HOWTO/manpage: update percentage explanation using '%'
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned long long val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned long long plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits, k, base;
104
105 assert(idx < FIO_IO_U_PLAT_NR);
106
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
110 return idx;
111
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
118
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
121}
122
123static int double_cmp(const void *a, const void *b)
124{
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
127 int cmp = 0;
128
129 if (fa.u.f > fb.u.f)
130 cmp = 1;
131 else if (fa.u.f < fb.u.f)
132 cmp = -1;
133
134 return cmp;
135}
136
137unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138 fio_fp64_t *plist, unsigned long long **output,
139 unsigned long long *maxv, unsigned long long *minv)
140{
141 unsigned long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned int oval_len = 0;
144 unsigned long long *ovals = NULL;
145 int is_last;
146
147 *minv = -1ULL;
148 *maxv = 0;
149
150 len = 0;
151 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152 len++;
153
154 if (!len)
155 return 0;
156
157 /*
158 * Sort the percentile list. Note that it may already be sorted if
159 * we are using the default values, but since it's a short list this
160 * isn't a worry. Also note that this does not work for NaN values.
161 */
162 if (len > 1)
163 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165 /*
166 * Calculate bucket values, note down max and min values
167 */
168 is_last = 0;
169 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170 sum += io_u_plat[i];
171 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172 assert(plist[j].u.f <= 100.0);
173
174 if (j == oval_len) {
175 oval_len += 100;
176 ovals = realloc(ovals, oval_len * sizeof(*ovals));
177 }
178
179 ovals[j] = plat_idx_to_val(i);
180 if (ovals[j] < *minv)
181 *minv = ovals[j];
182 if (ovals[j] > *maxv)
183 *maxv = ovals[j];
184
185 is_last = (j == len - 1);
186 if (is_last)
187 break;
188
189 j++;
190 }
191 }
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 struct buf_output *out)
203{
204 unsigned int divisor, len, i, j = 0;
205 unsigned long long minv, maxv;
206 unsigned long long *ovals;
207 int is_last, per_line, scale_down, time_width;
208 char fmt[32];
209
210 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211 if (!len)
212 goto out;
213
214 /*
215 * We default to nsecs, but if the value range is such that we
216 * should scale down to usecs or msecs, do that.
217 */
218 if (minv > 2000000 && maxv > 99999999ULL) {
219 scale_down = 2;
220 divisor = 1000000;
221 log_buf(out, " clat percentiles (msec):\n |");
222 } else if (minv > 2000 && maxv > 99999) {
223 scale_down = 1;
224 divisor = 1000;
225 log_buf(out, " clat percentiles (usec):\n |");
226 } else {
227 scale_down = 0;
228 divisor = 1;
229 log_buf(out, " clat percentiles (nsec):\n |");
230 }
231
232
233 time_width = max(5, (int) (log10(maxv / divisor) + 1));
234 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
235 precision, time_width);
236 /* fmt will be something like " %5.2fth=[%4llu]%c" */
237 per_line = (80 - 7) / (precision + 10 + time_width);
238
239 for (j = 0; j < len; j++) {
240 /* for formatting */
241 if (j != 0 && (j % per_line) == 0)
242 log_buf(out, " |");
243
244 /* end of the list */
245 is_last = (j == len - 1);
246
247 for (i = 0; i < scale_down; i++)
248 ovals[j] = (ovals[j] + 999) / 1000;
249
250 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
251
252 if (is_last)
253 break;
254
255 if ((j % per_line) == per_line - 1) /* for formatting */
256 log_buf(out, "\n");
257 }
258
259out:
260 if (ovals)
261 free(ovals);
262}
263
264bool calc_lat(struct io_stat *is, unsigned long long *min,
265 unsigned long long *max, double *mean, double *dev)
266{
267 double n = (double) is->samples;
268
269 if (n == 0)
270 return false;
271
272 *min = is->min_val;
273 *max = is->max_val;
274 *mean = is->mean.u.f;
275
276 if (n > 1.0)
277 *dev = sqrt(is->S.u.f / (n - 1.0));
278 else
279 *dev = 0;
280
281 return true;
282}
283
284void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
285{
286 char *io, *agg, *min, *max;
287 char *ioalt, *aggalt, *minalt, *maxalt;
288 const char *str[] = { " READ", " WRITE" , " TRIM"};
289 int i;
290
291 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
292
293 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
294 const int i2p = is_power_of_2(rs->kb_base);
295
296 if (!rs->max_run[i])
297 continue;
298
299 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
300 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
301 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
302 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
303 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
304 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
305 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
306 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
307 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
308 rs->unified_rw_rep ? " MIXED" : str[i],
309 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
310 (unsigned long long) rs->min_run[i],
311 (unsigned long long) rs->max_run[i]);
312
313 free(io);
314 free(agg);
315 free(min);
316 free(max);
317 free(ioalt);
318 free(aggalt);
319 free(minalt);
320 free(maxalt);
321 }
322}
323
324void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
325{
326 int i;
327
328 /*
329 * Do depth distribution calculations
330 */
331 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
332 if (total) {
333 io_u_dist[i] = (double) map[i] / (double) total;
334 io_u_dist[i] *= 100.0;
335 if (io_u_dist[i] < 0.1 && map[i])
336 io_u_dist[i] = 0.1;
337 } else
338 io_u_dist[i] = 0.0;
339 }
340}
341
342static void stat_calc_lat(struct thread_stat *ts, double *dst,
343 unsigned int *src, int nr)
344{
345 unsigned long total = ddir_rw_sum(ts->total_io_u);
346 int i;
347
348 /*
349 * Do latency distribution calculations
350 */
351 for (i = 0; i < nr; i++) {
352 if (total) {
353 dst[i] = (double) src[i] / (double) total;
354 dst[i] *= 100.0;
355 if (dst[i] < 0.01 && src[i])
356 dst[i] = 0.01;
357 } else
358 dst[i] = 0.0;
359 }
360}
361
362/*
363 * To keep the terse format unaltered, add all of the ns latency
364 * buckets to the first us latency bucket
365 */
366void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
367{
368 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
369 int i;
370
371 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
372
373 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
374 ntotal += ts->io_u_lat_n[i];
375
376 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
377}
378
379void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
380{
381 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
382}
383
384void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
385{
386 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
387}
388
389void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
390{
391 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
392}
393
394static void display_lat(const char *name, unsigned long long min,
395 unsigned long long max, double mean, double dev,
396 struct buf_output *out)
397{
398 const char *base = "(nsec)";
399 char *minp, *maxp;
400
401 if (nsec_to_msec(&min, &max, &mean, &dev))
402 base = "(msec)";
403 else if (nsec_to_usec(&min, &max, &mean, &dev))
404 base = "(usec)";
405
406 minp = num2str(min, 6, 1, 0, N2S_NONE);
407 maxp = num2str(max, 6, 1, 0, N2S_NONE);
408
409 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
410 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
411
412 free(minp);
413 free(maxp);
414}
415
416static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
417 int ddir, struct buf_output *out)
418{
419 const char *str[] = { " read", "write", " trim" };
420 unsigned long runt;
421 unsigned long long min, max, bw, iops;
422 double mean, dev;
423 char *io_p, *bw_p, *bw_p_alt, *iops_p;
424 int i2p;
425
426 assert(ddir_rw(ddir));
427
428 if (!ts->runtime[ddir])
429 return;
430
431 i2p = is_power_of_2(rs->kb_base);
432 runt = ts->runtime[ddir];
433
434 bw = (1000 * ts->io_bytes[ddir]) / runt;
435 io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
436 bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
437 bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
438
439 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
440 iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
441
442 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
443 rs->unified_rw_rep ? "mixed" : str[ddir],
444 iops_p, bw_p, bw_p_alt, io_p,
445 (unsigned long long) ts->runtime[ddir]);
446
447 free(io_p);
448 free(bw_p);
449 free(bw_p_alt);
450 free(iops_p);
451
452 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
453 display_lat("slat", min, max, mean, dev, out);
454 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
455 display_lat("clat", min, max, mean, dev, out);
456 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
457 display_lat(" lat", min, max, mean, dev, out);
458
459 if (ts->clat_percentiles) {
460 show_clat_percentiles(ts->io_u_plat[ddir],
461 ts->clat_stat[ddir].samples,
462 ts->percentile_list,
463 ts->percentile_precision, out);
464 }
465 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
466 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
467 const char *bw_str;
468
469 if ((rs->unit_base == 1) && i2p)
470 bw_str = "Kibit";
471 else if (rs->unit_base == 1)
472 bw_str = "kbit";
473 else if (i2p)
474 bw_str = "KiB";
475 else
476 bw_str = "kB";
477
478 if (rs->unit_base == 1) {
479 min *= 8.0;
480 max *= 8.0;
481 mean *= 8.0;
482 dev *= 8.0;
483 }
484
485 if (rs->agg[ddir]) {
486 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
487 if (p_of_agg > 100.0)
488 p_of_agg = 100.0;
489 }
490
491 if (mean > fkb_base * fkb_base) {
492 min /= fkb_base;
493 max /= fkb_base;
494 mean /= fkb_base;
495 dev /= fkb_base;
496 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
497 }
498
499 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
500 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
501 bw_str, min, max, p_of_agg, mean, dev,
502 (&ts->bw_stat[ddir])->samples);
503 }
504 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
505 log_buf(out, " iops : min=%5llu, max=%5llu, "
506 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
507 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
508 }
509}
510
511static int show_lat(double *io_u_lat, int nr, const char **ranges,
512 const char *msg, struct buf_output *out)
513{
514 int new_line = 1, i, line = 0, shown = 0;
515
516 for (i = 0; i < nr; i++) {
517 if (io_u_lat[i] <= 0.0)
518 continue;
519 shown = 1;
520 if (new_line) {
521 if (line)
522 log_buf(out, "\n");
523 log_buf(out, " lat (%s) : ", msg);
524 new_line = 0;
525 line = 0;
526 }
527 if (line)
528 log_buf(out, ", ");
529 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
530 line++;
531 if (line == 5)
532 new_line = 1;
533 }
534
535 if (shown)
536 log_buf(out, "\n");
537
538 return shown;
539}
540
541static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
542{
543 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
544 "250=", "500=", "750=", "1000=", };
545
546 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
547}
548
549static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
550{
551 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
552 "250=", "500=", "750=", "1000=", };
553
554 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
555}
556
557static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
558{
559 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
560 "250=", "500=", "750=", "1000=", "2000=",
561 ">=2000=", };
562
563 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
564}
565
566static void show_latencies(struct thread_stat *ts, struct buf_output *out)
567{
568 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
569 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
570 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
571
572 stat_calc_lat_n(ts, io_u_lat_n);
573 stat_calc_lat_u(ts, io_u_lat_u);
574 stat_calc_lat_m(ts, io_u_lat_m);
575
576 show_lat_n(io_u_lat_n, out);
577 show_lat_u(io_u_lat_u, out);
578 show_lat_m(io_u_lat_m, out);
579}
580
581static int block_state_category(int block_state)
582{
583 switch (block_state) {
584 case BLOCK_STATE_UNINIT:
585 return 0;
586 case BLOCK_STATE_TRIMMED:
587 case BLOCK_STATE_WRITTEN:
588 return 1;
589 case BLOCK_STATE_WRITE_FAILURE:
590 case BLOCK_STATE_TRIM_FAILURE:
591 return 2;
592 default:
593 /* Silence compile warning on some BSDs and have a return */
594 assert(0);
595 return -1;
596 }
597}
598
599static int compare_block_infos(const void *bs1, const void *bs2)
600{
601 uint32_t block1 = *(uint32_t *)bs1;
602 uint32_t block2 = *(uint32_t *)bs2;
603 int state1 = BLOCK_INFO_STATE(block1);
604 int state2 = BLOCK_INFO_STATE(block2);
605 int bscat1 = block_state_category(state1);
606 int bscat2 = block_state_category(state2);
607 int cycles1 = BLOCK_INFO_TRIMS(block1);
608 int cycles2 = BLOCK_INFO_TRIMS(block2);
609
610 if (bscat1 < bscat2)
611 return -1;
612 if (bscat1 > bscat2)
613 return 1;
614
615 if (cycles1 < cycles2)
616 return -1;
617 if (cycles1 > cycles2)
618 return 1;
619
620 if (state1 < state2)
621 return -1;
622 if (state1 > state2)
623 return 1;
624
625 assert(block1 == block2);
626 return 0;
627}
628
629static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
630 fio_fp64_t *plist, unsigned int **percentiles,
631 unsigned int *types)
632{
633 int len = 0;
634 int i, nr_uninit;
635
636 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
637
638 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
639 len++;
640
641 if (!len)
642 return 0;
643
644 /*
645 * Sort the percentile list. Note that it may already be sorted if
646 * we are using the default values, but since it's a short list this
647 * isn't a worry. Also note that this does not work for NaN values.
648 */
649 if (len > 1)
650 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
651
652 nr_uninit = 0;
653 /* Start only after the uninit entries end */
654 for (nr_uninit = 0;
655 nr_uninit < nr_block_infos
656 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
657 nr_uninit ++)
658 ;
659
660 if (nr_uninit == nr_block_infos)
661 return 0;
662
663 *percentiles = calloc(len, sizeof(**percentiles));
664
665 for (i = 0; i < len; i++) {
666 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
667 + nr_uninit;
668 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
669 }
670
671 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
672 for (i = 0; i < nr_block_infos; i++)
673 types[BLOCK_INFO_STATE(block_infos[i])]++;
674
675 return len;
676}
677
678static const char *block_state_names[] = {
679 [BLOCK_STATE_UNINIT] = "unwritten",
680 [BLOCK_STATE_TRIMMED] = "trimmed",
681 [BLOCK_STATE_WRITTEN] = "written",
682 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
683 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
684};
685
686static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
687 fio_fp64_t *plist, struct buf_output *out)
688{
689 int len, pos, i;
690 unsigned int *percentiles = NULL;
691 unsigned int block_state_counts[BLOCK_STATE_COUNT];
692
693 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
694 &percentiles, block_state_counts);
695
696 log_buf(out, " block lifetime percentiles :\n |");
697 pos = 0;
698 for (i = 0; i < len; i++) {
699 uint32_t block_info = percentiles[i];
700#define LINE_LENGTH 75
701 char str[LINE_LENGTH];
702 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
703 plist[i].u.f, block_info,
704 i == len - 1 ? '\n' : ',');
705 assert(strln < LINE_LENGTH);
706 if (pos + strln > LINE_LENGTH) {
707 pos = 0;
708 log_buf(out, "\n |");
709 }
710 log_buf(out, "%s", str);
711 pos += strln;
712#undef LINE_LENGTH
713 }
714 if (percentiles)
715 free(percentiles);
716
717 log_buf(out, " states :");
718 for (i = 0; i < BLOCK_STATE_COUNT; i++)
719 log_buf(out, " %s=%u%c",
720 block_state_names[i], block_state_counts[i],
721 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
722}
723
724static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
725{
726 char *p1, *p1alt, *p2;
727 unsigned long long bw_mean, iops_mean;
728 const int i2p = is_power_of_2(ts->kb_base);
729
730 if (!ts->ss_dur)
731 return;
732
733 bw_mean = steadystate_bw_mean(ts);
734 iops_mean = steadystate_iops_mean(ts);
735
736 p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
737 p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
738 p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
739
740 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
741 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
742 p1, p1alt, p2,
743 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
744 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
745 ts->ss_criterion.u.f,
746 ts->ss_state & __FIO_SS_PCT ? "%" : "");
747
748 free(p1);
749 free(p1alt);
750 free(p2);
751}
752
753static void show_thread_status_normal(struct thread_stat *ts,
754 struct group_run_stats *rs,
755 struct buf_output *out)
756{
757 double usr_cpu, sys_cpu;
758 unsigned long runtime;
759 double io_u_dist[FIO_IO_U_MAP_NR];
760 time_t time_p;
761 char time_buf[32];
762
763 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
764 return;
765
766 memset(time_buf, 0, sizeof(time_buf));
767
768 time(&time_p);
769 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
770
771 if (!ts->error) {
772 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
773 ts->name, ts->groupid, ts->members,
774 ts->error, (int) ts->pid, time_buf);
775 } else {
776 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
777 ts->name, ts->groupid, ts->members,
778 ts->error, ts->verror, (int) ts->pid,
779 time_buf);
780 }
781
782 if (strlen(ts->description))
783 log_buf(out, " Description : [%s]\n", ts->description);
784
785 if (ts->io_bytes[DDIR_READ])
786 show_ddir_status(rs, ts, DDIR_READ, out);
787 if (ts->io_bytes[DDIR_WRITE])
788 show_ddir_status(rs, ts, DDIR_WRITE, out);
789 if (ts->io_bytes[DDIR_TRIM])
790 show_ddir_status(rs, ts, DDIR_TRIM, out);
791
792 show_latencies(ts, out);
793
794 runtime = ts->total_run_time;
795 if (runtime) {
796 double runt = (double) runtime;
797
798 usr_cpu = (double) ts->usr_time * 100 / runt;
799 sys_cpu = (double) ts->sys_time * 100 / runt;
800 } else {
801 usr_cpu = 0;
802 sys_cpu = 0;
803 }
804
805 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
806 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
807 (unsigned long long) ts->ctx,
808 (unsigned long long) ts->majf,
809 (unsigned long long) ts->minf);
810
811 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
812 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
813 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
814 io_u_dist[1], io_u_dist[2],
815 io_u_dist[3], io_u_dist[4],
816 io_u_dist[5], io_u_dist[6]);
817
818 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
819 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
820 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
821 io_u_dist[1], io_u_dist[2],
822 io_u_dist[3], io_u_dist[4],
823 io_u_dist[5], io_u_dist[6]);
824 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
825 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
826 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
827 io_u_dist[1], io_u_dist[2],
828 io_u_dist[3], io_u_dist[4],
829 io_u_dist[5], io_u_dist[6]);
830 log_buf(out, " issued rwt: total=%llu,%llu,%llu,"
831 " short=%llu,%llu,%llu,"
832 " dropped=%llu,%llu,%llu\n",
833 (unsigned long long) ts->total_io_u[0],
834 (unsigned long long) ts->total_io_u[1],
835 (unsigned long long) ts->total_io_u[2],
836 (unsigned long long) ts->short_io_u[0],
837 (unsigned long long) ts->short_io_u[1],
838 (unsigned long long) ts->short_io_u[2],
839 (unsigned long long) ts->drop_io_u[0],
840 (unsigned long long) ts->drop_io_u[1],
841 (unsigned long long) ts->drop_io_u[2]);
842 if (ts->continue_on_error) {
843 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
844 (unsigned long long)ts->total_err_count,
845 ts->first_error,
846 strerror(ts->first_error));
847 }
848 if (ts->latency_depth) {
849 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
850 (unsigned long long)ts->latency_target,
851 (unsigned long long)ts->latency_window,
852 ts->latency_percentile.u.f,
853 ts->latency_depth);
854 }
855
856 if (ts->nr_block_infos)
857 show_block_infos(ts->nr_block_infos, ts->block_infos,
858 ts->percentile_list, out);
859
860 if (ts->ss_dur)
861 show_ss_normal(ts, out);
862}
863
864static void show_ddir_status_terse(struct thread_stat *ts,
865 struct group_run_stats *rs, int ddir,
866 int ver, struct buf_output *out)
867{
868 unsigned long long min, max, minv, maxv, bw, iops;
869 unsigned long long *ovals = NULL;
870 double mean, dev;
871 unsigned int len;
872 int i, bw_stat;
873
874 assert(ddir_rw(ddir));
875
876 iops = bw = 0;
877 if (ts->runtime[ddir]) {
878 uint64_t runt = ts->runtime[ddir];
879
880 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
881 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
882 }
883
884 log_buf(out, ";%llu;%llu;%llu;%llu",
885 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
886 (unsigned long long) ts->runtime[ddir]);
887
888 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
889 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
890 else
891 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
892
893 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
894 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
895 else
896 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
897
898 if (ts->clat_percentiles) {
899 len = calc_clat_percentiles(ts->io_u_plat[ddir],
900 ts->clat_stat[ddir].samples,
901 ts->percentile_list, &ovals, &maxv,
902 &minv);
903 } else
904 len = 0;
905
906 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
907 if (i >= len) {
908 log_buf(out, ";0%%=0");
909 continue;
910 }
911 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
912 }
913
914 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
915 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
916 else
917 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
918
919 if (ovals)
920 free(ovals);
921
922 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
923 if (bw_stat) {
924 double p_of_agg = 100.0;
925
926 if (rs->agg[ddir]) {
927 p_of_agg = mean * 100 / (double) rs->agg[ddir];
928 if (p_of_agg > 100.0)
929 p_of_agg = 100.0;
930 }
931
932 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
933 } else
934 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
935
936 if (ver == 5) {
937 if (bw_stat)
938 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
939 else
940 log_buf(out, ";%lu", 0UL);
941
942 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
943 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
944 mean, dev, (&ts->iops_stat[ddir])->samples);
945 else
946 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
947 }
948}
949
950static void add_ddir_status_json(struct thread_stat *ts,
951 struct group_run_stats *rs, int ddir, struct json_object *parent)
952{
953 unsigned long long min, max, minv, maxv;
954 unsigned long long bw;
955 unsigned long long *ovals = NULL;
956 double mean, dev, iops;
957 unsigned int len;
958 int i;
959 const char *ddirname[] = {"read", "write", "trim"};
960 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
961 char buf[120];
962 double p_of_agg = 100.0;
963
964 assert(ddir_rw(ddir));
965
966 if (ts->unified_rw_rep && ddir != DDIR_READ)
967 return;
968
969 dir_object = json_create_object();
970 json_object_add_value_object(parent,
971 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
972
973 bw = 0;
974 iops = 0.0;
975 if (ts->runtime[ddir]) {
976 uint64_t runt = ts->runtime[ddir];
977
978 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
979 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
980 }
981
982 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
983 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
984 json_object_add_value_int(dir_object, "bw", bw);
985 json_object_add_value_float(dir_object, "iops", iops);
986 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
987 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
988 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
989 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
990
991 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
992 min = max = 0;
993 mean = dev = 0.0;
994 }
995 tmp_object = json_create_object();
996 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
997 json_object_add_value_int(tmp_object, "min", min);
998 json_object_add_value_int(tmp_object, "max", max);
999 json_object_add_value_float(tmp_object, "mean", mean);
1000 json_object_add_value_float(tmp_object, "stddev", dev);
1001
1002 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1003 min = max = 0;
1004 mean = dev = 0.0;
1005 }
1006 tmp_object = json_create_object();
1007 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1008 json_object_add_value_int(tmp_object, "min", min);
1009 json_object_add_value_int(tmp_object, "max", max);
1010 json_object_add_value_float(tmp_object, "mean", mean);
1011 json_object_add_value_float(tmp_object, "stddev", dev);
1012
1013 if (ts->clat_percentiles) {
1014 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1015 ts->clat_stat[ddir].samples,
1016 ts->percentile_list, &ovals, &maxv,
1017 &minv);
1018 } else
1019 len = 0;
1020
1021 percentile_object = json_create_object();
1022 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1023 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1024 if (i >= len) {
1025 json_object_add_value_int(percentile_object, "0.00", 0);
1026 continue;
1027 }
1028 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1029 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1030 }
1031
1032 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1033 clat_bins_object = json_create_object();
1034 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1035 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1036 if (ts->io_u_plat[ddir][i]) {
1037 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1038 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1039 }
1040 }
1041 }
1042
1043 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1044 min = max = 0;
1045 mean = dev = 0.0;
1046 }
1047 tmp_object = json_create_object();
1048 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1049 json_object_add_value_int(tmp_object, "min", min);
1050 json_object_add_value_int(tmp_object, "max", max);
1051 json_object_add_value_float(tmp_object, "mean", mean);
1052 json_object_add_value_float(tmp_object, "stddev", dev);
1053 if (ovals)
1054 free(ovals);
1055
1056 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1057 if (rs->agg[ddir]) {
1058 p_of_agg = mean * 100 / (double) rs->agg[ddir];
1059 if (p_of_agg > 100.0)
1060 p_of_agg = 100.0;
1061 }
1062 } else {
1063 min = max = 0;
1064 p_of_agg = mean = dev = 0.0;
1065 }
1066 json_object_add_value_int(dir_object, "bw_min", min);
1067 json_object_add_value_int(dir_object, "bw_max", max);
1068 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1069 json_object_add_value_float(dir_object, "bw_mean", mean);
1070 json_object_add_value_float(dir_object, "bw_dev", dev);
1071 json_object_add_value_int(dir_object, "bw_samples",
1072 (&ts->bw_stat[ddir])->samples);
1073
1074 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1075 min = max = 0;
1076 mean = dev = 0.0;
1077 }
1078 json_object_add_value_int(dir_object, "iops_min", min);
1079 json_object_add_value_int(dir_object, "iops_max", max);
1080 json_object_add_value_float(dir_object, "iops_mean", mean);
1081 json_object_add_value_float(dir_object, "iops_stddev", dev);
1082 json_object_add_value_int(dir_object, "iops_samples",
1083 (&ts->iops_stat[ddir])->samples);
1084}
1085
1086static void show_thread_status_terse_all(struct thread_stat *ts,
1087 struct group_run_stats *rs, int ver,
1088 struct buf_output *out)
1089{
1090 double io_u_dist[FIO_IO_U_MAP_NR];
1091 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1092 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1093 double usr_cpu, sys_cpu;
1094 int i;
1095
1096 /* General Info */
1097 if (ver == 2)
1098 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1099 else
1100 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1101 ts->name, ts->groupid, ts->error);
1102
1103 /* Log Read Status */
1104 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1105 /* Log Write Status */
1106 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1107 /* Log Trim Status */
1108 if (ver == 2 || ver == 4 || ver == 5)
1109 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1110
1111 /* CPU Usage */
1112 if (ts->total_run_time) {
1113 double runt = (double) ts->total_run_time;
1114
1115 usr_cpu = (double) ts->usr_time * 100 / runt;
1116 sys_cpu = (double) ts->sys_time * 100 / runt;
1117 } else {
1118 usr_cpu = 0;
1119 sys_cpu = 0;
1120 }
1121
1122 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1123 (unsigned long long) ts->ctx,
1124 (unsigned long long) ts->majf,
1125 (unsigned long long) ts->minf);
1126
1127 /* Calc % distribution of IO depths, usecond, msecond latency */
1128 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1129 stat_calc_lat_nu(ts, io_u_lat_u);
1130 stat_calc_lat_m(ts, io_u_lat_m);
1131
1132 /* Only show fixed 7 I/O depth levels*/
1133 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1134 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1135 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1136
1137 /* Microsecond latency */
1138 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1139 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1140 /* Millisecond latency */
1141 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1142 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1143
1144 /* disk util stats, if any */
1145 if (ver >= 3)
1146 show_disk_util(1, NULL, out);
1147
1148 /* Additional output if continue_on_error set - default off*/
1149 if (ts->continue_on_error)
1150 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1151 if (ver == 2)
1152 log_buf(out, "\n");
1153
1154 /* Additional output if description is set */
1155 if (strlen(ts->description))
1156 log_buf(out, ";%s", ts->description);
1157
1158 log_buf(out, "\n");
1159}
1160
1161static void json_add_job_opts(struct json_object *root, const char *name,
1162 struct flist_head *opt_list, bool num_jobs)
1163{
1164 struct json_object *dir_object;
1165 struct flist_head *entry;
1166 struct print_option *p;
1167
1168 if (flist_empty(opt_list))
1169 return;
1170
1171 dir_object = json_create_object();
1172 json_object_add_value_object(root, name, dir_object);
1173
1174 flist_for_each(entry, opt_list) {
1175 const char *pos = "";
1176
1177 p = flist_entry(entry, struct print_option, list);
1178 if (!num_jobs && !strcmp(p->name, "numjobs"))
1179 continue;
1180 if (p->value)
1181 pos = p->value;
1182 json_object_add_value_string(dir_object, p->name, pos);
1183 }
1184}
1185
1186static struct json_object *show_thread_status_json(struct thread_stat *ts,
1187 struct group_run_stats *rs,
1188 struct flist_head *opt_list)
1189{
1190 struct json_object *root, *tmp;
1191 struct jobs_eta *je;
1192 double io_u_dist[FIO_IO_U_MAP_NR];
1193 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1194 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1195 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1196 double usr_cpu, sys_cpu;
1197 int i;
1198 size_t size;
1199
1200 root = json_create_object();
1201 json_object_add_value_string(root, "jobname", ts->name);
1202 json_object_add_value_int(root, "groupid", ts->groupid);
1203 json_object_add_value_int(root, "error", ts->error);
1204
1205 /* ETA Info */
1206 je = get_jobs_eta(true, &size);
1207 if (je) {
1208 json_object_add_value_int(root, "eta", je->eta_sec);
1209 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1210 }
1211
1212 if (opt_list)
1213 json_add_job_opts(root, "job options", opt_list, true);
1214
1215 add_ddir_status_json(ts, rs, DDIR_READ, root);
1216 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1217 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1218
1219 /* CPU Usage */
1220 if (ts->total_run_time) {
1221 double runt = (double) ts->total_run_time;
1222
1223 usr_cpu = (double) ts->usr_time * 100 / runt;
1224 sys_cpu = (double) ts->sys_time * 100 / runt;
1225 } else {
1226 usr_cpu = 0;
1227 sys_cpu = 0;
1228 }
1229 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1230 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1231 json_object_add_value_int(root, "ctx", ts->ctx);
1232 json_object_add_value_int(root, "majf", ts->majf);
1233 json_object_add_value_int(root, "minf", ts->minf);
1234
1235
1236 /* Calc % distribution of IO depths, usecond, msecond latency */
1237 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1238 stat_calc_lat_n(ts, io_u_lat_n);
1239 stat_calc_lat_u(ts, io_u_lat_u);
1240 stat_calc_lat_m(ts, io_u_lat_m);
1241
1242 tmp = json_create_object();
1243 json_object_add_value_object(root, "iodepth_level", tmp);
1244 /* Only show fixed 7 I/O depth levels*/
1245 for (i = 0; i < 7; i++) {
1246 char name[20];
1247 if (i < 6)
1248 snprintf(name, 20, "%d", 1 << i);
1249 else
1250 snprintf(name, 20, ">=%d", 1 << i);
1251 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1252 }
1253
1254 /* Nanosecond latency */
1255 tmp = json_create_object();
1256 json_object_add_value_object(root, "latency_ns", tmp);
1257 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1258 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1259 "250", "500", "750", "1000", };
1260 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1261 }
1262 /* Microsecond latency */
1263 tmp = json_create_object();
1264 json_object_add_value_object(root, "latency_us", tmp);
1265 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1266 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1267 "250", "500", "750", "1000", };
1268 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1269 }
1270 /* Millisecond latency */
1271 tmp = json_create_object();
1272 json_object_add_value_object(root, "latency_ms", tmp);
1273 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1274 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1275 "250", "500", "750", "1000", "2000",
1276 ">=2000", };
1277 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1278 }
1279
1280 /* Additional output if continue_on_error set - default off*/
1281 if (ts->continue_on_error) {
1282 json_object_add_value_int(root, "total_err", ts->total_err_count);
1283 json_object_add_value_int(root, "first_error", ts->first_error);
1284 }
1285
1286 if (ts->latency_depth) {
1287 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1288 json_object_add_value_int(root, "latency_target", ts->latency_target);
1289 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1290 json_object_add_value_int(root, "latency_window", ts->latency_window);
1291 }
1292
1293 /* Additional output if description is set */
1294 if (strlen(ts->description))
1295 json_object_add_value_string(root, "desc", ts->description);
1296
1297 if (ts->nr_block_infos) {
1298 /* Block error histogram and types */
1299 int len;
1300 unsigned int *percentiles = NULL;
1301 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1302
1303 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1304 ts->percentile_list,
1305 &percentiles, block_state_counts);
1306
1307 if (len) {
1308 struct json_object *block, *percentile_object, *states;
1309 int state;
1310 block = json_create_object();
1311 json_object_add_value_object(root, "block", block);
1312
1313 percentile_object = json_create_object();
1314 json_object_add_value_object(block, "percentiles",
1315 percentile_object);
1316 for (i = 0; i < len; i++) {
1317 char buf[20];
1318 snprintf(buf, sizeof(buf), "%f",
1319 ts->percentile_list[i].u.f);
1320 json_object_add_value_int(percentile_object,
1321 (const char *)buf,
1322 percentiles[i]);
1323 }
1324
1325 states = json_create_object();
1326 json_object_add_value_object(block, "states", states);
1327 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1328 json_object_add_value_int(states,
1329 block_state_names[state],
1330 block_state_counts[state]);
1331 }
1332 free(percentiles);
1333 }
1334 }
1335
1336 if (ts->ss_dur) {
1337 struct json_object *data;
1338 struct json_array *iops, *bw;
1339 int i, j, k;
1340 char ss_buf[64];
1341
1342 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1343 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1344 ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1345 (float) ts->ss_limit.u.f,
1346 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1347
1348 tmp = json_create_object();
1349 json_object_add_value_object(root, "steadystate", tmp);
1350 json_object_add_value_string(tmp, "ss", ss_buf);
1351 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1352 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1353
1354 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1355 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1356 json_object_add_value_string(tmp, "criterion", ss_buf);
1357 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1358 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1359
1360 data = json_create_object();
1361 json_object_add_value_object(tmp, "data", data);
1362 bw = json_create_array();
1363 iops = json_create_array();
1364
1365 /*
1366 ** if ss was attained or the buffer is not full,
1367 ** ss->head points to the first element in the list.
1368 ** otherwise it actually points to the second element
1369 ** in the list
1370 */
1371 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1372 j = ts->ss_head;
1373 else
1374 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1375 for (i = 0; i < ts->ss_dur; i++) {
1376 k = (j + i) % ts->ss_dur;
1377 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1378 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1379 }
1380 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1381 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1382 json_object_add_value_array(data, "iops", iops);
1383 json_object_add_value_array(data, "bw", bw);
1384 }
1385
1386 return root;
1387}
1388
1389static void show_thread_status_terse(struct thread_stat *ts,
1390 struct group_run_stats *rs,
1391 struct buf_output *out)
1392{
1393 if (terse_version >= 2 && terse_version <= 5)
1394 show_thread_status_terse_all(ts, rs, terse_version, out);
1395 else
1396 log_err("fio: bad terse version!? %d\n", terse_version);
1397}
1398
1399struct json_object *show_thread_status(struct thread_stat *ts,
1400 struct group_run_stats *rs,
1401 struct flist_head *opt_list,
1402 struct buf_output *out)
1403{
1404 struct json_object *ret = NULL;
1405
1406 if (output_format & FIO_OUTPUT_TERSE)
1407 show_thread_status_terse(ts, rs, out);
1408 if (output_format & FIO_OUTPUT_JSON)
1409 ret = show_thread_status_json(ts, rs, opt_list);
1410 if (output_format & FIO_OUTPUT_NORMAL)
1411 show_thread_status_normal(ts, rs, out);
1412
1413 return ret;
1414}
1415
1416static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1417{
1418 double mean, S;
1419
1420 if (src->samples == 0)
1421 return;
1422
1423 dst->min_val = min(dst->min_val, src->min_val);
1424 dst->max_val = max(dst->max_val, src->max_val);
1425
1426 /*
1427 * Compute new mean and S after the merge
1428 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1429 * #Parallel_algorithm>
1430 */
1431 if (first) {
1432 mean = src->mean.u.f;
1433 S = src->S.u.f;
1434 } else {
1435 double delta = src->mean.u.f - dst->mean.u.f;
1436
1437 mean = ((src->mean.u.f * src->samples) +
1438 (dst->mean.u.f * dst->samples)) /
1439 (dst->samples + src->samples);
1440
1441 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1442 (dst->samples * src->samples) /
1443 (dst->samples + src->samples);
1444 }
1445
1446 dst->samples += src->samples;
1447 dst->mean.u.f = mean;
1448 dst->S.u.f = S;
1449}
1450
1451void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1452{
1453 int i;
1454
1455 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1456 if (dst->max_run[i] < src->max_run[i])
1457 dst->max_run[i] = src->max_run[i];
1458 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1459 dst->min_run[i] = src->min_run[i];
1460 if (dst->max_bw[i] < src->max_bw[i])
1461 dst->max_bw[i] = src->max_bw[i];
1462 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1463 dst->min_bw[i] = src->min_bw[i];
1464
1465 dst->iobytes[i] += src->iobytes[i];
1466 dst->agg[i] += src->agg[i];
1467 }
1468
1469 if (!dst->kb_base)
1470 dst->kb_base = src->kb_base;
1471 if (!dst->unit_base)
1472 dst->unit_base = src->unit_base;
1473}
1474
1475void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1476 bool first)
1477{
1478 int l, k;
1479
1480 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1481 if (!dst->unified_rw_rep) {
1482 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1483 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1484 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1485 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1486 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1487
1488 dst->io_bytes[l] += src->io_bytes[l];
1489
1490 if (dst->runtime[l] < src->runtime[l])
1491 dst->runtime[l] = src->runtime[l];
1492 } else {
1493 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1494 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1495 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1496 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1497 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1498
1499 dst->io_bytes[0] += src->io_bytes[l];
1500
1501 if (dst->runtime[0] < src->runtime[l])
1502 dst->runtime[0] = src->runtime[l];
1503
1504 /*
1505 * We're summing to the same destination, so override
1506 * 'first' after the first iteration of the loop
1507 */
1508 first = false;
1509 }
1510 }
1511
1512 dst->usr_time += src->usr_time;
1513 dst->sys_time += src->sys_time;
1514 dst->ctx += src->ctx;
1515 dst->majf += src->majf;
1516 dst->minf += src->minf;
1517
1518 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1519 dst->io_u_map[k] += src->io_u_map[k];
1520 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1521 dst->io_u_submit[k] += src->io_u_submit[k];
1522 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1523 dst->io_u_complete[k] += src->io_u_complete[k];
1524 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1525 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1526 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1527 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1528 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1529 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1530
1531 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1532 if (!dst->unified_rw_rep) {
1533 dst->total_io_u[k] += src->total_io_u[k];
1534 dst->short_io_u[k] += src->short_io_u[k];
1535 dst->drop_io_u[k] += src->drop_io_u[k];
1536 } else {
1537 dst->total_io_u[0] += src->total_io_u[k];
1538 dst->short_io_u[0] += src->short_io_u[k];
1539 dst->drop_io_u[0] += src->drop_io_u[k];
1540 }
1541 }
1542
1543 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1544 int m;
1545
1546 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1547 if (!dst->unified_rw_rep)
1548 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1549 else
1550 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1551 }
1552 }
1553
1554 dst->total_run_time += src->total_run_time;
1555 dst->total_submit += src->total_submit;
1556 dst->total_complete += src->total_complete;
1557}
1558
1559void init_group_run_stat(struct group_run_stats *gs)
1560{
1561 int i;
1562 memset(gs, 0, sizeof(*gs));
1563
1564 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1565 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1566}
1567
1568void init_thread_stat(struct thread_stat *ts)
1569{
1570 int j;
1571
1572 memset(ts, 0, sizeof(*ts));
1573
1574 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1575 ts->lat_stat[j].min_val = -1UL;
1576 ts->clat_stat[j].min_val = -1UL;
1577 ts->slat_stat[j].min_val = -1UL;
1578 ts->bw_stat[j].min_val = -1UL;
1579 ts->iops_stat[j].min_val = -1UL;
1580 }
1581 ts->groupid = -1;
1582}
1583
1584void __show_run_stats(void)
1585{
1586 struct group_run_stats *runstats, *rs;
1587 struct thread_data *td;
1588 struct thread_stat *threadstats, *ts;
1589 int i, j, k, nr_ts, last_ts, idx;
1590 int kb_base_warned = 0;
1591 int unit_base_warned = 0;
1592 struct json_object *root = NULL;
1593 struct json_array *array = NULL;
1594 struct buf_output output[FIO_OUTPUT_NR];
1595 struct flist_head **opt_lists;
1596
1597 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1598
1599 for (i = 0; i < groupid + 1; i++)
1600 init_group_run_stat(&runstats[i]);
1601
1602 /*
1603 * find out how many threads stats we need. if group reporting isn't
1604 * enabled, it's one-per-td.
1605 */
1606 nr_ts = 0;
1607 last_ts = -1;
1608 for_each_td(td, i) {
1609 if (!td->o.group_reporting) {
1610 nr_ts++;
1611 continue;
1612 }
1613 if (last_ts == td->groupid)
1614 continue;
1615 if (!td->o.stats)
1616 continue;
1617
1618 last_ts = td->groupid;
1619 nr_ts++;
1620 }
1621
1622 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1623 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1624
1625 for (i = 0; i < nr_ts; i++) {
1626 init_thread_stat(&threadstats[i]);
1627 opt_lists[i] = NULL;
1628 }
1629
1630 j = 0;
1631 last_ts = -1;
1632 idx = 0;
1633 for_each_td(td, i) {
1634 if (!td->o.stats)
1635 continue;
1636 if (idx && (!td->o.group_reporting ||
1637 (td->o.group_reporting && last_ts != td->groupid))) {
1638 idx = 0;
1639 j++;
1640 }
1641
1642 last_ts = td->groupid;
1643
1644 ts = &threadstats[j];
1645
1646 ts->clat_percentiles = td->o.clat_percentiles;
1647 ts->percentile_precision = td->o.percentile_precision;
1648 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1649 opt_lists[j] = &td->opt_list;
1650
1651 idx++;
1652 ts->members++;
1653
1654 if (ts->groupid == -1) {
1655 /*
1656 * These are per-group shared already
1657 */
1658 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1659 if (td->o.description)
1660 strncpy(ts->description, td->o.description,
1661 FIO_JOBDESC_SIZE - 1);
1662 else
1663 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1664
1665 /*
1666 * If multiple entries in this group, this is
1667 * the first member.
1668 */
1669 ts->thread_number = td->thread_number;
1670 ts->groupid = td->groupid;
1671
1672 /*
1673 * first pid in group, not very useful...
1674 */
1675 ts->pid = td->pid;
1676
1677 ts->kb_base = td->o.kb_base;
1678 ts->unit_base = td->o.unit_base;
1679 ts->unified_rw_rep = td->o.unified_rw_rep;
1680 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1681 log_info("fio: kb_base differs for jobs in group, using"
1682 " %u as the base\n", ts->kb_base);
1683 kb_base_warned = 1;
1684 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1685 log_info("fio: unit_base differs for jobs in group, using"
1686 " %u as the base\n", ts->unit_base);
1687 unit_base_warned = 1;
1688 }
1689
1690 ts->continue_on_error = td->o.continue_on_error;
1691 ts->total_err_count += td->total_err_count;
1692 ts->first_error = td->first_error;
1693 if (!ts->error) {
1694 if (!td->error && td->o.continue_on_error &&
1695 td->first_error) {
1696 ts->error = td->first_error;
1697 ts->verror[sizeof(ts->verror) - 1] = '\0';
1698 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1699 } else if (td->error) {
1700 ts->error = td->error;
1701 ts->verror[sizeof(ts->verror) - 1] = '\0';
1702 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1703 }
1704 }
1705
1706 ts->latency_depth = td->latency_qd;
1707 ts->latency_target = td->o.latency_target;
1708 ts->latency_percentile = td->o.latency_percentile;
1709 ts->latency_window = td->o.latency_window;
1710
1711 ts->nr_block_infos = td->ts.nr_block_infos;
1712 for (k = 0; k < ts->nr_block_infos; k++)
1713 ts->block_infos[k] = td->ts.block_infos[k];
1714
1715 sum_thread_stats(ts, &td->ts, idx == 1);
1716
1717 if (td->o.ss_dur) {
1718 ts->ss_state = td->ss.state;
1719 ts->ss_dur = td->ss.dur;
1720 ts->ss_head = td->ss.head;
1721 ts->ss_bw_data = td->ss.bw_data;
1722 ts->ss_iops_data = td->ss.iops_data;
1723 ts->ss_limit.u.f = td->ss.limit;
1724 ts->ss_slope.u.f = td->ss.slope;
1725 ts->ss_deviation.u.f = td->ss.deviation;
1726 ts->ss_criterion.u.f = td->ss.criterion;
1727 }
1728 else
1729 ts->ss_dur = ts->ss_state = 0;
1730 }
1731
1732 for (i = 0; i < nr_ts; i++) {
1733 unsigned long long bw;
1734
1735 ts = &threadstats[i];
1736 if (ts->groupid == -1)
1737 continue;
1738 rs = &runstats[ts->groupid];
1739 rs->kb_base = ts->kb_base;
1740 rs->unit_base = ts->unit_base;
1741 rs->unified_rw_rep += ts->unified_rw_rep;
1742
1743 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1744 if (!ts->runtime[j])
1745 continue;
1746 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1747 rs->min_run[j] = ts->runtime[j];
1748 if (ts->runtime[j] > rs->max_run[j])
1749 rs->max_run[j] = ts->runtime[j];
1750
1751 bw = 0;
1752 if (ts->runtime[j])
1753 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1754 if (bw < rs->min_bw[j])
1755 rs->min_bw[j] = bw;
1756 if (bw > rs->max_bw[j])
1757 rs->max_bw[j] = bw;
1758
1759 rs->iobytes[j] += ts->io_bytes[j];
1760 }
1761 }
1762
1763 for (i = 0; i < groupid + 1; i++) {
1764 int ddir;
1765
1766 rs = &runstats[i];
1767
1768 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1769 if (rs->max_run[ddir])
1770 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1771 rs->max_run[ddir];
1772 }
1773 }
1774
1775 for (i = 0; i < FIO_OUTPUT_NR; i++)
1776 buf_output_init(&output[i]);
1777
1778 /*
1779 * don't overwrite last signal output
1780 */
1781 if (output_format & FIO_OUTPUT_NORMAL)
1782 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1783 if (output_format & FIO_OUTPUT_JSON) {
1784 struct thread_data *global;
1785 char time_buf[32];
1786 struct timeval now;
1787 unsigned long long ms_since_epoch;
1788
1789 gettimeofday(&now, NULL);
1790 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1791 (unsigned long long)(now.tv_usec) / 1000;
1792
1793 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1794 sizeof(time_buf));
1795 if (time_buf[strlen(time_buf) - 1] == '\n')
1796 time_buf[strlen(time_buf) - 1] = '\0';
1797
1798 root = json_create_object();
1799 json_object_add_value_string(root, "fio version", fio_version_string);
1800 json_object_add_value_int(root, "timestamp", now.tv_sec);
1801 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1802 json_object_add_value_string(root, "time", time_buf);
1803 global = get_global_options();
1804 json_add_job_opts(root, "global options", &global->opt_list, false);
1805 array = json_create_array();
1806 json_object_add_value_array(root, "jobs", array);
1807 }
1808
1809 if (is_backend)
1810 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1811
1812 for (i = 0; i < nr_ts; i++) {
1813 ts = &threadstats[i];
1814 rs = &runstats[ts->groupid];
1815
1816 if (is_backend) {
1817 fio_server_send_job_options(opt_lists[i], i);
1818 fio_server_send_ts(ts, rs);
1819 } else {
1820 if (output_format & FIO_OUTPUT_TERSE)
1821 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1822 if (output_format & FIO_OUTPUT_JSON) {
1823 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1824 json_array_add_value_object(array, tmp);
1825 }
1826 if (output_format & FIO_OUTPUT_NORMAL)
1827 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1828 }
1829 }
1830 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1831 /* disk util stats, if any */
1832 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1833
1834 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1835
1836 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1837 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1838 json_free_object(root);
1839 }
1840
1841 for (i = 0; i < groupid + 1; i++) {
1842 rs = &runstats[i];
1843
1844 rs->groupid = i;
1845 if (is_backend)
1846 fio_server_send_gs(rs);
1847 else if (output_format & FIO_OUTPUT_NORMAL)
1848 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1849 }
1850
1851 if (is_backend)
1852 fio_server_send_du();
1853 else if (output_format & FIO_OUTPUT_NORMAL) {
1854 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1855 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1856 }
1857
1858 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1859 struct buf_output *out = &output[i];
1860
1861 log_info_buf(out->buf, out->buflen);
1862 buf_output_free(out);
1863 }
1864
1865 log_info_flush();
1866 free(runstats);
1867 free(threadstats);
1868 free(opt_lists);
1869}
1870
1871void show_run_stats(void)
1872{
1873 fio_mutex_down(stat_mutex);
1874 __show_run_stats();
1875 fio_mutex_up(stat_mutex);
1876}
1877
1878void __show_running_run_stats(void)
1879{
1880 struct thread_data *td;
1881 unsigned long long *rt;
1882 struct timespec ts;
1883 int i;
1884
1885 fio_mutex_down(stat_mutex);
1886
1887 rt = malloc(thread_number * sizeof(unsigned long long));
1888 fio_gettime(&ts, NULL);
1889
1890 for_each_td(td, i) {
1891 td->update_rusage = 1;
1892 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1893 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1894 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1895 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1896
1897 rt[i] = mtime_since(&td->start, &ts);
1898 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1899 td->ts.runtime[DDIR_READ] += rt[i];
1900 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1901 td->ts.runtime[DDIR_WRITE] += rt[i];
1902 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1903 td->ts.runtime[DDIR_TRIM] += rt[i];
1904 }
1905
1906 for_each_td(td, i) {
1907 if (td->runstate >= TD_EXITED)
1908 continue;
1909 if (td->rusage_sem) {
1910 td->update_rusage = 1;
1911 fio_mutex_down(td->rusage_sem);
1912 }
1913 td->update_rusage = 0;
1914 }
1915
1916 __show_run_stats();
1917
1918 for_each_td(td, i) {
1919 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1920 td->ts.runtime[DDIR_READ] -= rt[i];
1921 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1922 td->ts.runtime[DDIR_WRITE] -= rt[i];
1923 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1924 td->ts.runtime[DDIR_TRIM] -= rt[i];
1925 }
1926
1927 free(rt);
1928 fio_mutex_up(stat_mutex);
1929}
1930
1931static int status_interval_init;
1932static struct timespec status_time;
1933static int status_file_disabled;
1934
1935#define FIO_STATUS_FILE "fio-dump-status"
1936
1937static int check_status_file(void)
1938{
1939 struct stat sb;
1940 const char *temp_dir;
1941 char fio_status_file_path[PATH_MAX];
1942
1943 if (status_file_disabled)
1944 return 0;
1945
1946 temp_dir = getenv("TMPDIR");
1947 if (temp_dir == NULL) {
1948 temp_dir = getenv("TEMP");
1949 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1950 temp_dir = NULL;
1951 }
1952 if (temp_dir == NULL)
1953 temp_dir = "/tmp";
1954
1955 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1956
1957 if (stat(fio_status_file_path, &sb))
1958 return 0;
1959
1960 if (unlink(fio_status_file_path) < 0) {
1961 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1962 strerror(errno));
1963 log_err("fio: disabling status file updates\n");
1964 status_file_disabled = 1;
1965 }
1966
1967 return 1;
1968}
1969
1970void check_for_running_stats(void)
1971{
1972 if (status_interval) {
1973 if (!status_interval_init) {
1974 fio_gettime(&status_time, NULL);
1975 status_interval_init = 1;
1976 } else if (mtime_since_now(&status_time) >= status_interval) {
1977 show_running_run_stats();
1978 fio_gettime(&status_time, NULL);
1979 return;
1980 }
1981 }
1982 if (check_status_file()) {
1983 show_running_run_stats();
1984 return;
1985 }
1986}
1987
1988static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
1989{
1990 double val = data;
1991 double delta;
1992
1993 if (data > is->max_val)
1994 is->max_val = data;
1995 if (data < is->min_val)
1996 is->min_val = data;
1997
1998 delta = val - is->mean.u.f;
1999 if (delta) {
2000 is->mean.u.f += delta / (is->samples + 1.0);
2001 is->S.u.f += delta * (val - is->mean.u.f);
2002 }
2003
2004 is->samples++;
2005}
2006
2007/*
2008 * Return a struct io_logs, which is added to the tail of the log
2009 * list for 'iolog'.
2010 */
2011static struct io_logs *get_new_log(struct io_log *iolog)
2012{
2013 size_t new_size, new_samples;
2014 struct io_logs *cur_log;
2015
2016 /*
2017 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2018 * forever
2019 */
2020 if (!iolog->cur_log_max)
2021 new_samples = DEF_LOG_ENTRIES;
2022 else {
2023 new_samples = iolog->cur_log_max * 2;
2024 if (new_samples > MAX_LOG_ENTRIES)
2025 new_samples = MAX_LOG_ENTRIES;
2026 }
2027
2028 new_size = new_samples * log_entry_sz(iolog);
2029
2030 cur_log = smalloc(sizeof(*cur_log));
2031 if (cur_log) {
2032 INIT_FLIST_HEAD(&cur_log->list);
2033 cur_log->log = malloc(new_size);
2034 if (cur_log->log) {
2035 cur_log->nr_samples = 0;
2036 cur_log->max_samples = new_samples;
2037 flist_add_tail(&cur_log->list, &iolog->io_logs);
2038 iolog->cur_log_max = new_samples;
2039 return cur_log;
2040 }
2041 sfree(cur_log);
2042 }
2043
2044 return NULL;
2045}
2046
2047/*
2048 * Add and return a new log chunk, or return current log if big enough
2049 */
2050static struct io_logs *regrow_log(struct io_log *iolog)
2051{
2052 struct io_logs *cur_log;
2053 int i;
2054
2055 if (!iolog || iolog->disabled)
2056 goto disable;
2057
2058 cur_log = iolog_cur_log(iolog);
2059 if (!cur_log) {
2060 cur_log = get_new_log(iolog);
2061 if (!cur_log)
2062 return NULL;
2063 }
2064
2065 if (cur_log->nr_samples < cur_log->max_samples)
2066 return cur_log;
2067
2068 /*
2069 * No room for a new sample. If we're compressing on the fly, flush
2070 * out the current chunk
2071 */
2072 if (iolog->log_gz) {
2073 if (iolog_cur_flush(iolog, cur_log)) {
2074 log_err("fio: failed flushing iolog! Will stop logging.\n");
2075 return NULL;
2076 }
2077 }
2078
2079 /*
2080 * Get a new log array, and add to our list
2081 */
2082 cur_log = get_new_log(iolog);
2083 if (!cur_log) {
2084 log_err("fio: failed extending iolog! Will stop logging.\n");
2085 return NULL;
2086 }
2087
2088 if (!iolog->pending || !iolog->pending->nr_samples)
2089 return cur_log;
2090
2091 /*
2092 * Flush pending items to new log
2093 */
2094 for (i = 0; i < iolog->pending->nr_samples; i++) {
2095 struct io_sample *src, *dst;
2096
2097 src = get_sample(iolog, iolog->pending, i);
2098 dst = get_sample(iolog, cur_log, i);
2099 memcpy(dst, src, log_entry_sz(iolog));
2100 }
2101 cur_log->nr_samples = iolog->pending->nr_samples;
2102
2103 iolog->pending->nr_samples = 0;
2104 return cur_log;
2105disable:
2106 if (iolog)
2107 iolog->disabled = true;
2108 return NULL;
2109}
2110
2111void regrow_logs(struct thread_data *td)
2112{
2113 regrow_log(td->slat_log);
2114 regrow_log(td->clat_log);
2115 regrow_log(td->clat_hist_log);
2116 regrow_log(td->lat_log);
2117 regrow_log(td->bw_log);
2118 regrow_log(td->iops_log);
2119 td->flags &= ~TD_F_REGROW_LOGS;
2120}
2121
2122static struct io_logs *get_cur_log(struct io_log *iolog)
2123{
2124 struct io_logs *cur_log;
2125
2126 cur_log = iolog_cur_log(iolog);
2127 if (!cur_log) {
2128 cur_log = get_new_log(iolog);
2129 if (!cur_log)
2130 return NULL;
2131 }
2132
2133 if (cur_log->nr_samples < cur_log->max_samples)
2134 return cur_log;
2135
2136 /*
2137 * Out of space. If we're in IO offload mode, or we're not doing
2138 * per unit logging (hence logging happens outside of the IO thread
2139 * as well), add a new log chunk inline. If we're doing inline
2140 * submissions, flag 'td' as needing a log regrow and we'll take
2141 * care of it on the submission side.
2142 */
2143 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2144 !per_unit_log(iolog))
2145 return regrow_log(iolog);
2146
2147 iolog->td->flags |= TD_F_REGROW_LOGS;
2148 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2149 return iolog->pending;
2150}
2151
2152static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2153 enum fio_ddir ddir, unsigned int bs,
2154 unsigned long t, uint64_t offset)
2155{
2156 struct io_logs *cur_log;
2157
2158 if (iolog->disabled)
2159 return;
2160 if (flist_empty(&iolog->io_logs))
2161 iolog->avg_last = t;
2162
2163 cur_log = get_cur_log(iolog);
2164 if (cur_log) {
2165 struct io_sample *s;
2166
2167 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2168
2169 s->data = data;
2170 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2171 io_sample_set_ddir(iolog, s, ddir);
2172 s->bs = bs;
2173
2174 if (iolog->log_offset) {
2175 struct io_sample_offset *so = (void *) s;
2176
2177 so->offset = offset;
2178 }
2179
2180 cur_log->nr_samples++;
2181 return;
2182 }
2183
2184 iolog->disabled = true;
2185}
2186
2187static inline void reset_io_stat(struct io_stat *ios)
2188{
2189 ios->max_val = ios->min_val = ios->samples = 0;
2190 ios->mean.u.f = ios->S.u.f = 0;
2191}
2192
2193void reset_io_stats(struct thread_data *td)
2194{
2195 struct thread_stat *ts = &td->ts;
2196 int i, j;
2197
2198 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2199 reset_io_stat(&ts->clat_stat[i]);
2200 reset_io_stat(&ts->slat_stat[i]);
2201 reset_io_stat(&ts->lat_stat[i]);
2202 reset_io_stat(&ts->bw_stat[i]);
2203 reset_io_stat(&ts->iops_stat[i]);
2204
2205 ts->io_bytes[i] = 0;
2206 ts->runtime[i] = 0;
2207 ts->total_io_u[i] = 0;
2208 ts->short_io_u[i] = 0;
2209 ts->drop_io_u[i] = 0;
2210
2211 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2212 ts->io_u_plat[i][j] = 0;
2213 }
2214
2215 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2216 ts->io_u_map[i] = 0;
2217 ts->io_u_submit[i] = 0;
2218 ts->io_u_complete[i] = 0;
2219 }
2220
2221 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2222 ts->io_u_lat_n[i] = 0;
2223 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2224 ts->io_u_lat_u[i] = 0;
2225 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2226 ts->io_u_lat_m[i] = 0;
2227
2228 ts->total_submit = 0;
2229 ts->total_complete = 0;
2230}
2231
2232static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2233 unsigned long elapsed, bool log_max)
2234{
2235 /*
2236 * Note an entry in the log. Use the mean from the logged samples,
2237 * making sure to properly round up. Only write a log entry if we
2238 * had actual samples done.
2239 */
2240 if (iolog->avg_window[ddir].samples) {
2241 union io_sample_data data;
2242
2243 if (log_max)
2244 data.val = iolog->avg_window[ddir].max_val;
2245 else
2246 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2247
2248 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2249 }
2250
2251 reset_io_stat(&iolog->avg_window[ddir]);
2252}
2253
2254static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2255 bool log_max)
2256{
2257 int ddir;
2258
2259 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2260 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2261}
2262
2263static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2264 union io_sample_data data, enum fio_ddir ddir,
2265 unsigned int bs, uint64_t offset)
2266{
2267 unsigned long elapsed, this_window;
2268
2269 if (!ddir_rw(ddir))
2270 return 0;
2271
2272 elapsed = mtime_since_now(&td->epoch);
2273
2274 /*
2275 * If no time averaging, just add the log sample.
2276 */
2277 if (!iolog->avg_msec) {
2278 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2279 return 0;
2280 }
2281
2282 /*
2283 * Add the sample. If the time period has passed, then
2284 * add that entry to the log and clear.
2285 */
2286 add_stat_sample(&iolog->avg_window[ddir], data.val);
2287
2288 /*
2289 * If period hasn't passed, adding the above sample is all we
2290 * need to do.
2291 */
2292 this_window = elapsed - iolog->avg_last;
2293 if (elapsed < iolog->avg_last)
2294 return iolog->avg_last - elapsed;
2295 else if (this_window < iolog->avg_msec) {
2296 int diff = iolog->avg_msec - this_window;
2297
2298 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2299 return diff;
2300 }
2301
2302 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2303
2304 iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2305 return iolog->avg_msec;
2306}
2307
2308void finalize_logs(struct thread_data *td, bool unit_logs)
2309{
2310 unsigned long elapsed;
2311
2312 elapsed = mtime_since_now(&td->epoch);
2313
2314 if (td->clat_log && unit_logs)
2315 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2316 if (td->slat_log && unit_logs)
2317 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2318 if (td->lat_log && unit_logs)
2319 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2320 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2321 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2322 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2323 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2324}
2325
2326void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2327{
2328 struct io_log *iolog;
2329
2330 if (!ddir_rw(ddir))
2331 return;
2332
2333 iolog = agg_io_log[ddir];
2334 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2335}
2336
2337static void add_clat_percentile_sample(struct thread_stat *ts,
2338 unsigned long long nsec, enum fio_ddir ddir)
2339{
2340 unsigned int idx = plat_val_to_idx(nsec);
2341 assert(idx < FIO_IO_U_PLAT_NR);
2342
2343 ts->io_u_plat[ddir][idx]++;
2344}
2345
2346void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2347 unsigned long long nsec, unsigned int bs, uint64_t offset)
2348{
2349 unsigned long elapsed, this_window;
2350 struct thread_stat *ts = &td->ts;
2351 struct io_log *iolog = td->clat_hist_log;
2352
2353 td_io_u_lock(td);
2354
2355 add_stat_sample(&ts->clat_stat[ddir], nsec);
2356
2357 if (td->clat_log)
2358 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2359 offset);
2360
2361 if (ts->clat_percentiles)
2362 add_clat_percentile_sample(ts, nsec, ddir);
2363
2364 if (iolog && iolog->hist_msec) {
2365 struct io_hist *hw = &iolog->hist_window[ddir];
2366
2367 hw->samples++;
2368 elapsed = mtime_since_now(&td->epoch);
2369 if (!hw->hist_last)
2370 hw->hist_last = elapsed;
2371 this_window = elapsed - hw->hist_last;
2372
2373 if (this_window >= iolog->hist_msec) {
2374 unsigned int *io_u_plat;
2375 struct io_u_plat_entry *dst;
2376
2377 /*
2378 * Make a byte-for-byte copy of the latency histogram
2379 * stored in td->ts.io_u_plat[ddir], recording it in a
2380 * log sample. Note that the matching call to free() is
2381 * located in iolog.c after printing this sample to the
2382 * log file.
2383 */
2384 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2385 dst = malloc(sizeof(struct io_u_plat_entry));
2386 memcpy(&(dst->io_u_plat), io_u_plat,
2387 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2388 flist_add(&dst->list, &hw->list);
2389 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2390 elapsed, offset);
2391
2392 /*
2393 * Update the last time we recorded as being now, minus
2394 * any drift in time we encountered before actually
2395 * making the record.
2396 */
2397 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2398 hw->samples = 0;
2399 }
2400 }
2401
2402 td_io_u_unlock(td);
2403}
2404
2405void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2406 unsigned long usec, unsigned int bs, uint64_t offset)
2407{
2408 struct thread_stat *ts = &td->ts;
2409
2410 if (!ddir_rw(ddir))
2411 return;
2412
2413 td_io_u_lock(td);
2414
2415 add_stat_sample(&ts->slat_stat[ddir], usec);
2416
2417 if (td->slat_log)
2418 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2419
2420 td_io_u_unlock(td);
2421}
2422
2423void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2424 unsigned long long nsec, unsigned int bs, uint64_t offset)
2425{
2426 struct thread_stat *ts = &td->ts;
2427
2428 if (!ddir_rw(ddir))
2429 return;
2430
2431 td_io_u_lock(td);
2432
2433 add_stat_sample(&ts->lat_stat[ddir], nsec);
2434
2435 if (td->lat_log)
2436 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2437 offset);
2438
2439 td_io_u_unlock(td);
2440}
2441
2442void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2443 unsigned int bytes, unsigned long long spent)
2444{
2445 struct thread_stat *ts = &td->ts;
2446 unsigned long rate;
2447
2448 if (spent)
2449 rate = (unsigned long) (bytes * 1000000ULL / spent);
2450 else
2451 rate = 0;
2452
2453 td_io_u_lock(td);
2454
2455 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2456
2457 if (td->bw_log)
2458 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2459 bytes, io_u->offset);
2460
2461 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2462 td_io_u_unlock(td);
2463}
2464
2465static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2466 struct timespec *t, unsigned int avg_time,
2467 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2468 struct io_stat *stat, struct io_log *log,
2469 bool is_kb)
2470{
2471 unsigned long spent, rate;
2472 enum fio_ddir ddir;
2473 unsigned int next, next_log;
2474
2475 next_log = avg_time;
2476
2477 spent = mtime_since(parent_tv, t);
2478 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2479 return avg_time - spent;
2480
2481 td_io_u_lock(td);
2482
2483 /*
2484 * Compute both read and write rates for the interval.
2485 */
2486 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2487 uint64_t delta;
2488
2489 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2490 if (!delta)
2491 continue; /* No entries for interval */
2492
2493 if (spent) {
2494 if (is_kb)
2495 rate = delta * 1000 / spent / 1024; /* KiB/s */
2496 else
2497 rate = (delta * 1000) / spent;
2498 } else
2499 rate = 0;
2500
2501 add_stat_sample(&stat[ddir], rate);
2502
2503 if (log) {
2504 unsigned int bs = 0;
2505
2506 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2507 bs = td->o.min_bs[ddir];
2508
2509 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2510 next_log = min(next_log, next);
2511 }
2512
2513 stat_io_bytes[ddir] = this_io_bytes[ddir];
2514 }
2515
2516 timespec_add_msec(parent_tv, avg_time);
2517
2518 td_io_u_unlock(td);
2519
2520 if (spent <= avg_time)
2521 next = avg_time;
2522 else
2523 next = avg_time - (1 + spent - avg_time);
2524
2525 return min(next, next_log);
2526}
2527
2528static int add_bw_samples(struct thread_data *td, struct timespec *t)
2529{
2530 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2531 td->this_io_bytes, td->stat_io_bytes,
2532 td->ts.bw_stat, td->bw_log, true);
2533}
2534
2535void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2536 unsigned int bytes)
2537{
2538 struct thread_stat *ts = &td->ts;
2539
2540 td_io_u_lock(td);
2541
2542 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2543
2544 if (td->iops_log)
2545 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2546 bytes, io_u->offset);
2547
2548 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2549 td_io_u_unlock(td);
2550}
2551
2552static int add_iops_samples(struct thread_data *td, struct timespec *t)
2553{
2554 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2555 td->this_io_blocks, td->stat_io_blocks,
2556 td->ts.iops_stat, td->iops_log, false);
2557}
2558
2559/*
2560 * Returns msecs to next event
2561 */
2562int calc_log_samples(void)
2563{
2564 struct thread_data *td;
2565 unsigned int next = ~0U, tmp;
2566 struct timespec now;
2567 int i;
2568
2569 fio_gettime(&now, NULL);
2570
2571 for_each_td(td, i) {
2572 if (!td->o.stats)
2573 continue;
2574 if (in_ramp_time(td) ||
2575 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2576 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2577 continue;
2578 }
2579 if (!td->bw_log ||
2580 (td->bw_log && !per_unit_log(td->bw_log))) {
2581 tmp = add_bw_samples(td, &now);
2582 if (tmp < next)
2583 next = tmp;
2584 }
2585 if (!td->iops_log ||
2586 (td->iops_log && !per_unit_log(td->iops_log))) {
2587 tmp = add_iops_samples(td, &now);
2588 if (tmp < next)
2589 next = tmp;
2590 }
2591 }
2592
2593 return next == ~0U ? 0 : next;
2594}
2595
2596void stat_init(void)
2597{
2598 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2599}
2600
2601void stat_exit(void)
2602{
2603 /*
2604 * When we have the mutex, we know out-of-band access to it
2605 * have ended.
2606 */
2607 fio_mutex_down(stat_mutex);
2608 fio_mutex_remove(stat_mutex);
2609}
2610
2611/*
2612 * Called from signal handler. Wake up status thread.
2613 */
2614void show_running_run_stats(void)
2615{
2616 helper_do_stat();
2617}
2618
2619uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2620{
2621 /* Ignore io_u's which span multiple blocks--they will just get
2622 * inaccurate counts. */
2623 int idx = (io_u->offset - io_u->file->file_offset)
2624 / td->o.bs[DDIR_TRIM];
2625 uint32_t *info = &td->ts.block_infos[idx];
2626 assert(idx < td->ts.nr_block_infos);
2627 return info;
2628}