1885 queue_for_each_hw_ctx(q, hctx, i) {
1886 if (shared)
1887 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1888 else
1889 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1890 }
1891}
1892
1893static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1894{
1895 struct request_queue *q;
0d2602ca
JA
1896
1897 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1898 blk_mq_freeze_queue(q);
2404e607 1899 queue_set_hctx_shared(q, shared);
0d2602ca
JA
1900 blk_mq_unfreeze_queue(q);
1901 }
1902}
1903
1904static void blk_mq_del_queue_tag_set(struct request_queue *q)
1905{
1906 struct blk_mq_tag_set *set = q->tag_set;
1907
0d2602ca
JA
1908 mutex_lock(&set->tag_list_lock);
1909 list_del_init(&q->tag_set_list);
2404e607
JM
1910 if (list_is_singular(&set->tag_list)) {
1911 /* just transitioned to unshared */
1912 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1913 /* update existing queue */
1914 blk_mq_update_tag_set_depth(set, false);
1915 }
0d2602ca 1916 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1917}
1918
1919static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1920 struct request_queue *q)
1921{
1922 q->tag_set = set;
1923
1924 mutex_lock(&set->tag_list_lock);
2404e607
JM
1925
1926 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1927 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1928 set->flags |= BLK_MQ_F_TAG_SHARED;
1929 /* update existing queue */
1930 blk_mq_update_tag_set_depth(set, true);
1931 }
1932 if (set->flags & BLK_MQ_F_TAG_SHARED)
1933 queue_set_hctx_shared(q, true);
0d2602ca 1934 list_add_tail(&q->tag_set_list, &set->tag_list);
2404e607 1935
0d2602ca
JA
1936 mutex_unlock(&set->tag_list_lock);
1937}
1938
e09aae7e
ML
1939/*
1940 * It is the actual release handler for mq, but we do it from
1941 * request queue's release handler for avoiding use-after-free
1942 * and headache because q->mq_kobj shouldn't have been introduced,
1943 * but we can't group ctx/kctx kobj without it.
1944 */
1945void blk_mq_release(struct request_queue *q)
1946{
1947 struct blk_mq_hw_ctx *hctx;
1948 unsigned int i;
1949
1950 /* hctx kobj stays in hctx */
c3b4afca
ML
1951 queue_for_each_hw_ctx(q, hctx, i) {
1952 if (!hctx)
1953 continue;
1954 kfree(hctx->ctxs);
e09aae7e 1955 kfree(hctx);
c3b4afca 1956 }
e09aae7e 1957
a723bab3
AM
1958 kfree(q->mq_map);
1959 q->mq_map = NULL;
1960
e09aae7e
ML
1961 kfree(q->queue_hw_ctx);
1962
1963 /* ctx kobj stays in queue_ctx */
1964 free_percpu(q->queue_ctx);
1965}
1966
24d2f903 1967struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
1968{
1969 struct request_queue *uninit_q, *q;
1970
1971 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1972 if (!uninit_q)
1973 return ERR_PTR(-ENOMEM);
1974
1975 q = blk_mq_init_allocated_queue(set, uninit_q);
1976 if (IS_ERR(q))
1977 blk_cleanup_queue(uninit_q);
1978
1979 return q;
1980}
1981EXPORT_SYMBOL(blk_mq_init_queue);
1982
1983struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1984 struct request_queue *q)
320ae51f
JA
1985{
1986 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1987 struct blk_mq_ctx __percpu *ctx;
f14bbe77 1988 unsigned int *map;
320ae51f
JA
1989 int i;
1990
320ae51f
JA
1991 ctx = alloc_percpu(struct blk_mq_ctx);
1992 if (!ctx)
1993 return ERR_PTR(-ENOMEM);
1994
24d2f903
CH
1995 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1996 set->numa_node);
320ae51f
JA
1997
1998 if (!hctxs)
1999 goto err_percpu;
2000
f14bbe77
JA
2001 map = blk_mq_make_queue_map(set);
2002 if (!map)
2003 goto err_map;
2004
24d2f903 2005 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
2006 int node = blk_mq_hw_queue_to_node(map, i);
2007
cdef54dd
CH
2008 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2009 GFP_KERNEL, node);
320ae51f
JA
2010 if (!hctxs[i])
2011 goto err_hctxs;
2012
a86073e4
JA
2013 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2014 node))
e4043dcf
JA
2015 goto err_hctxs;
2016
0d2602ca 2017 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 2018 hctxs[i]->numa_node = node;
320ae51f
JA
2019 hctxs[i]->queue_num = i;
2020 }
2021
320ae51f 2022 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
e56f698b 2023 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
2024
2025 q->nr_queues = nr_cpu_ids;
24d2f903 2026 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 2027 q->mq_map = map;
320ae51f
JA
2028
2029 q->queue_ctx = ctx;
2030 q->queue_hw_ctx = hctxs;
2031
24d2f903 2032 q->mq_ops = set->ops;
94eddfbe 2033 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 2034
05f1dd53
JA
2035 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2036 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2037
1be036e9
CH
2038 q->sg_reserved_size = INT_MAX;
2039
6fca6a61
CH
2040 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2041 INIT_LIST_HEAD(&q->requeue_list);
2042 spin_lock_init(&q->requeue_lock);
2043
07068d5b
JA
2044 if (q->nr_hw_queues > 1)
2045 blk_queue_make_request(q, blk_mq_make_request);
2046 else
2047 blk_queue_make_request(q, blk_sq_make_request);
2048
eba71768
JA
2049 /*
2050 * Do this after blk_queue_make_request() overrides it...
2051 */
2052 q->nr_requests = set->queue_depth;
2053
24d2f903
CH
2054 if (set->ops->complete)
2055 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2056
24d2f903 2057 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2058
24d2f903 2059 if (blk_mq_init_hw_queues(q, set))
b62c21b7 2060 goto err_hctxs;
18741986 2061
5778322e 2062 get_online_cpus();
320ae51f 2063 mutex_lock(&all_q_mutex);
320ae51f 2064
4593fdbe 2065 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2066 blk_mq_add_queue_tag_set(set, q);
5778322e 2067 blk_mq_map_swqueue(q, cpu_online_mask);
484b4061 2068
4593fdbe 2069 mutex_unlock(&all_q_mutex);
5778322e 2070 put_online_cpus();
4593fdbe 2071
320ae51f 2072 return q;
18741986 2073
320ae51f 2074err_hctxs:
f14bbe77 2075 kfree(map);
24d2f903 2076 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
2077 if (!hctxs[i])
2078 break;
e4043dcf 2079 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 2080 kfree(hctxs[i]);
320ae51f 2081 }
f14bbe77 2082err_map:
320ae51f
JA
2083 kfree(hctxs);
2084err_percpu:
2085 free_percpu(ctx);
2086 return ERR_PTR(-ENOMEM);
2087}
b62c21b7 2088EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2089
2090void blk_mq_free_queue(struct request_queue *q)
2091{
624dbe47 2092 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2093
0e626368
AM
2094 mutex_lock(&all_q_mutex);
2095 list_del_init(&q->all_q_node);
2096 mutex_unlock(&all_q_mutex);
2097
0d2602ca
JA
2098 blk_mq_del_queue_tag_set(q);
2099
624dbe47
ML
2100 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2101 blk_mq_free_hw_queues(q, set);
320ae51f 2102}
320ae51f
JA
2103
2104/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2105static void blk_mq_queue_reinit(struct request_queue *q,
2106 const struct cpumask *online_mask)
320ae51f 2107{
4ecd4fef 2108 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2109
67aec14c
JA
2110 blk_mq_sysfs_unregister(q);
2111
5778322e 2112 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
320ae51f
JA
2113
2114 /*
2115 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2116 * we should change hctx numa_node according to new topology (this
2117 * involves free and re-allocate memory, worthy doing?)
2118 */
2119
5778322e 2120 blk_mq_map_swqueue(q, online_mask);
320ae51f 2121
67aec14c 2122 blk_mq_sysfs_register(q);
320ae51f
JA
2123}
2124
f618ef7c
PG
2125static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2126 unsigned long action, void *hcpu)
320ae51f
JA
2127{
2128 struct request_queue *q;
5778322e
AM
2129 int cpu = (unsigned long)hcpu;
2130 /*
2131 * New online cpumask which is going to be set in this hotplug event.
2132 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2133 * one-by-one and dynamically allocating this could result in a failure.
2134 */
2135 static struct cpumask online_new;
320ae51f
JA
2136
2137 /*
5778322e
AM
2138 * Before hotadded cpu starts handling requests, new mappings must
2139 * be established. Otherwise, these requests in hw queue might
2140 * never be dispatched.
2141 *
2142 * For example, there is a single hw queue (hctx) and two CPU queues
2143 * (ctx0 for CPU0, and ctx1 for CPU1).
2144 *
2145 * Now CPU1 is just onlined and a request is inserted into
2146 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2147 * still zero.
2148 *
2149 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2150 * set in pending bitmap and tries to retrieve requests in
2151 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2152 * so the request in ctx1->rq_list is ignored.
320ae51f 2153 */
5778322e
AM
2154 switch (action & ~CPU_TASKS_FROZEN) {
2155 case CPU_DEAD:
2156 case CPU_UP_CANCELED:
2157 cpumask_copy(&online_new, cpu_online_mask);
2158 break;
2159 case CPU_UP_PREPARE:
2160 cpumask_copy(&online_new, cpu_online_mask);
2161 cpumask_set_cpu(cpu, &online_new);
2162 break;
2163 default:
320ae51f 2164 return NOTIFY_OK;
5778322e 2165 }
320ae51f
JA
2166
2167 mutex_lock(&all_q_mutex);
f3af020b
TH
2168
2169 /*
2170 * We need to freeze and reinit all existing queues. Freezing
2171 * involves synchronous wait for an RCU grace period and doing it
2172 * one by one may take a long time. Start freezing all queues in
2173 * one swoop and then wait for the completions so that freezing can
2174 * take place in parallel.
2175 */
2176 list_for_each_entry(q, &all_q_list, all_q_node)
2177 blk_mq_freeze_queue_start(q);
f054b56c 2178 list_for_each_entry(q, &all_q_list, all_q_node) {
f3af020b
TH
2179 blk_mq_freeze_queue_wait(q);
2180
f054b56c
ML
2181 /*
2182 * timeout handler can't touch hw queue during the
2183 * reinitialization
2184 */
2185 del_timer_sync(&q->timeout);
2186 }
2187
320ae51f 2188 list_for_each_entry(q, &all_q_list, all_q_node)
5778322e 2189 blk_mq_queue_reinit(q, &online_new);
f3af020b
TH
2190
2191 list_for_each_entry(q, &all_q_list, all_q_node)
2192 blk_mq_unfreeze_queue(q);
2193
320ae51f
JA
2194 mutex_unlock(&all_q_mutex);
2195 return NOTIFY_OK;
2196}
2197
a5164405
JA
2198static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2199{
2200 int i;
2201
2202 for (i = 0; i < set->nr_hw_queues; i++) {
2203 set->tags[i] = blk_mq_init_rq_map(set, i);
2204 if (!set->tags[i])
2205 goto out_unwind;
2206 }
2207
2208 return 0;
2209
2210out_unwind:
2211 while (--i >= 0)
2212 blk_mq_free_rq_map(set, set->tags[i], i);
2213
a5164405
JA
2214 return -ENOMEM;
2215}
2216
2217/*
2218 * Allocate the request maps associated with this tag_set. Note that this
2219 * may reduce the depth asked for, if memory is tight. set->queue_depth
2220 * will be updated to reflect the allocated depth.
2221 */
2222static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2223{
2224 unsigned int depth;
2225 int err;
2226
2227 depth = set->queue_depth;
2228 do {
2229 err = __blk_mq_alloc_rq_maps(set);
2230 if (!err)
2231 break;
2232
2233 set->queue_depth >>= 1;
2234 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2235 err = -ENOMEM;
2236 break;
2237 }
2238 } while (set->queue_depth);
2239
2240 if (!set->queue_depth || err) {
2241 pr_err("blk-mq: failed to allocate request map\n");
2242 return -ENOMEM;
2243 }
2244
2245 if (depth != set->queue_depth)
2246 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2247 depth, set->queue_depth);
2248
2249 return 0;
2250}
2251
f26cdc85
KB
2252struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2253{
2254 return tags->cpumask;
2255}
2256EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2257
a4391c64
JA
2258/*
2259 * Alloc a tag set to be associated with one or more request queues.
2260 * May fail with EINVAL for various error conditions. May adjust the
2261 * requested depth down, if if it too large. In that case, the set
2262 * value will be stored in set->queue_depth.
2263 */
24d2f903
CH
2264int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2265{
205fb5f5
BVA
2266 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2267
24d2f903
CH
2268 if (!set->nr_hw_queues)
2269 return -EINVAL;
a4391c64 2270 if (!set->queue_depth)
24d2f903
CH
2271 return -EINVAL;
2272 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2273 return -EINVAL;
2274
f9018ac9 2275 if (!set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2276 return -EINVAL;
2277
a4391c64
JA
2278 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2279 pr_info("blk-mq: reduced tag depth to %u\n",
2280 BLK_MQ_MAX_DEPTH);
2281 set->queue_depth = BLK_MQ_MAX_DEPTH;
2282 }
24d2f903 2283
6637fadf
SL
2284 /*
2285 * If a crashdump is active, then we are potentially in a very
2286 * memory constrained environment. Limit us to 1 queue and
2287 * 64 tags to prevent using too much memory.
2288 */
2289 if (is_kdump_kernel()) {
2290 set->nr_hw_queues = 1;
2291 set->queue_depth = min(64U, set->queue_depth);
2292 }
2293
48479005
ML
2294 set->tags = kmalloc_node(set->nr_hw_queues *
2295 sizeof(struct blk_mq_tags *),
24d2f903
CH
2296 GFP_KERNEL, set->numa_node);
2297 if (!set->tags)
a5164405 2298 return -ENOMEM;
24d2f903 2299
a5164405
JA
2300 if (blk_mq_alloc_rq_maps(set))
2301 goto enomem;
24d2f903 2302
0d2602ca
JA
2303 mutex_init(&set->tag_list_lock);
2304 INIT_LIST_HEAD(&set->tag_list);
2305
24d2f903 2306 return 0;
a5164405 2307enomem:
5676e7b6
RE
2308 kfree(set->tags);
2309 set->tags = NULL;
24d2f903
CH
2310 return -ENOMEM;
2311}
2312EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2313
2314void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2315{
2316 int i;
2317
484b4061 2318 for (i = 0; i < set->nr_hw_queues; i++) {
f42d79ab 2319 if (set->tags[i])
484b4061
JA
2320 blk_mq_free_rq_map(set, set->tags[i], i);
2321 }
2322
981bd189 2323 kfree(set->tags);
5676e7b6 2324 set->tags = NULL;
24d2f903
CH
2325}
2326EXPORT_SYMBOL(blk_mq_free_tag_set);
2327
e3a2b3f9
JA
2328int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2329{
2330 struct blk_mq_tag_set *set = q->tag_set;
2331 struct blk_mq_hw_ctx *hctx;
2332 int i, ret;
2333
2334 if (!set || nr > set->queue_depth)
2335 return -EINVAL;
2336
2337 ret = 0;
2338 queue_for_each_hw_ctx(q, hctx, i) {
2339 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2340 if (ret)
2341 break;
2342 }
2343
2344 if (!ret)
2345 q->nr_requests = nr;
2346
2347 return ret;
2348}
2349
676141e4
JA
2350void blk_mq_disable_hotplug(void)
2351{
2352 mutex_lock(&all_q_mutex);
2353}
2354
2355void blk_mq_enable_hotplug(void)
2356{
2357 mutex_unlock(&all_q_mutex);
2358}
2359
320ae51f
JA
2360static int __init blk_mq_init(void)
2361{
320ae51f
JA
2362 blk_mq_cpu_init();
2363
add703fd 2364 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2365
2366 return 0;
2367}
2368subsys_initcall(blk_mq_init);