blk-mq: fix iteration of busy bitmap
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
aedcd72f 23#include <linux/crash_dump.h>
320ae51f
JA
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42 unsigned int i;
43
569fd0ce 44 for (i = 0; i < hctx->ctx_map.size; i++)
1429d7c9 45 if (hctx->ctx_map.map[i].word)
320ae51f
JA
46 return true;
47
48 return false;
49}
50
1429d7c9
JA
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53{
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
320ae51f
JA
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65{
1429d7c9
JA
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74{
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
78}
79
bfd343aa 80static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
320ae51f 81{
add703fd
TH
82 while (true) {
83 int ret;
320ae51f 84
add703fd
TH
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
320ae51f 87
bfd343aa
KB
88 if (!(gfp & __GFP_WAIT))
89 return -EBUSY;
90
add703fd
TH
91 ret = wait_event_interruptible(q->mq_freeze_wq,
92 !q->mq_freeze_depth || blk_queue_dying(q));
93 if (blk_queue_dying(q))
94 return -ENODEV;
95 if (ret)
96 return ret;
97 }
320ae51f
JA
98}
99
100static void blk_mq_queue_exit(struct request_queue *q)
101{
add703fd
TH
102 percpu_ref_put(&q->mq_usage_counter);
103}
104
105static void blk_mq_usage_counter_release(struct percpu_ref *ref)
106{
107 struct request_queue *q =
108 container_of(ref, struct request_queue, mq_usage_counter);
109
110 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
111}
112
b4c6a028 113void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 114{
cddd5d17
TH
115 bool freeze;
116
72d6f02a 117 spin_lock_irq(q->queue_lock);
cddd5d17 118 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
119 spin_unlock_irq(q->queue_lock);
120
cddd5d17 121 if (freeze) {
9eca8046 122 percpu_ref_kill(&q->mq_usage_counter);
b94ec296 123 blk_mq_run_hw_queues(q, false);
cddd5d17 124 }
f3af020b 125}
b4c6a028 126EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
127
128static void blk_mq_freeze_queue_wait(struct request_queue *q)
129{
add703fd 130 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
131}
132
f3af020b
TH
133/*
134 * Guarantee no request is in use, so we can change any data structure of
135 * the queue afterward.
136 */
137void blk_mq_freeze_queue(struct request_queue *q)
138{
139 blk_mq_freeze_queue_start(q);
140 blk_mq_freeze_queue_wait(q);
141}
c761d96b 142EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 143
b4c6a028 144void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 145{
cddd5d17 146 bool wake;
320ae51f
JA
147
148 spin_lock_irq(q->queue_lock);
780db207
TH
149 wake = !--q->mq_freeze_depth;
150 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 151 spin_unlock_irq(q->queue_lock);
add703fd
TH
152 if (wake) {
153 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 154 wake_up_all(&q->mq_freeze_wq);
add703fd 155 }
320ae51f 156}
b4c6a028 157EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 158
aed3ea94
JA
159void blk_mq_wake_waiters(struct request_queue *q)
160{
161 struct blk_mq_hw_ctx *hctx;
162 unsigned int i;
163
164 queue_for_each_hw_ctx(q, hctx, i)
165 if (blk_mq_hw_queue_mapped(hctx))
166 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
167
168 /*
169 * If we are called because the queue has now been marked as
170 * dying, we need to ensure that processes currently waiting on
171 * the queue are notified as well.
172 */
173 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
174}
175
320ae51f
JA
176bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
177{
178 return blk_mq_has_free_tags(hctx->tags);
179}
180EXPORT_SYMBOL(blk_mq_can_queue);
181
94eddfbe
JA
182static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
183 struct request *rq, unsigned int rw_flags)
320ae51f 184{
94eddfbe
JA
185 if (blk_queue_io_stat(q))
186 rw_flags |= REQ_IO_STAT;
187
af76e555
CH
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
320ae51f 191 rq->mq_ctx = ctx;
0d2602ca 192 rq->cmd_flags |= rw_flags;
af76e555
CH
193 /* do not touch atomic flags, it needs atomic ops against the timer */
194 rq->cpu = -1;
af76e555
CH
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
197 rq->rq_disk = NULL;
198 rq->part = NULL;
3ee32372 199 rq->start_time = jiffies;
af76e555
CH
200#ifdef CONFIG_BLK_CGROUP
201 rq->rl = NULL;
0fec08b4 202 set_start_time_ns(rq);
af76e555
CH
203 rq->io_start_time_ns = 0;
204#endif
205 rq->nr_phys_segments = 0;
206#if defined(CONFIG_BLK_DEV_INTEGRITY)
207 rq->nr_integrity_segments = 0;
208#endif
af76e555
CH
209 rq->special = NULL;
210 /* tag was already set */
211 rq->errors = 0;
af76e555 212
6f4a1626
TB
213 rq->cmd = rq->__cmd;
214
af76e555
CH
215 rq->extra_len = 0;
216 rq->sense_len = 0;
217 rq->resid_len = 0;
218 rq->sense = NULL;
219
af76e555 220 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
221 rq->timeout = 0;
222
af76e555
CH
223 rq->end_io = NULL;
224 rq->end_io_data = NULL;
225 rq->next_rq = NULL;
226
320ae51f
JA
227 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
228}
229
5dee8577 230static struct request *
cb96a42c 231__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
232{
233 struct request *rq;
234 unsigned int tag;
235
cb96a42c 236 tag = blk_mq_get_tag(data);
5dee8577 237 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 238 rq = data->hctx->tags->rqs[tag];
5dee8577 239
cb96a42c 240 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 241 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 242 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
243 }
244
245 rq->tag = tag;
cb96a42c 246 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
247 return rq;
248 }
249
250 return NULL;
251}
252
4ce01dd1
CH
253struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
254 bool reserved)
320ae51f 255{
d852564f
CH
256 struct blk_mq_ctx *ctx;
257 struct blk_mq_hw_ctx *hctx;
320ae51f 258 struct request *rq;
cb96a42c 259 struct blk_mq_alloc_data alloc_data;
a492f075 260 int ret;
320ae51f 261
bfd343aa 262 ret = blk_mq_queue_enter(q, gfp);
a492f075
JL
263 if (ret)
264 return ERR_PTR(ret);
320ae51f 265
d852564f
CH
266 ctx = blk_mq_get_ctx(q);
267 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
268 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
269 reserved, ctx, hctx);
d852564f 270
cb96a42c 271 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
272 if (!rq && (gfp & __GFP_WAIT)) {
273 __blk_mq_run_hw_queue(hctx);
274 blk_mq_put_ctx(ctx);
275
276 ctx = blk_mq_get_ctx(q);
277 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
278 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
279 hctx);
280 rq = __blk_mq_alloc_request(&alloc_data, rw);
281 ctx = alloc_data.ctx;
d852564f
CH
282 }
283 blk_mq_put_ctx(ctx);
c76541a9
KB
284 if (!rq) {
285 blk_mq_queue_exit(q);
a492f075 286 return ERR_PTR(-EWOULDBLOCK);
c76541a9 287 }
320ae51f
JA
288 return rq;
289}
4bb659b1 290EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 291
320ae51f
JA
292static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
293 struct blk_mq_ctx *ctx, struct request *rq)
294{
295 const int tag = rq->tag;
296 struct request_queue *q = rq->q;
297
0d2602ca
JA
298 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
299 atomic_dec(&hctx->nr_active);
683d0e12 300 rq->cmd_flags = 0;
0d2602ca 301
af76e555 302 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 303 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
304 blk_mq_queue_exit(q);
305}
306
7c7f2f2b 307void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
308{
309 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
310
311 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 312 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
313
314}
315EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
316
317void blk_mq_free_request(struct request *rq)
318{
319 struct blk_mq_hw_ctx *hctx;
320 struct request_queue *q = rq->q;
321
322 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
323 blk_mq_free_hctx_request(hctx, rq);
320ae51f 324}
1a3b595a 325EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 326
c8a446ad 327inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 328{
0d11e6ac
ML
329 blk_account_io_done(rq);
330
91b63639 331 if (rq->end_io) {
320ae51f 332 rq->end_io(rq, error);
91b63639
CH
333 } else {
334 if (unlikely(blk_bidi_rq(rq)))
335 blk_mq_free_request(rq->next_rq);
320ae51f 336 blk_mq_free_request(rq);
91b63639 337 }
320ae51f 338}
c8a446ad 339EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 340
c8a446ad 341void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
342{
343 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
344 BUG();
c8a446ad 345 __blk_mq_end_request(rq, error);
63151a44 346}
c8a446ad 347EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 348
30a91cb4 349static void __blk_mq_complete_request_remote(void *data)
320ae51f 350{
3d6efbf6 351 struct request *rq = data;
320ae51f 352
30a91cb4 353 rq->q->softirq_done_fn(rq);
320ae51f 354}
320ae51f 355
ed851860 356static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
357{
358 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 359 bool shared = false;
320ae51f
JA
360 int cpu;
361
38535201 362 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
363 rq->q->softirq_done_fn(rq);
364 return;
365 }
320ae51f
JA
366
367 cpu = get_cpu();
38535201
CH
368 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
369 shared = cpus_share_cache(cpu, ctx->cpu);
370
371 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 372 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
373 rq->csd.info = rq;
374 rq->csd.flags = 0;
c46fff2a 375 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 376 } else {
30a91cb4 377 rq->q->softirq_done_fn(rq);
3d6efbf6 378 }
320ae51f
JA
379 put_cpu();
380}
30a91cb4 381
ed851860
JA
382void __blk_mq_complete_request(struct request *rq)
383{
384 struct request_queue *q = rq->q;
385
386 if (!q->softirq_done_fn)
c8a446ad 387 blk_mq_end_request(rq, rq->errors);
ed851860
JA
388 else
389 blk_mq_ipi_complete_request(rq);
390}
391
30a91cb4
CH
392/**
393 * blk_mq_complete_request - end I/O on a request
394 * @rq: the request being processed
395 *
396 * Description:
397 * Ends all I/O on a request. It does not handle partial completions.
398 * The actual completion happens out-of-order, through a IPI handler.
399 **/
400void blk_mq_complete_request(struct request *rq)
401{
95f09684
JA
402 struct request_queue *q = rq->q;
403
404 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 405 return;
ed851860
JA
406 if (!blk_mark_rq_complete(rq))
407 __blk_mq_complete_request(rq);
30a91cb4
CH
408}
409EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 410
973c0191
KB
411int blk_mq_request_started(struct request *rq)
412{
413 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414}
415EXPORT_SYMBOL_GPL(blk_mq_request_started);
416
e2490073 417void blk_mq_start_request(struct request *rq)
320ae51f
JA
418{
419 struct request_queue *q = rq->q;
420
421 trace_block_rq_issue(q, rq);
422
742ee69b 423 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
424 if (unlikely(blk_bidi_rq(rq)))
425 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 426
2b8393b4 427 blk_add_timer(rq);
87ee7b11 428
538b7534
JA
429 /*
430 * Ensure that ->deadline is visible before set the started
431 * flag and clear the completed flag.
432 */
433 smp_mb__before_atomic();
434
87ee7b11
JA
435 /*
436 * Mark us as started and clear complete. Complete might have been
437 * set if requeue raced with timeout, which then marked it as
438 * complete. So be sure to clear complete again when we start
439 * the request, otherwise we'll ignore the completion event.
440 */
4b570521
JA
441 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
442 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
444 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
445
446 if (q->dma_drain_size && blk_rq_bytes(rq)) {
447 /*
448 * Make sure space for the drain appears. We know we can do
449 * this because max_hw_segments has been adjusted to be one
450 * fewer than the device can handle.
451 */
452 rq->nr_phys_segments++;
453 }
320ae51f 454}
e2490073 455EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 456
ed0791b2 457static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
458{
459 struct request_queue *q = rq->q;
460
461 trace_block_rq_requeue(q, rq);
49f5baa5 462
e2490073
CH
463 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
464 if (q->dma_drain_size && blk_rq_bytes(rq))
465 rq->nr_phys_segments--;
466 }
320ae51f
JA
467}
468
ed0791b2
CH
469void blk_mq_requeue_request(struct request *rq)
470{
ed0791b2 471 __blk_mq_requeue_request(rq);
ed0791b2 472
ed0791b2 473 BUG_ON(blk_queued_rq(rq));
6fca6a61 474 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
475}
476EXPORT_SYMBOL(blk_mq_requeue_request);
477
6fca6a61
CH
478static void blk_mq_requeue_work(struct work_struct *work)
479{
480 struct request_queue *q =
481 container_of(work, struct request_queue, requeue_work);
482 LIST_HEAD(rq_list);
483 struct request *rq, *next;
484 unsigned long flags;
485
486 spin_lock_irqsave(&q->requeue_lock, flags);
487 list_splice_init(&q->requeue_list, &rq_list);
488 spin_unlock_irqrestore(&q->requeue_lock, flags);
489
490 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
492 continue;
493
494 rq->cmd_flags &= ~REQ_SOFTBARRIER;
495 list_del_init(&rq->queuelist);
496 blk_mq_insert_request(rq, true, false, false);
497 }
498
499 while (!list_empty(&rq_list)) {
500 rq = list_entry(rq_list.next, struct request, queuelist);
501 list_del_init(&rq->queuelist);
502 blk_mq_insert_request(rq, false, false, false);
503 }
504
8b957415
JA
505 /*
506 * Use the start variant of queue running here, so that running
507 * the requeue work will kick stopped queues.
508 */
509 blk_mq_start_hw_queues(q);
6fca6a61
CH
510}
511
512void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
513{
514 struct request_queue *q = rq->q;
515 unsigned long flags;
516
517 /*
518 * We abuse this flag that is otherwise used by the I/O scheduler to
519 * request head insertation from the workqueue.
520 */
521 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
522
523 spin_lock_irqsave(&q->requeue_lock, flags);
524 if (at_head) {
525 rq->cmd_flags |= REQ_SOFTBARRIER;
526 list_add(&rq->queuelist, &q->requeue_list);
527 } else {
528 list_add_tail(&rq->queuelist, &q->requeue_list);
529 }
530 spin_unlock_irqrestore(&q->requeue_lock, flags);
531}
532EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
533
c68ed59f
KB
534void blk_mq_cancel_requeue_work(struct request_queue *q)
535{
536 cancel_work_sync(&q->requeue_work);
537}
538EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
539
6fca6a61
CH
540void blk_mq_kick_requeue_list(struct request_queue *q)
541{
542 kblockd_schedule_work(&q->requeue_work);
543}
544EXPORT_SYMBOL(blk_mq_kick_requeue_list);
545
1885b24d
JA
546void blk_mq_abort_requeue_list(struct request_queue *q)
547{
548 unsigned long flags;
549 LIST_HEAD(rq_list);
550
551 spin_lock_irqsave(&q->requeue_lock, flags);
552 list_splice_init(&q->requeue_list, &rq_list);
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
554
555 while (!list_empty(&rq_list)) {
556 struct request *rq;
557
558 rq = list_first_entry(&rq_list, struct request, queuelist);
559 list_del_init(&rq->queuelist);
560 rq->errors = -EIO;
561 blk_mq_end_request(rq, rq->errors);
562 }
563}
564EXPORT_SYMBOL(blk_mq_abort_requeue_list);
565
7c94e1c1
ML
566static inline bool is_flush_request(struct request *rq,
567 struct blk_flush_queue *fq, unsigned int tag)
24d2f903 568{
0e62f51f 569 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
7c94e1c1 570 fq->flush_rq->tag == tag);
0e62f51f
JA
571}
572
573struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
574{
575 struct request *rq = tags->rqs[tag];
e97c293c
ML
576 /* mq_ctx of flush rq is always cloned from the corresponding req */
577 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
22302375 578
7c94e1c1 579 if (!is_flush_request(rq, fq, tag))
0e62f51f 580 return rq;
22302375 581
7c94e1c1 582 return fq->flush_rq;
24d2f903
CH
583}
584EXPORT_SYMBOL(blk_mq_tag_to_rq);
585
320ae51f 586struct blk_mq_timeout_data {
46f92d42
CH
587 unsigned long next;
588 unsigned int next_set;
320ae51f
JA
589};
590
90415837 591void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 592{
46f92d42
CH
593 struct blk_mq_ops *ops = req->q->mq_ops;
594 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
595
596 /*
597 * We know that complete is set at this point. If STARTED isn't set
598 * anymore, then the request isn't active and the "timeout" should
599 * just be ignored. This can happen due to the bitflag ordering.
600 * Timeout first checks if STARTED is set, and if it is, assumes
601 * the request is active. But if we race with completion, then
602 * we both flags will get cleared. So check here again, and ignore
603 * a timeout event with a request that isn't active.
604 */
46f92d42
CH
605 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606 return;
87ee7b11 607
46f92d42 608 if (ops->timeout)
0152fb6b 609 ret = ops->timeout(req, reserved);
46f92d42
CH
610
611 switch (ret) {
612 case BLK_EH_HANDLED:
613 __blk_mq_complete_request(req);
614 break;
615 case BLK_EH_RESET_TIMER:
616 blk_add_timer(req);
617 blk_clear_rq_complete(req);
618 break;
619 case BLK_EH_NOT_HANDLED:
620 break;
621 default:
622 printk(KERN_ERR "block: bad eh return: %d\n", ret);
623 break;
624 }
87ee7b11 625}
5b3f25fc 626
81481eb4
CH
627static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628 struct request *rq, void *priv, bool reserved)
629{
630 struct blk_mq_timeout_data *data = priv;
87ee7b11 631
eb130dbf
KB
632 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
633 /*
634 * If a request wasn't started before the queue was
635 * marked dying, kill it here or it'll go unnoticed.
636 */
637 if (unlikely(blk_queue_dying(rq->q))) {
638 rq->errors = -EIO;
639 blk_mq_complete_request(rq);
640 }
46f92d42 641 return;
eb130dbf 642 }
5b3f25fc
KB
643 if (rq->cmd_flags & REQ_NO_TIMEOUT)
644 return;
87ee7b11 645
46f92d42
CH
646 if (time_after_eq(jiffies, rq->deadline)) {
647 if (!blk_mark_rq_complete(rq))
0152fb6b 648 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
649 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
650 data->next = rq->deadline;
651 data->next_set = 1;
652 }
87ee7b11
JA
653}
654
81481eb4 655static void blk_mq_rq_timer(unsigned long priv)
320ae51f 656{
81481eb4
CH
657 struct request_queue *q = (struct request_queue *)priv;
658 struct blk_mq_timeout_data data = {
659 .next = 0,
660 .next_set = 0,
661 };
320ae51f 662 struct blk_mq_hw_ctx *hctx;
81481eb4 663 int i;
320ae51f 664
484b4061
JA
665 queue_for_each_hw_ctx(q, hctx, i) {
666 /*
667 * If not software queues are currently mapped to this
668 * hardware queue, there's nothing to check
669 */
19c66e59 670 if (!blk_mq_hw_queue_mapped(hctx))
484b4061
JA
671 continue;
672
81481eb4 673 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
484b4061 674 }
320ae51f 675
81481eb4
CH
676 if (data.next_set) {
677 data.next = blk_rq_timeout(round_jiffies_up(data.next));
678 mod_timer(&q->timeout, data.next);
0d2602ca
JA
679 } else {
680 queue_for_each_hw_ctx(q, hctx, i)
681 blk_mq_tag_idle(hctx);
682 }
320ae51f
JA
683}
684
685/*
686 * Reverse check our software queue for entries that we could potentially
687 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
688 * too much time checking for merges.
689 */
690static bool blk_mq_attempt_merge(struct request_queue *q,
691 struct blk_mq_ctx *ctx, struct bio *bio)
692{
693 struct request *rq;
694 int checked = 8;
695
696 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
697 int el_ret;
698
699 if (!checked--)
700 break;
701
702 if (!blk_rq_merge_ok(rq, bio))
703 continue;
704
705 el_ret = blk_try_merge(rq, bio);
706 if (el_ret == ELEVATOR_BACK_MERGE) {
707 if (bio_attempt_back_merge(q, rq, bio)) {
708 ctx->rq_merged++;
709 return true;
710 }
711 break;
712 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
713 if (bio_attempt_front_merge(q, rq, bio)) {
714 ctx->rq_merged++;
715 return true;
716 }
717 break;
718 }
719 }
720
721 return false;
722}
723
1429d7c9
JA
724/*
725 * Process software queues that have been marked busy, splicing them
726 * to the for-dispatch
727 */
728static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
729{
730 struct blk_mq_ctx *ctx;
731 int i;
732
569fd0ce 733 for (i = 0; i < hctx->ctx_map.size; i++) {
1429d7c9
JA
734 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
735 unsigned int off, bit;
736
737 if (!bm->word)
738 continue;
739
740 bit = 0;
741 off = i * hctx->ctx_map.bits_per_word;
742 do {
743 bit = find_next_bit(&bm->word, bm->depth, bit);
744 if (bit >= bm->depth)
745 break;
746
747 ctx = hctx->ctxs[bit + off];
748 clear_bit(bit, &bm->word);
749 spin_lock(&ctx->lock);
750 list_splice_tail_init(&ctx->rq_list, list);
751 spin_unlock(&ctx->lock);
752
753 bit++;
754 } while (1);
755 }
756}
757
320ae51f
JA
758/*
759 * Run this hardware queue, pulling any software queues mapped to it in.
760 * Note that this function currently has various problems around ordering
761 * of IO. In particular, we'd like FIFO behaviour on handling existing
762 * items on the hctx->dispatch list. Ignore that for now.
763 */
764static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
765{
766 struct request_queue *q = hctx->queue;
320ae51f
JA
767 struct request *rq;
768 LIST_HEAD(rq_list);
74c45052
JA
769 LIST_HEAD(driver_list);
770 struct list_head *dptr;
1429d7c9 771 int queued;
320ae51f 772
fd1270d5 773 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 774
5d12f905 775 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
776 return;
777
778 hctx->run++;
779
780 /*
781 * Touch any software queue that has pending entries.
782 */
1429d7c9 783 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
784
785 /*
786 * If we have previous entries on our dispatch list, grab them
787 * and stuff them at the front for more fair dispatch.
788 */
789 if (!list_empty_careful(&hctx->dispatch)) {
790 spin_lock(&hctx->lock);
791 if (!list_empty(&hctx->dispatch))
792 list_splice_init(&hctx->dispatch, &rq_list);
793 spin_unlock(&hctx->lock);
794 }
795
74c45052
JA
796 /*
797 * Start off with dptr being NULL, so we start the first request
798 * immediately, even if we have more pending.
799 */
800 dptr = NULL;
801
320ae51f
JA
802 /*
803 * Now process all the entries, sending them to the driver.
804 */
1429d7c9 805 queued = 0;
320ae51f 806 while (!list_empty(&rq_list)) {
74c45052 807 struct blk_mq_queue_data bd;
320ae51f
JA
808 int ret;
809
810 rq = list_first_entry(&rq_list, struct request, queuelist);
811 list_del_init(&rq->queuelist);
320ae51f 812
74c45052
JA
813 bd.rq = rq;
814 bd.list = dptr;
815 bd.last = list_empty(&rq_list);
816
817 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
818 switch (ret) {
819 case BLK_MQ_RQ_QUEUE_OK:
820 queued++;
821 continue;
822 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 823 list_add(&rq->queuelist, &rq_list);
ed0791b2 824 __blk_mq_requeue_request(rq);
320ae51f
JA
825 break;
826 default:
827 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 828 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 829 rq->errors = -EIO;
c8a446ad 830 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
831 break;
832 }
833
834 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
835 break;
74c45052
JA
836
837 /*
838 * We've done the first request. If we have more than 1
839 * left in the list, set dptr to defer issue.
840 */
841 if (!dptr && rq_list.next != rq_list.prev)
842 dptr = &driver_list;
320ae51f
JA
843 }
844
845 if (!queued)
846 hctx->dispatched[0]++;
847 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
848 hctx->dispatched[ilog2(queued) + 1]++;
849
850 /*
851 * Any items that need requeuing? Stuff them into hctx->dispatch,
852 * that is where we will continue on next queue run.
853 */
854 if (!list_empty(&rq_list)) {
855 spin_lock(&hctx->lock);
856 list_splice(&rq_list, &hctx->dispatch);
857 spin_unlock(&hctx->lock);
858 }
859}
860
506e931f
JA
861/*
862 * It'd be great if the workqueue API had a way to pass
863 * in a mask and had some smarts for more clever placement.
864 * For now we just round-robin here, switching for every
865 * BLK_MQ_CPU_WORK_BATCH queued items.
866 */
867static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
868{
b657d7e6
CH
869 if (hctx->queue->nr_hw_queues == 1)
870 return WORK_CPU_UNBOUND;
506e931f
JA
871
872 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 873 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
874
875 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
876 if (next_cpu >= nr_cpu_ids)
877 next_cpu = cpumask_first(hctx->cpumask);
878
879 hctx->next_cpu = next_cpu;
880 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
881
882 return cpu;
506e931f
JA
883 }
884
b657d7e6 885 return hctx->next_cpu;
506e931f
JA
886}
887
320ae51f
JA
888void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
889{
19c66e59
ML
890 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
891 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
892 return;
893
398205b8 894 if (!async) {
2a90d4aa
PB
895 int cpu = get_cpu();
896 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 897 __blk_mq_run_hw_queue(hctx);
2a90d4aa 898 put_cpu();
398205b8
PB
899 return;
900 }
e4043dcf 901
2a90d4aa 902 put_cpu();
e4043dcf 903 }
398205b8 904
b657d7e6
CH
905 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
906 &hctx->run_work, 0);
320ae51f
JA
907}
908
b94ec296 909void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
910{
911 struct blk_mq_hw_ctx *hctx;
912 int i;
913
914 queue_for_each_hw_ctx(q, hctx, i) {
915 if ((!blk_mq_hctx_has_pending(hctx) &&
916 list_empty_careful(&hctx->dispatch)) ||
5d12f905 917 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
918 continue;
919
b94ec296 920 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
921 }
922}
b94ec296 923EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f
JA
924
925void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
926{
70f4db63
CH
927 cancel_delayed_work(&hctx->run_work);
928 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
929 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
930}
931EXPORT_SYMBOL(blk_mq_stop_hw_queue);
932
280d45f6
CH
933void blk_mq_stop_hw_queues(struct request_queue *q)
934{
935 struct blk_mq_hw_ctx *hctx;
936 int i;
937
938 queue_for_each_hw_ctx(q, hctx, i)
939 blk_mq_stop_hw_queue(hctx);
940}
941EXPORT_SYMBOL(blk_mq_stop_hw_queues);
942
320ae51f
JA
943void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
944{
945 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 946
0ffbce80 947 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
948}
949EXPORT_SYMBOL(blk_mq_start_hw_queue);
950
2f268556
CH
951void blk_mq_start_hw_queues(struct request_queue *q)
952{
953 struct blk_mq_hw_ctx *hctx;
954 int i;
955
956 queue_for_each_hw_ctx(q, hctx, i)
957 blk_mq_start_hw_queue(hctx);
958}
959EXPORT_SYMBOL(blk_mq_start_hw_queues);
960
1b4a3258 961void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
962{
963 struct blk_mq_hw_ctx *hctx;
964 int i;
965
966 queue_for_each_hw_ctx(q, hctx, i) {
967 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
968 continue;
969
970 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 971 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
972 }
973}
974EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
975
70f4db63 976static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
977{
978 struct blk_mq_hw_ctx *hctx;
979
70f4db63 980 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 981
320ae51f
JA
982 __blk_mq_run_hw_queue(hctx);
983}
984
70f4db63
CH
985static void blk_mq_delay_work_fn(struct work_struct *work)
986{
987 struct blk_mq_hw_ctx *hctx;
988
989 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
990
991 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
992 __blk_mq_run_hw_queue(hctx);
993}
994
995void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
996{
19c66e59
ML
997 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
998 return;
70f4db63 999
b657d7e6
CH
1000 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1001 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
1002}
1003EXPORT_SYMBOL(blk_mq_delay_queue);
1004
320ae51f 1005static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 1006 struct request *rq, bool at_head)
320ae51f
JA
1007{
1008 struct blk_mq_ctx *ctx = rq->mq_ctx;
1009
01b983c9
JA
1010 trace_block_rq_insert(hctx->queue, rq);
1011
72a0a36e
CH
1012 if (at_head)
1013 list_add(&rq->queuelist, &ctx->rq_list);
1014 else
1015 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 1016
320ae51f 1017 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1018}
1019
eeabc850
CH
1020void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1021 bool async)
320ae51f 1022{
eeabc850 1023 struct request_queue *q = rq->q;
320ae51f 1024 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
1025 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1026
1027 current_ctx = blk_mq_get_ctx(q);
1028 if (!cpu_online(ctx->cpu))
1029 rq->mq_ctx = ctx = current_ctx;
320ae51f 1030
320ae51f
JA
1031 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1032
a57a178a
CH
1033 spin_lock(&ctx->lock);
1034 __blk_mq_insert_request(hctx, rq, at_head);
1035 spin_unlock(&ctx->lock);
320ae51f 1036
320ae51f
JA
1037 if (run_queue)
1038 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
1039
1040 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1041}
1042
1043static void blk_mq_insert_requests(struct request_queue *q,
1044 struct blk_mq_ctx *ctx,
1045 struct list_head *list,
1046 int depth,
1047 bool from_schedule)
1048
1049{
1050 struct blk_mq_hw_ctx *hctx;
1051 struct blk_mq_ctx *current_ctx;
1052
1053 trace_block_unplug(q, depth, !from_schedule);
1054
1055 current_ctx = blk_mq_get_ctx(q);
1056
1057 if (!cpu_online(ctx->cpu))
1058 ctx = current_ctx;
1059 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1060
1061 /*
1062 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1063 * offline now
1064 */
1065 spin_lock(&ctx->lock);
1066 while (!list_empty(list)) {
1067 struct request *rq;
1068
1069 rq = list_first_entry(list, struct request, queuelist);
1070 list_del_init(&rq->queuelist);
1071 rq->mq_ctx = ctx;
72a0a36e 1072 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1073 }
1074 spin_unlock(&ctx->lock);
1075
320ae51f 1076 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1077 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1078}
1079
1080static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1081{
1082 struct request *rqa = container_of(a, struct request, queuelist);
1083 struct request *rqb = container_of(b, struct request, queuelist);
1084
1085 return !(rqa->mq_ctx < rqb->mq_ctx ||
1086 (rqa->mq_ctx == rqb->mq_ctx &&
1087 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1088}
1089
1090void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1091{
1092 struct blk_mq_ctx *this_ctx;
1093 struct request_queue *this_q;
1094 struct request *rq;
1095 LIST_HEAD(list);
1096 LIST_HEAD(ctx_list);
1097 unsigned int depth;
1098
1099 list_splice_init(&plug->mq_list, &list);
1100
1101 list_sort(NULL, &list, plug_ctx_cmp);
1102
1103 this_q = NULL;
1104 this_ctx = NULL;
1105 depth = 0;
1106
1107 while (!list_empty(&list)) {
1108 rq = list_entry_rq(list.next);
1109 list_del_init(&rq->queuelist);
1110 BUG_ON(!rq->q);
1111 if (rq->mq_ctx != this_ctx) {
1112 if (this_ctx) {
1113 blk_mq_insert_requests(this_q, this_ctx,
1114 &ctx_list, depth,
1115 from_schedule);
1116 }
1117
1118 this_ctx = rq->mq_ctx;
1119 this_q = rq->q;
1120 depth = 0;
1121 }
1122
1123 depth++;
1124 list_add_tail(&rq->queuelist, &ctx_list);
1125 }
1126
1127 /*
1128 * If 'this_ctx' is set, we know we have entries to complete
1129 * on 'ctx_list'. Do those.
1130 */
1131 if (this_ctx) {
1132 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1133 from_schedule);
1134 }
1135}
1136
1137static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1138{
1139 init_request_from_bio(rq, bio);
4b570521 1140
3ee32372 1141 if (blk_do_io_stat(rq))
4b570521 1142 blk_account_io_start(rq, 1);
320ae51f
JA
1143}
1144
274a5843
JA
1145static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1146{
1147 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1148 !blk_queue_nomerges(hctx->queue);
1149}
1150
07068d5b
JA
1151static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1152 struct blk_mq_ctx *ctx,
1153 struct request *rq, struct bio *bio)
320ae51f 1154{
274a5843 1155 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1156 blk_mq_bio_to_request(rq, bio);
1157 spin_lock(&ctx->lock);
1158insert_rq:
1159 __blk_mq_insert_request(hctx, rq, false);
1160 spin_unlock(&ctx->lock);
1161 return false;
1162 } else {
274a5843
JA
1163 struct request_queue *q = hctx->queue;
1164
07068d5b
JA
1165 spin_lock(&ctx->lock);
1166 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1167 blk_mq_bio_to_request(rq, bio);
1168 goto insert_rq;
1169 }
320ae51f 1170
07068d5b
JA
1171 spin_unlock(&ctx->lock);
1172 __blk_mq_free_request(hctx, ctx, rq);
1173 return true;
14ec77f3 1174 }
07068d5b 1175}
14ec77f3 1176
07068d5b
JA
1177struct blk_map_ctx {
1178 struct blk_mq_hw_ctx *hctx;
1179 struct blk_mq_ctx *ctx;
1180};
1181
1182static struct request *blk_mq_map_request(struct request_queue *q,
1183 struct bio *bio,
1184 struct blk_map_ctx *data)
1185{
1186 struct blk_mq_hw_ctx *hctx;
1187 struct blk_mq_ctx *ctx;
1188 struct request *rq;
1189 int rw = bio_data_dir(bio);
cb96a42c 1190 struct blk_mq_alloc_data alloc_data;
320ae51f 1191
bfd343aa 1192 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
320ae51f 1193 bio_endio(bio, -EIO);
07068d5b 1194 return NULL;
320ae51f
JA
1195 }
1196
1197 ctx = blk_mq_get_ctx(q);
1198 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1199
07068d5b 1200 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1201 rw |= REQ_SYNC;
07068d5b 1202
320ae51f 1203 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1204 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1205 hctx);
1206 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1207 if (unlikely(!rq)) {
793597a6 1208 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1209 blk_mq_put_ctx(ctx);
1210 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1211
1212 ctx = blk_mq_get_ctx(q);
320ae51f 1213 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1214 blk_mq_set_alloc_data(&alloc_data, q,
1215 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1216 rq = __blk_mq_alloc_request(&alloc_data, rw);
1217 ctx = alloc_data.ctx;
1218 hctx = alloc_data.hctx;
320ae51f
JA
1219 }
1220
1221 hctx->queued++;
07068d5b
JA
1222 data->hctx = hctx;
1223 data->ctx = ctx;
1224 return rq;
1225}
1226
1227/*
1228 * Multiple hardware queue variant. This will not use per-process plugs,
1229 * but will attempt to bypass the hctx queueing if we can go straight to
1230 * hardware for SYNC IO.
1231 */
1232static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1233{
1234 const int is_sync = rw_is_sync(bio->bi_rw);
1235 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1236 struct blk_map_ctx data;
1237 struct request *rq;
1238
1239 blk_queue_bounce(q, &bio);
1240
1241 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1242 bio_endio(bio, -EIO);
1243 return;
1244 }
1245
1246 rq = blk_mq_map_request(q, bio, &data);
1247 if (unlikely(!rq))
1248 return;
1249
1250 if (unlikely(is_flush_fua)) {
1251 blk_mq_bio_to_request(rq, bio);
1252 blk_insert_flush(rq);
1253 goto run_queue;
1254 }
1255
e167dfb5
JA
1256 /*
1257 * If the driver supports defer issued based on 'last', then
1258 * queue it up like normal since we can potentially save some
1259 * CPU this way.
1260 */
1261 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
74c45052
JA
1262 struct blk_mq_queue_data bd = {
1263 .rq = rq,
1264 .list = NULL,
1265 .last = 1
1266 };
07068d5b
JA
1267 int ret;
1268
1269 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1270
1271 /*
1272 * For OK queue, we are done. For error, kill it. Any other
1273 * error (busy), just add it to our list as we previously
1274 * would have done
1275 */
74c45052 1276 ret = q->mq_ops->queue_rq(data.hctx, &bd);
07068d5b
JA
1277 if (ret == BLK_MQ_RQ_QUEUE_OK)
1278 goto done;
1279 else {
1280 __blk_mq_requeue_request(rq);
1281
1282 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1283 rq->errors = -EIO;
c8a446ad 1284 blk_mq_end_request(rq, rq->errors);
07068d5b
JA
1285 goto done;
1286 }
1287 }
1288 }
1289
1290 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1291 /*
1292 * For a SYNC request, send it to the hardware immediately. For
1293 * an ASYNC request, just ensure that we run it later on. The
1294 * latter allows for merging opportunities and more efficient
1295 * dispatching.
1296 */
1297run_queue:
1298 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1299 }
1300done:
1301 blk_mq_put_ctx(data.ctx);
1302}
1303
1304/*
1305 * Single hardware queue variant. This will attempt to use any per-process
1306 * plug for merging and IO deferral.
1307 */
1308static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1309{
1310 const int is_sync = rw_is_sync(bio->bi_rw);
1311 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1312 unsigned int use_plug, request_count = 0;
1313 struct blk_map_ctx data;
1314 struct request *rq;
1315
1316 /*
1317 * If we have multiple hardware queues, just go directly to
1318 * one of those for sync IO.
1319 */
1320 use_plug = !is_flush_fua && !is_sync;
1321
1322 blk_queue_bounce(q, &bio);
1323
1324 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1325 bio_endio(bio, -EIO);
1326 return;
1327 }
1328
1329 if (use_plug && !blk_queue_nomerges(q) &&
1330 blk_attempt_plug_merge(q, bio, &request_count))
1331 return;
1332
1333 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1334 if (unlikely(!rq))
1335 return;
320ae51f
JA
1336
1337 if (unlikely(is_flush_fua)) {
1338 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1339 blk_insert_flush(rq);
1340 goto run_queue;
1341 }
1342
1343 /*
1344 * A task plug currently exists. Since this is completely lockless,
1345 * utilize that to temporarily store requests until the task is
1346 * either done or scheduled away.
1347 */
1348 if (use_plug) {
1349 struct blk_plug *plug = current->plug;
1350
1351 if (plug) {
1352 blk_mq_bio_to_request(rq, bio);
92f399c7 1353 if (list_empty(&plug->mq_list))
320ae51f
JA
1354 trace_block_plug(q);
1355 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1356 blk_flush_plug_list(plug, false);
1357 trace_block_plug(q);
1358 }
1359 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1360 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1361 return;
1362 }
1363 }
1364
07068d5b
JA
1365 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1366 /*
1367 * For a SYNC request, send it to the hardware immediately. For
1368 * an ASYNC request, just ensure that we run it later on. The
1369 * latter allows for merging opportunities and more efficient
1370 * dispatching.
1371 */
1372run_queue:
1373 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1374 }
1375
07068d5b 1376 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1377}
1378
1379/*
1380 * Default mapping to a software queue, since we use one per CPU.
1381 */
1382struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1383{
1384 return q->queue_hw_ctx[q->mq_map[cpu]];
1385}
1386EXPORT_SYMBOL(blk_mq_map_queue);
1387
24d2f903
CH
1388static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1389 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1390{
e9b267d9 1391 struct page *page;
320ae51f 1392
24d2f903 1393 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1394 int i;
320ae51f 1395
24d2f903
CH
1396 for (i = 0; i < tags->nr_tags; i++) {
1397 if (!tags->rqs[i])
e9b267d9 1398 continue;
24d2f903
CH
1399 set->ops->exit_request(set->driver_data, tags->rqs[i],
1400 hctx_idx, i);
a5164405 1401 tags->rqs[i] = NULL;
e9b267d9 1402 }
320ae51f 1403 }
320ae51f 1404
24d2f903
CH
1405 while (!list_empty(&tags->page_list)) {
1406 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1407 list_del_init(&page->lru);
320ae51f
JA
1408 __free_pages(page, page->private);
1409 }
1410
24d2f903 1411 kfree(tags->rqs);
320ae51f 1412
24d2f903 1413 blk_mq_free_tags(tags);
320ae51f
JA
1414}
1415
1416static size_t order_to_size(unsigned int order)
1417{
4ca08500 1418 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1419}
1420
24d2f903
CH
1421static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1422 unsigned int hctx_idx)
320ae51f 1423{
24d2f903 1424 struct blk_mq_tags *tags;
320ae51f
JA
1425 unsigned int i, j, entries_per_page, max_order = 4;
1426 size_t rq_size, left;
1427
24d2f903 1428 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1429 set->numa_node,
1430 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1431 if (!tags)
1432 return NULL;
320ae51f 1433
24d2f903
CH
1434 INIT_LIST_HEAD(&tags->page_list);
1435
a5164405
JA
1436 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1437 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1438 set->numa_node);
24d2f903
CH
1439 if (!tags->rqs) {
1440 blk_mq_free_tags(tags);
1441 return NULL;
1442 }
320ae51f
JA
1443
1444 /*
1445 * rq_size is the size of the request plus driver payload, rounded
1446 * to the cacheline size
1447 */
24d2f903 1448 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1449 cache_line_size());
24d2f903 1450 left = rq_size * set->queue_depth;
320ae51f 1451
24d2f903 1452 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1453 int this_order = max_order;
1454 struct page *page;
1455 int to_do;
1456 void *p;
1457
1458 while (left < order_to_size(this_order - 1) && this_order)
1459 this_order--;
1460
1461 do {
a5164405 1462 page = alloc_pages_node(set->numa_node,
ac211175 1463 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1464 this_order);
320ae51f
JA
1465 if (page)
1466 break;
1467 if (!this_order--)
1468 break;
1469 if (order_to_size(this_order) < rq_size)
1470 break;
1471 } while (1);
1472
1473 if (!page)
24d2f903 1474 goto fail;
320ae51f
JA
1475
1476 page->private = this_order;
24d2f903 1477 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1478
1479 p = page_address(page);
1480 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1481 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1482 left -= to_do * rq_size;
1483 for (j = 0; j < to_do; j++) {
24d2f903
CH
1484 tags->rqs[i] = p;
1485 if (set->ops->init_request) {
1486 if (set->ops->init_request(set->driver_data,
1487 tags->rqs[i], hctx_idx, i,
a5164405
JA
1488 set->numa_node)) {
1489 tags->rqs[i] = NULL;
24d2f903 1490 goto fail;
a5164405 1491 }
e9b267d9
CH
1492 }
1493
320ae51f
JA
1494 p += rq_size;
1495 i++;
1496 }
1497 }
1498
24d2f903 1499 return tags;
320ae51f 1500
24d2f903 1501fail:
24d2f903
CH
1502 blk_mq_free_rq_map(set, tags, hctx_idx);
1503 return NULL;
320ae51f
JA
1504}
1505
1429d7c9
JA
1506static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1507{
1508 kfree(bitmap->map);
1509}
1510
1511static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1512{
1513 unsigned int bpw = 8, total, num_maps, i;
1514
1515 bitmap->bits_per_word = bpw;
1516
1517 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1518 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1519 GFP_KERNEL, node);
1520 if (!bitmap->map)
1521 return -ENOMEM;
1522
1429d7c9
JA
1523 total = nr_cpu_ids;
1524 for (i = 0; i < num_maps; i++) {
1525 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1526 total -= bitmap->map[i].depth;
1527 }
1528
1529 return 0;
1530}
1531
484b4061
JA
1532static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1533{
1534 struct request_queue *q = hctx->queue;
1535 struct blk_mq_ctx *ctx;
1536 LIST_HEAD(tmp);
1537
1538 /*
1539 * Move ctx entries to new CPU, if this one is going away.
1540 */
1541 ctx = __blk_mq_get_ctx(q, cpu);
1542
1543 spin_lock(&ctx->lock);
1544 if (!list_empty(&ctx->rq_list)) {
1545 list_splice_init(&ctx->rq_list, &tmp);
1546 blk_mq_hctx_clear_pending(hctx, ctx);
1547 }
1548 spin_unlock(&ctx->lock);
1549
1550 if (list_empty(&tmp))
1551 return NOTIFY_OK;
1552
1553 ctx = blk_mq_get_ctx(q);
1554 spin_lock(&ctx->lock);
1555
1556 while (!list_empty(&tmp)) {
1557 struct request *rq;
1558
1559 rq = list_first_entry(&tmp, struct request, queuelist);
1560 rq->mq_ctx = ctx;
1561 list_move_tail(&rq->queuelist, &ctx->rq_list);
1562 }
1563
1564 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1565 blk_mq_hctx_mark_pending(hctx, ctx);
1566
1567 spin_unlock(&ctx->lock);
1568
1569 blk_mq_run_hw_queue(hctx, true);
1570 blk_mq_put_ctx(ctx);
1571 return NOTIFY_OK;
1572}
1573
1574static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1575{
1576 struct request_queue *q = hctx->queue;
1577 struct blk_mq_tag_set *set = q->tag_set;
1578
1579 if (set->tags[hctx->queue_num])
1580 return NOTIFY_OK;
1581
1582 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1583 if (!set->tags[hctx->queue_num])
1584 return NOTIFY_STOP;
1585
1586 hctx->tags = set->tags[hctx->queue_num];
1587 return NOTIFY_OK;
1588}
1589
1590static int blk_mq_hctx_notify(void *data, unsigned long action,
1591 unsigned int cpu)
1592{
1593 struct blk_mq_hw_ctx *hctx = data;
1594
1595 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1596 return blk_mq_hctx_cpu_offline(hctx, cpu);
1597 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1598 return blk_mq_hctx_cpu_online(hctx, cpu);
1599
1600 return NOTIFY_OK;
1601}
1602
08e98fc6
ML
1603static void blk_mq_exit_hctx(struct request_queue *q,
1604 struct blk_mq_tag_set *set,
1605 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1606{
f70ced09
ML
1607 unsigned flush_start_tag = set->queue_depth;
1608
08e98fc6
ML
1609 blk_mq_tag_idle(hctx);
1610
f70ced09
ML
1611 if (set->ops->exit_request)
1612 set->ops->exit_request(set->driver_data,
1613 hctx->fq->flush_rq, hctx_idx,
1614 flush_start_tag + hctx_idx);
1615
08e98fc6
ML
1616 if (set->ops->exit_hctx)
1617 set->ops->exit_hctx(hctx, hctx_idx);
1618
1619 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1620 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1621 kfree(hctx->ctxs);
1622 blk_mq_free_bitmap(&hctx->ctx_map);
1623}
1624
624dbe47
ML
1625static void blk_mq_exit_hw_queues(struct request_queue *q,
1626 struct blk_mq_tag_set *set, int nr_queue)
1627{
1628 struct blk_mq_hw_ctx *hctx;
1629 unsigned int i;
1630
1631 queue_for_each_hw_ctx(q, hctx, i) {
1632 if (i == nr_queue)
1633 break;
08e98fc6 1634 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1635 }
624dbe47
ML
1636}
1637
1638static void blk_mq_free_hw_queues(struct request_queue *q,
1639 struct blk_mq_tag_set *set)
1640{
1641 struct blk_mq_hw_ctx *hctx;
1642 unsigned int i;
1643
e09aae7e 1644 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1645 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1646}
1647
08e98fc6
ML
1648static int blk_mq_init_hctx(struct request_queue *q,
1649 struct blk_mq_tag_set *set,
1650 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1651{
08e98fc6 1652 int node;
f70ced09 1653 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1654
1655 node = hctx->numa_node;
1656 if (node == NUMA_NO_NODE)
1657 node = hctx->numa_node = set->numa_node;
1658
1659 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1660 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1661 spin_lock_init(&hctx->lock);
1662 INIT_LIST_HEAD(&hctx->dispatch);
1663 hctx->queue = q;
1664 hctx->queue_num = hctx_idx;
1665 hctx->flags = set->flags;
08e98fc6
ML
1666
1667 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1668 blk_mq_hctx_notify, hctx);
1669 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1670
1671 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1672
1673 /*
08e98fc6
ML
1674 * Allocate space for all possible cpus to avoid allocation at
1675 * runtime
320ae51f 1676 */
08e98fc6
ML
1677 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1678 GFP_KERNEL, node);
1679 if (!hctx->ctxs)
1680 goto unregister_cpu_notifier;
320ae51f 1681
08e98fc6
ML
1682 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1683 goto free_ctxs;
320ae51f 1684
08e98fc6 1685 hctx->nr_ctx = 0;
320ae51f 1686
08e98fc6
ML
1687 if (set->ops->init_hctx &&
1688 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1689 goto free_bitmap;
320ae51f 1690
f70ced09
ML
1691 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1692 if (!hctx->fq)
1693 goto exit_hctx;
320ae51f 1694
f70ced09
ML
1695 if (set->ops->init_request &&
1696 set->ops->init_request(set->driver_data,
1697 hctx->fq->flush_rq, hctx_idx,
1698 flush_start_tag + hctx_idx, node))
1699 goto free_fq;
320ae51f 1700
08e98fc6 1701 return 0;
320ae51f 1702
f70ced09
ML
1703 free_fq:
1704 kfree(hctx->fq);
1705 exit_hctx:
1706 if (set->ops->exit_hctx)
1707 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1708 free_bitmap:
1709 blk_mq_free_bitmap(&hctx->ctx_map);
1710 free_ctxs:
1711 kfree(hctx->ctxs);
1712 unregister_cpu_notifier:
1713 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1714
08e98fc6
ML
1715 return -1;
1716}
320ae51f 1717
08e98fc6
ML
1718static int blk_mq_init_hw_queues(struct request_queue *q,
1719 struct blk_mq_tag_set *set)
1720{
1721 struct blk_mq_hw_ctx *hctx;
1722 unsigned int i;
320ae51f 1723
08e98fc6
ML
1724 /*
1725 * Initialize hardware queues
1726 */
1727 queue_for_each_hw_ctx(q, hctx, i) {
1728 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1729 break;
1730 }
1731
1732 if (i == q->nr_hw_queues)
1733 return 0;
1734
1735 /*
1736 * Init failed
1737 */
624dbe47 1738 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1739
1740 return 1;
1741}
1742
1743static void blk_mq_init_cpu_queues(struct request_queue *q,
1744 unsigned int nr_hw_queues)
1745{
1746 unsigned int i;
1747
1748 for_each_possible_cpu(i) {
1749 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1750 struct blk_mq_hw_ctx *hctx;
1751
1752 memset(__ctx, 0, sizeof(*__ctx));
1753 __ctx->cpu = i;
1754 spin_lock_init(&__ctx->lock);
1755 INIT_LIST_HEAD(&__ctx->rq_list);
1756 __ctx->queue = q;
1757
1758 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1759 if (!cpu_online(i))
1760 continue;
1761
e4043dcf 1762 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1763
320ae51f
JA
1764 /*
1765 * Set local node, IFF we have more than one hw queue. If
1766 * not, we remain on the home node of the device
1767 */
1768 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1769 hctx->numa_node = cpu_to_node(i);
1770 }
1771}
1772
1773static void blk_mq_map_swqueue(struct request_queue *q)
1774{
1775 unsigned int i;
1776 struct blk_mq_hw_ctx *hctx;
1777 struct blk_mq_ctx *ctx;
1778
1779 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1780 cpumask_clear(hctx->cpumask);
320ae51f
JA
1781 hctx->nr_ctx = 0;
1782 }
1783
1784 /*
1785 * Map software to hardware queues
1786 */
1787 queue_for_each_ctx(q, ctx, i) {
1788 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1789 if (!cpu_online(i))
1790 continue;
1791
320ae51f 1792 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1793 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1794 ctx->index_hw = hctx->nr_ctx;
1795 hctx->ctxs[hctx->nr_ctx++] = ctx;
1796 }
506e931f
JA
1797
1798 queue_for_each_hw_ctx(q, hctx, i) {
889fa31f
CY
1799 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1800
484b4061 1801 /*
a68aafa5
JA
1802 * If no software queues are mapped to this hardware queue,
1803 * disable it and free the request entries.
484b4061
JA
1804 */
1805 if (!hctx->nr_ctx) {
1806 struct blk_mq_tag_set *set = q->tag_set;
1807
1808 if (set->tags[i]) {
1809 blk_mq_free_rq_map(set, set->tags[i], i);
1810 set->tags[i] = NULL;
1811 hctx->tags = NULL;
1812 }
1813 continue;
1814 }
1815
889fa31f
CY
1816 /*
1817 * Set the map size to the number of mapped software queues.
1818 * This is more accurate and more efficient than looping
1819 * over all possibly mapped software queues.
1820 */
569fd0ce 1821 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
889fa31f 1822
484b4061
JA
1823 /*
1824 * Initialize batch roundrobin counts
1825 */
506e931f
JA
1826 hctx->next_cpu = cpumask_first(hctx->cpumask);
1827 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1828 }
320ae51f
JA
1829}
1830
0d2602ca
JA
1831static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1832{
1833 struct blk_mq_hw_ctx *hctx;
1834 struct request_queue *q;
1835 bool shared;
1836 int i;
1837
1838 if (set->tag_list.next == set->tag_list.prev)
1839 shared = false;
1840 else
1841 shared = true;
1842
1843 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1844 blk_mq_freeze_queue(q);
1845
1846 queue_for_each_hw_ctx(q, hctx, i) {
1847 if (shared)
1848 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1849 else
1850 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1851 }
1852 blk_mq_unfreeze_queue(q);
1853 }
1854}
1855
1856static void blk_mq_del_queue_tag_set(struct request_queue *q)
1857{
1858 struct blk_mq_tag_set *set = q->tag_set;
1859
0d2602ca
JA
1860 mutex_lock(&set->tag_list_lock);
1861 list_del_init(&q->tag_set_list);
1862 blk_mq_update_tag_set_depth(set);
1863 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1864}
1865
1866static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1867 struct request_queue *q)
1868{
1869 q->tag_set = set;
1870
1871 mutex_lock(&set->tag_list_lock);
1872 list_add_tail(&q->tag_set_list, &set->tag_list);
1873 blk_mq_update_tag_set_depth(set);
1874 mutex_unlock(&set->tag_list_lock);
1875}
1876
e09aae7e
ML
1877/*
1878 * It is the actual release handler for mq, but we do it from
1879 * request queue's release handler for avoiding use-after-free
1880 * and headache because q->mq_kobj shouldn't have been introduced,
1881 * but we can't group ctx/kctx kobj without it.
1882 */
1883void blk_mq_release(struct request_queue *q)
1884{
1885 struct blk_mq_hw_ctx *hctx;
1886 unsigned int i;
1887
1888 /* hctx kobj stays in hctx */
1889 queue_for_each_hw_ctx(q, hctx, i)
1890 kfree(hctx);
1891
1892 kfree(q->queue_hw_ctx);
1893
1894 /* ctx kobj stays in queue_ctx */
1895 free_percpu(q->queue_ctx);
1896}
1897
24d2f903 1898struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
1899{
1900 struct request_queue *uninit_q, *q;
1901
1902 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1903 if (!uninit_q)
1904 return ERR_PTR(-ENOMEM);
1905
1906 q = blk_mq_init_allocated_queue(set, uninit_q);
1907 if (IS_ERR(q))
1908 blk_cleanup_queue(uninit_q);
1909
1910 return q;
1911}
1912EXPORT_SYMBOL(blk_mq_init_queue);
1913
1914struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1915 struct request_queue *q)
320ae51f
JA
1916{
1917 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1918 struct blk_mq_ctx __percpu *ctx;
f14bbe77 1919 unsigned int *map;
320ae51f
JA
1920 int i;
1921
320ae51f
JA
1922 ctx = alloc_percpu(struct blk_mq_ctx);
1923 if (!ctx)
1924 return ERR_PTR(-ENOMEM);
1925
24d2f903
CH
1926 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1927 set->numa_node);
320ae51f
JA
1928
1929 if (!hctxs)
1930 goto err_percpu;
1931
f14bbe77
JA
1932 map = blk_mq_make_queue_map(set);
1933 if (!map)
1934 goto err_map;
1935
24d2f903 1936 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1937 int node = blk_mq_hw_queue_to_node(map, i);
1938
cdef54dd
CH
1939 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1940 GFP_KERNEL, node);
320ae51f
JA
1941 if (!hctxs[i])
1942 goto err_hctxs;
1943
a86073e4
JA
1944 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1945 node))
e4043dcf
JA
1946 goto err_hctxs;
1947
0d2602ca 1948 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1949 hctxs[i]->numa_node = node;
320ae51f
JA
1950 hctxs[i]->queue_num = i;
1951 }
1952
17497acb
TH
1953 /*
1954 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1955 * See blk_register_queue() for details.
1956 */
a34375ef 1957 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
17497acb 1958 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
b62c21b7 1959 goto err_hctxs;
3d2936f4 1960
320ae51f 1961 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
c76cbbcf 1962 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000);
320ae51f
JA
1963
1964 q->nr_queues = nr_cpu_ids;
24d2f903 1965 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1966 q->mq_map = map;
320ae51f
JA
1967
1968 q->queue_ctx = ctx;
1969 q->queue_hw_ctx = hctxs;
1970
24d2f903 1971 q->mq_ops = set->ops;
94eddfbe 1972 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1973
05f1dd53
JA
1974 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1975 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1976
1be036e9
CH
1977 q->sg_reserved_size = INT_MAX;
1978
6fca6a61
CH
1979 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1980 INIT_LIST_HEAD(&q->requeue_list);
1981 spin_lock_init(&q->requeue_lock);
1982
07068d5b
JA
1983 if (q->nr_hw_queues > 1)
1984 blk_queue_make_request(q, blk_mq_make_request);
1985 else
1986 blk_queue_make_request(q, blk_sq_make_request);
1987
eba71768
JA
1988 /*
1989 * Do this after blk_queue_make_request() overrides it...
1990 */
1991 q->nr_requests = set->queue_depth;
1992
24d2f903
CH
1993 if (set->ops->complete)
1994 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1995
24d2f903 1996 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1997
24d2f903 1998 if (blk_mq_init_hw_queues(q, set))
b62c21b7 1999 goto err_hctxs;
18741986 2000
320ae51f
JA
2001 mutex_lock(&all_q_mutex);
2002 list_add_tail(&q->all_q_node, &all_q_list);
2003 mutex_unlock(&all_q_mutex);
2004
0d2602ca
JA
2005 blk_mq_add_queue_tag_set(set, q);
2006
484b4061
JA
2007 blk_mq_map_swqueue(q);
2008
320ae51f 2009 return q;
18741986 2010
320ae51f 2011err_hctxs:
f14bbe77 2012 kfree(map);
24d2f903 2013 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
2014 if (!hctxs[i])
2015 break;
e4043dcf 2016 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 2017 kfree(hctxs[i]);
320ae51f 2018 }
f14bbe77 2019err_map:
320ae51f
JA
2020 kfree(hctxs);
2021err_percpu:
2022 free_percpu(ctx);
2023 return ERR_PTR(-ENOMEM);
2024}
b62c21b7 2025EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2026
2027void blk_mq_free_queue(struct request_queue *q)
2028{
624dbe47 2029 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2030
0d2602ca
JA
2031 blk_mq_del_queue_tag_set(q);
2032
624dbe47
ML
2033 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2034 blk_mq_free_hw_queues(q, set);
320ae51f 2035
add703fd 2036 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 2037
320ae51f
JA
2038 kfree(q->mq_map);
2039
320ae51f
JA
2040 q->mq_map = NULL;
2041
2042 mutex_lock(&all_q_mutex);
2043 list_del_init(&q->all_q_node);
2044 mutex_unlock(&all_q_mutex);
2045}
320ae51f
JA
2046
2047/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 2048static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 2049{
f3af020b 2050 WARN_ON_ONCE(!q->mq_freeze_depth);
320ae51f 2051
67aec14c
JA
2052 blk_mq_sysfs_unregister(q);
2053
320ae51f
JA
2054 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2055
2056 /*
2057 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2058 * we should change hctx numa_node according to new topology (this
2059 * involves free and re-allocate memory, worthy doing?)
2060 */
2061
2062 blk_mq_map_swqueue(q);
2063
67aec14c 2064 blk_mq_sysfs_register(q);
320ae51f
JA
2065}
2066
f618ef7c
PG
2067static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2068 unsigned long action, void *hcpu)
320ae51f
JA
2069{
2070 struct request_queue *q;
2071
2072 /*
9fccfed8
JA
2073 * Before new mappings are established, hotadded cpu might already
2074 * start handling requests. This doesn't break anything as we map
2075 * offline CPUs to first hardware queue. We will re-init the queue
2076 * below to get optimal settings.
320ae51f
JA
2077 */
2078 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2079 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2080 return NOTIFY_OK;
2081
2082 mutex_lock(&all_q_mutex);
f3af020b
TH
2083
2084 /*
2085 * We need to freeze and reinit all existing queues. Freezing
2086 * involves synchronous wait for an RCU grace period and doing it
2087 * one by one may take a long time. Start freezing all queues in
2088 * one swoop and then wait for the completions so that freezing can
2089 * take place in parallel.
2090 */
2091 list_for_each_entry(q, &all_q_list, all_q_node)
2092 blk_mq_freeze_queue_start(q);
2093 list_for_each_entry(q, &all_q_list, all_q_node)
2094 blk_mq_freeze_queue_wait(q);
2095
320ae51f
JA
2096 list_for_each_entry(q, &all_q_list, all_q_node)
2097 blk_mq_queue_reinit(q);
f3af020b
TH
2098
2099 list_for_each_entry(q, &all_q_list, all_q_node)
2100 blk_mq_unfreeze_queue(q);
2101
320ae51f
JA
2102 mutex_unlock(&all_q_mutex);
2103 return NOTIFY_OK;
2104}
2105
a5164405
JA
2106static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2107{
2108 int i;
2109
2110 for (i = 0; i < set->nr_hw_queues; i++) {
2111 set->tags[i] = blk_mq_init_rq_map(set, i);
2112 if (!set->tags[i])
2113 goto out_unwind;
2114 }
2115
2116 return 0;
2117
2118out_unwind:
2119 while (--i >= 0)
2120 blk_mq_free_rq_map(set, set->tags[i], i);
2121
a5164405
JA
2122 return -ENOMEM;
2123}
2124
2125/*
2126 * Allocate the request maps associated with this tag_set. Note that this
2127 * may reduce the depth asked for, if memory is tight. set->queue_depth
2128 * will be updated to reflect the allocated depth.
2129 */
2130static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2131{
2132 unsigned int depth;
2133 int err;
2134
2135 depth = set->queue_depth;
2136 do {
2137 err = __blk_mq_alloc_rq_maps(set);
2138 if (!err)
2139 break;
2140
2141 set->queue_depth >>= 1;
2142 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2143 err = -ENOMEM;
2144 break;
2145 }
2146 } while (set->queue_depth);
2147
2148 if (!set->queue_depth || err) {
2149 pr_err("blk-mq: failed to allocate request map\n");
2150 return -ENOMEM;
2151 }
2152
2153 if (depth != set->queue_depth)
2154 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2155 depth, set->queue_depth);
2156
2157 return 0;
2158}
2159
a4391c64
JA
2160/*
2161 * Alloc a tag set to be associated with one or more request queues.
2162 * May fail with EINVAL for various error conditions. May adjust the
2163 * requested depth down, if if it too large. In that case, the set
2164 * value will be stored in set->queue_depth.
2165 */
24d2f903
CH
2166int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2167{
205fb5f5
BVA
2168 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2169
24d2f903
CH
2170 if (!set->nr_hw_queues)
2171 return -EINVAL;
a4391c64 2172 if (!set->queue_depth)
24d2f903
CH
2173 return -EINVAL;
2174 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2175 return -EINVAL;
2176
f9018ac9 2177 if (!set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2178 return -EINVAL;
2179
a4391c64
JA
2180 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2181 pr_info("blk-mq: reduced tag depth to %u\n",
2182 BLK_MQ_MAX_DEPTH);
2183 set->queue_depth = BLK_MQ_MAX_DEPTH;
2184 }
24d2f903 2185
6637fadf
SL
2186 /*
2187 * If a crashdump is active, then we are potentially in a very
2188 * memory constrained environment. Limit us to 1 queue and
2189 * 64 tags to prevent using too much memory.
2190 */
2191 if (is_kdump_kernel()) {
2192 set->nr_hw_queues = 1;
2193 set->queue_depth = min(64U, set->queue_depth);
2194 }
2195
48479005
ML
2196 set->tags = kmalloc_node(set->nr_hw_queues *
2197 sizeof(struct blk_mq_tags *),
24d2f903
CH
2198 GFP_KERNEL, set->numa_node);
2199 if (!set->tags)
a5164405 2200 return -ENOMEM;
24d2f903 2201
a5164405
JA
2202 if (blk_mq_alloc_rq_maps(set))
2203 goto enomem;
24d2f903 2204
0d2602ca
JA
2205 mutex_init(&set->tag_list_lock);
2206 INIT_LIST_HEAD(&set->tag_list);
2207
24d2f903 2208 return 0;
a5164405 2209enomem:
5676e7b6
RE
2210 kfree(set->tags);
2211 set->tags = NULL;
24d2f903
CH
2212 return -ENOMEM;
2213}
2214EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2215
2216void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2217{
2218 int i;
2219
484b4061
JA
2220 for (i = 0; i < set->nr_hw_queues; i++) {
2221 if (set->tags[i])
2222 blk_mq_free_rq_map(set, set->tags[i], i);
2223 }
2224
981bd189 2225 kfree(set->tags);
5676e7b6 2226 set->tags = NULL;
24d2f903
CH
2227}
2228EXPORT_SYMBOL(blk_mq_free_tag_set);
2229
e3a2b3f9
JA
2230int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2231{
2232 struct blk_mq_tag_set *set = q->tag_set;
2233 struct blk_mq_hw_ctx *hctx;
2234 int i, ret;
2235
2236 if (!set || nr > set->queue_depth)
2237 return -EINVAL;
2238
2239 ret = 0;
2240 queue_for_each_hw_ctx(q, hctx, i) {
2241 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2242 if (ret)
2243 break;
2244 }
2245
2246 if (!ret)
2247 q->nr_requests = nr;
2248
2249 return ret;
2250}
2251
676141e4
JA
2252void blk_mq_disable_hotplug(void)
2253{
2254 mutex_lock(&all_q_mutex);
2255}
2256
2257void blk_mq_enable_hotplug(void)
2258{
2259 mutex_unlock(&all_q_mutex);
2260}
2261
320ae51f
JA
2262static int __init blk_mq_init(void)
2263{
320ae51f
JA
2264 blk_mq_cpu_init();
2265
add703fd 2266 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2267
2268 return 0;
2269}
2270subsys_initcall(blk_mq_init);