doc: provide more detail regarding the --status-interval option
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned long long val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned long long plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits;
104 unsigned long long k, base;
105
106 assert(idx < FIO_IO_U_PLAT_NR);
107
108 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
109 * all bits of the sample as index */
110 if (idx < (FIO_IO_U_PLAT_VAL << 1))
111 return idx;
112
113 /* Find the group and compute the minimum value of that group */
114 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
115 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
116
117 /* Find its bucket number of the group */
118 k = idx % FIO_IO_U_PLAT_VAL;
119
120 /* Return the mean of the range of the bucket */
121 return base + ((k + 0.5) * (1 << error_bits));
122}
123
124static int double_cmp(const void *a, const void *b)
125{
126 const fio_fp64_t fa = *(const fio_fp64_t *) a;
127 const fio_fp64_t fb = *(const fio_fp64_t *) b;
128 int cmp = 0;
129
130 if (fa.u.f > fb.u.f)
131 cmp = 1;
132 else if (fa.u.f < fb.u.f)
133 cmp = -1;
134
135 return cmp;
136}
137
138unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
139 fio_fp64_t *plist, unsigned long long **output,
140 unsigned long long *maxv, unsigned long long *minv)
141{
142 unsigned long sum = 0;
143 unsigned int len, i, j = 0;
144 unsigned int oval_len = 0;
145 unsigned long long *ovals = NULL;
146 int is_last;
147
148 *minv = -1ULL;
149 *maxv = 0;
150
151 len = 0;
152 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
153 len++;
154
155 if (!len)
156 return 0;
157
158 /*
159 * Sort the percentile list. Note that it may already be sorted if
160 * we are using the default values, but since it's a short list this
161 * isn't a worry. Also note that this does not work for NaN values.
162 */
163 if (len > 1)
164 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
165
166 /*
167 * Calculate bucket values, note down max and min values
168 */
169 is_last = 0;
170 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
171 sum += io_u_plat[i];
172 while (sum >= (plist[j].u.f / 100.0 * nr)) {
173 assert(plist[j].u.f <= 100.0);
174
175 if (j == oval_len) {
176 oval_len += 100;
177 ovals = realloc(ovals, oval_len * sizeof(*ovals));
178 }
179
180 ovals[j] = plat_idx_to_val(i);
181 if (ovals[j] < *minv)
182 *minv = ovals[j];
183 if (ovals[j] > *maxv)
184 *maxv = ovals[j];
185
186 is_last = (j == len - 1);
187 if (is_last)
188 break;
189
190 j++;
191 }
192 }
193
194 *output = ovals;
195 return len;
196}
197
198/*
199 * Find and display the p-th percentile of clat
200 */
201static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
202 fio_fp64_t *plist, unsigned int precision,
203 struct buf_output *out)
204{
205 unsigned int divisor, len, i, j = 0;
206 unsigned long long minv, maxv;
207 unsigned long long *ovals;
208 int is_last, per_line, scale_down, time_width;
209 char fmt[32];
210
211 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
212 if (!len)
213 goto out;
214
215 /*
216 * We default to nsecs, but if the value range is such that we
217 * should scale down to usecs or msecs, do that.
218 */
219 if (minv > 2000000 && maxv > 99999999ULL) {
220 scale_down = 2;
221 divisor = 1000000;
222 log_buf(out, " clat percentiles (msec):\n |");
223 } else if (minv > 2000 && maxv > 99999) {
224 scale_down = 1;
225 divisor = 1000;
226 log_buf(out, " clat percentiles (usec):\n |");
227 } else {
228 scale_down = 0;
229 divisor = 1;
230 log_buf(out, " clat percentiles (nsec):\n |");
231 }
232
233
234 time_width = max(5, (int) (log10(maxv / divisor) + 1));
235 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
236 precision, time_width);
237 /* fmt will be something like " %5.2fth=[%4llu]%c" */
238 per_line = (80 - 7) / (precision + 10 + time_width);
239
240 for (j = 0; j < len; j++) {
241 /* for formatting */
242 if (j != 0 && (j % per_line) == 0)
243 log_buf(out, " |");
244
245 /* end of the list */
246 is_last = (j == len - 1);
247
248 for (i = 0; i < scale_down; i++)
249 ovals[j] = (ovals[j] + 999) / 1000;
250
251 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
252
253 if (is_last)
254 break;
255
256 if ((j % per_line) == per_line - 1) /* for formatting */
257 log_buf(out, "\n");
258 }
259
260out:
261 if (ovals)
262 free(ovals);
263}
264
265bool calc_lat(struct io_stat *is, unsigned long long *min,
266 unsigned long long *max, double *mean, double *dev)
267{
268 double n = (double) is->samples;
269
270 if (n == 0)
271 return false;
272
273 *min = is->min_val;
274 *max = is->max_val;
275 *mean = is->mean.u.f;
276
277 if (n > 1.0)
278 *dev = sqrt(is->S.u.f / (n - 1.0));
279 else
280 *dev = 0;
281
282 return true;
283}
284
285void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
286{
287 char *io, *agg, *min, *max;
288 char *ioalt, *aggalt, *minalt, *maxalt;
289 const char *str[] = { " READ", " WRITE" , " TRIM"};
290 int i;
291
292 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
293
294 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
295 const int i2p = is_power_of_2(rs->kb_base);
296
297 if (!rs->max_run[i])
298 continue;
299
300 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
301 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
302 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
303 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
304 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
305 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
306 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
307 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
308 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
309 rs->unified_rw_rep ? " MIXED" : str[i],
310 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
311 (unsigned long long) rs->min_run[i],
312 (unsigned long long) rs->max_run[i]);
313
314 free(io);
315 free(agg);
316 free(min);
317 free(max);
318 free(ioalt);
319 free(aggalt);
320 free(minalt);
321 free(maxalt);
322 }
323}
324
325void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
326{
327 int i;
328
329 /*
330 * Do depth distribution calculations
331 */
332 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
333 if (total) {
334 io_u_dist[i] = (double) map[i] / (double) total;
335 io_u_dist[i] *= 100.0;
336 if (io_u_dist[i] < 0.1 && map[i])
337 io_u_dist[i] = 0.1;
338 } else
339 io_u_dist[i] = 0.0;
340 }
341}
342
343static void stat_calc_lat(struct thread_stat *ts, double *dst,
344 unsigned int *src, int nr)
345{
346 unsigned long total = ddir_rw_sum(ts->total_io_u);
347 int i;
348
349 /*
350 * Do latency distribution calculations
351 */
352 for (i = 0; i < nr; i++) {
353 if (total) {
354 dst[i] = (double) src[i] / (double) total;
355 dst[i] *= 100.0;
356 if (dst[i] < 0.01 && src[i])
357 dst[i] = 0.01;
358 } else
359 dst[i] = 0.0;
360 }
361}
362
363/*
364 * To keep the terse format unaltered, add all of the ns latency
365 * buckets to the first us latency bucket
366 */
367void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
368{
369 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
370 int i;
371
372 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
373
374 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
375 ntotal += ts->io_u_lat_n[i];
376
377 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
378}
379
380void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
381{
382 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
383}
384
385void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
386{
387 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
388}
389
390void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
391{
392 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
393}
394
395static void display_lat(const char *name, unsigned long long min,
396 unsigned long long max, double mean, double dev,
397 struct buf_output *out)
398{
399 const char *base = "(nsec)";
400 char *minp, *maxp;
401
402 if (nsec_to_msec(&min, &max, &mean, &dev))
403 base = "(msec)";
404 else if (nsec_to_usec(&min, &max, &mean, &dev))
405 base = "(usec)";
406
407 minp = num2str(min, 6, 1, 0, N2S_NONE);
408 maxp = num2str(max, 6, 1, 0, N2S_NONE);
409
410 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
411 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
412
413 free(minp);
414 free(maxp);
415}
416
417static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
418 int ddir, struct buf_output *out)
419{
420 const char *str[] = { " read", "write", " trim" };
421 unsigned long runt;
422 unsigned long long min, max, bw, iops;
423 double mean, dev;
424 char *io_p, *bw_p, *bw_p_alt, *iops_p;
425 int i2p;
426
427 assert(ddir_rw(ddir));
428
429 if (!ts->runtime[ddir])
430 return;
431
432 i2p = is_power_of_2(rs->kb_base);
433 runt = ts->runtime[ddir];
434
435 bw = (1000 * ts->io_bytes[ddir]) / runt;
436 io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
437 bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
438 bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
439
440 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
441 iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
442
443 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
444 rs->unified_rw_rep ? "mixed" : str[ddir],
445 iops_p, bw_p, bw_p_alt, io_p,
446 (unsigned long long) ts->runtime[ddir]);
447
448 free(io_p);
449 free(bw_p);
450 free(bw_p_alt);
451 free(iops_p);
452
453 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
454 display_lat("slat", min, max, mean, dev, out);
455 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
456 display_lat("clat", min, max, mean, dev, out);
457 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
458 display_lat(" lat", min, max, mean, dev, out);
459
460 if (ts->clat_percentiles) {
461 show_clat_percentiles(ts->io_u_plat[ddir],
462 ts->clat_stat[ddir].samples,
463 ts->percentile_list,
464 ts->percentile_precision, out);
465 }
466 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
467 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
468 const char *bw_str;
469
470 if ((rs->unit_base == 1) && i2p)
471 bw_str = "Kibit";
472 else if (rs->unit_base == 1)
473 bw_str = "kbit";
474 else if (i2p)
475 bw_str = "KiB";
476 else
477 bw_str = "kB";
478
479 if (rs->agg[ddir]) {
480 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
481 if (p_of_agg > 100.0)
482 p_of_agg = 100.0;
483 }
484
485 if (rs->unit_base == 1) {
486 min *= 8.0;
487 max *= 8.0;
488 mean *= 8.0;
489 dev *= 8.0;
490 }
491
492 if (mean > fkb_base * fkb_base) {
493 min /= fkb_base;
494 max /= fkb_base;
495 mean /= fkb_base;
496 dev /= fkb_base;
497 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
498 }
499
500 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
501 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
502 bw_str, min, max, p_of_agg, mean, dev,
503 (&ts->bw_stat[ddir])->samples);
504 }
505 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
506 log_buf(out, " iops : min=%5llu, max=%5llu, "
507 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
508 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
509 }
510}
511
512static int show_lat(double *io_u_lat, int nr, const char **ranges,
513 const char *msg, struct buf_output *out)
514{
515 int new_line = 1, i, line = 0, shown = 0;
516
517 for (i = 0; i < nr; i++) {
518 if (io_u_lat[i] <= 0.0)
519 continue;
520 shown = 1;
521 if (new_line) {
522 if (line)
523 log_buf(out, "\n");
524 log_buf(out, " lat (%s) : ", msg);
525 new_line = 0;
526 line = 0;
527 }
528 if (line)
529 log_buf(out, ", ");
530 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
531 line++;
532 if (line == 5)
533 new_line = 1;
534 }
535
536 if (shown)
537 log_buf(out, "\n");
538
539 return shown;
540}
541
542static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
543{
544 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
545 "250=", "500=", "750=", "1000=", };
546
547 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
548}
549
550static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
551{
552 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
553 "250=", "500=", "750=", "1000=", };
554
555 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
556}
557
558static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
559{
560 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
561 "250=", "500=", "750=", "1000=", "2000=",
562 ">=2000=", };
563
564 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
565}
566
567static void show_latencies(struct thread_stat *ts, struct buf_output *out)
568{
569 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
570 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
571 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
572
573 stat_calc_lat_n(ts, io_u_lat_n);
574 stat_calc_lat_u(ts, io_u_lat_u);
575 stat_calc_lat_m(ts, io_u_lat_m);
576
577 show_lat_n(io_u_lat_n, out);
578 show_lat_u(io_u_lat_u, out);
579 show_lat_m(io_u_lat_m, out);
580}
581
582static int block_state_category(int block_state)
583{
584 switch (block_state) {
585 case BLOCK_STATE_UNINIT:
586 return 0;
587 case BLOCK_STATE_TRIMMED:
588 case BLOCK_STATE_WRITTEN:
589 return 1;
590 case BLOCK_STATE_WRITE_FAILURE:
591 case BLOCK_STATE_TRIM_FAILURE:
592 return 2;
593 default:
594 /* Silence compile warning on some BSDs and have a return */
595 assert(0);
596 return -1;
597 }
598}
599
600static int compare_block_infos(const void *bs1, const void *bs2)
601{
602 uint32_t block1 = *(uint32_t *)bs1;
603 uint32_t block2 = *(uint32_t *)bs2;
604 int state1 = BLOCK_INFO_STATE(block1);
605 int state2 = BLOCK_INFO_STATE(block2);
606 int bscat1 = block_state_category(state1);
607 int bscat2 = block_state_category(state2);
608 int cycles1 = BLOCK_INFO_TRIMS(block1);
609 int cycles2 = BLOCK_INFO_TRIMS(block2);
610
611 if (bscat1 < bscat2)
612 return -1;
613 if (bscat1 > bscat2)
614 return 1;
615
616 if (cycles1 < cycles2)
617 return -1;
618 if (cycles1 > cycles2)
619 return 1;
620
621 if (state1 < state2)
622 return -1;
623 if (state1 > state2)
624 return 1;
625
626 assert(block1 == block2);
627 return 0;
628}
629
630static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
631 fio_fp64_t *plist, unsigned int **percentiles,
632 unsigned int *types)
633{
634 int len = 0;
635 int i, nr_uninit;
636
637 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
638
639 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
640 len++;
641
642 if (!len)
643 return 0;
644
645 /*
646 * Sort the percentile list. Note that it may already be sorted if
647 * we are using the default values, but since it's a short list this
648 * isn't a worry. Also note that this does not work for NaN values.
649 */
650 if (len > 1)
651 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
652
653 nr_uninit = 0;
654 /* Start only after the uninit entries end */
655 for (nr_uninit = 0;
656 nr_uninit < nr_block_infos
657 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
658 nr_uninit ++)
659 ;
660
661 if (nr_uninit == nr_block_infos)
662 return 0;
663
664 *percentiles = calloc(len, sizeof(**percentiles));
665
666 for (i = 0; i < len; i++) {
667 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
668 + nr_uninit;
669 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
670 }
671
672 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
673 for (i = 0; i < nr_block_infos; i++)
674 types[BLOCK_INFO_STATE(block_infos[i])]++;
675
676 return len;
677}
678
679static const char *block_state_names[] = {
680 [BLOCK_STATE_UNINIT] = "unwritten",
681 [BLOCK_STATE_TRIMMED] = "trimmed",
682 [BLOCK_STATE_WRITTEN] = "written",
683 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
684 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
685};
686
687static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
688 fio_fp64_t *plist, struct buf_output *out)
689{
690 int len, pos, i;
691 unsigned int *percentiles = NULL;
692 unsigned int block_state_counts[BLOCK_STATE_COUNT];
693
694 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
695 &percentiles, block_state_counts);
696
697 log_buf(out, " block lifetime percentiles :\n |");
698 pos = 0;
699 for (i = 0; i < len; i++) {
700 uint32_t block_info = percentiles[i];
701#define LINE_LENGTH 75
702 char str[LINE_LENGTH];
703 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
704 plist[i].u.f, block_info,
705 i == len - 1 ? '\n' : ',');
706 assert(strln < LINE_LENGTH);
707 if (pos + strln > LINE_LENGTH) {
708 pos = 0;
709 log_buf(out, "\n |");
710 }
711 log_buf(out, "%s", str);
712 pos += strln;
713#undef LINE_LENGTH
714 }
715 if (percentiles)
716 free(percentiles);
717
718 log_buf(out, " states :");
719 for (i = 0; i < BLOCK_STATE_COUNT; i++)
720 log_buf(out, " %s=%u%c",
721 block_state_names[i], block_state_counts[i],
722 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
723}
724
725static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
726{
727 char *p1, *p1alt, *p2;
728 unsigned long long bw_mean, iops_mean;
729 const int i2p = is_power_of_2(ts->kb_base);
730
731 if (!ts->ss_dur)
732 return;
733
734 bw_mean = steadystate_bw_mean(ts);
735 iops_mean = steadystate_iops_mean(ts);
736
737 p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
738 p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
739 p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
740
741 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
742 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
743 p1, p1alt, p2,
744 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
745 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
746 ts->ss_criterion.u.f,
747 ts->ss_state & __FIO_SS_PCT ? "%" : "");
748
749 free(p1);
750 free(p1alt);
751 free(p2);
752}
753
754static void show_thread_status_normal(struct thread_stat *ts,
755 struct group_run_stats *rs,
756 struct buf_output *out)
757{
758 double usr_cpu, sys_cpu;
759 unsigned long runtime;
760 double io_u_dist[FIO_IO_U_MAP_NR];
761 time_t time_p;
762 char time_buf[32];
763
764 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
765 return;
766
767 memset(time_buf, 0, sizeof(time_buf));
768
769 time(&time_p);
770 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
771
772 if (!ts->error) {
773 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
774 ts->name, ts->groupid, ts->members,
775 ts->error, (int) ts->pid, time_buf);
776 } else {
777 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
778 ts->name, ts->groupid, ts->members,
779 ts->error, ts->verror, (int) ts->pid,
780 time_buf);
781 }
782
783 if (strlen(ts->description))
784 log_buf(out, " Description : [%s]\n", ts->description);
785
786 if (ts->io_bytes[DDIR_READ])
787 show_ddir_status(rs, ts, DDIR_READ, out);
788 if (ts->io_bytes[DDIR_WRITE])
789 show_ddir_status(rs, ts, DDIR_WRITE, out);
790 if (ts->io_bytes[DDIR_TRIM])
791 show_ddir_status(rs, ts, DDIR_TRIM, out);
792
793 show_latencies(ts, out);
794
795 runtime = ts->total_run_time;
796 if (runtime) {
797 double runt = (double) runtime;
798
799 usr_cpu = (double) ts->usr_time * 100 / runt;
800 sys_cpu = (double) ts->sys_time * 100 / runt;
801 } else {
802 usr_cpu = 0;
803 sys_cpu = 0;
804 }
805
806 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
807 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
808 (unsigned long long) ts->ctx,
809 (unsigned long long) ts->majf,
810 (unsigned long long) ts->minf);
811
812 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
813 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
814 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
815 io_u_dist[1], io_u_dist[2],
816 io_u_dist[3], io_u_dist[4],
817 io_u_dist[5], io_u_dist[6]);
818
819 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
820 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
821 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
822 io_u_dist[1], io_u_dist[2],
823 io_u_dist[3], io_u_dist[4],
824 io_u_dist[5], io_u_dist[6]);
825 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
826 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
827 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
828 io_u_dist[1], io_u_dist[2],
829 io_u_dist[3], io_u_dist[4],
830 io_u_dist[5], io_u_dist[6]);
831 log_buf(out, " issued rwt: total=%llu,%llu,%llu,"
832 " short=%llu,%llu,%llu,"
833 " dropped=%llu,%llu,%llu\n",
834 (unsigned long long) ts->total_io_u[0],
835 (unsigned long long) ts->total_io_u[1],
836 (unsigned long long) ts->total_io_u[2],
837 (unsigned long long) ts->short_io_u[0],
838 (unsigned long long) ts->short_io_u[1],
839 (unsigned long long) ts->short_io_u[2],
840 (unsigned long long) ts->drop_io_u[0],
841 (unsigned long long) ts->drop_io_u[1],
842 (unsigned long long) ts->drop_io_u[2]);
843 if (ts->continue_on_error) {
844 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
845 (unsigned long long)ts->total_err_count,
846 ts->first_error,
847 strerror(ts->first_error));
848 }
849 if (ts->latency_depth) {
850 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
851 (unsigned long long)ts->latency_target,
852 (unsigned long long)ts->latency_window,
853 ts->latency_percentile.u.f,
854 ts->latency_depth);
855 }
856
857 if (ts->nr_block_infos)
858 show_block_infos(ts->nr_block_infos, ts->block_infos,
859 ts->percentile_list, out);
860
861 if (ts->ss_dur)
862 show_ss_normal(ts, out);
863}
864
865static void show_ddir_status_terse(struct thread_stat *ts,
866 struct group_run_stats *rs, int ddir,
867 int ver, struct buf_output *out)
868{
869 unsigned long long min, max, minv, maxv, bw, iops;
870 unsigned long long *ovals = NULL;
871 double mean, dev;
872 unsigned int len;
873 int i, bw_stat;
874
875 assert(ddir_rw(ddir));
876
877 iops = bw = 0;
878 if (ts->runtime[ddir]) {
879 uint64_t runt = ts->runtime[ddir];
880
881 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
882 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
883 }
884
885 log_buf(out, ";%llu;%llu;%llu;%llu",
886 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
887 (unsigned long long) ts->runtime[ddir]);
888
889 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
890 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
891 else
892 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
893
894 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
895 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
896 else
897 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
898
899 if (ts->clat_percentiles) {
900 len = calc_clat_percentiles(ts->io_u_plat[ddir],
901 ts->clat_stat[ddir].samples,
902 ts->percentile_list, &ovals, &maxv,
903 &minv);
904 } else
905 len = 0;
906
907 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
908 if (i >= len) {
909 log_buf(out, ";0%%=0");
910 continue;
911 }
912 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
913 }
914
915 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
916 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
917 else
918 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
919
920 if (ovals)
921 free(ovals);
922
923 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
924 if (bw_stat) {
925 double p_of_agg = 100.0;
926
927 if (rs->agg[ddir]) {
928 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
929 if (p_of_agg > 100.0)
930 p_of_agg = 100.0;
931 }
932
933 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
934 } else
935 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
936
937 if (ver == 5) {
938 if (bw_stat)
939 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
940 else
941 log_buf(out, ";%lu", 0UL);
942
943 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
944 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
945 mean, dev, (&ts->iops_stat[ddir])->samples);
946 else
947 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
948 }
949}
950
951static void add_ddir_status_json(struct thread_stat *ts,
952 struct group_run_stats *rs, int ddir, struct json_object *parent)
953{
954 unsigned long long min, max, minv, maxv;
955 unsigned long long bw;
956 unsigned long long *ovals = NULL;
957 double mean, dev, iops;
958 unsigned int len;
959 int i;
960 const char *ddirname[] = {"read", "write", "trim"};
961 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
962 char buf[120];
963 double p_of_agg = 100.0;
964
965 assert(ddir_rw(ddir));
966
967 if (ts->unified_rw_rep && ddir != DDIR_READ)
968 return;
969
970 dir_object = json_create_object();
971 json_object_add_value_object(parent,
972 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
973
974 bw = 0;
975 iops = 0.0;
976 if (ts->runtime[ddir]) {
977 uint64_t runt = ts->runtime[ddir];
978
979 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
980 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
981 }
982
983 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
984 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
985 json_object_add_value_int(dir_object, "bw", bw);
986 json_object_add_value_float(dir_object, "iops", iops);
987 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
988 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
989 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
990 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
991
992 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
993 min = max = 0;
994 mean = dev = 0.0;
995 }
996 tmp_object = json_create_object();
997 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
998 json_object_add_value_int(tmp_object, "min", min);
999 json_object_add_value_int(tmp_object, "max", max);
1000 json_object_add_value_float(tmp_object, "mean", mean);
1001 json_object_add_value_float(tmp_object, "stddev", dev);
1002
1003 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1004 min = max = 0;
1005 mean = dev = 0.0;
1006 }
1007 tmp_object = json_create_object();
1008 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1009 json_object_add_value_int(tmp_object, "min", min);
1010 json_object_add_value_int(tmp_object, "max", max);
1011 json_object_add_value_float(tmp_object, "mean", mean);
1012 json_object_add_value_float(tmp_object, "stddev", dev);
1013
1014 if (ts->clat_percentiles) {
1015 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1016 ts->clat_stat[ddir].samples,
1017 ts->percentile_list, &ovals, &maxv,
1018 &minv);
1019 } else
1020 len = 0;
1021
1022 percentile_object = json_create_object();
1023 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1024 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1025 if (i >= len) {
1026 json_object_add_value_int(percentile_object, "0.00", 0);
1027 continue;
1028 }
1029 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1030 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1031 }
1032
1033 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1034 clat_bins_object = json_create_object();
1035 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1036 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1037 if (ts->io_u_plat[ddir][i]) {
1038 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1039 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1040 }
1041 }
1042 }
1043
1044 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1045 min = max = 0;
1046 mean = dev = 0.0;
1047 }
1048 tmp_object = json_create_object();
1049 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1050 json_object_add_value_int(tmp_object, "min", min);
1051 json_object_add_value_int(tmp_object, "max", max);
1052 json_object_add_value_float(tmp_object, "mean", mean);
1053 json_object_add_value_float(tmp_object, "stddev", dev);
1054 if (ovals)
1055 free(ovals);
1056
1057 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1058 if (rs->agg[ddir]) {
1059 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1060 if (p_of_agg > 100.0)
1061 p_of_agg = 100.0;
1062 }
1063 } else {
1064 min = max = 0;
1065 p_of_agg = mean = dev = 0.0;
1066 }
1067 json_object_add_value_int(dir_object, "bw_min", min);
1068 json_object_add_value_int(dir_object, "bw_max", max);
1069 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1070 json_object_add_value_float(dir_object, "bw_mean", mean);
1071 json_object_add_value_float(dir_object, "bw_dev", dev);
1072 json_object_add_value_int(dir_object, "bw_samples",
1073 (&ts->bw_stat[ddir])->samples);
1074
1075 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1076 min = max = 0;
1077 mean = dev = 0.0;
1078 }
1079 json_object_add_value_int(dir_object, "iops_min", min);
1080 json_object_add_value_int(dir_object, "iops_max", max);
1081 json_object_add_value_float(dir_object, "iops_mean", mean);
1082 json_object_add_value_float(dir_object, "iops_stddev", dev);
1083 json_object_add_value_int(dir_object, "iops_samples",
1084 (&ts->iops_stat[ddir])->samples);
1085}
1086
1087static void show_thread_status_terse_all(struct thread_stat *ts,
1088 struct group_run_stats *rs, int ver,
1089 struct buf_output *out)
1090{
1091 double io_u_dist[FIO_IO_U_MAP_NR];
1092 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1093 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1094 double usr_cpu, sys_cpu;
1095 int i;
1096
1097 /* General Info */
1098 if (ver == 2)
1099 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1100 else
1101 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1102 ts->name, ts->groupid, ts->error);
1103
1104 /* Log Read Status */
1105 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1106 /* Log Write Status */
1107 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1108 /* Log Trim Status */
1109 if (ver == 2 || ver == 4 || ver == 5)
1110 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1111
1112 /* CPU Usage */
1113 if (ts->total_run_time) {
1114 double runt = (double) ts->total_run_time;
1115
1116 usr_cpu = (double) ts->usr_time * 100 / runt;
1117 sys_cpu = (double) ts->sys_time * 100 / runt;
1118 } else {
1119 usr_cpu = 0;
1120 sys_cpu = 0;
1121 }
1122
1123 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1124 (unsigned long long) ts->ctx,
1125 (unsigned long long) ts->majf,
1126 (unsigned long long) ts->minf);
1127
1128 /* Calc % distribution of IO depths, usecond, msecond latency */
1129 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1130 stat_calc_lat_nu(ts, io_u_lat_u);
1131 stat_calc_lat_m(ts, io_u_lat_m);
1132
1133 /* Only show fixed 7 I/O depth levels*/
1134 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1135 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1136 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1137
1138 /* Microsecond latency */
1139 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1140 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1141 /* Millisecond latency */
1142 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1143 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1144
1145 /* disk util stats, if any */
1146 if (ver >= 3)
1147 show_disk_util(1, NULL, out);
1148
1149 /* Additional output if continue_on_error set - default off*/
1150 if (ts->continue_on_error)
1151 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1152 if (ver == 2)
1153 log_buf(out, "\n");
1154
1155 /* Additional output if description is set */
1156 if (strlen(ts->description))
1157 log_buf(out, ";%s", ts->description);
1158
1159 log_buf(out, "\n");
1160}
1161
1162static void json_add_job_opts(struct json_object *root, const char *name,
1163 struct flist_head *opt_list, bool num_jobs)
1164{
1165 struct json_object *dir_object;
1166 struct flist_head *entry;
1167 struct print_option *p;
1168
1169 if (flist_empty(opt_list))
1170 return;
1171
1172 dir_object = json_create_object();
1173 json_object_add_value_object(root, name, dir_object);
1174
1175 flist_for_each(entry, opt_list) {
1176 const char *pos = "";
1177
1178 p = flist_entry(entry, struct print_option, list);
1179 if (!num_jobs && !strcmp(p->name, "numjobs"))
1180 continue;
1181 if (p->value)
1182 pos = p->value;
1183 json_object_add_value_string(dir_object, p->name, pos);
1184 }
1185}
1186
1187static struct json_object *show_thread_status_json(struct thread_stat *ts,
1188 struct group_run_stats *rs,
1189 struct flist_head *opt_list)
1190{
1191 struct json_object *root, *tmp;
1192 struct jobs_eta *je;
1193 double io_u_dist[FIO_IO_U_MAP_NR];
1194 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1195 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1196 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1197 double usr_cpu, sys_cpu;
1198 int i;
1199 size_t size;
1200
1201 root = json_create_object();
1202 json_object_add_value_string(root, "jobname", ts->name);
1203 json_object_add_value_int(root, "groupid", ts->groupid);
1204 json_object_add_value_int(root, "error", ts->error);
1205
1206 /* ETA Info */
1207 je = get_jobs_eta(true, &size);
1208 if (je) {
1209 json_object_add_value_int(root, "eta", je->eta_sec);
1210 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1211 }
1212
1213 if (opt_list)
1214 json_add_job_opts(root, "job options", opt_list, true);
1215
1216 add_ddir_status_json(ts, rs, DDIR_READ, root);
1217 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1218 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1219
1220 /* CPU Usage */
1221 if (ts->total_run_time) {
1222 double runt = (double) ts->total_run_time;
1223
1224 usr_cpu = (double) ts->usr_time * 100 / runt;
1225 sys_cpu = (double) ts->sys_time * 100 / runt;
1226 } else {
1227 usr_cpu = 0;
1228 sys_cpu = 0;
1229 }
1230 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1231 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1232 json_object_add_value_int(root, "ctx", ts->ctx);
1233 json_object_add_value_int(root, "majf", ts->majf);
1234 json_object_add_value_int(root, "minf", ts->minf);
1235
1236
1237 /* Calc % distribution of IO depths, usecond, msecond latency */
1238 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1239 stat_calc_lat_n(ts, io_u_lat_n);
1240 stat_calc_lat_u(ts, io_u_lat_u);
1241 stat_calc_lat_m(ts, io_u_lat_m);
1242
1243 tmp = json_create_object();
1244 json_object_add_value_object(root, "iodepth_level", tmp);
1245 /* Only show fixed 7 I/O depth levels*/
1246 for (i = 0; i < 7; i++) {
1247 char name[20];
1248 if (i < 6)
1249 snprintf(name, 20, "%d", 1 << i);
1250 else
1251 snprintf(name, 20, ">=%d", 1 << i);
1252 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1253 }
1254
1255 /* Nanosecond latency */
1256 tmp = json_create_object();
1257 json_object_add_value_object(root, "latency_ns", tmp);
1258 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1259 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1260 "250", "500", "750", "1000", };
1261 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1262 }
1263 /* Microsecond latency */
1264 tmp = json_create_object();
1265 json_object_add_value_object(root, "latency_us", tmp);
1266 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1267 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1268 "250", "500", "750", "1000", };
1269 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1270 }
1271 /* Millisecond latency */
1272 tmp = json_create_object();
1273 json_object_add_value_object(root, "latency_ms", tmp);
1274 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1275 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1276 "250", "500", "750", "1000", "2000",
1277 ">=2000", };
1278 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1279 }
1280
1281 /* Additional output if continue_on_error set - default off*/
1282 if (ts->continue_on_error) {
1283 json_object_add_value_int(root, "total_err", ts->total_err_count);
1284 json_object_add_value_int(root, "first_error", ts->first_error);
1285 }
1286
1287 if (ts->latency_depth) {
1288 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1289 json_object_add_value_int(root, "latency_target", ts->latency_target);
1290 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1291 json_object_add_value_int(root, "latency_window", ts->latency_window);
1292 }
1293
1294 /* Additional output if description is set */
1295 if (strlen(ts->description))
1296 json_object_add_value_string(root, "desc", ts->description);
1297
1298 if (ts->nr_block_infos) {
1299 /* Block error histogram and types */
1300 int len;
1301 unsigned int *percentiles = NULL;
1302 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1303
1304 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1305 ts->percentile_list,
1306 &percentiles, block_state_counts);
1307
1308 if (len) {
1309 struct json_object *block, *percentile_object, *states;
1310 int state;
1311 block = json_create_object();
1312 json_object_add_value_object(root, "block", block);
1313
1314 percentile_object = json_create_object();
1315 json_object_add_value_object(block, "percentiles",
1316 percentile_object);
1317 for (i = 0; i < len; i++) {
1318 char buf[20];
1319 snprintf(buf, sizeof(buf), "%f",
1320 ts->percentile_list[i].u.f);
1321 json_object_add_value_int(percentile_object,
1322 (const char *)buf,
1323 percentiles[i]);
1324 }
1325
1326 states = json_create_object();
1327 json_object_add_value_object(block, "states", states);
1328 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1329 json_object_add_value_int(states,
1330 block_state_names[state],
1331 block_state_counts[state]);
1332 }
1333 free(percentiles);
1334 }
1335 }
1336
1337 if (ts->ss_dur) {
1338 struct json_object *data;
1339 struct json_array *iops, *bw;
1340 int i, j, k;
1341 char ss_buf[64];
1342
1343 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1344 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1345 ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1346 (float) ts->ss_limit.u.f,
1347 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1348
1349 tmp = json_create_object();
1350 json_object_add_value_object(root, "steadystate", tmp);
1351 json_object_add_value_string(tmp, "ss", ss_buf);
1352 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1353 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1354
1355 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1356 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1357 json_object_add_value_string(tmp, "criterion", ss_buf);
1358 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1359 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1360
1361 data = json_create_object();
1362 json_object_add_value_object(tmp, "data", data);
1363 bw = json_create_array();
1364 iops = json_create_array();
1365
1366 /*
1367 ** if ss was attained or the buffer is not full,
1368 ** ss->head points to the first element in the list.
1369 ** otherwise it actually points to the second element
1370 ** in the list
1371 */
1372 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1373 j = ts->ss_head;
1374 else
1375 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1376 for (i = 0; i < ts->ss_dur; i++) {
1377 k = (j + i) % ts->ss_dur;
1378 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1379 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1380 }
1381 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1382 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1383 json_object_add_value_array(data, "iops", iops);
1384 json_object_add_value_array(data, "bw", bw);
1385 }
1386
1387 return root;
1388}
1389
1390static void show_thread_status_terse(struct thread_stat *ts,
1391 struct group_run_stats *rs,
1392 struct buf_output *out)
1393{
1394 if (terse_version >= 2 && terse_version <= 5)
1395 show_thread_status_terse_all(ts, rs, terse_version, out);
1396 else
1397 log_err("fio: bad terse version!? %d\n", terse_version);
1398}
1399
1400struct json_object *show_thread_status(struct thread_stat *ts,
1401 struct group_run_stats *rs,
1402 struct flist_head *opt_list,
1403 struct buf_output *out)
1404{
1405 struct json_object *ret = NULL;
1406
1407 if (output_format & FIO_OUTPUT_TERSE)
1408 show_thread_status_terse(ts, rs, out);
1409 if (output_format & FIO_OUTPUT_JSON)
1410 ret = show_thread_status_json(ts, rs, opt_list);
1411 if (output_format & FIO_OUTPUT_NORMAL)
1412 show_thread_status_normal(ts, rs, out);
1413
1414 return ret;
1415}
1416
1417static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1418{
1419 double mean, S;
1420
1421 if (src->samples == 0)
1422 return;
1423
1424 dst->min_val = min(dst->min_val, src->min_val);
1425 dst->max_val = max(dst->max_val, src->max_val);
1426
1427 /*
1428 * Compute new mean and S after the merge
1429 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1430 * #Parallel_algorithm>
1431 */
1432 if (first) {
1433 mean = src->mean.u.f;
1434 S = src->S.u.f;
1435 } else {
1436 double delta = src->mean.u.f - dst->mean.u.f;
1437
1438 mean = ((src->mean.u.f * src->samples) +
1439 (dst->mean.u.f * dst->samples)) /
1440 (dst->samples + src->samples);
1441
1442 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1443 (dst->samples * src->samples) /
1444 (dst->samples + src->samples);
1445 }
1446
1447 dst->samples += src->samples;
1448 dst->mean.u.f = mean;
1449 dst->S.u.f = S;
1450}
1451
1452void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1453{
1454 int i;
1455
1456 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1457 if (dst->max_run[i] < src->max_run[i])
1458 dst->max_run[i] = src->max_run[i];
1459 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1460 dst->min_run[i] = src->min_run[i];
1461 if (dst->max_bw[i] < src->max_bw[i])
1462 dst->max_bw[i] = src->max_bw[i];
1463 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1464 dst->min_bw[i] = src->min_bw[i];
1465
1466 dst->iobytes[i] += src->iobytes[i];
1467 dst->agg[i] += src->agg[i];
1468 }
1469
1470 if (!dst->kb_base)
1471 dst->kb_base = src->kb_base;
1472 if (!dst->unit_base)
1473 dst->unit_base = src->unit_base;
1474}
1475
1476void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1477 bool first)
1478{
1479 int l, k;
1480
1481 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1482 if (!dst->unified_rw_rep) {
1483 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1484 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1485 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1486 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1487 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1488
1489 dst->io_bytes[l] += src->io_bytes[l];
1490
1491 if (dst->runtime[l] < src->runtime[l])
1492 dst->runtime[l] = src->runtime[l];
1493 } else {
1494 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1495 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1496 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1497 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1498 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1499
1500 dst->io_bytes[0] += src->io_bytes[l];
1501
1502 if (dst->runtime[0] < src->runtime[l])
1503 dst->runtime[0] = src->runtime[l];
1504
1505 /*
1506 * We're summing to the same destination, so override
1507 * 'first' after the first iteration of the loop
1508 */
1509 first = false;
1510 }
1511 }
1512
1513 dst->usr_time += src->usr_time;
1514 dst->sys_time += src->sys_time;
1515 dst->ctx += src->ctx;
1516 dst->majf += src->majf;
1517 dst->minf += src->minf;
1518
1519 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1520 dst->io_u_map[k] += src->io_u_map[k];
1521 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1522 dst->io_u_submit[k] += src->io_u_submit[k];
1523 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1524 dst->io_u_complete[k] += src->io_u_complete[k];
1525 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1526 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1527 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1528 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1529 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1530 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1531
1532 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1533 if (!dst->unified_rw_rep) {
1534 dst->total_io_u[k] += src->total_io_u[k];
1535 dst->short_io_u[k] += src->short_io_u[k];
1536 dst->drop_io_u[k] += src->drop_io_u[k];
1537 } else {
1538 dst->total_io_u[0] += src->total_io_u[k];
1539 dst->short_io_u[0] += src->short_io_u[k];
1540 dst->drop_io_u[0] += src->drop_io_u[k];
1541 }
1542 }
1543
1544 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1545 int m;
1546
1547 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1548 if (!dst->unified_rw_rep)
1549 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1550 else
1551 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1552 }
1553 }
1554
1555 dst->total_run_time += src->total_run_time;
1556 dst->total_submit += src->total_submit;
1557 dst->total_complete += src->total_complete;
1558}
1559
1560void init_group_run_stat(struct group_run_stats *gs)
1561{
1562 int i;
1563 memset(gs, 0, sizeof(*gs));
1564
1565 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1566 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1567}
1568
1569void init_thread_stat(struct thread_stat *ts)
1570{
1571 int j;
1572
1573 memset(ts, 0, sizeof(*ts));
1574
1575 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1576 ts->lat_stat[j].min_val = -1UL;
1577 ts->clat_stat[j].min_val = -1UL;
1578 ts->slat_stat[j].min_val = -1UL;
1579 ts->bw_stat[j].min_val = -1UL;
1580 ts->iops_stat[j].min_val = -1UL;
1581 }
1582 ts->groupid = -1;
1583}
1584
1585void __show_run_stats(void)
1586{
1587 struct group_run_stats *runstats, *rs;
1588 struct thread_data *td;
1589 struct thread_stat *threadstats, *ts;
1590 int i, j, k, nr_ts, last_ts, idx;
1591 int kb_base_warned = 0;
1592 int unit_base_warned = 0;
1593 struct json_object *root = NULL;
1594 struct json_array *array = NULL;
1595 struct buf_output output[FIO_OUTPUT_NR];
1596 struct flist_head **opt_lists;
1597
1598 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1599
1600 for (i = 0; i < groupid + 1; i++)
1601 init_group_run_stat(&runstats[i]);
1602
1603 /*
1604 * find out how many threads stats we need. if group reporting isn't
1605 * enabled, it's one-per-td.
1606 */
1607 nr_ts = 0;
1608 last_ts = -1;
1609 for_each_td(td, i) {
1610 if (!td->o.group_reporting) {
1611 nr_ts++;
1612 continue;
1613 }
1614 if (last_ts == td->groupid)
1615 continue;
1616 if (!td->o.stats)
1617 continue;
1618
1619 last_ts = td->groupid;
1620 nr_ts++;
1621 }
1622
1623 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1624 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1625
1626 for (i = 0; i < nr_ts; i++) {
1627 init_thread_stat(&threadstats[i]);
1628 opt_lists[i] = NULL;
1629 }
1630
1631 j = 0;
1632 last_ts = -1;
1633 idx = 0;
1634 for_each_td(td, i) {
1635 if (!td->o.stats)
1636 continue;
1637 if (idx && (!td->o.group_reporting ||
1638 (td->o.group_reporting && last_ts != td->groupid))) {
1639 idx = 0;
1640 j++;
1641 }
1642
1643 last_ts = td->groupid;
1644
1645 ts = &threadstats[j];
1646
1647 ts->clat_percentiles = td->o.clat_percentiles;
1648 ts->percentile_precision = td->o.percentile_precision;
1649 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1650 opt_lists[j] = &td->opt_list;
1651
1652 idx++;
1653 ts->members++;
1654
1655 if (ts->groupid == -1) {
1656 /*
1657 * These are per-group shared already
1658 */
1659 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1660 if (td->o.description)
1661 strncpy(ts->description, td->o.description,
1662 FIO_JOBDESC_SIZE - 1);
1663 else
1664 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1665
1666 /*
1667 * If multiple entries in this group, this is
1668 * the first member.
1669 */
1670 ts->thread_number = td->thread_number;
1671 ts->groupid = td->groupid;
1672
1673 /*
1674 * first pid in group, not very useful...
1675 */
1676 ts->pid = td->pid;
1677
1678 ts->kb_base = td->o.kb_base;
1679 ts->unit_base = td->o.unit_base;
1680 ts->unified_rw_rep = td->o.unified_rw_rep;
1681 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1682 log_info("fio: kb_base differs for jobs in group, using"
1683 " %u as the base\n", ts->kb_base);
1684 kb_base_warned = 1;
1685 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1686 log_info("fio: unit_base differs for jobs in group, using"
1687 " %u as the base\n", ts->unit_base);
1688 unit_base_warned = 1;
1689 }
1690
1691 ts->continue_on_error = td->o.continue_on_error;
1692 ts->total_err_count += td->total_err_count;
1693 ts->first_error = td->first_error;
1694 if (!ts->error) {
1695 if (!td->error && td->o.continue_on_error &&
1696 td->first_error) {
1697 ts->error = td->first_error;
1698 ts->verror[sizeof(ts->verror) - 1] = '\0';
1699 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1700 } else if (td->error) {
1701 ts->error = td->error;
1702 ts->verror[sizeof(ts->verror) - 1] = '\0';
1703 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1704 }
1705 }
1706
1707 ts->latency_depth = td->latency_qd;
1708 ts->latency_target = td->o.latency_target;
1709 ts->latency_percentile = td->o.latency_percentile;
1710 ts->latency_window = td->o.latency_window;
1711
1712 ts->nr_block_infos = td->ts.nr_block_infos;
1713 for (k = 0; k < ts->nr_block_infos; k++)
1714 ts->block_infos[k] = td->ts.block_infos[k];
1715
1716 sum_thread_stats(ts, &td->ts, idx == 1);
1717
1718 if (td->o.ss_dur) {
1719 ts->ss_state = td->ss.state;
1720 ts->ss_dur = td->ss.dur;
1721 ts->ss_head = td->ss.head;
1722 ts->ss_bw_data = td->ss.bw_data;
1723 ts->ss_iops_data = td->ss.iops_data;
1724 ts->ss_limit.u.f = td->ss.limit;
1725 ts->ss_slope.u.f = td->ss.slope;
1726 ts->ss_deviation.u.f = td->ss.deviation;
1727 ts->ss_criterion.u.f = td->ss.criterion;
1728 }
1729 else
1730 ts->ss_dur = ts->ss_state = 0;
1731 }
1732
1733 for (i = 0; i < nr_ts; i++) {
1734 unsigned long long bw;
1735
1736 ts = &threadstats[i];
1737 if (ts->groupid == -1)
1738 continue;
1739 rs = &runstats[ts->groupid];
1740 rs->kb_base = ts->kb_base;
1741 rs->unit_base = ts->unit_base;
1742 rs->unified_rw_rep += ts->unified_rw_rep;
1743
1744 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1745 if (!ts->runtime[j])
1746 continue;
1747 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1748 rs->min_run[j] = ts->runtime[j];
1749 if (ts->runtime[j] > rs->max_run[j])
1750 rs->max_run[j] = ts->runtime[j];
1751
1752 bw = 0;
1753 if (ts->runtime[j])
1754 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1755 if (bw < rs->min_bw[j])
1756 rs->min_bw[j] = bw;
1757 if (bw > rs->max_bw[j])
1758 rs->max_bw[j] = bw;
1759
1760 rs->iobytes[j] += ts->io_bytes[j];
1761 }
1762 }
1763
1764 for (i = 0; i < groupid + 1; i++) {
1765 int ddir;
1766
1767 rs = &runstats[i];
1768
1769 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1770 if (rs->max_run[ddir])
1771 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1772 rs->max_run[ddir];
1773 }
1774 }
1775
1776 for (i = 0; i < FIO_OUTPUT_NR; i++)
1777 buf_output_init(&output[i]);
1778
1779 /*
1780 * don't overwrite last signal output
1781 */
1782 if (output_format & FIO_OUTPUT_NORMAL)
1783 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1784 if (output_format & FIO_OUTPUT_JSON) {
1785 struct thread_data *global;
1786 char time_buf[32];
1787 struct timeval now;
1788 unsigned long long ms_since_epoch;
1789
1790 gettimeofday(&now, NULL);
1791 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1792 (unsigned long long)(now.tv_usec) / 1000;
1793
1794 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1795 sizeof(time_buf));
1796 if (time_buf[strlen(time_buf) - 1] == '\n')
1797 time_buf[strlen(time_buf) - 1] = '\0';
1798
1799 root = json_create_object();
1800 json_object_add_value_string(root, "fio version", fio_version_string);
1801 json_object_add_value_int(root, "timestamp", now.tv_sec);
1802 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1803 json_object_add_value_string(root, "time", time_buf);
1804 global = get_global_options();
1805 json_add_job_opts(root, "global options", &global->opt_list, false);
1806 array = json_create_array();
1807 json_object_add_value_array(root, "jobs", array);
1808 }
1809
1810 if (is_backend)
1811 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1812
1813 for (i = 0; i < nr_ts; i++) {
1814 ts = &threadstats[i];
1815 rs = &runstats[ts->groupid];
1816
1817 if (is_backend) {
1818 fio_server_send_job_options(opt_lists[i], i);
1819 fio_server_send_ts(ts, rs);
1820 } else {
1821 if (output_format & FIO_OUTPUT_TERSE)
1822 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1823 if (output_format & FIO_OUTPUT_JSON) {
1824 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1825 json_array_add_value_object(array, tmp);
1826 }
1827 if (output_format & FIO_OUTPUT_NORMAL)
1828 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1829 }
1830 }
1831 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1832 /* disk util stats, if any */
1833 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1834
1835 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1836
1837 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1838 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1839 json_free_object(root);
1840 }
1841
1842 for (i = 0; i < groupid + 1; i++) {
1843 rs = &runstats[i];
1844
1845 rs->groupid = i;
1846 if (is_backend)
1847 fio_server_send_gs(rs);
1848 else if (output_format & FIO_OUTPUT_NORMAL)
1849 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1850 }
1851
1852 if (is_backend)
1853 fio_server_send_du();
1854 else if (output_format & FIO_OUTPUT_NORMAL) {
1855 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1856 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1857 }
1858
1859 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1860 struct buf_output *out = &output[i];
1861
1862 log_info_buf(out->buf, out->buflen);
1863 buf_output_free(out);
1864 }
1865
1866 log_info_flush();
1867 free(runstats);
1868 free(threadstats);
1869 free(opt_lists);
1870}
1871
1872void show_run_stats(void)
1873{
1874 fio_mutex_down(stat_mutex);
1875 __show_run_stats();
1876 fio_mutex_up(stat_mutex);
1877}
1878
1879void __show_running_run_stats(void)
1880{
1881 struct thread_data *td;
1882 unsigned long long *rt;
1883 struct timespec ts;
1884 int i;
1885
1886 fio_mutex_down(stat_mutex);
1887
1888 rt = malloc(thread_number * sizeof(unsigned long long));
1889 fio_gettime(&ts, NULL);
1890
1891 for_each_td(td, i) {
1892 td->update_rusage = 1;
1893 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1894 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1895 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1896 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1897
1898 rt[i] = mtime_since(&td->start, &ts);
1899 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1900 td->ts.runtime[DDIR_READ] += rt[i];
1901 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1902 td->ts.runtime[DDIR_WRITE] += rt[i];
1903 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1904 td->ts.runtime[DDIR_TRIM] += rt[i];
1905 }
1906
1907 for_each_td(td, i) {
1908 if (td->runstate >= TD_EXITED)
1909 continue;
1910 if (td->rusage_sem) {
1911 td->update_rusage = 1;
1912 fio_mutex_down(td->rusage_sem);
1913 }
1914 td->update_rusage = 0;
1915 }
1916
1917 __show_run_stats();
1918
1919 for_each_td(td, i) {
1920 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1921 td->ts.runtime[DDIR_READ] -= rt[i];
1922 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1923 td->ts.runtime[DDIR_WRITE] -= rt[i];
1924 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1925 td->ts.runtime[DDIR_TRIM] -= rt[i];
1926 }
1927
1928 free(rt);
1929 fio_mutex_up(stat_mutex);
1930}
1931
1932static int status_interval_init;
1933static struct timespec status_time;
1934static int status_file_disabled;
1935
1936#define FIO_STATUS_FILE "fio-dump-status"
1937
1938static int check_status_file(void)
1939{
1940 struct stat sb;
1941 const char *temp_dir;
1942 char fio_status_file_path[PATH_MAX];
1943
1944 if (status_file_disabled)
1945 return 0;
1946
1947 temp_dir = getenv("TMPDIR");
1948 if (temp_dir == NULL) {
1949 temp_dir = getenv("TEMP");
1950 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1951 temp_dir = NULL;
1952 }
1953 if (temp_dir == NULL)
1954 temp_dir = "/tmp";
1955
1956 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1957
1958 if (stat(fio_status_file_path, &sb))
1959 return 0;
1960
1961 if (unlink(fio_status_file_path) < 0) {
1962 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1963 strerror(errno));
1964 log_err("fio: disabling status file updates\n");
1965 status_file_disabled = 1;
1966 }
1967
1968 return 1;
1969}
1970
1971void check_for_running_stats(void)
1972{
1973 if (status_interval) {
1974 if (!status_interval_init) {
1975 fio_gettime(&status_time, NULL);
1976 status_interval_init = 1;
1977 } else if (mtime_since_now(&status_time) >= status_interval) {
1978 show_running_run_stats();
1979 fio_gettime(&status_time, NULL);
1980 return;
1981 }
1982 }
1983 if (check_status_file()) {
1984 show_running_run_stats();
1985 return;
1986 }
1987}
1988
1989static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
1990{
1991 double val = data;
1992 double delta;
1993
1994 if (data > is->max_val)
1995 is->max_val = data;
1996 if (data < is->min_val)
1997 is->min_val = data;
1998
1999 delta = val - is->mean.u.f;
2000 if (delta) {
2001 is->mean.u.f += delta / (is->samples + 1.0);
2002 is->S.u.f += delta * (val - is->mean.u.f);
2003 }
2004
2005 is->samples++;
2006}
2007
2008/*
2009 * Return a struct io_logs, which is added to the tail of the log
2010 * list for 'iolog'.
2011 */
2012static struct io_logs *get_new_log(struct io_log *iolog)
2013{
2014 size_t new_size, new_samples;
2015 struct io_logs *cur_log;
2016
2017 /*
2018 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2019 * forever
2020 */
2021 if (!iolog->cur_log_max)
2022 new_samples = DEF_LOG_ENTRIES;
2023 else {
2024 new_samples = iolog->cur_log_max * 2;
2025 if (new_samples > MAX_LOG_ENTRIES)
2026 new_samples = MAX_LOG_ENTRIES;
2027 }
2028
2029 new_size = new_samples * log_entry_sz(iolog);
2030
2031 cur_log = smalloc(sizeof(*cur_log));
2032 if (cur_log) {
2033 INIT_FLIST_HEAD(&cur_log->list);
2034 cur_log->log = malloc(new_size);
2035 if (cur_log->log) {
2036 cur_log->nr_samples = 0;
2037 cur_log->max_samples = new_samples;
2038 flist_add_tail(&cur_log->list, &iolog->io_logs);
2039 iolog->cur_log_max = new_samples;
2040 return cur_log;
2041 }
2042 sfree(cur_log);
2043 }
2044
2045 return NULL;
2046}
2047
2048/*
2049 * Add and return a new log chunk, or return current log if big enough
2050 */
2051static struct io_logs *regrow_log(struct io_log *iolog)
2052{
2053 struct io_logs *cur_log;
2054 int i;
2055
2056 if (!iolog || iolog->disabled)
2057 goto disable;
2058
2059 cur_log = iolog_cur_log(iolog);
2060 if (!cur_log) {
2061 cur_log = get_new_log(iolog);
2062 if (!cur_log)
2063 return NULL;
2064 }
2065
2066 if (cur_log->nr_samples < cur_log->max_samples)
2067 return cur_log;
2068
2069 /*
2070 * No room for a new sample. If we're compressing on the fly, flush
2071 * out the current chunk
2072 */
2073 if (iolog->log_gz) {
2074 if (iolog_cur_flush(iolog, cur_log)) {
2075 log_err("fio: failed flushing iolog! Will stop logging.\n");
2076 return NULL;
2077 }
2078 }
2079
2080 /*
2081 * Get a new log array, and add to our list
2082 */
2083 cur_log = get_new_log(iolog);
2084 if (!cur_log) {
2085 log_err("fio: failed extending iolog! Will stop logging.\n");
2086 return NULL;
2087 }
2088
2089 if (!iolog->pending || !iolog->pending->nr_samples)
2090 return cur_log;
2091
2092 /*
2093 * Flush pending items to new log
2094 */
2095 for (i = 0; i < iolog->pending->nr_samples; i++) {
2096 struct io_sample *src, *dst;
2097
2098 src = get_sample(iolog, iolog->pending, i);
2099 dst = get_sample(iolog, cur_log, i);
2100 memcpy(dst, src, log_entry_sz(iolog));
2101 }
2102 cur_log->nr_samples = iolog->pending->nr_samples;
2103
2104 iolog->pending->nr_samples = 0;
2105 return cur_log;
2106disable:
2107 if (iolog)
2108 iolog->disabled = true;
2109 return NULL;
2110}
2111
2112void regrow_logs(struct thread_data *td)
2113{
2114 regrow_log(td->slat_log);
2115 regrow_log(td->clat_log);
2116 regrow_log(td->clat_hist_log);
2117 regrow_log(td->lat_log);
2118 regrow_log(td->bw_log);
2119 regrow_log(td->iops_log);
2120 td->flags &= ~TD_F_REGROW_LOGS;
2121}
2122
2123static struct io_logs *get_cur_log(struct io_log *iolog)
2124{
2125 struct io_logs *cur_log;
2126
2127 cur_log = iolog_cur_log(iolog);
2128 if (!cur_log) {
2129 cur_log = get_new_log(iolog);
2130 if (!cur_log)
2131 return NULL;
2132 }
2133
2134 if (cur_log->nr_samples < cur_log->max_samples)
2135 return cur_log;
2136
2137 /*
2138 * Out of space. If we're in IO offload mode, or we're not doing
2139 * per unit logging (hence logging happens outside of the IO thread
2140 * as well), add a new log chunk inline. If we're doing inline
2141 * submissions, flag 'td' as needing a log regrow and we'll take
2142 * care of it on the submission side.
2143 */
2144 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2145 !per_unit_log(iolog))
2146 return regrow_log(iolog);
2147
2148 iolog->td->flags |= TD_F_REGROW_LOGS;
2149 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2150 return iolog->pending;
2151}
2152
2153static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2154 enum fio_ddir ddir, unsigned int bs,
2155 unsigned long t, uint64_t offset)
2156{
2157 struct io_logs *cur_log;
2158
2159 if (iolog->disabled)
2160 return;
2161 if (flist_empty(&iolog->io_logs))
2162 iolog->avg_last[ddir] = t;
2163
2164 cur_log = get_cur_log(iolog);
2165 if (cur_log) {
2166 struct io_sample *s;
2167
2168 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2169
2170 s->data = data;
2171 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2172 io_sample_set_ddir(iolog, s, ddir);
2173 s->bs = bs;
2174
2175 if (iolog->log_offset) {
2176 struct io_sample_offset *so = (void *) s;
2177
2178 so->offset = offset;
2179 }
2180
2181 cur_log->nr_samples++;
2182 return;
2183 }
2184
2185 iolog->disabled = true;
2186}
2187
2188static inline void reset_io_stat(struct io_stat *ios)
2189{
2190 ios->max_val = ios->min_val = ios->samples = 0;
2191 ios->mean.u.f = ios->S.u.f = 0;
2192}
2193
2194void reset_io_stats(struct thread_data *td)
2195{
2196 struct thread_stat *ts = &td->ts;
2197 int i, j;
2198
2199 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2200 reset_io_stat(&ts->clat_stat[i]);
2201 reset_io_stat(&ts->slat_stat[i]);
2202 reset_io_stat(&ts->lat_stat[i]);
2203 reset_io_stat(&ts->bw_stat[i]);
2204 reset_io_stat(&ts->iops_stat[i]);
2205
2206 ts->io_bytes[i] = 0;
2207 ts->runtime[i] = 0;
2208 ts->total_io_u[i] = 0;
2209 ts->short_io_u[i] = 0;
2210 ts->drop_io_u[i] = 0;
2211
2212 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2213 ts->io_u_plat[i][j] = 0;
2214 }
2215
2216 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2217 ts->io_u_map[i] = 0;
2218 ts->io_u_submit[i] = 0;
2219 ts->io_u_complete[i] = 0;
2220 }
2221
2222 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2223 ts->io_u_lat_n[i] = 0;
2224 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2225 ts->io_u_lat_u[i] = 0;
2226 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2227 ts->io_u_lat_m[i] = 0;
2228
2229 ts->total_submit = 0;
2230 ts->total_complete = 0;
2231}
2232
2233static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2234 unsigned long elapsed, bool log_max)
2235{
2236 /*
2237 * Note an entry in the log. Use the mean from the logged samples,
2238 * making sure to properly round up. Only write a log entry if we
2239 * had actual samples done.
2240 */
2241 if (iolog->avg_window[ddir].samples) {
2242 union io_sample_data data;
2243
2244 if (log_max)
2245 data.val = iolog->avg_window[ddir].max_val;
2246 else
2247 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2248
2249 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2250 }
2251
2252 reset_io_stat(&iolog->avg_window[ddir]);
2253}
2254
2255static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2256 bool log_max)
2257{
2258 int ddir;
2259
2260 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2261 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2262}
2263
2264static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2265 union io_sample_data data, enum fio_ddir ddir,
2266 unsigned int bs, uint64_t offset)
2267{
2268 unsigned long elapsed, this_window;
2269
2270 if (!ddir_rw(ddir))
2271 return 0;
2272
2273 elapsed = mtime_since_now(&td->epoch);
2274
2275 /*
2276 * If no time averaging, just add the log sample.
2277 */
2278 if (!iolog->avg_msec) {
2279 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2280 return 0;
2281 }
2282
2283 /*
2284 * Add the sample. If the time period has passed, then
2285 * add that entry to the log and clear.
2286 */
2287 add_stat_sample(&iolog->avg_window[ddir], data.val);
2288
2289 /*
2290 * If period hasn't passed, adding the above sample is all we
2291 * need to do.
2292 */
2293 this_window = elapsed - iolog->avg_last[ddir];
2294 if (elapsed < iolog->avg_last[ddir])
2295 return iolog->avg_last[ddir] - elapsed;
2296 else if (this_window < iolog->avg_msec) {
2297 int diff = iolog->avg_msec - this_window;
2298
2299 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2300 return diff;
2301 }
2302
2303 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2304
2305 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2306 return iolog->avg_msec;
2307}
2308
2309void finalize_logs(struct thread_data *td, bool unit_logs)
2310{
2311 unsigned long elapsed;
2312
2313 elapsed = mtime_since_now(&td->epoch);
2314
2315 if (td->clat_log && unit_logs)
2316 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2317 if (td->slat_log && unit_logs)
2318 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2319 if (td->lat_log && unit_logs)
2320 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2321 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2322 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2323 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2324 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2325}
2326
2327void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2328{
2329 struct io_log *iolog;
2330
2331 if (!ddir_rw(ddir))
2332 return;
2333
2334 iolog = agg_io_log[ddir];
2335 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2336}
2337
2338static void add_clat_percentile_sample(struct thread_stat *ts,
2339 unsigned long long nsec, enum fio_ddir ddir)
2340{
2341 unsigned int idx = plat_val_to_idx(nsec);
2342 assert(idx < FIO_IO_U_PLAT_NR);
2343
2344 ts->io_u_plat[ddir][idx]++;
2345}
2346
2347void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2348 unsigned long long nsec, unsigned int bs, uint64_t offset)
2349{
2350 unsigned long elapsed, this_window;
2351 struct thread_stat *ts = &td->ts;
2352 struct io_log *iolog = td->clat_hist_log;
2353
2354 td_io_u_lock(td);
2355
2356 add_stat_sample(&ts->clat_stat[ddir], nsec);
2357
2358 if (td->clat_log)
2359 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2360 offset);
2361
2362 if (ts->clat_percentiles)
2363 add_clat_percentile_sample(ts, nsec, ddir);
2364
2365 if (iolog && iolog->hist_msec) {
2366 struct io_hist *hw = &iolog->hist_window[ddir];
2367
2368 hw->samples++;
2369 elapsed = mtime_since_now(&td->epoch);
2370 if (!hw->hist_last)
2371 hw->hist_last = elapsed;
2372 this_window = elapsed - hw->hist_last;
2373
2374 if (this_window >= iolog->hist_msec) {
2375 unsigned int *io_u_plat;
2376 struct io_u_plat_entry *dst;
2377
2378 /*
2379 * Make a byte-for-byte copy of the latency histogram
2380 * stored in td->ts.io_u_plat[ddir], recording it in a
2381 * log sample. Note that the matching call to free() is
2382 * located in iolog.c after printing this sample to the
2383 * log file.
2384 */
2385 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2386 dst = malloc(sizeof(struct io_u_plat_entry));
2387 memcpy(&(dst->io_u_plat), io_u_plat,
2388 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2389 flist_add(&dst->list, &hw->list);
2390 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2391 elapsed, offset);
2392
2393 /*
2394 * Update the last time we recorded as being now, minus
2395 * any drift in time we encountered before actually
2396 * making the record.
2397 */
2398 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2399 hw->samples = 0;
2400 }
2401 }
2402
2403 td_io_u_unlock(td);
2404}
2405
2406void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2407 unsigned long usec, unsigned int bs, uint64_t offset)
2408{
2409 struct thread_stat *ts = &td->ts;
2410
2411 if (!ddir_rw(ddir))
2412 return;
2413
2414 td_io_u_lock(td);
2415
2416 add_stat_sample(&ts->slat_stat[ddir], usec);
2417
2418 if (td->slat_log)
2419 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2420
2421 td_io_u_unlock(td);
2422}
2423
2424void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2425 unsigned long long nsec, unsigned int bs, uint64_t offset)
2426{
2427 struct thread_stat *ts = &td->ts;
2428
2429 if (!ddir_rw(ddir))
2430 return;
2431
2432 td_io_u_lock(td);
2433
2434 add_stat_sample(&ts->lat_stat[ddir], nsec);
2435
2436 if (td->lat_log)
2437 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2438 offset);
2439
2440 td_io_u_unlock(td);
2441}
2442
2443void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2444 unsigned int bytes, unsigned long long spent)
2445{
2446 struct thread_stat *ts = &td->ts;
2447 unsigned long rate;
2448
2449 if (spent)
2450 rate = (unsigned long) (bytes * 1000000ULL / spent);
2451 else
2452 rate = 0;
2453
2454 td_io_u_lock(td);
2455
2456 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2457
2458 if (td->bw_log)
2459 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2460 bytes, io_u->offset);
2461
2462 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2463 td_io_u_unlock(td);
2464}
2465
2466static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2467 struct timespec *t, unsigned int avg_time,
2468 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2469 struct io_stat *stat, struct io_log *log,
2470 bool is_kb)
2471{
2472 unsigned long spent, rate;
2473 enum fio_ddir ddir;
2474 unsigned int next, next_log;
2475
2476 next_log = avg_time;
2477
2478 spent = mtime_since(parent_tv, t);
2479 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2480 return avg_time - spent;
2481
2482 td_io_u_lock(td);
2483
2484 /*
2485 * Compute both read and write rates for the interval.
2486 */
2487 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2488 uint64_t delta;
2489
2490 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2491 if (!delta)
2492 continue; /* No entries for interval */
2493
2494 if (spent) {
2495 if (is_kb)
2496 rate = delta * 1000 / spent / 1024; /* KiB/s */
2497 else
2498 rate = (delta * 1000) / spent;
2499 } else
2500 rate = 0;
2501
2502 add_stat_sample(&stat[ddir], rate);
2503
2504 if (log) {
2505 unsigned int bs = 0;
2506
2507 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2508 bs = td->o.min_bs[ddir];
2509
2510 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2511 next_log = min(next_log, next);
2512 }
2513
2514 stat_io_bytes[ddir] = this_io_bytes[ddir];
2515 }
2516
2517 timespec_add_msec(parent_tv, avg_time);
2518
2519 td_io_u_unlock(td);
2520
2521 if (spent <= avg_time)
2522 next = avg_time;
2523 else
2524 next = avg_time - (1 + spent - avg_time);
2525
2526 return min(next, next_log);
2527}
2528
2529static int add_bw_samples(struct thread_data *td, struct timespec *t)
2530{
2531 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2532 td->this_io_bytes, td->stat_io_bytes,
2533 td->ts.bw_stat, td->bw_log, true);
2534}
2535
2536void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2537 unsigned int bytes)
2538{
2539 struct thread_stat *ts = &td->ts;
2540
2541 td_io_u_lock(td);
2542
2543 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2544
2545 if (td->iops_log)
2546 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2547 bytes, io_u->offset);
2548
2549 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2550 td_io_u_unlock(td);
2551}
2552
2553static int add_iops_samples(struct thread_data *td, struct timespec *t)
2554{
2555 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2556 td->this_io_blocks, td->stat_io_blocks,
2557 td->ts.iops_stat, td->iops_log, false);
2558}
2559
2560/*
2561 * Returns msecs to next event
2562 */
2563int calc_log_samples(void)
2564{
2565 struct thread_data *td;
2566 unsigned int next = ~0U, tmp;
2567 struct timespec now;
2568 int i;
2569
2570 fio_gettime(&now, NULL);
2571
2572 for_each_td(td, i) {
2573 if (!td->o.stats)
2574 continue;
2575 if (in_ramp_time(td) ||
2576 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2577 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2578 continue;
2579 }
2580 if (!td->bw_log ||
2581 (td->bw_log && !per_unit_log(td->bw_log))) {
2582 tmp = add_bw_samples(td, &now);
2583 if (tmp < next)
2584 next = tmp;
2585 }
2586 if (!td->iops_log ||
2587 (td->iops_log && !per_unit_log(td->iops_log))) {
2588 tmp = add_iops_samples(td, &now);
2589 if (tmp < next)
2590 next = tmp;
2591 }
2592 }
2593
2594 return next == ~0U ? 0 : next;
2595}
2596
2597void stat_init(void)
2598{
2599 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2600}
2601
2602void stat_exit(void)
2603{
2604 /*
2605 * When we have the mutex, we know out-of-band access to it
2606 * have ended.
2607 */
2608 fio_mutex_down(stat_mutex);
2609 fio_mutex_remove(stat_mutex);
2610}
2611
2612/*
2613 * Called from signal handler. Wake up status thread.
2614 */
2615void show_running_run_stats(void)
2616{
2617 helper_do_stat();
2618}
2619
2620uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2621{
2622 /* Ignore io_u's which span multiple blocks--they will just get
2623 * inaccurate counts. */
2624 int idx = (io_u->offset - io_u->file->file_offset)
2625 / td->o.bs[DDIR_TRIM];
2626 uint32_t *info = &td->ts.block_infos[idx];
2627 assert(idx < td->ts.nr_block_infos);
2628 return info;
2629}