Add the zonemode job option
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <string.h>
3#include <assert.h>
4
5#include "fio.h"
6#include "verify.h"
7#include "trim.h"
8#include "lib/rand.h"
9#include "lib/axmap.h"
10#include "err.h"
11#include "lib/pow2.h"
12#include "minmax.h"
13
14struct io_completion_data {
15 int nr; /* input */
16
17 int error; /* output */
18 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
19 struct timespec time; /* output */
20};
21
22/*
23 * The ->io_axmap contains a map of blocks we have or have not done io
24 * to yet. Used to make sure we cover the entire range in a fair fashion.
25 */
26static bool random_map_free(struct fio_file *f, const uint64_t block)
27{
28 return !axmap_isset(f->io_axmap, block);
29}
30
31/*
32 * Mark a given offset as used in the map.
33 */
34static void mark_random_map(struct thread_data *td, struct io_u *io_u)
35{
36 unsigned long long min_bs = td->o.min_bs[io_u->ddir];
37 struct fio_file *f = io_u->file;
38 unsigned long long nr_blocks;
39 uint64_t block;
40
41 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
42 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
43
44 if (!(io_u->flags & IO_U_F_BUSY_OK))
45 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
46
47 if ((nr_blocks * min_bs) < io_u->buflen)
48 io_u->buflen = nr_blocks * min_bs;
49}
50
51static uint64_t last_block(struct thread_data *td, struct fio_file *f,
52 enum fio_ddir ddir)
53{
54 uint64_t max_blocks;
55 uint64_t max_size;
56
57 assert(ddir_rw(ddir));
58
59 /*
60 * Hmm, should we make sure that ->io_size <= ->real_file_size?
61 * -> not for now since there is code assuming it could go either.
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_mode == ZONE_MODE_STRIDED && td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 if (td->o.min_bs[ddir] > td->o.ba[ddir])
71 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
72
73 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
74 if (!max_blocks)
75 return 0;
76
77 return max_blocks;
78}
79
80static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
81 enum fio_ddir ddir, uint64_t *b,
82 uint64_t lastb)
83{
84 uint64_t r;
85
86 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
87 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
88
89 r = __rand(&td->random_state);
90
91 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
92
93 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
94 } else {
95 uint64_t off = 0;
96
97 assert(fio_file_lfsr(f));
98
99 if (lfsr_next(&f->lfsr, &off))
100 return 1;
101
102 *b = off;
103 }
104
105 /*
106 * if we are not maintaining a random map, we are done.
107 */
108 if (!file_randommap(td, f))
109 goto ret;
110
111 /*
112 * calculate map offset and check if it's free
113 */
114 if (random_map_free(f, *b))
115 goto ret;
116
117 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
118 (unsigned long long) *b);
119
120 *b = axmap_next_free(f->io_axmap, *b);
121 if (*b == (uint64_t) -1ULL)
122 return 1;
123ret:
124 return 0;
125}
126
127static int __get_next_rand_offset_zipf(struct thread_data *td,
128 struct fio_file *f, enum fio_ddir ddir,
129 uint64_t *b)
130{
131 *b = zipf_next(&f->zipf);
132 return 0;
133}
134
135static int __get_next_rand_offset_pareto(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = pareto_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_gauss(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = gauss_next(&f->gauss);
148 return 0;
149}
150
151static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
152 struct fio_file *f,
153 enum fio_ddir ddir, uint64_t *b)
154{
155 struct zone_split_index *zsi;
156 uint64_t lastb, send, stotal;
157 unsigned int v;
158
159 lastb = last_block(td, f, ddir);
160 if (!lastb)
161 return 1;
162
163 if (!td->o.zone_split_nr[ddir]) {
164bail:
165 return __get_next_rand_offset(td, f, ddir, b, lastb);
166 }
167
168 /*
169 * Generate a value, v, between 1 and 100, both inclusive
170 */
171 v = rand_between(&td->zone_state, 1, 100);
172
173 /*
174 * Find our generated table. 'send' is the end block of this zone,
175 * 'stotal' is our start offset.
176 */
177 zsi = &td->zone_state_index[ddir][v - 1];
178 stotal = zsi->size_prev / td->o.ba[ddir];
179 send = zsi->size / td->o.ba[ddir];
180
181 /*
182 * Should never happen
183 */
184 if (send == -1U) {
185 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
186 log_err("fio: bug in zoned generation\n");
187 goto bail;
188 } else if (send > lastb) {
189 /*
190 * This happens if the user specifies ranges that exceed
191 * the file/device size. We can't handle that gracefully,
192 * so error and exit.
193 */
194 log_err("fio: zoned_abs sizes exceed file size\n");
195 return 1;
196 }
197
198 /*
199 * Generate index from 0..send-stotal
200 */
201 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
202 return 1;
203
204 *b += stotal;
205 return 0;
206}
207
208static int __get_next_rand_offset_zoned(struct thread_data *td,
209 struct fio_file *f, enum fio_ddir ddir,
210 uint64_t *b)
211{
212 unsigned int v, send, stotal;
213 uint64_t offset, lastb;
214 struct zone_split_index *zsi;
215
216 lastb = last_block(td, f, ddir);
217 if (!lastb)
218 return 1;
219
220 if (!td->o.zone_split_nr[ddir]) {
221bail:
222 return __get_next_rand_offset(td, f, ddir, b, lastb);
223 }
224
225 /*
226 * Generate a value, v, between 1 and 100, both inclusive
227 */
228 v = rand_between(&td->zone_state, 1, 100);
229
230 zsi = &td->zone_state_index[ddir][v - 1];
231 stotal = zsi->size_perc_prev;
232 send = zsi->size_perc;
233
234 /*
235 * Should never happen
236 */
237 if (send == -1U) {
238 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
239 log_err("fio: bug in zoned generation\n");
240 goto bail;
241 }
242
243 /*
244 * 'send' is some percentage below or equal to 100 that
245 * marks the end of the current IO range. 'stotal' marks
246 * the start, in percent.
247 */
248 if (stotal)
249 offset = stotal * lastb / 100ULL;
250 else
251 offset = 0;
252
253 lastb = lastb * (send - stotal) / 100ULL;
254
255 /*
256 * Generate index from 0..send-of-lastb
257 */
258 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
259 return 1;
260
261 /*
262 * Add our start offset, if any
263 */
264 if (offset)
265 *b += offset;
266
267 return 0;
268}
269
270static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
271 enum fio_ddir ddir, uint64_t *b)
272{
273 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
274 uint64_t lastb;
275
276 lastb = last_block(td, f, ddir);
277 if (!lastb)
278 return 1;
279
280 return __get_next_rand_offset(td, f, ddir, b, lastb);
281 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
282 return __get_next_rand_offset_zipf(td, f, ddir, b);
283 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
284 return __get_next_rand_offset_pareto(td, f, ddir, b);
285 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
286 return __get_next_rand_offset_gauss(td, f, ddir, b);
287 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
288 return __get_next_rand_offset_zoned(td, f, ddir, b);
289 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
290 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
291
292 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
293 return 1;
294}
295
296static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
297{
298 unsigned int v;
299
300 if (td->o.perc_rand[ddir] == 100)
301 return true;
302
303 v = rand_between(&td->seq_rand_state[ddir], 1, 100);
304
305 return v <= td->o.perc_rand[ddir];
306}
307
308static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
309{
310 struct thread_options *o = &td->o;
311
312 if (o->invalidate_cache && !o->odirect) {
313 int fio_unused ret;
314
315 ret = file_invalidate_cache(td, f);
316 }
317}
318
319static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
320 enum fio_ddir ddir, uint64_t *b)
321{
322 if (!get_next_rand_offset(td, f, ddir, b))
323 return 0;
324
325 if (td->o.time_based ||
326 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
327 fio_file_reset(td, f);
328 loop_cache_invalidate(td, f);
329 if (!get_next_rand_offset(td, f, ddir, b))
330 return 0;
331 }
332
333 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
334 f->file_name, (unsigned long long) f->last_pos[ddir],
335 (unsigned long long) f->real_file_size);
336 return 1;
337}
338
339static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
340 enum fio_ddir ddir, uint64_t *offset)
341{
342 struct thread_options *o = &td->o;
343
344 assert(ddir_rw(ddir));
345
346 /*
347 * If we reach the end for a time based run, reset us back to 0
348 * and invalidate the cache, if we need to.
349 */
350 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
351 o->time_based) {
352 f->last_pos[ddir] = f->file_offset;
353 loop_cache_invalidate(td, f);
354 }
355
356 if (f->last_pos[ddir] < f->real_file_size) {
357 uint64_t pos;
358
359 /*
360 * Only rewind if we already hit the end
361 */
362 if (f->last_pos[ddir] == f->file_offset &&
363 f->file_offset && o->ddir_seq_add < 0) {
364 if (f->real_file_size > f->io_size)
365 f->last_pos[ddir] = f->io_size;
366 else
367 f->last_pos[ddir] = f->real_file_size;
368 }
369
370 pos = f->last_pos[ddir] - f->file_offset;
371 if (pos && o->ddir_seq_add) {
372 pos += o->ddir_seq_add;
373
374 /*
375 * If we reach beyond the end of the file
376 * with holed IO, wrap around to the
377 * beginning again. If we're doing backwards IO,
378 * wrap to the end.
379 */
380 if (pos >= f->real_file_size) {
381 if (o->ddir_seq_add > 0)
382 pos = f->file_offset;
383 else {
384 if (f->real_file_size > f->io_size)
385 pos = f->io_size;
386 else
387 pos = f->real_file_size;
388
389 pos += o->ddir_seq_add;
390 }
391 }
392 }
393
394 *offset = pos;
395 return 0;
396 }
397
398 return 1;
399}
400
401static int get_next_block(struct thread_data *td, struct io_u *io_u,
402 enum fio_ddir ddir, int rw_seq,
403 bool *is_random)
404{
405 struct fio_file *f = io_u->file;
406 uint64_t b, offset;
407 int ret;
408
409 assert(ddir_rw(ddir));
410
411 b = offset = -1ULL;
412
413 if (rw_seq) {
414 if (td_random(td)) {
415 if (should_do_random(td, ddir)) {
416 ret = get_next_rand_block(td, f, ddir, &b);
417 *is_random = true;
418 } else {
419 *is_random = false;
420 io_u_set(td, io_u, IO_U_F_BUSY_OK);
421 ret = get_next_seq_offset(td, f, ddir, &offset);
422 if (ret)
423 ret = get_next_rand_block(td, f, ddir, &b);
424 }
425 } else {
426 *is_random = false;
427 ret = get_next_seq_offset(td, f, ddir, &offset);
428 }
429 } else {
430 io_u_set(td, io_u, IO_U_F_BUSY_OK);
431 *is_random = false;
432
433 if (td->o.rw_seq == RW_SEQ_SEQ) {
434 ret = get_next_seq_offset(td, f, ddir, &offset);
435 if (ret) {
436 ret = get_next_rand_block(td, f, ddir, &b);
437 *is_random = false;
438 }
439 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
440 if (f->last_start[ddir] != -1ULL)
441 offset = f->last_start[ddir] - f->file_offset;
442 else
443 offset = 0;
444 ret = 0;
445 } else {
446 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
447 ret = 1;
448 }
449 }
450
451 if (!ret) {
452 if (offset != -1ULL)
453 io_u->offset = offset;
454 else if (b != -1ULL)
455 io_u->offset = b * td->o.ba[ddir];
456 else {
457 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
458 ret = 1;
459 }
460 }
461
462 return ret;
463}
464
465/*
466 * For random io, generate a random new block and see if it's used. Repeat
467 * until we find a free one. For sequential io, just return the end of
468 * the last io issued.
469 */
470static int get_next_offset(struct thread_data *td, struct io_u *io_u,
471 bool *is_random)
472{
473 struct fio_file *f = io_u->file;
474 enum fio_ddir ddir = io_u->ddir;
475 int rw_seq_hit = 0;
476
477 assert(ddir_rw(ddir));
478
479 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
480 rw_seq_hit = 1;
481 td->ddir_seq_nr = td->o.ddir_seq_nr;
482 }
483
484 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
485 return 1;
486
487 if (io_u->offset >= f->io_size) {
488 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
489 (unsigned long long) io_u->offset,
490 (unsigned long long) f->io_size);
491 return 1;
492 }
493
494 io_u->offset += f->file_offset;
495 if (io_u->offset >= f->real_file_size) {
496 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
497 (unsigned long long) io_u->offset,
498 (unsigned long long) f->real_file_size);
499 return 1;
500 }
501
502 return 0;
503}
504
505static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
506 unsigned long long buflen)
507{
508 struct fio_file *f = io_u->file;
509
510 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
511}
512
513static unsigned long long get_next_buflen(struct thread_data *td, struct io_u *io_u,
514 bool is_random)
515{
516 int ddir = io_u->ddir;
517 unsigned long long buflen = 0;
518 unsigned long long minbs, maxbs;
519 uint64_t frand_max, r;
520 bool power_2;
521
522 assert(ddir_rw(ddir));
523
524 if (td->o.bs_is_seq_rand)
525 ddir = is_random ? DDIR_WRITE : DDIR_READ;
526
527 minbs = td->o.min_bs[ddir];
528 maxbs = td->o.max_bs[ddir];
529
530 if (minbs == maxbs)
531 return minbs;
532
533 /*
534 * If we can't satisfy the min block size from here, then fail
535 */
536 if (!io_u_fits(td, io_u, minbs))
537 return 0;
538
539 frand_max = rand_max(&td->bsrange_state[ddir]);
540 do {
541 r = __rand(&td->bsrange_state[ddir]);
542
543 if (!td->o.bssplit_nr[ddir]) {
544 buflen = minbs + (unsigned long long) ((double) maxbs *
545 (r / (frand_max + 1.0)));
546 } else {
547 long long perc = 0;
548 unsigned int i;
549
550 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
551 struct bssplit *bsp = &td->o.bssplit[ddir][i];
552
553 buflen = bsp->bs;
554 perc += bsp->perc;
555 if (!perc)
556 break;
557 if ((r / perc <= frand_max / 100ULL) &&
558 io_u_fits(td, io_u, buflen))
559 break;
560 }
561 }
562
563 power_2 = is_power_of_2(minbs);
564 if (!td->o.bs_unaligned && power_2)
565 buflen &= ~(minbs - 1);
566 else if (!td->o.bs_unaligned && !power_2)
567 buflen -= buflen % minbs;
568 } while (!io_u_fits(td, io_u, buflen));
569
570 return buflen;
571}
572
573static void set_rwmix_bytes(struct thread_data *td)
574{
575 unsigned int diff;
576
577 /*
578 * we do time or byte based switch. this is needed because
579 * buffered writes may issue a lot quicker than they complete,
580 * whereas reads do not.
581 */
582 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
583 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
584}
585
586static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
587{
588 unsigned int v;
589
590 v = rand_between(&td->rwmix_state, 1, 100);
591
592 if (v <= td->o.rwmix[DDIR_READ])
593 return DDIR_READ;
594
595 return DDIR_WRITE;
596}
597
598int io_u_quiesce(struct thread_data *td)
599{
600 int completed = 0;
601
602 /*
603 * We are going to sleep, ensure that we flush anything pending as
604 * not to skew our latency numbers.
605 *
606 * Changed to only monitor 'in flight' requests here instead of the
607 * td->cur_depth, b/c td->cur_depth does not accurately represent
608 * io's that have been actually submitted to an async engine,
609 * and cur_depth is meaningless for sync engines.
610 */
611 if (td->io_u_queued || td->cur_depth)
612 td_io_commit(td);
613
614 while (td->io_u_in_flight) {
615 int ret;
616
617 ret = io_u_queued_complete(td, 1);
618 if (ret > 0)
619 completed += ret;
620 }
621
622 if (td->flags & TD_F_REGROW_LOGS)
623 regrow_logs(td);
624
625 return completed;
626}
627
628static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
629{
630 enum fio_ddir odir = ddir ^ 1;
631 uint64_t usec;
632 uint64_t now;
633
634 assert(ddir_rw(ddir));
635 now = utime_since_now(&td->start);
636
637 /*
638 * if rate_next_io_time is in the past, need to catch up to rate
639 */
640 if (td->rate_next_io_time[ddir] <= now)
641 return ddir;
642
643 /*
644 * We are ahead of rate in this direction. See if we
645 * should switch.
646 */
647 if (td_rw(td) && td->o.rwmix[odir]) {
648 /*
649 * Other direction is behind rate, switch
650 */
651 if (td->rate_next_io_time[odir] <= now)
652 return odir;
653
654 /*
655 * Both directions are ahead of rate. sleep the min,
656 * switch if necessary
657 */
658 if (td->rate_next_io_time[ddir] <=
659 td->rate_next_io_time[odir]) {
660 usec = td->rate_next_io_time[ddir] - now;
661 } else {
662 usec = td->rate_next_io_time[odir] - now;
663 ddir = odir;
664 }
665 } else
666 usec = td->rate_next_io_time[ddir] - now;
667
668 if (td->o.io_submit_mode == IO_MODE_INLINE)
669 io_u_quiesce(td);
670
671 usec_sleep(td, usec);
672 return ddir;
673}
674
675/*
676 * Return the data direction for the next io_u. If the job is a
677 * mixed read/write workload, check the rwmix cycle and switch if
678 * necessary.
679 */
680static enum fio_ddir get_rw_ddir(struct thread_data *td)
681{
682 enum fio_ddir ddir;
683
684 /*
685 * See if it's time to fsync/fdatasync/sync_file_range first,
686 * and if not then move on to check regular I/Os.
687 */
688 if (should_fsync(td)) {
689 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
690 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
691 return DDIR_SYNC;
692
693 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
694 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
695 return DDIR_DATASYNC;
696
697 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
698 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
699 return DDIR_SYNC_FILE_RANGE;
700 }
701
702 if (td_rw(td)) {
703 /*
704 * Check if it's time to seed a new data direction.
705 */
706 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
707 /*
708 * Put a top limit on how many bytes we do for
709 * one data direction, to avoid overflowing the
710 * ranges too much
711 */
712 ddir = get_rand_ddir(td);
713
714 if (ddir != td->rwmix_ddir)
715 set_rwmix_bytes(td);
716
717 td->rwmix_ddir = ddir;
718 }
719 ddir = td->rwmix_ddir;
720 } else if (td_read(td))
721 ddir = DDIR_READ;
722 else if (td_write(td))
723 ddir = DDIR_WRITE;
724 else if (td_trim(td))
725 ddir = DDIR_TRIM;
726 else
727 ddir = DDIR_INVAL;
728
729 td->rwmix_ddir = rate_ddir(td, ddir);
730 return td->rwmix_ddir;
731}
732
733static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
734{
735 enum fio_ddir ddir = get_rw_ddir(td);
736
737 if (td_trimwrite(td)) {
738 struct fio_file *f = io_u->file;
739 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
740 ddir = DDIR_TRIM;
741 else
742 ddir = DDIR_WRITE;
743 }
744
745 io_u->ddir = io_u->acct_ddir = ddir;
746
747 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
748 td->o.barrier_blocks &&
749 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
750 td->io_issues[DDIR_WRITE])
751 io_u_set(td, io_u, IO_U_F_BARRIER);
752}
753
754void put_file_log(struct thread_data *td, struct fio_file *f)
755{
756 unsigned int ret = put_file(td, f);
757
758 if (ret)
759 td_verror(td, ret, "file close");
760}
761
762void put_io_u(struct thread_data *td, struct io_u *io_u)
763{
764 if (td->parent)
765 td = td->parent;
766
767 td_io_u_lock(td);
768
769 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
770 put_file_log(td, io_u->file);
771
772 io_u->file = NULL;
773 io_u_set(td, io_u, IO_U_F_FREE);
774
775 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
776 td->cur_depth--;
777 assert(!(td->flags & TD_F_CHILD));
778 }
779 io_u_qpush(&td->io_u_freelist, io_u);
780 td_io_u_free_notify(td);
781 td_io_u_unlock(td);
782}
783
784void clear_io_u(struct thread_data *td, struct io_u *io_u)
785{
786 io_u_clear(td, io_u, IO_U_F_FLIGHT);
787 put_io_u(td, io_u);
788}
789
790void requeue_io_u(struct thread_data *td, struct io_u **io_u)
791{
792 struct io_u *__io_u = *io_u;
793 enum fio_ddir ddir = acct_ddir(__io_u);
794
795 dprint(FD_IO, "requeue %p\n", __io_u);
796
797 if (td->parent)
798 td = td->parent;
799
800 td_io_u_lock(td);
801
802 io_u_set(td, __io_u, IO_U_F_FREE);
803 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
804 td->io_issues[ddir]--;
805
806 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
807 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
808 td->cur_depth--;
809 assert(!(td->flags & TD_F_CHILD));
810 }
811
812 io_u_rpush(&td->io_u_requeues, __io_u);
813 td_io_u_free_notify(td);
814 td_io_u_unlock(td);
815 *io_u = NULL;
816}
817
818static void setup_strided_zone_mode(struct thread_data *td, struct io_u *io_u)
819{
820 struct fio_file *f = io_u->file;
821
822 assert(td->o.zone_mode == ZONE_MODE_STRIDED);
823 assert(td->o.zone_size);
824 assert(td->o.zone_range);
825
826 /*
827 * See if it's time to switch to a new zone
828 */
829 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
830 td->zone_bytes = 0;
831 f->file_offset += td->o.zone_range + td->o.zone_skip;
832
833 /*
834 * Wrap from the beginning, if we exceed the file size
835 */
836 if (f->file_offset >= f->real_file_size)
837 f->file_offset = get_start_offset(td, f);
838
839 f->last_pos[io_u->ddir] = f->file_offset;
840 td->io_skip_bytes += td->o.zone_skip;
841 }
842
843 /*
844 * If zone_size > zone_range, then maintain the same zone until
845 * zone_bytes >= zone_size.
846 */
847 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
848 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
849 f->file_offset, f->last_pos[io_u->ddir]);
850 f->last_pos[io_u->ddir] = f->file_offset;
851 }
852
853 /*
854 * For random: if 'norandommap' is not set and zone_size > zone_range,
855 * map needs to be reset as it's done with zone_range everytime.
856 */
857 if ((td->zone_bytes % td->o.zone_range) == 0)
858 fio_file_reset(td, f);
859}
860
861static int fill_io_u(struct thread_data *td, struct io_u *io_u)
862{
863 bool is_random;
864
865 if (td_ioengine_flagged(td, FIO_NOIO))
866 goto out;
867
868 set_rw_ddir(td, io_u);
869
870 /*
871 * fsync() or fdatasync() or trim etc, we are done
872 */
873 if (!ddir_rw(io_u->ddir))
874 goto out;
875
876 if (td->o.zone_mode == ZONE_MODE_STRIDED)
877 setup_strided_zone_mode(td, io_u);
878
879 /*
880 * No log, let the seq/rand engine retrieve the next buflen and
881 * position.
882 */
883 if (get_next_offset(td, io_u, &is_random)) {
884 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
885 return 1;
886 }
887
888 io_u->buflen = get_next_buflen(td, io_u, is_random);
889 if (!io_u->buflen) {
890 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
891 return 1;
892 }
893
894 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
895 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%llx exceeds file size=0x%llx\n",
896 io_u,
897 (unsigned long long) io_u->offset, io_u->buflen,
898 (unsigned long long) io_u->file->real_file_size);
899 return 1;
900 }
901
902 /*
903 * mark entry before potentially trimming io_u
904 */
905 if (td_random(td) && file_randommap(td, io_u->file))
906 mark_random_map(td, io_u);
907
908out:
909 dprint_io_u(io_u, "fill");
910 td->zone_bytes += io_u->buflen;
911 return 0;
912}
913
914static void __io_u_mark_map(uint64_t *map, unsigned int nr)
915{
916 int idx = 0;
917
918 switch (nr) {
919 default:
920 idx = 6;
921 break;
922 case 33 ... 64:
923 idx = 5;
924 break;
925 case 17 ... 32:
926 idx = 4;
927 break;
928 case 9 ... 16:
929 idx = 3;
930 break;
931 case 5 ... 8:
932 idx = 2;
933 break;
934 case 1 ... 4:
935 idx = 1;
936 case 0:
937 break;
938 }
939
940 map[idx]++;
941}
942
943void io_u_mark_submit(struct thread_data *td, unsigned int nr)
944{
945 __io_u_mark_map(td->ts.io_u_submit, nr);
946 td->ts.total_submit++;
947}
948
949void io_u_mark_complete(struct thread_data *td, unsigned int nr)
950{
951 __io_u_mark_map(td->ts.io_u_complete, nr);
952 td->ts.total_complete++;
953}
954
955void io_u_mark_depth(struct thread_data *td, unsigned int nr)
956{
957 int idx = 0;
958
959 switch (td->cur_depth) {
960 default:
961 idx = 6;
962 break;
963 case 32 ... 63:
964 idx = 5;
965 break;
966 case 16 ... 31:
967 idx = 4;
968 break;
969 case 8 ... 15:
970 idx = 3;
971 break;
972 case 4 ... 7:
973 idx = 2;
974 break;
975 case 2 ... 3:
976 idx = 1;
977 case 1:
978 break;
979 }
980
981 td->ts.io_u_map[idx] += nr;
982}
983
984static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
985{
986 int idx = 0;
987
988 assert(nsec < 1000);
989
990 switch (nsec) {
991 case 750 ... 999:
992 idx = 9;
993 break;
994 case 500 ... 749:
995 idx = 8;
996 break;
997 case 250 ... 499:
998 idx = 7;
999 break;
1000 case 100 ... 249:
1001 idx = 6;
1002 break;
1003 case 50 ... 99:
1004 idx = 5;
1005 break;
1006 case 20 ... 49:
1007 idx = 4;
1008 break;
1009 case 10 ... 19:
1010 idx = 3;
1011 break;
1012 case 4 ... 9:
1013 idx = 2;
1014 break;
1015 case 2 ... 3:
1016 idx = 1;
1017 case 0 ... 1:
1018 break;
1019 }
1020
1021 assert(idx < FIO_IO_U_LAT_N_NR);
1022 td->ts.io_u_lat_n[idx]++;
1023}
1024
1025static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1026{
1027 int idx = 0;
1028
1029 assert(usec < 1000 && usec >= 1);
1030
1031 switch (usec) {
1032 case 750 ... 999:
1033 idx = 9;
1034 break;
1035 case 500 ... 749:
1036 idx = 8;
1037 break;
1038 case 250 ... 499:
1039 idx = 7;
1040 break;
1041 case 100 ... 249:
1042 idx = 6;
1043 break;
1044 case 50 ... 99:
1045 idx = 5;
1046 break;
1047 case 20 ... 49:
1048 idx = 4;
1049 break;
1050 case 10 ... 19:
1051 idx = 3;
1052 break;
1053 case 4 ... 9:
1054 idx = 2;
1055 break;
1056 case 2 ... 3:
1057 idx = 1;
1058 case 0 ... 1:
1059 break;
1060 }
1061
1062 assert(idx < FIO_IO_U_LAT_U_NR);
1063 td->ts.io_u_lat_u[idx]++;
1064}
1065
1066static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1067{
1068 int idx = 0;
1069
1070 assert(msec >= 1);
1071
1072 switch (msec) {
1073 default:
1074 idx = 11;
1075 break;
1076 case 1000 ... 1999:
1077 idx = 10;
1078 break;
1079 case 750 ... 999:
1080 idx = 9;
1081 break;
1082 case 500 ... 749:
1083 idx = 8;
1084 break;
1085 case 250 ... 499:
1086 idx = 7;
1087 break;
1088 case 100 ... 249:
1089 idx = 6;
1090 break;
1091 case 50 ... 99:
1092 idx = 5;
1093 break;
1094 case 20 ... 49:
1095 idx = 4;
1096 break;
1097 case 10 ... 19:
1098 idx = 3;
1099 break;
1100 case 4 ... 9:
1101 idx = 2;
1102 break;
1103 case 2 ... 3:
1104 idx = 1;
1105 case 0 ... 1:
1106 break;
1107 }
1108
1109 assert(idx < FIO_IO_U_LAT_M_NR);
1110 td->ts.io_u_lat_m[idx]++;
1111}
1112
1113static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1114{
1115 if (nsec < 1000)
1116 io_u_mark_lat_nsec(td, nsec);
1117 else if (nsec < 1000000)
1118 io_u_mark_lat_usec(td, nsec / 1000);
1119 else
1120 io_u_mark_lat_msec(td, nsec / 1000000);
1121}
1122
1123static unsigned int __get_next_fileno_rand(struct thread_data *td)
1124{
1125 unsigned long fileno;
1126
1127 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1128 uint64_t frand_max = rand_max(&td->next_file_state);
1129 unsigned long r;
1130
1131 r = __rand(&td->next_file_state);
1132 return (unsigned int) ((double) td->o.nr_files
1133 * (r / (frand_max + 1.0)));
1134 }
1135
1136 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1137 fileno = zipf_next(&td->next_file_zipf);
1138 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1139 fileno = pareto_next(&td->next_file_zipf);
1140 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1141 fileno = gauss_next(&td->next_file_gauss);
1142 else {
1143 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1144 assert(0);
1145 return 0;
1146 }
1147
1148 return fileno >> FIO_FSERVICE_SHIFT;
1149}
1150
1151/*
1152 * Get next file to service by choosing one at random
1153 */
1154static struct fio_file *get_next_file_rand(struct thread_data *td,
1155 enum fio_file_flags goodf,
1156 enum fio_file_flags badf)
1157{
1158 struct fio_file *f;
1159 int fno;
1160
1161 do {
1162 int opened = 0;
1163
1164 fno = __get_next_fileno_rand(td);
1165
1166 f = td->files[fno];
1167 if (fio_file_done(f))
1168 continue;
1169
1170 if (!fio_file_open(f)) {
1171 int err;
1172
1173 if (td->nr_open_files >= td->o.open_files)
1174 return ERR_PTR(-EBUSY);
1175
1176 err = td_io_open_file(td, f);
1177 if (err)
1178 continue;
1179 opened = 1;
1180 }
1181
1182 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1183 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1184 return f;
1185 }
1186 if (opened)
1187 td_io_close_file(td, f);
1188 } while (1);
1189}
1190
1191/*
1192 * Get next file to service by doing round robin between all available ones
1193 */
1194static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1195 int badf)
1196{
1197 unsigned int old_next_file = td->next_file;
1198 struct fio_file *f;
1199
1200 do {
1201 int opened = 0;
1202
1203 f = td->files[td->next_file];
1204
1205 td->next_file++;
1206 if (td->next_file >= td->o.nr_files)
1207 td->next_file = 0;
1208
1209 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1210 if (fio_file_done(f)) {
1211 f = NULL;
1212 continue;
1213 }
1214
1215 if (!fio_file_open(f)) {
1216 int err;
1217
1218 if (td->nr_open_files >= td->o.open_files)
1219 return ERR_PTR(-EBUSY);
1220
1221 err = td_io_open_file(td, f);
1222 if (err) {
1223 dprint(FD_FILE, "error %d on open of %s\n",
1224 err, f->file_name);
1225 f = NULL;
1226 continue;
1227 }
1228 opened = 1;
1229 }
1230
1231 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1232 f->flags);
1233 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1234 break;
1235
1236 if (opened)
1237 td_io_close_file(td, f);
1238
1239 f = NULL;
1240 } while (td->next_file != old_next_file);
1241
1242 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1243 return f;
1244}
1245
1246static struct fio_file *__get_next_file(struct thread_data *td)
1247{
1248 struct fio_file *f;
1249
1250 assert(td->o.nr_files <= td->files_index);
1251
1252 if (td->nr_done_files >= td->o.nr_files) {
1253 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1254 " nr_files=%d\n", td->nr_open_files,
1255 td->nr_done_files,
1256 td->o.nr_files);
1257 return NULL;
1258 }
1259
1260 f = td->file_service_file;
1261 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1262 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1263 goto out;
1264 if (td->file_service_left--)
1265 goto out;
1266 }
1267
1268 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1269 td->o.file_service_type == FIO_FSERVICE_SEQ)
1270 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1271 else
1272 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1273
1274 if (IS_ERR(f))
1275 return f;
1276
1277 td->file_service_file = f;
1278 td->file_service_left = td->file_service_nr - 1;
1279out:
1280 if (f)
1281 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1282 else
1283 dprint(FD_FILE, "get_next_file: NULL\n");
1284 return f;
1285}
1286
1287static struct fio_file *get_next_file(struct thread_data *td)
1288{
1289 return __get_next_file(td);
1290}
1291
1292static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1293{
1294 struct fio_file *f;
1295
1296 do {
1297 f = get_next_file(td);
1298 if (IS_ERR_OR_NULL(f))
1299 return PTR_ERR(f);
1300
1301 io_u->file = f;
1302 get_file(f);
1303
1304 if (!fill_io_u(td, io_u))
1305 break;
1306
1307 put_file_log(td, f);
1308 td_io_close_file(td, f);
1309 io_u->file = NULL;
1310 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1311 fio_file_reset(td, f);
1312 else {
1313 fio_file_set_done(f);
1314 td->nr_done_files++;
1315 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1316 td->nr_done_files, td->o.nr_files);
1317 }
1318 } while (1);
1319
1320 return 0;
1321}
1322
1323static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1324 unsigned long long tnsec, unsigned long long max_nsec)
1325{
1326 if (!td->error)
1327 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec)\n", tnsec, max_nsec);
1328 td_verror(td, ETIMEDOUT, "max latency exceeded");
1329 icd->error = ETIMEDOUT;
1330}
1331
1332static void lat_new_cycle(struct thread_data *td)
1333{
1334 fio_gettime(&td->latency_ts, NULL);
1335 td->latency_ios = ddir_rw_sum(td->io_blocks);
1336 td->latency_failed = 0;
1337}
1338
1339/*
1340 * We had an IO outside the latency target. Reduce the queue depth. If we
1341 * are at QD=1, then it's time to give up.
1342 */
1343static bool __lat_target_failed(struct thread_data *td)
1344{
1345 if (td->latency_qd == 1)
1346 return true;
1347
1348 td->latency_qd_high = td->latency_qd;
1349
1350 if (td->latency_qd == td->latency_qd_low)
1351 td->latency_qd_low--;
1352
1353 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1354
1355 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1356
1357 /*
1358 * When we ramp QD down, quiesce existing IO to prevent
1359 * a storm of ramp downs due to pending higher depth.
1360 */
1361 io_u_quiesce(td);
1362 lat_new_cycle(td);
1363 return false;
1364}
1365
1366static bool lat_target_failed(struct thread_data *td)
1367{
1368 if (td->o.latency_percentile.u.f == 100.0)
1369 return __lat_target_failed(td);
1370
1371 td->latency_failed++;
1372 return false;
1373}
1374
1375void lat_target_init(struct thread_data *td)
1376{
1377 td->latency_end_run = 0;
1378
1379 if (td->o.latency_target) {
1380 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1381 fio_gettime(&td->latency_ts, NULL);
1382 td->latency_qd = 1;
1383 td->latency_qd_high = td->o.iodepth;
1384 td->latency_qd_low = 1;
1385 td->latency_ios = ddir_rw_sum(td->io_blocks);
1386 } else
1387 td->latency_qd = td->o.iodepth;
1388}
1389
1390void lat_target_reset(struct thread_data *td)
1391{
1392 if (!td->latency_end_run)
1393 lat_target_init(td);
1394}
1395
1396static void lat_target_success(struct thread_data *td)
1397{
1398 const unsigned int qd = td->latency_qd;
1399 struct thread_options *o = &td->o;
1400
1401 td->latency_qd_low = td->latency_qd;
1402
1403 /*
1404 * If we haven't failed yet, we double up to a failing value instead
1405 * of bisecting from highest possible queue depth. If we have set
1406 * a limit other than td->o.iodepth, bisect between that.
1407 */
1408 if (td->latency_qd_high != o->iodepth)
1409 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1410 else
1411 td->latency_qd *= 2;
1412
1413 if (td->latency_qd > o->iodepth)
1414 td->latency_qd = o->iodepth;
1415
1416 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1417
1418 /*
1419 * Same as last one, we are done. Let it run a latency cycle, so
1420 * we get only the results from the targeted depth.
1421 */
1422 if (td->latency_qd == qd) {
1423 if (td->latency_end_run) {
1424 dprint(FD_RATE, "We are done\n");
1425 td->done = 1;
1426 } else {
1427 dprint(FD_RATE, "Quiesce and final run\n");
1428 io_u_quiesce(td);
1429 td->latency_end_run = 1;
1430 reset_all_stats(td);
1431 reset_io_stats(td);
1432 }
1433 }
1434
1435 lat_new_cycle(td);
1436}
1437
1438/*
1439 * Check if we can bump the queue depth
1440 */
1441void lat_target_check(struct thread_data *td)
1442{
1443 uint64_t usec_window;
1444 uint64_t ios;
1445 double success_ios;
1446
1447 usec_window = utime_since_now(&td->latency_ts);
1448 if (usec_window < td->o.latency_window)
1449 return;
1450
1451 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1452 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1453 success_ios *= 100.0;
1454
1455 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1456
1457 if (success_ios >= td->o.latency_percentile.u.f)
1458 lat_target_success(td);
1459 else
1460 __lat_target_failed(td);
1461}
1462
1463/*
1464 * If latency target is enabled, we might be ramping up or down and not
1465 * using the full queue depth available.
1466 */
1467bool queue_full(const struct thread_data *td)
1468{
1469 const int qempty = io_u_qempty(&td->io_u_freelist);
1470
1471 if (qempty)
1472 return true;
1473 if (!td->o.latency_target)
1474 return false;
1475
1476 return td->cur_depth >= td->latency_qd;
1477}
1478
1479struct io_u *__get_io_u(struct thread_data *td)
1480{
1481 struct io_u *io_u = NULL;
1482 int ret;
1483
1484 if (td->stop_io)
1485 return NULL;
1486
1487 td_io_u_lock(td);
1488
1489again:
1490 if (!io_u_rempty(&td->io_u_requeues))
1491 io_u = io_u_rpop(&td->io_u_requeues);
1492 else if (!queue_full(td)) {
1493 io_u = io_u_qpop(&td->io_u_freelist);
1494
1495 io_u->file = NULL;
1496 io_u->buflen = 0;
1497 io_u->resid = 0;
1498 io_u->end_io = NULL;
1499 }
1500
1501 if (io_u) {
1502 assert(io_u->flags & IO_U_F_FREE);
1503 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1504 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1505 IO_U_F_VER_LIST);
1506
1507 io_u->error = 0;
1508 io_u->acct_ddir = -1;
1509 td->cur_depth++;
1510 assert(!(td->flags & TD_F_CHILD));
1511 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1512 io_u->ipo = NULL;
1513 } else if (td_async_processing(td)) {
1514 /*
1515 * We ran out, wait for async verify threads to finish and
1516 * return one
1517 */
1518 assert(!(td->flags & TD_F_CHILD));
1519 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1520 assert(ret == 0);
1521 goto again;
1522 }
1523
1524 td_io_u_unlock(td);
1525 return io_u;
1526}
1527
1528static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1529{
1530 if (!(td->flags & TD_F_TRIM_BACKLOG))
1531 return false;
1532 if (!td->trim_entries)
1533 return false;
1534
1535 if (td->trim_batch) {
1536 td->trim_batch--;
1537 if (get_next_trim(td, io_u))
1538 return true;
1539 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1540 td->last_ddir != DDIR_READ) {
1541 td->trim_batch = td->o.trim_batch;
1542 if (!td->trim_batch)
1543 td->trim_batch = td->o.trim_backlog;
1544 if (get_next_trim(td, io_u))
1545 return true;
1546 }
1547
1548 return false;
1549}
1550
1551static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1552{
1553 if (!(td->flags & TD_F_VER_BACKLOG))
1554 return false;
1555
1556 if (td->io_hist_len) {
1557 int get_verify = 0;
1558
1559 if (td->verify_batch)
1560 get_verify = 1;
1561 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1562 td->last_ddir != DDIR_READ) {
1563 td->verify_batch = td->o.verify_batch;
1564 if (!td->verify_batch)
1565 td->verify_batch = td->o.verify_backlog;
1566 get_verify = 1;
1567 }
1568
1569 if (get_verify && !get_next_verify(td, io_u)) {
1570 td->verify_batch--;
1571 return true;
1572 }
1573 }
1574
1575 return false;
1576}
1577
1578/*
1579 * Fill offset and start time into the buffer content, to prevent too
1580 * easy compressible data for simple de-dupe attempts. Do this for every
1581 * 512b block in the range, since that should be the smallest block size
1582 * we can expect from a device.
1583 */
1584static void small_content_scramble(struct io_u *io_u)
1585{
1586 unsigned long long i, nr_blocks = io_u->buflen >> 9;
1587 unsigned int offset;
1588 uint64_t boffset, *iptr;
1589 char *p;
1590
1591 if (!nr_blocks)
1592 return;
1593
1594 p = io_u->xfer_buf;
1595 boffset = io_u->offset;
1596
1597 if (io_u->buf_filled_len)
1598 io_u->buf_filled_len = 0;
1599
1600 /*
1601 * Generate random index between 0..7. We do chunks of 512b, if
1602 * we assume a cacheline is 64 bytes, then we have 8 of those.
1603 * Scramble content within the blocks in the same cacheline to
1604 * speed things up.
1605 */
1606 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1607
1608 for (i = 0; i < nr_blocks; i++) {
1609 /*
1610 * Fill offset into start of cacheline, time into end
1611 * of cacheline
1612 */
1613 iptr = (void *) p + (offset << 6);
1614 *iptr = boffset;
1615
1616 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1617 iptr[0] = io_u->start_time.tv_sec;
1618 iptr[1] = io_u->start_time.tv_nsec;
1619
1620 p += 512;
1621 boffset += 512;
1622 }
1623}
1624
1625/*
1626 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1627 * etc. The returned io_u is fully ready to be prepped, populated and submitted.
1628 */
1629struct io_u *get_io_u(struct thread_data *td)
1630{
1631 struct fio_file *f;
1632 struct io_u *io_u;
1633 int do_scramble = 0;
1634 long ret = 0;
1635
1636 io_u = __get_io_u(td);
1637 if (!io_u) {
1638 dprint(FD_IO, "__get_io_u failed\n");
1639 return NULL;
1640 }
1641
1642 if (check_get_verify(td, io_u))
1643 goto out;
1644 if (check_get_trim(td, io_u))
1645 goto out;
1646
1647 /*
1648 * from a requeue, io_u already setup
1649 */
1650 if (io_u->file)
1651 goto out;
1652
1653 /*
1654 * If using an iolog, grab next piece if any available.
1655 */
1656 if (td->flags & TD_F_READ_IOLOG) {
1657 if (read_iolog_get(td, io_u))
1658 goto err_put;
1659 } else if (set_io_u_file(td, io_u)) {
1660 ret = -EBUSY;
1661 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1662 goto err_put;
1663 }
1664
1665 f = io_u->file;
1666 if (!f) {
1667 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1668 goto err_put;
1669 }
1670
1671 assert(fio_file_open(f));
1672
1673 if (ddir_rw(io_u->ddir)) {
1674 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1675 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1676 goto err_put;
1677 }
1678
1679 f->last_start[io_u->ddir] = io_u->offset;
1680 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1681
1682 if (io_u->ddir == DDIR_WRITE) {
1683 if (td->flags & TD_F_REFILL_BUFFERS) {
1684 io_u_fill_buffer(td, io_u,
1685 td->o.min_bs[DDIR_WRITE],
1686 io_u->buflen);
1687 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1688 !(td->flags & TD_F_COMPRESS) &&
1689 !(td->flags & TD_F_DO_VERIFY))
1690 do_scramble = 1;
1691 } else if (io_u->ddir == DDIR_READ) {
1692 /*
1693 * Reset the buf_filled parameters so next time if the
1694 * buffer is used for writes it is refilled.
1695 */
1696 io_u->buf_filled_len = 0;
1697 }
1698 }
1699
1700 /*
1701 * Set io data pointers.
1702 */
1703 io_u->xfer_buf = io_u->buf;
1704 io_u->xfer_buflen = io_u->buflen;
1705
1706out:
1707 assert(io_u->file);
1708 if (!td_io_prep(td, io_u)) {
1709 if (!td->o.disable_lat)
1710 fio_gettime(&io_u->start_time, NULL);
1711
1712 if (do_scramble)
1713 small_content_scramble(io_u);
1714
1715 return io_u;
1716 }
1717err_put:
1718 dprint(FD_IO, "get_io_u failed\n");
1719 put_io_u(td, io_u);
1720 return ERR_PTR(ret);
1721}
1722
1723static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1724{
1725 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1726
1727 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1728 return;
1729
1730 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%llu\n",
1731 io_u->file ? " on file " : "",
1732 io_u->file ? io_u->file->file_name : "",
1733 strerror(io_u->error),
1734 io_ddir_name(io_u->ddir),
1735 io_u->offset, io_u->xfer_buflen);
1736
1737 if (td->io_ops->errdetails) {
1738 char *err = td->io_ops->errdetails(io_u);
1739
1740 log_err("fio: %s\n", err);
1741 free(err);
1742 }
1743
1744 if (!td->error)
1745 td_verror(td, io_u->error, "io_u error");
1746}
1747
1748void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1749{
1750 __io_u_log_error(td, io_u);
1751 if (td->parent)
1752 __io_u_log_error(td->parent, io_u);
1753}
1754
1755static inline bool gtod_reduce(struct thread_data *td)
1756{
1757 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1758 || td->o.gtod_reduce;
1759}
1760
1761static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1762 struct io_completion_data *icd,
1763 const enum fio_ddir idx, unsigned int bytes)
1764{
1765 const int no_reduce = !gtod_reduce(td);
1766 unsigned long long llnsec = 0;
1767
1768 if (td->parent)
1769 td = td->parent;
1770
1771 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1772 return;
1773
1774 if (no_reduce)
1775 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1776
1777 if (!td->o.disable_lat) {
1778 unsigned long long tnsec;
1779
1780 tnsec = ntime_since(&io_u->start_time, &icd->time);
1781 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1782
1783 if (td->flags & TD_F_PROFILE_OPS) {
1784 struct prof_io_ops *ops = &td->prof_io_ops;
1785
1786 if (ops->io_u_lat)
1787 icd->error = ops->io_u_lat(td, tnsec);
1788 }
1789
1790 if (td->o.max_latency && tnsec > td->o.max_latency)
1791 lat_fatal(td, icd, tnsec, td->o.max_latency);
1792 if (td->o.latency_target && tnsec > td->o.latency_target) {
1793 if (lat_target_failed(td))
1794 lat_fatal(td, icd, tnsec, td->o.latency_target);
1795 }
1796 }
1797
1798 if (ddir_rw(idx)) {
1799 if (!td->o.disable_clat) {
1800 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1801 io_u_mark_latency(td, llnsec);
1802 }
1803
1804 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1805 add_bw_sample(td, io_u, bytes, llnsec);
1806
1807 if (no_reduce && per_unit_log(td->iops_log))
1808 add_iops_sample(td, io_u, bytes);
1809 } else if (ddir_sync(idx) && !td->o.disable_clat)
1810 add_sync_clat_sample(&td->ts, llnsec);
1811
1812 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1813 uint32_t *info = io_u_block_info(td, io_u);
1814 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1815 if (io_u->ddir == DDIR_TRIM) {
1816 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1817 BLOCK_INFO_TRIMS(*info) + 1);
1818 } else if (io_u->ddir == DDIR_WRITE) {
1819 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1820 *info);
1821 }
1822 }
1823 }
1824}
1825
1826static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1827 uint64_t offset, unsigned int bytes)
1828{
1829 int idx;
1830
1831 if (!f)
1832 return;
1833
1834 if (f->first_write == -1ULL || offset < f->first_write)
1835 f->first_write = offset;
1836 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1837 f->last_write = offset + bytes;
1838
1839 if (!f->last_write_comp)
1840 return;
1841
1842 idx = f->last_write_idx++;
1843 f->last_write_comp[idx] = offset;
1844 if (f->last_write_idx == td->o.iodepth)
1845 f->last_write_idx = 0;
1846}
1847
1848static bool should_account(struct thread_data *td)
1849{
1850 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1851 td->runstate == TD_VERIFYING);
1852}
1853
1854static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1855 struct io_completion_data *icd)
1856{
1857 struct io_u *io_u = *io_u_ptr;
1858 enum fio_ddir ddir = io_u->ddir;
1859 struct fio_file *f = io_u->file;
1860
1861 dprint_io_u(io_u, "complete");
1862
1863 assert(io_u->flags & IO_U_F_FLIGHT);
1864 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1865
1866 /*
1867 * Mark IO ok to verify
1868 */
1869 if (io_u->ipo) {
1870 /*
1871 * Remove errored entry from the verification list
1872 */
1873 if (io_u->error)
1874 unlog_io_piece(td, io_u);
1875 else {
1876 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1877 write_barrier();
1878 }
1879 }
1880
1881 if (ddir_sync(ddir)) {
1882 td->last_was_sync = true;
1883 if (f) {
1884 f->first_write = -1ULL;
1885 f->last_write = -1ULL;
1886 }
1887 if (should_account(td))
1888 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
1889 return;
1890 }
1891
1892 td->last_was_sync = false;
1893 td->last_ddir = ddir;
1894
1895 if (!io_u->error && ddir_rw(ddir)) {
1896 unsigned long long bytes = io_u->buflen - io_u->resid;
1897 int ret;
1898
1899 td->io_blocks[ddir]++;
1900 td->io_bytes[ddir] += bytes;
1901
1902 if (!(io_u->flags & IO_U_F_VER_LIST)) {
1903 td->this_io_blocks[ddir]++;
1904 td->this_io_bytes[ddir] += bytes;
1905 }
1906
1907 if (ddir == DDIR_WRITE)
1908 file_log_write_comp(td, f, io_u->offset, bytes);
1909
1910 if (should_account(td))
1911 account_io_completion(td, io_u, icd, ddir, bytes);
1912
1913 icd->bytes_done[ddir] += bytes;
1914
1915 if (io_u->end_io) {
1916 ret = io_u->end_io(td, io_u_ptr);
1917 io_u = *io_u_ptr;
1918 if (ret && !icd->error)
1919 icd->error = ret;
1920 }
1921 } else if (io_u->error) {
1922 icd->error = io_u->error;
1923 io_u_log_error(td, io_u);
1924 }
1925 if (icd->error) {
1926 enum error_type_bit eb = td_error_type(ddir, icd->error);
1927
1928 if (!td_non_fatal_error(td, eb, icd->error))
1929 return;
1930
1931 /*
1932 * If there is a non_fatal error, then add to the error count
1933 * and clear all the errors.
1934 */
1935 update_error_count(td, icd->error);
1936 td_clear_error(td);
1937 icd->error = 0;
1938 if (io_u)
1939 io_u->error = 0;
1940 }
1941}
1942
1943static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1944 int nr)
1945{
1946 int ddir;
1947
1948 if (!gtod_reduce(td))
1949 fio_gettime(&icd->time, NULL);
1950
1951 icd->nr = nr;
1952
1953 icd->error = 0;
1954 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1955 icd->bytes_done[ddir] = 0;
1956}
1957
1958static void ios_completed(struct thread_data *td,
1959 struct io_completion_data *icd)
1960{
1961 struct io_u *io_u;
1962 int i;
1963
1964 for (i = 0; i < icd->nr; i++) {
1965 io_u = td->io_ops->event(td, i);
1966
1967 io_completed(td, &io_u, icd);
1968
1969 if (io_u)
1970 put_io_u(td, io_u);
1971 }
1972}
1973
1974/*
1975 * Complete a single io_u for the sync engines.
1976 */
1977int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1978{
1979 struct io_completion_data icd;
1980 int ddir;
1981
1982 init_icd(td, &icd, 1);
1983 io_completed(td, &io_u, &icd);
1984
1985 if (io_u)
1986 put_io_u(td, io_u);
1987
1988 if (icd.error) {
1989 td_verror(td, icd.error, "io_u_sync_complete");
1990 return -1;
1991 }
1992
1993 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1994 td->bytes_done[ddir] += icd.bytes_done[ddir];
1995
1996 return 0;
1997}
1998
1999/*
2000 * Called to complete min_events number of io for the async engines.
2001 */
2002int io_u_queued_complete(struct thread_data *td, int min_evts)
2003{
2004 struct io_completion_data icd;
2005 struct timespec *tvp = NULL;
2006 int ret, ddir;
2007 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2008
2009 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2010
2011 if (!min_evts)
2012 tvp = &ts;
2013 else if (min_evts > td->cur_depth)
2014 min_evts = td->cur_depth;
2015
2016 /* No worries, td_io_getevents fixes min and max if they are
2017 * set incorrectly */
2018 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2019 if (ret < 0) {
2020 td_verror(td, -ret, "td_io_getevents");
2021 return ret;
2022 } else if (!ret)
2023 return ret;
2024
2025 init_icd(td, &icd, ret);
2026 ios_completed(td, &icd);
2027 if (icd.error) {
2028 td_verror(td, icd.error, "io_u_queued_complete");
2029 return -1;
2030 }
2031
2032 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2033 td->bytes_done[ddir] += icd.bytes_done[ddir];
2034
2035 return ret;
2036}
2037
2038/*
2039 * Call when io_u is really queued, to update the submission latency.
2040 */
2041void io_u_queued(struct thread_data *td, struct io_u *io_u)
2042{
2043 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2044 unsigned long slat_time;
2045
2046 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2047
2048 if (td->parent)
2049 td = td->parent;
2050
2051 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2052 io_u->offset);
2053 }
2054}
2055
2056/*
2057 * See if we should reuse the last seed, if dedupe is enabled
2058 */
2059static struct frand_state *get_buf_state(struct thread_data *td)
2060{
2061 unsigned int v;
2062
2063 if (!td->o.dedupe_percentage)
2064 return &td->buf_state;
2065 else if (td->o.dedupe_percentage == 100) {
2066 frand_copy(&td->buf_state_prev, &td->buf_state);
2067 return &td->buf_state;
2068 }
2069
2070 v = rand_between(&td->dedupe_state, 1, 100);
2071
2072 if (v <= td->o.dedupe_percentage)
2073 return &td->buf_state_prev;
2074
2075 return &td->buf_state;
2076}
2077
2078static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2079{
2080 if (td->o.dedupe_percentage == 100)
2081 frand_copy(rs, &td->buf_state_prev);
2082 else if (rs == &td->buf_state)
2083 frand_copy(&td->buf_state_prev, rs);
2084}
2085
2086void fill_io_buffer(struct thread_data *td, void *buf, unsigned long long min_write,
2087 unsigned long long max_bs)
2088{
2089 struct thread_options *o = &td->o;
2090
2091 if (o->mem_type == MEM_CUDA_MALLOC)
2092 return;
2093
2094 if (o->compress_percentage || o->dedupe_percentage) {
2095 unsigned int perc = td->o.compress_percentage;
2096 struct frand_state *rs;
2097 unsigned long long left = max_bs;
2098 unsigned long long this_write;
2099
2100 do {
2101 rs = get_buf_state(td);
2102
2103 min_write = min(min_write, left);
2104
2105 if (perc) {
2106 this_write = min_not_zero(min_write,
2107 (unsigned long long) td->o.compress_chunk);
2108
2109 fill_random_buf_percentage(rs, buf, perc,
2110 this_write, this_write,
2111 o->buffer_pattern,
2112 o->buffer_pattern_bytes);
2113 } else {
2114 fill_random_buf(rs, buf, min_write);
2115 this_write = min_write;
2116 }
2117
2118 buf += this_write;
2119 left -= this_write;
2120 save_buf_state(td, rs);
2121 } while (left);
2122 } else if (o->buffer_pattern_bytes)
2123 fill_buffer_pattern(td, buf, max_bs);
2124 else if (o->zero_buffers)
2125 memset(buf, 0, max_bs);
2126 else
2127 fill_random_buf(get_buf_state(td), buf, max_bs);
2128}
2129
2130/*
2131 * "randomly" fill the buffer contents
2132 */
2133void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2134 unsigned long long min_write, unsigned long long max_bs)
2135{
2136 io_u->buf_filled_len = 0;
2137 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2138}
2139
2140static int do_sync_file_range(const struct thread_data *td,
2141 struct fio_file *f)
2142{
2143 off64_t offset, nbytes;
2144
2145 offset = f->first_write;
2146 nbytes = f->last_write - f->first_write;
2147
2148 if (!nbytes)
2149 return 0;
2150
2151 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2152}
2153
2154int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2155{
2156 int ret;
2157
2158 if (io_u->ddir == DDIR_SYNC) {
2159 ret = fsync(io_u->file->fd);
2160 } else if (io_u->ddir == DDIR_DATASYNC) {
2161#ifdef CONFIG_FDATASYNC
2162 ret = fdatasync(io_u->file->fd);
2163#else
2164 ret = io_u->xfer_buflen;
2165 io_u->error = EINVAL;
2166#endif
2167 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2168 ret = do_sync_file_range(td, io_u->file);
2169 else {
2170 ret = io_u->xfer_buflen;
2171 io_u->error = EINVAL;
2172 }
2173
2174 if (ret < 0)
2175 io_u->error = errno;
2176
2177 return ret;
2178}
2179
2180int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2181{
2182#ifndef FIO_HAVE_TRIM
2183 io_u->error = EINVAL;
2184 return 0;
2185#else
2186 struct fio_file *f = io_u->file;
2187 int ret;
2188
2189 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2190 if (!ret)
2191 return io_u->xfer_buflen;
2192
2193 io_u->error = ret;
2194 return 0;
2195#endif
2196}