btrfs: fix missing increment of bi_remaining
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30DEFINE_PER_CPU(struct llist_head, ipi_lists);
31
32static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
33 unsigned int cpu)
34{
35 return per_cpu_ptr(q->queue_ctx, cpu);
36}
37
38/*
39 * This assumes per-cpu software queueing queues. They could be per-node
40 * as well, for instance. For now this is hardcoded as-is. Note that we don't
41 * care about preemption, since we know the ctx's are persistent. This does
42 * mean that we can't rely on ctx always matching the currently running CPU.
43 */
44static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
45{
46 return __blk_mq_get_ctx(q, get_cpu());
47}
48
49static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
50{
51 put_cpu();
52}
53
54/*
55 * Check if any of the ctx's have pending work in this hardware queue
56 */
57static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
58{
59 unsigned int i;
60
61 for (i = 0; i < hctx->nr_ctx_map; i++)
62 if (hctx->ctx_map[i])
63 return true;
64
65 return false;
66}
67
68/*
69 * Mark this ctx as having pending work in this hardware queue
70 */
71static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 if (!test_bit(ctx->index_hw, hctx->ctx_map))
75 set_bit(ctx->index_hw, hctx->ctx_map);
76}
77
78static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
79 bool reserved)
80{
81 struct request *rq;
82 unsigned int tag;
83
84 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
85 if (tag != BLK_MQ_TAG_FAIL) {
86 rq = hctx->rqs[tag];
87 rq->tag = tag;
88
89 return rq;
90 }
91
92 return NULL;
93}
94
95static int blk_mq_queue_enter(struct request_queue *q)
96{
97 int ret;
98
99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 smp_wmb();
101 /* we have problems to freeze the queue if it's initializing */
102 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
103 return 0;
104
105 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
106
107 spin_lock_irq(q->queue_lock);
108 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
109 !blk_queue_bypass(q) || blk_queue_dying(q),
110 *q->queue_lock);
320ae51f 111 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 112 if (!ret && !blk_queue_dying(q))
320ae51f 113 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
114 else if (blk_queue_dying(q))
115 ret = -ENODEV;
320ae51f
JA
116 spin_unlock_irq(q->queue_lock);
117
118 return ret;
119}
120
121static void blk_mq_queue_exit(struct request_queue *q)
122{
123 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
124}
125
43a5e4e2
ML
126static void __blk_mq_drain_queue(struct request_queue *q)
127{
128 while (true) {
129 s64 count;
130
131 spin_lock_irq(q->queue_lock);
132 count = percpu_counter_sum(&q->mq_usage_counter);
133 spin_unlock_irq(q->queue_lock);
134
135 if (count == 0)
136 break;
137 blk_mq_run_queues(q, false);
138 msleep(10);
139 }
140}
141
320ae51f
JA
142/*
143 * Guarantee no request is in use, so we can change any data structure of
144 * the queue afterward.
145 */
146static void blk_mq_freeze_queue(struct request_queue *q)
147{
148 bool drain;
149
150 spin_lock_irq(q->queue_lock);
151 drain = !q->bypass_depth++;
152 queue_flag_set(QUEUE_FLAG_BYPASS, q);
153 spin_unlock_irq(q->queue_lock);
154
43a5e4e2
ML
155 if (drain)
156 __blk_mq_drain_queue(q);
157}
320ae51f 158
43a5e4e2
ML
159void blk_mq_drain_queue(struct request_queue *q)
160{
161 __blk_mq_drain_queue(q);
320ae51f
JA
162}
163
164static void blk_mq_unfreeze_queue(struct request_queue *q)
165{
166 bool wake = false;
167
168 spin_lock_irq(q->queue_lock);
169 if (!--q->bypass_depth) {
170 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
171 wake = true;
172 }
173 WARN_ON_ONCE(q->bypass_depth < 0);
174 spin_unlock_irq(q->queue_lock);
175 if (wake)
176 wake_up_all(&q->mq_freeze_wq);
177}
178
179bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
180{
181 return blk_mq_has_free_tags(hctx->tags);
182}
183EXPORT_SYMBOL(blk_mq_can_queue);
184
94eddfbe
JA
185static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
186 struct request *rq, unsigned int rw_flags)
320ae51f 187{
94eddfbe
JA
188 if (blk_queue_io_stat(q))
189 rw_flags |= REQ_IO_STAT;
190
320ae51f
JA
191 rq->mq_ctx = ctx;
192 rq->cmd_flags = rw_flags;
0fec08b4
ML
193 rq->start_time = jiffies;
194 set_start_time_ns(rq);
320ae51f
JA
195 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
196}
197
198static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
199 gfp_t gfp, bool reserved)
200{
201 return blk_mq_alloc_rq(hctx, gfp, reserved);
202}
203
204static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
205 int rw, gfp_t gfp,
206 bool reserved)
207{
208 struct request *rq;
209
210 do {
211 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
212 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
213
214 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
215 if (rq) {
94eddfbe 216 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 217 break;
959a35f1 218 }
320ae51f
JA
219
220 blk_mq_put_ctx(ctx);
959a35f1
JM
221 if (!(gfp & __GFP_WAIT))
222 break;
223
320ae51f
JA
224 __blk_mq_run_hw_queue(hctx);
225 blk_mq_wait_for_tags(hctx->tags);
226 } while (1);
227
228 return rq;
229}
230
3228f48b
CH
231struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
232 gfp_t gfp, bool reserved)
320ae51f
JA
233{
234 struct request *rq;
235
236 if (blk_mq_queue_enter(q))
237 return NULL;
238
3228f48b 239 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
959a35f1
JM
240 if (rq)
241 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
242 return rq;
243}
244
245struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
246 gfp_t gfp)
247{
248 struct request *rq;
249
250 if (blk_mq_queue_enter(q))
251 return NULL;
252
253 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
254 if (rq)
255 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
256 return rq;
257}
258EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
259
260/*
261 * Re-init and set pdu, if we have it
262 */
263static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
264{
265 blk_rq_init(hctx->queue, rq);
266
267 if (hctx->cmd_size)
268 rq->special = blk_mq_rq_to_pdu(rq);
269}
270
271static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
272 struct blk_mq_ctx *ctx, struct request *rq)
273{
274 const int tag = rq->tag;
275 struct request_queue *q = rq->q;
276
277 blk_mq_rq_init(hctx, rq);
278 blk_mq_put_tag(hctx->tags, tag);
279
280 blk_mq_queue_exit(q);
281}
282
283void blk_mq_free_request(struct request *rq)
284{
285 struct blk_mq_ctx *ctx = rq->mq_ctx;
286 struct blk_mq_hw_ctx *hctx;
287 struct request_queue *q = rq->q;
288
289 ctx->rq_completed[rq_is_sync(rq)]++;
290
291 hctx = q->mq_ops->map_queue(q, ctx->cpu);
292 __blk_mq_free_request(hctx, ctx, rq);
293}
294
295static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
296{
297 if (error)
298 clear_bit(BIO_UPTODATE, &bio->bi_flags);
299 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
300 error = -EIO;
301
302 if (unlikely(rq->cmd_flags & REQ_QUIET))
303 set_bit(BIO_QUIET, &bio->bi_flags);
304
305 /* don't actually finish bio if it's part of flush sequence */
306 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
307 bio_endio(bio, error);
308}
309
310void blk_mq_complete_request(struct request *rq, int error)
311{
312 struct bio *bio = rq->bio;
313 unsigned int bytes = 0;
314
315 trace_block_rq_complete(rq->q, rq);
316
317 while (bio) {
318 struct bio *next = bio->bi_next;
319
320 bio->bi_next = NULL;
4f024f37 321 bytes += bio->bi_iter.bi_size;
320ae51f
JA
322 blk_mq_bio_endio(rq, bio, error);
323 bio = next;
324 }
325
326 blk_account_io_completion(rq, bytes);
327
0d11e6ac
ML
328 blk_account_io_done(rq);
329
320ae51f
JA
330 if (rq->end_io)
331 rq->end_io(rq, error);
332 else
333 blk_mq_free_request(rq);
320ae51f
JA
334}
335
336void __blk_mq_end_io(struct request *rq, int error)
337{
338 if (!blk_mark_rq_complete(rq))
339 blk_mq_complete_request(rq, error);
340}
341
0a06ff06 342#if defined(CONFIG_SMP)
320ae51f
JA
343
344/*
345 * Called with interrupts disabled.
346 */
347static void ipi_end_io(void *data)
348{
349 struct llist_head *list = &per_cpu(ipi_lists, smp_processor_id());
350 struct llist_node *entry, *next;
351 struct request *rq;
352
353 entry = llist_del_all(list);
354
355 while (entry) {
356 next = entry->next;
357 rq = llist_entry(entry, struct request, ll_list);
358 __blk_mq_end_io(rq, rq->errors);
359 entry = next;
360 }
361}
362
363static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
364 struct request *rq, const int error)
365{
366 struct call_single_data *data = &rq->csd;
367
368 rq->errors = error;
369 rq->ll_list.next = NULL;
370
371 /*
372 * If the list is non-empty, an existing IPI must already
373 * be "in flight". If that is the case, we need not schedule
374 * a new one.
375 */
376 if (llist_add(&rq->ll_list, &per_cpu(ipi_lists, ctx->cpu))) {
377 data->func = ipi_end_io;
378 data->flags = 0;
379 __smp_call_function_single(ctx->cpu, data, 0);
380 }
381
382 return true;
383}
0a06ff06 384#else /* CONFIG_SMP */
320ae51f
JA
385static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
386 struct request *rq, const int error)
387{
388 return false;
389}
390#endif
391
392/*
393 * End IO on this request on a multiqueue enabled driver. We'll either do
394 * it directly inline, or punt to a local IPI handler on the matching
395 * remote CPU.
396 */
397void blk_mq_end_io(struct request *rq, int error)
398{
399 struct blk_mq_ctx *ctx = rq->mq_ctx;
400 int cpu;
401
402 if (!ctx->ipi_redirect)
403 return __blk_mq_end_io(rq, error);
404
405 cpu = get_cpu();
406
407 if (cpu == ctx->cpu || !cpu_online(ctx->cpu) ||
408 !ipi_remote_cpu(ctx, cpu, rq, error))
409 __blk_mq_end_io(rq, error);
410
411 put_cpu();
412}
413EXPORT_SYMBOL(blk_mq_end_io);
414
415static void blk_mq_start_request(struct request *rq)
416{
417 struct request_queue *q = rq->q;
418
419 trace_block_rq_issue(q, rq);
420
421 /*
422 * Just mark start time and set the started bit. Due to memory
423 * ordering, we know we'll see the correct deadline as long as
424 * REQ_ATOMIC_STARTED is seen.
425 */
426 rq->deadline = jiffies + q->rq_timeout;
427 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
428}
429
430static void blk_mq_requeue_request(struct request *rq)
431{
432 struct request_queue *q = rq->q;
433
434 trace_block_rq_requeue(q, rq);
435 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
436}
437
438struct blk_mq_timeout_data {
439 struct blk_mq_hw_ctx *hctx;
440 unsigned long *next;
441 unsigned int *next_set;
442};
443
444static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
445{
446 struct blk_mq_timeout_data *data = __data;
447 struct blk_mq_hw_ctx *hctx = data->hctx;
448 unsigned int tag;
449
450 /* It may not be in flight yet (this is where
451 * the REQ_ATOMIC_STARTED flag comes in). The requests are
452 * statically allocated, so we know it's always safe to access the
453 * memory associated with a bit offset into ->rqs[].
454 */
455 tag = 0;
456 do {
457 struct request *rq;
458
459 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
460 if (tag >= hctx->queue_depth)
461 break;
462
463 rq = hctx->rqs[tag++];
464
465 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
466 continue;
467
468 blk_rq_check_expired(rq, data->next, data->next_set);
469 } while (1);
470}
471
472static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
473 unsigned long *next,
474 unsigned int *next_set)
475{
476 struct blk_mq_timeout_data data = {
477 .hctx = hctx,
478 .next = next,
479 .next_set = next_set,
480 };
481
482 /*
483 * Ask the tagging code to iterate busy requests, so we can
484 * check them for timeout.
485 */
486 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
487}
488
489static void blk_mq_rq_timer(unsigned long data)
490{
491 struct request_queue *q = (struct request_queue *) data;
492 struct blk_mq_hw_ctx *hctx;
493 unsigned long next = 0;
494 int i, next_set = 0;
495
496 queue_for_each_hw_ctx(q, hctx, i)
497 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
498
499 if (next_set)
500 mod_timer(&q->timeout, round_jiffies_up(next));
501}
502
503/*
504 * Reverse check our software queue for entries that we could potentially
505 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
506 * too much time checking for merges.
507 */
508static bool blk_mq_attempt_merge(struct request_queue *q,
509 struct blk_mq_ctx *ctx, struct bio *bio)
510{
511 struct request *rq;
512 int checked = 8;
513
514 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
515 int el_ret;
516
517 if (!checked--)
518 break;
519
520 if (!blk_rq_merge_ok(rq, bio))
521 continue;
522
523 el_ret = blk_try_merge(rq, bio);
524 if (el_ret == ELEVATOR_BACK_MERGE) {
525 if (bio_attempt_back_merge(q, rq, bio)) {
526 ctx->rq_merged++;
527 return true;
528 }
529 break;
530 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
531 if (bio_attempt_front_merge(q, rq, bio)) {
532 ctx->rq_merged++;
533 return true;
534 }
535 break;
536 }
537 }
538
539 return false;
540}
541
542void blk_mq_add_timer(struct request *rq)
543{
544 __blk_add_timer(rq, NULL);
545}
546
547/*
548 * Run this hardware queue, pulling any software queues mapped to it in.
549 * Note that this function currently has various problems around ordering
550 * of IO. In particular, we'd like FIFO behaviour on handling existing
551 * items on the hctx->dispatch list. Ignore that for now.
552 */
553static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
554{
555 struct request_queue *q = hctx->queue;
556 struct blk_mq_ctx *ctx;
557 struct request *rq;
558 LIST_HEAD(rq_list);
559 int bit, queued;
560
561 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
562 return;
563
564 hctx->run++;
565
566 /*
567 * Touch any software queue that has pending entries.
568 */
569 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
570 clear_bit(bit, hctx->ctx_map);
571 ctx = hctx->ctxs[bit];
572 BUG_ON(bit != ctx->index_hw);
573
574 spin_lock(&ctx->lock);
575 list_splice_tail_init(&ctx->rq_list, &rq_list);
576 spin_unlock(&ctx->lock);
577 }
578
579 /*
580 * If we have previous entries on our dispatch list, grab them
581 * and stuff them at the front for more fair dispatch.
582 */
583 if (!list_empty_careful(&hctx->dispatch)) {
584 spin_lock(&hctx->lock);
585 if (!list_empty(&hctx->dispatch))
586 list_splice_init(&hctx->dispatch, &rq_list);
587 spin_unlock(&hctx->lock);
588 }
589
590 /*
591 * Delete and return all entries from our dispatch list
592 */
593 queued = 0;
594
595 /*
596 * Now process all the entries, sending them to the driver.
597 */
598 while (!list_empty(&rq_list)) {
599 int ret;
600
601 rq = list_first_entry(&rq_list, struct request, queuelist);
602 list_del_init(&rq->queuelist);
603 blk_mq_start_request(rq);
604
605 /*
606 * Last request in the series. Flag it as such, this
607 * enables drivers to know when IO should be kicked off,
608 * if they don't do it on a per-request basis.
609 *
610 * Note: the flag isn't the only condition drivers
611 * should do kick off. If drive is busy, the last
612 * request might not have the bit set.
613 */
614 if (list_empty(&rq_list))
615 rq->cmd_flags |= REQ_END;
616
617 ret = q->mq_ops->queue_rq(hctx, rq);
618 switch (ret) {
619 case BLK_MQ_RQ_QUEUE_OK:
620 queued++;
621 continue;
622 case BLK_MQ_RQ_QUEUE_BUSY:
623 /*
624 * FIXME: we should have a mechanism to stop the queue
625 * like blk_stop_queue, otherwise we will waste cpu
626 * time
627 */
628 list_add(&rq->queuelist, &rq_list);
629 blk_mq_requeue_request(rq);
630 break;
631 default:
632 pr_err("blk-mq: bad return on queue: %d\n", ret);
633 rq->errors = -EIO;
634 case BLK_MQ_RQ_QUEUE_ERROR:
635 blk_mq_end_io(rq, rq->errors);
636 break;
637 }
638
639 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
640 break;
641 }
642
643 if (!queued)
644 hctx->dispatched[0]++;
645 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
646 hctx->dispatched[ilog2(queued) + 1]++;
647
648 /*
649 * Any items that need requeuing? Stuff them into hctx->dispatch,
650 * that is where we will continue on next queue run.
651 */
652 if (!list_empty(&rq_list)) {
653 spin_lock(&hctx->lock);
654 list_splice(&rq_list, &hctx->dispatch);
655 spin_unlock(&hctx->lock);
656 }
657}
658
659void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
660{
661 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
662 return;
663
664 if (!async)
665 __blk_mq_run_hw_queue(hctx);
666 else {
667 struct request_queue *q = hctx->queue;
668
669 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
670 }
671}
672
673void blk_mq_run_queues(struct request_queue *q, bool async)
674{
675 struct blk_mq_hw_ctx *hctx;
676 int i;
677
678 queue_for_each_hw_ctx(q, hctx, i) {
679 if ((!blk_mq_hctx_has_pending(hctx) &&
680 list_empty_careful(&hctx->dispatch)) ||
681 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
682 continue;
683
684 blk_mq_run_hw_queue(hctx, async);
685 }
686}
687EXPORT_SYMBOL(blk_mq_run_queues);
688
689void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
690{
691 cancel_delayed_work(&hctx->delayed_work);
692 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
693}
694EXPORT_SYMBOL(blk_mq_stop_hw_queue);
695
280d45f6
CH
696void blk_mq_stop_hw_queues(struct request_queue *q)
697{
698 struct blk_mq_hw_ctx *hctx;
699 int i;
700
701 queue_for_each_hw_ctx(q, hctx, i)
702 blk_mq_stop_hw_queue(hctx);
703}
704EXPORT_SYMBOL(blk_mq_stop_hw_queues);
705
320ae51f
JA
706void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
707{
708 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
709 __blk_mq_run_hw_queue(hctx);
710}
711EXPORT_SYMBOL(blk_mq_start_hw_queue);
712
713void blk_mq_start_stopped_hw_queues(struct request_queue *q)
714{
715 struct blk_mq_hw_ctx *hctx;
716 int i;
717
718 queue_for_each_hw_ctx(q, hctx, i) {
719 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
720 continue;
721
722 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
723 blk_mq_run_hw_queue(hctx, true);
724 }
725}
726EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
727
728static void blk_mq_work_fn(struct work_struct *work)
729{
730 struct blk_mq_hw_ctx *hctx;
731
732 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
733 __blk_mq_run_hw_queue(hctx);
734}
735
736static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
737 struct request *rq)
738{
739 struct blk_mq_ctx *ctx = rq->mq_ctx;
740
01b983c9
JA
741 trace_block_rq_insert(hctx->queue, rq);
742
320ae51f
JA
743 list_add_tail(&rq->queuelist, &ctx->rq_list);
744 blk_mq_hctx_mark_pending(hctx, ctx);
745
746 /*
747 * We do this early, to ensure we are on the right CPU.
748 */
749 blk_mq_add_timer(rq);
750}
751
752void blk_mq_insert_request(struct request_queue *q, struct request *rq,
753 bool run_queue)
754{
755 struct blk_mq_hw_ctx *hctx;
756 struct blk_mq_ctx *ctx, *current_ctx;
757
758 ctx = rq->mq_ctx;
759 hctx = q->mq_ops->map_queue(q, ctx->cpu);
760
761 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
762 blk_insert_flush(rq);
763 } else {
764 current_ctx = blk_mq_get_ctx(q);
765
766 if (!cpu_online(ctx->cpu)) {
767 ctx = current_ctx;
768 hctx = q->mq_ops->map_queue(q, ctx->cpu);
769 rq->mq_ctx = ctx;
770 }
771 spin_lock(&ctx->lock);
772 __blk_mq_insert_request(hctx, rq);
773 spin_unlock(&ctx->lock);
774
775 blk_mq_put_ctx(current_ctx);
776 }
777
778 if (run_queue)
779 __blk_mq_run_hw_queue(hctx);
780}
781EXPORT_SYMBOL(blk_mq_insert_request);
782
783/*
784 * This is a special version of blk_mq_insert_request to bypass FLUSH request
785 * check. Should only be used internally.
786 */
787void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
788{
789 struct request_queue *q = rq->q;
790 struct blk_mq_hw_ctx *hctx;
791 struct blk_mq_ctx *ctx, *current_ctx;
792
793 current_ctx = blk_mq_get_ctx(q);
794
795 ctx = rq->mq_ctx;
796 if (!cpu_online(ctx->cpu)) {
797 ctx = current_ctx;
798 rq->mq_ctx = ctx;
799 }
800 hctx = q->mq_ops->map_queue(q, ctx->cpu);
801
802 /* ctx->cpu might be offline */
803 spin_lock(&ctx->lock);
804 __blk_mq_insert_request(hctx, rq);
805 spin_unlock(&ctx->lock);
806
807 blk_mq_put_ctx(current_ctx);
808
809 if (run_queue)
810 blk_mq_run_hw_queue(hctx, async);
811}
812
813static void blk_mq_insert_requests(struct request_queue *q,
814 struct blk_mq_ctx *ctx,
815 struct list_head *list,
816 int depth,
817 bool from_schedule)
818
819{
820 struct blk_mq_hw_ctx *hctx;
821 struct blk_mq_ctx *current_ctx;
822
823 trace_block_unplug(q, depth, !from_schedule);
824
825 current_ctx = blk_mq_get_ctx(q);
826
827 if (!cpu_online(ctx->cpu))
828 ctx = current_ctx;
829 hctx = q->mq_ops->map_queue(q, ctx->cpu);
830
831 /*
832 * preemption doesn't flush plug list, so it's possible ctx->cpu is
833 * offline now
834 */
835 spin_lock(&ctx->lock);
836 while (!list_empty(list)) {
837 struct request *rq;
838
839 rq = list_first_entry(list, struct request, queuelist);
840 list_del_init(&rq->queuelist);
841 rq->mq_ctx = ctx;
842 __blk_mq_insert_request(hctx, rq);
843 }
844 spin_unlock(&ctx->lock);
845
846 blk_mq_put_ctx(current_ctx);
847
848 blk_mq_run_hw_queue(hctx, from_schedule);
849}
850
851static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
852{
853 struct request *rqa = container_of(a, struct request, queuelist);
854 struct request *rqb = container_of(b, struct request, queuelist);
855
856 return !(rqa->mq_ctx < rqb->mq_ctx ||
857 (rqa->mq_ctx == rqb->mq_ctx &&
858 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
859}
860
861void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
862{
863 struct blk_mq_ctx *this_ctx;
864 struct request_queue *this_q;
865 struct request *rq;
866 LIST_HEAD(list);
867 LIST_HEAD(ctx_list);
868 unsigned int depth;
869
870 list_splice_init(&plug->mq_list, &list);
871
872 list_sort(NULL, &list, plug_ctx_cmp);
873
874 this_q = NULL;
875 this_ctx = NULL;
876 depth = 0;
877
878 while (!list_empty(&list)) {
879 rq = list_entry_rq(list.next);
880 list_del_init(&rq->queuelist);
881 BUG_ON(!rq->q);
882 if (rq->mq_ctx != this_ctx) {
883 if (this_ctx) {
884 blk_mq_insert_requests(this_q, this_ctx,
885 &ctx_list, depth,
886 from_schedule);
887 }
888
889 this_ctx = rq->mq_ctx;
890 this_q = rq->q;
891 depth = 0;
892 }
893
894 depth++;
895 list_add_tail(&rq->queuelist, &ctx_list);
896 }
897
898 /*
899 * If 'this_ctx' is set, we know we have entries to complete
900 * on 'ctx_list'. Do those.
901 */
902 if (this_ctx) {
903 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
904 from_schedule);
905 }
906}
907
908static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
909{
910 init_request_from_bio(rq, bio);
911 blk_account_io_start(rq, 1);
912}
913
914static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
915{
916 struct blk_mq_hw_ctx *hctx;
917 struct blk_mq_ctx *ctx;
918 const int is_sync = rw_is_sync(bio->bi_rw);
919 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
920 int rw = bio_data_dir(bio);
921 struct request *rq;
922 unsigned int use_plug, request_count = 0;
923
924 /*
925 * If we have multiple hardware queues, just go directly to
926 * one of those for sync IO.
927 */
928 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
929
930 blk_queue_bounce(q, &bio);
931
932 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
933 return;
934
935 if (blk_mq_queue_enter(q)) {
936 bio_endio(bio, -EIO);
937 return;
938 }
939
940 ctx = blk_mq_get_ctx(q);
941 hctx = q->mq_ops->map_queue(q, ctx->cpu);
942
943 trace_block_getrq(q, bio, rw);
944 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
945 if (likely(rq))
94eddfbe 946 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
947 else {
948 blk_mq_put_ctx(ctx);
949 trace_block_sleeprq(q, bio, rw);
950 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
951 false);
952 ctx = rq->mq_ctx;
953 hctx = q->mq_ops->map_queue(q, ctx->cpu);
954 }
955
956 hctx->queued++;
957
958 if (unlikely(is_flush_fua)) {
959 blk_mq_bio_to_request(rq, bio);
960 blk_mq_put_ctx(ctx);
961 blk_insert_flush(rq);
962 goto run_queue;
963 }
964
965 /*
966 * A task plug currently exists. Since this is completely lockless,
967 * utilize that to temporarily store requests until the task is
968 * either done or scheduled away.
969 */
970 if (use_plug) {
971 struct blk_plug *plug = current->plug;
972
973 if (plug) {
974 blk_mq_bio_to_request(rq, bio);
92f399c7 975 if (list_empty(&plug->mq_list))
320ae51f
JA
976 trace_block_plug(q);
977 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
978 blk_flush_plug_list(plug, false);
979 trace_block_plug(q);
980 }
981 list_add_tail(&rq->queuelist, &plug->mq_list);
982 blk_mq_put_ctx(ctx);
983 return;
984 }
985 }
986
987 spin_lock(&ctx->lock);
988
989 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
990 blk_mq_attempt_merge(q, ctx, bio))
991 __blk_mq_free_request(hctx, ctx, rq);
992 else {
993 blk_mq_bio_to_request(rq, bio);
994 __blk_mq_insert_request(hctx, rq);
995 }
996
997 spin_unlock(&ctx->lock);
998 blk_mq_put_ctx(ctx);
999
1000 /*
1001 * For a SYNC request, send it to the hardware immediately. For an
1002 * ASYNC request, just ensure that we run it later on. The latter
1003 * allows for merging opportunities and more efficient dispatching.
1004 */
1005run_queue:
1006 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1007}
1008
1009/*
1010 * Default mapping to a software queue, since we use one per CPU.
1011 */
1012struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1013{
1014 return q->queue_hw_ctx[q->mq_map[cpu]];
1015}
1016EXPORT_SYMBOL(blk_mq_map_queue);
1017
1018struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1019 unsigned int hctx_index)
1020{
1021 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1022 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1023}
1024EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1025
1026void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1027 unsigned int hctx_index)
1028{
1029 kfree(hctx);
1030}
1031EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1032
1033static void blk_mq_hctx_notify(void *data, unsigned long action,
1034 unsigned int cpu)
1035{
1036 struct blk_mq_hw_ctx *hctx = data;
1037 struct blk_mq_ctx *ctx;
1038 LIST_HEAD(tmp);
1039
1040 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1041 return;
1042
1043 /*
1044 * Move ctx entries to new CPU, if this one is going away.
1045 */
1046 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1047
1048 spin_lock(&ctx->lock);
1049 if (!list_empty(&ctx->rq_list)) {
1050 list_splice_init(&ctx->rq_list, &tmp);
1051 clear_bit(ctx->index_hw, hctx->ctx_map);
1052 }
1053 spin_unlock(&ctx->lock);
1054
1055 if (list_empty(&tmp))
1056 return;
1057
1058 ctx = blk_mq_get_ctx(hctx->queue);
1059 spin_lock(&ctx->lock);
1060
1061 while (!list_empty(&tmp)) {
1062 struct request *rq;
1063
1064 rq = list_first_entry(&tmp, struct request, queuelist);
1065 rq->mq_ctx = ctx;
1066 list_move_tail(&rq->queuelist, &ctx->rq_list);
1067 }
1068
1069 blk_mq_hctx_mark_pending(hctx, ctx);
1070
1071 spin_unlock(&ctx->lock);
1072 blk_mq_put_ctx(ctx);
1073}
1074
1075static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1076 void (*init)(void *, struct blk_mq_hw_ctx *,
1077 struct request *, unsigned int),
1078 void *data)
1079{
1080 unsigned int i;
1081
1082 for (i = 0; i < hctx->queue_depth; i++) {
1083 struct request *rq = hctx->rqs[i];
1084
1085 init(data, hctx, rq, i);
1086 }
1087}
1088
1089void blk_mq_init_commands(struct request_queue *q,
1090 void (*init)(void *, struct blk_mq_hw_ctx *,
1091 struct request *, unsigned int),
1092 void *data)
1093{
1094 struct blk_mq_hw_ctx *hctx;
1095 unsigned int i;
1096
1097 queue_for_each_hw_ctx(q, hctx, i)
1098 blk_mq_init_hw_commands(hctx, init, data);
1099}
1100EXPORT_SYMBOL(blk_mq_init_commands);
1101
1102static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1103{
1104 struct page *page;
1105
1106 while (!list_empty(&hctx->page_list)) {
1107 page = list_first_entry(&hctx->page_list, struct page, list);
1108 list_del_init(&page->list);
1109 __free_pages(page, page->private);
1110 }
1111
1112 kfree(hctx->rqs);
1113
1114 if (hctx->tags)
1115 blk_mq_free_tags(hctx->tags);
1116}
1117
1118static size_t order_to_size(unsigned int order)
1119{
1120 size_t ret = PAGE_SIZE;
1121
1122 while (order--)
1123 ret *= 2;
1124
1125 return ret;
1126}
1127
1128static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1129 unsigned int reserved_tags, int node)
1130{
1131 unsigned int i, j, entries_per_page, max_order = 4;
1132 size_t rq_size, left;
1133
1134 INIT_LIST_HEAD(&hctx->page_list);
1135
1136 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1137 GFP_KERNEL, node);
1138 if (!hctx->rqs)
1139 return -ENOMEM;
1140
1141 /*
1142 * rq_size is the size of the request plus driver payload, rounded
1143 * to the cacheline size
1144 */
1145 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1146 cache_line_size());
1147 left = rq_size * hctx->queue_depth;
1148
1149 for (i = 0; i < hctx->queue_depth;) {
1150 int this_order = max_order;
1151 struct page *page;
1152 int to_do;
1153 void *p;
1154
1155 while (left < order_to_size(this_order - 1) && this_order)
1156 this_order--;
1157
1158 do {
1159 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1160 if (page)
1161 break;
1162 if (!this_order--)
1163 break;
1164 if (order_to_size(this_order) < rq_size)
1165 break;
1166 } while (1);
1167
1168 if (!page)
1169 break;
1170
1171 page->private = this_order;
1172 list_add_tail(&page->list, &hctx->page_list);
1173
1174 p = page_address(page);
1175 entries_per_page = order_to_size(this_order) / rq_size;
1176 to_do = min(entries_per_page, hctx->queue_depth - i);
1177 left -= to_do * rq_size;
1178 for (j = 0; j < to_do; j++) {
1179 hctx->rqs[i] = p;
1180 blk_mq_rq_init(hctx, hctx->rqs[i]);
1181 p += rq_size;
1182 i++;
1183 }
1184 }
1185
1186 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1187 goto err_rq_map;
1188 else if (i != hctx->queue_depth) {
1189 hctx->queue_depth = i;
1190 pr_warn("%s: queue depth set to %u because of low memory\n",
1191 __func__, i);
1192 }
1193
1194 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1195 if (!hctx->tags) {
1196err_rq_map:
1197 blk_mq_free_rq_map(hctx);
1198 return -ENOMEM;
1199 }
1200
1201 return 0;
1202}
1203
1204static int blk_mq_init_hw_queues(struct request_queue *q,
1205 struct blk_mq_reg *reg, void *driver_data)
1206{
1207 struct blk_mq_hw_ctx *hctx;
1208 unsigned int i, j;
1209
1210 /*
1211 * Initialize hardware queues
1212 */
1213 queue_for_each_hw_ctx(q, hctx, i) {
1214 unsigned int num_maps;
1215 int node;
1216
1217 node = hctx->numa_node;
1218 if (node == NUMA_NO_NODE)
1219 node = hctx->numa_node = reg->numa_node;
1220
1221 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1222 spin_lock_init(&hctx->lock);
1223 INIT_LIST_HEAD(&hctx->dispatch);
1224 hctx->queue = q;
1225 hctx->queue_num = i;
1226 hctx->flags = reg->flags;
1227 hctx->queue_depth = reg->queue_depth;
1228 hctx->cmd_size = reg->cmd_size;
1229
1230 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1231 blk_mq_hctx_notify, hctx);
1232 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1233
1234 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1235 break;
1236
1237 /*
1238 * Allocate space for all possible cpus to avoid allocation in
1239 * runtime
1240 */
1241 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1242 GFP_KERNEL, node);
1243 if (!hctx->ctxs)
1244 break;
1245
1246 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1247 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1248 GFP_KERNEL, node);
1249 if (!hctx->ctx_map)
1250 break;
1251
1252 hctx->nr_ctx_map = num_maps;
1253 hctx->nr_ctx = 0;
1254
1255 if (reg->ops->init_hctx &&
1256 reg->ops->init_hctx(hctx, driver_data, i))
1257 break;
1258 }
1259
1260 if (i == q->nr_hw_queues)
1261 return 0;
1262
1263 /*
1264 * Init failed
1265 */
1266 queue_for_each_hw_ctx(q, hctx, j) {
1267 if (i == j)
1268 break;
1269
1270 if (reg->ops->exit_hctx)
1271 reg->ops->exit_hctx(hctx, j);
1272
1273 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1274 blk_mq_free_rq_map(hctx);
1275 kfree(hctx->ctxs);
1276 }
1277
1278 return 1;
1279}
1280
1281static void blk_mq_init_cpu_queues(struct request_queue *q,
1282 unsigned int nr_hw_queues)
1283{
1284 unsigned int i;
1285
1286 for_each_possible_cpu(i) {
1287 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1288 struct blk_mq_hw_ctx *hctx;
1289
1290 memset(__ctx, 0, sizeof(*__ctx));
1291 __ctx->cpu = i;
1292 spin_lock_init(&__ctx->lock);
1293 INIT_LIST_HEAD(&__ctx->rq_list);
1294 __ctx->queue = q;
1295
1296 /* If the cpu isn't online, the cpu is mapped to first hctx */
1297 hctx = q->mq_ops->map_queue(q, i);
1298 hctx->nr_ctx++;
1299
1300 if (!cpu_online(i))
1301 continue;
1302
1303 /*
1304 * Set local node, IFF we have more than one hw queue. If
1305 * not, we remain on the home node of the device
1306 */
1307 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1308 hctx->numa_node = cpu_to_node(i);
1309 }
1310}
1311
1312static void blk_mq_map_swqueue(struct request_queue *q)
1313{
1314 unsigned int i;
1315 struct blk_mq_hw_ctx *hctx;
1316 struct blk_mq_ctx *ctx;
1317
1318 queue_for_each_hw_ctx(q, hctx, i) {
1319 hctx->nr_ctx = 0;
1320 }
1321
1322 /*
1323 * Map software to hardware queues
1324 */
1325 queue_for_each_ctx(q, ctx, i) {
1326 /* If the cpu isn't online, the cpu is mapped to first hctx */
1327 hctx = q->mq_ops->map_queue(q, i);
1328 ctx->index_hw = hctx->nr_ctx;
1329 hctx->ctxs[hctx->nr_ctx++] = ctx;
1330 }
1331}
1332
1333struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1334 void *driver_data)
1335{
1336 struct blk_mq_hw_ctx **hctxs;
1337 struct blk_mq_ctx *ctx;
1338 struct request_queue *q;
1339 int i;
1340
1341 if (!reg->nr_hw_queues ||
1342 !reg->ops->queue_rq || !reg->ops->map_queue ||
1343 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1344 return ERR_PTR(-EINVAL);
1345
1346 if (!reg->queue_depth)
1347 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1348 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1349 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1350 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1351 }
1352
3228f48b
CH
1353 /*
1354 * Set aside a tag for flush requests. It will only be used while
1355 * another flush request is in progress but outside the driver.
1356 *
1357 * TODO: only allocate if flushes are supported
1358 */
1359 reg->queue_depth++;
1360 reg->reserved_tags++;
1361
320ae51f
JA
1362 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1363 return ERR_PTR(-EINVAL);
1364
1365 ctx = alloc_percpu(struct blk_mq_ctx);
1366 if (!ctx)
1367 return ERR_PTR(-ENOMEM);
1368
1369 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1370 reg->numa_node);
1371
1372 if (!hctxs)
1373 goto err_percpu;
1374
1375 for (i = 0; i < reg->nr_hw_queues; i++) {
1376 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1377 if (!hctxs[i])
1378 goto err_hctxs;
1379
1380 hctxs[i]->numa_node = NUMA_NO_NODE;
1381 hctxs[i]->queue_num = i;
1382 }
1383
1384 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1385 if (!q)
1386 goto err_hctxs;
1387
1388 q->mq_map = blk_mq_make_queue_map(reg);
1389 if (!q->mq_map)
1390 goto err_map;
1391
1392 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1393 blk_queue_rq_timeout(q, 30000);
1394
1395 q->nr_queues = nr_cpu_ids;
1396 q->nr_hw_queues = reg->nr_hw_queues;
1397
1398 q->queue_ctx = ctx;
1399 q->queue_hw_ctx = hctxs;
1400
1401 q->mq_ops = reg->ops;
94eddfbe 1402 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f
JA
1403
1404 blk_queue_make_request(q, blk_mq_make_request);
1405 blk_queue_rq_timed_out(q, reg->ops->timeout);
1406 if (reg->timeout)
1407 blk_queue_rq_timeout(q, reg->timeout);
1408
1409 blk_mq_init_flush(q);
1410 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1411
1412 if (blk_mq_init_hw_queues(q, reg, driver_data))
1413 goto err_hw;
1414
1415 blk_mq_map_swqueue(q);
1416
1417 mutex_lock(&all_q_mutex);
1418 list_add_tail(&q->all_q_node, &all_q_list);
1419 mutex_unlock(&all_q_mutex);
1420
1421 return q;
1422err_hw:
1423 kfree(q->mq_map);
1424err_map:
1425 blk_cleanup_queue(q);
1426err_hctxs:
1427 for (i = 0; i < reg->nr_hw_queues; i++) {
1428 if (!hctxs[i])
1429 break;
1430 reg->ops->free_hctx(hctxs[i], i);
1431 }
1432 kfree(hctxs);
1433err_percpu:
1434 free_percpu(ctx);
1435 return ERR_PTR(-ENOMEM);
1436}
1437EXPORT_SYMBOL(blk_mq_init_queue);
1438
1439void blk_mq_free_queue(struct request_queue *q)
1440{
1441 struct blk_mq_hw_ctx *hctx;
1442 int i;
1443
1444 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1445 kfree(hctx->ctx_map);
1446 kfree(hctx->ctxs);
1447 blk_mq_free_rq_map(hctx);
1448 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1449 if (q->mq_ops->exit_hctx)
1450 q->mq_ops->exit_hctx(hctx, i);
1451 q->mq_ops->free_hctx(hctx, i);
1452 }
1453
1454 free_percpu(q->queue_ctx);
1455 kfree(q->queue_hw_ctx);
1456 kfree(q->mq_map);
1457
1458 q->queue_ctx = NULL;
1459 q->queue_hw_ctx = NULL;
1460 q->mq_map = NULL;
1461
1462 mutex_lock(&all_q_mutex);
1463 list_del_init(&q->all_q_node);
1464 mutex_unlock(&all_q_mutex);
1465}
320ae51f
JA
1466
1467/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1468static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1469{
1470 blk_mq_freeze_queue(q);
1471
1472 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1473
1474 /*
1475 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1476 * we should change hctx numa_node according to new topology (this
1477 * involves free and re-allocate memory, worthy doing?)
1478 */
1479
1480 blk_mq_map_swqueue(q);
1481
1482 blk_mq_unfreeze_queue(q);
1483}
1484
f618ef7c
PG
1485static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1486 unsigned long action, void *hcpu)
320ae51f
JA
1487{
1488 struct request_queue *q;
1489
1490 /*
1491 * Before new mapping is established, hotadded cpu might already start
1492 * handling requests. This doesn't break anything as we map offline
1493 * CPUs to first hardware queue. We will re-init queue below to get
1494 * optimal settings.
1495 */
1496 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1497 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1498 return NOTIFY_OK;
1499
1500 mutex_lock(&all_q_mutex);
1501 list_for_each_entry(q, &all_q_list, all_q_node)
1502 blk_mq_queue_reinit(q);
1503 mutex_unlock(&all_q_mutex);
1504 return NOTIFY_OK;
1505}
1506
1507static int __init blk_mq_init(void)
1508{
1509 unsigned int i;
1510
1511 for_each_possible_cpu(i)
1512 init_llist_head(&per_cpu(ipi_lists, i));
1513
1514 blk_mq_cpu_init();
1515
1516 /* Must be called after percpu_counter_hotcpu_callback() */
1517 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1518
1519 return 0;
1520}
1521subsys_initcall(blk_mq_init);