docs: improve terse output format documentation
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18
19#define LOG_MSEC_SLACK 1
20
21struct fio_sem *stat_sem;
22
23void clear_rusage_stat(struct thread_data *td)
24{
25 struct thread_stat *ts = &td->ts;
26
27 fio_getrusage(&td->ru_start);
28 ts->usr_time = ts->sys_time = 0;
29 ts->ctx = 0;
30 ts->minf = ts->majf = 0;
31}
32
33void update_rusage_stat(struct thread_data *td)
34{
35 struct thread_stat *ts = &td->ts;
36
37 fio_getrusage(&td->ru_end);
38 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
39 &td->ru_end.ru_utime);
40 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
41 &td->ru_end.ru_stime);
42 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
43 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
44 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
45 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
46
47 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
48}
49
50/*
51 * Given a latency, return the index of the corresponding bucket in
52 * the structure tracking percentiles.
53 *
54 * (1) find the group (and error bits) that the value (latency)
55 * belongs to by looking at its MSB. (2) find the bucket number in the
56 * group by looking at the index bits.
57 *
58 */
59static unsigned int plat_val_to_idx(unsigned long long val)
60{
61 unsigned int msb, error_bits, base, offset, idx;
62
63 /* Find MSB starting from bit 0 */
64 if (val == 0)
65 msb = 0;
66 else
67 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
68
69 /*
70 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
71 * all bits of the sample as index
72 */
73 if (msb <= FIO_IO_U_PLAT_BITS)
74 return val;
75
76 /* Compute the number of error bits to discard*/
77 error_bits = msb - FIO_IO_U_PLAT_BITS;
78
79 /* Compute the number of buckets before the group */
80 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
81
82 /*
83 * Discard the error bits and apply the mask to find the
84 * index for the buckets in the group
85 */
86 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
87
88 /* Make sure the index does not exceed (array size - 1) */
89 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
90 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
91
92 return idx;
93}
94
95/*
96 * Convert the given index of the bucket array to the value
97 * represented by the bucket
98 */
99static unsigned long long plat_idx_to_val(unsigned int idx)
100{
101 unsigned int error_bits;
102 unsigned long long k, base;
103
104 assert(idx < FIO_IO_U_PLAT_NR);
105
106 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
107 * all bits of the sample as index */
108 if (idx < (FIO_IO_U_PLAT_VAL << 1))
109 return idx;
110
111 /* Find the group and compute the minimum value of that group */
112 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
113 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
114
115 /* Find its bucket number of the group */
116 k = idx % FIO_IO_U_PLAT_VAL;
117
118 /* Return the mean of the range of the bucket */
119 return base + ((k + 0.5) * (1 << error_bits));
120}
121
122static int double_cmp(const void *a, const void *b)
123{
124 const fio_fp64_t fa = *(const fio_fp64_t *) a;
125 const fio_fp64_t fb = *(const fio_fp64_t *) b;
126 int cmp = 0;
127
128 if (fa.u.f > fb.u.f)
129 cmp = 1;
130 else if (fa.u.f < fb.u.f)
131 cmp = -1;
132
133 return cmp;
134}
135
136unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
137 fio_fp64_t *plist, unsigned long long **output,
138 unsigned long long *maxv, unsigned long long *minv)
139{
140 unsigned long long sum = 0;
141 unsigned int len, i, j = 0;
142 unsigned long long *ovals = NULL;
143 bool is_last;
144
145 *minv = -1ULL;
146 *maxv = 0;
147
148 len = 0;
149 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
150 len++;
151
152 if (!len)
153 return 0;
154
155 /*
156 * Sort the percentile list. Note that it may already be sorted if
157 * we are using the default values, but since it's a short list this
158 * isn't a worry. Also note that this does not work for NaN values.
159 */
160 if (len > 1)
161 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
162
163 ovals = malloc(len * sizeof(*ovals));
164 if (!ovals)
165 return 0;
166
167 /*
168 * Calculate bucket values, note down max and min values
169 */
170 is_last = false;
171 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
172 sum += io_u_plat[i];
173 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
174 assert(plist[j].u.f <= 100.0);
175
176 ovals[j] = plat_idx_to_val(i);
177 if (ovals[j] < *minv)
178 *minv = ovals[j];
179 if (ovals[j] > *maxv)
180 *maxv = ovals[j];
181
182 is_last = (j == len - 1) != 0;
183 if (is_last)
184 break;
185
186 j++;
187 }
188 }
189
190 if (!is_last)
191 log_err("fio: error calculating latency percentiles\n");
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 const char *pre, struct buf_output *out)
203{
204 unsigned int divisor, len, i, j = 0;
205 unsigned long long minv, maxv;
206 unsigned long long *ovals;
207 int per_line, scale_down, time_width;
208 bool is_last;
209 char fmt[32];
210
211 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
212 if (!len || !ovals)
213 goto out;
214
215 /*
216 * We default to nsecs, but if the value range is such that we
217 * should scale down to usecs or msecs, do that.
218 */
219 if (minv > 2000000 && maxv > 99999999ULL) {
220 scale_down = 2;
221 divisor = 1000000;
222 log_buf(out, " %s percentiles (msec):\n |", pre);
223 } else if (minv > 2000 && maxv > 99999) {
224 scale_down = 1;
225 divisor = 1000;
226 log_buf(out, " %s percentiles (usec):\n |", pre);
227 } else {
228 scale_down = 0;
229 divisor = 1;
230 log_buf(out, " %s percentiles (nsec):\n |", pre);
231 }
232
233
234 time_width = max(5, (int) (log10(maxv / divisor) + 1));
235 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
236 precision, time_width);
237 /* fmt will be something like " %5.2fth=[%4llu]%c" */
238 per_line = (80 - 7) / (precision + 10 + time_width);
239
240 for (j = 0; j < len; j++) {
241 /* for formatting */
242 if (j != 0 && (j % per_line) == 0)
243 log_buf(out, " |");
244
245 /* end of the list */
246 is_last = (j == len - 1) != 0;
247
248 for (i = 0; i < scale_down; i++)
249 ovals[j] = (ovals[j] + 999) / 1000;
250
251 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
252
253 if (is_last)
254 break;
255
256 if ((j % per_line) == per_line - 1) /* for formatting */
257 log_buf(out, "\n");
258 }
259
260out:
261 if (ovals)
262 free(ovals);
263}
264
265bool calc_lat(struct io_stat *is, unsigned long long *min,
266 unsigned long long *max, double *mean, double *dev)
267{
268 double n = (double) is->samples;
269
270 if (n == 0)
271 return false;
272
273 *min = is->min_val;
274 *max = is->max_val;
275 *mean = is->mean.u.f;
276
277 if (n > 1.0)
278 *dev = sqrt(is->S.u.f / (n - 1.0));
279 else
280 *dev = 0;
281
282 return true;
283}
284
285void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
286{
287 char *io, *agg, *min, *max;
288 char *ioalt, *aggalt, *minalt, *maxalt;
289 const char *str[] = { " READ", " WRITE" , " TRIM"};
290 int i;
291
292 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
293
294 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
295 const int i2p = is_power_of_2(rs->kb_base);
296
297 if (!rs->max_run[i])
298 continue;
299
300 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
301 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
302 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
303 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
304 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
305 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
307 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
308 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
309 rs->unified_rw_rep ? " MIXED" : str[i],
310 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
311 (unsigned long long) rs->min_run[i],
312 (unsigned long long) rs->max_run[i]);
313
314 free(io);
315 free(agg);
316 free(min);
317 free(max);
318 free(ioalt);
319 free(aggalt);
320 free(minalt);
321 free(maxalt);
322 }
323}
324
325void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
326{
327 int i;
328
329 /*
330 * Do depth distribution calculations
331 */
332 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
333 if (total) {
334 io_u_dist[i] = (double) map[i] / (double) total;
335 io_u_dist[i] *= 100.0;
336 if (io_u_dist[i] < 0.1 && map[i])
337 io_u_dist[i] = 0.1;
338 } else
339 io_u_dist[i] = 0.0;
340 }
341}
342
343static void stat_calc_lat(struct thread_stat *ts, double *dst,
344 uint64_t *src, int nr)
345{
346 unsigned long total = ddir_rw_sum(ts->total_io_u);
347 int i;
348
349 /*
350 * Do latency distribution calculations
351 */
352 for (i = 0; i < nr; i++) {
353 if (total) {
354 dst[i] = (double) src[i] / (double) total;
355 dst[i] *= 100.0;
356 if (dst[i] < 0.01 && src[i])
357 dst[i] = 0.01;
358 } else
359 dst[i] = 0.0;
360 }
361}
362
363/*
364 * To keep the terse format unaltered, add all of the ns latency
365 * buckets to the first us latency bucket
366 */
367static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
368{
369 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
370 int i;
371
372 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
373
374 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
375 ntotal += ts->io_u_lat_n[i];
376
377 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
378}
379
380void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
381{
382 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
383}
384
385void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
386{
387 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
388}
389
390void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
391{
392 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
393}
394
395static void display_lat(const char *name, unsigned long long min,
396 unsigned long long max, double mean, double dev,
397 struct buf_output *out)
398{
399 const char *base = "(nsec)";
400 char *minp, *maxp;
401
402 if (nsec_to_msec(&min, &max, &mean, &dev))
403 base = "(msec)";
404 else if (nsec_to_usec(&min, &max, &mean, &dev))
405 base = "(usec)";
406
407 minp = num2str(min, 6, 1, 0, N2S_NONE);
408 maxp = num2str(max, 6, 1, 0, N2S_NONE);
409
410 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
411 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
412
413 free(minp);
414 free(maxp);
415}
416
417static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
418 int ddir, struct buf_output *out)
419{
420 unsigned long runt;
421 unsigned long long min, max, bw, iops;
422 double mean, dev;
423 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
424 int i2p;
425
426 if (ddir_sync(ddir)) {
427 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
428 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
429 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
430 show_clat_percentiles(ts->io_u_sync_plat,
431 ts->sync_stat.samples,
432 ts->percentile_list,
433 ts->percentile_precision,
434 io_ddir_name(ddir), out);
435 }
436 return;
437 }
438
439 assert(ddir_rw(ddir));
440
441 if (!ts->runtime[ddir])
442 return;
443
444 i2p = is_power_of_2(rs->kb_base);
445 runt = ts->runtime[ddir];
446
447 bw = (1000 * ts->io_bytes[ddir]) / runt;
448 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
449 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
450 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
451
452 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
453 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
454 if (ddir == DDIR_WRITE)
455 post_st = zbd_write_status(ts);
456 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
457 uint64_t total;
458 double hit;
459
460 total = ts->cachehit + ts->cachemiss;
461 hit = (double) ts->cachehit / (double) total;
462 hit *= 100.0;
463 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
464 post_st = NULL;
465 }
466
467 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
468 rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
469 iops_p, bw_p, bw_p_alt, io_p,
470 (unsigned long long) ts->runtime[ddir],
471 post_st ? : "");
472
473 free(post_st);
474 free(io_p);
475 free(bw_p);
476 free(bw_p_alt);
477 free(iops_p);
478
479 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
480 display_lat("slat", min, max, mean, dev, out);
481 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
482 display_lat("clat", min, max, mean, dev, out);
483 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
484 display_lat(" lat", min, max, mean, dev, out);
485
486 if (ts->clat_percentiles || ts->lat_percentiles) {
487 const char *name = ts->clat_percentiles ? "clat" : " lat";
488 uint64_t samples;
489
490 if (ts->clat_percentiles)
491 samples = ts->clat_stat[ddir].samples;
492 else
493 samples = ts->lat_stat[ddir].samples;
494
495 show_clat_percentiles(ts->io_u_plat[ddir],
496 samples,
497 ts->percentile_list,
498 ts->percentile_precision, name, out);
499 }
500 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
501 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
502 const char *bw_str;
503
504 if ((rs->unit_base == 1) && i2p)
505 bw_str = "Kibit";
506 else if (rs->unit_base == 1)
507 bw_str = "kbit";
508 else if (i2p)
509 bw_str = "KiB";
510 else
511 bw_str = "kB";
512
513 if (rs->agg[ddir]) {
514 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
515 if (p_of_agg > 100.0)
516 p_of_agg = 100.0;
517 }
518
519 if (rs->unit_base == 1) {
520 min *= 8.0;
521 max *= 8.0;
522 mean *= 8.0;
523 dev *= 8.0;
524 }
525
526 if (mean > fkb_base * fkb_base) {
527 min /= fkb_base;
528 max /= fkb_base;
529 mean /= fkb_base;
530 dev /= fkb_base;
531 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
532 }
533
534 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
535 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
536 bw_str, min, max, p_of_agg, mean, dev,
537 (&ts->bw_stat[ddir])->samples);
538 }
539 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
540 log_buf(out, " iops : min=%5llu, max=%5llu, "
541 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
542 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
543 }
544}
545
546static bool show_lat(double *io_u_lat, int nr, const char **ranges,
547 const char *msg, struct buf_output *out)
548{
549 bool new_line = true, shown = false;
550 int i, line = 0;
551
552 for (i = 0; i < nr; i++) {
553 if (io_u_lat[i] <= 0.0)
554 continue;
555 shown = true;
556 if (new_line) {
557 if (line)
558 log_buf(out, "\n");
559 log_buf(out, " lat (%s) : ", msg);
560 new_line = false;
561 line = 0;
562 }
563 if (line)
564 log_buf(out, ", ");
565 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
566 line++;
567 if (line == 5)
568 new_line = true;
569 }
570
571 if (shown)
572 log_buf(out, "\n");
573
574 return true;
575}
576
577static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
578{
579 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
580 "250=", "500=", "750=", "1000=", };
581
582 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
583}
584
585static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
586{
587 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
588 "250=", "500=", "750=", "1000=", };
589
590 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
591}
592
593static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
594{
595 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
596 "250=", "500=", "750=", "1000=", "2000=",
597 ">=2000=", };
598
599 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
600}
601
602static void show_latencies(struct thread_stat *ts, struct buf_output *out)
603{
604 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
605 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
606 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
607
608 stat_calc_lat_n(ts, io_u_lat_n);
609 stat_calc_lat_u(ts, io_u_lat_u);
610 stat_calc_lat_m(ts, io_u_lat_m);
611
612 show_lat_n(io_u_lat_n, out);
613 show_lat_u(io_u_lat_u, out);
614 show_lat_m(io_u_lat_m, out);
615}
616
617static int block_state_category(int block_state)
618{
619 switch (block_state) {
620 case BLOCK_STATE_UNINIT:
621 return 0;
622 case BLOCK_STATE_TRIMMED:
623 case BLOCK_STATE_WRITTEN:
624 return 1;
625 case BLOCK_STATE_WRITE_FAILURE:
626 case BLOCK_STATE_TRIM_FAILURE:
627 return 2;
628 default:
629 /* Silence compile warning on some BSDs and have a return */
630 assert(0);
631 return -1;
632 }
633}
634
635static int compare_block_infos(const void *bs1, const void *bs2)
636{
637 uint64_t block1 = *(uint64_t *)bs1;
638 uint64_t block2 = *(uint64_t *)bs2;
639 int state1 = BLOCK_INFO_STATE(block1);
640 int state2 = BLOCK_INFO_STATE(block2);
641 int bscat1 = block_state_category(state1);
642 int bscat2 = block_state_category(state2);
643 int cycles1 = BLOCK_INFO_TRIMS(block1);
644 int cycles2 = BLOCK_INFO_TRIMS(block2);
645
646 if (bscat1 < bscat2)
647 return -1;
648 if (bscat1 > bscat2)
649 return 1;
650
651 if (cycles1 < cycles2)
652 return -1;
653 if (cycles1 > cycles2)
654 return 1;
655
656 if (state1 < state2)
657 return -1;
658 if (state1 > state2)
659 return 1;
660
661 assert(block1 == block2);
662 return 0;
663}
664
665static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
666 fio_fp64_t *plist, unsigned int **percentiles,
667 unsigned int *types)
668{
669 int len = 0;
670 int i, nr_uninit;
671
672 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
673
674 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
675 len++;
676
677 if (!len)
678 return 0;
679
680 /*
681 * Sort the percentile list. Note that it may already be sorted if
682 * we are using the default values, but since it's a short list this
683 * isn't a worry. Also note that this does not work for NaN values.
684 */
685 if (len > 1)
686 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
687
688 /* Start only after the uninit entries end */
689 for (nr_uninit = 0;
690 nr_uninit < nr_block_infos
691 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
692 nr_uninit ++)
693 ;
694
695 if (nr_uninit == nr_block_infos)
696 return 0;
697
698 *percentiles = calloc(len, sizeof(**percentiles));
699
700 for (i = 0; i < len; i++) {
701 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
702 + nr_uninit;
703 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
704 }
705
706 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
707 for (i = 0; i < nr_block_infos; i++)
708 types[BLOCK_INFO_STATE(block_infos[i])]++;
709
710 return len;
711}
712
713static const char *block_state_names[] = {
714 [BLOCK_STATE_UNINIT] = "unwritten",
715 [BLOCK_STATE_TRIMMED] = "trimmed",
716 [BLOCK_STATE_WRITTEN] = "written",
717 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
718 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
719};
720
721static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
722 fio_fp64_t *plist, struct buf_output *out)
723{
724 int len, pos, i;
725 unsigned int *percentiles = NULL;
726 unsigned int block_state_counts[BLOCK_STATE_COUNT];
727
728 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
729 &percentiles, block_state_counts);
730
731 log_buf(out, " block lifetime percentiles :\n |");
732 pos = 0;
733 for (i = 0; i < len; i++) {
734 uint32_t block_info = percentiles[i];
735#define LINE_LENGTH 75
736 char str[LINE_LENGTH];
737 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
738 plist[i].u.f, block_info,
739 i == len - 1 ? '\n' : ',');
740 assert(strln < LINE_LENGTH);
741 if (pos + strln > LINE_LENGTH) {
742 pos = 0;
743 log_buf(out, "\n |");
744 }
745 log_buf(out, "%s", str);
746 pos += strln;
747#undef LINE_LENGTH
748 }
749 if (percentiles)
750 free(percentiles);
751
752 log_buf(out, " states :");
753 for (i = 0; i < BLOCK_STATE_COUNT; i++)
754 log_buf(out, " %s=%u%c",
755 block_state_names[i], block_state_counts[i],
756 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
757}
758
759static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
760{
761 char *p1, *p1alt, *p2;
762 unsigned long long bw_mean, iops_mean;
763 const int i2p = is_power_of_2(ts->kb_base);
764
765 if (!ts->ss_dur)
766 return;
767
768 bw_mean = steadystate_bw_mean(ts);
769 iops_mean = steadystate_iops_mean(ts);
770
771 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
772 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
773 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
774
775 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
776 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
777 p1, p1alt, p2,
778 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
779 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
780 ts->ss_criterion.u.f,
781 ts->ss_state & FIO_SS_PCT ? "%" : "");
782
783 free(p1);
784 free(p1alt);
785 free(p2);
786}
787
788static void show_thread_status_normal(struct thread_stat *ts,
789 struct group_run_stats *rs,
790 struct buf_output *out)
791{
792 double usr_cpu, sys_cpu;
793 unsigned long runtime;
794 double io_u_dist[FIO_IO_U_MAP_NR];
795 time_t time_p;
796 char time_buf[32];
797
798 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
799 return;
800
801 memset(time_buf, 0, sizeof(time_buf));
802
803 time(&time_p);
804 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
805
806 if (!ts->error) {
807 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
808 ts->name, ts->groupid, ts->members,
809 ts->error, (int) ts->pid, time_buf);
810 } else {
811 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
812 ts->name, ts->groupid, ts->members,
813 ts->error, ts->verror, (int) ts->pid,
814 time_buf);
815 }
816
817 if (strlen(ts->description))
818 log_buf(out, " Description : [%s]\n", ts->description);
819
820 if (ts->io_bytes[DDIR_READ])
821 show_ddir_status(rs, ts, DDIR_READ, out);
822 if (ts->io_bytes[DDIR_WRITE])
823 show_ddir_status(rs, ts, DDIR_WRITE, out);
824 if (ts->io_bytes[DDIR_TRIM])
825 show_ddir_status(rs, ts, DDIR_TRIM, out);
826
827 show_latencies(ts, out);
828
829 if (ts->sync_stat.samples)
830 show_ddir_status(rs, ts, DDIR_SYNC, out);
831
832 runtime = ts->total_run_time;
833 if (runtime) {
834 double runt = (double) runtime;
835
836 usr_cpu = (double) ts->usr_time * 100 / runt;
837 sys_cpu = (double) ts->sys_time * 100 / runt;
838 } else {
839 usr_cpu = 0;
840 sys_cpu = 0;
841 }
842
843 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
844 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
845 (unsigned long long) ts->ctx,
846 (unsigned long long) ts->majf,
847 (unsigned long long) ts->minf);
848
849 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
850 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
851 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
852 io_u_dist[1], io_u_dist[2],
853 io_u_dist[3], io_u_dist[4],
854 io_u_dist[5], io_u_dist[6]);
855
856 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
857 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
858 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
859 io_u_dist[1], io_u_dist[2],
860 io_u_dist[3], io_u_dist[4],
861 io_u_dist[5], io_u_dist[6]);
862 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
863 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
864 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
865 io_u_dist[1], io_u_dist[2],
866 io_u_dist[3], io_u_dist[4],
867 io_u_dist[5], io_u_dist[6]);
868 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
869 " short=%llu,%llu,%llu,0"
870 " dropped=%llu,%llu,%llu,0\n",
871 (unsigned long long) ts->total_io_u[0],
872 (unsigned long long) ts->total_io_u[1],
873 (unsigned long long) ts->total_io_u[2],
874 (unsigned long long) ts->total_io_u[3],
875 (unsigned long long) ts->short_io_u[0],
876 (unsigned long long) ts->short_io_u[1],
877 (unsigned long long) ts->short_io_u[2],
878 (unsigned long long) ts->drop_io_u[0],
879 (unsigned long long) ts->drop_io_u[1],
880 (unsigned long long) ts->drop_io_u[2]);
881 if (ts->continue_on_error) {
882 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
883 (unsigned long long)ts->total_err_count,
884 ts->first_error,
885 strerror(ts->first_error));
886 }
887 if (ts->latency_depth) {
888 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
889 (unsigned long long)ts->latency_target,
890 (unsigned long long)ts->latency_window,
891 ts->latency_percentile.u.f,
892 ts->latency_depth);
893 }
894
895 if (ts->nr_block_infos)
896 show_block_infos(ts->nr_block_infos, ts->block_infos,
897 ts->percentile_list, out);
898
899 if (ts->ss_dur)
900 show_ss_normal(ts, out);
901}
902
903static void show_ddir_status_terse(struct thread_stat *ts,
904 struct group_run_stats *rs, int ddir,
905 int ver, struct buf_output *out)
906{
907 unsigned long long min, max, minv, maxv, bw, iops;
908 unsigned long long *ovals = NULL;
909 double mean, dev;
910 unsigned int len;
911 int i, bw_stat;
912
913 assert(ddir_rw(ddir));
914
915 iops = bw = 0;
916 if (ts->runtime[ddir]) {
917 uint64_t runt = ts->runtime[ddir];
918
919 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
920 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
921 }
922
923 log_buf(out, ";%llu;%llu;%llu;%llu",
924 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
925 (unsigned long long) ts->runtime[ddir]);
926
927 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
928 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
929 else
930 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
931
932 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
933 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
934 else
935 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
936
937 if (ts->clat_percentiles || ts->lat_percentiles) {
938 len = calc_clat_percentiles(ts->io_u_plat[ddir],
939 ts->clat_stat[ddir].samples,
940 ts->percentile_list, &ovals, &maxv,
941 &minv);
942 } else
943 len = 0;
944
945 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
946 if (i >= len) {
947 log_buf(out, ";0%%=0");
948 continue;
949 }
950 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
951 }
952
953 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
954 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
955 else
956 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
957
958 if (ovals)
959 free(ovals);
960
961 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
962 if (bw_stat) {
963 double p_of_agg = 100.0;
964
965 if (rs->agg[ddir]) {
966 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
967 if (p_of_agg > 100.0)
968 p_of_agg = 100.0;
969 }
970
971 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
972 } else
973 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
974
975 if (ver == 5) {
976 if (bw_stat)
977 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
978 else
979 log_buf(out, ";%lu", 0UL);
980
981 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
982 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
983 mean, dev, (&ts->iops_stat[ddir])->samples);
984 else
985 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
986 }
987}
988
989static void add_ddir_status_json(struct thread_stat *ts,
990 struct group_run_stats *rs, int ddir, struct json_object *parent)
991{
992 unsigned long long min, max, minv, maxv;
993 unsigned long long bw_bytes, bw;
994 unsigned long long *ovals = NULL;
995 double mean, dev, iops;
996 unsigned int len;
997 int i;
998 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
999 char buf[120];
1000 double p_of_agg = 100.0;
1001
1002 assert(ddir_rw(ddir) || ddir_sync(ddir));
1003
1004 if (ts->unified_rw_rep && ddir != DDIR_READ)
1005 return;
1006
1007 dir_object = json_create_object();
1008 json_object_add_value_object(parent,
1009 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1010
1011 if (ddir_rw(ddir)) {
1012 bw_bytes = 0;
1013 bw = 0;
1014 iops = 0.0;
1015 if (ts->runtime[ddir]) {
1016 uint64_t runt = ts->runtime[ddir];
1017
1018 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1019 bw = bw_bytes / 1024; /* KiB/s */
1020 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1021 }
1022
1023 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1024 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1025 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1026 json_object_add_value_int(dir_object, "bw", bw);
1027 json_object_add_value_float(dir_object, "iops", iops);
1028 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1029 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1030 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1031 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1032
1033 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1034 min = max = 0;
1035 mean = dev = 0.0;
1036 }
1037 tmp_object = json_create_object();
1038 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1039 json_object_add_value_int(tmp_object, "min", min);
1040 json_object_add_value_int(tmp_object, "max", max);
1041 json_object_add_value_float(tmp_object, "mean", mean);
1042 json_object_add_value_float(tmp_object, "stddev", dev);
1043
1044 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1045 min = max = 0;
1046 mean = dev = 0.0;
1047 }
1048 tmp_object = json_create_object();
1049 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1050 json_object_add_value_int(tmp_object, "min", min);
1051 json_object_add_value_int(tmp_object, "max", max);
1052 json_object_add_value_float(tmp_object, "mean", mean);
1053 json_object_add_value_float(tmp_object, "stddev", dev);
1054 } else {
1055 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1056 min = max = 0;
1057 mean = dev = 0.0;
1058 }
1059
1060 tmp_object = json_create_object();
1061 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1062 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1063 json_object_add_value_int(tmp_object, "min", min);
1064 json_object_add_value_int(tmp_object, "max", max);
1065 json_object_add_value_float(tmp_object, "mean", mean);
1066 json_object_add_value_float(tmp_object, "stddev", dev);
1067 }
1068
1069 if (ts->clat_percentiles || ts->lat_percentiles) {
1070 if (ddir_rw(ddir)) {
1071 uint64_t samples;
1072
1073 if (ts->clat_percentiles)
1074 samples = ts->clat_stat[ddir].samples;
1075 else
1076 samples = ts->lat_stat[ddir].samples;
1077
1078 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1079 samples, ts->percentile_list, &ovals,
1080 &maxv, &minv);
1081 } else {
1082 len = calc_clat_percentiles(ts->io_u_sync_plat,
1083 ts->sync_stat.samples,
1084 ts->percentile_list, &ovals, &maxv,
1085 &minv);
1086 }
1087
1088 if (len > FIO_IO_U_LIST_MAX_LEN)
1089 len = FIO_IO_U_LIST_MAX_LEN;
1090 } else
1091 len = 0;
1092
1093 percentile_object = json_create_object();
1094 if (ts->clat_percentiles)
1095 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1096 for (i = 0; i < len; i++) {
1097 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1098 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1099 }
1100
1101 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1102 clat_bins_object = json_create_object();
1103 if (ts->clat_percentiles)
1104 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1105
1106 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1107 if (ddir_rw(ddir)) {
1108 if (ts->io_u_plat[ddir][i]) {
1109 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1110 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1111 }
1112 } else {
1113 if (ts->io_u_sync_plat[i]) {
1114 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1115 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1116 }
1117 }
1118 }
1119 }
1120
1121 if (!ddir_rw(ddir))
1122 return;
1123
1124 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1125 min = max = 0;
1126 mean = dev = 0.0;
1127 }
1128 tmp_object = json_create_object();
1129 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1130 json_object_add_value_int(tmp_object, "min", min);
1131 json_object_add_value_int(tmp_object, "max", max);
1132 json_object_add_value_float(tmp_object, "mean", mean);
1133 json_object_add_value_float(tmp_object, "stddev", dev);
1134 if (ts->lat_percentiles)
1135 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1136 if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1137 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1138
1139 if (ovals)
1140 free(ovals);
1141
1142 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1143 if (rs->agg[ddir]) {
1144 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1145 if (p_of_agg > 100.0)
1146 p_of_agg = 100.0;
1147 }
1148 } else {
1149 min = max = 0;
1150 p_of_agg = mean = dev = 0.0;
1151 }
1152 json_object_add_value_int(dir_object, "bw_min", min);
1153 json_object_add_value_int(dir_object, "bw_max", max);
1154 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1155 json_object_add_value_float(dir_object, "bw_mean", mean);
1156 json_object_add_value_float(dir_object, "bw_dev", dev);
1157 json_object_add_value_int(dir_object, "bw_samples",
1158 (&ts->bw_stat[ddir])->samples);
1159
1160 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1161 min = max = 0;
1162 mean = dev = 0.0;
1163 }
1164 json_object_add_value_int(dir_object, "iops_min", min);
1165 json_object_add_value_int(dir_object, "iops_max", max);
1166 json_object_add_value_float(dir_object, "iops_mean", mean);
1167 json_object_add_value_float(dir_object, "iops_stddev", dev);
1168 json_object_add_value_int(dir_object, "iops_samples",
1169 (&ts->iops_stat[ddir])->samples);
1170
1171 if (ts->cachehit + ts->cachemiss) {
1172 uint64_t total;
1173 double hit;
1174
1175 total = ts->cachehit + ts->cachemiss;
1176 hit = (double) ts->cachehit / (double) total;
1177 hit *= 100.0;
1178 json_object_add_value_float(dir_object, "cachehit", hit);
1179 }
1180}
1181
1182static void show_thread_status_terse_all(struct thread_stat *ts,
1183 struct group_run_stats *rs, int ver,
1184 struct buf_output *out)
1185{
1186 double io_u_dist[FIO_IO_U_MAP_NR];
1187 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1188 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1189 double usr_cpu, sys_cpu;
1190 int i;
1191
1192 /* General Info */
1193 if (ver == 2)
1194 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1195 else
1196 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1197 ts->name, ts->groupid, ts->error);
1198
1199 /* Log Read Status */
1200 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1201 /* Log Write Status */
1202 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1203 /* Log Trim Status */
1204 if (ver == 2 || ver == 4 || ver == 5)
1205 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1206
1207 /* CPU Usage */
1208 if (ts->total_run_time) {
1209 double runt = (double) ts->total_run_time;
1210
1211 usr_cpu = (double) ts->usr_time * 100 / runt;
1212 sys_cpu = (double) ts->sys_time * 100 / runt;
1213 } else {
1214 usr_cpu = 0;
1215 sys_cpu = 0;
1216 }
1217
1218 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1219 (unsigned long long) ts->ctx,
1220 (unsigned long long) ts->majf,
1221 (unsigned long long) ts->minf);
1222
1223 /* Calc % distribution of IO depths, usecond, msecond latency */
1224 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1225 stat_calc_lat_nu(ts, io_u_lat_u);
1226 stat_calc_lat_m(ts, io_u_lat_m);
1227
1228 /* Only show fixed 7 I/O depth levels*/
1229 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1230 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1231 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1232
1233 /* Microsecond latency */
1234 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1235 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1236 /* Millisecond latency */
1237 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1238 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1239
1240 /* disk util stats, if any */
1241 if (ver >= 3 && is_running_backend())
1242 show_disk_util(1, NULL, out);
1243
1244 /* Additional output if continue_on_error set - default off*/
1245 if (ts->continue_on_error)
1246 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1247 if (ver == 2)
1248 log_buf(out, "\n");
1249
1250 /* Additional output if description is set */
1251 if (strlen(ts->description))
1252 log_buf(out, ";%s", ts->description);
1253
1254 log_buf(out, "\n");
1255}
1256
1257static void json_add_job_opts(struct json_object *root, const char *name,
1258 struct flist_head *opt_list)
1259{
1260 struct json_object *dir_object;
1261 struct flist_head *entry;
1262 struct print_option *p;
1263
1264 if (flist_empty(opt_list))
1265 return;
1266
1267 dir_object = json_create_object();
1268 json_object_add_value_object(root, name, dir_object);
1269
1270 flist_for_each(entry, opt_list) {
1271 const char *pos = "";
1272
1273 p = flist_entry(entry, struct print_option, list);
1274 if (p->value)
1275 pos = p->value;
1276 json_object_add_value_string(dir_object, p->name, pos);
1277 }
1278}
1279
1280static struct json_object *show_thread_status_json(struct thread_stat *ts,
1281 struct group_run_stats *rs,
1282 struct flist_head *opt_list)
1283{
1284 struct json_object *root, *tmp;
1285 struct jobs_eta *je;
1286 double io_u_dist[FIO_IO_U_MAP_NR];
1287 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1288 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1289 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1290 double usr_cpu, sys_cpu;
1291 int i;
1292 size_t size;
1293
1294 root = json_create_object();
1295 json_object_add_value_string(root, "jobname", ts->name);
1296 json_object_add_value_int(root, "groupid", ts->groupid);
1297 json_object_add_value_int(root, "error", ts->error);
1298
1299 /* ETA Info */
1300 je = get_jobs_eta(true, &size);
1301 if (je) {
1302 json_object_add_value_int(root, "eta", je->eta_sec);
1303 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1304 }
1305
1306 if (opt_list)
1307 json_add_job_opts(root, "job options", opt_list);
1308
1309 add_ddir_status_json(ts, rs, DDIR_READ, root);
1310 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1311 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1312 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1313
1314 /* CPU Usage */
1315 if (ts->total_run_time) {
1316 double runt = (double) ts->total_run_time;
1317
1318 usr_cpu = (double) ts->usr_time * 100 / runt;
1319 sys_cpu = (double) ts->sys_time * 100 / runt;
1320 } else {
1321 usr_cpu = 0;
1322 sys_cpu = 0;
1323 }
1324 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1325 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1326 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1327 json_object_add_value_int(root, "ctx", ts->ctx);
1328 json_object_add_value_int(root, "majf", ts->majf);
1329 json_object_add_value_int(root, "minf", ts->minf);
1330
1331 /* Calc % distribution of IO depths */
1332 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1333 tmp = json_create_object();
1334 json_object_add_value_object(root, "iodepth_level", tmp);
1335 /* Only show fixed 7 I/O depth levels*/
1336 for (i = 0; i < 7; i++) {
1337 char name[20];
1338 if (i < 6)
1339 snprintf(name, 20, "%d", 1 << i);
1340 else
1341 snprintf(name, 20, ">=%d", 1 << i);
1342 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1343 }
1344
1345 /* Calc % distribution of submit IO depths */
1346 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1347 tmp = json_create_object();
1348 json_object_add_value_object(root, "iodepth_submit", tmp);
1349 /* Only show fixed 7 I/O depth levels*/
1350 for (i = 0; i < 7; i++) {
1351 char name[20];
1352 if (i == 0)
1353 snprintf(name, 20, "0");
1354 else if (i < 6)
1355 snprintf(name, 20, "%d", 1 << (i+1));
1356 else
1357 snprintf(name, 20, ">=%d", 1 << i);
1358 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1359 }
1360
1361 /* Calc % distribution of completion IO depths */
1362 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1363 tmp = json_create_object();
1364 json_object_add_value_object(root, "iodepth_complete", tmp);
1365 /* Only show fixed 7 I/O depth levels*/
1366 for (i = 0; i < 7; i++) {
1367 char name[20];
1368 if (i == 0)
1369 snprintf(name, 20, "0");
1370 else if (i < 6)
1371 snprintf(name, 20, "%d", 1 << (i+1));
1372 else
1373 snprintf(name, 20, ">=%d", 1 << i);
1374 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1375 }
1376
1377 /* Calc % distribution of nsecond, usecond, msecond latency */
1378 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1379 stat_calc_lat_n(ts, io_u_lat_n);
1380 stat_calc_lat_u(ts, io_u_lat_u);
1381 stat_calc_lat_m(ts, io_u_lat_m);
1382
1383 /* Nanosecond latency */
1384 tmp = json_create_object();
1385 json_object_add_value_object(root, "latency_ns", tmp);
1386 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1387 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1388 "250", "500", "750", "1000", };
1389 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1390 }
1391 /* Microsecond latency */
1392 tmp = json_create_object();
1393 json_object_add_value_object(root, "latency_us", tmp);
1394 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1395 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1396 "250", "500", "750", "1000", };
1397 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1398 }
1399 /* Millisecond latency */
1400 tmp = json_create_object();
1401 json_object_add_value_object(root, "latency_ms", tmp);
1402 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1403 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1404 "250", "500", "750", "1000", "2000",
1405 ">=2000", };
1406 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1407 }
1408
1409 /* Additional output if continue_on_error set - default off*/
1410 if (ts->continue_on_error) {
1411 json_object_add_value_int(root, "total_err", ts->total_err_count);
1412 json_object_add_value_int(root, "first_error", ts->first_error);
1413 }
1414
1415 if (ts->latency_depth) {
1416 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1417 json_object_add_value_int(root, "latency_target", ts->latency_target);
1418 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1419 json_object_add_value_int(root, "latency_window", ts->latency_window);
1420 }
1421
1422 /* Additional output if description is set */
1423 if (strlen(ts->description))
1424 json_object_add_value_string(root, "desc", ts->description);
1425
1426 if (ts->nr_block_infos) {
1427 /* Block error histogram and types */
1428 int len;
1429 unsigned int *percentiles = NULL;
1430 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1431
1432 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1433 ts->percentile_list,
1434 &percentiles, block_state_counts);
1435
1436 if (len) {
1437 struct json_object *block, *percentile_object, *states;
1438 int state;
1439 block = json_create_object();
1440 json_object_add_value_object(root, "block", block);
1441
1442 percentile_object = json_create_object();
1443 json_object_add_value_object(block, "percentiles",
1444 percentile_object);
1445 for (i = 0; i < len; i++) {
1446 char buf[20];
1447 snprintf(buf, sizeof(buf), "%f",
1448 ts->percentile_list[i].u.f);
1449 json_object_add_value_int(percentile_object,
1450 (const char *)buf,
1451 percentiles[i]);
1452 }
1453
1454 states = json_create_object();
1455 json_object_add_value_object(block, "states", states);
1456 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1457 json_object_add_value_int(states,
1458 block_state_names[state],
1459 block_state_counts[state]);
1460 }
1461 free(percentiles);
1462 }
1463 }
1464
1465 if (ts->ss_dur) {
1466 struct json_object *data;
1467 struct json_array *iops, *bw;
1468 int j, k, l;
1469 char ss_buf[64];
1470
1471 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1472 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1473 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1474 (float) ts->ss_limit.u.f,
1475 ts->ss_state & FIO_SS_PCT ? "%" : "");
1476
1477 tmp = json_create_object();
1478 json_object_add_value_object(root, "steadystate", tmp);
1479 json_object_add_value_string(tmp, "ss", ss_buf);
1480 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1481 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1482
1483 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1484 ts->ss_state & FIO_SS_PCT ? "%" : "");
1485 json_object_add_value_string(tmp, "criterion", ss_buf);
1486 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1487 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1488
1489 data = json_create_object();
1490 json_object_add_value_object(tmp, "data", data);
1491 bw = json_create_array();
1492 iops = json_create_array();
1493
1494 /*
1495 ** if ss was attained or the buffer is not full,
1496 ** ss->head points to the first element in the list.
1497 ** otherwise it actually points to the second element
1498 ** in the list
1499 */
1500 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1501 j = ts->ss_head;
1502 else
1503 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1504 for (l = 0; l < ts->ss_dur; l++) {
1505 k = (j + l) % ts->ss_dur;
1506 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1507 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1508 }
1509 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1510 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1511 json_object_add_value_array(data, "iops", iops);
1512 json_object_add_value_array(data, "bw", bw);
1513 }
1514
1515 return root;
1516}
1517
1518static void show_thread_status_terse(struct thread_stat *ts,
1519 struct group_run_stats *rs,
1520 struct buf_output *out)
1521{
1522 if (terse_version >= 2 && terse_version <= 5)
1523 show_thread_status_terse_all(ts, rs, terse_version, out);
1524 else
1525 log_err("fio: bad terse version!? %d\n", terse_version);
1526}
1527
1528struct json_object *show_thread_status(struct thread_stat *ts,
1529 struct group_run_stats *rs,
1530 struct flist_head *opt_list,
1531 struct buf_output *out)
1532{
1533 struct json_object *ret = NULL;
1534
1535 if (output_format & FIO_OUTPUT_TERSE)
1536 show_thread_status_terse(ts, rs, out);
1537 if (output_format & FIO_OUTPUT_JSON)
1538 ret = show_thread_status_json(ts, rs, opt_list);
1539 if (output_format & FIO_OUTPUT_NORMAL)
1540 show_thread_status_normal(ts, rs, out);
1541
1542 return ret;
1543}
1544
1545static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1546{
1547 double mean, S;
1548
1549 dst->min_val = min(dst->min_val, src->min_val);
1550 dst->max_val = max(dst->max_val, src->max_val);
1551
1552 /*
1553 * Compute new mean and S after the merge
1554 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1555 * #Parallel_algorithm>
1556 */
1557 if (first) {
1558 mean = src->mean.u.f;
1559 S = src->S.u.f;
1560 } else {
1561 double delta = src->mean.u.f - dst->mean.u.f;
1562
1563 mean = ((src->mean.u.f * src->samples) +
1564 (dst->mean.u.f * dst->samples)) /
1565 (dst->samples + src->samples);
1566
1567 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1568 (dst->samples * src->samples) /
1569 (dst->samples + src->samples);
1570 }
1571
1572 dst->samples += src->samples;
1573 dst->mean.u.f = mean;
1574 dst->S.u.f = S;
1575
1576}
1577
1578/*
1579 * We sum two kinds of stats - one that is time based, in which case we
1580 * apply the proper summing technique, and then one that is iops/bw
1581 * numbers. For group_reporting, we should just add those up, not make
1582 * them the mean of everything.
1583 */
1584static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1585 bool pure_sum)
1586{
1587 if (src->samples == 0)
1588 return;
1589
1590 if (!pure_sum) {
1591 __sum_stat(dst, src, first);
1592 return;
1593 }
1594
1595 if (first) {
1596 dst->min_val = src->min_val;
1597 dst->max_val = src->max_val;
1598 dst->samples = src->samples;
1599 dst->mean.u.f = src->mean.u.f;
1600 dst->S.u.f = src->S.u.f;
1601 } else {
1602 dst->min_val += src->min_val;
1603 dst->max_val += src->max_val;
1604 dst->samples += src->samples;
1605 dst->mean.u.f += src->mean.u.f;
1606 dst->S.u.f += src->S.u.f;
1607 }
1608}
1609
1610void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1611{
1612 int i;
1613
1614 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1615 if (dst->max_run[i] < src->max_run[i])
1616 dst->max_run[i] = src->max_run[i];
1617 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1618 dst->min_run[i] = src->min_run[i];
1619 if (dst->max_bw[i] < src->max_bw[i])
1620 dst->max_bw[i] = src->max_bw[i];
1621 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1622 dst->min_bw[i] = src->min_bw[i];
1623
1624 dst->iobytes[i] += src->iobytes[i];
1625 dst->agg[i] += src->agg[i];
1626 }
1627
1628 if (!dst->kb_base)
1629 dst->kb_base = src->kb_base;
1630 if (!dst->unit_base)
1631 dst->unit_base = src->unit_base;
1632 if (!dst->sig_figs)
1633 dst->sig_figs = src->sig_figs;
1634}
1635
1636void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1637 bool first)
1638{
1639 int l, k;
1640
1641 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1642 if (!dst->unified_rw_rep) {
1643 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1644 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1645 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1646 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1647 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1648
1649 dst->io_bytes[l] += src->io_bytes[l];
1650
1651 if (dst->runtime[l] < src->runtime[l])
1652 dst->runtime[l] = src->runtime[l];
1653 } else {
1654 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1655 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1656 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1657 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1658 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1659
1660 dst->io_bytes[0] += src->io_bytes[l];
1661
1662 if (dst->runtime[0] < src->runtime[l])
1663 dst->runtime[0] = src->runtime[l];
1664
1665 /*
1666 * We're summing to the same destination, so override
1667 * 'first' after the first iteration of the loop
1668 */
1669 first = false;
1670 }
1671 }
1672
1673 sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1674 dst->usr_time += src->usr_time;
1675 dst->sys_time += src->sys_time;
1676 dst->ctx += src->ctx;
1677 dst->majf += src->majf;
1678 dst->minf += src->minf;
1679
1680 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1681 dst->io_u_map[k] += src->io_u_map[k];
1682 dst->io_u_submit[k] += src->io_u_submit[k];
1683 dst->io_u_complete[k] += src->io_u_complete[k];
1684 }
1685
1686 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1687 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1688 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1689 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1690 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1691 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1692
1693 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1694 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1695
1696 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1697 if (!dst->unified_rw_rep) {
1698 dst->total_io_u[k] += src->total_io_u[k];
1699 dst->short_io_u[k] += src->short_io_u[k];
1700 dst->drop_io_u[k] += src->drop_io_u[k];
1701 } else {
1702 dst->total_io_u[0] += src->total_io_u[k];
1703 dst->short_io_u[0] += src->short_io_u[k];
1704 dst->drop_io_u[0] += src->drop_io_u[k];
1705 }
1706 }
1707
1708 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1709
1710 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1711 int m;
1712
1713 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1714 if (!dst->unified_rw_rep)
1715 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1716 else
1717 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1718 }
1719 }
1720
1721 dst->total_run_time += src->total_run_time;
1722 dst->total_submit += src->total_submit;
1723 dst->total_complete += src->total_complete;
1724 dst->nr_zone_resets += src->nr_zone_resets;
1725 dst->cachehit += src->cachehit;
1726 dst->cachemiss += src->cachemiss;
1727}
1728
1729void init_group_run_stat(struct group_run_stats *gs)
1730{
1731 int i;
1732 memset(gs, 0, sizeof(*gs));
1733
1734 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1735 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1736}
1737
1738void init_thread_stat(struct thread_stat *ts)
1739{
1740 int j;
1741
1742 memset(ts, 0, sizeof(*ts));
1743
1744 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1745 ts->lat_stat[j].min_val = -1UL;
1746 ts->clat_stat[j].min_val = -1UL;
1747 ts->slat_stat[j].min_val = -1UL;
1748 ts->bw_stat[j].min_val = -1UL;
1749 ts->iops_stat[j].min_val = -1UL;
1750 }
1751 ts->sync_stat.min_val = -1UL;
1752 ts->groupid = -1;
1753}
1754
1755void __show_run_stats(void)
1756{
1757 struct group_run_stats *runstats, *rs;
1758 struct thread_data *td;
1759 struct thread_stat *threadstats, *ts;
1760 int i, j, k, nr_ts, last_ts, idx;
1761 bool kb_base_warned = false;
1762 bool unit_base_warned = false;
1763 struct json_object *root = NULL;
1764 struct json_array *array = NULL;
1765 struct buf_output output[FIO_OUTPUT_NR];
1766 struct flist_head **opt_lists;
1767
1768 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1769
1770 for (i = 0; i < groupid + 1; i++)
1771 init_group_run_stat(&runstats[i]);
1772
1773 /*
1774 * find out how many threads stats we need. if group reporting isn't
1775 * enabled, it's one-per-td.
1776 */
1777 nr_ts = 0;
1778 last_ts = -1;
1779 for_each_td(td, i) {
1780 if (!td->o.group_reporting) {
1781 nr_ts++;
1782 continue;
1783 }
1784 if (last_ts == td->groupid)
1785 continue;
1786 if (!td->o.stats)
1787 continue;
1788
1789 last_ts = td->groupid;
1790 nr_ts++;
1791 }
1792
1793 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1794 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1795
1796 for (i = 0; i < nr_ts; i++) {
1797 init_thread_stat(&threadstats[i]);
1798 opt_lists[i] = NULL;
1799 }
1800
1801 j = 0;
1802 last_ts = -1;
1803 idx = 0;
1804 for_each_td(td, i) {
1805 if (!td->o.stats)
1806 continue;
1807 if (idx && (!td->o.group_reporting ||
1808 (td->o.group_reporting && last_ts != td->groupid))) {
1809 idx = 0;
1810 j++;
1811 }
1812
1813 last_ts = td->groupid;
1814
1815 ts = &threadstats[j];
1816
1817 ts->clat_percentiles = td->o.clat_percentiles;
1818 ts->lat_percentiles = td->o.lat_percentiles;
1819 ts->percentile_precision = td->o.percentile_precision;
1820 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1821 opt_lists[j] = &td->opt_list;
1822
1823 idx++;
1824 ts->members++;
1825
1826 if (ts->groupid == -1) {
1827 /*
1828 * These are per-group shared already
1829 */
1830 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1831 if (td->o.description)
1832 strncpy(ts->description, td->o.description,
1833 FIO_JOBDESC_SIZE - 1);
1834 else
1835 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1836
1837 /*
1838 * If multiple entries in this group, this is
1839 * the first member.
1840 */
1841 ts->thread_number = td->thread_number;
1842 ts->groupid = td->groupid;
1843
1844 /*
1845 * first pid in group, not very useful...
1846 */
1847 ts->pid = td->pid;
1848
1849 ts->kb_base = td->o.kb_base;
1850 ts->unit_base = td->o.unit_base;
1851 ts->sig_figs = td->o.sig_figs;
1852 ts->unified_rw_rep = td->o.unified_rw_rep;
1853 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1854 log_info("fio: kb_base differs for jobs in group, using"
1855 " %u as the base\n", ts->kb_base);
1856 kb_base_warned = true;
1857 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1858 log_info("fio: unit_base differs for jobs in group, using"
1859 " %u as the base\n", ts->unit_base);
1860 unit_base_warned = true;
1861 }
1862
1863 ts->continue_on_error = td->o.continue_on_error;
1864 ts->total_err_count += td->total_err_count;
1865 ts->first_error = td->first_error;
1866 if (!ts->error) {
1867 if (!td->error && td->o.continue_on_error &&
1868 td->first_error) {
1869 ts->error = td->first_error;
1870 ts->verror[sizeof(ts->verror) - 1] = '\0';
1871 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1872 } else if (td->error) {
1873 ts->error = td->error;
1874 ts->verror[sizeof(ts->verror) - 1] = '\0';
1875 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1876 }
1877 }
1878
1879 ts->latency_depth = td->latency_qd;
1880 ts->latency_target = td->o.latency_target;
1881 ts->latency_percentile = td->o.latency_percentile;
1882 ts->latency_window = td->o.latency_window;
1883
1884 ts->nr_block_infos = td->ts.nr_block_infos;
1885 for (k = 0; k < ts->nr_block_infos; k++)
1886 ts->block_infos[k] = td->ts.block_infos[k];
1887
1888 sum_thread_stats(ts, &td->ts, idx == 1);
1889
1890 if (td->o.ss_dur) {
1891 ts->ss_state = td->ss.state;
1892 ts->ss_dur = td->ss.dur;
1893 ts->ss_head = td->ss.head;
1894 ts->ss_bw_data = td->ss.bw_data;
1895 ts->ss_iops_data = td->ss.iops_data;
1896 ts->ss_limit.u.f = td->ss.limit;
1897 ts->ss_slope.u.f = td->ss.slope;
1898 ts->ss_deviation.u.f = td->ss.deviation;
1899 ts->ss_criterion.u.f = td->ss.criterion;
1900 }
1901 else
1902 ts->ss_dur = ts->ss_state = 0;
1903 }
1904
1905 for (i = 0; i < nr_ts; i++) {
1906 unsigned long long bw;
1907
1908 ts = &threadstats[i];
1909 if (ts->groupid == -1)
1910 continue;
1911 rs = &runstats[ts->groupid];
1912 rs->kb_base = ts->kb_base;
1913 rs->unit_base = ts->unit_base;
1914 rs->sig_figs = ts->sig_figs;
1915 rs->unified_rw_rep += ts->unified_rw_rep;
1916
1917 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1918 if (!ts->runtime[j])
1919 continue;
1920 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1921 rs->min_run[j] = ts->runtime[j];
1922 if (ts->runtime[j] > rs->max_run[j])
1923 rs->max_run[j] = ts->runtime[j];
1924
1925 bw = 0;
1926 if (ts->runtime[j])
1927 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1928 if (bw < rs->min_bw[j])
1929 rs->min_bw[j] = bw;
1930 if (bw > rs->max_bw[j])
1931 rs->max_bw[j] = bw;
1932
1933 rs->iobytes[j] += ts->io_bytes[j];
1934 }
1935 }
1936
1937 for (i = 0; i < groupid + 1; i++) {
1938 int ddir;
1939
1940 rs = &runstats[i];
1941
1942 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1943 if (rs->max_run[ddir])
1944 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1945 rs->max_run[ddir];
1946 }
1947 }
1948
1949 for (i = 0; i < FIO_OUTPUT_NR; i++)
1950 buf_output_init(&output[i]);
1951
1952 /*
1953 * don't overwrite last signal output
1954 */
1955 if (output_format & FIO_OUTPUT_NORMAL)
1956 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1957 if (output_format & FIO_OUTPUT_JSON) {
1958 struct thread_data *global;
1959 char time_buf[32];
1960 struct timeval now;
1961 unsigned long long ms_since_epoch;
1962 time_t tv_sec;
1963
1964 gettimeofday(&now, NULL);
1965 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1966 (unsigned long long)(now.tv_usec) / 1000;
1967
1968 tv_sec = now.tv_sec;
1969 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1970 if (time_buf[strlen(time_buf) - 1] == '\n')
1971 time_buf[strlen(time_buf) - 1] = '\0';
1972
1973 root = json_create_object();
1974 json_object_add_value_string(root, "fio version", fio_version_string);
1975 json_object_add_value_int(root, "timestamp", now.tv_sec);
1976 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1977 json_object_add_value_string(root, "time", time_buf);
1978 global = get_global_options();
1979 json_add_job_opts(root, "global options", &global->opt_list);
1980 array = json_create_array();
1981 json_object_add_value_array(root, "jobs", array);
1982 }
1983
1984 if (is_backend)
1985 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1986
1987 for (i = 0; i < nr_ts; i++) {
1988 ts = &threadstats[i];
1989 rs = &runstats[ts->groupid];
1990
1991 if (is_backend) {
1992 fio_server_send_job_options(opt_lists[i], i);
1993 fio_server_send_ts(ts, rs);
1994 } else {
1995 if (output_format & FIO_OUTPUT_TERSE)
1996 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1997 if (output_format & FIO_OUTPUT_JSON) {
1998 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1999 json_array_add_value_object(array, tmp);
2000 }
2001 if (output_format & FIO_OUTPUT_NORMAL)
2002 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2003 }
2004 }
2005 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2006 /* disk util stats, if any */
2007 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2008
2009 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2010
2011 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2012 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2013 json_free_object(root);
2014 }
2015
2016 for (i = 0; i < groupid + 1; i++) {
2017 rs = &runstats[i];
2018
2019 rs->groupid = i;
2020 if (is_backend)
2021 fio_server_send_gs(rs);
2022 else if (output_format & FIO_OUTPUT_NORMAL)
2023 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2024 }
2025
2026 if (is_backend)
2027 fio_server_send_du();
2028 else if (output_format & FIO_OUTPUT_NORMAL) {
2029 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2030 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2031 }
2032
2033 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2034 struct buf_output *out = &output[i];
2035
2036 log_info_buf(out->buf, out->buflen);
2037 buf_output_free(out);
2038 }
2039
2040 fio_idle_prof_cleanup();
2041
2042 log_info_flush();
2043 free(runstats);
2044 free(threadstats);
2045 free(opt_lists);
2046}
2047
2048void __show_running_run_stats(void)
2049{
2050 struct thread_data *td;
2051 unsigned long long *rt;
2052 struct timespec ts;
2053 int i;
2054
2055 fio_sem_down(stat_sem);
2056
2057 rt = malloc(thread_number * sizeof(unsigned long long));
2058 fio_gettime(&ts, NULL);
2059
2060 for_each_td(td, i) {
2061 td->update_rusage = 1;
2062 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2063 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2064 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2065 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2066
2067 rt[i] = mtime_since(&td->start, &ts);
2068 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2069 td->ts.runtime[DDIR_READ] += rt[i];
2070 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2071 td->ts.runtime[DDIR_WRITE] += rt[i];
2072 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2073 td->ts.runtime[DDIR_TRIM] += rt[i];
2074 }
2075
2076 for_each_td(td, i) {
2077 if (td->runstate >= TD_EXITED)
2078 continue;
2079 if (td->rusage_sem) {
2080 td->update_rusage = 1;
2081 fio_sem_down(td->rusage_sem);
2082 }
2083 td->update_rusage = 0;
2084 }
2085
2086 __show_run_stats();
2087
2088 for_each_td(td, i) {
2089 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2090 td->ts.runtime[DDIR_READ] -= rt[i];
2091 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2092 td->ts.runtime[DDIR_WRITE] -= rt[i];
2093 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2094 td->ts.runtime[DDIR_TRIM] -= rt[i];
2095 }
2096
2097 free(rt);
2098 fio_sem_up(stat_sem);
2099}
2100
2101static bool status_interval_init;
2102static struct timespec status_time;
2103static bool status_file_disabled;
2104
2105#define FIO_STATUS_FILE "fio-dump-status"
2106
2107static int check_status_file(void)
2108{
2109 struct stat sb;
2110 const char *temp_dir;
2111 char fio_status_file_path[PATH_MAX];
2112
2113 if (status_file_disabled)
2114 return 0;
2115
2116 temp_dir = getenv("TMPDIR");
2117 if (temp_dir == NULL) {
2118 temp_dir = getenv("TEMP");
2119 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2120 temp_dir = NULL;
2121 }
2122 if (temp_dir == NULL)
2123 temp_dir = "/tmp";
2124
2125 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2126
2127 if (stat(fio_status_file_path, &sb))
2128 return 0;
2129
2130 if (unlink(fio_status_file_path) < 0) {
2131 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2132 strerror(errno));
2133 log_err("fio: disabling status file updates\n");
2134 status_file_disabled = true;
2135 }
2136
2137 return 1;
2138}
2139
2140void check_for_running_stats(void)
2141{
2142 if (status_interval) {
2143 if (!status_interval_init) {
2144 fio_gettime(&status_time, NULL);
2145 status_interval_init = true;
2146 } else if (mtime_since_now(&status_time) >= status_interval) {
2147 show_running_run_stats();
2148 fio_gettime(&status_time, NULL);
2149 return;
2150 }
2151 }
2152 if (check_status_file()) {
2153 show_running_run_stats();
2154 return;
2155 }
2156}
2157
2158static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2159{
2160 double val = data;
2161 double delta;
2162
2163 if (data > is->max_val)
2164 is->max_val = data;
2165 if (data < is->min_val)
2166 is->min_val = data;
2167
2168 delta = val - is->mean.u.f;
2169 if (delta) {
2170 is->mean.u.f += delta / (is->samples + 1.0);
2171 is->S.u.f += delta * (val - is->mean.u.f);
2172 }
2173
2174 is->samples++;
2175}
2176
2177/*
2178 * Return a struct io_logs, which is added to the tail of the log
2179 * list for 'iolog'.
2180 */
2181static struct io_logs *get_new_log(struct io_log *iolog)
2182{
2183 size_t new_size, new_samples;
2184 struct io_logs *cur_log;
2185
2186 /*
2187 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2188 * forever
2189 */
2190 if (!iolog->cur_log_max)
2191 new_samples = DEF_LOG_ENTRIES;
2192 else {
2193 new_samples = iolog->cur_log_max * 2;
2194 if (new_samples > MAX_LOG_ENTRIES)
2195 new_samples = MAX_LOG_ENTRIES;
2196 }
2197
2198 new_size = new_samples * log_entry_sz(iolog);
2199
2200 cur_log = smalloc(sizeof(*cur_log));
2201 if (cur_log) {
2202 INIT_FLIST_HEAD(&cur_log->list);
2203 cur_log->log = malloc(new_size);
2204 if (cur_log->log) {
2205 cur_log->nr_samples = 0;
2206 cur_log->max_samples = new_samples;
2207 flist_add_tail(&cur_log->list, &iolog->io_logs);
2208 iolog->cur_log_max = new_samples;
2209 return cur_log;
2210 }
2211 sfree(cur_log);
2212 }
2213
2214 return NULL;
2215}
2216
2217/*
2218 * Add and return a new log chunk, or return current log if big enough
2219 */
2220static struct io_logs *regrow_log(struct io_log *iolog)
2221{
2222 struct io_logs *cur_log;
2223 int i;
2224
2225 if (!iolog || iolog->disabled)
2226 goto disable;
2227
2228 cur_log = iolog_cur_log(iolog);
2229 if (!cur_log) {
2230 cur_log = get_new_log(iolog);
2231 if (!cur_log)
2232 return NULL;
2233 }
2234
2235 if (cur_log->nr_samples < cur_log->max_samples)
2236 return cur_log;
2237
2238 /*
2239 * No room for a new sample. If we're compressing on the fly, flush
2240 * out the current chunk
2241 */
2242 if (iolog->log_gz) {
2243 if (iolog_cur_flush(iolog, cur_log)) {
2244 log_err("fio: failed flushing iolog! Will stop logging.\n");
2245 return NULL;
2246 }
2247 }
2248
2249 /*
2250 * Get a new log array, and add to our list
2251 */
2252 cur_log = get_new_log(iolog);
2253 if (!cur_log) {
2254 log_err("fio: failed extending iolog! Will stop logging.\n");
2255 return NULL;
2256 }
2257
2258 if (!iolog->pending || !iolog->pending->nr_samples)
2259 return cur_log;
2260
2261 /*
2262 * Flush pending items to new log
2263 */
2264 for (i = 0; i < iolog->pending->nr_samples; i++) {
2265 struct io_sample *src, *dst;
2266
2267 src = get_sample(iolog, iolog->pending, i);
2268 dst = get_sample(iolog, cur_log, i);
2269 memcpy(dst, src, log_entry_sz(iolog));
2270 }
2271 cur_log->nr_samples = iolog->pending->nr_samples;
2272
2273 iolog->pending->nr_samples = 0;
2274 return cur_log;
2275disable:
2276 if (iolog)
2277 iolog->disabled = true;
2278 return NULL;
2279}
2280
2281void regrow_logs(struct thread_data *td)
2282{
2283 regrow_log(td->slat_log);
2284 regrow_log(td->clat_log);
2285 regrow_log(td->clat_hist_log);
2286 regrow_log(td->lat_log);
2287 regrow_log(td->bw_log);
2288 regrow_log(td->iops_log);
2289 td->flags &= ~TD_F_REGROW_LOGS;
2290}
2291
2292static struct io_logs *get_cur_log(struct io_log *iolog)
2293{
2294 struct io_logs *cur_log;
2295
2296 cur_log = iolog_cur_log(iolog);
2297 if (!cur_log) {
2298 cur_log = get_new_log(iolog);
2299 if (!cur_log)
2300 return NULL;
2301 }
2302
2303 if (cur_log->nr_samples < cur_log->max_samples)
2304 return cur_log;
2305
2306 /*
2307 * Out of space. If we're in IO offload mode, or we're not doing
2308 * per unit logging (hence logging happens outside of the IO thread
2309 * as well), add a new log chunk inline. If we're doing inline
2310 * submissions, flag 'td' as needing a log regrow and we'll take
2311 * care of it on the submission side.
2312 */
2313 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2314 !per_unit_log(iolog))
2315 return regrow_log(iolog);
2316
2317 if (iolog->td)
2318 iolog->td->flags |= TD_F_REGROW_LOGS;
2319 if (iolog->pending)
2320 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2321 return iolog->pending;
2322}
2323
2324static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2325 enum fio_ddir ddir, unsigned long long bs,
2326 unsigned long t, uint64_t offset)
2327{
2328 struct io_logs *cur_log;
2329
2330 if (iolog->disabled)
2331 return;
2332 if (flist_empty(&iolog->io_logs))
2333 iolog->avg_last[ddir] = t;
2334
2335 cur_log = get_cur_log(iolog);
2336 if (cur_log) {
2337 struct io_sample *s;
2338
2339 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2340
2341 s->data = data;
2342 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2343 io_sample_set_ddir(iolog, s, ddir);
2344 s->bs = bs;
2345
2346 if (iolog->log_offset) {
2347 struct io_sample_offset *so = (void *) s;
2348
2349 so->offset = offset;
2350 }
2351
2352 cur_log->nr_samples++;
2353 return;
2354 }
2355
2356 iolog->disabled = true;
2357}
2358
2359static inline void reset_io_stat(struct io_stat *ios)
2360{
2361 ios->min_val = -1ULL;
2362 ios->max_val = ios->samples = 0;
2363 ios->mean.u.f = ios->S.u.f = 0;
2364}
2365
2366void reset_io_stats(struct thread_data *td)
2367{
2368 struct thread_stat *ts = &td->ts;
2369 int i, j;
2370
2371 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2372 reset_io_stat(&ts->clat_stat[i]);
2373 reset_io_stat(&ts->slat_stat[i]);
2374 reset_io_stat(&ts->lat_stat[i]);
2375 reset_io_stat(&ts->bw_stat[i]);
2376 reset_io_stat(&ts->iops_stat[i]);
2377
2378 ts->io_bytes[i] = 0;
2379 ts->runtime[i] = 0;
2380 ts->total_io_u[i] = 0;
2381 ts->short_io_u[i] = 0;
2382 ts->drop_io_u[i] = 0;
2383
2384 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2385 ts->io_u_plat[i][j] = 0;
2386 if (!i)
2387 ts->io_u_sync_plat[j] = 0;
2388 }
2389 }
2390
2391 ts->total_io_u[DDIR_SYNC] = 0;
2392
2393 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2394 ts->io_u_map[i] = 0;
2395 ts->io_u_submit[i] = 0;
2396 ts->io_u_complete[i] = 0;
2397 }
2398
2399 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2400 ts->io_u_lat_n[i] = 0;
2401 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2402 ts->io_u_lat_u[i] = 0;
2403 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2404 ts->io_u_lat_m[i] = 0;
2405
2406 ts->total_submit = 0;
2407 ts->total_complete = 0;
2408 ts->nr_zone_resets = 0;
2409 ts->cachehit = ts->cachemiss = 0;
2410}
2411
2412static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2413 unsigned long elapsed, bool log_max)
2414{
2415 /*
2416 * Note an entry in the log. Use the mean from the logged samples,
2417 * making sure to properly round up. Only write a log entry if we
2418 * had actual samples done.
2419 */
2420 if (iolog->avg_window[ddir].samples) {
2421 union io_sample_data data;
2422
2423 if (log_max)
2424 data.val = iolog->avg_window[ddir].max_val;
2425 else
2426 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2427
2428 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2429 }
2430
2431 reset_io_stat(&iolog->avg_window[ddir]);
2432}
2433
2434static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2435 bool log_max)
2436{
2437 int ddir;
2438
2439 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2440 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2441}
2442
2443static unsigned long add_log_sample(struct thread_data *td,
2444 struct io_log *iolog,
2445 union io_sample_data data,
2446 enum fio_ddir ddir, unsigned long long bs,
2447 uint64_t offset)
2448{
2449 unsigned long elapsed, this_window;
2450
2451 if (!ddir_rw(ddir))
2452 return 0;
2453
2454 elapsed = mtime_since_now(&td->epoch);
2455
2456 /*
2457 * If no time averaging, just add the log sample.
2458 */
2459 if (!iolog->avg_msec) {
2460 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2461 return 0;
2462 }
2463
2464 /*
2465 * Add the sample. If the time period has passed, then
2466 * add that entry to the log and clear.
2467 */
2468 add_stat_sample(&iolog->avg_window[ddir], data.val);
2469
2470 /*
2471 * If period hasn't passed, adding the above sample is all we
2472 * need to do.
2473 */
2474 this_window = elapsed - iolog->avg_last[ddir];
2475 if (elapsed < iolog->avg_last[ddir])
2476 return iolog->avg_last[ddir] - elapsed;
2477 else if (this_window < iolog->avg_msec) {
2478 unsigned long diff = iolog->avg_msec - this_window;
2479
2480 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2481 return diff;
2482 }
2483
2484 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2485
2486 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2487 return iolog->avg_msec;
2488}
2489
2490void finalize_logs(struct thread_data *td, bool unit_logs)
2491{
2492 unsigned long elapsed;
2493
2494 elapsed = mtime_since_now(&td->epoch);
2495
2496 if (td->clat_log && unit_logs)
2497 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2498 if (td->slat_log && unit_logs)
2499 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2500 if (td->lat_log && unit_logs)
2501 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2502 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2503 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2504 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2505 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2506}
2507
2508void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2509{
2510 struct io_log *iolog;
2511
2512 if (!ddir_rw(ddir))
2513 return;
2514
2515 iolog = agg_io_log[ddir];
2516 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2517}
2518
2519void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2520{
2521 unsigned int idx = plat_val_to_idx(nsec);
2522 assert(idx < FIO_IO_U_PLAT_NR);
2523
2524 ts->io_u_sync_plat[idx]++;
2525 add_stat_sample(&ts->sync_stat, nsec);
2526}
2527
2528static void add_clat_percentile_sample(struct thread_stat *ts,
2529 unsigned long long nsec, enum fio_ddir ddir)
2530{
2531 unsigned int idx = plat_val_to_idx(nsec);
2532 assert(idx < FIO_IO_U_PLAT_NR);
2533
2534 ts->io_u_plat[ddir][idx]++;
2535}
2536
2537void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2538 unsigned long long nsec, unsigned long long bs,
2539 uint64_t offset)
2540{
2541 const bool needs_lock = td_async_processing(td);
2542 unsigned long elapsed, this_window;
2543 struct thread_stat *ts = &td->ts;
2544 struct io_log *iolog = td->clat_hist_log;
2545
2546 if (needs_lock)
2547 __td_io_u_lock(td);
2548
2549 add_stat_sample(&ts->clat_stat[ddir], nsec);
2550
2551 if (td->clat_log)
2552 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2553 offset);
2554
2555 if (ts->clat_percentiles)
2556 add_clat_percentile_sample(ts, nsec, ddir);
2557
2558 if (iolog && iolog->hist_msec) {
2559 struct io_hist *hw = &iolog->hist_window[ddir];
2560
2561 hw->samples++;
2562 elapsed = mtime_since_now(&td->epoch);
2563 if (!hw->hist_last)
2564 hw->hist_last = elapsed;
2565 this_window = elapsed - hw->hist_last;
2566
2567 if (this_window >= iolog->hist_msec) {
2568 uint64_t *io_u_plat;
2569 struct io_u_plat_entry *dst;
2570
2571 /*
2572 * Make a byte-for-byte copy of the latency histogram
2573 * stored in td->ts.io_u_plat[ddir], recording it in a
2574 * log sample. Note that the matching call to free() is
2575 * located in iolog.c after printing this sample to the
2576 * log file.
2577 */
2578 io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2579 dst = malloc(sizeof(struct io_u_plat_entry));
2580 memcpy(&(dst->io_u_plat), io_u_plat,
2581 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2582 flist_add(&dst->list, &hw->list);
2583 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2584 elapsed, offset);
2585
2586 /*
2587 * Update the last time we recorded as being now, minus
2588 * any drift in time we encountered before actually
2589 * making the record.
2590 */
2591 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2592 hw->samples = 0;
2593 }
2594 }
2595
2596 if (needs_lock)
2597 __td_io_u_unlock(td);
2598}
2599
2600void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2601 unsigned long usec, unsigned long long bs, uint64_t offset)
2602{
2603 const bool needs_lock = td_async_processing(td);
2604 struct thread_stat *ts = &td->ts;
2605
2606 if (!ddir_rw(ddir))
2607 return;
2608
2609 if (needs_lock)
2610 __td_io_u_lock(td);
2611
2612 add_stat_sample(&ts->slat_stat[ddir], usec);
2613
2614 if (td->slat_log)
2615 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2616
2617 if (needs_lock)
2618 __td_io_u_unlock(td);
2619}
2620
2621void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2622 unsigned long long nsec, unsigned long long bs,
2623 uint64_t offset)
2624{
2625 const bool needs_lock = td_async_processing(td);
2626 struct thread_stat *ts = &td->ts;
2627
2628 if (!ddir_rw(ddir))
2629 return;
2630
2631 if (needs_lock)
2632 __td_io_u_lock(td);
2633
2634 add_stat_sample(&ts->lat_stat[ddir], nsec);
2635
2636 if (td->lat_log)
2637 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2638 offset);
2639
2640 if (ts->lat_percentiles)
2641 add_clat_percentile_sample(ts, nsec, ddir);
2642
2643 if (needs_lock)
2644 __td_io_u_unlock(td);
2645}
2646
2647void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2648 unsigned int bytes, unsigned long long spent)
2649{
2650 const bool needs_lock = td_async_processing(td);
2651 struct thread_stat *ts = &td->ts;
2652 unsigned long rate;
2653
2654 if (spent)
2655 rate = (unsigned long) (bytes * 1000000ULL / spent);
2656 else
2657 rate = 0;
2658
2659 if (needs_lock)
2660 __td_io_u_lock(td);
2661
2662 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2663
2664 if (td->bw_log)
2665 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2666 bytes, io_u->offset);
2667
2668 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2669
2670 if (needs_lock)
2671 __td_io_u_unlock(td);
2672}
2673
2674static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2675 struct timespec *t, unsigned int avg_time,
2676 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2677 struct io_stat *stat, struct io_log *log,
2678 bool is_kb)
2679{
2680 const bool needs_lock = td_async_processing(td);
2681 unsigned long spent, rate;
2682 enum fio_ddir ddir;
2683 unsigned long next, next_log;
2684
2685 next_log = avg_time;
2686
2687 spent = mtime_since(parent_tv, t);
2688 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2689 return avg_time - spent;
2690
2691 if (needs_lock)
2692 __td_io_u_lock(td);
2693
2694 /*
2695 * Compute both read and write rates for the interval.
2696 */
2697 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2698 uint64_t delta;
2699
2700 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2701 if (!delta)
2702 continue; /* No entries for interval */
2703
2704 if (spent) {
2705 if (is_kb)
2706 rate = delta * 1000 / spent / 1024; /* KiB/s */
2707 else
2708 rate = (delta * 1000) / spent;
2709 } else
2710 rate = 0;
2711
2712 add_stat_sample(&stat[ddir], rate);
2713
2714 if (log) {
2715 unsigned long long bs = 0;
2716
2717 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2718 bs = td->o.min_bs[ddir];
2719
2720 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2721 next_log = min(next_log, next);
2722 }
2723
2724 stat_io_bytes[ddir] = this_io_bytes[ddir];
2725 }
2726
2727 timespec_add_msec(parent_tv, avg_time);
2728
2729 if (needs_lock)
2730 __td_io_u_unlock(td);
2731
2732 if (spent <= avg_time)
2733 next = avg_time;
2734 else
2735 next = avg_time - (1 + spent - avg_time);
2736
2737 return min(next, next_log);
2738}
2739
2740static int add_bw_samples(struct thread_data *td, struct timespec *t)
2741{
2742 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2743 td->this_io_bytes, td->stat_io_bytes,
2744 td->ts.bw_stat, td->bw_log, true);
2745}
2746
2747void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2748 unsigned int bytes)
2749{
2750 const bool needs_lock = td_async_processing(td);
2751 struct thread_stat *ts = &td->ts;
2752
2753 if (needs_lock)
2754 __td_io_u_lock(td);
2755
2756 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2757
2758 if (td->iops_log)
2759 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2760 bytes, io_u->offset);
2761
2762 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2763
2764 if (needs_lock)
2765 __td_io_u_unlock(td);
2766}
2767
2768static int add_iops_samples(struct thread_data *td, struct timespec *t)
2769{
2770 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2771 td->this_io_blocks, td->stat_io_blocks,
2772 td->ts.iops_stat, td->iops_log, false);
2773}
2774
2775/*
2776 * Returns msecs to next event
2777 */
2778int calc_log_samples(void)
2779{
2780 struct thread_data *td;
2781 unsigned int next = ~0U, tmp;
2782 struct timespec now;
2783 int i;
2784
2785 fio_gettime(&now, NULL);
2786
2787 for_each_td(td, i) {
2788 if (!td->o.stats)
2789 continue;
2790 if (in_ramp_time(td) ||
2791 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2792 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2793 continue;
2794 }
2795 if (!td->bw_log ||
2796 (td->bw_log && !per_unit_log(td->bw_log))) {
2797 tmp = add_bw_samples(td, &now);
2798 if (tmp < next)
2799 next = tmp;
2800 }
2801 if (!td->iops_log ||
2802 (td->iops_log && !per_unit_log(td->iops_log))) {
2803 tmp = add_iops_samples(td, &now);
2804 if (tmp < next)
2805 next = tmp;
2806 }
2807 }
2808
2809 return next == ~0U ? 0 : next;
2810}
2811
2812void stat_init(void)
2813{
2814 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2815}
2816
2817void stat_exit(void)
2818{
2819 /*
2820 * When we have the mutex, we know out-of-band access to it
2821 * have ended.
2822 */
2823 fio_sem_down(stat_sem);
2824 fio_sem_remove(stat_sem);
2825}
2826
2827/*
2828 * Called from signal handler. Wake up status thread.
2829 */
2830void show_running_run_stats(void)
2831{
2832 helper_do_stat();
2833}
2834
2835uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2836{
2837 /* Ignore io_u's which span multiple blocks--they will just get
2838 * inaccurate counts. */
2839 int idx = (io_u->offset - io_u->file->file_offset)
2840 / td->o.bs[DDIR_TRIM];
2841 uint32_t *info = &td->ts.block_infos[idx];
2842 assert(idx < td->ts.nr_block_infos);
2843 return info;
2844}